
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1016/j.celrep.2018.03.079

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Espíndola, S. L., Damianich, A., Alvarez, R. J., Sartor, M., Belforte, J. E., Ferrario, J. E., Gallo, J.-M., & Avale, M.
E. (2018). Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse
Model of Tauopathy. Cell Reports, 23(3), 709-715. https://doi.org/10.1016/j.celrep.2018.03.079

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jan. 2025

https://doi.org/10.1016/j.celrep.2018.03.079
https://kclpure.kcl.ac.uk/portal/en/publications/ef409abb-ff2c-4c57-b17a-c3f01cd9e129
https://doi.org/10.1016/j.celrep.2018.03.079


Report
Modulation of Tau Isoform
s Imbalance Precludes
Tau Pathology and Cognitive Decline in a Mouse
Model of Tauopathy
Graphical Abstract
Highlights
d Htau mice show cognitive deficits and tau pathology with

reduced PFC activity

d In vivo trans-splicing yields long-term modulation of tau

3R/4R isoform ratio

d Early balance of tau isoforms in the PFC reduces tau

pathology in aged htau mice

d Tau reprogramming prevents cognitive impairment and

deficits in neuronal firing
Espı́ndola et al., 2018, Cell Reports 23, 709–715
April 17, 2018 ª 2018 The Authors.
https://doi.org/10.1016/j.celrep.2018.03.079
Authors

Sonia Lorena Espı́ndola, Ana Damianich,

Rodrigo Javier Alvarez, ...,

Juan Esteban Ferrario, Jean-Marc Gallo,

Marı́a Elena Avale

Correspondence
elena.avale@conicet.gov.ar

In Brief

Tau isoform imbalances in humans lead

to neurological disorders. Espı́ndola et al.

show that in vivo reprogramming of tau

mRNA by trans-splicing in adult

transgenic mice corrects tau isoform

imbalance, yielding reduced pathological

markers and preventing the loss of key

functions such as neuronal activity and

cognitive performance.

mailto:elena.avale@conicet.gov.ar
https://doi.org/10.1016/j.celrep.2018.03.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.03.079&domain=pdf


Cell Reports

Report
Modulation of Tau Isoforms Imbalance
Precludes Tau Pathology and Cognitive Decline
in a Mouse Model of Tauopathy
Sonia Lorena Espı́ndola,1 Ana Damianich,1 Rodrigo Javier Alvarez,3,4,6 Manuela Sartor,1,6 Juan Emilio Belforte,3,4

Juan Esteban Ferrario,2 Jean-Marc Gallo,5 and Marı́a Elena Avale1,7,*
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SUMMARY

The microtubule-associated protein tau regulates
myriad neuronal functions, such as microtubule
dynamics, axonal transport and neurite outgrowth.
Tauopathies are neurodegenerative disorders char-
acterized by the abnormal metabolism of tau, which
accumulates as insoluble neuronal deposits. The
adult human brain contains equal amounts of
tau isoforms with three (3R) or four (4R) repeats
of microtubule-binding domains, derived from the
alternative splicing of exon 10 (E10) in the tau tran-
script. Several tauopathies are associated with im-
balances of tau isoforms, due to splicing deficits.
Here, we used a trans-splicing strategy to shift the
inclusion of E10 in a mouse model of tauopathy
that produces abnormal excess of 3R tau. Modu-
lating the 3R/4R ratio in the prefrontal cortex led
to a significant reduction of pathological tau accu-
mulation concomitant with improvement of neuronal
firing and reduction of cognitive impairments. Our
results suggest promising potential for the use of
RNA reprogramming in human neurodegenerative
diseases.

INTRODUCTION

Tau is a microtubule-associated protein, enriched in neuronal

axons, that regulates neurite outgrowth and axonal transport,

among other functions (Arendt et al., 2016; Medina et al., 2016;

Morris et al., 2011). Under pathological conditions, such as

gene mutations, failures in post-translational processing or

clearance (reviewed in Bodea et al., 2016), hyperphosphorylated

insoluble tau accumulates in the neuronal soma. These tau

deposits are the hallmark of several diseases, referred to as

tauopathies, which include Alzheimer’s disease and frontotem-
This is an open access article under the CC BY-N
poral dementia with parkinsonism linked to chromosome 17

(FTDP-17) (reviewed in Spillantini and Goedert, 2013).

