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Abstract

The primary focus of this thesis is the study of a novel family of materials known as organic-

inorganic hybrid Perovskites (OIHP), which have recently demonstrated to possess remarkable

photovoltaic efficiency. The fundamental properties of these materials related to photovoltaic

(PV) applications are studied to characterise electronic and optical behaviours. An all-electron

implementation of the Quasi-particle Self-consistent GW (QSGW) is used to perform first prin-

ciples calculations. The quasi-particle energy bands are analysed for a number of Perovskites,

to identify trends and characteristics within this family of materials, and to understand the

dielectric response. The dielectric function and refractive index were studied for 4 OIHP and

compared to experimental work carried out collaboratively with Leguy et al. [1]. It is found

that the relativistic effects are extremely important in characterisation of these materials. The

presence of strong spin-orbit interaction combined with significant internal electric fields yields

anomalously large Rashba splitting of both valence and conduction states near the band edges.

This significantly perturbs the electronic and optical properties of these materials. Such effects

have not been previously investigated in the context of photovoltaic materials. The effect of

the Rashba splitting on the radiative recombination lifetime of charge carriers is investigated.

A model for reciprocal space trapping mechanism of carriers was developed and implemented

within the Questaal package. The slightly indirect gap induced by Rashba splitting results in a

strongly suppressed photoluminescence when compared to conventional III-V direct-gap semi-

conductors with an otherwise approximately similar band structure. Such suppression of the

radiative recombination enhances the diffusion length and can significantly increase the power

conversion efficiency of a solar cell.
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Preface

Global Energy Demand and Production

The average global rate of energy consumption in 2015 was estimated to be 17.41TW. This value

represents a 1% increase from 2014, it is also expected to continue to increase with growing global

population, advances in technologies and their increased availability [2]. Currently around 85%

of the global final energy demand is met through non-renewable sources such as coal, oil and

natural gasses [3]. Such methods of energy production release immense amounts of CO2 and in

some cases additional gases which contribute to the greenhouse effect. Consequently the current

level of CO2 in the atmosphere is 40% higher than pre-industrial revolution; additionally the

atmospheric levels of greenhouse gases, such as methane and nitrous oxide, have reached levels

unprecedented in the past 800,000 years [4]. It is due to such findings that the Intergovernmental

Panel on Climate Change (IPCC) has stated with a 95% confidence that the primary source of

global warming is human activity [5].

The continuous depletion of limited oil reserves to meet this energy demands, along with the

environmental consequence of such methods of energy productions are truly unsustainable. To

be able to meet the global energy demand it is necessary to move away from traditional energy

sources and find new sustainable renewable methods. Such paradigm shift in our methods of

energy production is more important now than ever before.

Photovoltaic (PV) solar cells are a potential alternative to more traditional and unsustainable

methods for large scale global energy production. These devices convert light directly into

electricity without any emission and can use sun light as a fuel. The total solar energy incident

on earth amounts to ≈ 174 PW, approximately 30% of this energy is absorbed or reflected by

the upper atmosphere, leaving ≈ 121.8 PW incident on the surface of earth. This value is nearly

14
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four orders of magnitude greater than the global energy demand. However, in 2015 below 2%

of global electricity was produced through solar energy, corresponding to a 28.1% increase in

the global capacity for solar energy from the 2014 to 2015 [3,6]. However there still remains an

opportunity to significantly increase installation of PV solar cells and produce a major part of

our energy demand through solar energy. This fact along with the environmental needs and the

existence of a virtually endless source of energy has led to a huge surge in photovoltaic research

and the solar cell market. The recent financial, academic and industrial attention has led to a

40% average increase in the global solar energy capacity over the past 5 years [3].

Established solar cell technologies such as mono-crystalline and poly-crystalline silicon which

dominate the market have experienced negligible increase in their efficiencies over the past 20

years, reaching 25.8% and 22.3% respective records (shown in figure 2) [7]. To increase the global

PV solar energy capacity there is a need for new, efficient and cheaper materials to challenge

current commercial solar cells. The latest contenders for this position are a group of materials

known as hybrid halide Perovskites. These organic-inorganic compounds were first introduced

to the field of PV in 2009, since then they have experienced the most rapid increase in power

conversion efficiency(PCE) among all PV technologies [7, 8]. Due to the rapid progress in PCE

and the potentials of Perovskites solar cells, these devices were selected as one of 2013 biggest

scientific breakthroughs by both Nature and Science editors [9, 10]. As these materials have

reached above 20% PCE in less than 10 years they have attracted a large amount of attention

both from the academia and PV industries [11].

Photovoltaic Solar Cells

In semiconducting materials unlike metals the energy states available to electrons are separated

by a gap. These energy states are separated into bands, once a band is completely full, it is

inert and hence unable to conduct. For a material to be conducting electrons need to be present

within bands which are only partially filled. This condition for conducting in semiconductors

can be achieved by promoting an electron above the band gap to a state within the conduction

band. As the bands above the gap are only minimally filled due to thermal energy, electrons

can conduct. The empty states left within the valence band after promotion of an electron are

referred to as a holes. Much like electrons, holes can transfer charge only within bands which are
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partially filled by holes. Holes can be treated as particles with opposite charge to electrons. The

excited charge carriers in semiconductors can be collected and used as electrical energy. This

is the underlying process of a photovoltaic solar cell and was first demonstrated by Edmond

Becquerel in 1839 [12].

In photovoltaic devices the excitation of electrons from the valence band to the conduction

band is due to the absorption of photons emitted by the sun (or an alternative light sources).

In such cases a photon of energy equal or higher than that of the band gap can be absorbed by

an electron within the valence band; to conserve the total energy, the electron is promoted to

the conduction band.

Voc

Jsc

Voltage

C
u
rr
en
t

Pmp

Figure 1: The current-voltage curve for a PV solar cell, indicating the open-voltage

(VOC), closed circuit current (ISC) and maximum power point (PMP).

Photovoltaic devices convert photons to electron-hole pairs, separate the charges at different

leads, which generate a voltage. Excitation of the electron-hole pairs is subject to energy and

momentum conservation 1. The reverse of this process is known as radiative carrier recombi-
1The total energy and momentum of the valence electron, nuclei and photon are equal to that of the excited

electron and nuclei after excitation
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nation and occurs when an electron in the conduction band and a hole from the valence band

combine and emit a photon. The energy of the emitted photon is equal to the energy difference

of the electron-hole pair.

The product of the voltage and current produced from photovoltaic devices due to the

excitation and collection of electron-hole pairs is the power produced by the device. The current-

voltage measurement graph of a solar cells are similar to that of figure 1.

Solar Cell Efficiency

The total power conversion efficiency of photovoltaic solar cells (η) is given by

η = VOCJSCFF

Pin
(1)

where Pin is the total incident light power, VOC is the open-circuit voltage, JSC is the short-

circuit current density and FF is the fill-factor. Some of the parameters of equation 1 are shown

in figure 1. VOC is the voltage measured across a cell when the terminals are not connected i.e.

the circuit is open. This is the maximum voltage the device can produce and in a single junction

solar cell is limited by the band gap of the absorber layer and excited carriers recombination.

The reason behind this limitation is the thermalisation of excited carriers. A carrier excited by

absorbing a photon with higher energy than the band gap quickly thermalises to the band edge

releasing excess energy to the phonon population. JSC is the photon-current density extracted

from the system while the voltage across the cell is zero i.e. the circuit is closed. The photo-

current density (or the short-circuit current density) is related to the absorption strength of the

semiconductor layer [13].

An ideal solar cell would generate power equal to JSC × VOC , however there is no power

outputted at JSC or VOC . So the ratio between the maximum power generated and JSC × VOC

is FF.

Important sources of efficiency loss in photovoltaic solar cells are the degradation of absorber

material which reduces absorption and induces defects, the latter can increase the rate of carrier

recombination which is often enhanced by defects. There are a number of channels which

excited carriers can recombine through, these channels are often due to impurities or radiative

recombination discussed previously.



PREFACE 18

Maximum Theoretical Efficiency

The maximum possible efficiency achievable by a single junction solar cell is determined by the

bang gap of the absorbing layer. This theoretical upper bound know as the Shockley-Queisser

limit was proposed by William Shockley and Hans-Joachim Queisser in 1961 [14]. In their

seminal work a number of approximations ( such as instantaneous carrier relaxation, infinite

carrier mobility and zero non-radiative recombination) were utilised to relate thermodynamic

principles with quantum mechanic to approximate the maximum efficiency of an ideal device.

It is demonstrated that a device with a large band gap produces large voltage while the current

is small, the reverse of this is true for small band gaps. As such the identification of the ideal

band gap size involves the consideration of this trade off. The maximum efficiency achievable

by a device was derived to be ∼ 30% with a band gap of 1.34eV [14].

The Shockley-Queisser limit only applies to single junction cell and can be overcome by a

number of device architectures including hot carrier, intermediate band and multi-junction solar

cells. The latter of which have reached efficiencies of over 40% and have a much higher limit of

86% [7, 15–18]. However complex architectures such as these remain expensive and challenging

to produce at large scales.

Improving Power Conversion Efficiency

Producing energy through solar cells at a competitive level with other sources of energy pro-

duction requires the design and production of efficient, durable and cheap photovoltaic devices.

These three criteria encompass the vast majority of research areas within the solar cell research

community.

The research for low cost devices is driven by the synthesis and discovery of compounds with

abundant constituents which are readily available while having low processing costs. Solar cell

devices based on materials such as GaAs and Si are relatively efficient, however such devices

can be undesirable due to the scarcity of the constituents elements (in the case of GaAs) or the

high cost of refining and production (such as the case of Si). The durability of solar cell devices

is immensely important and is achieved through passivisation, containment or optimisation

of synthesis procedure [19, 20]. These improvements increase the overall functional lifetime,

minimise the reduction in PCE over time and can lead to higher overall efficiency. This results
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in lower production energy costs and shorter energy payback time which is approximately 2.5-7

years depending on photovoltaic technology and location [21].

Figure 2: National Renewable Energy Laboratory (NREL) efficiency chart for var-

ious photovoltaic technologies [7].

The highest efficiency solar cells currently are multi-junction devices operating under con-

centrates. Such solar cells have reached efficiencies as high as 45%, however due to the higher

cost, difficulty to scale up and increased complexity in implementation such devices are used in

specialised roles, for example aerospace applications [7].

Over the past 45 years many new materials have been discovered and tested for photovoltaic

applications. Figure 2 shows the efficiency progress of the most significant solar cell materials

and architectures. Single junction silicon devices have had very little improvement over the past

20 years, however more than 90% of all solar cell devices produced are silicon based. Although

GaAs devices have higher efficiencies than Si devices due to their direct band gaps (discussed

in chapter 3); however their higher cost has hindered their domination of the PV market.



Chapter 1

Overview

The primary focus of this dissertation is the study of organic-inorganic hybrid Perovskites to gain

an understanding of the fundamental properties of this family of materials related to photovoltaic

applications.

Characteristics of interest in this works are the ones which are directly linked to the elec-

tronic properties for this family of compounds. In the next chapter inorganic, hybrid and other

variants of Perovskites are introduced with attention paid to their relevance for photovoltaics.

The theoretical background of the methodologies used and applied to some of the observed phe-

nomena is presented in chapter 3; although rigorous derivations and full descriptions of these

methods are beyond the scope of this work, sufficient information is provided to aid discussions

in later chapters. The electronic and optical properties of a number of Perovskites form part of

the findings of this work and are presented in chapter 4. The findings of this chapter related

to the photovoltaic applications are discussed and a number of trends among this family of

materials are identified.

In the second part, results in this work relating to the radiative recombination rate of charge

carriers within hybrid Perovskites are presented. The theory, literature and the findings are

discussed in chapter 5. Finally the conclusions drawn from this work along with current research

in progress and future directions of this research are provided in chapter 6.
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Chapter 2

Perovskites

2.1 Overview

This chapter of the thesis will introduce the Perovskites crystal structure with a focus on the

organic-inorganic hybrid form. An overview of Perovskites within the field of photovoltaics, from

their introduction to the current efficiency records is provided. Finally a number of observation

from experimental findings related to these materials and their application in PV cells are

discussed.

2.2 Introduction

In 2009 Kojima et al. applied [NH3CH3]PbI3 and [NH3CH3]PbBr3 as organic-inorganic visible-

light sensitisers on TiO2 in a dye-sensitised solar cell and achieved power conversion efficiencies

of 3.8% and 3.1% respectively [8]. These semiconductors belong to a group of materials known as

organic-inorganic hybrid Perovskites (OIHP). This unconventional family of materials includes

an organic molecule within a Perovskites structure. This application of [NH3CH3]PbI3 and

[NH3CH3]PbBr3 by Kojima et al. was the first time organic-inorganic hybrid Perovskites were

utilised within the context of photovoltaic solar cells. Shortly after, a variety of approaches to

include these materials in solar cells were taken [22–24]. Just 3 years after the pioneering work

of Kojima et al., 10.9% PCE was achieved using mixed halide Perovskites [NH3CH3]PbI3−xClx

coated Al2O3 in a non-sensitised cell architecture by Snaith et al. [25]. By 2013 PCE as high

21
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as 12% were obtained using a pillared architecture, where the pores in the mesoporous TiO2

are filled with the hybrid Perovskites instead of the coating method [26]. It has also been

demonstrated that a p-i-n junction architecture can perform just as well as or better than

previous cell architectures [27]. The unprecedented increase in PCE gathered much attention

among the photovoltaic community, currently hybrid Perovskites are one of the most researched

topics within this field. Eight years on since the first PV solar cell application of [NH3CH3]PbBr3

and [NH3CH3]PbI3, PCE exceeding 22% have been demonstrated using hybrid Perovskite solar

cells [7,11]. This rapid rate of increase in the PCE of hybrid Perovskite solar cell represents the

fastest gain of all PV technologies [7].

2.3 Perovskites

The name Perovskite refers to a family of materials with chemical composition AnBX2+n in

their 3D phase1. Perovskites can exist in many forms and for n≥1 it is possible to create 3-,2-,1-

and even 0-dimensional Perovskite structures [28–30]. In the 3-dimensional non-layered case,

Perovskites have the chemical composition ABX3 and their crystal structure is similar to that of

calcium titanate. This crystal structure and calcium titanate which is also know as Perovskite

are named after the Russian mineralogist Lev Perovski who first characterised its structure.

It has been shown that higher dimensional Perovskites can posses a wide range of poly-

morphs such as cubic, tetragonal, orthorhombic and rhomboidal. The high symmetry cubic

Perovskite phase is shown in figure 2.1.

Single Perovskite

3-dimensional single Perovskites are a subgroup within this family of materials with the chemical

formula ABX3. The A constituent is surrounded by 8 corner sharing BX6 polyhedrons. Tilt-

ing, rotating and stretching of these polyhedrons allows for a number of additional non-cubic

Perovskite phases. Transitions between these Perovskite phases have been observed through

varying temperature, pressure and other external factors [31,32].

The phase and stability of a Perovskite are strongly dependent on the relative sizes of the
1Layered Perovskites are characterised by a different chemical composition, namely An−1A′2BnX3n+1 in the

Ruddlesden-Popper phase.
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Figure 2.1: The high symmetry cubic Perovskite phase of CaTiO3, where calcium,

titanium and oxygen atoms are indicated by green, blue and red respectively.

constituent ions. These characteristics can be investigated through the Goldschmidt tolerance

factor given by:

t = rA + rX√
2(rb + rX)

(2.1)

where rA, rB and rX are the Shannon radii of the A, B and the X ions respectively [33,34]. At

finite temperatures for values near the range of 0.8 ≤ t ≤ 1 the material is likely to possess a

Perovskite structure. For values of t < 0.8 lower symmetry Perovskite or non-Perovskite phases

are obtained. Values of t >> 1 indicate that the A cation is too large to form a Perovskite

phase, while t ≈ 1 indicates a high symmetry Perovskite phase. Table 2.1 shows the tolerance

factors for a number of known Perovskites and their observed phases.

Inorganic Perovskites Perovskite phases Tolerance factor

SrTiO3 Tetragonal,Cubic 1.002

BaTiO3 Rhombohedral, Orthorhombic, tetragonal ,cubic 1.062

CaTiO3 Orthorhombic, tetragonal ,cubic 0.9666

GdFeO3 Orthorhombic 0.813

PbTiO3 tetragonal,Cubic 1.02

Table 2.1: The Goldschmidt factor can be used as a semi-empirical guide for the

existence of Perovskite phases, for instance a tolerance factor close to 1 indicates

a cubic Perovskite phase [35–37].
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Equation 2.1 shows that a wide range of Perovskite compounds can and indeed have been

predicted by the permutation of ions. Furthermore the flexibility in the constituents of the

compound allows for a great degree of tuning for desired properties. Such level of control

over the characteristics of Perovskites has resulted in a wide range of applications of these

materials from water splitting, high temperature super conductivity, lasers and more recently

photovoltaics [8, 38–40].

