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ABSTRACT  

Cancer remains a global killer alongside cardiovascular disease. A better understanding of 

cancer biology has transformed its management with an increasing emphasis on a 

personalized approach, so-called ‘precision cancer medicine’. Imaging has a key role to play 

in the management of cancer patients. Imaging biomarkers that objectively inform on tumor 

biology, the tumor environment, and tumor changes in response to an intervention 

complement genomic and molecular diagnostics. In this review we describe the key 

principles for imaging biomarker development and discuss the current status with respect to 

magnetic resonance imaging (MRI).  

 

Keywords: Magnetic resonance imaging; imaging biomarkers; oncology; precision 

medicine 
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INTRODUCTION 

Cancer affects 14.1 million new patients yearly and is the second most common killer 

disease worldwide (1). Clinicians have long recognized that cancer represents a very 

heterogeneous disease. Patients with the same clinical presentation, tumor type and stage 

may respond very differently to the same therapies and have different oncological 

outcomes. A better understanding of the extent of the genomic and molecular 

heterogeneity within cancers, as demonstrated in renal cell cancer (2), has led to a 

refocussing of clinical management in recent years from a global to a more targeted 

approach (3). Currently cancer therapies aim to be personalized to the patient’s cancer, 

either to cure where there is limited disease, or to extend progression-free survival where 

disease is advanced yet maintaining a good quality of life, so-called ‘precision cancer 

medicine’.  

The US Food and Administration (FDA) approval of Bevacizumab in 2004 for first line 

metastatic colorectal cancer, after a Phase III trial demonstrated an improvement in median 

progression free survival (PFS) of 4 months (4), has paved the way for an increasing number 

of licensed molecular targeted therapies. These include targeted HER-2 (human epidermal 

growth factor receptor 2) therapy (trastuzumab) for HER-2 overexpressing breast cancer 

and gastric/gastro-oesophageal cancer; targeted EGFR (epidermal growth factor receptor) 

therapy (cetuximab) for RAS wild type colorectal cancer; targeted EGFR therapy (gefitinib or 

erlotinib) for EGFR mutated non-small cell lung cancer; crizotinib for ALK (anaplastic 

lymphoma kinase) gene rearrangement non-small cell lung cancer (present in approximately 

5% of adenocarcinomas); and multikinase inhibitors (pazopanib, sorafenib, sunitinib) or 

mTOR inhibitors (everolimus) for advanced renal cell cancer.  



4 

 

Trials of these therapies have highlighted the need for better diagnostics to support patient 

stratification for therapy as well as a rethink of how we gather evidence for novel 

therapeutics that may only work for a subgroup of patients. There has been burgeoning 

development of precision diagnostics as a consequence. For single agents targeted to 

clearly defined genetic 'driver' alterations, companion diagnostics improve the selection 

of patients for therapy e.g. HER-2 expression to guide trastuzumab therapy and MGMT 

methylation to guide temozolomide therapy. There has also been increasing interest in 

genomic analysis to guide therapy with the move from single to multi-agent regimens and 

also to improve prognostication e.g. Oncotype DX in breast cancer that predicts the 

likelihood of recurrence from a 21 gene signature as well as the likelihood of response to 

chemotherapy.  

While the advantages of genomic analysis and molecular analysis to improve patient 

stratification and to assist drug development is clear, in practice there have been continuing 

challenges to implementation. Some putative biomarkers may be invalid, as shown with 

EGFR expression for cetuximab (5). Cancers are also temporally and spatially 

heterogeneous, i.e. a biopsy or assay may only reflect a moment in time, or one of a number 

of lesions. This plasticity has been a reason for mixed responses to therapies and the 

development of therapy resistance during previously effective targeted therapy (6). There 

may also be issues such as suboptimal methodology, challenging assays, validation, 

regulatory issues and governance or cost that are a challenge for multicentre clinical trials.  

Imaging still has an important role to play in personalized cancer medicine (7).  Imaging is 

performed widely for the detection and characterisation of cancer, for staging, for 

monitoring therapy, for detecting disease recurrence, or surveillance; imaging biomarkers 
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hold great potential for optimizing patient care. The role of magnetic resonance imaging has 

evolved within oncological practice in recent years. Previously reserved as an adjunctive 

problem solving tool, the primary use of magnetic resonance imaging (MRI) has increased, 

such that MRI is now the primary imaging assessment tool for many cancers and plays an 

important part in management decisions. It is the initial imaging modality for diagnosing 

prostate cancer and myeloma; for staging rectal, cervical and endometrial cancer; for 

response assessment in hepatocellular cancer. In this review we will describe what 

constitutes an imaging biomarker, the principles of imaging biomarker development and the 

current status of imaging biomarkers with respect to MRI. 

WHAT CONSTITUTES A BIOMARKER?  

