
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Requirements Engineering for Model Transformation Development

Yassipour Tehrani, Sobhan

Awarding institution:
King's College London

Download date: 15. Jan. 2025

Requirements Engineering for

Model Transformation Development

by
Sobhan Yassipour Tehrani

Submitted in partial fulfilment of the requirements for the

Degree of Doctor of Philosophy in Computer Science

Department of Informatics

School of Natural and Mathematical Sciences

King’s College London

March 2018

Acknowledgements

I would like to thank everyone who provided me with support, guidance

and encouragement throughout my PhD career. In particular, I would

like to express my sincere gratitude and thanks to my supervisor, Dr

Kevin Lano, for his help, time, advice, guidance and indispensable sup-

port for the duration of the course of this PhD in an encouraging manner.

I cannot imagine to have been able to fulfil this PhD without his help

and support. I would also like to thank my second supervisor, Dr Steffen

Zschaler, for his helpful ideas and motivating suggestions.

Besides my supervisors, I would like to thank all the faculty, staff and

students in the Department of Informatics at King’s College London for

their assistance.

I thank my fellow PhD colleagues, Dr Vahid Towhidloo and Dr Ali

Hosseini for their illuminating insights and support especially during the

deadline periods, and for all the fun we have had in the last few years.

Last but not least, my sincere thanks goes to my dear parents and

Miss Haydeh Taheri for their continued support, both practically and

spiritually, not only during the writing of this thesis but in general for

all they have done, enabling me to acquire a higher education at one of

the most distinguished institutions of its kind and partaking in a PhD

program. I hope that my advancements and achievements will be a

reflection of my gratitude for all their efforts and sacrifices to this end.

i

Abstract

Model transformation (MT) is central to model driven engineering. It

can be used for a range of purposes, including to improve the quality

of models, to refactor models, to migrate or translate models from one

representation to another, and to generate code or other artifacts from

models. At present, the development of MT is mainly focused on the

specification and implementation phases, whereas there is a lack of sup-

port in other phases including requirements, analysis, design and testing.

In this thesis, we are only interested in the requirements phase of MT

development, namely the initial phase of software development life-cycle

where the software’s specifications are determined, for which at present

there is no systematic requirement engineering (RE) process.

In this research study, we aim to systematically find out how MT is

being developed. We are particularly interested in understanding how re-

quirements for MT are being identified. A comprehensive systematic lit-

erature review together with an interview-based study have been applied

in order to address these shortcomings. Moreover, this thesis addresses

the lack of a guideline for a systematic RE process in MT by defining a

systematic procedural RE process framework for MT development and

it identifies criteria for selecting the most appropriate RE techniques.

This framework is evaluated and validated through its application on

two substantial industrial cases. The first case is an example of model

driven development applied to MT development. The second is a fi-

nancial application involving risk evaluation of multiple financial invest-

ments.

ii

Publications

Throughout this PhD career, more than 20 publications have been ac-

cepted and published of which some are directly related to this thesis

and some are partially related.

Directly related publications:

• State of Practice: Requirements Engineering Process in Model

Transformation Development. In International Journal on Soft-

ware and Systems Modeling 2017 (Submitted)

Yassipour Tehrani, S., Lano, K., Zschaler, S.

This publication is based on Chapter 3 and Chapter 4 of the thesis.

• Requirements Engineering in Model-Transformation Development:

An Interview-Based Study. In International Conference on The-

ory and Practice of Model Transformations. Springer International

Publishing, 2016.

Yassipour Tehrani, S., Zschaler, S. & Lano, K.

This publication is based on Chapter 3 of the thesis.

• Transformation from UML to C: A large-scale example of MDD

for model transformation development. In International Journal

on Software and Systems Modeling 2017

Lano, K., Yassipour Tehrani, S. Alfraihi, H. A. A. & Kolahdouz-

Rahimi, S

This publication is based on Chapter 6 of the thesis.

iii

• Model Transformation Applications from Requirements Engineer-

ing Perspective. In the 10th International Conference on Software

Engineering Advances (Awarded Best Paper)

Yassipour Tehrani, S. & Lano, K.

This publication is based on Chapter 5 of the thesis.

• Requirements Engineering in Model Transformation Development:

A Technique Suitability Framework for Model Transformation Ap-

plications. In The International Journal on Advances in Software

published by IARIA.

Yassipour Tehrani, S. & Lano, K.

This publication is based on Chapter 5 and Chapter 6 of the thesis.

• Temporal Logic Specification and Analysis for Model Transforma-

tions. In Verification Of ModeL Transformation (VOLT 2015).

Yassipour Tehrani, S. & Lano, K.

This publication is based on Chapter 5 of the thesis.

• Improving the Application of Agile Model-based Development: Ex-

periences from Case Studies. In the 10th International Conference

on Software Engineering Advances.

Lano, K., Yassipour Tehrani, S. & Alfraihi, H. A. A.

This publication is based on Chapter 6 of the thesis.

• Translating OCL to ANSI C. In the 17th International Workshop

in OCL and Textual Modeling.

Lano, K., Yassipour Tehrani, S. & Kolahdouz-Rahimi, S

This publication is based on Chapter 6 of the thesis.

• Precise Requirements Engineering for Model Transformations. In

STAF 2014 Doctoral Symposium.

Yassipour Tehrani, S. & Lano, K.

This publication is based on Chapter 5 of the thesis.

• The significant role of Requirement Engineering in Model Transfor-

mation. In International Conference on New Trends in Information

iv

and Communication Technologies.

Yassipour Tehrani, S. & Lano, K.

This publication is based on Chapter 5 of the thesis.

• Agile model-driven engineering of financial applications. In Inter-

national Conference on New Trends in Information and Commu-

nication Technologies.

Lano, K., Haughton, H.,Yassipour Tehrani, S. & Alfraihi, H.

A. A

This publication is based on Chapter 6 of the thesis.

Partially related publications:

• The use of Model Transformation Design Patterns in Practice . In

Journal of Systems and Software Publishing, 2017.

Lano, K., Yassipour Tehrani, S. & Kolahdouz-Rahimi, S.

• A Survey of Model Transformation Design Pattern Usage. In In-

ternational Conference on Theory and Practice of Model Transfor-

mations. Springer International Publishing, 2017.

Lano, K., Kolahdouz-Rahimi S. & Yassipour Tehrani, S.

• Verified Bidirectional Transformations by Construction . In Veri-

fication Of ModeL Transformation at MODELS 2016

Lano, K. Yassipour Tehrani, S.

• Solving the Class Responsibility Assignment Case with UML-RSDS.

In Proceeding of the the 9th Transformation Tool Contest,co-located

with the 2016 Software Technologies: Applications and Foundations

(STAF 2016)

Lano, K. Yassipour Tehrani, S. & Kolahdouz-Rahimi

• Patterns for Specifying Bidirectional Transformations in UML-RSDS.

In the 10th International Conference on Software Engineering Ad-

vances.

Lano, K., Alfraihi, H., Yassipour Tehrani, S . & Haughton, H.

v

• Experiences of Teaching Model-based Development. In ACM/IEEE

18th International Conference on Model Driven Engineering Lan-

guages and Systems.

Lano, K., Yassipour Tehrani, S. & Alfraihi, H. A. A.

• Model Transformation Semantic Analysis by Transformation. In

Verification Of ModeL Transformation (VOLT 2015).

Lano, K. & Yassipour Tehrani, S.

• Design Patterns for Model Transformations: Current Research and

Future Directions. In International Workshop on Patterns in Model

Engineering 2015.

Lano, K. & Yassipour Tehrani, S.

• Mapping FIXML to OO with Aspectual Code Generators. In Pro-

ceedings of the 7th Transformation Tool Contest part of the Soft-

ware Technologies: Applications and Foundations.

Zschaler, S. & Yassipour Tehrani, S.

• Solving the TTC 2014 Movie Database Case with UML-RSDS. In

Proceedings of the 7th Transformation Tool Contest part of the Soft-

ware Technologies: Applications and Foundations.

Lano, K. & Yassipour Tehrani, S.

• Aspectual Code Generators for Easy Generation of FIXML to OO

Mappings. In TTC 2014 FIXML Case Solution.

Zschaler, S. & Yassipour Tehrani, S .

• Case study: FIXML to Java, C# and C++. In TTC 2014 FIXML

Case Solution.

Lano, K., Yassipour Tehrani, S . & Maroukian, K.