Double Perovskites

Figure 2.2: The crystal structure for the cubic double Perovskite phase of

Sr2FeMoO6.

Double Perovskites have a similar crystal structure as that of single Perovskites, however

they posses a chemical composition A2BB′X6. In these structures B and B′ form a checkered

pattern alternating at the centre of the corner sharing polyhedrons. Therefore the unit cell

is double that of the single Perovskite, hence the name. Figure 2.2 shows the cubic crystal

structure of Sr2FeMoO6 a double Perovskite which has been extensively studied for spintronic

applications [41].

Organic-Inorganic Hybrid Perovskites

Most Perovskites synthesised (e.g. BiFeO3) or those which occur naturally (e.g. PbTiO3) are

oxides with chemical composition ABO3 as shown in table 2.1. These compounds are formed by

divalent A+2 ions, tetravalent B+4 metals and divalent oxygen anions. However the relatively
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new group of Organic-Inorganic Hybrid Perovskites (OIHP) are not oxides, rather halide based

compounds. Unlike their oxide counterparts these halide crystals are formed by monovalent

A+ organic molecules, divalent B+2 metals and monovalent halide anions. Other variants such

as mixed cations, mixed anions or partial substitution of the halogen component by organic

molecules have also been proposed and synthesised [42–44].

The first successful synthesis of a Perovskite was in 1893, while the existence of halide

Perovskites in the form of CsPbI3 has only been known since 1958 [45,46]. Unlike their inorganic

counterparts, hybrid Perovskites have a much more recent history. Methylammonium triiodide

plumbate (MAPI) which has the chemical composition [NH3CH3]PbI3 is the first OIHP which

was synthesised and reported as having a Perovskite phase in 1978 [47,48]. Through substitution

of MAPI’s constituent ions and often using the Goldschmidt tolerance factor as a guide, a large

range of hybrid Perovskites have since been synthesised [49].

Much like inorganic Perovskites, the stability and formation of the hybrid Perovskites can

also be investigated through the Goldschmidt tolerance factor. However as discussed by Travis

et al. the application of equation 2.1 with the Shannon radii does not provide accurate predictive

results for hybrid Perovskites [50]. This is due to a number of reasons: firstly the Shannon radii

are calculated for the oxide and fluoride compounds only and hence are not applicable to iodine

or bromine based Perovskites. Secondly an accurate description of the Shannon radii for organic

molecules is non-trivial. Due to these reasons Travis et al. developed a method for predicting

the formation of a single Perovskite structure in ABX3 compounds where X=Cl, Br, I. This new

approach which results in a higher predictive accuracy is based on equation 2.1 and a newly

defined factor known as the octahedral tolerance factor given by

µ = rB
rX

(2.2)

where rB and rX are the ionic radii of the B and X constituents. Using the hard sphere approach

it can be shown that for a stable structure µ must be greater than 0.41. In this approach, the

ionic radii of the organic molecules are calculated as suggested by Cheetham et al. given by:

rA = rmass + rion (2.3)

where rion is the Shannon radii and rmass the distance between the centre of mass and the

furthest non-hydrogen atom [51].
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With the reported success of [NH3CH3]PbI3 and [NH3CH3]PbBr3, the search for new hybrid

Perovskites began, with the intent to produce more efficient and stable devices. It is clear from

equation 2.1 that for a stable structure with t ≈ 1, the radius of the ion at site A would need

to be much larger than that at site B. Using the new predictive method it is found that for

Perovskites with iodine at the X site and the smallest possible ion to satisfy µ > 0.41 on site

B, the site’s A ionic radius for 12 coordination must be 0.9Å. The only possible non-radioactive

element which can satisfy this is Cs+ with a resulting tolerance factor of 0.91. This observation

is the reason why larger organic molecules are utilised for halide Perovskites site A occupation.

Using this approach and studying of known inorganic and hybrid Perovskite structures Travis et

al. have identified a semi-empirical set of conditions for stable hybrid Perovskites. For a given

structure with µ > 0.41 and t > 0.875, the formation of a hybrid Perovskite phase is highly

likely [50]. The tolerance factors of a number of known and predicted ABX3 compounds are

shown in table 2.2.

Compound phase tolerance factor

[NH3CH3]PbCl3 (MAPC) Orthorohmbic,Tetragonal,Cubic 0.985

[NH3CH3]PbBr3 (MAPB) Orthorohmbic,Tetragonal,Cubic 0.974

[NH3CH3]PbI3 (MAPI) Orthorohmbic,Tetragonal,Cubic 0.954

[CH(NH2)2]PbI3 (FAPI) Orthorhombic, Cubic 1.035

[NH4]PbI3 (NH4PI)† N/A 0.801

[(CH3C(NH2)2)2]SrI3 (ACSI)∗ N/A 1.04

[NH3CH3]DyI3 (MADI)∗ N/A 0.973

[NH3CH3]SmI3 (MASmI)∗ N/A 0.931

Table 2.2: Synthesised ABX3 compounds (where A is an organic molecule, B a

metal and X a member of the halogen family) with their corresponding observed

phases and tolerance factors. All of the compounds above have µ > 0.41. The

organic molecules of these compounds are shown in table 2.3.∗ These compounds

have not yet been synthesised and hence information regarding their phases is

not available† [NH4]PbI3 does not form a Perovskite phase and this is correctly

predicted as t = 0.81 < 0.875 [50].
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It should be noted that stable Perovskite phases for MAGeI3, FaGeI3 and ACGeI3 have been

reported where µ ≈ 0.35. These compounds fall outside the boundary conditions set by Travis

et al.. This deviation is attributed to the presence of stereo-active lone-pairs on the Ge sites

which in this case relaxes the octerhedon tolerance factor requirement [52].

Compound Abbreviation Ionic radii Å Dipole Moment

NH3CH3 MA 2.16 2.29

[CH(NH2)2] FA 2.53 0.21

NH4 NH4 1.46 0.0

(CH3C(NH2)2) AC 2.77 1.2

Table 2.3: Organic molecules for hybrid Perovskites [50,53,54].

The upper bound for the tolerance factor using the hybrid Perovskite approach is not clearly

defined. To establish an upper limit for t, access to a larger number of hybrid compounds with

structure ABX3 is needed.

2.4 Application of Perovskites for Photovoltaic Solar Cells

Within the OIHP family [NH3CH3]PbI3 and [CH(NH2)2]PbI3 (henceforth refereed to as MAPI

and FAPI respectively) are considered to be two of the most promising variants for photovoltaic

applications. These materials have shown remarkable properties for PV solar cell applications

while having relatively simple and cheap production procedures compared to more established

photovoltaic materials such as silicon. Some of the characteristics of these materials which

have drawn considerable attention include long carrier lifetimes, strong light absorption and low

density of mid band gap defects; the combination of such features leads to high PCE [55–57].

As a consequence of long minority lifetimes and strong absorption of visible light observed in

a number of lead based hybrid Perovskites, thin absorber layers with high quantum efficiencies

have been fabricated [58–60]. Additionally the low density of mid band gap defect reduces the

non-radiative recombination which can be detrimental to PV materials. Due to these factors

hybrid Perovskite based solar cells have been hailed as potential materials for first large scale

commercial realisation of a “3rd generation” solar cells [16]. The combination of low production
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cost, abundant constituent elements and high power conversion efficiencies are some of the

extraordinary properties that Perovskite solar cells posses [22].

An overview of Perovskites (hybrid and inorganic) relevant to this work is provided below.

Although not all of the materials in the following sections are explicitly studied within this

thesis, a general review of the applications and properties of these Perovskites is essential for

discussions in later chapters.

NH3CH3PbX3(X=Cl,Br,I)

As mentioned previously MAPI and MAPB are the first hybrid Perovskites which were utilised

for photovoltaic applications [8]. However MAPI, MAPB and [NH3CH3]PbCl3 (referred to as

MAPC) were first synthesised much earlier [47,48].

This group of OIHP possess three Perovskite phases, ranging from low temperature or-

thorhombic to high temperature pseudo-cubic as shown in table 2.2; The structures here are

referred to as pseudo-cubic, this is due to the fact that the inorganic part of the lattice can

be fairly well approximated as cubic structures, however due to the non-spherical nature of the

organic constituents the cubic symmetry of the overall lattice is lost. In the case of MAPI the

transition from the orthorhombic to tetragonal is a first order transition at ≈ 165K. While the

transition from tetragonal to the pseudo-cubic phase is a gradual second order transition, with a

complete pseudo-cubic phase at ≈ 337K [61]. In agreement with Goldschmidt tolerance factors,

experimental findings show that MAPC is the most stable while MAPI is the least stable of the

three [49].

These hybrid Perovskites form relatively open structures; the metal-halide bond length de-

creases with lighter halides. At room temperature MAPI has a pseudo-cubic structure with an

experimental lattice constant a = 6.26Å, while MAPB and MAPC have smaller lattice constants

of 5.9Å and 5.6Å respectively [62–64]. The open structure in MAPI allows for the rotation of

NH3CH+
3 molecule. This has been observed both experimentally and through molecular dy-

namics simulations [65,66]. Figure 2.3 shows three orientations of NH3CH+
3 in the pseudo-cubic

phase which are accessible at room temperature.

The experimental room temperature optical band gap for MAPI is ≈1.55eV, small variations

due to synthesis method have been observed [1]. This energy gap is close to the optimal value for

solar cells and has a Shockley-Queisser efficiency limit close to 30% [1,14]. With the substitution
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of lighter halides in place of iodine which reduces the size of the unit cell, the band gap increases

to ≈ 2.24eV for MAPB and ≈ 2.97eV for MAPC [1]. While the band gap energies of MAPB

and MAPC are too high for single junction solar cells, multi-junction solar cell applications are

feasible with such band gaps.

H

I

C

N

Pb

MAPI<100> MAPI<110>MAPI<111>

Figure 2.3: The room temperature pseudo-cubic structure of MAPI with 3 orien-

tations of the organic moiety.

So far from these three hybrid Perovskites the highest PCE devices are based on MAPI and

have reached 19% [67]. This is due to the more optimum band gap size compared to the other

two Perovskites.

The high PCE achieved by these devices is surprising as the materials are produced through

low temperature processing. Such methods often yield samples with impurities and small grain

boundaries which reduce the overall device efficiency. However it has been observed that samples

produced through relatively simple bench-top methods of synthesis, have sufficiently low density

of mid gap defects. Furthermore the lead based hybrid Perovskites have demonstrated extremely

long carrier lifetimes which for materials with relatively low carrier mobilities increase diffusion

length and the overall PCE [68–70]. The long carrier lifetimes in these materials is discussed in

detail in chapter 5.

Tin based hybrid Perovskites with chemical compositions [NH3CH3]SnX3(X=I,Br,Cl) have

also been investigated for photovoltaic applications. Although the band gap size is more ideal,

these materials have not achieved the same success or attention as the lead based counterparts.

The lower PCE is partially attributed to the significantly lower carrier lifetimes and stability
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of tin based hybrid Perovskite devices. Tin based hybrid Perovskites are less stable in ambient

atmosphere compared to MAPI, this is due to the instability of Sn2+ in its oxidation state [71,72].

[CH(NH2)2]PbI3 (FAPI)

The substitution of methylammonium in MAPI by formamidinium (FA) increases the cell size

and reduces the experimental optical band gap from ≈ 1.55eV to ≈ 1.48eV [73, 74]. This is

due to the bigger size of formamidinium compared to methylammonium, as shown in table 2.3.

The lower band gap of FAPI increases the maximum achievable theoretical efficiency [14]. In

fact FAPI based Perovskite solar cells have recently achieved power conversion efficiencies of

20.1% [11]. Experimental findings show that at room temperature FAPI, much like MAPI,

forms a pseudo-cubic structure with a larger lattice constant of a=6.362Å [66]; however FAPI

is even less stable that MAPI, and has been reported to form a competing yellow hexagonal

non-Perovskite phase [66, 75, 76]. The room temperature pseudo-cubic Perovskite structure for

FAPI is shown in figure 2.4.
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Figure 2.4: Pseudo-cubic room temperature structure of [CH(NH2)2]PbI3 (FAPI).

Simulations of FAPI have shown that the organic molecule rotates at room temperature,

similar to that found in MAPI, however on a slightly faster timescale [66]. The dipole moment

of FA+ is approximately 11 times smaller than that of MA+, however the level of interaction

between the two molecules and the inorganic cages are comparable. This is due to the larger

size of CH(NH2)+
2 and the steric effect which compensates for the lower dipole moment.
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Mixed Perovskites

Although pure MAPI and FAPI have shown a significant increase in power conversion efficiencies,

the success of mixed Perovskites has been just as or even more impressive and important. This

approach allows for overcoming many of the disadvantages associated with hybrid Perovskites

such as band gap size and stability. Mixing of Perovskites comes in a variety of forms such as

mixed halides, organic molecules and metals. These groups of novel materials are discussed n

the following sections.

Mixed Halide

The first attempt at mixing hybrid Perovskites came in the form of mixed halides [25]. Struc-

tures with chemical compositions MAPbI3−xClx, MAPbI3−xBrx and MAPbBr3−xClx were syn-

thesised and implemented in cells [77–80]. The aim of this approach is to combine the low band

gap of MAPI, which is close to ideal, with the high stability of MAPC. Solar cells based on these

mixed Perovskites displayed an increase in mobility, crystallinity and overall PCE compared to

pure phase MAPI. However later studies found that the added Cl only enhanced the synthesis

process and was only minimally present in samples [77].

Mixed Site A Cation

Mixing of the organic cations in hybrid Perovskites led to power conversion efficiencies as high as

14.52% in the form of FA0.4MA0.6PbI3 [44]. More recent studies of mixed cations, where there

is partial substitution of MA by FA and Cs leading to a triple cation Perovskite have shown

remarkable stability, losing negligible PCE over 250 hours at room temperature, significantly

out performing pure phase devices. In addition, power conversion efficiencies achieved by these

materials are close to 21.1% [81]. Organic molecules mixing, along with halide mixing in the

form of MA/FA and I/Br have have produced cells with PCE as high as 17.3% leading to yet

another approach to creating stable and high efficiency PSCs [82]. Unlike in the case of mixed

halide, experimental findings show that the FA and MA are present in the final sample and their

roles are not limited to the synthesis enhancement.
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Mixed Metals

Mix-metal hybrid Perovskites have been utilised in an attempt to overcome the barriers met

by pure phase hybrid Perovskites, additionally these Perovskites have demonstrated promising

properties. Much like mixed halide Perovskites, this group of hybrid Perovskites are formed by

the partial substitution of the site B metal cation by another metal. [NH3CH3Snx]Pb1−xI3 is

perhaps the most documented of this category. An interesting and significant characteristic of

this solid solution was the violation of Vegard’s law, which results in tuning the ratio of lead

and tin to obtain band gaps below that of both the pure Sn and Pb phases [83,84]. It is shown

that for x = 0.5 optical band gaps as low as 1.17eV can be achieved. Such tunability of the

band gap is ideal for tandem solar cells. Furthermore energy-dispersive x-ray spectroscopy has

shown that both Sn and Pb are homogeneously present across the sample without any observed

phase separation [83,84].

Downfalls of Hybrid Perovskite Solar Cells

Although hybrid Perovskites may seem promising as a potential light harvesting material for

commercial solar cells, a number of obstacles hinder this progress. The ionic crystal structure of

organic-inorganic hybrid Perovskites can be dissolve in polar solvents such as water [54,85,86].

This instability is apparent at high relative humidity and causes significant degradation and

reduction in PCE. Furthermore, the general stability of hybrid Perovskite is significantly lower

than those of commercial devices and inorganic absorber layers. The rapid degradation of

Perovskite solar cell under ambient environment and working conditions leads to a significant

lose of PCE over relatively short period [87].

The best performing Perovskite solar cells (PSC) have thus far been lead based. Although

the use of lead in PV solar cells is not expensive, as it is a heavy element it is highly toxic.

This fact combined with low stability of hybrid Perovskites reduces the possibility of residential

applications of PSC. Hence a substitute for lead which can perform just as well is highly desirable.

These are some of the main challenges faced by the researchers working in the field of hybrid

Perovskite solar cells.
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Theoretical Background

3.1 Overview

Electronic and optical properties are among the most important material characteristics for

photovoltaic applications. Absorption coefficient, carrier mobility and band gap are a few of

such parameters which among others determine the viability of a photovoltaic material. An

accurate description of such parameters and mechanisms at work are hence crucial for solar cell

device engineering. In this section the framework and methodologies used to obtain the electronic

and optical parameters are described. The applicability, limitations and the advantages of each

method are briefly discussed.