The term ‘biomarker’ refers to a characteristic that is measured objectively, as an indicator 

of normal biological processes, pathological changes, or response to an intervention (8). It 

includes molecular, histologic, radiographic, or physiologic characteristics. In terms of 

imaging, this may include anatomical, functional and molecular characteristics (7). The 

advantages of imaging are its versatility, its widespread usage, its relatively non-invasive 

nature (facilitating whole body imaging as well as longitudinal studies in individuals, thus 

capturing spatial and temporal heterogeneity) and its inherently quantitative nature. 

Imaging biomarkers may reflect a general cancer hallmark e.g. proliferation, metabolism, 

angiogenesis, apoptosis; specific molecular interactions; or agnostic features (9). Imaging 

biomarkers in cancer patients include biomarkers for detection (the identification of 

disease), prediction (the prediction of risk of disease or therapeutic outcome), 

prognostication (the prediction of oncological outcome) and response assessment (the 

evaluation of change with therapy). A number of imaging biomarkers are well established in 
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clinical practice. Examples include staging with the American Joint Committee on Cancer 

(AJCC) TNM (tumor, node, metastasis) staging system (a prognostic biomarker) and 

objective response assessment by RECIST (Response Evaluation in Solid Tumours) (10) in 

clinical trials (a response biomarker). 
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IMAGING BIOMARKERS: FROM DISCOVERY TO CLINICAL PRACTICE 

For new potential imaging biomarkers several steps, often in parallel and complementary to 

each other, need to be undertaken for translation into clinical practice. These can be divided 

into the following phases following discovery: development and evaluation, validation, 

implementation, qualification and utilization essentially crossing 2 main translational gaps, 

translation into patients and translation into practice (Figure 1).  

In the initial phase including development, evaluation and validation, the aim is to ensure 

that the potential biomarker is robust and fit for purpose. Technical validation includes 

assessment of accuracy, precision, repeatability, and reproducibility across single and 

multiple centres; biological and clinical validation ensure that the biomarkers are linked to 

tumor biology, outcome variables and thus of actual value in guiding decision-making in 

patients. During this phase initial health economic analysis may also be undertaken to 

identify if there are cost barriers to implementation. Once the biomarker is established, it 

should be reliable enough to be implemented in clinical trials to test research hypotheses.   

During the next phase, qualification of the biomarker may also be undertaken in large 

prospective trials. Qualification aims to confirm that the biomarker is associated with the 

clinical end-point of interest and aims to demonstrate cost effectiveness and health impact. 

This supportive evidence is key to the translation into clinical practice and widespread 

utilization. Key recommendations have been proposed in a recent consensus article (11).  

ADVANTAGES OF MRI AS AN IMAGING BIOMARKER 

Ideally, there are a number of characteristics an imaging biomarker should have (Table 1). 

MRI has many advantages including its superior soft tissue contrast, high spatial resolution; 
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its ability to obtain multiple contrasts in a single examination; and its ability to assess 

physiology e.g. vascularisation, oxygenation, diffusion. Assessment of the molecular 

environment is also achievable albeit at a lower sensitivity compared to positron emission 

tomography (PET). A number of MRI biomarkers are already established or well on their way 

to being established in clinical practice for oncological assessments (Table 2). These include 

BI-RADS (breast imaging reporting and data system) (12), LI-RADS (liver imaging reporting 

and data system) (13, 14), and PI-RADS (prostate imaging reporting and data system) (15) 

for the diagnosis of breast, hepatocellular cancers, and prostate, respectively; in addition to 

TNM staging and RECIST response evaluation. Quantitative biomarkers that have crossed 

the first translational gap and are being used to test hypotheses in research studies and 

clinical trials include vascular parameters such as initial area under the gadolinium curve 

(iAUGC) or transfer constant (Ktrans) from dynamic gadolinium enhanced (DCE) contrast 

imaging and apparent diffusion co-efficient (ADC) from diffusion weighted MRI (Table 2).  

MORPHOLOGY BASED MRI BIOMARKERS 

Current morphology based cancer biomarkers utilize the multiple contrasts and high spatial 

resolution of MRI. T2-weighted and T1-weighted sequences are part of every cancer 

protocol. T2-weighting highlights structures with a longer T2 relaxation time. Thus organs 

with a high water content, e.g. bladder, appear of high signal on T2-weighted imaging while 

cancers typically appear of intermediate signal. T2-weighted image contrast is encoded by a 

long echo time (TE) and long repetition time (TR). Typically, 2D imaging is performed in axial, 

sagittal, and/or coronal planes using a fast/turbo spin echo sequence. 3D imaging can be 

performed using a 3D T2w-TSE with optimised flip angle evolution along the echo train (e.g. 

Siemens SPACE, Philips VISTA, GE CUBE). T1-weighting highlights structures with a short T1 
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e.g. fat, melanin. T1-weighted image contrast is encoded by a short TE and short TR. T1w-

MRI is acquired with fast gradient echo sequences in 2D (Siemens FLASH, Phillips FFE, GE 

GRE) or 3D (Siemens VIBE, Philips THRIVE, GE Lava).  