vi

Contents

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 2

1.3 Research Objectives . 3

1.4 Overall Aims and Contributions 5

1.5 Overall Thesis Structure 6

2 Background on Software & Requirements Engineering

and Model Transformation 9

2.1 The Software Development Process 9

2.1.1 Software Requirements 9

2.1.2 Software Project Types 14

2.2 Software Process Model 16

2.3 Software Measurements and Metrics 20

2.3.1 Software Quality Models 22

2.3.2 Goal-Questions-Metrics 26

2.4 Requirements Engineering 27

2.4.1 Domain Analysis and Requirements Elicitation . . 33

2.4.2 Evaluation and Negotiation 39

2.4.3 Specification and Documentation 42

2.4.4 Validation and Verification 46

2.5 Model Driven Engineering 49

2.5.1 Model Driven Development in MDE 51

2.5.2 Model Driven Architecture in MDE 52

vii

Contents

2.6 Model Transformation 53

2.6.1 Transformation Types and Properties 55

2.6.2 Model Transformation Languages 61

2.6.3 Model Transformation Examples 66

2.7 Summary . 75

3 Requirements Engineering in MT Development 77

3.1 Introduction . 77

3.2 Methodology . 79

3.2.1 Related Work . 80

3.3 Transformation Development Projects 81

3.3.1 Types of Project 83

3.4 Stakeholders in MT . 85

3.5 Requirements Engineering Process 89

3.5.1 Overall RE Process 89

3.5.2 Changes and Conflicts in Requirements 91

3.5.3 Requirements . 92

3.5.4 RE Techniques 94

3.6 Outcomes . 95

3.6.1 MT Project Failures 98

3.7 Summary . 100

4 Systematic Literature Survey 103

4.1 Introduction . 103

4.2 Related Work . 104

4.3 Research Methodology 105

4.3.1 Research Question 105

4.3.2 Source Selection 106

4.3.3 Primary Studies Selection 107

4.3.4 Selection Criteria 107

4.3.5 Information Extraction 108

4.3.6 Conducting the Review 109

4.3.7 SLR Results . 110

viii

Contents

4.4 Comparison . 115

4.5 Threats to Validity . 118

4.6 Summary . 118

5 Requirements Engineering Activity for MT 121

5.1 Application of RE in MT 121

5.1.1 Requirements Taxonomy 124

5.2 RE Process Adaptation for MT 130

5.2.1 Domain Analysis and Requirements Elicitation . . 130

5.2.2 Evaluation and Negotiation 132

5.2.3 Specification and Documentation 134

5.2.4 Validation and Verification 137

5.2.5 Tool Support for RE in MT 140

5.3 A Framework for Selecting Suitable RE Techniques . . . 141

5.3.1 Technique Attribute 143

5.3.2 Project Attribute 150

5.3.3 Organisational Attribute 156

5.4 Application Framework Example 157

5.5 Framework Implementation 167

5.6 Summary . 169

6 Evaluation 171

6.1 Case study 1: UML to C Transformation 171

6.1.1 F1.1: Translation of Types 185

6.1.2 F1.2: Translation of Class Diagrams 185

6.1.3 F1.3: Translation of OCL Expressions 186

6.1.4 Translation of Activities 190

6.1.5 Translation of Use Cases 193

6.1.6 Evaluation . 195

6.2 Case Study 2: CDO Risk Estimation 201

6.2.1 Evaluation . 214

6.3 Framework Evaluation 216

6.4 Summary . 217

ix

Contents

7 Summary and Concluding Remarks 221

7.1 Introduction . 221

7.2 Objectives of Research 222

7.3 Overview of Thesis . 222

7.4 Limitations . 224

7.5 Future Work . 225

7.5.1 Requirements Management in MT 225

7.5.2 Applying the Framework to Several Cases 226

7.5.3 Integration with transML 227

7.5.4 Further Extension of the Framework 227

7.6 Concluding Remarks . 228

A SLR Tables 246

B Interview Guide 259

C Description of RE Techniques 262

D Surveyed Papers 266

x

List of Figures

2.1 A taxonomy of non-functional requirements [143] 13

2.2 Spiral model of the software process [18] 19

2.3 Comparison table using impact estimation [44] 21

2.4 McCall Quality Model [106] 24

2.5 Boehm Quality Model [19] 25

2.6 GQM model [10] . 27

2.7 Cost of late correction (Boehm) 29

2.8 Three dimensions of requirements engineering [143] . . . 32

2.9 Classification of statements in RE [97] 33

2.10 Stakeholder onion model [98] 35

2.11 NFR types [26] . 45

2.12 Requirements inspection and review process 48

2.13 Model-driven frameworks, adapted from [22] 51

2.14 Transformation between different representations of a model 53

2.15 The general architecture of model transformation [29] . . 55

2.16 General process of UML-RSDS 62

2.17 Overview of the ATL transformational approach [64] . . 63

2.18 QVT architecture [115] 65

2.19 Class diagram metamodel [75] 67

2.20 Rule 1 [75] . 68

2.21 Rule 2 [75] . 68

2.22 Rule 3 [75] . 69

2.23 Removing a many-to-many association 74

2.24 Replacing an inheritance by an association 74

xi

List of Figures

2.25 Introducing a superclass 74

3.1 Onion model of stakeholder general relationships [3] . . . 86

3.2 Adapted onion model of MT stakeholder relationships . . 88

4.1 Surveyed cases per year 109

4.2 SLR MT stakeholders . 111

4.3 Transformation types . 112

4.4 RE technique used in MT cases 113

4.5 SLR case RE rigour (x-axis) versus outcomes (y-axis) . . 114

4.6 MT projects scale . 116

4.7 Interview case RE rigour (x-axis) versus outcomes (y-axis) 117

5.1 A taxonomy of functional requirements 125

5.2 A taxonomy of non-functional requirements for MT . . . 125

5.3 Functional requirements decomposition 139

5.4 RE technique framework metamodel in UML-RSDS . . . 168

6.1 Functional requirements decomposition in SysML 181

6.2 C code generator architecture 184

6.3 UML-RSDS class diagram metamodel 188

6.4 CDO version 1 system specifications 209

6.5 CDO version 2 system specifications 209

6.6 CDO example . 212

6.7 CDO version 3 system specifications 214

7.1 Requirements management process 226

xii

List of Tables

2.1 Project failure analysis (Standish Group (1995)) 11

2.2 Project success analysis (Standish Group (1995)) 11

2.3 Project success analysis(Standish Group (2015)) 12

2.4 Definition of non-functional requirements 13

2.5 ISO/IEC 9126-1 quality characteristics [40] 23

2.6 General properties of transformations 56

2.7 Comparison of transformation languages 65

2.8 Model elements in UML [6] 71

3.1 Types of MT project . 85

3.2 Stakeholders of model transformation projects 87

3.3 Requirements engineering techniques in MT projects . . 91

3.4 RE revision activity in MT projects 92

3.5 RE techniques in MT projects 95

3.6 Outcomes of MT projects 99

4.1 Number of reviews . 110

4.2 Comparison of results . 116

5.1 Transformation requirements catalogue 128

5.2 Standard quality framework (ISO 9126) 129

5.3 Requirements priority for different types of transformation 134

5.4 RE technique attributes and classifications adapted and

extended from [62] . 145

xiii

List of Tables

5.5 Domain Analysis & Requirements Elicitation technique

attributes evaluation V(ax, t) 146

5.6 Requirements Evaluation & Negotiation technique attributes

evaluation V(ax, t) . 147

5.7 Requirements Specification & Documentation technique

attributes evaluation V(ax, t) 147

5.8 Requirements Validation & Verification technique attributes

evaluation V(ax, t) . 148

5.9 Project attributes weighting 154

5.10 Technique weight descriptor values 156

5.11 Attributes calculation of RE techniques 164

6.1 Domain Analysis & Requirements Elicitation technique

attributes evaluation . 173

6.2 Domain Analysis & Requirements Elicitation technique

attributes evaluation for UML to C case 176

6.3 Technique attributes evaluation of the Evaluation & Ne-

gotiation stage V(ax, t) for UML to C case 183

6.4 Technique attributes evaluation of the Specification & Doc-

umentation stage V(ax, t) for UML to C case 183

6.5 Technique attributes evaluation of the Validation & Veri-

fication stage V(ax, t) for UML to C case 184

6.6 Informal scenarios for types2C 186

6.7 Informal scenarios for the mapping of UML class diagrams

to C . 187

6.8 Mapping scenarios for Basic Expressions 189

6.9 Mapping scenarios for Logical Expressions 190

6.10 Mapping scenarios for Comparator Expressions 191

6.11 Mapping scenarios for Numeric Expressions 192

6.12 Scenarios for the mapping of Selection and Collection Ex-

pressions . 192

6.13 Scenarios for the translation of Collection Operators (1) . 193

6.14 Scenarios for the translation of Collection Operators (2) . 194

xiv

List of Tables

6.15 Scenarios for mapping of UML Activities to C Statements 194

6.16 Achievement of requirements 196

6.17 Overall development effort for C code generator 197

6.18 Generated C code versus Java code 197

6.19 Development effort for code generators (person months) . 198

6.20 Software quality measures of C++ and C code generators 199

6.21 Software quality comparison 200

6.22 Technique attributes of the Domain Analysis & Require-

ments Elicitation stage V(ax, t) for CDO case 203

6.23 Use cases for CDO risk analysis application 208

6.24 Execution times for CDO versions 214

6.25 CDO project comparison 215

6.26 Framework evaluation form 216

A.1 Stakeholder information (1) 247

A.2 Stakeholder information (2) 248

A.3 Stakeholder information (3) 249

A.4 MT requirements . 250

A.5 MT project information (1) 251

A.6 MT project information (2) 252

A.7 Methodology information (1) 253

A.8 Methodology information (2) 254

A.9 Methodology information (3) 255

A.10 Methodology information (4) 256

A.11 SLR case outcomes (1) 257

A.12 SLR case outcomes (2) 258

xv

Chapter 1

Introduction

The increasing complexity and size of today’s software systems has re-

sulted in raising the complexity and size of model transformations. Model

Transformations are automated methods of modifying and creating mod-

els and are the central building blocks of Model Driven Engineering

(MDE). Transformations are used widely in model-driven engineering

and model-based development (MBD). Their uses include migration of

models from one language to another, refactoring of models to improve

quality, refinement of models from a specification to a design, or from de-

sign to implementation, code generation to generate program code from

models, and bidirectional transformations to synchronise two different

models and to maintain their consistency [29].

Although there have been different transformation tools and lan-

guages, most of them are focused on the specification and implemen-

tation phases. According to [46], most of the transformation languages

proposed by model driven engineering (MDE), a software development

methodology, are only focused towards the implementation phase and are

not integrated in a unified engineering process. It could be said that, at

the moment, the transformation process is performed in an ad-hoc man-

ner; defining the problem and then directly beginning the implementation

process.

1

1.1. Overview

1.1 Overview

At present, there is a need in model transformation to provide for the

whole life-cycle of transformation development in a supportive way rather

than the current practice of focusing mainly on the implementation phase.

In the current practice whereby the main focus is on the implementation

phase, it not only makes it difficult to design large scale transforma-

tions but their understandability and maintenance are also adversely af-

fected in a similar manner. In the transformation development life-cycle,

there are other phases including requirements, analysis, design and test-

ing which need to be addressed as vigorously, if not more [46].

So far, little attention has been paid to the requirements engineering

of model transformations. Requirements engineering is the process of

identifying, analysing, documenting and validating the requirements of

an application. It could be said that at present in many companies, the

RE process is performed in a rule of thumb manner [129], meaning that

the goal of defining the rules and requirements of a system is mainly to

find an approximate solution(s) in the fastest possible procedure, whereas

RE must be applied accurately and its outcome must be precise and

reliable [27].

1.2 Motivation

The motivation behind this research is to introduce a specific RE pro-

cess for model transformations development, since the model transfor-

mation field has not yet been considered from a systematic requirements

engineering point of view. In this research project, I propose to inves-

tigate the most appropriate requirements engineering process for model

transformation development. As previously mentioned, there is a lack

of systematic engineering support in the model transformation field. In

order to achieve any given goal using software, having a scheme in which

its requirements have been identified is essential. However, getting the

right requirements under the right assumptive environment is a necessary

2

1.3. Research Objectives

precondition and often a quite challenging task for developing the right

software [142]. It is a challenging task as there are a number of inherent

difficulties in this process. The number of stakeholders may be numerous

and they may be distributed, their goals may differ and conflict in some

cases depending on their needs and perspectives, and their goals may

not be defined explicitly which would lower the satisfaction level of these

goals as they may be constrained by a variety of factors [113].

One of the appropriate techniques that will be used throughout this

project is requirements elicitation, one of the most important stages in

developing a software application. Requirements elicitation is essential

for identifying requirements to achieve given goals in software. Having an

appropriate understanding of the actual problem is equal to half of the

solution. Therefore, in order to have a successful solution for a project,

which meets its requirements, one needs to understand the different as-

pects of the project to define the specific requirements for each aspect.

Requirements elicitation is about discovering software requirements and

techniques by which engineers can collect them. It is essential for engi-

neers to be able to identify and evaluate all potential alternative solutions

regarding the software.

1.3 Research Objectives

One characteristic of current MT technology is that a lot of effort is fo-

cused on specification and implementation. There is a lack of research

into the requirement engineering process in MT as well as in the selection

of the most suitable RE techniques regarding a specific requirement. This

gap has also been remarked by other researchers in the field with regards

to the transML 1 work [46]. This thesis research is not focused on the in-

vention of a new RE process or technique for MT but it is rather focused

on the development of an RE framework, which provides a systematic

1transML is a family of modelling languages, which covers the whole life-cycle of
the transformation development: requirements, analysis, design and testing. It can
be used together with any transformation implementation language.

3

1.3. Research Objectives

process of applying the most suitable RE technique regarding different

requirements during MT development. This would also allow the MT

developer(s) to select and even customise the existing RE process and

techniques according to their experience, organization policy and trans-

formation properties. Thus, the overall objective of this research is to

contribute to the earlier stages of model transformation development by

introducing a professional requirements engineering process through an

investigation of specific techniques for model transformation.

In short, the objectives of this thesis are:

• To carry out a literature survey on different industrial and academic

transformation projects.

• To carry out an interview-based study on different industrial trans-

formation projects.

• To define a requirements engineering process for MT.

• To define a taxonomy for functional and non-functional require-

ments for MT.

• To validate the choice of RE methods and techniques via two case

studies.

The proposed framework is a formal model of requirements engineer-

ing activity for model transformations that provides a generalization of

all known requirements engineering techniques. We are proposing this

model, a framework for RE technique selection, which can be used during

the requirements engineering phase in any given transformation develop-

ment. So far, not much research has been dedicated to model trans-

formations from a requirements engineering aspect. In our proposed

model, unlike [55], not only an elicitation phase is included, but also all

four stages of techniques proposed by [133] namely: Domain Analysis

& Requirements Elicitation, Evaluation & Negotiation, Specification &

Documentation, Validation & Verification.