3.2 Introduction

The electronic and optical properties of periodic systems are related to the electronic states

described through the system’s electronic band structure. In isolated systems such as a molecule

or an atom in vacuum, the electronic energy levels are quantised by orbitals, in these systems

the discrete electronic energy states are uniquely identified by four quantum numbers (the

principal quantum number n, orbital angular momentum quantum number l, magnetic quantum

number m and spin s). This discrete quantization of energy states of an atom is shown in

the left panel of figure 3.1. In crystalline material with infinite periodicity n, l and m cease

to be quantum numbers which uniquely describe an electronic state; however they retain an

33
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approximate meaning since eigenstates can be fairly well represented by a linear combination of

atomic orbitals. According to Bloch’s theorem, the wave-function of an electron in a periodic

system has a basis of Bloch wave eigenstates [88]. A Bloch wave is written as:

ψ(~r) = ei
~k·~rU(~r) (3.1)

where ~r is position, U(~r) is a periodic potential with same periodicity as the crystal structure

and ~k is the crystal momentum. Here ~k is a new quantum number necessary for uniquely

describing electronic states within periodic potentials. For a given system there can be many

Bloch wave eigenstates, these are known as bands. The electronic eigenstates in periodic systems

form contentious energy states, this is contrary to the isolated atom case discussed. The band

structure of a semiconductor is shown in the right panel of figure 3.1.

Figure 3.1: The electronic energy levels of an arbitrary atom (left panel) and a

crystalline system, CsPbI3 in the example above (right panel).

The following sections provide brief overviews of Density Functional Theory (DFT), GW and

quasi-particle self-consistent GW (QSGW), which are some of the methods used to calculated

such electronic band structures. A full derivation and comparison of such methods is beyond

the scope of this thesis, however differences between the capabilities of these methods and their

limitations which are important to the calculations in this work are discussed.
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3.3 Electronic Properties

Density Functional Theory

In quantum mechanics all the information that can possibly be known about a system is con-

tained within the corresponding wave function. As such when studying a quantum system often

the aim is to obtain the wave function, to do this, it is necessary to solve the Schrödinger equa-

tion related to that system. The time-independent form of the Schrödinger equation is given

by:

ĤΨi(x1,x2, · · · ,xn, r1, r2, · · · , rN ) = EiΨi(x1,x2, · · · ,xn, r1, r2, · · · , rN ) (3.2)

where xi is the position of the ith electron and ri is the position of the ith nucleon. Equation 3.2

relates the system’s Hamiltonian Ĥ with the ith eigenstates Ψi(x1,x2, · · · ,xn, r1, r2, · · · , rN )

and the corresponding eigenvalues for a system with n electrons and N nuclei.

The Hamiltonian for the total energy of an atomic system with electrons is

Ĥtot = −
∑
I

1
2MI

∇2
I −

1
2
∑
i

∇2
i + 1

2
∑
i 6=j

1
|xi − xj |

+ 1
2
∑
I 6=J

ZIZJ
|rI − rJ |

−
∑
i,I

ZI
|xi − rI |

(3.3)

= −T̂N − T̂e + V̂ee + V̂NN − V̂eN (3.4)

where MI , rI and ZI are the mass, position and the charge of the Ith nuclei respectively, while

xi is the position of the ith electron (all equations are presented in atomic units unless stated

otherwise) [89, 90]1. The upper-case subscripts span over all nuclei while lower-case subscripts

cover all electrons within the system. Each term within this equation accounts for contributions

from a particular interaction. The first two terms in equation 3.3 are the electronic and the nuclei

kinetic terms respectively, these terms account for the energy from the motion of the particles in

the system. The last three terms are the electron-electron, electron-nucleon and nucleon-nucleon

interactions, these terms arise from the charged nature of protons and electrons.

Nuclei are significantly heavier than electrons and as a result are considerably slower. As such

in atomic systems nuclei are often assumed to be stationary, that is the electrons move through

a field with static nuclei. This assumption is known as the Born-Oppenheimer approximation

(BOA), within this approach the first term in equation 3.3 can be neglected and the nucleon-

nucleon interaction can be added as a constant to the total energy [89, 91, 92]. With the BOA
1For the sake of brevity relativistic effects and spins are excluded
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the Hamiltonian simplifies to that of electrons moving in an external field

Ĥe = −1
2
∑
i

∇2
i + 1

2
∑
i 6=j

1
|xi − xj |

−
∑
i,I

ZI
|xirI |

(3.5)

= −T̂e + V̂ee − V̂eN (3.6)

where i 6= j in the second summation ensures that self interaction is neglected. Hence the

electronic Schrödinger equation

ĤeΨe
i (x1,x2, · · · ,xn) = Eni Ψe

i (x1,x2, · · · ,xn) (3.7)

where Ψe
i (x1,x2, · · · ,xn) and Eni are the eigenfunction and eigenvalue of the ith electronic

state [93]. The total energy of the system can be obtained by adding the nucleon-nucleon

interaction. As the nucleons are assumed to be static the information regarding their position

is contained within the Hamiltonian rather than the wave function.

Even with the simplifications of the BOA, solving the Schrödinger equation for a many-body

system with such Hamiltonian is practically an impossible task. The difficulty arises from the

electron-electron interaction and the correlation in the motion of the electrons caused by it.

Hence a system with n electrons requires a 3n-dimensional wave function2. For even relatively

small systems with a handful of electrons computing equation 3.5 numerically is not feasible.

The solution to equation 3.5 is the focus of band structure calculations

Hohenberg-Kohn Formalism

In their 1964 seminal paper Hohenberg and Kohn proposed a new approach to computing the

electronic Hamiltonian. They established that for a system of electrons moving under the

influence of an external potential Vext and electron-electron interaction Vee, the ground state

total energy is a functional of the corresponding electron density ρ(x) [94]. To demonstrate this,

the energy functional is written as

Ee[ρ(x)] =
∫
ρ(x)Vext(x)dx + F [ρ(x)] (3.8)

= 〈Ψe| (Vext + F ) |Ψe〉 = 〈Ψe| Ĥe |Ψe〉 (3.9)

where F̂ [ρ(~x)] is a universal functional of electronic density and accounts for the kinetic energy

and electron-electron interactions [89, 94]. Honhenberg and Kohn also demonstrated that the
2The factors of 3 accounts for three degrees of spatial freedom for each particle. As mentioned previously spin

indices are omitted for sake of simplicity.
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external potential uniquely defines the ground state density of the system to within an additive

constant. To derive this lets assume there exist two external potentials V (1)
ext and V

(2)
ext which

produce the same ground state electronic density ρ0(x), there must also exist two set of Hamil-

tonians H(1)
e and H(2)

e with their corresponding wave functions Ψe
(1) and Ψe

(2) which both yield

ρ0(x). In such case using the variational principle, it is clear that the ground state energy E(1)
g

of H(1)
e is only given by Ψ(1)

e , hence using any Ψ(2)
e as a guessed wave-function for H(1)

e will lead

to an energy higher than that of the ground state,3. That is

E(1)
g < 〈Ψ(2)

e |H(1)
e |Ψ(2)

e 〉 (3.10)

E(1)
g < 〈Ψ(2)

e |H(2)
e |Ψ(2)

e 〉+ 〈Ψ(2)
e |H(1)

e −H(2)
e |Ψ(2)

e 〉 (3.11)

E(1)
g < E(2)

g +
∫
dx[V (1)

ext − V
(2)
ext ]ρ0(x) (3.12)

by interchanging the subscripts in expression above it is possible to obtain the counter part for

E
(2)
g :

E(2)
g < E(1)

g +
∫
dx[V (2)

ext − V
(1)
ext ]ρ0(x) (3.13)

adding the last two expressions leads to the contradictory inequality

E(2)
g + E(1)

g < E(1)
g + E(2)

g (3.14)

this contradiction demonstrates that there can not be two different external potentials which

differs by more than an additive constant and lead to the same non-degenerate ground state

charge density. Hence the total ground state energy of an electronic system is a functional of

the ground state density.

The significance of this formalism is in the fact that the calculation of the ground state

energy of an n-electron system is no longer a function of a 3n-dimensional wave function but

rather the 3-dimensional electronic density.

Kohn-Sham approach

Although the Hohenberg-Kohn (HK) provides a great simplification to solving the electronic

Hamiltonian, there remain a number of barriers which render this approach inapplicable. The

first issue with the HK formulation is that the universal functional F̂ [ρ(~x)] (which maps the
3assuming non-degenerate ground states
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electronic density to the kinetic and internal interaction energy contributions) is unknown and

has to be replaced by an approximate form, this reduces the HK theorem from an exact method

to an approximation. However the greatest simplification to the HK approach came from a

1965 paper by Kohn and Sham (KS). In their approach the 3n-dimensional wave-function of the

n interacting electrons system was replaced by n 3-dimensional non-interacting single particle

wave-functions [95]. By choosing to use non-interacting auxiliary single particle wave functions a

number of simplifications are automatically incurred. One such simplification is that the kinetic

term can be rewritten in the single particle form and not as a functional of the electronic density.

By rewriting the kinetic contribution the single particle Hamiltonian is given by

ĤKS = 1
2∇

2 + V̂KS(~r) (3.15)

where V̂KS(~r) is the KS potential which accounts for all electronic interactions as shown in the

expression below

V̂KS(~r) = V̂ext(~r) + V̂H(~r) + V̂XC(~r) (3.16)

where the terms on the right hand side are the external potential, the Hartree term and the

exchange-correlation potential respectively [89,90]. In this approach the external potential will

include the contribution from electron-nucleon interaction and other external potentials. The

Hartree potential accounts for the Coulomb interaction which the electrons experience.

The exchange-correlation potential is a universal function which arises due to the electron-

electron interactions and Pauli’s exclusion principle, similar to the universal functional F̂ [ρ(~x)]

the exact form of the exchange-correlation potential

V̂XC(~r) = δEXC
δn(~r) (3.17)

is unknown. This term contains all the many-body interactions which have to be added due

to using the single particle approximation which intrinsically neglects all such effects. As the

true form of this potential is unknown and is likely to be highly complex and potentially non-

analytical, approximate potentials have to be used for this method to be applicable [96]. Since

the 1965 seminal paper many ab initio and empirical potentials have been developed for this

task.
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initial guess for density

ρ(~r)

Calculate Effective Potential

VKS(~r) = Vext(~r) + VHart[ρ(~r)] + VXC [ρ(~r)]

Solve Kohn-Sham equation

( 1
2∇

2 + VKS(~r))ψi(~r) = εiψi(~r)
Use New Density

Calculate New Density

ρ(~r) =
∑
i ci|ψi(~r)|2

Has self-

consistency

been

achieved?

Output parameters of interest e.g.

Eigenvalues, Eigenfunctions, Forces ....

No

Yes

Figure 3.2: Schematic diagram showing the iterative process of solving the Kohn-

Sham equation to obtain self-consistent electronic density.

Using the Kohn-Sham approach the eigenvalues of non-interacting wave functions can be
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calculated through a Schrödinger-like equation known as the Kohn-Sham equation given by

(1
2∇

2 + V̂KS(~r)) |φn〉 = εn |φn〉 (3.18)

where φn and εn are the eigenfunctions and eigenvalues of the nth single particle wave function.

Due to the non-linear nature of equation (3.18) an iterative method is used to solve for the

ground state wave functions {ψn} and hence the electronic contribution to the total ground state

energy. This iterative process starts by choosing a starting guessed electronic density which is

used to calculate the effective KS potential. This potential is used within equation 3.18 to obtain

new set of wave functions which are used to obtain a new electronic density. The newly obtained

and the starting densities are compared, if their difference is within the set convergence limit

the process is stopped. However if the changes are too large the process is repeated with the

new density used as the starting point. This iterative process is shown in diagram 3.2.

As the eigenfunctions of the KS equation are that of fictitious non-interacting particles, their

individual eigenvalues εn do not correspond to electronic energies of the real system, however the

highest eigenvalue is minus the ionisation energy [89,97]. The KS eigenvalues and eigenfunctions

shown in equation 3.18 are often used as the real system’s counterparts without a rigorous

justification. This leads to significant under estimation of band gaps in semiconductors as

discussed in the following sections. The approximations for the exchange-correlation functional

often aim to reduce induced errors due to the use of non-physical eigenfunctions and eigenvalues.

Local Density Approximations

One possible approximation for the exchange-correlation functional is to model the electron-

electron interactions in the system of interest as that of a homogeneous electron gas (i.e. Jel-

lium) [89,95]. In this form the exchange-correlation energy functional simply is given by

Exc[ρ(r)] =
∫
d3rρ(r)εhomxc (ρ(r)) (3.19)

where εhomxc (ρ(~r)) is exchange-correlation energy per unit density at ~r [90, 95]. The benefit of

this approach is that the exchange function of Jellium is known analytically and the correlation

functional has been approximated to a high degree of accuracy [89]. The use of this functional is

known as the Local Density Approximation (LDA) and it provides a simple and computationally

fast approximation due to the local nature of the potential.
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LDA is applied in many fields of condensed matter and is one of the most popular tools

among the DFT community, however it has many limitations. As the system is modelled after

Jellium it can only be applied to systems with uniform or slowly varying electron densities.

One well documented failure of LDA is the treatment of strongly correlated systems where the

electrons can not be well described through non-interacting auxiliary wavefunctions within a

local potential, this is due to the high interaction and correlation among constituent particles.

This failure is in part due to the single particle approach and the use of KS eigenvalues as

electronic energies. However the local electron-electron interaction approximation is insufficient

for strongly correlated materials [89,90,98].

Generalised-Gradient Approximation

After the initial proposal and success of the LDA method by Kohn and Sham, many new

approaches were proposed to improve on LDA. One such method was the Generalised-Gradient

Approximation (GGA), where by the exchange correlation potential is a functional of the local

electronic density and its gradient. The expression for such functional can be given by

Exc[ρ(r)] =
∫
d3rρ(~r)εxc(ρ(r),∇ρ(r)) (3.20)

Although GGA functionals tend to agree well with each other for small gradient magnitudes,

for the cases where the gradient of the electronic density is large the level of agreement is far

less. In such cases GGA may even perform worse than the LDA approach. There are currently

a wide range of GGA functionals with a variety of treatments for both cases of large and small

density gradients [99,100].

Hybrid Functionals

The approach which generally produces the best results from DFT calculations are hybrid func-

tionals. In this approximation the exact exchange form from the Hartree-Fock theory is mixed

with the exchange-correlation of some DFT functional. Hartee-Fock theory is an approach to

solving the many-body Hamiltonian, in this approach the many-body wave-function of a system

is approximated by a single Slater determinant of spin-orbitals. This approximation neglects

correlation between electrons and leads to poor quantitative results for crystalline systems. Such

methods result in better band gap agreement with experimental data. This is due to the over-
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estimation of electron-electron interactions in the Hartree-Fock approach which is compensated

for by the underestimation of eigenvalues intrinsic to local and semi-local density functionals as

discussed [96,101,102].

Shortcomings of DFT

Density functional theory is the most popular method of calculating electronic properties, how-

ever as discussed previously DFT lacks a rigorous derivation for using the KS eigenvalues and

eigenfunctions of the auxiliary system as those of the real system [89]. A well known consequence

of this approach is the severe underestimation of fundamental band gaps in semiconductors. The

severity of these errors varies for each material. Silicon’s band structure can be calculated fairly

well by DFT with only a systematic band gap problem; while some transition metal oxides which

are in reality Mott insulators are predicted to be semiconductor or even metallic in certain cases.

The origin of these inaccuracies are the insufficient treatment of the exchange-correlation con-

tribution through local or semi-local functionals and the use of KS eigenvalues [96,98,103].

The band gap issue can be addressed by a judicial use of semi-empirical hybrid functionals.

However the choice of the exchange-correlation functional is non-trivial and there exist many

options tailored for a range of material. The result from different approximation can produce

significant discrepancies, often it is not clear which potential is more suitable for a given system.