Diagnostic biomarker 

A key example of a recently established diagnostic biomarker is PI-RADS (Prostate Imaging 

Reporting and Data System) in suspected prostate cancer, currently on version 2.0 (15), 

utilizing multi-parametric MRI. The PROMIS trial (16, 17) has recently published its findings 

confirming a role for multi-parametric MRI in the diagnostic pathway of patients with 

suspected prostate cancer. This enrolled 740 men, 576 of whom underwent 1·5 Tesla multi-

parametric MRI followed by both TRUS-biopsy and template prostate mapping biopsy. On 

template prostate mapping biopsy, 408 (71%) of 576 men had cancer with 230 (40%) of 576 

patients clinically significant. For clinically significant cancer, multi-parametric MRI was more 

sensitive (93%, 95% CI 88-96%) than trans-rectal ultrasound (TRUS) biopsy (48%, 42-55%; 

p<0·0001). Using multi-parametric MRI to triage men might allow 27% of patients to avoid a 

primary biopsy and improve detection of clinically significant cancer. Using a structured 

reporting scheme such as PI-RADS standardizes practice, provides an objective score of the 

likelihood of disease, and helps direct targeted biopsy. Risk scores to assess the likelihood of 

clinically significant cancer are defined as PI-RADS 1: very low, PI-RADS 2: low, PI-RADS 3: 

intermediate, PI-RADS 4: high, to PI-RADS 5: very high. A meta-analysis has revealed overall 

high sensitivity and specificity of 0.74 and 0.88 respectively for prostate cancer detection 

with PI-RADS (18, 19). MRI is performed with a multi-parametric acquisition of at least T2-

weighted and diffusion weighted sequences (20) (Figure 2). This combines high resolution, 

high soft tissue contrast of T2-weighted imaging with the diffusion weighted imaging 
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sensitivity for cancer(21). Additional dynamic contrast enhanced sequences provide 

information of wash-in and wash-out characteristics and may provide additional diagnostic 

value. A recent study has demonstrated an increase in the probability of cancer detection of 

16%, 16%, and 9% for PI-RADS category 2, 3, and 4 lesions respectively with DCE-MRI (22).  

Prognostic biomarker: Staging 

Staging is an important imaging biomarker for patient stratification. MRI is the primary 

staging modality for a number of cancers including rectal cancer. In addition to TNM-Stage 

grouping, which provides an indication of relative 5-year overall survival [Stage I (localised, 

T1/2), node negative: 95%; versus Stage IV (metastatic, any T,N): 11%], MRI also has a 

predictive role in terms of likely involvement of the resection margin and progression free 

survival (23-25) (Figure 3). 

Response biomarker: RECIST 

RECIST criteria provide a standardized, objective assessment of response to therapy in 

clinical trials (10). Classification of response is into 4 categories (complete response, partial 

response, stable disease, progressive disease) based on size change of specified measurable 

target lesions (>1cm) or nodes (>1.5cm short axis) (Table 3). From a regulatory perspective, 

RECIST remains the key response biomarker in clinical trials and is used as a surrogate end-

point. 

VALIDATED MRI BIOMARKERS REQUIRING QUALIFICATION 

Diffusion-weighted MRI 

Apparent diffusion coefficient is a biomarker that has crossed the first translational gap and 

is used to test research hypotheses in clinical trials (26). The biophysical basis of diffusion 
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weighted imaging is the microscopic displacement of water molecules (Δx ≈ 30 μm in Δt = 50 

ms) due to thermal Brownian motion. In cancers the tumour environment restricts this 

motion, thus a measurement of the effective displacement, the apparent diffusion 

coefficient (ADC), gives important microscopic information. Tumor ADC from b-values less 

than 1000s/mm2 effectively provide a measure of the extracellular space; although cell size, 

cell arrangements, cell density, integrity of cell membranes, glandular structures, 

extracellular space viscosity and tortuosity will influence this measurement. Studies have 

correlated ADC with histological grade in a number of cancers (27-30).  

The diffusion image contrast is encoded by using a gradient pair [Stejskal-Tanner gradient 

(26)], which can be either a bipolar gradient pair in gradient echo or the same polarity in 

spin echo. This gradient causes a change in the resonant Larmor frequency of a spin 

isochromat, leading to the following phase accumulation 𝜙 

𝜙 =  ∫ Δ
𝑡

0

𝜔𝑑𝑡′ =  𝛾 ∫ �⃗�(𝑡′) ∙ 𝑟(𝑡′)
𝑡

0

𝑑𝑡′ 

 

Where �⃗� is the applied gradient waveform applied for a duration t,   𝑟 ⃗⃗⃗ is the spatial position 

of the spin isochromat, and 𝛾 the gyromagnetic ratio. Thus, spins, which move during the 

application of the gradient pair will not be properly rephased. This loss in phase coherence 

secondary to spatial displacement causes a reduction in the signal. For random spin 

diffusion motion in an image voxel, this signal cancellation is related to the variance of the 