4

1.4. Overall Aims and Contributions

1.4 Overall Aims and Contributions

The aim of this research is to contribute to the earlier stages of model

transformation development by introducing a professional and system-

atic requirements engineering process through an investigation of spe-

cific techniques and methods for model transformation. By systemati-

cally comparing and evaluating the selected RE techniques and applying

them to the case studies, a systematic RE process is proposed to provide

a guideline and facilitate the RE process for MT developers. The main

contributions of this thesis are as follows:

• Applying a semi-structural interview-based study with industrial

MT experts and analysing real industrial MT projects (Chapter

3).

• Applying a systematic literature review survey on MT and its re-

lationship with the RE process (Chapter 4).

• Defining a taxonomy for functional requirements for MT (Chapter

5).

• Defining a taxonomy for non-functional requirements for MT (Chap-

ter 5).

• Proposing a novel methodology and framework for evaluating re-

quirements engineering techniques for model transformation (Chap-

ter 5)

• Applying the proposed methodology on different case studies to

evaluate the outcome (Chapter 6).

Defining taxonomies and techniques will allow the requirement en-

gineers to identify the right requirements for a given transformation.

Moreover, once the requirements have been identified and categorized,

engineers could refer to them during the Validation & Verification phase

in order to make sure that nothing is omitted.

5

1.5. Overall Thesis Structure

Initially we will interview industrial transformation developers to as-

certain the level of the requirements engineering that has been applied

to their projects. We will also analyse and review some real industrial

projects to evaluate the level of requirements engineering being used.

Since the current problem in the model transformation field is that no

engineering principles are being applied systematically, my approach in

resolving this problem is to come up with a specific requirements engi-

neering framework designed for model transformation development.

The process regarding this thesis research involved the following phases:

• Problem analysis and literature review

• Systematic literature survey

• Empirical investigation

• Design of the framework

• Case studies

1.5 Overall Thesis Structure

In order to achieve the overall aims and goals, this thesis is categorised

into seven chapters. Chapter 1 is dedicated to the introduction of this

research followed by Chapter 2 which provides a wide literature review on

model transformation, requirements engineering and the relation of re-

quirements engineering in model transformation development. In Chap-

ter 3, we report on the results of an exploratory interview-based study

with industry experts in real world model transformation projects. Chap-

ter 4 provides a systematic literature review based on more than 160

case studies in the field in order to provide a better understanding of the

research by analysing the related and existing works. Moreover, Chap-

ter 5 proposes a new taxonomy for both functional and non-functional

requirements in model transformations followed by a method for select-

ing suitable Requirements Engineering techniques with which the MT

developers are able to select the most suitable technique for a specific

6

1.5. Overall Thesis Structure

requirement. Chapter 6 proposes two real case studies in order to evalu-

ate the proposed framework. Chapter 7 summarises the outcomes of the

research, and outlines the areas of possible future work.

7

Chapter 2

Background on Software &

Requirements Engineering

and Model Transformation

This chapter of the thesis gives a background on the software development

process, software metrics and quality models in detail. It describes the

current application of requirements engineering, its advantages, process

models, methodologies and techniques. It also explains model transfor-

mation, its current application, its languages, its relationship with model

driven engineering (MDE), its context and its various types.

2.1 The Software Development Process

In general, in software development, the development process is divided

into different life-cycle phases namely: feasibility analysis, requirements

analysis, specification, design, implementation, testing, and maintenance.

The focus of this thesis is on the requirements analysis life-cycle.

2.1.1 Software Requirements

In general, requirements for any given software project are divided into

functional and non-functional requirements. It is important to define

9

2.1. The Software Development Process

the functional and non-functional requirements before building the soft-

ware and to make sure that the system or software will achieve the set

objectives. Selič [129] looks at technical and non-technical aspects of

requirements engineering and he believes that both have a significant

influence in increasing developer productivity and product quality in in-

dustrial projects. Functional and especially non-functional requirements

are sometimes neglected as the developers do not consider them as a

component in their field of profession and consider them in a separation

of concern manner [118]. In general, most companies mainly focus on the

implementation phase more than other phases and try to consider every

solution regarding a problem during this phase, which is similar to the

man who only has a hammer and sees everything as a nail [129]. If during

the requirements elicitation stage of the RE process the requirements are

poorly specified, this will lead to wrong implementation or implement-

ing something which is not needed and in some cases will result in the

project’s failure.

According to the Standish Group International [52], a failure in a

project means project cancellation or not meeting the main requirements

of a project such as budgets, delivery time and objectives. In order for a

project to be completed successfully, it has to meet its budget, delivery

time and business objectives. The Standish Group report analyses the

data of success and failure factors in different projects. The success and

partial success rate of these projects were 29% and 50% respectively,

whereas the failure rate was approximately 19% [52]. Tables 2.1 2.2 and

2.3 show some of the important factors which had a role in the project’s

success or failure.

Even by skimming through this data, we can notice the importance

of the requirements engineering process, even though these numbers do

not show details of the requirements since the required information was

not available due to confidentiality. The highly significant role of the RE

process is due to the fact that it consists of specific techniques applied

in a certain sequence.

10

2.1. The Software Development Process

TABLE 2.1. Project failure analysis (Standish Group (1995))

Incomplete requirements 13.1%

Lack of user involvement 12.4%

Lack of resources 10.6%

Unrealistic expectations 9.9%

Lack of executive support 9.3%

Changing requirements/specifications 8.7%

Lack of planning 8.1%

Did not need it any longer 7.5%

TABLE 2.2. Project success analysis (Standish Group (1995))

User involvement 15.9%

Management support 13.9%

Clear statement of requirements 13%

Proper planning 9.6%

Realistic expectations 8.2%

Smaller milestones 7.7%

Competent staff 7.2%

Ownership 5.3%

Functional Requirements

Functional requirements refer to services which a software has to provide

and how the system will respond to a particular input(s). Functional

requirements contain the intended behaviour of a system and they are

relevant to the what dimension (Figure 2.8). Such requirements describe

the intended behaviour of the system explicitly. Functional requirements

could be categorised into coarse-grained functionalities which must be

supported by the system-to-be (the system to be developed)[143]. It is

required for functional requirements to be satisfied in the system-to-be

and it can be fully observed whether or not a functional requirement is

satisfied.

11

2.1. The Software Development Process

TABLE 2.3. Project success analysis(Standish Group (2015))

Executive management support 20%

User involvement 15%

Optimization 15%

Skilled resources 13%

Project management expertise 12%

Agile process 10%

Clear business objectives 6%

Emotional maturity 5%

Execution 3%

Tool and infrastructure 1%

Non-functional Requirements

Non-functional requirements, an important factor in requirements engi-

neering, could be regarded as softgoals. By softgoals it is meant that

there is no clear-cut explanation regarding the goal’s achievement level.

In general, it could be said that for softgoals, there is no complete sat-

isfactory condition, thus the term ‘satisficing’ (partial degree of satisfac-

tion) is applied. It could be said that a softgoal is satisfied once the

goal has reached a certain level of achievement [95]. In this sense, non-

functional requirements are not similar to functional requirements, whose

satisfaction is fully required. There are several definitions regarding non-

functional requirements among researchers, some of the most common of

which are listed in Table 2.4.

Figure 2.1 illustrates a general classification of non-functional require-

ments. It represents the main criteria of non-functional requirements and

is not exclusive to any specific case.

Advantage of Requirements Taxonomies

Taxonomizing the requirements according to their type not only would

make it clearer to understand what the requirements refer to, but also by

12

2.1. The Software Development Process

TABLE 2.4. Definition of non-functional requirements

Source Definition

Anton [5]
Non-functional requirements of a system describe the
non-behavioural aspects of a system, capturing the properties
and constraints under which a system must operate.

Kotonya et
al. [80]

Non-functional requirements are not specifically concerned
with the functionality of a system. They place restrictions on
the product being developed and the development process, and
they specify external constraints that the product must meet.

Paech et al.
[25]

“The term non-functional requirement is used to delineate
requirements focusing on how good software does something as
opposed to the functional requirements, which focus on what
the software does.”

Landes [82]
“Putting it another way, non-functional requirements (NFRs)
constitute the justifications of design decisions and constrain
the way in which the required functionality may be realized.”

Figure 2.1. A taxonomy of non-functional requirements [143]

having this type of distinction among them, will allow for a more semantic

characterization of requirements. The following are some examples of

possible distinctions:

• Requirements which describe desired behaviour (many functional

requirements are of this kind)

• Requirements which describe unacceptable behaviour (many safety,

security and accuracy requirements are of this kind)

• Requirements which describe preferred behaviour (many perfor-

mance and ‘ility’ requirements are of this kind such as usability,

13

2.1. The Software Development Process

portability and etc.[143]).

By having requirements taxonomies, confined and cross-cutting con-

cerns [143] could be differentiated. Confined concerns refer to func-

tional requirements which focus on one particular point of functional-

ity, whereas cross-cutting refers to non-functional requirements, meaning

that the same requirements might contain more than one unit of func-

tionality. For instance, in a library system, in order to be able to search

for a book, user registration might be required. Having a requirement

taxonomy is an aid in understanding what the requirements refer to and

what category they belong to.

2.1.2 Software Project Types

Projects can be classified into different groups according to their char-

acteristics. Depending on the type of project, a particular requirements

engineering (RE) activity must be applied. An RE process model is an

abstract definition of how to operate a group of activities. The term tech-

nique denotes how to perform a particular activity. The term method

refers to identifying a guideline of how to perform a set of activities,

mainly emphasising how a related set of techniques can be integrated

[113].

Before commencing a project, a certain amount of preparation is re-

quired depending on the type of project. The type of project has a direct

effect on the RE methods that need to be implemented. For instance re-

quirements engineering for information systems differ from requirements

engineering for embedded control systems or requirements engineering for

generic services such as networking. According to the type of project, the

necessary type of RE activities and techniques may differ. A description

of some of the most well-known types of project is given below.

14

2.1. The Software Development Process

Brownfield vs Greenfield

A project can either be built from scratch or it can be built upon an

already existing system which needs to be improved, integrated or ex-

tended. In a Greenfield project, the project is brand new, which will

result in developers having to start from scratch and build the software

from the beginning, whereas in Brownfield type of projects, a system

already exists but it has to be further developed and improved. In this

case, developers could work on the current system (system-as-is) and

extend its functionalities [143].

Customer vs Market Driven

A project could be either a solution for a particular type of client in the

market (customer-driven) or a solution which would cover the need of

a large percentage of the market (market-driven). In customer-driven

types of projects, the project is designed according to the needs of a

specific type of client, whereas in market-driven projects, a larger scope

of solution is considered covering more than just one particular type of

client [143].

In-house vs Outsourced

A project could be assigned to a particular organization in order to carry

out all the project’s life-cycle processes (in-house) or it could be assigned

to different companies according to the different phases of the project

(outsourced). In an in-house type of project, one team or company will

carry out all the phases of the project, whereas in an outsourced project,

usually once the requirements have been identified different teams from

different companies will carry out the different phases such as design,

implementation, testing, etc. [143].

15

2.2. Software Process Model

Single-product vs Product-line

The outcome of a project could have only one version which would satisfy

the customer’s need or it could have different versions each of which

would cover particular needs in a large organisation. “In a single-product

project, a single product version is developed for the target customer(s).

In a product-line project, a product family is developed to cover multiple

variants” [143].

2.2 Software Process Model

So far, several development models have been introduced which can be

applied in software development projects. However, time has revealed

that they all contain flaws which have rendered them not fully efficient.

The following are some of the most well-known processing models which

have been applied for developing software projects:

• The Code-and-fix model

• The Stagewise model

• The Waterfall model

• The Evolutionary Development model

• The Spiral model

• Agile model

The Code-and-fix model [18] was one of the first models used in soft-

ware development. The idea behind this model was to begin the de-

velopment by doing some coding at first and then to come up with the

requirements, design and testing units. One of the disadvantages of this

model is allowing simultaneous bug fixing as the development carries on.