3.4 Many Body Perturbation Theory: A Green’s Function

Approach

A natural framework for electronic properties of materials is the many-body perturbation theory

(MBPT) as it is explicitly a theory of excitations and excited systems. This method also benefits

from a rigorous derivation for electronic eigenfunctions and eigenvalues. In the DFT approach

the key parameter for calculations is the ground state density while in the MBPT counterpart,

Green’s functions are the key components. Green’s functions are mathematical tools which are

used to describe propagators in quantum field theory. As MBPT is extensively used through

out this work an introduction to the Green’s function approaches is provided in the following

sections, more rigorous derivation has been provided by others [104,105].
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Green’s Functions

In the second quantization approach the Hamiltonian of an n-electron system in a static potential

is given by4

Ĥ =
∫
d(x)ψ̂†(x)h(r)ψ̂(x) + 1

2

∫
d(x)d(x′)ψ̂†(x)ψ̂†(x′)ν(r, r′)ψ̂(x′)ψ̂(x) (3.21)

where x specifies position (r) and spin (σ) while ψ̂† and ψ̂ represent the creation and annihilation

field operators [105]. In equation 3.21 the one electron Hamiltonian h(r) is given by

h(r) = − h̄2

2m∇
2 + V (r) (3.22)

where V (r) is a local static potential and ν(r, r′) is the Coulomb interaction. By introducing

a static non-local potential U(x,x′; t) the time-dependent field operators can be written within

the interaction picture as

ψ̂(x) ≡ ψ̂(x1, t) = exp(iĤt1/h̄)ψ̂(x1) exp(−iĤt1/h̄) (3.23)

with the interaction Hamiltonian ĤI given by

Ĥ ′I = exp(iĤt1/h̄)Ĥ ′(t) exp(−iĤt1/h̄) (3.24)

=
∫
dxdx′ψ̂†(x, t+)U(x,x′; t)ψ̂(x′, t) (3.25)

where t+ = t+ δ with δ → 0. By introducing a scattering operator

Ŝ = exp(− i
h̄

∫ ∞
−∞

dtĤ ′I(t)) (3.26)

it is possible to define the generalised one- and two-particle Green’s functions as

G1(1,2) = − i
h̄

〈N |T [Ŝψ̂(1)ψ̂†(2)] |N〉
〈N |T [Ŝ] |N〉

(3.27)

G2(1,2; 1′,2′) =
(
− i

h̄

)2 〈N |T [Ŝψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)] |N〉
〈N |T [Ŝ] |N〉

(3.28)

where 1,2,3 · · · represent 3 dimensions of space, and one dimension of spin and time. |N〉 is the

ground state of an N -electrons unperturbed system and T is the Wick’s time-ordering operator

which ensures all creation operators are to the left of all annihilation operators in their product.

The physical quantity calculated by equation 3.27 is the probability amplitude that an electron
4relativistic contributions have been neglected for the sake of simplicity
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injected into the system at state 1 will be at state 2 after t2 − t1 (assuming t2 > t1, the order

of processes are reversed), while equation 3.28 gives the two particle counterpart.

Through Fourier transformation and slight manipulation it is possible to write the one par-

ticle Green’s function within the energy domain so that

G0
1(r1, r2,ω) =

∑
j

Φ∗j (r1, ω)Φj(r2, ω)
ω − Ej + iδ

(3.29)

where Φ is the eigenfunction with eigenvalue Ej . The poles of equations 3.29 correspond to

energies of excited state system of |N + 1〉 minus the ground state energy of |N〉.

Hedin’s Equations

In his 1965 seminal paper Lars Hedin provided a derivation for an approach to obtaining the

interacting Green’s function of a system, this was through the five equations shown below:

G1(1, 2) = G0
1(1, 2) +

∫
d34G0

1Σ(3, 4)G1(4, 2) (3.30)

Σ(1, 2) = i

∫
d34G1(1, 3)W (4, 1)Γ̃(3, 2, 4) (3.31)

Γ̃(1, 2; 3) = δ(1, 3)δ(2, 3) +
∫
d4567 δΣ(1, 2)

δG1(4, 5)G1(4, 6)G1(7, 5)Γ̃(6, 7; 3) (3.32)

P̃ (1, 2) = −i
∫
d34G1(1, 3)G1(4, 1)Γ̃(3, 4; 2) (3.33)

W (1, 2) = ν(1, 2) +
∫
d34ν(1, 3)P̃ (3, 4)W (4, 2)d3d4 (3.34)

the equations above represent the Green’s function, self-energy, vertex functional, polarisation

operator and the screened Coulomb interaction respectively; in equation 3.30, G0
1(1, 2) is the

Green’s function of a non-interacting system [104–106]. These equations which are derived

from the equation of motion of the Green’s functions describe the screening of the Coulomb

interaction due to the presence of electrons, electron-hole interactions and the energy of the

system among other quantities. Using these five coupled equations it is possible to calculate

the self energy and the Green’s function of an interacting system. The interacting equivalent

of equation 3.29 would have the quasi-particle energy levels at its broaden peaks which replace

the poles. Quasi-particles in this context are the screened electrons in semiconductors, which

interact more weakly than their bare counterparts.

The first step in using Hedin’s equations to calculate quasi-particle energy levels is to con-

struct a starting non-interacting Green’s function, the most common approach is to use KS
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Figure 3.3: Hedin’s pentagon showing the iterative method of solving the Hedin’s

equations

eigenfunctions and eigenvalues with equation 3.29. Once a guess starting Green’s function is

constructed the vertex function Γ̃ can be calculated through equation 3.32 which is in turn

used to calculate the irreducible polarisability given by equation 3.33 and the screened Coulomb

interaction from equation 3.34. From a screened W , the self energy can be obtained through

equation 3.31 and hence using the Dyson’s equation 3.30 a single particle interacting Green’s

function can be retrieved, this procedure is repeated till the point of self consistency, similar

to DFT as previously discussed [107]. Figure 3.3 show the iterative process through Hedin’s

pentagon.

GW Approximation

Much like the Hohenberg-Kohn method outlined in section 3.3 the iterative approach described

above is an exact method, however difficulty arises from the irreducible vertex function Γ̃. The

numerical calculation of equation 3.32 for a given system is computationally highly expensive

due to the recursive nature of the vertex. As a result the 0th-order calculation of the Hedin

equation is performed by neglecting the second term in equation 3.32. This approach is known

as the GW approximation (GWA) and provides a practical method of using the Hedin equa-

tions [107]. As a result GWA calculates the screened Coulomb interaction within the random
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phase approximation (RPA) [108–110]. GW approximation simplifies the 3-point vertex function

in equation 3.32 to

Γ̃(1, 2; 3) = δ(1, 3)δ(2, 3) (3.35)

and hence the irreducible polarisation is given by

P̃ (1, 2) = −i
∫
d34G1(1, 2)G1(2, 1) (3.36)

this approximation suggested by Hedin significantly reduces the difficulty in the iterative ap-

proach to Hedin’s pentagon (figure 3.3) and makes the GW approximation feasible for realistic

systems. In GWA electrons and holes independently interact with the system however electron-

hole interactions are neglected.

Self-Consistency

Self-consistency in Green’s function

The most common approach to self-consistency is to start from a non-interacting Green’s func-

tions which will be used to compute the iterative equations 3.31 to 3.34, finally computing

equation 3.30 will produce a new interacting Green’s function. This new Green’s function which

includes the self-energy serves as the input for the next iteration. This process is repeated

until the point of self-consistency. The criteria for consistency can be a range of parameters

such as eigenfunctions or eigenvalues. It is found that this approach of self consistency may in

fact induce errors, as such partial self consistency or one-shot approaches are more commonly

utilised [111].

Quasi-particle Self-Consistent GW

Another methods of obtaining self-consistency through the GW approach within RPA is the

Quasi-particle self-consistent GW theory (QSGW) [112, 113]. The fundamental principal be-

hind QSGW is to perturb the non-interacting Hamiltonian with the self-energy so that it will

more closely resemble the interacting Hamiltonian. That is the self-energy obtained through

equation 3.34 is used to construct a new non-interacting Green’s function which will serve as

the input for the next iteration. The exchange-correlation for the new non-interacting system
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is obtained though:

VXC = 1
2
∑
i,j

〈φi|Re(Σ(Ei) + Σ(Ej)) |φj〉 (3.37)

this expression for VXC potential is obtained by minimising a norm parameter, which is a

measure of ∆V = Σ− VXC [112,113]. Self-consistency is reached once the eigenstates from the

initial non-interacting Green’s function match those of the interacting system.

Figure 3.4: Fundamental gaps of zinc-blend (circles) and other compounds

(squares) calculated through QSGW (left panel) and the through LDA (red

squares) and GWLDA (blue circles, left panel) [112].

This approach to self-consistency has shown better agreement with experimental measure-

ments compared to LDA based GW calculations. As shown in figure 3.4 the error within the

QSGW method is small. Furthermore unlike DFT based implementations of GW, this error is

systematic and is due to the random phase approximation whereby the electron-hole interactions

are neglected. This approach removes the dependency on the DFT method used for the starting

Green’s function. Hence different starting points result in identical final results.

Although QSGW has a higher level of accuracy compared to DFT and DFT based imple-

mentations of GW (partial or fully self-consistent), it is computationally far more expensive

than both approaches. As such for large systems the use of QSGW over DFT or one-shot GW

may not be practical.
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Feasibility of the GW Approach

The Green’s functions approach to band structure calculations has the advantage of a rigorous

framework for excited state properties unlike DFT. Due to this, GW approaches generally have

better agreement with experimental findings and discrepancies among different GW approaches

are significantly smaller than those among different DFT approaches. However Green’s functions

methods are significantly more computationally expensive than DFT calculations, as a result

applying GW methods to large systems is not always viable; systems which posses unit cells

with more than ≈ 50 electrons become too computationally expensive for QSGW. However as a

parameter free approach it can provide insight into properties of materials which may be missed

through lower level theory methods such as DFT.

3.5 Spin-Orbit Interaction

Spin-orbit interaction (SOI) or spin-orbit coupling (SOC) are general terms used to describe

a number of phenomena which arise from the coupling of the spin and the motion of the

electron [114]. In the following sections a brief theoretical introduction to two types of this

interaction are provided as their descriptions are highly related to the analysis of data in later

chapters.

Spin-Orbit Coupling in centrosymmetric systems

The first case of SOC presented here occurs within systems which possess centrosymmetry, that

is for every ~k-point in the unit cell there exist an indistinguishable point −~k. Although the full

derivation of this phenomena requires the use of the Dirac equation and quantum electrody-

namics (QED) such description would be beyond the scope of this dissertation. However the

qualitative description outlined below provides good agreement with observation.

In an atomic case without an external fields, in the rest frame of the nucleus there isn’t a

magnetic field; however in the frame of reference of a bound electron the electric field generated

by the nucleons acts as an effective magnetic field given by

~B = −~ν ×
~E

c2 (3.38)
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where ~ν is the velocity of the electron, ~E the electric field and c the speed of light in vacuum.

The Hamiltonian for the interaction between a magnetic field and an electron is given by

HSOI = gsµB
~S · ~B
h̄

(3.39)

where gs is the electron g-factor, ~S is the spin angular vector and µB is the Bohr magneton

describing the magnetic moment of an electron [89]. As the electric field in equation 3.38 is

radial, the effective magnetic field can be written as

~B = ~r × ~ν
c2

∣∣E
r

∣∣ (3.40)

similarly the velocity operator can be rewritten in terms of momentum so that

~B = ~r × ~p
mec2

∣∣E
r

∣∣ (3.41)

where ~r × ~p is the angular momentum (~L)of a particle, and hence the expression above can be

rewritten as

~B =
~L

mec2

∣∣E
r

∣∣ (3.42)

Inserting equation 3.42 in expression 3.39, the Hamiltonian for the spin-orbit interaction of

an electron bound to an atom in a centrosymmetric system is given by

HSOI = gsµB
~S · ~L
h̄mec2

∣∣E
r

∣∣ (3.43)

Such effects can often be neglected as only electrons with relativistic speeds experience

appreciable perturbation to their energy levels, this can be readily seen from equation 3.38. In

the case of heavier atoms and crystal with large constituents such effects can have significant

impact on the electronic energy levels, this is due to higher velocity of electrons in heavier

elements [115].

Rashba SOI

In systems which are non-centrosymmetric (i.e. lack inversion symmetry) more complex forms of

spin-orbit interactions can be present. One such a phenomena is the Rashba splitting and unlike

the SOC described above, within crystalline systems the band dispersion can also be significantly
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effected [116,117]. Rashba interactions have been previously studied for spintronic applications

and in the context of quantum computers, however within the field of photovoltaic it is far

less studied as this effect is only significant in heavy elements [118]. For solar cell applications

the most important consequences of this SOI are the lifting of the band edge degeneracy, re-

normalisation of the energy levels and shifting of the bands in ~k-space as discussed below.

As mentioned previously one of the focuses of this dissertation is the significance of relativistic

effects such as SOC on the power conversion efficiency of hybrid Perovskites, as such a brief

theoretical overview of the Rashba effect is presented here.

Origin of the Rashba effect

Rashba interaction (also referred to as Rashba splitting) is due to the breaking of inversion

symmetry and the presence of an electric field. This breaking of symmetry can be due to

external or internal fields. A simple toy model description of the Rashba effect is presented

below. Much like the discussion provided in the previous section, a full rigorous description of

the Rashba interaction requires the use of Dirac equation and QED which are beyond the scope

of this work. However the description below is sufficient for an intuitive insight, and will provide

an aid to discussions in later chapters.

Toy model

To derive a toy model for the Rashba contribution to the Hamiltonian we start by adding a

term which breaks the symmetry of the system, in this case an electric field along the z axis

given by:

HE = −E0ẑ (3.44)

As described in the previous sections electrons moving through an electric field at relativistic

speeds experience an effective magnetic field in their frame of reference, where this magnetic

field is described by equation 3.38. Unlike the case in the previous section the electric field here

does not possess spherical symmetry and is taken to be along ẑ. This effective ~B will interact

with electrons’ spins introducing an additional spin dependent term to the Hamiltonian, such

that the Rashba Hamiltonian is written as:

HR = gsµB
2c2 (~v × ~E) · ~S (3.45)
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this can be rewritten as

HR = gsµB
2c2 (~σ × ~p) · ẑE0 (3.46)

by explicitly rewriting the vectors the interaction Hamiltonian reduces to

HR = gsµBE0

c2 (
[ 1

2 h̄σx

1
2 h̄σy

1
2 h̄σz

]
×

[ px

py

pz

]
) ·
[ 0

0

1

]
= αR(σxpy − σypx) (3.47)

where ~σ = ( ~σx ~σy ~σz)T and ~σx, ~σy, ~σz are the three Pauli spin matrices and αR is known

as the Rashba parameter and is a measure of the strength of the spin orbit interaction, this

parameter is proportional to the strength of the electronic field [116,117].
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Figure 3.5: Schematics showing doubly degenerate conduction bands in the cases

of without (A) and with (B) Rashba splitting. In the left panel two bands overlap,

this is equivalent to E0 = 0 in equation equation 3.44, as E0 increases the bands

split in opposite directions from the original minima, this shift can be seen from

equation 3.48.

By computing HR the energy contribution from the Rashba effect to the system becomes

ER = ±αR
√

(k2
y + k2

x) (3.48)
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where the ± is related to the two possible spins of the electron.

The Rashba interaction can significantly effects the electronic band structure by transforming

the doubly degenerate parabolic bands to two non-degenerate parabolic bands shifted from

previous minima position in momentum space. Such transformation is shown in figure 3.5; such

modification is anticipated from equation 3.48, furthermore it can be seen that this breaking of

symmetry leads to

ε(~k)↑ 6= ε(~k)↓ (3.49)

ε( ~−k)↑ = ε(~k)↓ (3.50)

Along with the dispersion of the bands the Rashba effect also changes the spin texture of

the bands near the band edge. Such deformations have important effects for processes involving

spin flip and carrier relaxation and are highly relevant to the field of spintronics; spin texture

will be discussed in chapter 5 within the context of photovoltaics.

3.6 Optical Properties

The optical properties of materials determine the interactions of the material with light, and

hence are of utmost importance for theoretical description and predictive calculations for pho-

tovoltaic materials. For photovoltaic applications the optical properties are used to determine

the optimum thickness of the material for complete solar capture and the most appropriate

architecture of devices (single junction, tandem...). Theoretical calculation of optical properties

of a material is performed by calculating the strength of the coupling between a ground and an

excited state due to the presence of a perturbing electromagnetic field.

The following subsections will provide a brief theoretical background to the calculation of

optical properties, furthermore a number of approximations and approaches utilised are dis-

cussed.

Optical Transition

The interaction of a bulk material and a light field can be modelled using perturbation theory,

this approach provides an expression for the rate of transition from an initial state (valence band

in bulk semiconductors) to an excited state ( conduction band in bulk semiconductors) [114].
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All the optical properties of a material can be accessed through the complex index of re-

fraction and the complex dielectric function. As these two functions are derived from the same

processes it is possible to obtain one from the other. From perturbation theory it is possible to

obtain an expression for the imaginary part of the dielectric function, this expression is given

by:

εi(ω) = (2πe)2
∑
~k

|Pi,f |2δ(h̄ω − h̄ωf − h̄ωi) (3.51)

where in equation 3.51 Pi,f is the matrix elements which measures the coupling between the

initial and final eigenstates due to the perturbing field. The term δ(h̄ω − h̄ωf − h̄ωi) ensures

the energy of the photon absorbed is equal to the energy difference of the two states and hence

conserving total energy. The sum in equation 3.51 is over the reciprocal space (first BZ in

practice ), as ~k is an essential quantum number in the case of crystalline material as mentioned

previously. Equation 3.51 can be utilised within the single particle approach, however it is

possible to calculate the imaginary part of the dielectric function using

εm ≡ lim
q→0

1
ε−1

G=0,G′=0
(3.52)

where εm is the macroscopic dielectric function and ε−1 is given by

ε−1 = [1− ν(q)P (q, ω)]−1 (3.53)

where P (q, ω) is the non-interacting polarisation for reciprocal space vector q, excitation angular

momentum ω and ν(q) is the bare Coulomb interaction. Although both equations 3.53 and

3.51 are equal (in the case of P (q, ω) = 1) the latter approach is more suited for implementation

within the Green’s functions approach as the same machinery is utilised, equation 3.53 also

takes into account the screening of charges by electrons.