Human tau is encoded by the MAPT gene, comprising 16

exons that produce six different tau isoforms in the adult brain,

by alternative splicing of exons 2, 3, and 10 (Andreadis, 2005).

Alternative splicing of exon 10 (E10) gives rise to tau isoforms

with three (3R) or four (4R) microtubule-binding repeats (Andrea-

dis et al., 1992; Goedert et al., 1989), found in equal amounts in

the normal adult human brain. Imbalances in tau 3R/4R ratio are

known as a disease-causative phenomenon, initially based on

genetic evidence from patients carrying mutations affecting

E10 splicing (Hutton et al., 1998; Spillantini et al., 1998). So far,

more than 50 mutations have been found in the MAPT gene

(Qian and Liu, 2014; Spillantini and Goedert, 2013), with about

one-third of them affecting E10 splicing and consequently the

normal 3R/4R balance (Niblock and Gallo, 2012). The majority

of those mutations favor E10 inclusion, leading to 4R increase

(Spillantini and Goedert, 2013), but mutations yielding 3R excess

were also linked with disease (Stanford et al., 2003), suggesting

that tau isoform imbalance is detrimental regardless of whether

the ratio shifts toward 3R or 4R (reviewed in Andreadis, 2012).

Although their etiology is known, no treatment has become avail-

able for those tauopathies; yet, early correction of aberrant E10

splicing arises as a potential therapeutic strategy to stop the

onset of disease.

We previously validated the spliceosome-mediated RNA

trans-splicing (Rodriguez-Martin et al., 2005) as a procedure to

modulate endogenous tau E10 inclusion in the mouse brain

(Avale et al., 2013) and in human neurons in culture (Lacovich

et al., 2017). Here, we used this strategy to investigate whether

modulation of relative content in tau isoforms prevents the devel-

opment of pathological phenotypes in the htau mouse (Andorfer

et al., 2003), a validated model of tauopathy. Htau mice carry a

full-length human MAPT gene that produces the six human tau

isoforms in the adult brain, where production of 3R isoforms

are favored over 4R. It was suggested that such 3R > 4R content

might underlie tau pathology and the associated phenotypes

observed in aged htau mice, such as tau hyperphosphorylation
Cell Reports 23, 709–715, April 17, 2018 ª 2018 The Authors. 709
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(Andorfer et al., 2003) and cognitive deficits (Polydoro et al.,

2009). To test this hypothesis, we used trans-splicing to enhance

E10 inclusion into themedial prefrontal cortex of adult htaumice.

Trans-splicing reduced the contents of pathological tau in htau

mice, which showed normal electrophysiological and behavioral

performance, suggesting that early modulation of 3R/4R tau iso-

forms ratio has a beneficial effect over the tauopathy phenotypes

in this model.

RESULTS

Reprogramming of 3R to 4R Tau Isoforms in the
Prefrontal Cortex of Htau Mice
Tau pathology was reported both in the cortex and hippocampus

of htau mice (Andorfer et al., 2003; Polydoro et al., 2009). Yet we

found the most prominent accumulation of pathological tau in

the medial prefrontal cortex (mPFC) (Figure S1). Moreover, the

phenotypes we observed in this model are consistent with pre-

frontal dysfunction, so we selected the mPFC to modulate the

3R/4R ratio and analyze the potential functional rescue.

To promote E10 inclusion into endogenous tau transcripts,

we used a pre-trans-splicing molecule (PTM), delivered by a

lentiviral vector, (LV)-PTM4R (Figure 1A), as previously described

(Avale et al., 2013). The trans-splicing reaction yields a chimeric

RNA containing E10+, which codes for a 4R tau isoform. Control

mice were injected with an LV carrying the same construct but

lacking the trans-splicing domain (LV-PTM4R-DTSD; Figure 1B).

LV-PTMswere injected at 2–3months of age, before the onset of

pathological tau accumulation. Behavioral, electrophysiological,

and biochemical analyses were performed in 10- to 12-month-

old mice (Figure 1C).