By applying a number of fixes, the primary structure of the code would

16

2.2. Software Process Model

be affected negatively. Moreover, since the requirement phase is not car-

ried out in a systematic manner, usually even when the software is fully

developed, it would still differ from the user’s need which in turn would

either result in redeveloping the software or rejecting it.

The Stagewise model [18] was designed in a way to develop software in

successive stages such as ‘operational plan’, ‘operational specifications’,

‘coding specifications’, ‘coding’, ‘parameter testing’, ‘assembly testing’,

‘shakedown’, ‘system evaluation’ [18]. Similar to the Stagewise model,

the Waterfall model is an augmented version of the Stagewise model.

It supports ‘feedback loops’ between different stages in order to allow

revisiting the earlier tasks and the redoing of any task mentioned in those

feedbacks. Moreover, the Waterfall model provides an initial prototyping

model which would allow for the evaluation of requirements, and design

of the system [18]. Although the Waterfall model is more efficient than

previous processing models, it still encountered difficulties. This model’s

main shortcoming is that the requirements and design of the system

have to be fully extracted and documented during the early stages of the

development process, which does not allow for any kind of requirements

and design modification throughout the remainder of the development

life-cycle. This feature would reduce the quality of the delivered software

especially in cases where the requirements have not been fully understood

at the early stages or if the client(s) would like to modify or add any extra

functionalities at a later stage.

The Evolutionary Development model [18] is another processing model

that has been used in software development. One of the exclusive fea-

tures of this model is its use in scenarios where the user(s) does not

actually know what is explicitly needed. The model would provide the

user with an initial realistic operational ground in a smaller scale com-

pared to the final product. This would allow the client(s) to have a

better understanding about the system and to better evaluate what is

needed. Yet this model is not without flaws. One of the main shortcom-

ings of this model is the lack of planning before software development.

Also, most of the time there are “unrealistic assumptions that the user’s

17

2.2. Software Process Model

operational system will be flexible enough to accommodate unplanned

evolution paths”[18].

The Spiral model[18] is one of the most commonly used development

models at the present time. It consists of four iterative stages including:

1. Determining objectives, alternatives and constraints

2. Identifying and resolving risks and evaluating alternatives

3. Developing iterations, deliverables and verifying correctness

4. Planning next iteration

In the Spiral model, a software project will go through these stages

repeatedly. During the initial stage, requirements are gathered by apply-

ing relevant techniques (interview, background reading, group sessions,

etc.). Then risks are identified and the level of risk of each requirement is

assessed and alternative solutions are considered accordingly. During the

next stage which is followed by testing, the client(s) would then be able

to verify the proposed functionality. Once the client has been satisfied

with the result, the next spiral is planned. Due to the iterative feature of

this model, each stage can be revised, adapted or extended throughout

the development life-cycle. It allows for having the requirements modi-

fied and/or added during late iteration, increasing the flexibility of the

system, especially in cases where the client(s) comes up with new issues.

The Spiral model particularly focuses on risk analysis. If there exists

any type of risk, then a formulation of cost-effective solutions must be

considered to resolve the risk(s). Depending on the type of risk, a differ-

ent solution might be proposed in the form of ‘prototyping’, ‘simulation’,

‘benchmarking’, ‘questionnaire’, ‘analytic modelling’ or a combination of

all these. Figure 2.2 illustrates a general framework of the Spiral model.

Agile model is centred around four values defined by the Agile man-

ifesto [41]: individual and interactions over processes and tools, working

software over comprehensive documentation, customer collaboration over

contract negotiation and responding to change over following a plan.

18

2.2. Software Process Model

Figure 2.2. Spiral model of the software process [18]

Agile development follows an iterative and incremental development

in a highly collaborative style in order to produce the software with high

quality in a cost and time effective manner. It emphasizes on deliver-

ing the smallest piece of software with functionality, as early as possible

and throughout the development, even while the system is evolving, by

adding more functionalities during the entire development process. This

allows the project to adapt rapidly to potential changes. Agile highlights

the importance of relationships and communications amongst the devel-

opers. The client’s collaboration is another important factor that must

be considered throughout the whole development cycle. Both the devel-

opment team and the client (or the client’s representative) should be well

informed, competent and authorised to make potential adjustments that

may emerge during the development process [1].

There are different existing methods in Agile, but for the sake of

brevity, we will not go into more detail about these methods (for more

19

2.3. Software Measurements and Metrics

detail refer to [1]) and will just list a sample of Agile methods as follows:

• Extreme programming

• Scrum

• Crystal family of methodologies

• Feature driven development

2.3 Software Measurements and Metrics

Software measurement and metrics are important factors in software en-

gineering. In general, measurement refers to a particular attribute of a

product such as size and quality. For instance, the number of lines of code

(LOC) in a program is a measurement. Metric refers to the ratio of a

measurement that a particular attribute contributes to the product. For

instance, the number of LOC per developer hours would be considered

as a metric.

“Measurement is the process by which numbers or symbols are as-

signed to attributes of entities in the real world in such a way as to

describe them according to clearly defined rules” [39]. Measurement

is a useful method by which developers are able to get some sense of

whether or not a requirement is consistent, completed, satisfied or in

general whether the requirement is ready to be released or not. From

the beginning of software development, software measurement and esti-

mation have been a cause of discussion amongst engineers. Software and

system engineers need an appropriate method in order to measure the

effectiveness of a given requirement.

Several number of software metrics have been developed since 1976.

From all introduced software metrics, four have been the source of the

majority of research conducted on software metrics. The first theories

are defined by Halstead [50], Albrecht [2], DeMarco [33] and McCabe

[104] known as cyclomatic complexity, a measure of the number of paths

20

2.3. Software Measurements and Metrics

Figure 2.3. Comparison table using impact estimation [44]

through a program. “The number of paths can be infinite if the program

has a backward branch. Therefore, the cyclomatic measure is built on the

number of basis paths through the program” [105]. Software development

process has undergone a dynamic revolution during the past decades.

This has resulted in evolving the software development methodologies in

order to meet changing life cycle patterns which they have had as their

objectives, emphasis on design and analysis [105].

Impact Estimation (IE) provides estimation tables, which allows de-

velopers to analyse any technical or organizational idea according to re-

quirements and costs. “The intention of impact estimation is that it

helps answer the question of how our design ideas impact all of a sys-

tem’s critical performance attributes (such as usability and reliability)

and all its resource budgets (such as financial cost and staff headcount)

for implementation and operational running” [44]. Figure 2.3 provides

an example regarding the purpose of the impact estimation that can be

21

2.3. Software Measurements and Metrics

used during the early stages of software engineering.

2.3.1 Software Quality Models

A large amount of research has been dedicated to create a feature cata-

logue to be used in software development. For instance, the International

Organisation Standardization (ISO) and the International Electro techni-

cal Commission (IEC), have proposed a number of standards for software

quality evaluation [40]. The following are a sample of quality models that

are appropriate for model transformation as a measurement framework:

• ISO/IEC Quality Model [21]. It is a quality standard which

applies to both quality models and metrics that has been used

widely and well accepted. It defines a wide-ranging set of quality

attributes by which software products can be evaluated. Moreover,

it defines a guideline to measure the attributes’ quality. ISO/IEC

quality model can be used to evaluate any type of software prod-

uct. It includes two categories of attributes: internal and exter-

nal. Internal attributes can be measured during the development

process, whereas external attributes can be measured within the

performance and testing process of the software product. Table 2.5

presents the six quality characteristics and sub-characteristics of

ISO/IEC.

• Dromey Quality Model [35]. In this approach, the quality

model differs depending on the attributes of particular products.

Dromey developed his model quality framework to analyse software

components. He defines a set of attributes that has direct relation

with software component characteristics.

• McCall Quality Model. McCall introduced one of the first com-

prehensive quality models in [106]. The proposed framework is

divided into two sections: measurable and non-measurable. Met-

rics are assigned to the measurable qualities in a subjective manner.

Figure 2.4 represents the McCall quality model.

22

2.3. Software Measurements and Metrics

TABLE 2.5. ISO/IEC 9126-1 quality characteristics [40]

Characteristics Sub-characteristics

Functionality

Suitability

Accuracy

Interoperability

Security

Functionality compliance

Reliability

Maturity

Fault tolerance

Recoverability

Reliability compliance

Usability

Understandability

Learnability

Operability

Attractiveness

Usability compliance

Efficiency
Resource utilization

Time behaviour

Maintainability

Analysability

Changeability

Stability

Testability

Maintainability compliance

Portability

Adaptability

Installability

Co-existence

Replaceability

Portability compliance

• Boehm Quality Model [19]. It is a well-defined framework

which allows software quality characteristics to be analysed. In

this framework, the initial quality characteristics are regarded as

general utility which itself is composed of: as-is utility, maintain-

ability and portability. Metrics are then generated in order to assess

each individual character. Figure 2.5 represents the Boehm Quality

23

2.3. Software Measurements and Metrics

Figure 2.4. McCall Quality Model [106]

Model.

Similar to any type of software product, model transformation also

needs to be evaluated regarding its functional qualities such as: under-

standability, modifiability, usability, interoperability and etc. Identifying

functional qualities, therefore, is an important task. A quality model

could be used as a paradigm to define qualities. Dromey’s framework

is very useful, however “it is not a trivial task to generate a framework

24

2.3. Software Measurements and Metrics

Figure 2.5. Boehm Quality Model [19]

individually for each particular element in MDE. For instance, model

transformation approaches have different styles and can be analysed from

different perspectives. This results in having different frameworks for

evaluation of each transformation” [74]. Based on [74] findings, McCall

Quality Model metrics can only be measured subjectively and does not

provide sufficient evidence for assessment of MT. According to Boehm

Quality Model, it is possible to evaluate model transformation. The

Boehm Quality Model supports mainly top level quality aspects which

are more generic and inappropriate for measuring the quality of model

transformation.

25

2.3. Software Measurements and Metrics

2.3.2 Goal-Questions-Metrics

The Goal Question Metrics (GQM) [10] is a useful method for identifying

measurements for model transformation. In any software development

process, a measurement mechanism is essential in order to evaluate the

system and its components. This would not only improve the overall

quality of the system, but it could also be used as proof and enactment

of the quality of the system. In general, in order for a measurement

technique to be effective, it has to be focused on specific goals and be

applied on all products, processes and resources throughout the entire

developing process. Then the result should be defined according to the

organization’s context and characterization.

In 1994, Basili [10] introduced GQM, a measurement approach, which

has been used both in academia and industry ever since. In GQM, ab-

stract goals are each characterised by several concrete objectives (ques-

tions), which are associated with measurable dimensions (metrics) that

are grounded in reference values.

The GQM approach is ”based upon the assumption that for an or-

ganization to measure in a purposeful way it must first specify the goals

for itself and its projects, then it must trace those goals to the data

that are intended to define those goals operationally, and finally provide

a framework for interpreting the data with respect to the stated goals”

[103].

In other words, GQM defines the measurement model on three levels:

conceptual level (goals: abstract qualities that we wish the system to

have), operational level (questions: concrete questions about some as-

pects of a goal), quantitative level (metrics: scaled unit of measurement

for the responses).

Defining goals is a useful process as it allows to focus on what is

important and to make the goal more specific while offering metrics that

are relevant to these goals. Not only it defines complete relationships

amongst goals and metrics, but also it discovers any missing goals or

inconsistency between goals [24].

26

2.4. Requirements Engineering

In GQM, goals are written explicitly, allowing the focus to be diverted

more effectively to what the important issues are. It is possible to have

more than one goal to be achieved at the same time. Goals in GQM have

no meaningful definition until they are associated with some qualitative

measure. Questions would make it possible to approach the problem from

a conceptual level through to an operational level. Therefore, firstly, goals

are refined into quantifiable questions, where a question can be used for

more than one goal. Then eventually, every question is associated with

a set of metrics in order to identify the result in a qualitative manner.

Note that the same metric may apply to different questions.