Gaussian phase distribution ø2 and the product bD: 

𝑆 = 𝑆0𝑒−〈𝜙2〉 = 𝑆0𝑒−𝑏𝐷 

Where S is the diffusion weighted signal and S0 is the signal without diffusion weighting. 
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Thus, the degree of attenuation depends on the dimensionless product of the diffusion 

coefficient D (in mm2/sec) and the b-value (in sec/mm2). The b-value is used to control the 

diffusion-weighted contrast with higher diffusion weighting at higher b-values. Typically, b-

values of 0-1500s/mm2 are applied in clinical practice and ADC is obtained from 

monoexponential fitting of the signal loss (Figure 4). In practice, other factors contribute to 

signal loss including T2-relaxation and bulk motion. In a given voxel, ADC will reflect the 

relative contribution of the different compartments.  

A number of studies have evaluated ADC as a response biomarker in a number of tumor 

types across different therapies in research studies including the multicentre setting. These 

studies have shown that a common pattern is an increase in ADCmean to a varying extent 

with different therapies. This may occur within days of starting treatment; a higher change 

in ADCmean is also associated with pathological good response (31-39).  

The variability of ADC in clinical studies has been reported to be relatively low at ≤15% (40) 

and in ice-water phantom studies as low as 3% (41). Nevertheless, there are considerations 

to be made in the trial setting (42) and technical challenges to acquiring robust diffusion 

weighted biomarkers and qualification as a biomarker(26). TR should be sufficiently long to 

avoid underestimation of ADC due to T1 saturation effect; TE should be minimized to 

achieve better SNR, to minimize motion and susceptibility artefacts. Good fat suppression is 

required to minimize ghosting artefacts; Short tau inversion recovery (STIR) may be 

preferred to spectral presaturation attenuated by inversion recovery (SPAIR) or chemical 

shift selective water only excitation techniques, where a large field of view is necessary at 

1.5T as STIR is less sensitive to B0 field inhomogeneities. Geometric distortion and 

susceptibility artefacts caused by eddy currents related to EPI may be improved by 
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shortening the echo train length, e.g. through adapting the receiver bandwidth to reduce 

the echo spacing, use of parallel imaging, zoomed excitation or readout segmented imaging.  

 

Dynamic contrast enhanced MRI 

Dynamic contrast enhanced (DCE) MRI refers to the rapid acquisition of a time series of T1w 

images before, during and after intravenous administration of a gadolinium-based contrast 

agent. Gadolinium contrast agents are small hydrophilic molecules with a short circulation 

half-life, typically <1hour. These contrast agents shorten the T1-relaxation rate thus cause 

signal enhancement related to the delivery and leakage rate of contrast agent within the 

tissue of interest, providing a surrogate measure of angiogenesis.  

While qualitative assessment of curve shape is an established imaging biomarker e.g. for the 

evaluation of suspected breast and prostate cancer; the use of quantitative vascular 

parameters remains in the domain of clinical trials. In terms of qualitative assessment, three 

distinct curve shapes are recognised: Type 1) slow rising enhancement (benign); Type 2) 

rapid enhancement with a plateau (may be malignant); and Type 3) rapid enhancement 

followed by rapid wash-out (malignant). 

For assessing quantitative parameters, baseline T1 mapping is required usually with a dual 

flip angle 3D T1-weighted spoiled gradient recalled echo acquisition (e.g. 2°/18°) with other 

parameters remaining constant.  

The baseline T1 value (T10) is estimated from fitting the signal intensity of the images 

acquired with different flip angles to the following equation:  

𝑆 =
𝑆0(1 − 𝐸1)𝑠𝑖𝑛(𝛼)

1 − 𝐸1
∗𝑐𝑜𝑠(𝛼)
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Where S is acquired T1-weighted signal, α represents the applied flip angle in each 

acquisition, S0 is the T1 fully relaxed signal, and 𝐸1 = 𝑒
−𝑇𝑅

𝑇10 , where TR is the sequence 

repetition time. Following contrast agent administration, typically 0.1mmol/kg body weight, 

a dynamic acquisition for up to 5 minutes yields a temporal resolution in the order of 3-5s 

between acquisitions. Contrast agent concentration may be estimated by the following 

equation: 

1

𝑇1(𝑡)
=

1

𝑇10
+ 𝑟1𝐶 

where T1(t) represents the T1 change over time due to the contrast agent, T10 represents 

the T1 of the tissue at baseline and r1 represents the T1 relaxivity of the contrast agent and 

C represents the unknown contrast concentration.  