Endpoint RT-PCR (Figure 1D) was performed to visualize tau

mRNA isoforms using primers spanning exons 9–13 of the tau

transcript. As previously reported (Avale et al., 2013), htau

mice produce very low amounts of E10+, which increased

after PTM4R administration (htau-PTM4R). To perform a

quantitative analysis of tau mRNA isoforms, real-time qPCR

was performed after laser-captured microdissection of the

mPFC co-injected with LV-PTMs and a fluorescent reporter

(LV-GFP; Figure 1E). Htau-control mice showed excess of

E10� over E10+ tau mRNA, yielding E10+/E10� ratio of 0.5

(Figures 1F and S1D). Conversely, htau-PTM4R showed an

increase in E10+ concomitant with a decrease in E10 (Fig-

ure S1D), leading to a ratio of �0.8 (Figure 1F). As expected,

the injection of trans-splicing molecules did not alter total

tau mRNA amounts (Figure 1G), both htau-PTM4R and htau-

control-injected mice showed similar total tau levels as non-in-

jected (NI) htau mice.

Western blot analyses using 3R and 4R specific antibodies

showed that htau-control mice display 2-fold 3R tau protein

over 4R tau, while htau-PTM4R mice showed similar 3R and

4R tau protein levels in the PFC (Figures 1H and S2A). As ex-

pected, wild-type (WT) mice evidenced almost all 4R content,

with very low amounts of 3R tau. Total tau levels were similar

between htau-control, htau-PTM4R, and htau non-injected

groups (Figure 1I), which in turn show increased total tau levels

compared with the WT group (Figures 1I and S2A), consistent

with previous reports (Andorfer et al., 2003; Duff et al., 2000).
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The control vector (LV-PTM4R-DTSD) did not alter tau contents

in htau mice (Figure 1I) or in WT mice (Figure S2B). The injection

of LV-PTM4R drove E10 inclusion in the mPFC and adjacent M2

cortex, but not in other brain areas where the 3R > 4R imbalance

was observed in htau-PTM4R mice (Figure S2C). Together,

these data highlight the efficiency and specificity achieved with

the trans-splicing strategy to locally modulate 3R/4R ratio into

the adult htau brain.

Reduction of Insoluble and Hyperphosphorylated Tau in
Htau-PTM4R Mice
Accumulation of insoluble hyperphosphorylated tau is a hallmark

of human tau pathology, recapitulated in htau mice (Andorfer

et al., 2003; Castillo-Carranza et al., 2015; Duff et al., 2000;

Noble et al., 2009). To determine whether early modulation of

the 3R/4R ratio could prevent tau pathology, we analyzed the

accumulation of hyperphosphorylated tau in brain sections

spanning the mPFC of aged mice (>12 months) that had

been injected at 3 months with either LV-PTM4R (htau-PTM4R)

or LV-PTM4R-DTSD vector (htau-control). Htau-control mice

showed strong phospho-tau labeling along the PFC (Figures

2A–2D), detected by two different specific antibodies recog-

nizing tau phosphorylated at Ser 202 (CP13; Figure 2A) or at

Thr231/Ser235 (AT-180; Figure 2C). Quantitative analyses re-

vealed that in the htau-PTM4R group, the number of positive

cells stained with both antibodies was significantly reduced

compared with htau controls (Figures 2B and 2D).

Total amounts of hyperphosphorylated tau were also

measured by western blotting in PFC homogenates of aged

htau-PTM4R, htau-control, and WT mice (Figures 2E and 2F).

A significant increase was observed in htau-control mice

compared with WT mice, either at Ser 202 (Figures 2E and

S2D) or at Thr231/Ser235 (Figure 2F), while htau-PTM4R mice

showed values similar to WT mice (Figures 2E, 2F, and S2D).

We also quantified tau protein levels in soluble and insoluble

protein fractions obtained from PFC homogenates by sarkosyl

fractionation. Htau-control mice showed high amounts of insol-

uble tau (Figure 2G), yielding a 4-fold increase in the insoluble/

soluble ratio compared with WT (Figure 2H), while htau-PTM4R

mice showed a significant reduction in the insoluble tau fraction

(Figure 2G), leading to a soluble/insoluble tau ratio similar to con-

trol WT mice (Figure 2H). Taken together, these results indicate

that early local modulation of tau 3R/4R balance prevents the

accumulation of insoluble/hyperphosphorylated tau in the PFC

of aged htau mice.