Using the Kramers-Kronig relation:

χr(x) = 1
π
P
∫ ∞
−∞

χi(x′)
x′ − x

dx′ (3.54)

χi(x) = −1
π
P
∫ ∞
−∞

χi(x′)
x′ − x

dx′ (3.55)

where P is the Cauchy principal value, it is possible to relate the imaginary χi and real χr

parts of complex analytic functions; hence the real part of the complex dielectric function can

be obtained using equations 3.51 and 3.54 [119].
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As mentioned previously it is possible to calculate the real and imaginary parts of the index

of refraction through the complex dielectric function, these parameters are related through:

n =

√√
(ε2r + ε2i ) + εr

2 (3.56)

κ =

√√
(ε2r + ε2i )− εr

2i (3.57)

where κ and n are the imaginary and real parts of the complex index of refraction respectively.

One of the crucial properties of materials for photovoltaic device engineering is the absorption

coefficient given by

α = 4πκ
λ

(3.58)

This parameter is used to determine the optimum thickness for complete solar capture.

Direct and Indirect Bands

In bulk materials there are two class of optical transitions known as direct and indirect tran-

sitions. During a direct transition the crystal momentum associated with the electron is un-

changed. Indirect transitions are phonon assisted transitions, this type of photo-excitation of

electrons is indicated by a change in the in the crystal momentum of the electron. The change in

momentum is due to an interaction between the electron and a phonon, this transfer of momen-

tum from the electron to the lattice ensures conservation of momentum. Schematic diagram 3.6

shows direct and indirect optical transitions.

As indirect transitions are phonon assisted, the rate of excitation is lower and hence indirect

transitions can often be ignored (unless there exist a large phonon population). Due to the slower

rate of indirect transitions solar cells with indirect band gap semiconductors such as silicon have

much thicker absorber layer compared to direct band semiconductors like GaAs, this is to ensure

sufficient solar capture. Equations 3.53 and 3.51 only calculate transitions where ~k in the initial

and final states are equal and hence indirect transitions are neglected [114].

Dipole Matrix Element for Local and Non-local Hamiltonian

The dipole matrix element in equation 3.51 measures the coupling of the valence and conduction

bands in the presence of a light field. In equation 3.51 the matrix element is written within the
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Figure 3.6: Schematic diagrams for direct (A) and indirect (B) optical transitions.

Indirect transitions are important in the case of indirect band semiconductors where

the conduction band minimum and valence band maximum occupy different points

in k-space.

so called length gauge, that is

Pi,f = lim
q→0

1
q
〈c,k + q| eiq·r |v,k〉 (3.59)

where for computational calculations ~q is set to a value close to zero. This numerical approx-

imation may result in numerical instability and produce nonsensical results if the value of ~q is

too small. If the ~q >> 0 an error will be induced in the numerical results as the transitions com-

puted are not truly direct. As such using the expression above for the dipole matrix element is

not ideal. It is possible to rewrite this in terms of the velocity operator which is computationally

more desirable, this can be achieved through

v = dr
dt

= i

h̄
[Ĥ, r] (3.60)

and due to the relation v = p
m the dipole transition matrix can be written in momentum gauge,

that is

lim
q→0

1
q
〈c,k + q| eiq·r |v,k〉 = 1

meω
〈c,k| ê · p |v,k〉 (3.61)
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where the lim
q→0

is handled analytically. Substituting the RHS of equation 3.61 into equation 3.51

gives

εi(ω) =
( 2πe
meω

)2∑
~k

| 〈c,k| ê · p |v,k〉 |2δ(h̄ω − h̄ωf − h̄ωi) (3.62)

although this expression can be calculated without numerical approximations it is only valid

for local Hamiltonians. In the case of non-local Hamiltonians (such as QSGW) the so called

momentum gauge form of the dipole matrix is no longer equal to correct position or velocity

gauge forms, this can be seen through the relation

v = p
m

+ i

h̄
[V NL(r, r′), r] (3.63)

where V NL is the non-local contribution to the Hamiltonian. Calculations using the velocity

gauge are not ideal due to the high computational cost arising from the non-local term [120].

Equation 3.62 does not include the non-local contributions to the dipole transition probability

and hence will underestimate the imaginary part of the dielectric function which can be used to

calculate all other parameters as discussed.

calculating the dipole transition matrix using the LHS of equation 3.61 has the benefit of

being applicable to non-local potentials, however the numerical approximation induces a degree

of error in the calculated results; furthermore compared to the RHS of equation 3.61 this method

is slower as calculations need to be preformed for pairs of ~k and ~k + ~q instead of only ~k for the

momentum gauge approach. Additionally the optical matrix implemented in equation 3.62 has

the advantage of taking lim
q→0

analytically and it is computationally faster, however as it is not

applicable to non-local potentials it is not practical for realistic systems. The ideal approach

will combine the advantages of both expressions, that is to take the lim
q→0

analytically and be

computationally fast while being suitable for non-local potentials.

To include the non-local contributions to the dipole transition matrix in the momentum

gauge it is possible to use an approximate form. With the assumption that the eigenfunction of

the system of interest within local and non-local potential are similar, it is possible to use the

following expression:

lim
q→0

1
q
〈cNL,k + q| eiq·r |vNL,k〉 = lim

q→0

1
q

∑
cLDA,vLDA

〈cNL,k + q| |cLDA,k + q〉 〈vLDA,k| |vNL,k〉

×
(

ENLc − ENLv
ELDAc − EvLDA

)
〈cLDA,k| ê · p |vLDA,k〉

ELDAc − ELDAv

(3.64)
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where local and non-local eigenfunctions and eigenvalues are indicated with LDA and NL super-

scripts respectively. In equation 3.64 the matrix element is calculated using local eigenfunctions

for which the momentum gauge is valid, to include the non-local contributions the matrix element

is scaled by the difference of the eigenvalues of the local and the non-local Hamiltonians [121].

For systems where the non-local contribution has minimal effect on the electron density this

approximation is valid. A detailed derivation of this approximation is provided in appendix B.



Chapter 4

Opto-electronic Properties of

Hybrid Perovskites

4.1 Overview

In this chapter the electronic and optical properties of a number of hybrid Perovskites are pre-

sented. Beginning with a brief discussion of the computational set-up and crystal structures

used throughout this thesis. The band gaps, trends and the effects of spin-orbit coupling are

identified. From the electronic eigenfunctions and eigenvalues of the hybrid Perovskites the

imaginary part of the dielectric functions are calculated. The complex refraction indices for

MAPI, MAPB and MAPC are compared with ellipsometry data which were obtained through

collaborative work. These verifications will be used to validate the ab initio results obtained

and enable further analysis of the optical properties with confidence. Finally transient absorp-

tion spectroscopy (TAS) is simulated, the findings are used to interpret experimental data by

accessing information which are not possible through experimental methods.

4.2 Computational Set-up

The crystal structures used for hybrid Perovskites throughout this thesis were obtained by

Walsh et al. and have been reported previously [66, 122, 123]. Structural optimisations were

58
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performed using the VASP package with the PBEsol functional [124, 125]; due to the good

agreement between the experimental and predicted cell structures using non-relativistic PBEsol

approaches, higher level of theories are not necessary.

The band structure calculations were performed using an all electron implementation of

QSGW as provided through the Questaal package [112,113,126]. The self-energies were obtained

on a 3 × 3 × 3 k-mesh, more dense ~k-meshes were utilised for the band structure and optical

properties; The use of denser k-meshes for optical and band structure (between 12 × 12 × 12

and 18× 18× 18) calculations was to ensure k-convergence. Increasing the ~k-mesh to 4× 4× 4

for the calculation of the self energy affects the band gap by less than 0.1 eV while leaving the

band dispersions fairly unperturbed. Relativistic effects were added as a one-shot correction to

the final densities.

The high symmetry points within the first Brillouin zone are label following the guidelines

provided by reference [127]. Furthermore diagrams depicting this convention for cubic, tetrag-

onal and orthorhombic are shown in appendix C

4.3 Results: Electronic Band Structures

MAPI

At room temperature the crystal structure of MAPI can be approximated by a pseudo-cubic

Figure 4.1: The pseudo-cubic unit cell (left) and quasi-particle electronic band

structure (right) of NH3CH3PbI3 with the C-N bond along 〈100〉.
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crystal with experimental lattice constant a = 6.26Å [43,62,122]. As outlined in section 2, three

local minima for NH3CH+
3 alignment are found. The quasi-particle band structure for these

three crystal structures are shown in figures 4.1 and 4.2.

Figure 4.2: The pseudo-cubic unit cells (left) and quasi-particle electronic band

structures (right) of NH3CH3PbI3 with the C-N bond parallel to 〈110〉 (top) and

C-N bond parallel to 〈111〉 (bottom).

In MAPI, the top valence band is formed of mainly I5p orbital while the bottom conduction

band consists of majority Pb6p and a small contribution from Pb6s, with the former domi-
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nating the band edge. The organic molecule forms dispersionless bands deep in the valence

and conduction bands, suggesting the role of MA+ in MAPI is mainly structural and charge

compensation. However the orientation of the organic moiety effects the energy levels of the

band edges. The three variations of MAPI have fundamental band gaps of 1.68 eV, 1.53 eV and

1.59 eV corresponding to MAPI〈100〉, MAPI〈110〉 and MAPI〈111〉 respectively. As the organic

molecule rotates rapidly, the band structure of MAPI also changes in time.

Contrary to band structures calculated through DFT the band dispersions around the band

edges are not flat, especially in the direction of R→ Γ [128].
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Figure 4.3: Quasi-particle electronic band structures of NH3CH3PbI3 with the C-N

bond parallel to 〈100〉 with SOC included (blue) and without SOC contributions

(red). SOC reduces the band gap by ≈1eV and significantly perturbs the band

edge dispersions for both the conduction and valence bands.

In MAPI due to the heavy nature of lead and iodine the inclusion of SOC is extremely

important. In fact spin-orbit effects can account for approximately ∼1eV of the band gap, this

is shown in figure 4.3. Additionally the SOC significantly perturbs the band dispersion of both

the conduction and valence band edges. An accurate description of the band dispersions is

important as quantities such as effective masses and optical parameters are strongly dependent

on it.
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Figure 4.4: Schematic diagram of the band edge perturbation in MAPI due to the

Rashba splitting.

Early local and semi-local density functional based band structure reports of MAPI which

did not include spin-orbit coupling resulted in band gaps which were fortuitously close to the

experimental values [1, 129]. This was due to the cancellation of errors from the severe under-

estimation of LDA and overestimation of the band gap due to the lack of SOC, both of which

amounted to ∼ 1eV [128,130].

Along with the significant narrowing of the band gap due to relativistic effects, the Rashba

splitting adds perturbation to the conduction band minimum. This effect is also present in

the valence band, however to a significantly lower degree. This is due to the heavier nature

of lead based lowest conduction band compared to the mostly iodine top valence band; as

mentioned previously the Rashba splitting is present to a larger degree in heavier atoms due

to the more relativistic nature of these systems. The mismatch between the degree of splitting

in the conduction and the valence band results in an indirect band gap. Figure 4.4 shows a

schematic diagram of the conduction and valence band edges for MAPI.

The Rashba splitting produces two antipodes shifted away from the high symmetry R ~k-

point. The contour plot in figure 4.5 shows the deformation of the conduction band edges;

similar plots for MAPI<110> and MAPI〈111〉 show that the conduction band minimum (CBM)

and the valence band maximum (VBM) both change in value and position in reciprocal space
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with the rotation of MA+. As mentioned in section 3.5 Rashba phenomena exists due to the

presence of an internal electric field which breaks centrosymmetry. In the case of MAPI this

potential is attributed to the dipole moment of the organic molecule and the distortion of the

inorganic cages.

-0.1 0 0.1
-0.1

0

0.1

<111>

<11-2>

Figure 4.5: Contour plots of band edges of pseudo-cubic MAPI with MA+ aligned

along 〈100〉. The red and green lines correspond to ≈ kBTRT away from the

conduction and valence band edges respectively.

As temperature decreases the pseudo-cubic approximation to the tetragonal form becomes

invalid. The tetragonal unit cell consists of 48 atoms, it can be thought of as a
√

2 ×
√

2 × 2

super-cell of the pseudo-cubic phase with additional stretching of the lattice constant along

~z and inorganic cage distortions. At temperatures just below 200K the motion of the organic

molecules are significantly reduced compared to the room temperature case [131]. This reduction

in the reorientation rate is due to the decreasing thermal energy and tilting of the inorganic

cages which restrict the movement of MA+. The quasi-particle band structure for the tetragonal

phase of MAPI is shown in the top panel of figure 4.6. Within the tetragonal phase the band

gap is at Γ, this deviation from the pseudo-cubic phase is due to the increase in the real space

unit cell which results in band folding from R→ Γ.

Due to the lack of centrosymmetry, similarly to the pseudo-cubic phase the tetragonal MAPI
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possess a Rashba splitting. However the effects of the splitting are less prominent. In this larger

Figure 4.6: The unit cells and QSGW electronic band structures for tetragonal

(top) and orthorhombic (bottom) MAPI phases (unit cell figures obtained from

reference [132]).

unit cell the MA+ molecules can be misaligned with respect to other organic molecules and

hence effectively screen one another, reducing the total electric field present at the lead site.

The reduction in the electric field reduces the Rashba splitting as discussed in chapter 3. The
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misalignment of the organic molecules within the unit cell is contrary to the three structures

used for pseudo-cubic calculations, where perfect alignment of the organic molecules throughout

the sample was present.

The calculated band gap in the tetragonal phase is ∼2 eV, this is higher than the predicted

pseudo-cubic band gap. This finding is larger compared to experimental measurements of the

fundamental gap of 1.5-1.61 eV [133, 134]. As observed for the three orientations of MA+

within the pseudo-cubic phase, the band gaps of these materials are strongly correlated with

the orientation of the organic molecule within the unit cell. Experimental methods measure the

average of the system, while predictive methods use a temporarily stationary sample of a unit

cell within the bulk material. Additionally QSGW is known to overestimate band gaps ( as

shown in figure 3.4), mostly because of missing ladder diagrams in the polarisability.

MAPI undergoes a first order transition from tetragonal to an orthorhombic structure around

165K. In the low temperature orthorhombic Perovskite phase, the organic molecules are aligned

with long range periodicity [61]. This arrangement reinstates inversion symmetry which the

tetragonal and pseudo-cubic phases lack. Due to the presence of inversion symmetry the Rashba

Splitting can not exist as discussed in chapter 3.

Figure 4.7: Molecular dynamic simulation of MA+ alignment in MAPI at oK(a)

100K(b) and 300k(c). In the orthorhombic phase the organic molecules align to

form an antiferromagnetic phase(figure taken from ref [135])

The orthorhombic Perovskite phase in MAPI has a predicted band gap of 1.84eV at the Γ

point, this is slightly overestimates measured optical band gap as expected [133]. The quasi-
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particle band structure of orthorhombic phase of MAPI is shown in bottom panel of figure 4.6.

MAPB and MAPC

As mentioned, in hybrid lead halide Perovskites the unit cell size decreases with lighter halogen

constituent [43]. Both MAPB and MAPC posses pseudo-cubic structures at room temperature

with lattice parameters 5.68Å and 5.92Å for MAPC and MAPB respectively ( a pseudo-cubic

hybrid Perovskite structure is shown in figure 4.8) [123]. In MAPB and MAPC the motion

of the organic molecules is significantly more restricted compared to MAPI, and hence in this

section only the most stable orientations of MA+ are considered. The decreases in the bond

length between the metal and halogen results in an increase in the fundamental band gaps, this

is similar to to the case of III-V semiconductors [8, 136].

Figure 4.8: Pseudo-cubic hybrid Perovskite structure possessed by both MAPB and

MAPC at room temperature. The reduced lattice parameter significantly restricts

the motion of the organic molecule [65].

The calculated band gaps of MAPB and MAPC are 2.57eV and 3.44eV respectively. Figure

4.9 shows the quasi-particle band structures of MAPB and MAPC. The Rashba splitting is

present in the conduction band of both Perovskites, however due to the significantly lighter

nature of Cl and Br the splitting in the halogen based valence bands are negligible.
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Figure 4.9: QSGW electronic band structure of MAPB (top) and MAPC (bottom)

in their room temperature phase.