Figure 2.6. GQM model [10]

2.4 Requirements Engineering

Software development has suffered from a lack of requirements engineer-

ing almost since the beginning of the industrialization of software devel-

opment. Royce [58] states:

There are four kinds of problems that arise when one fails

to do adequate requirements analysis: top-down design is im-

possible; testing is impossible; the user is frozen out; manage-

ment is not in control. Although these problems are lumped

under various headings to simplify discussion, they are actu-

ally all variations of one theme - poor management. Good

project management of software procurements is impossible

27

2.4. Requirements Engineering

without some form of explicit (validated) and governing re-

quirements.

According to [94], research shows that RE is not being applied prop-

erly in industry. For instance, a study in 2003 suggests that about 52% of

nearly 2000 software/system developers in south-east Pennsylvania be-

lieved that their company did not do enough requirements engineering

[112]. In a similar follow-up survey in 2008 by Marinelli [102], the circum-

stances remained still the same and again around 52% of the participants

reported that their company did not perform an adequate amount of re-

quirements engineering. Moreover, another more recent study of seven

independent companies by [94] indicates that “existing requirements en-

gineering methods are insufficient for handling requirements for complex

embedded systems”.

The primary focus of the RE process is to provide guidelines regard-

ing the order of different development phases such as: requirements,

design, implementation, testing and validation. Its main aim is to pro-

vide guidance on how to apply the appropriate task throughout each

development phase. For instance, “determining data, control, or ‘uses’

hierarchies; partitioning functions; allocating requirements and how to

represent phase products (structure charts, stimulus-response threads,

state transition diagrams)” [18].

According to the standard software development process [143], re-

quirements engineering is the initial phase of the software development

life-cycle where the software’s specifications are declared. During the re-

quirements engineering process, all the requirements to be achieved by

the software (functional and non-functional requirements), and the cri-

teria for measuring the degree of their satisfaction, must be elicited and

documented in the requirements specification.

According to Bell et al. [13], requirements for any type of system

do not naturally arise, rather they have to be systematically engineered

for this reason the term engineering is used. An important advantage

of the RE process is that it not only saves costs, but also saves time

28

2.4. Requirements Engineering

[129]. It is not yet possible to claim that all organisations and companies

apply the RE process as diligently as they should [27]. This could be due

to several factors, the most common of which are: lack of time and/or

budget. In some projects the RE phase is either neglected or performed

incompetently in order to save time and budget. Paradoxically this is a

false assumption which project managers often make [14]. As mentioned

earlier, currently the RE process is performed in many companies in a

rule of thumb manner [129]. Both money and time can be saved if errors

and flaws are detected during the RE stage rather than later. According

to Boehm [17], it costs approximately five times more to detect and

resolve errors during design, ten times more during the implementation

phase, 20 times more during the testing and up to 200 times more after

delivering the system (Figure 2.7).

Figure 2.7. Cost of late correction (Boehm)

During the requirements engineering process, all the requirements to

be achieved by the software (functional and non-functional requirements)

and the criteria for measuring the degree of their satisfaction must be

elicited and documented in the requirements specification. According

to [119] “if the specification describes both hardware and software, it is

called system requirements specification; if it describes only software, it is

29

2.4. Requirements Engineering

called software requirements specification”. The process of constructing a

requirements specification for a system is called requirements engineering.

“Requirements Engineering is a set of activities concerned with iden-

tifying and communicating the purpose of a software-intensive system,

and the context in which it will be used. Hence, RE acts as a bridge

between the real-world needs of users, customers, and other constituen-

cies affected by a software system and the capabilities and opportunities

afforded by software-intensive technologies” [157].

In other words, RE is referred to as a set of activities as it is neither

a single stage nor phase. It is concerned with identifying and communi-

cating, which means that communication is as important as analysis. It

identifies and communicates the purpose of a software-intensive system.

Because quality means fitness for purpose, it is not really possible to say

anything regarding the quality unless the actual purpose is understood.

RE is also concerned with the context in which the software-intensive

system will be used. Context is important since designers need to know

how and when the system will be used. Therefore, RE is like a link be-

tween the actual needs (requirements are partly about what is needed) of

users, customers and other constituencies affected by a software system,

which means there is a need to identify all the stakeholders, not just

users and customers; and the capabilities and opportunities afforded by

software-intensive technologies, meaning that the requirements must be

realistic and possible [113].

The highly significant role of RE activity is due to the fact that firstly,

it declares the importance of the goals which were the reason for devel-

opers to develop such a software system. Secondly, it highlights precise

specifications of the intended software to be built [113]. It could be said

that it is the foundation of the development process which consists of

specific techniques applied in a certain sequence.

The RE process is categorized into two groups of models according to

their orientation: top-down orientation and bottom-up orientation. Top-

down oriented methods such as DeMarco [32], start the process with an

abstract description regarding the current and future circumstances. The

30

2.4. Requirements Engineering

abstract model will eventually result in a concrete form as the process

progresses. On the other hand, bottom-up oriented methods such as

Sommerville et al. [133] “start with observations about the real world

(concentrate on the instance level) and build abstract descriptions from

the observations as the process proceeds. Although it is obvious that

both approaches bear unique advantages and are therefore essential for

developing a specification, methods offering an integration of both ap-

proaches are still missing. Moreover, existing methods ignore the fact

that RE is an iterative process in which the RE team learns about the

current and/or future reality” [119].

In this thesis, we use the RE process model proposed by Sommerville

et al. [133] and adapt it according to our specific needs. This process

model is widely accepted by researchers and professional experts [143].

The following are the most important phases of RE (proposed by Som-

merville et al.) which have to be applied:

• Domain Analysis & Requirements Elicitation

• Evaluation & Negotiation

• Specification & Documentation

• Validation & Verification

The first step in RE is to understand what [143] problem should be

solved and why such a problem needs to be solved. Then it has to be

declared who is responsible for solving such a problem. In other words,

there are three [143] main dimensions that we must consider:

1. What dimension: what problem should be solved

2. Why dimension: why such a problem needs to be solved

3. Who dimension: who should be involved in the responsibility of

solving the problem

31

2.4. Requirements Engineering

Figure 2.8. Three dimensions of requirements engineering [143]

In general, it could be said that the primary role of requirements engi-

neers is to inquire about the problem which usually results in considering

two different versions of one system:

1. System-as-is: the existing system

2. System-to-be: the developed system as it should be by solving the

problem [143]

During the RE process, we have to collect as much information as we

can. Having sufficient knowledge about the problem is extremely impor-

tant; firstly to understand what the problem is, secondly to be able to find

the appropriate solution(s). Throughout the RE process, requirements

should be categorised into two types of statements: descriptive and pre-

scriptive statements [143]. Descriptive statements refer to those types of

statements that only consider properties of the system and states, which

properties are true about the system irrespective of the way the system

behaves. On the other hand, prescriptive statements refer to those types

of statements that consider the properties of the system according to

how the system behaves and state what should be true about the system

[143]. The distinction between descriptive and prescriptive statements is

an essential factor in RE. Descriptive statements are static and therefore

cannot be modified, whereas prescriptive statements are more dynamic

and the engineers have the flexibility to modify them [143]. In Figure

2.9, the classification of RE statements is illustrated in a diagram.

32

2.4. Requirements Engineering

Figure 2.9. Classification of statements in RE [97]

2.4.1 Domain Analysis and Requirements Elicita-

tion

The initial step in the RE process is the act of obtaining a great deal of

knowledge regarding the domain of the current problem, the organization

or company confronting the problem and the existing system that is

facing the problem. Once the required knowledge or information has

been acquired, a draft document could be provided which would help

developers to:

• Understand the context of the actual problem

• Identify the stakeholder’s actual needs and requirements

• Find an alternative solution to fulfil stakeholder’s needs

• Understand the structure of the organization in which the system

would be used (i.e. business objectives, policies, roles and respon-

sibilities)

During the Domain Analysis & Requirements Elicitation stage, there

are two main techniques that could be performed efficiently and sys-

tematically: artefact-driven technique and stakeholder-driven technique.

The artefact-driven technique is the process of using artefacts which al-

ready exist such as a collection of data and documentation about the

system. The following methods should be applied during the artefact-

driven technique according to the type of project:

33

2.4. Requirements Engineering

• Background study

• Data collection

• Questionnaire

• Storyboard and scenario

• Mock-ups and prototypes for early feedback

Stakeholder-driven technique is another useful technique to be applied

during the Domain Analysis & Requirements Elicitation phase. It is more

focused on interacting with a specific type of stakeholder in order to gain

relevant information about the required system, organization, main users,

etc. The following methods are applied during the stakeholder-driven

technique according to the type of project:

• Interview

• Observation and ethnographic studies

• Group session and brainstorming

In general, the term stakeholder can be defined as an individual or an

organisation or group of people who is either affected by or has an effect

on the outcome of a given project [122]. It is essential to fully identify all

the stakeholders of the project as an initial step prior to any other action,

because by missing an important group of stakeholders, there is a major

risk of missing a whole set of requirements of the system. A good partic-

ipation of stakeholders in the software development cycle not only would

result in a better understanding of the actual problem, but also would

help to build what is required according to the stakeholders’ needs. The

onion model of project stakeholders has been used to describe different

types of stakeholders and their relation to the system under develop-

ment. In this model, stakeholders are categorized into three different

types: Operational, Containing Business and Wider Environment. Fig-

ure 2.10 illustrates an onion model in which the stakeholders have been

categorised according to their role and effect on the system.

34

2.4. Requirements Engineering

Figure 2.10. Stakeholder onion model [98]

The Operational area includes those types of stakeholders which have

a direct interaction with the system. The Containing Business area in-

cludes types of stakeholders that somehow benefit from the system and

the Wider Environment area includes stakeholders which have an effect

on or an interest in the system [98].

In the following section, some RE techniques have been selected based

on their importance and relevance to this thesis which can be applied

during the Domain Analysis & Requirements Elicitation stage.

Interview

Interviews can be considered as a preliminary requirements elicitation

technique. In general, there are two types of interview: structured inter-

view and unstructured interview [143]. In a structured-interview, a set of

pre-defined questions have been drafted according to the specific purpose

of the interview. Whereas, in an unstructured-interview, the interview is

based on an informal discussion with the stakeholder(s) about the current

system and the stakeholder’s needs regarding the new software systems.

Regardless of being structured or unstructured, interview techniques

are usually based on the following procedures [143]:

35

2.4. Requirements Engineering

• Selecting a specific type of stakeholder according to the required

information that is needed

• Organizing a session with the stakeholder(s) where questions are

asked and recorded

• Writing a report about the interview results (interview transcripts)

• Submitting the outcome of the interview (report) to the stake-

holder(s) for refinement and validation

Prototyping

Prototyping is a RE techniques for receiving early feedback during the

Domain Analysis & Requirements Elicitation stage. Often, it is a difficult

procedure for stakeholders to comprehend the project’s textual system

descriptions since prior knowledge may be necessary. Therefore, a re-

duced sketch of the product is represented instead in order to give the

stakeholder(s) some idea regarding the appearance and functionality of

the future software system in the form of a prototype.

The primary target of prototyping approach is to identify a set of re-

quirements. This type of prototyping is known as mock-up or throwaway

prototyping (rapid prototyping). On the other hand, if the prototype

is evolving and converting into the actual final product throughout the

development process, then the term evolutionary prototyping is used in

such cases [143].

A prototype is particularly helpful for the requirements that are un-

clear or hard to understand. In general, there are two kinds of proto-

type: functional prototype which demonstrates functional aspects of the

software and user-interface prototype which demonstrates user-software

interaction aspects.