Electrophysiological and Behavioral Phenotypes of
Htau-PTM4R Mice
To assess whether a functional recovery could be achieved

because of tau isoform modulation in the PFC of htau mice,

we characterized the neuronal firing in aged mice, recording

the electrophysiological activity of putative pyramidal neurons.

Three tetrodes were placed in the mPFC of anesthetized mice,

either htau-control, htau-PTM4R, or WT group, and extracellular

unit activity was analyzed according to published criteria (de Al-

meida et al., 2013). Normal neuronal activity was disrupted in the

htau-control group, which displayed a significant decrease in

mean firing rate compared with age-matched controls (Figures



Figure 1. Local Reprogramming of 3R to 4R Tau Isoforms in the Prefrontal Cortex of Htau Mice

(A and B) Map of lentiviral vectors. (A) LV-PTM4R used for trans-splicing and the expected chimeric transcript containing E10. (B) Lentiviral vector

LV-PTM4RDTSD used for control mice.

(C) Time course of the experiments performed in the study.

(D) Analysis of tau isoforms by endpoint RT-PCR with primers spanning E9 and E13.

(E) Laser-capture microdissection of the mPFC of htau mice co-injected with LV-PTM and an LV carrying GFP.

(F) Relative content of tau isoforms determined by RT-qPCR with specific primers for 3R (E10�) and 4R (E10+). Data are expressed as the isoform ratio;

mean ± SEM; *p < 0.05, two-tailed t test; n = 4 per group.

(G) Total tau mRNA, showing no differences among treatments.

(H and I) Western blot detection of tau protein contents in PFC homogenates. (H) Tau isoforms 3R and 4R contents and (I) total tau protein, related to actin loading

control. Mean ± SEM; **p < 0.01 and ***p < 0.001, two-tailed t test (WT = 3, htau-control = 4, and htau-PTM4R = 5, htau Ni = 3). Full blots are shown in Figure S2A.
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Figure 2. Hyperphosphorylated and Insoluble Tau Contents in the PFC

(A–D) Hyperphosphorylated tau detected by immunohistochemistry using CP13 (S202) (A and B) and AT180 (T231/S235; C and D) antibodies in coronal sections

spanning themPFC. (B and D) Quantification of positive cells in htau-control and htau-PTM4R. CP13, n = 3 per group; AT180, n = 4 per group; two to four sections

per mouse; mean ± SEM; **p < 0.01 and ***p < 0.001, two-tailed t test.

(E and F) Hyperphosphorylated tau protein contents determined by western blot in PFC homogenates using CP13 (E) in WT (n = 4), htau-control (n = 6), and htau-

PTM4R (n = 6) or (F) AT180: WT (n = 3), htau-control (n = 4), and htau-PTM4R (n = 7). Mean ± SEM; *p < 0.05, one-way ANOVA followed by Tukey’s post hoc test.

Full blots are shown in Figure S2D.

(G and H) Sarkosyl insolubility assay. Soluble and insoluble fractions obtained from PFC homogenates were immunoblotted (G) to quantify total tau in each

fraction (H). WT, n = 2; htau-control, n = 4; htau-PTM4R, n = 3; mean ± SEM; *p < 0.05, one-way ANOVA followed by Tukey’s post hoc test.
3A, 3B, S3C, and S3D). Remarkably, balancing 3R/4R tau

isoforms in htau-PTM4R mice resulted in a recovery of neuronal

activity, with a mean firing rate similar to the observed WT mice

(Figures 3B and S3C). Furthermore, the population of active neu-

rons firing over 4 Hz was decreased in htau-control mice

compared with WT (WT, 21.4%; htau, 7.7%; chi-square p =

0.034) and was recovered in hTau-PTM4R (WT, 21.4%; htau-

PTM4R, 25.5%; chi-square p = 0.59) (Figure 3B).