FAPI

At room temperature FAPI has a pseudo-cubic structure similar to MAPI; however the methy-

lammonium molecule is replaced by the larger formamidinium (FA+) molecule which has a
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dipole moment 10 times smaller than that of MA+ [66].

Much like the case of MAPI the bottom conduction band is mostly metallic while the highest

valence band is formed of halide orbitals. Owing to the increase in the unit cell size compared

to MAPI (lattice constant change from a = 6.26Å to a = 6.362Å), in FAPI the band gap

decreases, the calculated band gap is 1.63eV, this value overestimates the experimental optical

gap by 0.2eV1. This follows the relation between the cell and band gap sizes observed with

regards to halide substitutions, discussed in the previous sections.

Figure 4.10: Pseudo-cubic unit cell and QSGW electronic band structure of FAPI

in it’s room temperature phase.

The Rashba splitting present in FAPI is comparable to that in MAPI, in spite of the much

smaller dipole moment on the organic moiety (Table 2.3). This establishes that the distortion

of the inorganic cages, may be the dominant contribution to the internal electric field that

generates Rashba splitting, even in MAPI. This also suggests that a large atomic ion such as Cs

in place of an organic moiety will give rise to a similar splitting [137].
1The self-energy for FAPI was calculated on a 4 × 4 × 4 mesh
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4.4 Results: Optical Properties

Optical Parameters

In this section the optical properties for the crystal structures from the previous section are

presented. All calculations include SOC; also ~k-mesh convergence for optical parameters was

checked for all calculations, a mesh density of 18 × 18 × 18 was employed. Additionally the

imaginary part of the dielectric function was calculated for a range bigger than 175 eV to ensure

Kramers-Kronig relation produced an accurate real part of dielectric function.

Theoretical Data

Much like the electronic band structure calculations from the previous section, the optical prop-

erties of MAPI are presented for the three orientations of the MA+ ion. This enables us to

observe the effects of the moieties’ rotation on the band structure.
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Figure 4.11: The real (blue) and the imaginary (red) parts of the complex dielectric

function of MAPI〈100〉.
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Figure 4.12: The real (blue) and the imaginary (red) parts of the complex dielectric

function of MAPI<110> (top) and MPI〈111〉 (bottom).

The real and imaginary parts of the dielectric functions for MAPI are shown in figures 4.11

and 4.12. Owing to the presence of the organic molecules, MAPI has a pseudo-cubic structure
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at room temperature: deviations from cubic symmetry will generate anisotropy in the optical

response. Indeed we find that the intensity and the nature of the anisotropy is highly dependent

on the orientation of MA+. Anisotropy is also observed for MAPB, MAPC and FAPI. As

previously suggested the local band gaps within crystal grains can vary owing to the short range

alignment of the organic molecules. Figures 4.11 and 4.12 show that the same is true for spatial

anisotropy of optical properties. Hence temporal local variations of both electronic and optical

properties are intrinsic to organic-inorganic hybrid Perovskites.

The calculated imaginary part of the dielectric function for all the Perovskites show a sharp

peak at the absorption edge, which has also been observed experimentally [138]. While such

peaks may resemble excitonic excitations, electron-hole contributions are not included within

the RPA framework. In this calculation the sharp peak is caused by the high density of states

at the conduction band edge as a result of the Rashba splitting.
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Figure 4.13: Joint density of states of MAPI〈100〉 (green) and parabolic bands

(red) for transitions just above the band gap (1.68 eV). The Rashba splitting sig-

nificantly perturbs the JDOS and enhances the absorption transitions at the band

edge compared to standard parabolic bands.
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Figure 4.13 shows the joint density of states for MAPI〈100〉 just above the band gap. Joint

density of states gives the density of direct transitions possible from the valence band to the

conduction band for a given energy per unit cell. The deviation from the
√
E dependence on

the JDOS, as occurs with direct band semiconductors with parabolic band edges, is apparent.

The high density of states above the fundamental gap originate from the Rashba splitting of

the bands, effectively widening the valley at the band edges. Similar properties are observed for

MAPB, MAPC and FAPI, all of which have similar Rashba splitting in the conduction band.
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Figure 4.14: The real (blue) and the imaginary (red) parts of the complex dielectric

function of MAPB (top) and MAPC (bottom).
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Figure 4.15: The real (blue) and the imaginary (red) parts of the complex dielectric

function of FAPI.

Figure 4.16 shows the absorption coefficient of these Perovskites together with GaAs serving

as a point of reference. Although the absorption coefficient of MAPI and FAPI are below that
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Figure 4.16: Absorption coefficient for a number of OIHP and GaAs.
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of GaAs, they are nevertheless comparable. MAPB and MAPC, have absorption coefficients

comparable to MAPI and FAPI, their larger band gaps render them less suitable for single junc-

tion PV applications.Among these materials GaAs currently has the highest efficiency certified

for thin film solar cells (28.8%) while the highest Perovskite efficiency is recorded at 22.7% [7].

Comparison with experimental data

In the discussion that follows the energy bands above the band gap are referred to as CB1, CB2,

· · · , and the energy bands below the band gap are referred to as VB1, VB2, · · · . A comparison

between the optical constants of MAPbX3 (X=Cl, Br, I) calculated from QSGW (orange dotted

line) and those obtained by ellipsometry (solid blue line) are presented in figure 4.17. Qualita-

tively, both the shape and amplitude of the calculated spectra of n and κ show good agreement

with experimental findings [1].

For MAPI the predicted band gap energy is 1.6 eV(Average of the three orientations of the

organic molecule), close to the 1.5 − 1.6 eV obtained experimentally without the introduction

of any empirical parameters. The calculated QSGW band gaps are expected to be slightly over

estimated, this is due to the exclusion of higher order diagrams in the self-energy as discussed in

chapter 3. The computed and experimental extinction coefficient spectra show the same number

of features in the visible spectral range. In figure 4.17 the features in the theoretical spectra are

less well resolved than their experimental counterparts. This is because the optical properties

calculated for different cation alignments and electric field polarisations have been averaged.

The average is calculated based on the population ratio of each unit cell configuration within

large samples, the weighting are based on molecular dynamic simulation preformed by Frost et

al. [135]2.

The calculated optical constants for each material shows a blue shift of the optical features

relative to the experimental values (a ’stretching’ of the curves towards higher energies). This

phenomenon is also attributed to the use of RPA. A better match between theory and experiment

would be achieved by adding ladder diagrams to the RPA bubbles. The additional diagrams

are thought to only slightly reduce the self-energy while having a far more pronounced effect

on the dielectric function, as electron-hole pairs get attracted through the screened coulomb

interaction W . This is discussed by Louie and Rohlfing in ref. [139]. They show that the blue
2At room temperature 42% of MA+ molecules are aligned along the < 100 >, 31% along < 110 > and 26%

along < 100 >
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shift resulting from the omission of electron-hole interactions in GW can exceed 0.5 eV in the

case of Si, while it is as high as a few electron volts for LiF.

Figure 4.17: Optical constants (extinction coefficient (a, c, e) and index of re-

fraction (b, d, f)) of CH3NH3PbI3 (a and b), CH3NH3PbBr3 (c and d) and

CH3NH3PbCl3 (e and f) derived from single crystal ellipsometry (solid blue lines),

thin film CH3NH3PbI3 (dashed green lines) and theory (chained orange lines). The

three main optical features of CH3NH3PbI3 are assigned to the appropriate inter-

band transitions. The subscripts outside the brackets designate the symmetry point

where the transition occurs in the first Brillouin zone, as defined in figure 4.18 [1].
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The sharp absorption feature observed at the band edge in all three materials within the

experimental data results from a discrete excitonic state enhancing absorption in this region. It

should be noted again that the electron-hole interactions are not accounted for in QSGW and

thus it cannot reproduce such feature. This accounts for the weaker computed absorption onset

at the band edges for MAPI, MAPB and MAPC.

The discrepancies between optical constants determined by ellipsometry compared to the

QSGW ones are larger for lighter halides. This larger error is consistent with the observed

increase in exciton binding energies with lighter compounds, which indicates a larger contribu-

tion of electron-hole coupling to the opto-electronic properties of Perovskites [140–143]. This

increase in the exciton binding energy is most likely due to a reduction in the static dielectric

function with lighter halide, this decreases the screening of electron-hole pairs [144].

Due to the instability of FAPI experimental optical measurements are not reliable in its pure

phase. However FAPI has similarly low excitonic binding energy as MAPI, hence electron-hole

contributions are expected to be small [141]. As such the agreement of FAPI calculations with

measurements should be comparable with MAPI’s agreement.

Agreement between the theoretical and experimental data show that QSGW can be used to

confidently describe the electronic and optical properties of hybrid Perovskites, specially ones

with larger halides. The discrepancies observed between the theoretical and experimental data

are systematic and can be addressed by the addition of higher order diagrams in the self energy

calculations.

Band Assignment

Taking into account the omission of ladder diagrams, the quality of the agreement between the

experimental and theoretical findings for MAPI enables unambiguous assignment of the three

main optical features to their corresponding inter-band excitations routes.

The energy differences between conduction and valence bands are plotted in figure 4.19 (left

panel) for different band pairs. Extrema of the curves in reciprocal space, where the conduction

and valence band energies are close to parallel, correspond to critical points (CPs) of the joint

density of states. Points where the conduction and valence bands track each other (i.e. where

the gradient ∇k(Ec−Ev) is minimal) dominate the dielectric function.



CHAPTER 4. OPTO-ELECTRONIC PROPERTIES OF HYBRID PEROVSKITES 77

2

1

0

1

2

3

4

5

E
n

e
rg

y
 e

V

VB2->CB2

VB1->CB1VB2->CB1

VB1->CB2

Crystal momentum

Figure 4.18: The band to band optical transitions for MAPI.

The right panel of figure 4.19 shows the contribution to the imaginary part of the dielectric

function from three key transitions. In the figure above only direct transitions for valence and

conduction band pairs are accounted. Notably it shows that the transition from the highest

valence band VB1 to the lowest conduction band CB1
3 accounts for almost the entirety of the

dielectric function.

Figure 4.19: Band-to-band contributions to dielectric function for MAPI (right)

and the origin of the CPs with in reciprocal space(left).

Additionally the right panel of figure 4.19 highlights the CPs for MAPI and their origin
3CB1 and VB1 each contain two spins.
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in reciprocal space. Identification of CPs is important for interpretation of ellipsometry data.

Although the parameters used within the final model are often different to theoretical findings,

they can serve as a good starting point, as was done here.

Transient Absorption Spectroscopy

Transient absorption spectroscopy (TAS) measures the change in optical absorption of a material

between an initial state without any excited electrons, and a secondary state where a number

of electrons (holes) have been excited to the conduction (valence) band. Measurements are

taken at time intervals to investigate carriers’ relaxation dynamics. Although the main aim

of experimental TAS is to characterise carrier relaxation, identification of the bands involved

is non-trivial. Band assignment is the motivation behind theoretical TAS which can be used

to interpret experimental data more accurately. To simulate TAS the imaginary part of the

dielectric function is initially calculated using equation 3.51 which gives the expression for the

imaginary part of the dielectric function for a system at equilibrium. The equilibrium state εcv

is then compared with

ε∗cv(ωcv) = (2πe
mω

)2Σ~k|Pcv|
2δ(Ec(~k)− Ev(~k)− h̄ωcv)

× [1− fn(Ec(~k, kBT, n0))][1− fp(Ev(~k, kBT, n0))] (4.1)

giving ∆εωcv
= εcv(ωcv)− ε∗cv(ωcv) where (1− fn(Ec(~k, kBT, n0))) and (1− fp(Ev(~k, kBT, n0)))

give the probability of a hole being in the conduction band and electron in the valence band

for a given ~k-point, temperature and excited carrier density n0. The Fermi-Dirac distribution

functions fn and fp (for electrons and holes, respectively) are only dependent on the density

of photo-excited carriers n0 and the temperature T which govern the quasi-Fermi levels for

the carriers. This approach of calculating TAS data accounts for effects due to the electronic

structure and the carrier population; however, it does not model the relaxation of the crystal

structure due to the presence of excited carriers. Additionally, the excited electrons and holes are

assumed to be thermally relaxed within their respective bands and form Fermi-Dirac distribution

with distinct quasi-Fermi levels for each band.

To obtain the simulated TAS spectra, the DOS was calculated on a 120× 120× 120 ~k-mesh

which enabled accurate calculations related to the number of electron (holes) in the conduction

(valence) bands. The optical calculations were performed on a 30 × 30 × 30 ~k-mesh as this
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provided sufficient resolution for the purposes of this calculation. Such dense k-mesh is necessary

to capture the contribution and consequences of the band edge states which are perturbed by

the Rashba splitting both in the DOS and optical calculations. Assuming a value for the photo-

excited carrier density, the quasi-Fermi levels can be calculated for a given temperature. The

absorption spectra for the system at equilibrium was also calculated using equation 4.1 without

excited carriers. For the system with excited carriers the quasi-Fermi levels at room temperature

for 10−5 carriers per unit cell were calculated. The calculation of quasi-Fermi levels is discussed

in the next chapter.

Results

Figure 4.20 shows the simulated transient absorption spectrum and the relative contributions

from different optical transitions for an electron density of 10−5 per unit cell (≈ 4×1016 cm−3).

The simulated spectrum shows bleaching features at around 1.72 eV and 2.9 to 3.1 eV, that

is a reduction in photoabsorption after excitation. These are likely to correspond to the main

photobleach features observed experimentally at 1.63 eV and 2.58 eV [145,146]. Our calculations

show that the low energy bleach is exclusively due to the population of photo-generated charges

in VB1 and CB1 at the R point as expected. The second bleach at higher energy is likely to be

due to a combination of transitions involving the VB1 to CB2, VB2 to CB1 and VB1 to CB3.

The ratio of these three contributions are dependent on the excitation energy and intensity. This

also implies that the relative magnitude of the bleach signal PB2 will be greater immediately

following a short wavelength excitation pulse (≈2.6eV)) compared to excitation with a longer

wavelength pulse close to the band gap. This is because directly after excitation with short

wavelengths, PB2 will have contributions from both the depletion of the electronic states at the

top of VB1 and VB2 and by the filling of CB1, CB2 and CB3. Thermalisation of photoexcited

electrons from CB3 and CB2 to CB1, and photoexcited holes from VB2 to VB1 will then occur

on a picosecond time-scale. The magnitude of PB2 will therefore be reduced since bleaching

will arise solely from the filling of CB1 and depletion of VB1. Consequently thermalisation is

expected to strengthen PB1 relative to PB2. Our calculations show that significant contributions

to PB2 from VB1 to CB2 and CB3 transitions are important in addition to the VB2 to CB1

transition that has been hypothesised previously to explain the interpretation of experimental

TAS spectra [145].
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Figure 4.20: Simulated transient absorption spectroscopy for MAPI, the excitation

population is 10−5 carriers per unit cell. The transitions are shown in figure 4.19.

The inset represents experimental measurements performed by Manser et al [145].

The photoinduced absorption measured in MAPI between the main photo-bleaches is not

reproduced by our approach. This effect might therefore be due to (i) relaxation of the structure

after excitation of a charge carrier to the CB, for example local reorientation of methylammo-

nium cation to screen the charge that was transferred from I to Pb orbitals and/or (ii) the

Stark effect. The carrier relaxation dynamics are important in semiconductors as a guide to un-

derstanding defect mediated recombination and the change in absoprtion/emission rates under

working conditions for solar cells and lasers.



Chapter 5

Radiative Recombination Rates

5.1 Introduction

The minority carrier lifetime, which is how long an electron-hole pairs can exist before re-

combining through radiative or non-radiative routes, plays a key role in photovoltaic devices.

Recombination is very important for power conversion efficiency as the electron-hole pair must

remain separated long enough to be collected by their respective contacts. A number of factors

determine the nature and rate of the recombination process, including intrinsic effects such as

the nature of the band structure ( e.g. whether the gap is direct or indirect) and extrinsic factors

which gives rise to defects.

Lead based hybrid Perovskites exhibit strong light absorption, a characteristic of direct gap

semiconductors, while possessing the slow radiative recombination characteristic of an indi-

rect gap semiconductor. Through time-resolved photoluminescent (TRPL) spectroscopy and

other methods, minority carrier recombination lifetimes of microseconds have been observed

in MAPI [70, 147–150], comparable to lifetimes measured in high-quality samples of crystalline

silicon, the archetypal indirect gap semiconductor [151, 152]. The minority carrier diffusion

lengths considerably exceeds the material thickness required for complete solar capture, while

the reported carrier mobilities are orders of magnitude lower than conventional inorganic semi-

conductors. Therefore, internal quantum efficiencies (IQE) approach 100% [59,60,153,154].