Regardless of functional or user-interface, prototyping techniques are

usually derived from the following iterative procedures [143]:

36

2.4. Requirements Engineering

repeat

build a prototype version from the selected requirements

show execution of prototypes

get feedback from stakeholders

updates from feedback

until prototypes get full agreements from stakeholders

Scenario based approach

According to [145], scenario based approaches are widely used in the

software development life-cycle. From an RE perspective, scenarios are

useful for two main reasons. Firstly, they explain the current software

system through concrete examples of a real set of interactions. Secondly,

they explore how the required software system (system-to-be) will run

via concrete examples of hypothetical sequences of interactions. There

are different types of scenario based approaches from which only two are

presented below.

• Positive scenario vs Negative scenario

A positive scenario identifies what action should occur for a be-

haviour that the software system can cover, whereas a negative

scenario demonstrates behaviour that the system should exclude.

• Normal scenario vs Abnormal scenario

A normal scenario includes a sequence of interactions which proceed

normally as expected, whereas an abnormal scenario captures a

sequence of interactions based on unusual conditions.

The scenario based approach technique has some advantages and dis-

advantages like any other technique. The ease of usage of scenarios by

different stakeholders with different backgrounds in order to share an

understanding, could be regarded as a positive side of scenario based

approaches. On the negative side, because they are represented as a lim-

37

2.4. Requirements Engineering

ited number of examples, they do not cover all possible behaviour under

different circumstances [143].

Goals-Operators-Methods-Selection rules

Goals-Operators-Methods-Selection rules (GOMS) [71] model represents

the procedural knowledge that developers require to be able to start the

project. In other words, it is an analytic model for identifying tasks.

GOMS analysis consists of defining and describing user’s Goals, Op-

erators, Methods, and Selection rules in formal notations. The model

consists of:

• Goals: The intention of the user that must be achieved.

• Operators: The required actions that must be performed to ac-

complish the goal.

• Methods: Sequences of operators to achieve a goal. There may

be more than one method available to accomplish a single goal, if

this is the case then:

– Selection rules: When a user would select a certain method

among others [71].

Similar to any given technique in the requirements engineering field,

GOMS has some advantages and disadvantages. One of its advantages

is that an estimation of a given interaction can be done with little effort,

at little cost and in a short amount of time, which has made GOMS very

practical. On the other hand, in order to define the goals, the analysts

must define the task which needs to be accomplished in detail which often

goes beyond the system specifications [71]. This may be difficult as the

analysts must consider all concepts of the system in order to identify the

main goals. GOMS analysis has to define what to do and what not to.

Explaining all these specifications is usually very difficult especially in

complex systems.

38

2.4. Requirements Engineering

2.4.2 Evaluation and Negotiation

At the stage of Evaluation & Negotiation, it is assumed that the previous

stage, that of Domain Analysis & Requirements Elicitation, has been

performed effectively. This section will introduce techniques and methods

for evaluating the elicited requirements, along with possible negotiations

that might occur between developers and stakeholders.

The evaluation stage is a necessary process that must be carried out

during the software development process. It is possible for the existence

of an inconsistency amongst the requirements, the chances of which will

increase if the requirements have been gathered from multiple and dif-

ferent stakeholders. Sometimes, this inconstancy could even result in

having conflicts between the requirements. Some requirements might in-

crease the probability of different types of risk such as: safety, security

and development risks. Therefore, an appropriate evaluation is essential

as part of the development process.

Furthermore, requirements’ evaluation allows for the discovery of al-

ternative solutions. This would be useful especially in cases where there

are inconsistencies or conflicts among the requirements. Once the alter-

native solutions have been identified, then negotiations could take place

between both sides regarding the alternative solution(s) based on the

budget and the delivery time. In general, the aim of requirements evalu-

ation is to ensure the system will have a low level of risk, that there are

no conflicts and that there is agreement between the stakeholders about

the requirements. The following methods should be applied during the

Evaluation & Negotiation stage according to the type of project:

• Inconsistency management

• Risk analysis

• Evaluating alternative options

• Requirements prioritization

39

2.4. Requirements Engineering

In the following section, some RE techniques have been selected based

on their importance and relevance to this thesis which can be applied

during the Evaluation & Negotiation stage.

Representation and Maintenance of Process knowledge

Representation and Maintenance of Process knowledge (REMAP) is a

requirements engineering technique which could be applied during the

Evaluation & Negotiation phase. The REMAP model is based on the

‘Issue-Based Information Systems’ (IBIS) design rationale model [81] and

uses goals to provide the context in which design deliberations occur in

RE. IBIS is a method based on deliberation by the articulation of ques-

tions. Every question is regarded as an issue which is associated by a

position (answer) as a solution to the issue. Positions are followed by

arguments as means of support [81]. In REMAP, a goal expresses a ca-

pability that must be met in order to meet user needs, to solve a problem

or to achieve an objective. Goals drive the argumentation process, the

outcome of which is the definition of a design solution that satisfies the

initial goals. Satisfying the goals generally requires the introduction of

further goals leading to a network of goals [81].

Unified Modelling Language

The Unified Modelling Language (UML) [20] is based on graphical no-

tations. UML is a language for expressing requirements, specification

models and designs in a platform-independent manner. It includes mul-

tiple types of diagram each of which allows for a specific design aspect of

the software system to be represented based on the type of diagram. Ac-

cording to [143] the following diagrams of UML (from [84]) are relevant

to the requirements engineering process:

• Class diagram

Class diagrams illustrate classes of the system in terms of objects

as well as any relationship between them. Throughout the devel-

40

2.4. Requirements Engineering

opment process, class diagrams can be used at different stages such

as:

– Conceptual modelling of problem domain

– Specification modelling; recording in precise but implementa-

tion independent manner based on agreed requirements of the

system

– Design modelling; detailing design structures of the system as

well as all dependencies between classes

• Use Case diagram

Use case diagrams can be used to describe:

– the system-to-be; the system to be constructed

– Actors; representing a role played by a person or an entity

that interacts with the system

– Use cases; families of usage scenarios of an application, grouped

into coherent cases of functionality

A use case is a general group of possible scenarios of using the

system; it could be said that a scenario is an instance of a use case.

It can be of either two types: inclusion or extension.

– Includes: use case uc1 includes use case uc2 if doing uc1

always involves doing uc2. It is particularly useful if uc2 is a

common subtask of two or more use cases.

– Extends: use case uc1 extends use case uc2 if uc1 provides

additional functionality used to carry out uc2 in certain cases.

• Sequence diagram

Sequence diagrams consist of:

– Object lifelines, represented by vertical dashed lines

41

2.4. Requirements Engineering

– Vertical rectangles, indicating activities of the object and its

duration

– Arrows, from one object lifeline to another represent messages,

usually method invocations

• State diagram

State machines graphically represent the dynamic behaviour of ob-

jects. It also shows the life history of objects over time and patterns

of inter-communication.

It consists of the following elements:

– States

– Transitions

– Default initial state

– Termination of state machine

2.4.3 Specification and Documentation

The Specification & Documentation phase of the RE process is mainly

based on the result of the two previous phases: Domain Analysis & Re-

quirements Elicitation and Evaluation & Negotiation. It begins with the

specification process which contains a set of agreed statements by all rele-

vant sides of the project such as: requirements, assumptions, and system

properties. Based on the results of the specification, the requirements

documentation can be drafted. In this section, some RE techniques will

be introduced that could be applied during the Specification & Docu-

mentation stage.

Formal specification

A formal specification, documents RE items formally. It formalizes the

RE statements with precise notations according to mathematical con-

cepts which would be necessary to validate the requirements and deals

42

2.4. Requirements Engineering

with them if requirements change. KAOS methodology [143] is a goal-

oriented requirements engineering approach which defines goals by using

a formal mathematical method of analysis. It is a useful methodology

as it supports the entire requirements elaboration process. It defines

requirements as high-level goals that need to be achieved and assigns ob-

jects and operations to responsible agents [144]. In KAOS methodology,

goals are formalised by using temporal logic according to the pattern of

behaviour they require. The goals of KAOS can be expressed using the

following formulae in temporal logic [66]:

Achieve: G ⇒ � Q

Q holds in some future state

Cease: G ⇒ � ¬ Q

There will be some point in the future that Q will not hold

Maintain: G ⇒ � Q

Q holds in all future states

Avoid: G⇒ � ¬Q

Q will never hold in the future

Model transformation systems necessarily involve a notion of time.

Propositional logic is not expressive enough to describe these features in

terms of requirements engineering. Yet, describing those using natural

languages are even less precise once we involve time. Here we have for-

mulated the general temporal properties of MT as follows:

43

2.4. Requirements Engineering

Liveness : Every request is followed by a response

�(request→ response)

Safety : p never happens

�¬p

Fairness : if p happens infinitely often, then ϕ will be

true

� ♦ p → ϕ

Invariance: At some point, p will hold forever

♦ � p

Partial correctness : if p is true, then q will be true when

the task is completed

p → � (done → q)

Mutual exclusion: two processes cannot enter their crit-

ical sections simultaneously

�¬ (inCS1 ∧ inCS2)

p oscillates every step

�((p ∧ X¬p) ∨ (¬p ∧ Xp)

The formalised rules need to be checked for internal correctness prop-

erties such as definedness and determinacy, which should hold for mean-

ingful rules. A prototype implementation can be generated and its be-

haviour on a range of input models, covering all of the scenarios con-

sidered during requirements elicitation, can be checked. When a precise

expression of the functional and non-functional requirements has been

defined, these can be validated with the stakeholders to confirm that

they do indeed accurately express the stakeholders’ intentions and needs

for the system.

The formalised requirements of a transformation τ : S→T can also be

verified to check that they are consistent:

• The functional requirements must be mutually consistent

44

2.4. Requirements Engineering

Figure 2.11. NFR types [26]

• The assumptions and invariant of τ , and the language constraints

of S must be jointly consistent

• The invariant and post conditions of τ , and the language con-

straints of T must be jointly consistent

• Each mapping rule LHS must be consistent with the invariant, as

must each mapping rule RHS

Non-functional requirements (NFR) framework

The NFR framework approach is focused on the non-functional require-

ments (software quality attributes such as security, performance, etc.)

throughout the entire developing process. NFR framework aims to help

developers to consider the non-functional requirements as important and

give them as much attention as they can. It helps to identify NFR for

the domain by acquiring knowledge about the system and its domain.

It also applies trade-offs and prioritization techniques among the NFR.

Figure 2.11 presents a catalogue of some NFR types [26].

45

2.4. Requirements Engineering

Natural language

Free documentation in natural language is a requirements documenta-

tion technique. Using the natural language technique to document re-

quirements would be a suitable option, mainly because there would be

no limitation in terms of expressiveness on what is needed in natural

languages, it can be understood by all stakeholders, and there is no com-

munication barrier. Nevertheless, this lack of limitation may result in

some negative outcomes as well, such as ambiguity (requirements with

no unique interpretation), opacity (requirements with no visible rational-

ity and independencies) and noises (requirements with no information on

any problem) [143]. In order to avoid these flaws, we can introduce some

discipline and structure in the documentation process using natural lan-

guages, for instance, SBVRSE [138].

2.4.4 Validation and Verification

In this stage, specifications must be analysed. They should be validated

by stakeholders in order to be evaluated according to their actual need.

Specifications should be verified in order to check consistency and avoid

conflicts and omissions. Any potential error and flaw must be fixed dur-

ing this phase and before the actual development in order to save cost,

effort and time. The aim of validation in the requirements engineering

concept is to check the achievement of the requirements. In other words,

it is the process of checking whether or not a completed project speci-

fication (system-to-be) has met the stakeholders’ expectations. To this

end, we can use a scenario based technique (section 2.3.1). A sample of

validation scenarios can be explored by stakeholders in order to check the

validity of the system. Another approach could be to animate parts of

the system by generating an executable model of the final system accord-

ing to the specifications [143]. In this approach operational behaviour is

graphically illustrated as a model where the model moves through time

[127]. Visualization of a simulation would help the stakeholders to vali-

date the system’s behaviour. Last but not least, the verification process

46

2.4. Requirements Engineering

can be done through formal checks. For this purpose, specifications must

be formal. The verification process checks whether or not the system is

correct according to semantics and requirements that were identified ear-

lier in the software life-cycle.