We next analyzed cognitive performance in the novel object

recognition (NOR) test, a task known to rely on mPFC integrity

(Morici et al., 2015), which is severely impaired in htaumice (Cas-

tillo-Carranza et al., 2014; Polydoro et al., 2009). As previously

reported, aged htau-control mice exhibited poor recognition per-

formance, showing a discrimination index of 50%, compared

with the 80%observed in theWT group (Figure 3C). Interestingly,
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htau-PTM4R mice showed similar performance as WT to

discriminate the novel object (Figure 3C), demonstrating full re-

covery on this task. The time spent in exploration was similar be-

tween groups (Figure 3D). Yet an open-field analysis revealed a

small increase in total locomotion in htau-control mice compared

with WT (Figure 3E), with more activity in the center of the arena

(Figure 3F). However, these phenotypes were only partially

rescued in the htau-PTM4R group, showing no differences

from WT and htau-control groups. On the other hand, when

tested in the elevated plus maze, htau-control mice displayed

about 50% of entries into open arms (Figures 3G and 3H), sug-

gesting no preference for protected arms, while htau-PTM4R

mice showed 33% entries, similar to WT mice. However, no sta-

tistically significant differences were observed between groups

on this task. Moreover, in our hands the htau model did not



Figure 3. Functional Recovery in Htau-PTM4R Mice

(A and B) Electrophysiological activity in the PFC.

(A) Accumulated firing frequency of putative pyramidal neurons during 30 min

in WT (n = 4), htau-control (n = 3), and htau-PTM4R (n = 3) mice.

(B) Firing rate of all recorded units for each experimental group. Each dot

represents themean firing rate of a putative pyramidal unit recorded in the PFC

during 30 min. Red bars indicate mean firing rate of the entire population of

single units recorded per group; htau-ctrl was significative different (p < 0.05

versus WT, Kruskal-Wallis H2,183 = 6.8, p = 0.0329). WT, n = 84; htau control,

n = 52; and htau-PTM4R, n = 47 neurons from four, three, and three mice,

respectively.

(C and D) Novel object recognition task. (C) Discrimination ratio of the novel

object and (D) total time exploring objects (WT, n = 16; htau-control, n = 14;

htau-PTM4R, n = 13). Individual data are shown in Figures S3D and S3E.

(E and F) Spontaneous locomotion in the open field. (E) Total distance traveled

and (F) activity ratio in the center of the arena recorded during 30 min. WT, n =

11; htau-control, n = 8; and htau-PTM4R, n = 4. Data in (C)–(F) are mean ±

SEM; *p < 0.05 and **p < 0.01, one-way ANOVA followed by Tukey’s test.

Individual data points are shown in Figure S3C.

(G and H) Elevated plus maze task. (G) Percentage of entries into open arms

and (H) time spent in open arms. Mean ± SEM, n = 4. No significant differences

among groups (Kruskal-Wallis non-parametric test). Individual data are shown

in Figure S3F.
show impairments in spatial memory assessed in the Morris wa-

ter maze test; both control and htau-PTM4R mice performed

similarly to WT mice (Figures S3A and S3B). Together, electro-

physiological and behavioral analyses indicate that the local

early modulation of tau isoforms in htau mice prevents impair-

ments in PFC functionality and restores normal performance in

the NOR task.

DISCUSSION

In this study we show that modulation of 3R/4R tau isoform bal-

ance in the prefrontal cortex precludes tau pathology and related

phenotypes in the htau mouse model of tauopathy.

The use of mouse models to analyze tau isoform imbalance is

challenging, because 4R is the only isoform present in the WT

adult mouse brain. By contrast, the htau model bears a full-

length normal human MAPT transgene that, despite the lack of

mutations, favors E10 exclusion and produces an excess of 3R

isoform. This might be due to the lack of specific splicing regula-

tory elements in themouse neurons (or a different combination of

splicing factors), which impairs the correct processing of the hu-

man tau transcript. Thus, compared with either the adult human

brain expressing both isoforms in an equimolar ratio or with WT

adult mouse brain, which expresses 4R tau only, the htau brain

has an aberrant content of tau isoforms that correlates with tau

pathology (Andorfer et al., 2003). Moreover, tau pathology is

not likely to be due to tau overexpression in this model, as the

same transgene in a WT background does not recapitulate tau-

opathy (Duff et al., 2000), suggesting that endogenousmurine 4R

tau might balance the excess of human 3R tau. These features

make the htaumodel particularly interesting to test in vivo strate-

gies that modulate E10 splicing and assess the phenotypic

consequences of such modulation.