A variety of trap-based models have been used to interpret the TRPL data which show

81
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extremely low recombination rates [148, 155, 156]. These models assume that the long lifetimes

are due to immobilisation of charges in trap-states. However, samples (both single- and poly-

crystalline) with trap density differences of five orders of magnitude have lifetime variations

of only one order of magnitude [70, 148]. This suggests that lifetime is weakly correlated with

measured trap density. Furthermore, longer lifetimes are observed in low trap-density monocrys-

talline samples.

This chapter introduces recombination routes and rates, discusses experimental findings for

carrier lifetimes in hybrid Perovskites, and develops an ab initio computational approach to

calculate carrier lifetimes. Finally the origins of such long carrier lifetimes are discussed.

5.2 Recombination Processes

In an atomic system in vacuum, the rate of excitation of an electron from the ground state

to an excited state, due to coupling to a photon field, is equal to the reverse of this process.

In bulk materials this process is made more complicated due to the introduction of the crystal

momentum vector (~k) as a quantum number, and defect meditated non-radiative recombination.

Carrier recombination in semiconductors can occur through radiative processes where a pho-

ton is emitted, or through non-radiative routes where the excited carriers can relax through mid

band gap states. In the latter process, the excess energy is released in the form of lattice vibra-

tions. An ideal semiconductor for photovoltaic applications has long carrier diffusion lengths

and zero non-radiative recombination, as discussed previously [13,14].

Non-Radiative Recombination

Due to the interactions of a bulk material with ambient environment or introduction of impurities

during the fabrication process, defects may be created. In semiconductors, these impurities may

create new energy levels within the band gap. These localised states act as carrier recombination

centres and can be detrimental to photovoltaic materials. Such states provide a route for non-

radiative recombination, where an excited electron within the conduction band thermalises to

the valence band, transferring energy to the lattice structure (phonon population).

Non-radiative recombination also known as Shockley-Read-Hall (SRH) process [157, 158],

is extremely important for indirect band semiconductors which tend to have long radiative
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lifetimes. In direct band semiconductors which tend to have much shorter radiative lifetimes,

the SRH process becomes important for low excited carrier densities.

Radiative Recombination

The reverse process to photoexcitation in bulk materials is radiative recombination. Also known

as spontaneous emission, this process is a result of an electron-hole pair recombining to release

a photon. A schematic diagram of this process is shown in figure 5.1. Radiative recombina-

tion is constrained by the conservation of energy and momentum (the energy of the emitted

photon is equal to the energy difference of the electron-hole pair). This process may be due to

direct or indirect optical transitions, the latter being important where the phonon population

is significant.

Similar to photoexcitation, the indirect radiative recombination rate is slower than the direct

recombination rate; thus indirect band gap semiconductors such as silicon and germanium have

slower radiative recombination rates than direct band semiconductors like GaAs and CdTe [151,

152,159–164]. For extremely high excited carrier populations, stimulated emission is important;

however for carrier densities in solar cells under operation conditions this process can be ignored.

Total Rate of Radiative Recombination

The transition rate in a two-state system is given by Einstein’s A coefficient

Acv(ωcv) = nre
2ωcv

πε0h̄c3m2 |Pcv|
2δ(Ec − Ev − h̄ωcv) (5.1)

Here ωcv is the energy difference between the two states1, Pcv is the matrix element between two

states, measuring the coupling of the two states and the electromagnetic field [165, 166]. nr is

the index of refraction, which is unity in vacuum; in solids usually nr>1. The relation between

the index of refraction and the complex dielectric function is given by equations 3.56 and 3.57.
1labels chosen in anticipation for recombination rate in bulk, where subscripts c and v will represent conduction

and valence bands.
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A B C

Figure 5.1: Schematic diagram showing the process of photoexcitations and ra-

diative recombination. At ground state, electrons and holes occupy the valence

and the conduction bands respectively (figure A); through absorbing a photon of

energy equal or greater than that of the band gap an electron is promoted to the

conduction band and a hole is promoted to the valence band (figure B). After a

period of time the generated electron-hole pair recombine and release a photon of

the band gap energy (figure C).

The matrix element in equation 5.1 is identical to that of equation 3.51 describing the imaginary

part of the dielectric function; hence the total rate of recombination and the imaginary part of

the dielectric function can be related through

εi(ωcv)
ω3
cvnr

4πε0π2c3h̄
=
∑
k

Acv δ[Ev(k)− Ec(k)− h̄ωcv] (5.2)

where each ~k-point has been modelled as an individual two state system for each pair of con-

duction and valence bands. However, it must be scaled by Fermi functions for the electrons and
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holes to satisfy the Pauli principle. Therefore, equations 5.1 and 5.2 are rewritten as2

A∗cv(ωcv) = nre
2ωcv

πε0h̄c3m2 |Pcv|
2δ(Ec − Ev − h̄ωcv)fc(Ec, Efc )(1− fv(Ev, Efv )) (5.3)

ε∗i (ω) = ( 2πe
mωcv

)2
∑
~k

|Pcv|2δ(Ec − Ev − h̄ωcv)fc(Ec, Efc )(1− fv(Ev, Efv )) (5.4)

where fc(Ec, Efc ) is the Fermi function for an electron with energy Ec in a system with quasi-

Fermi level Efc . Fermi functions give the probability of an electron occupying an energy level

Ec in the system. The expression (1 − fv(Ev, Efv ) gives the probability that an electron is not

occupying a state with energy Ev and quasi-Fermi level Efv (i.e. the probability that a hole is

occupying a give state). The second term is due to the Pauli Exclusion Principle. From these

new expressions a relation between the imaginary part of the dielectric function and the total

transition for a given energy is derived to be3:

ε∗i (ωcv)
ω3
cvnr

4πε0π2c3h̄
=
∑
k

A∗cv δ[Ev(k)− Ec(k)− h̄ωcv] (5.5)

Integration of equation 5.5 gives

RTotcv = nr

4π3c3h̄4ε0

∫ ∞
Eg

dEε∗i (Ecv)E3
cv =

∫ ∞
Eg

dE
∑
k

A∗cvδ[Ev(k)− Ec(k)− h̄ωcv] (5.6)

which is the total rate of transition over all energies per unit volume for all allowed direct

transitions, where Eg is the band gap of the system. RTotcv is the total rate of recombination and

has units cm−3s−1 as it is conventionally written in units cgs, i.e.

RTotcv = nr

π2c3h̄4

∫ ∞
Eg

dEε∗i (Ecv)E3
cv =

∫ ∞
Eg

dE
∑
k

A∗cvδ[Ev(k)− Ec(k)− h̄ωcv] (5.7)

Quasi-Fermi Level

As discussed, electrons in a semiconductor may occupy a state within the conduction band

above the band edge with a given probability. This probability is given by the Fermi-Dirac

function and is a function of the energy of the state, temperature and quasi-Fermi level. The

quasi-Fermi level of a carrier within a system is in turn determined by the temperature, carrier

density and the density of states of the bands. The relation between the total number of carriers,
2Here the superscript * indicates the non-equilibrium form of the equation.
3here fc(Ec, Ef

c ) and (1 − fv(Ev , Ef
v )) have been abbreviated to fc(1 − fv).
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temperature and DOS is given by:

n =
∫
g(E)f(E,Ef , kBT )dE (5.8)

where g(E) is the DOS of the band structure, n is the total number of carriers and f(E,Ef , kBT )

is a Fermi-Dirac function with quasi-Fermi level Ef for a state with energy E. The limits of the

integration are dependent of the carrier of interest [13].

Equation 5.8 can be used to obtain the quasi-Fermi level for a given temperature and carrier

population for a system of interest.

Minority Carrier Lifetime

The recombination dynamics of carriers within the bulk of an intrinsic semiconductor (n = p,

where n and p are the excited electron and hole population density4) can often be accurately

described by a third-order rate equation:

dn

dt
= G− nA− n2B − n3C (5.9)

Here n is the density of excited carriers and G is a source term describing photogeneration of

carriers [167]. These parameters are often fit to experimental transient data across a large range

of laser fluences and thus carrier densities [168]. An implicit assumption is that these coefficients

do not vary across the carrier density regimes that are experimentally accessed. In the expression

above A is related to the one-body non-radiative carrier recombination, which proceeds through

crystal defect levels as intermediate states. The two-body coefficient B describes radiative

recombination of free carriers and is closely connected with both absorption and emission. C

is the three-body Auger recombination coefficient and becomes important under large excited

carrier populations and high temperatures.

As the aim of this work is to investigate intrinsic effects on recombination, extrinsic effects

such as defect mediated recombination are ignored; hence A = 0. Additionally the Auger

recombination process occurs under conditions where the excited carrier densities are much

larger than those encountered during PV solar cell operation and for higher temperatures,

hence such process can also be ignored and C = 0. The remaining route of recombination is
4more details provided in appendix A



CHAPTER 5. RADIATIVE RECOMBINATION RATES 87

bi-molecular and gives the following decay equation:

dn

dt
= G− n2B (5.10)

by switching off the generation source (i.e. G = 0), the total rate of emission is the total rate of

radiative recombination. The expression above can be related to equation 5.7, giving:

RTotcv = n2B (5.11)

The minority carrier lifetimes are conventionally expressed in terms of

τ−1 = Bn = RTotcv /n (5.12)

where τ is the minority carriers’ lifetime for a give excited carrier density and temperature.

5.3 Recombination Model in Lead Based Hybrid Perovskites

Figure 4.4 shows a schematic diagram of MAPI’s (this diagram is also valid for other lead base

hybrid Perovskites) band structure around the high symmetry R point (in the pseudo-cubic

phase, Γ in the tetragonal structure); This schematic highlights the spin split nature of the

band structure due to the Rashba splitting as discussed in chapters 3 and 4.

The joint density-of-states (JDOS) of MAPI, relevant for absorption, differs from that of

a direct band semiconductor in a small energy range around Eg (shown in figure 4.13). The

flattened valence band contributes to a large density of states available for optical transition at

the fundamental gap. Thus absorption is only slightly affected by spin-splitting, that is MAPI

absorbs visible light as though it was a direct band gap semiconductor. However, radiative

recombination is dramatically suppressed. This is extremely unusual for a solar cell material

where typically emission and absorption are the direct reverse of one another.

In MAPI photoexcited electrons (holes) rapidly thermalise to a small region of ~k space centred

at the conduction (valence) band edges. The asymmetry in ~kCBMmin and ~kV BMmax means that there

is a low JDOS of the thermalised minority carriers. Direct (~k conserving) recombination is

therefore reduced. This mismatch of carriers’ momenta in hybrid Perovskites forbids a direct

recombination of the carriers due to the law of conservation of momentum hence reducing the

rate of radiative recombination.
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Furthermore the nature of the band edge spin texture in hybrid Perovskites is a topic of dis-

cussion important for radiative recombination. It has been suggested that for MAPI structures

where the iodine and lead are shifted from their ideal positions, the helicity of the spin texture

for the VBM and CBM can be switched between parallel and anitparallel, these two cases are

shown in figures 5.2A and 5.2B respectively [169–172]. This feature of opposite spin helicity

has been experimentally observed in BiTeI which demonstrates similar Rashba characteristics

to lead halide Perovskites [173]. The existence of antiparallel spin textures at the band edge will

reduce the rate of bi-molecular radiative recombination. This is because to adhere to the spin

selection rule, carriers must occupy states further away from their respective quasi-Fermi levels.

In a perfectly periodic material only one spin alignment phase can exists, however for structures

such as MAPI which are periodic only on a local scale both phases can coexists within a large

sample.

Crystal Momentum Crystal Momentum

A B

Figure 5.2: Schematic diagram showing parallel (A) and antiparallel (B) spin tex-

tures for the conduction and valence bands, where red and blue represent spin up

and down respectively.



CHAPTER 5. RADIATIVE RECOMBINATION RATES 89

To investigate the effect of spin helicity on the radiative recombination in MAPI, the two con-

figurations are artificially enforced during the calculations. It should be noted that the QSGW

calculation performed on MAPI〈100〉 resulted in parallel spin helicity. However as mentioned,

the literature indicates that this is due to the pseudo-cubic nature of the structure used which

did not include distortions of the inorganic polyhedron cages.

5.4 Results and Discussion

B, computed as a function of carrier density for MAPI(parallel spin helicity MAPIP<100> and

antiparallel spin helicity MAPIA<100>), CdTe, and GaAs at several temperatures are shown in

figure 5.3.
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Figure 5.3: Calculated radiative recombination coefficients for CdTe, GaAs,

MAPIA<100> and MAPIP<100>. The Perovskite calculations where for 200K and

300K to demonstrate the different trends for the two configurations.
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Experimental values at room temperature are displayed in table 5.1. These measurements vary

widely, presumably owing to the competition of B with other, non-radiative, recombination

paths. The presence of these pathways will depend strongly on how the material is fabricated,

and so the smallest measured B value is probably the most reliable, and the most directly

comparable to our calculations. We calculate B to be ∼ 100 times smaller in MAPIA<100>

and ∼ 10 times smaller in MAPIP<100> than the direct gap semiconductors CdTe and GaAs,

but larger than the fully indirect Si. This finding is directly due to the presence of SOC as

calculations without SOC result in comparable values to that of CdTe and GaAs [129]. MAPI

resembles an indirect gap semiconductor for radiative carrier recombination, and a direct gap

semiconductor for absorption.

Compound Experimental(10−12cm3s−1) QSGW factor

MAPIP<100> See text 27.2

MAPIA<100> See text 1.93

CdTe [162–164] 100-5100 195

GaAs [159–161,163] 130-1300 267

Si [151,152] 0.001-0.01

Table 5.1: Experimental and QSGW values for B at room temperature with

n = 1017cm−3. As the absorption and recombination processes in silicon are ex-

tremely dependent on phonon contributions the calculation of radiative recombi-

nation coefficient for silicon is omitted here.

The magnitude of B increases as the ~k-space overlap between electron and hole distribution

functions increases. This causes the rate of bi-molecular recombination in MAPIA<100> to depend

on external parameters in an unusual manner. For example, increasing temperature smears fc

and fv over a wider band of ~k for fixed photoexcited carrier densities, causing B to increase with

T. The temperature dependence of B in GaAs and CdTe (Fig. 5.4) is weaker and of opposite

sign to MAPIA<100>. Further, in MAPIA<100> bi-molecular recombination will increase with

photoexcited carrier density once the electron pockets begin to fill up and overlap (n ≈ 1018
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cm−3 in Fig. 5.3), in sharp contrast to CdTe and GaAs. Only at high carrier concentrations

when a significant fraction of electrons and holes overlap does B in MAPI become comparable

to B in CdTe, where it also adopts the conventional behaviour and begins to decrease with

increasing carrier densities. The potential existence of both spin texture phases along with

strong carrier density and therefore laser-fluency, global fits to time resolved data may not be

reliable method to infer B or lifetime (Equation 5.12). The variation of B with carrier density

will make high fluency transients multi-exponential and break the expected relationship between

light-emission and carrier-density sensitive experimental probes.
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 1e-09

 0.014  0.016  0.018  0.02  0.022  0.024  0.026  0.028  0.03  0.032  0.034  0.036

B
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m
3 s-1
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Temperature (eV)
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Figure 5.4: Temperature dependent B coefficient calculated for CdTe, GaAs,

MAPIA<100> and MAPIP<100>. MAPIA<100> shows the opposite trend with increas-

ing temperature compared to the other three set of data.
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For photoexcitation densities n < 1017 cm−3 (n = p), we find B = 1.93 × 10−12 cm3s−1 for

MAPIA<100> and B = 2.72× 10−11 for MAPIP<100> at room temperature. These are the charge

carrier densities relevant for device operation in sunlight. As B is fairly constant below this

charge carrier density, we can use Equation 5.12 to derive a lifetime of order 0.1-10 µs. This

lifetime is consistent with values reported in the literature for single crystal samples under 1

and 0.1 sun intensity [69,147,148].

There are limited temperature dependent TRPL data available. Most data are for polycrys-

talline films, whereas our results would be best compared to single crystal measurements. Yet it

has been observed that the carrier lifetime is highly temperature sensitive at low fluence while

being temperature insensitive at high fluence [148]. The increase in minority carrier lifetime with

decreasing sample temperature can be directly explained by a contraction of the Fermi-Dirac

distribution near the spin-split band minima.

In this work so far only MAPI in an idealised static structure has been considered. In reality,

the high temperature phase of MAPI is cubic on average only; the dipolar molecules between

cages continually rotate, the cages flex and tilt. Second-order Jahn-Teller deformations of the

octahedral due to the Pb 6s lone pair directly distort the lead iodide bonds, generating local

electric fields near the atomic core region where spin-orbit coupling is high. Recent molecular-

dynamics simulations by Etienne et al. suggest that the conduction band splitting persists in

the presence of disorder [174].

If the material has true inversion symmetry, as MAPI is believed to in the orthorhombic

phase below 162 K, no directional electric fields can exist, and so the spin-split indirect-gap

should vanish. In such case the radiative carrier recombination lifetimes are expected to be

significantly smaller than those found in MAPIA<100>.