The Tofts and Kermode model (43) is applied most commonly to determine Ktrans (a product 

of flow and transfer permeability)  

𝑑𝐶𝑡(𝑡)

𝑑𝑡
= 𝐾𝑡𝑟𝑎𝑛𝑠𝐶𝑝(𝑡) − 𝑘𝑒𝑝𝐶𝑡(𝑡) 

where 𝐶𝑡(𝑡)and 𝐶𝑝(𝑡)represent the contrast agent concentration in tissue and plasma as 

function of time respectively, Ktrans represents transfer constant, kep represents the rate 

constant; or as an extended model to account for the contrast agent in the vasculature, 

when vascular volume cannot be neglected.  

𝐶𝑡(𝑡) = 𝑣𝑝𝐶𝑝(𝑡) +  𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝 (𝑡1)𝑒𝑥𝑝 (
−𝐾𝑡𝑟𝑎𝑛𝑠(𝑡 − 𝑡1)

𝑣𝑒
)

𝑡

0

𝑑𝑡1 

where 𝐶𝑡(𝑡) and 𝐶𝑝(𝑡) represent the contrast agent concentration in tissue and plasma 

respectively, Ktrans represents transfer constant, kep represents the rate constant; vp 



15 

 

represent the fractional plasma volume; and ve the fractional extracellular extravascular 

volume. 

In the last 15 years, over 110 studies in 2268 patients have utilized quantitative DCE-MRI as 

a biomarker in clinical studies and trials reflecting the use of DCE-MRI to assess vascular 

activity in drug development (44), in particular to assess the effect of anti-angiogenic or 

anti-vascular therapy (Figure 5). Consistent reduction in the initial area under the 

gadolinium curve (iAUGC) and Ktrans have been found for a number of therapies including 

VEGF-targeted agents (bevacizumab) and multikinase inhibitors (pazopanib, sunitinib, 

sorafenib), as early as a few hours after dosing. 

 

Nevertheless, the variability of Ktrans in clinical studies remains a major issue (>50%), and 

baseline reproducibility has been utilized in clinical trials on an individual basis in order to be 

able to determine whether the measured change is related to therapeutic effect. Accurate 

determination of the arterial input function (AIF) which characterizes contrast agent arrival 

in a feeding blood vessel within the tumor remains a challenge to accurate quantification. As 

an alternative to subject-specific direct measurement of AIF (subject to flow artefacts, 

nonlinear effects of high contrast agent concentrations, and partial volume effects), 

population-based AIFs (45) or reference tissue based methods (46) have been advocated. 

Accurate T1-mapping also remains a challenge, as B1 inhomogeneity, particularly at 3T and 

higher field strengths limit the accuracy of T1-estimates derived from the typically employed 

VFA technique. Recent developments propose to include B1+ for T1-mapping (47). To 

overcome the challenge of achieving both, high spatial and temporal resolution for the DCE 

data acquisition, advanced methods have been proposed, such as combining parallel 
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imaging, compressed sensing and non-cartesian sampling (48), view sharing (49), and 

motion compensation (50).  

 

EMERGING MRI BIOMARKERS 

Further emerging quantitative biomarkers are undergoing evaluation (Table 4), related to 

the following techniques: intravoxel incoherent motion (IVIM), diffusion kurtosis imaging, 

blood and tissue oxygenation level dependent MRI (BOLD/TOLD), MR elastography, and 

relaxometry imaging. There has also been growing interest in extracting additional agnostic 

features from standard and quantitative MRI sequences, so called radiomics (9).  

Pseudodiffusion and intravoxel incoherent motion 

Bulk water motion in capillaries can also cause phase dispersion in diffusion weighted MRI 

(51, 52). The loss in signal is similar to that seen with true diffusion and more marked at low 

b-values. Diffusion weighted MRI always measures both, but relative contribution depends 

on the choice of b-values. The contribution of true diffusion and perfusion towards signal 

loss can be defined as follows:  

𝑆(𝑏) = (1 − 𝑓𝑣)𝑒−𝑏𝐷 + 𝑓𝑣𝑒−𝑏𝐷∗
 

Where S is the acquired diffusion-weighted signal, b represents the b-value, fv represents 

the fractional volume of flowing water molecules within capillaries; (1-Fv) is the fraction of 

molecules undergo true diffusion; D represents tissue diffusion co-efficient and D* the 

pseudo-diffusion co-efficient. D* the pseudo-diffusion coefficient associated with blood flow 

is about 10x10-3 mm2/sec in the brain and 70x10-3 mm2/sec in the liver compared to D which 

is 1x10-3 mm2/sec. 
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Assessing fv and D* may be feasible for patients with poor renal function, an allergy 

precluding intravenous administration of contrast agent or at high-risk of developing 

nephrogenic systemic fibrosis (53).  

However, one of the issues highlighted to date is the poor test-retest variability of f and D* 

(54), in the order of >100% in some cancers e.g. rectal (55). There also appears some 

contention as to technical/biological correlates: while some studies have shown a 

relationship between IVIM and DCE-MRI parameters (56-58), others have not in some 

cancers e.g. hepatocellular carcinoma (59). One also has to be aware that flow from 

glandular secretions e.g. pancreas may be difficult to separate from micro-capillary 

perfusion. A potential application is as a diagnostic biomarker, where current 

characterisation may be a challenge e.g. pancreas (60, 61).  