We have demonstrated herein that by increasing E10 inclu-

sion, we reached a balanced 3R/4R ratio in the mPFC of

htau-PTM4R mice, which prevents the pathological phenotypes

observed under 3R excess in htau-control mice. It is note-

worthy that trans-splicing strategy reduces tau pathology

without changes in the total amount of tau protein compared

with control htau, and creating a �1.0 3R/4R ratio of human

tau in adult mice is not detrimental. Indeed, in our conditions,

the increase of the 4R isoform by means of the trans-splicing

strategy did not induce tau pathology; instead, consistent rescue

was observed in histological, functional, and behavioral ana-

lyses. Strikingly, enhancing 4R isoform by intraventricular ASO

treatment was reported to induce tau pathology and seizures

in young htau mice (Schoch et al., 2016). However, that study

was performed at 4 months of age, before the onset of the phe-

notypes we and others analyzed in the htau model (Andorfer

et al., 2003; Castillo-Carranza et al., 2015; Polydoro et al.,

2009). On the other hand, ASO intracerebroventricular (i.c.v.)

administration likely drives global 4R increase in the whole brain,

which clearly differs from our strategy that locally targets a

specific affected brain area. Our present results, in context

with previous reports using this model, suggest that the long-

term 3R > 4R imbalance might underlie tau pathology, particu-

larly prefrontal dysfunction, in aged htau mice, which can be

prevented by balancing the 3R/4R ratio at an early stage.
Cell Reports 23, 709–715, April 17, 2018 713



We have shown here that trans-splicing reprogramming of the

endogenous tau transcript in vivo is a suitable strategy to achieve

a phenotypic recovery. Our previous work (Lacovich et al., 2017)

highlights the feasibility of this strategy to modulate tau isoform

balance in human neurons, independent of the predominant

isoform. Furthermore, RNA reprogramming can also correct

missense mutations inside E10 (Rodriguez-Martin et al., 2009),

without changing the total levels of tau protein. In this context,

tau RNA reprogramming by trans-splicing arises as a versatile

gene therapy approach with promising perspectives for human

tauopathies. Further studies would be needed to optimize treat-

ment conditions that ensure the most efficient therapeutics

effects.

EXPERIMENTAL PROCEDURES

Mice

All animal procedures were designed in accordance with the NIH Guidelines

for the Care and Use of Laboratory Animals, and protocols were approved

by the Institutional Committee of INGEBI-CONICET (protocol number 005/

2016) and FCEyN, University of Buenos Aires. Mice were housed under a

12 hr dark/light cycle with ad libitum access to food andwater. Htau transgenic

mice were obtained from Jackson Laboratories (stock number 005491) and

bred to obtain htau and WT colonies. All mice were genotyped as previously

described (Andorfer et al., 2003). Male adult mice were used to conduct all

the experiments described in this study.

LVs

Tau PTMs were delivered into LVs, prepared as detailed previously (Avale

et al., 2013) and in Supplemental Experimental Procedures.

Stereotaxic Injections

Malemice aged 8–10weeks (weight 25–30 g) were bilaterally injected with 2 mL

of lentiviral suspension (0.6 3 107 TU/mL) into the PFC at the following coor-

dinates (Paxinos and Franklin, 2011): anteroposterior, +2.5 mm; lateral, ±

0.5 mm; and dorsoventral, �2.5 and �1.5 mm, measured from the bregma.

Surgery was performed under the protocol detailed in Supplemental Experi-

mental Procedures.

Laser-Capture Microdissection

Fluorescent areas were cut out of a series of eight to ten sections using the

ArcturusXT laser-capture microdissection system (Thermo Fisher Scientific)

by infrared (IR) laser energy combined with a UV cutting laser (Supplemental

Experimental Procedures). Total RNA was isolated from the collected tissue

(0.5–1 mm3), yielded 0.5–1 mg RNA per sample.