To assess the effect of dynamic disorder, ab initio molecular dynamics at 300 K with 2×2×2

supercells were performed by Frost et al.. Such supercells are able to accurately describe the

phonon modes both at the Γ point and the Brillouin zone boundary; these k-points contain

the important low-energy vibrational modes responsible for disorder. 100 realisations were ex-

tracted, each temporally separated by 2.5 ps, collected after an initial equilibration period.

The ~k-space splitting of these 100 structures were calculated by Scott McKechnie. Given the in-

creased computational cost of this larger structure (96 versus 12 atoms), the electronic properties

were calculated within the local density approximation (LDA) including spin-orbit coupling. It
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was found that between molecular dynamics snapshots, the spin-split band extrema and effective

masses fluctuate. This may explain the observed reduction in mobility as a function of temper-

ature, in the temperature regime where the organic moieties are increasingly disordered. The

average band minima spin-split from the high symmetry point decreases slightly from 0.043Å−1

for pseudo-cubic MAPI<100> to 0.03Å−1. This suggest that although MAPI<100> has an exag-

gerated splitting compared to MD structures which are more representative of the bulk material,

the recombination rates should be comparable.



Chapter 6

Conclusions

6.1 Summary

In this dissertation the electronic and optical properties of organic-inorganic hybrid Perovskites

were studied and compared with experimental data. A range of properties including band

gaps, optical absorptions and minority carrier lifetimes were discussed within the context of

photovoltaic applications. The research in this thesis aimed to find the origins and mechanisms

behind the high power conversion efficiencies (PCE) obtained through hybrid Perovskite solar

cells.

Ab initio calculations have shown that through variation of constituent ions within hybrid

Perovskites a wide range of physical properties can be tuned. Quasi-particle self-consistent GW

(QSGW) calculations showed that the band gap of lead halide hybrid Perovskites (APbX3 where

A=[NH3CH3], [CH(NH2)2] and X=Cl, Br, I) can be increased by including lighter halides at

the X site. The same could be achieved by substitution of smaller molecules at the A site. This

trend is attributed to the decrease in the metal-halide bond length in hybrid Perovskites with

smaller organic molecules or lighter halide ions. The calculated band gaps for room tempera-

ture structures range from 1.63eV for [CH(NH2)2]PbI3 (FAPI) to 3.44eV for [NH3CH3]PbCl3

(MAPC). Only FAPI and MAPI are suitable for single-junction solar cells because of their

smaller optical gaps, while MAPB and MAPC are more suitable for tandem architectures where

semiconductors of various band gap energies are used to surpass the QS limit.

94
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An interesting aspect of the band structures of lead based hybrid Perovskites is the influence

of the spin-orbit coupling (SOC). Owing to the heavy nature of lead, SOC affects the band

structure significantly. It narrows the band gap by as much as 1eV. In some early works based

on local and semi-local density functionals, band gaps calculated without SOC were fortuitously

close to the experimental values [1]. The good agreement between experimental data and these

early calculations was due to the cancellation of errors from the underestimation of LDA and

the overestimation caused by the lack of SOC. Additionally, relativistic effects in the form of

the Rashba splitting perturb the valence and conduction band edges of the Perovskites which

lack centrosymmetry. As the Rashba splitting parameters for the lowest conduction band (lead

based) and highest valence band (iodine based) differ in magnitude, hybrid Perovskites possess

indirect band gaps. The energy splitting of the conduction bands can ranges between 0-100meVs,

this difference depends on the chemical composition and crystal structure.

Surprisingly, these solution processed Perovskites with their indirect optical band gaps have

shown great absorption over visible spectrum, comparable to that of well established direct band

gap semiconductors such as GaAs and CdTe. This is a great advantage for solar cell materials

as it allows the use of thinner absorber layers without compromising on PCE. This potentially

allows for a multi-junction all hybrid Perovskite solar cell which exhibits strong absorption across

the solar spectrum.

The QSGW optical calculations performed on MAPbX3 where X=Cl, Br or I were com-

pared with experimental data and showed good agreement within the limits of the theory used.

The comparison between the theoretical and experimental data showed an increase in excitonic

effects with lighter halide ions. As the excitonic binding energy is extremely low in MAPI, ex-

citonic effects are also minimal, resulting in a slight blue shift within the absorption spectrum.

This effect is due to the random phase approximation used in QSGW approach and has been

discussed, at length, by Louie and Rohlfing in ref. [139]. The increase in the excitonic nature

with lighter halides is attributed to the reduced static polarisation of the ions. The sharp ab-

sorption edge of MAPI has previously been assigned as an excitonic excitation, however there

is partial contribution from the perturbation of the band edge due to the Rashba interaction.

More accurate theoretical data and perhaps better agreement with experimental data requires

the inclusion of electron-hole contributions. It would be interesting to perform QSGW+BSE

calculations on hybrid Perovskites, however due to the good agreement with experimental data
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very little change is expected, specially for MAPI and FAPI. At the time of these calculations,

an all electron GW implementation which included Bethe-Salpeter equation, did not exist [175].

Very recently Brian Cunningham has implemented the BSE in the Questaal package we use

(informed through private communication), but we have not yet applied this level of theory to

these systems.

One of the most fascinating aspects of hybrid Perovskites has been high internal quantum

efficiency and the extremely long radiative-recombination lifetimes observed in a number of

the halide Perovskites. These features are particularly unusual as hybrid Perovskite solar cells

are often solution processed, which is a synthesis method that typically results in large defects

density and poor PCEs. However, such defects seem to be absent in these cells. Additionally,

the lifetimes are similar to those observed in high quality indirect band gap semiconductors. The

radiative recombination rate of these materials was investigated through an ab initio method

relating the imaginary part of the dielectric function to the total rate of radiative recombination

which was derived and implemented as part of this thesis. In this thesis it is found that the

spin-split nature of the conduction and valence bands results in the segregation of electrons and

holes within reciprocal space. Research on a Perovskite and other structures with distorted

ions, have shown that there can exist configurations of atomic displacements, where the Rashba

parameters (αR in equation 3.48) for the conduction and valence bands have opposite signs, that

is conduction and valence bands of same spin are shifted in opposite directions. The lifetime

calculations show that in such cases the radiative recombination rate in MAPI can be up to

two orders of magnitude smaller than that of CdTe and GaAs. This finding is remarkable as it

shows that such long carrier lifetimes are an intrinsic feature of lead based hybrid Perovskites.

The theoretical investigation of the electronic and optical properties of hybrid Perovskites

performed here, indicate the fundamental characteristics of a material suitable for high PCE

solar cells. These materials have shown strong absorption of the visible spectrum along with

extremely long diffusion lengths due to the minority carrier lifetimes.
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6.2 Future Directions

Intermediate band solar cells

The extremely long carrier lifetimes in lead based hybrid Perovskites may make it possible to

create an intrinsic intermediate band solar cell (IBSC). This photovoltaic device architecture

relies on a state within the band gap, which allows the two step excitation of electrons from

the valence band to higher conduction bands (figure 6.1). The introduction of an intermediate

band is aimed to surpass the Shockley-Queisser limit (discussed in chapter 3); in fact Luque

and Marti calculated that such cells can achieve efficiencies as high as 63.1% [176]. IBSC can

be created through a number of methods including quantum dots (QD) and the intentional

inclusion of mid gap defects [177, 178]. One of the issues with IBSC devices is the increase in

the rates of radiative and non-radiative recombination due to the introduction of the mid gap

states [179].

VB to IB

IB to CB

VB to CB

Valence band

Indeterminate band

Conduction band

Figure 6.1: Schematic diagram of energy states in an IBSC. In an IBSC electrons

are initially promoted from the valence band (VB) to an intermediate band (IB)

and the to the conduction band (CB) [180].

The idea behind lead based hybrid Perovskite IBSC would be to utilise the lowest conduction

band as the intermediate band, while collecting excited electrons from the second set of conduc-

tion bands (as shown in figure 6.2) [181]. In this configuration the slow rate of recombination

would allow a build up of electrons in the lowest conduction bands which can then be promoted

to the second set of conduction bands. Although the energy differences between the three bands

in MAPI are not ideal for maximum efficiency, it can be used as a test case for proof of concept;

furthermore higher efficiencies maybe achievable through other hybrid Perovskites.
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Preliminary calculations performed by Scott McKechnie have shown that the VBM and CBM

are not only at different positions in reciprocal space, but the second lowest conduction band

minima occupy different positions to both VBM and CBM as well (as shown inf figure 6.2).

This characteristic may form an intrinsic photon ratchet which will reduce the recombination

from IB to the VB and from the CB to the IB and the VB.

Figure 6.2: The band structure of MAPI for IBSC. Here the lowest conduction

band would act as an intrinsic intermediate band.

One aspect of continuation of the research provided in this thesis is to investigate the prop-

erties of MAPI for IBSC architecture. This involves the calculation of absorption and recombi-

nation rates from IB to the CB and VB to CB.

V-VI-VII Semiconductors

Lead based hybrid Perovskites solar cells can be produced using cheap solution processing meth-

ods, additionally all the constituents elements are earth abundant. Such features combined with

high recorded PCE should makes these cells highly desirable. However, lead based hybrid Per-

ovskites have two major drawbacks which have significantly slowed their commercial realisation,

these drawbacks are: the instability of these compounds under working conditions and within

ambient atmosphere and the inclusion of lead, which is a toxic heavy metal. Due to these

reasons there is currently active ongoing research to increase the stability of these compounds
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through passivation and encapsulation. However, the device lifetimes of high performing cells

are still significantly below that of established photovoltaic technologies such as Si and GaAs.

There have also been many attempts at removing lead, however such devices are yet to achieve

efficiencies comparable to those of lead based Perovskites, furthermore the existence of Sn2+

oxidation state which lowers the stability of devices remains a challenge. The higher PCE is

perhaps due to the long carrier lifetimes in lead based hybrid Perovskites which are due to the

presence of lead (a heavy element), an internal electric field and the lack of centrosymmetry. As

the origin of the long lifetimes maybe due to the Rashba splitting, it should be substituted by

comparably heavy elements.

As a result of the disadvantages mentioned, it is possible that Perovskite photovoltaic solar

cells may not be able to challenge established PV cells such as silicon. However, lead based hybrid

Perovskites may have introduced an entirely new direction of material research for photovoltaic

cells, namely the search for compounds with non-toxic heavy elements that have large lattice-

induced polarisation fields and are susceptible to breaking inversion symmetry, or alternatively,

materials which have an indirect fundamental gap slightly lower in energy than the direct optical

gap. Such features can mimic the Rashba splitting in MAPI which may give it its extraordinary

lifetimes. To this end, Butler et al. have investigated a group of V-VI-VII semiconductors,

which appear to have similar properties as lead based hybrid Perovskites. Initial band structure

calculations have shown that BiSI and BiSeI have indirect band gaps a few kBT lower than the

direct optical band gaps, similar to that of MAPI [182, 183]. A number of non-Bismuth based

members of this family have also been investigated recently, possessing larger band gaps more

suitable for tandem cells [184].

As a further future direction to continue the work of this thesis, the radiative recombination

rates in V-VI-VII will be investigated. The radiative recombination rate will be calculated

for compounds with the most promising features. These include the band gap and its nature,

that is if the direct-indirect nature is present. Additionally the effective masses and absorption

coefficients will be taken into account. Much like hybrid Perovskites V-VI-VII semiconductors’

properties can be tuned through variation of the constituent ions and potentially a wide range

of compounds can be investigated. The aim of this approach would be to find more stable

compounds which do not include toxic elements and share opto-electronic properties similar to

those of MAPI or desirable for PV applications.



Appendix A

Carrier Recombination Dynamic

To obtain the radiative recombination coefficient or lifetime the following parameters are used

n = n0 + ∆n (A.1)

p = p0 + ∆p (A.2)

R(B,n, p) = Bnp = B(n0 + ∆n)(p0 + ∆p) (A.3)

where n and p are the total electron and hole density with n0 and p0 being the background

doping density and ∆n and ∆p are the photo-generated carrier densities. R(B,n, p) and B

are the radiative recombination rate and coefficient respectively. and the rate equation for the

carrier densities is given by
∂∆n(t)
∂t

= −R(B,n, p) (A.4)

High Doping, Low Injection

In the case of high hole doping the total radiative recombination rate s given by

R(B,n, p) = Bnp = B∆n(p0 + ∆p) (A.5)

and hence
∂∆n(t)
∂t

= −R(B,n, p) = B∆nP0 +B∆n∆p (A.6)

and for low injection rate
∂∆n(t)
∂t

= −R(B,n, p) = B∆nP0 (A.7)
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as Po >> ∆p, giving the time dependent photogenrated density as

∆n(t) = ∆n(0) exp(− t
τ

) (A.8)

with τ = 1
BP0

.

Low Doping, High Injection

In the case of a material under high excitation fluencies and low hole doping the total recombi-

nation rate is given as

R(B,n, p) = Bnp = B∆n(p0 + ∆p) (A.9)

and hence
∂∆n(t)
∂t

= −R(B,n, p) = B∆n∆p (A.10)

as ∆p >> Po, this is appropriate for materials with extremely low doping and intrinsic materials

(no doping). In such case the time dependent carrier density is given as

∆n(t) = ∆n(0) exp(− t
τ

) (A.11)

with the carrier lifetime being τ = 1
Bδp .



Appendix B

Non-local Contribution to Optical

Matrix Elements

The dipole matrix element can be calculated through

Pi,f = lim
q→0

1
q
〈c,k + q| eiq·r |v,k〉 (B.1)

in this form the lim
q→0

must be taken numerically which is not desirable. Through the relation of

the length operator and the velocity operator, the expression above can be rewritten within the

momentum gauge as

Pi,f = 1
meω

〈c,k| ê · p |v,k〉 (B.2)

as discussed previously. However them momentum gauge has is only valid for local potentials,

as the momentum operator does not include the non-local contributions to the velocity

v = p
m

+ i

h̄
[V NL(r, r′), r] (B.3)

it is however possible to approximate the non-local contribution, if an assumption can be

made that the density calculated from non-local potentials (hybrid functionals, GW , etc.) is

similar to that calculated with a local potential (LDA). If such assumption holds we can simply

write

lim
q→0

1
q
〈ψ∗c,~k + ~q| exp(i~q · ~r) |ψ∗

v,~k
〉 = lim

q→0

1
q
〈ψ∗c |ψ0

c 〉 〈ψ0
v | |ψ∗v〉 〈ψ0

c,~k+~q| exp(i~q · ~r) |ψ0
v,~k
〉| (B.4)
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where * superscripts indicate non-local eigenfunctions and eigenvalues while 0 superscripts rep-

resent local counterparts. In the right hand side of the expression above the dipole moment

is calculated for local eigenfunctions only and as such the expression can be rewritten in the

momentum gauge

lim
q→0

1
q
〈ψ∗c |ψ0

c 〉 〈ψ0
v | |ψ∗v〉 〈ψ0

c,~k+~q| exp(i~q · ~r) |ψ0
v,~k
〉| = 1

m
〈ψ∗c | |ψ0

c 〉 〈ψ∗v | |ψ0
v〉
〈ψ0
c | ê · ~p |ψ0

v〉
E0
c − E0

v

(B.5)

this equation can simply be written as

1
m
〈ψ∗c | |ψ0

c 〉 〈ψ∗v | |ψ0
v〉
〈ψ0
c | ê · ~p |ψ0

v〉
E0
c − E0

v

= 1
m
〈ψ∗c | |ψ0

c 〉 〈ψ∗v | |ψ0
v〉
〈ψ0
c | ê · ~p |ψ0

v〉
E∗c − E∗v

E∗c − E∗v
E0
c − E0

v

= 1
m
〈ψ∗c | |ψ0

c 〉 〈ψ∗v | |ψ0
v〉
〈ψ0
c | ê · ~p |ψ0

v〉
E∗c − E∗v

S∗ = |P ∗cv|

where |P ∗cv| is a new effective dipole matrix. In the case where the densities of the local and

non-local systems are identical, this approximation becomes exact. As the the two densities

deviate, the error will become greater.



Appendix C

Brillouin Zone Labelling

The band structures plotted in this thesis follow the guide lines provided by ref [127]. Here

Latin letters are assigned to points on the surface of the Brillouin Zone while Greek letters are

assigned to points within the Brillouin Zone.

Figure C.1: Brillouin zone labelling for the pseudo-cubic band structures [127].

The labelling of the point for the pseudo-cubic case are shown in figure C.1, the tetragonal

and orthorhombic labelling are shown in figure C.2.
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Figure C.2: Brillouin zone labelling for tetragonal/orthorhombic [127].

The method of calculation for each point within the Brillouin zone is outlined in refer-

ence [127]. These guide lines are used to adopt the convention used by the wider community.
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