Validation in model transformation denotes checking whether or not

the inputs, outputs and the transformation itself fulfil the specifications

(quality criteria). This process can be done in a variety of manners, such

as inspection and review, check-list and testing.

Requirements inspection and review [143] are applicable techniques

for model transformation development. According to our investigations

(Chapters 3 and 4), this technique is widely used within the MT com-

munity which consists of selecting an individual or a group of people to

analyse the transformations for possible defects. Then a meeting takes

place to discuss the findings and once there is agreement regarding the

defects then appropriate solutions are suggested. This technique is known

to be an effective source code validation technique [38]. This is due to

the fact that it can be applied to any kind of software development and

project with any sort of specification format.

During the inspection process [143], general questions such as what,

who, when and where should be asked in order to find any potential

defects. The result of the inspection process must be approved by all

the involved members during the process (inspectors). As the main ob-

jective of this technique is to find defects, inspectors must not only be

independent from each other but also from the author of the requirements

documentation in order to avoid any potential conflict and/or interest.

• What and Who: the inspection process should be precise and accu-

rate about a particular subject and must be based on facts rather

than opinions or predictions.

• When and Where: the inspection process should not take place at

a too early stage of any given project, since potential errors may be

discovered by the author of the requirements documentation him-

self or another person involved in the project at the early stages.

47

2.4. Requirements Engineering

The inspection process should take place after the author of the re-

quirements documentation and others involved in the project have

had a chance to check and verify the process. “Empirical evidence

from software testing suggests that the more defects are found at

a particular place, the more scrutiny is required at that place and

the places impacting on it or impacted by it” [143]. For instance,

safety and security related projects.

Depending on the type of transformation project, requirements can

be more or less structured. Figure 2.12 presents the general structure of

requirements inspection and review [143] that can be used in MT.

Figure 2.12. Requirements inspection and review process

Model checking [9] is another increasingly used RE technique by which

the properties of formally specified models can be verified. It is a tech-

nique to verify finite state concurrent systems such as model transfor-

mations. One of the main advantages of this technique is that it allows

for automatic and systematic performance. The general idea behind this

technique is to explore the models systematically in order to find any

possible error by creating a counterexample that does not satisfy the

required properties.

Spin [57] is a model checker by which the properties of a given system

can be checked if properties are formalized in Linear Temporal Logic

(LTL). It is a well-aligned approach with requirements engineering of

model transformation in KAOS, which supports requirements elaboration

using temporal logic. In model transformations, formalised requirements

in temporal logic could then be checked for particular implementations

using model-checking techniques, as in [121].

48

2.5. Model Driven Engineering

Validation and verification of a model transformation system involves

checking whether or not the transformation in question behaves as it was

initially designed to behave. Requirements of the transformation should

satisfy the system requirements and there must not exist any incomplete-

ness, conflict and inconsistency amongst the requirements. This can be

achieved by using formal methods, such as model checking.

By using model checking, a formal checking process would go through

the behavioural property (specifications) of the system (model) in order

to verify it either by an exhaustive enumeration (explicit or symbolic) of

all of the reachable states of the system or any internal behaviour that

might result in the system’s transition between them.

A counterexample will be produced whenever the specification does

not hold in all of the system (model) execution which should consist of

a trace of the model from a start state to an error state in which the

specification is violated, providing a very helpful tool for debugging the

system design [126].

2.5 Model Driven Engineering

Model driven engineering [12] is an approach to software development

in which the primary focus is on models rather than programs. Models

can include various information such as functionality, time constraints,

security, maintainability etc. The intention of MDE is to use models in a

productive way that can be manipulated by programs. The productivity

of a model is determined by how complete and formally it is defined. In

the concept of MDE, metamodels are used to build the formal definition

of the models. A metamodel describes the structure of a model that

the model needs to follow in order to be valid. In general, it could be

said that a metamodel is the prerequisite of the model transformation’s

context [16]. MDE provides a framework which integrates software de-

velopment activities along with metamodels and model transformations.

It presumes models as primary entities in the software development cy-

49

2.5. Model Driven Engineering

cle. In order to make models to be entities of software development, they

need to be formally defined and automatically manipulated by programs.

The increasing complexity and size of today’s software systems has

resulted in the proliferation of many different kinds of development en-

vironment, to create these systems. As current technologies are mainly

geared towards code-centric software development, it is not a trivial task

to develop software using different environments. MDE [68] is a develop-

ment methodology which allows developers to investigate software from

the low-level implementation to the more abstract level. Models are cen-

tral to the MDE software development process. One of the main aspects

of MDE is applying operations on models automatically. Models encom-

pass information of different phases of the development process. They

are also capable of representing the system at different levels of view and

abstraction [16]. It could be said that models are an abstract representa-

tion of the system-to-be. Models are defined by using different modelling

languages according to specific syntax and semantic rules which allow

the developers to analyse different properties of the system. To under-

stand the advantages of using MDE in the development process, a clear

description of its structure and the relationships between its components

and different sections is required.

The first challenge one might face regarding the model-driven uni-

verse is that it contains a variety of different acronyms whose exclusiv-

ities might lead to confusion in different paradigms. To this end the

fundamental components of MDE and their relations will be reviewed

and a clear explanation regarding the main and the basic acronyms in

the model-driven universe and their relationships will be presented.

MDE could be regarded as the superclass of other model-driven con-

cepts as it consists of the main engineering process. An instance of MDE

is Model Driven Development (MDD) [116] which is mainly focused on

development activities. It is a paradigm which applies models as the pri-

mary artifact in the cycle of development. In general, MDD generates im-

plementations from models in a (semi) automatical manner [22]. Model

Driven Architecture (MDA) [16] is another element of the model-driven

50

2.5. Model Driven Engineering

universe which itself is a subset of MDD. MDA is a particular approach

which was introduced by the Object Management Group (OMG) [132]

where Platform Independent Models (PIM) are transformed to Platform

Specific Models (PSM). In PIM, the model does not contain information

about the platform used, whereas in PSM, the model does contain in-

formation about the platform used. Figure 2.13 shows the relationship

between MDE (a field), MDD (a field overlapping MDE) and MDA (a

framework) in the model-driven universe.

Figure 2.13. Model-driven frameworks, adapted from [22]

2.5.1 Model Driven Development in MDE

Software systems are simply much larger and do more complex things

than ever before. One of the main reasons behind this complexity is

the semantic gap between the problem domain and the solution domain.

MDD aims to fulfil this gap by specifying the problem with a high ab-

straction level model and then transforming it into implementation of

the actual software [128]. This would drive developers to shift their fo-

cus from low-level programming code to high-level models. This would

enable the developers to focus more on solving the actual problem rather

than focusing on the details of the implementation.

MDD is a software development approach in which models are con-

sidered to be the main elements throughout the development process.

51

2.5. Model Driven Engineering

This would allow the implementation to be generated in an automatic

or semi-automatic way. In this approach, the main goal is to have au-

tomation as much as possible during the software development life cycle

[22].

2.5.2 Model Driven Architecture in MDE

As mentioned earlier, MDA is the framework defined by the Object Man-

agement Group (OMG) as the realization of MDE. It provides developers

with an architectural view of how the OMG perceives MDE should be

done in different stages such as the analysis phase, the design and im-

plementation phase [67]. Another advantage of the MDA framework is

that it can be defined at different levels of abstraction. The levels of

abstraction are as follows [73]:

• Computational Independent Model (CIM): analysis

• Platform Independent Model (PIM): high-level design

• Platform Specific Model (PSM): detailed design

Computational Independent Model [73] provides a view of a system

from a computation independent viewpoint. It does not contain any de-

tails of the system’s structure. It can be regarded as an informational

concept of a model which describes the requirements and domains of the

system from a high point of view by avoiding details and any computa-

tional implementation. In short, CIM can be regarded as the analysis

level of MDA.

Platform Independent Model [22] describes the behaviour and struc-

ture of the application. It is a role where the model does not contain any

information regarding the platform used. It provides the developer with

a sufficient degree of independence to map to one or more concrete im-

plementation platforms. In short, PIM can be regarded as the high-level

design of MDA.

52

2.6. Model Transformation

Platform Specific Model [22] concerns specific platforms. Even if a

model is not being executed itself, it must contain all the necessary infor-

mation about the behaviour and structure of an application to a specific

platform. In short, PSM can be regarded as the detailed design level of

MDA.

MDA treats model transformation as its main artifact which provides

an automated transformation among different types of representation.

For instance, a CIM captures information regarding the requirements

from the domain and by applying model transformation, it can be trans-

formed to a PIM (Figure 2.14). This would make the model independent

of any implementation while the model contains the complete specifica-

tions. Similarly, a model transformation can be executed to transform

the PIM into PSM while the system is maintained with sufficient func-

tionalities. Finally, an executable code can be produced by a model

transformation on PSM.

Figure 2.14. Transformation between different representations of a model

2.6 Model Transformation

According to the Oxford Dictionary [34], transformation is defined as “a

marked change in form, nature, or appearance”. In general, the aim of

model transformation is to create a new model or to improve an existing

model according to established specifications expected to solve a specific

problem. Models are the primary artefacts. The model used as the input

of a transformation is referred to as the source model and the model

used as the output of the transformation is referred to as the target

model [16]. Model transformation can be used for different tasks such as:

modifying, creating, adapting, merging, weaving or filtering models. The

53

2.6. Model Transformation

captured information in models is common to all these tasks, therefore

it can be reused and avoids the process of creating the artifacts from

scratch. Model transformation allows developers to use the information

that was once captured as a model and build on it [29].

Model transformation consists of the words model and transforma-

tion. According to Stachowiak [15] a model must possess the following

three features:

• Mapping: it should always be based on an origin

• Reduction: it should only represent a relevant subset of the orig-

inal’s properties

• Pragmatic: it should be usable in place of the original for a par-

ticular given pre-defined purpose

Fowler [22] has classified models into three groups: models as sketches,

models as blueprints and models as programs. When a model is referred

to as a sketch, only a partial section of the actual system is specified by it.

On the other hand, models as blueprints are used to provide a complete

and detailed specification of the system. Finally models as programs are

used instead of programs where models are directly used to develop the

system.

Transformations are often used for:

• Restructuring and refactoring models

• Migrating models according to the metamodel

• Refining models from PIM to PSM

In general, it could be said that transformations are generally useful

to translate the semantic content of a model from one language to that

of another [75].

Model transformations perform a mapping between different models.

They take the source models and transform them to the target models.

Nevertheless, first it has to be declared what needs to be transformed.

54

2.6. Model Transformation

If the artifacts that need to be transformed are programs such as source

code, byte code or machine code, then the term program transformation

must be used. On the other hand, if the software artifacts are models, the

term model transformation should be used [108]. Figure 2.15 illustrates

the general architecture of the transformation paradigm.

Figure 2.15. The general architecture of model transformation [29]

Model transformation is one of the core elements in MDE in the de-

velopment of a software. “Transformations are used to refine models

from platform-independent forms to platform-specific, to migrate mod-

els in response to metamodel evolution, and generally to translate the

semantic content of a model from one language to that of another” [75].

Moreover, transformations could be used as a means to restructure a

model in order to increase its quality.

MDE aims to develop, maintain and evolve software by performing

model transformations and relying on models as first-class entities. A

large number of transformation tools and approaches have been defined

across the MDE community. Transformations can be differentiated re-

garding their input (source) model , output (target) model, specification

notation and style. From an engineering point of view, a model can be

useful if it is an aid in deciding the appropriate series of actions that need

to be taken to reach and maintain the system’s goal.