Apparent diffusional kurtosis  

Diffusion kurtosis imaging characterizes non-Gaussian diffusion behaviour at high b-values 

ranging from 1000 – 3000 sec /mm2. A polynomial decay model is fitted to an acquisition 

using at least 3 b-values to obtain Dapp..and Kapp representing the heterogeneity of the 

cellular microstructure. The diffusion signal Si for a given b-value bI is given by 

𝑆𝑖 = 𝑆0 ∗ 𝑒𝑏I𝐷𝑎𝑝𝑝+
1
6

𝐷𝑏I
2𝐷2

𝑎𝑝𝑝𝐾𝑎𝑝𝑝
 

Where S0 is the signal without diffusion weighting, Kapp is the apparent diffusional kurtosis 

and Dapp is the diffusion co-efficient. Kapp reflects the signal curvature away from a 

monoexponential fit. The rationale proposed for assessing kurtosis is that it may better 

reflect the tumor intracellular microstructure (62, 63) although it will also be influenced by 

extracellular properties. Higher kurtosis may be noted where there are higher intracellular 

interfaces, for example, increased nuclear-cytoplasmic ratio of tumor cells (64). Preliminary 
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studies in prostate cancer have suggested potential as a diagnostic biomarker (65), e.g. to 

improve characterisation (grading) (66, 67), though not all studies have confirmed additional 

advantages over monoexponential ADC (68, 69). Studies have also suggested its potential as 

a response biomarker. A study in hepatocellular carcinoma has suggested that Kapp performs 

better than ADC in detecting viable disease post-treatment (70). 

Tumor elasticity and viscosity  

Magnetic resonance elastography (MRE) quantifies the viscoelastic properties of tissue by 

assessing its elastic response to an applied force, similar to palpation in clinical practice. The 

applied force consists of harmonic mechanical waves, ranging typically between 20 and 80 

Hz in frequency and propagated into the human body by a vibrating transducer applied to 

the body surface. The consequent tissue motion is captured using rapid motion-sensitive 

MRI sequences. Through mathematical inversion algorithms, the local shear wave 

properties can be derived from the periodical variations in MRI signal; the local viscoelastic 

parameters (elasticity and viscosity) are then calculated using the complex shear modulus 

equation (71). The underpinning experimental observation for the application of MRE to 

cancer is that malignancy increases stiffness through collagen deposition in the extracellular 

matrix and raised interstitial pressure levels from its abnormal vasculature (72). MRE has 

shown promising potential for the characterization of focal lesions (benign vs. malignant) in 

multiple organs, including the liver (73), breast (74), pancreas (75) and kidney(76). It may 

also serve as a potential biomarker of treatment resistance. 

Tumor oxygenation 

Tumor oxygenation may be measured indirectly by BOLD and TOLD-MRI techniques. With 

BOLD MRI, endogenous hemoglobin acts as a paramagnetic contrast agent which increases 
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the transverse relaxation rate (R2*) in blood and surrounding tissue. R2* is measured from 

multiple spoiled gradient recalled echo images with increasing echo times. R2* is calculated 

from the gradient of a straight line fitted to a plot of ln-signal intensity to TE. Higher R2* 

reflects higher deoxyhemoglobin levels and lower blood oxygenation. R2* may have a role 

as a response biomarker. One study has shown that R2* is inversely correlated to blood 

volume and increases in breast cancer treated with 2 cycles of neoadjuvant chemotherapy 

with greater changes in patients with pathological response (77). However, BOLD 

measurements will be affected by the underlying tissue relaxivity and will be affected by 

hemorrhage and susceptibility artefacts.  

 

With TOLD MRI the longitudinal relaxation rate (R1) is measured. R1 is sensitive to changes 

in the O2 dissolved in blood plasma and interstitial fluid. When a hyperoxic gas is inhaled, 

the excess oxygen dissolved will result in a higher R1 value. A positive change in R1 will 

identify areas with fully saturated haemoglobin. Areas where there is no positive change in 

R1 may reflect regions of hypoxia particularly if perfusion is present. Current approaches are 

focussing on the feasibility of combining R2* and R1 measurement with oxygen challenge to 

assess tumor oxygenation (78).  