Detection of Tau mRNA Isoforms

Total RNA was extracted using the RNeasy Lipid Tissue Kit (QIAGEN) or, in

laser-capture microdissection (LCM)-dissected tissue, with the PicoPure

RNA extraction Kit (Thermo Fisher Scientific). Reverse transcription was per-

formed using TaqMan RT (Applied Biosystems) with 0.5 mg of RNA and an

equimolar ratio of oligo(dT) and random hexamers. Endpoint PCR was per-

formed with primers spanning exons 9–13, as previously described (Avale

et al., 2013). Human 4R, 3R, and total tau mRNA isoforms were detected using

real-time PCR with specific pairs of primers per each isoform either spanning

E9–E10 or E9/11–E11, respectively, or for all human tau isoforms spanning at

E7–E8 (Supplemental Experimental Procedures).

Immunohistochemistry

Phosphorylated tau was detected on free-floating coronal sections (40 mm)

with either CP13 (1:100) or AT180 (1:500) (Thermo Fisher Scientific) mono-

clonal antibodies and developed with 3,30-diaminobenzidine (DAB) (Sigma-Al-

drich). Positive cells were quantified in the PFC between +1.54 and +2.5 mm

from bregma.
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Protein Extraction and Western Blotting

PFC homogenates were separated on 12% SDS-polyacrylamide gels, trans-

ferred, and blotted using antibodies directed against 3R tau (1:2,000 anti-tau

3-repeat isoform RD3; mouse monoclonal; Millipore), 4R tau (1:1,000 anti-

tau 4-repeat isoform RD4; mouse monoclonal; Millipore), total tau (1:10,000

rabbit polyclonal; Dako), phospho-Ser202 (CP13 monoclonal, 1:300), AT-

180 (1:1,000; Thermo Fisher Sientific), or mouse b-actin (mouse monoclonal,

1:10,000; Abcam). See details in Supplemental Experimental Procedures.

Sarkosyl Insolubility Assay

Fractionation of soluble and insoluble proteins was performed as previously

described (Noble et al., 2009; Andorfer et al., 2003). Briefly, brains were ho-

mogenized, incubated with 1% sarkosyl reagent (Sigma-Aldrich), and ultra-

centrifuged to obtain soluble (supernatant) and insoluble (pellet) fractions

(Supplemental Experimental Procedures). Total tau was detected on each

fraction by western blot using total tau (1:10,000, rabbit polyclonal; Dako).

Electrophysiological Recordings

In vivo electrophysiological experiments we conducted as described previ-

ously (de Almeida et al., 2013). See Supplemental Experimental Procedures.

Behavioral Tests

All mice tested were sibling cohorts of males aged 10–12months. Experiments

were performed between 13:00 and 17:00 under dim illumination, in a sepa-

rated behavioral room, where mice were transferred in advance. Behavioral

experiments were analyzed by double-blinded operators.

Open Field

Activity boxes (Med Associates) were used to assess horizontal activity and

trajectories, as previously described (Avale et al., 2004). See details in Supple-

mental Experimental Procedures.

Elevated Plus Maze

This test was performed as described previously (Avale et al., 2004). See de-

tails in Supplemental Experimental Procedures.

Novel Object Recognition

The protocol was performed similarly to that previously described (Polydoro

et al., 2009), with minor modifications following a well-described methodolog-

ical procedure (Leger et al., 2013). Briefly, in the training phase mice were al-

lowed to explore identical objects for 10 min, and 5 hr later, mice were tested

for 5min in the same chamber with a familiar and a novel object. Discrimination

index was calculated as the time spent exploring the novel object divided by

the total time spent exploring both objects (familiar and novel). See details in

Supplemental Experimental Procedures.

Statistical Analyses

Data were analyzed using GraphPad Prism. When normal distribution was

assumed, the three experimental groups were analyzed using one-way

ANOVA, followed by Tukey’s test. When indicated, paired comparisons were

done using two-tailed Student’s t test. When normal distribution could not

be assumed, the Kruskal-Wallis non-parametric test was used to compare

groups.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at https://doi.org/
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