 

Quantitative MRI with or without exogenous contrast agents 

In current clinical practice diagnosis based on MRI primarily relies on the qualitative 

assessment of images. In contrast, quantitative measurements of tissue properties with or 

without endogeneous contrast agents may provide more accurate and reproducible 

information. Without the use of exogenous contrast agents, relaxometry yields quantitative 

measurement of intrinsic tissue relaxation times T1 and T2 (79)(80)(81)(82), T2*, proton 
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density. In addition, important molecular information about tumour physiology and 

metabolism (“tumour microenvironment”) may be obtained from MR spectroscopy (MRS) 

(83)(84)(85)(86)(87)(88), Chemical Exchange Saturation Transfer Imaging (CEST) (89) and 

Amide Proton Transfer (APT) (90). Further, relaxometry with exogenous contrast agents 

enables imaging of perfusion, using either gadolinium-based contrast agents (91) and 

dynamic T1w- (DCE) as discussed previously or T2*w-MRI (dynamic susceptibility contrast-

enhanced (DSC)). Superparametric iron oxide (SPIO) nanoparticles in combination with T2-w 

and T2*-w MRI have been developed as imaging probes for targeted molecular MRI, cell 

tracking, and drug delivery (“theranostics”)(92)(93)(94). Alternatively, highly specific, 

background-free imaging can be achieved via non-proton imaging using e.g. F-19 

(95)(96)(97) or hyperpolarized agents C-13 (98, 99). However, these require hardware 

modifications to be able to image the non-proton frequencies.  

Novel quantitative methods have also been proposed to acquire several tissue properties at 

once (100) (101). A method termed “MR-fingerprinting” utilizes a (pseudo) randomized 

acquisition sequence to encode a tissue specific “Fingerprint” into a MR time series signal 

(102). This has recently also been adapted and applied to cancer imaging (103)(104)(105). 

Finally, to achieve its full potential, a key challenge of mp-MRI is standardisation across 

multiple platforms, which involves the use of phantoms and careful review of 

implementation(106). 

 

Radiomics  

Radiomics is an evolving area in medical imaging whereby a large number of features are 

extracted and interpreted using bioinformatic approaches (9, 107). The underlying rationale 

for radiomics lies in the supposed relationship between extracted image parameters and 
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tumor molecular phenotype and / or genotype. It is known that genotypic heterogeneity 

contributes to divergent tumor biological behavior including poor treatment response and a 

more aggressive phenotype. Therefore there is growing interest in using imaging radiomic 

signatures either alone or in combination with other clinical or -omics data, e.g. 

radiogenomics to improve tumor phenotyping (prognostication), to allow tumor sub-regions 

with different biological characteristics that may contribute to treatment resistance to be 

identified/segmented for therapies, and for the prediction and evaluation of therapies. 

Radiomic studies have used a number of techniques including statistical methods 

(histogram; gray-level co-occurrence matrix (GLCM); gray-level difference matrix (GLDM), 

run length matrix (RLM), gray level size zone matrix (GLSZM) and neighborhood gray tone 

difference matrix (NGTDM)) with or without Gaussian or Wavelet transformation; and 

fractal based methods across different sequences including T2-weighted, diffusion-weighted 

and dynamic contrast enhanced sequences. Initial radiogenomic studies including MRI have 

been performed in breast cancer (108-110) renal cell carcinoma(111) and glioma(112, 113). 

Variable reproducibility has been shown across different classes of features (114) and 

further validation work is still required for radiomic biomarkers.  

 

CONCLUSION 

 Precision cancer medicine remains a desirable goal for cancer care.  

 MRI offers many advantages as a diagnostic, prognostic, predictive or response 

biomarker in cancer given its capability of multiple contrast and multi-parametric 

quantitative imaging.  
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 A key challenge remains to improve the efficiency of biomarker translation from 

discovery to implementation. Clinical translation for emerging biomarkers remains 

slow.  

 To overcome issues regarding biomarker measurement variability across devices and 

across manufacturers, phantoms for quality assurance, standardization of protocols 

and availability of reference value databases has helped to facilitate this, alongside 

networks and alliances including the Quantitative Imaging Network (QIN) (http:// 

imaging.cancer.gov/informatics/qin), the Quantitative Imaging Biomarker Alliance 

(QIBA) (http://www.rsna.org/qiba/); the Quantitative Imaging in Cancer: Connecting 

Cellular Processes to Therapy (QuIC-ConCePT) (http://www.quic-concept.eu/) 

consortium; and the American College of Radiology Imaging Network (ACRIN). 

 With emerging machine learning approaches, quantitative MRI biomarkers will no 

doubt continue to expand to meet new challenges in the personalized care of 

oncology patients. 
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FIGURE LEGENDS 

Figure 1. Schema highlighting steps taken in developing a potential imaging biomarker 

Figure 2. Multi-parametric prostate MRI demonstrates a left mid gland PI-RADS 5 peripheral 

zone lesion extending beyond the prostate (A: T2-weighted, B: diffusion weighted apparent 

diffusion coefficient map, C: arterial phase dynamic contrast enhanced T1-weighted image). 

Figure 3. T2-weighted axial image demonstrates a T3N1 rectal cancer extending beyond the 

rectal wall but not involving the potential resection margin 

Figure 4. The T2 axial oblique image (A) of a rectal cancer, diffusion-weighted images with 

increasing b-weighting 0 (B),100 (C), 500 (D) and 800 s/mm2(E) and corresponding ADC0-800 

map (F) is shown. Signal loss is demonstrated within the rectal cancer with increasing b-

weighting. The signal loss is greater for normal tissue than for the cancer.   

Figure 5. T2-weighted (A) and corresponding transfer constant maps (Ktrans, B) before and 

after 3 cycles of therapy with an anti-angiogenic and triplet chemotherapy. A decrease in 

tumor vascularization is noted following 3 cycles of therapy. 
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TABLES 

Table 1: Key characteristics and challenges for MRI imaging biomarkers 

Characteristics Challenges for MRI Developments 

Sensitive Signal to noise ratio (SNR) 

Contrast to noise ratio (CNR) 

Spatial resolution 

Artefacts 

New sequences  

Specific & 

biologically 

relevant 

Targeted versus physiological or 

morphological imaging  

Evaluation of more targeted 

imaging e.g. receptor imaging, 

targeted nanoparticles 

Robust Variance among imaging systems, 

manufacturers & practice 

Multi-vendor & multicenter 

involvement to standardize data 

acquisition, reconstruction & 

analysis 

Quantifiable & 

reproducible 

Variance among imaging systems, 

manufacturers & practice 

Advanced acquisition and 

reconstruction to exploit data 

redundancy 

 

Single-sequence MRI to acquire 

several image contrasts in a co-

registered fashion, e.g. MR 

fingerprinting 
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Cost effective  Higher cost compared to 

computed tomography (CT) or 

ultrasound (US) 

Reduction in scanner time with 

faster acquisitions 
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Table 2: Established and validated MRI biomarkers in clinical use 

Biomarker  Characteristic MRI sequence 

Established biomarkers in clinical practice 

Detection & Characterisation 

BI-RADS (Breast Imaging 

Reporting and Data System 

PI-RADS (Prostate Imaging 

Reporting and Data 

System) 

LI-RADS (Liver Imaging 

Reporting and Data System 

Lesion morphology T2-weighted, T1-weighted, 

diffusion weighted, post 

contrast enhanced imaging 

Curve shape 

 

 

 

Degree of vascularization Dynamic T1-weighted 

imaging following 

intravenous injection of 

gadolinium-based contrast 

agent 

Staging 

TNM stage  Tumor morphology, 

presence of nodes and 

metastases 

T2-weighted, T1-weighted 

imaging 

± diffusion weighted, post 

contrast enhanced imaging 

Response 
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RECIST (Response 

evaluation criteria in solid 

tumors 

Change in tumor size T2-weighted imaging 

Validated biomarkers in clinical cancer research 

Apparent diffusion co-

efficient (ADC) 

Cellularity Diffusion-weighted imaging, 

at least 2 b-values 

Initial area under the 

gadolinium curve (iAUGC) 

Transfer constant (Ktrans) 

Perfusion 

Permeability 

Dynamic T1-weighted 

imaging following 

intravenous injection of 

gadolinium-based contrast 

agent 
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Table 3. Response categorisation based on changes in target and non-target lesions 

RECIST  

Categorisation Target lesions Non-target lesions 

Complete Response 

(CR) 

 

Disappearance of all target 

lesions (TL). All nodes <10 

mm  i.e. non-pathological 

Disappearance of all non-target 

lesions. All nodes <10 mm i.e. 

non-pathological 

Partial Response 

(PR) 

>30% decrease in the sum of 

TL diameters 

Non CR/PD: Persistence of ≥1 

non-target lesion 

Stable Disease (SD) Neither PR nor PD 

Progressive Disease 

(PD) 

 

> 20% increase in the sum of 

TL diameters. Absolute 

increase of at least 5 mm. 

New lesions 

Unequivocal progression of 

existing non-target lesions 

New lesions 

 

Target lesions: Up to 5 measured, 2 maximum per organ 
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Table 4: Emerging biomarkers undergoing validation in research studies  

Emerging Biomarkers Measure/Biological 

correlate  

MRI sequence 

f, D* Pseudoperfusion Multiple low b-value diffusion 

weighted imaging (Intravoxel 

incoherent motion, IVIM) 

Kurtosis (Kapp) Microstructural complexity Diffusion kurtosis imaging (DKI) 

R2* 

R1 

ΔR2* 

ΔR1 

 

Relaxation rate 

Oxygenation  

Blood oxygenation level 

dependent imaging (BOLD) 

Tissue oxygenation level 

dependent imaging (TOLD) 

± oxygen/carbogen challenge 

Elasticity 

Viscosity 

Tissue mechanics and 

viscoelastic parameters 

Elastography: motion sensitive 

sequence to encode shear wave 

propagation 

Specific metabolites 

e.g. Choline 

Metabolite concentration Spectroscopy 

T1 

T2 

Relaxation time 

Microenvironment 

Multi-echo relaxometry imaging 

Texture features Heterogeneity Any 

 

 