2.6.1 Transformation Types and Properties

Before developing any type of model transformation application, the de-

veloper needs to identify certain properties regarding the actual transfor-

mation. In this section, the different types of model transformation will

55

2.6. Model Transformation

be categorised according to their characteristic properties. This is useful

as it allows developers to decide which model transformation language

and engine is suitable for a specific type of transformation. We will give

a brief explanation of some general properties of model transformation

developments as presented in Table 2.6.

TABLE 2.6. General properties of transformations

Transformation properties

Type model-to-text, model-to-model, text-to-model

Number of models one model, one-to-one, one-to-many, many-to-one,
many-to-many

Change of abstraction vertical, horizontal

Change of metamodel endogenous, exogenous

Properties preservation semantic, behaviour, syntax

Rule application control implicit and explicit control, external control, rule appli-
cation scoping

Rule scheduling rule selection, rule iteration, phasing

Traceability implicit, explicit

Directionality unidirectionality, multidirectionality

• Type

Model transformation types can be categorised as follows:

– Model to text

Model to text transformations can be divided into two cat-

egories: model to actual text transformations and model to

source code transformations, also called model to code trans-

formation/code generation. In the case of a model to text

transformation, it is necessary for the engineer to identify the

56

2.6. Model Transformation

type of text. If it is a source code, the programming language

it should produce as well as appropriate notations need to

be established. If the output is from a documentation genera-

tion type, then the structure and format of the documentation

must be identified.

– Model to model

In model to model transformations, the general idea is to cre-

ate elements of target models. Elements in the source model

have to be mapped to elements in the target model. It is

important to identify properties of the target model [16]. De-

pending on the requirements, extra restrictions may be added

on the output model. This is due to the fact that all possible

instances of the input metamodel are not always transformed

automatically to the output and there is a need to add certain

restrictions to them.

– Text to model

The main idea in a text to model transformation, also called

reverse engineering or design recovery, is to create models from

text. In order to do that, a parser must be used for the text.

The type of parser can be identified through different methods

such as interviewing the stakeholders or in some cases the

stakeholders might prefer to use their own parser.

The supported target type is a property of model transformation

which can be used to distinguish the model transformation accord-

ing to its target model. The target model could be either in the

form of a model or text. Model to model transformations create

elements of the target model, then elements of the source model are

mapped into the target model. In model to text transformations,

instead of creating elements of the target model, the transforma-

tion creates arbitrary text, and the elements of the source model

are mapped into fragments of text. This type of transformation is

also called model to code transformation if the target’s text consists

57

2.6. Model Transformation

of program source code [108].

(For the purposes of this thesis, if not clarified otherwise, when

talking about ‘model transformation’ we are referring to model to

model transformations).

• Number of Models

The number of models in a transformation is another factor that

needs to be established (one-to-one, one-to-many, many-to-one and

many-to-many). In a transformation, there must be at least one

model involved, and in such cases where only one model is involved,

the model is the source model and the target model at the same

time. The target model is created by transforming the existing ele-

ments of the source model according to the specifications. Through

this identification, it can be assumed that for this kind of transfor-

mation, the source and target models are identical, meaning they

have the same language.

Transformations often contain two models: a source model, S, and

a target model, T. The target model is usually assumed to be

empty and in case there is information, it will be overwritten by the

transformation and it will only contain the required generated in-

formation. It can also be the case that the transformation contains

several source models. In this case, the engineer has to identify

whether or not the transformation performs mapping (weaving S1,

S2 into T1) or whether it performs updating (merging S1, T1 into

T′1).

• Change of Abstraction

Change of abstraction in model transformation means that the

amount of information that a model can contain could be varied.

Not only the amount of detail could be varied (details unchanged

or reduced), but also it is possible to introduce new details. An-

other factor that needs to be identified in a transformation is its

change of abstraction, whether it is vertical or horizontal. In a ver-

58

2.6. Model Transformation

tical transformation, the level of abstraction is modified whereas

in a horizontal transformation, the abstraction level remains un-

changed while the representation of the model is modified.

• Change of Metamodel

Change of metamodels is based on whether the transformation is

endogenous or exogenous. Endogenous refers to those types of

transformations which only operate on a single metamodel to ex-

press the models (the metamodel of the source and target models

are the same). The term exogenous refers to the transformations

that are expressed using different metamodels (the metamodel of

the source and target models are different).

Transformations can be either endogenous or exogenous. If it is

an endogenous transformation, then there is no need to use two

different metamodels and the engineer only needs to find out what

the required transformation language is for both source and target

models. On the other hand, if the transformation is exogenous, then

metamodels of the source and target models need to be identified

[16].

• Properties Preservation

Preservation of properties in model transformation means that ev-

ery transformation preserves certain aspects in the target model

from the source model. Source and target models could have com-

mon properties depending on the transformation type. In general,

there are three types of preservation in model transformation: se-

mantic preservation, behavioural preservation and syntactic preser-

vation [8].

Semantic preserving transformations refer to those kinds of trans-

formations where the structure of the overall computation is changed

without incurring any changes in the computed values. In these

types of transformation, the source metamodel and the metamodel

of the target are similar as is their mapping regarding semantic

59

2.6. Model Transformation

preservation; this means that the meaning of both models are sim-

ilar while they are represented by different abstract syntax [148].

A transformation is called behaviour preserving, if the target model

fulfils the behaviour constraints in the source model. For instance,

a model to text transformation can be regarded as behaviour pre-

serving if the output code (text) produces values that slightly differ

from the predicted values by the corresponding simulation model

[16], even though the source and target models are not semantic

preserving.

Syntax preserving transformations are those in which the abstract

syntax of the model remains unchanged. For instance, improving

the graphical layout of a model is an example of syntax preserving

transformation, where the abstract syntax of the transformation

is preserved while the concrete syntax is changed by replacing old

graphical elements with new ones [16].

The target model obeys all the same constraints as the source

model. The idea is that the constraints are what is being preserved,

rather than the whole model.

• Rule Application Control and Scheduling

Every transformation language provides a different mechanism re-

garding when and where transformation rules should be applied,

therefore it is necessary for the engineer to find out what the re-

quired characteristics of the transformation language are. Different

aspects need to be considered such as: implicit control by which the

order of rule application is not defined explicitly; explicit control by

which the rule application and the transformations execution order

is specified. Rule application scope means that “the transformation

affects only parts of the model. The restriction can be either on

the source model or on the target model” [16]. Moreover, the order

of rule application is determined by rule scheduling: Rule selection

controls when a rule is applied. Rule iteration uses recursion, loop-

60

2.6. Model Transformation

ing or fixed point iteration. Phasing determines that in a certain

phase only certain rules can be executed [16].

• Traceability

Traceability might be required to be performed by the transforma-

tion in order to perform different analyses such as how changing a

model could affect other related models.

• Directionality

The engineer needs to determine whether the transformation is

unidirectional (where mapping is just from source to target model)

or bidirectional (where mapping is from source to target model and

from target model to source model).

2.6.2 Model Transformation Languages

“A model transformation language is a vocabulary and a grammar with

well-defined semantics for performing model transformations” [16]. There

are a large number of model transformation languages each with a dif-

ferent nature and structure intended for a specific kind of transforma-

tion task. Depending on the transformation task some MT languages

are better equipped to handle the general characteristic of a software

(i.e. complexity, accuracy, fault tolerance, execution time, modularity,

etc.). There are different language paradigms that model transforma-

tion languages can follow. The main paradigms of model transformation

languages are: imperative, declarative and hybrid. Imperative languages

are mainly concerned with how the transformation should be executed,

whereas declarative languages mainly focus on what needs to be trans-

formed [117]. Hybrid transformation languages offer both imperative and

declarative languages according to the user’s choice of language.

We have selected four MT languages to review, compare and analyse,

namely: UML-Rigorous Systems Design Support (UML-RSDS), ATLAS

(ATL), Epsilon Transformation Language (ETL), Query/View/Transfor-

mation (QVT).

61

2.6. Model Transformation

UML-Rigorous Systems Design Support (UML-RSDS)

UML-RSDS is a model transformation tool which is able to manufacture

software systems in an automated manner. It is a tool which is designed

for Model Driven Development and it supports by Java, C++, C# and

JSP/servlets. It presents a high-level Unified Modelling Language (UML)

specifications and uses standards in UML2 and OCL2. One of the main

advantages of UML-RSDS is that in order to facilitate its use for the

user, it uses simplified OCL notations. “The use of two-valued logic and

having all collections as either sets or sequences would facilitate the veri-

fication task in cases of high-integrity systems requiring a high degree of

assurance” [87]. It uses a declarative approach which is suitable for ab-

stract transformations and could be used at the early stages of software

development such as the requirement phase. UML-RSDS which uses use

cases as the main behavioural description of systems, does not require

implementation platform modelling, and the transformation process has

a sequential execution model. The functionality of use cases is in turn de-

fined using the data and operations of classes in the class diagram. State

machines can be used in UML-RSDS to model the intended life histo-

ries of objects, and detailed behaviour of operations, but are optional.

UML-RSDS has a high level of abstraction (Figure 2.16).

Figure 2.16. General process of UML-RSDS

62

2.6. Model Transformation

ATLAS (ATL)

ATL is another well-known model transformation tool which is used for

model to model transformations. ATL transforms the source model into

the target model according to the transformation definition. It is a hy-

brid transformation and has become a popular language tool due to its

declarative and imperative aspects. Being declarative allows ATL to hide

the details related to traceability, source elements, rule triggering and etc.

It would result in having complex transformation algorithms underlying

a simple syntax. However, it may not be possible to have a complete

declarative solution for any given transformation. In that case ATL also

allows developers to use imperative features [64].

ATL also uses Object Constraint Language (OCL) and is similar

to the QVT standard provided by Object Management Group. It is

a domain-specific language (DSL) [141]. ATL uses a specific approach

and therefore instead of focusing on a general solution which may be

suboptimal, it focuses on a specific solution for a specific set of problems

[64]. Figure 2.17 presents the overall overview of ATL transformation

approach.

In ATL a source model Sa is transformed into a target model Ta ac-

cording to the transformation definition mma2mmb.atl which is defined in

the ATL language. “The transformation definition is a model conform-

ing to the ATL metamodel. All metamodels conform to the Meta Object

Facility (MOF)” [64].

Figure 2.17. Overview of the ATL transformational approach [64]

63

2.6. Model Transformation

Epsilon Transformation Language (ETL)

ETL is also a hybrid model to model transformation language that is

built as a component atop of ‘Epsilon Eclipse’ [77]. This would enable

ETL to be consistent semantically and syntactically with other languages

which also are being built atop of Eclipse [76]. Within ETL, the Epsilon

Object Language (EOL) provides a set of reusable model management

tasks. EOL uses the OCL mechanism by supporting other languages at

the same time. ETL provides features such as: multiple model access,

statement sequencing and model modification capabilities. “ETL needs

to be able to capture and execute specifications of transformation sce-

narios that involve an arbitrary number of input and output models of

different modelling languages and technologies at a high level of abstrac-

tion” [78].

The overall structure of ETL consists of having one or more sets of

modules that includes a number of rules and operations. “Rules are de-

clared with their name, one source, and one or more target elements.

The rules can be independent or be an extension of other transformation

rules. It is possible to assign applicability of the rules to the particular

elements in the source model by defining a guard. The guard can be spec-

ified optionally by using EOL expression or a block of EOL statements”

[74].

Query View Transformation (QVT)

QVT [115] can be used either as an imperative language or declarative

language defined by OMG. The declarative part of QVT consists of a

two-level architecture which embodies the same semantics at two dif-

ferent levels of abstraction: User-friendly Relations and Core language.

User-friendly relation level is responsible for pattern matching of complex

objects and creating a template of objects. Both unidirectional and bidi-

rectional types of transformation can be written in QVT. The imperative

nature of QVT consists of an Operational part which is designed to write

unidirectional transformations. Black box is another component of QVT

64

2.6. Model Transformation

language which acts as a mechanism to invoke facilities of a transforma-

tion to be expressed in other transformation languages. It can be said

that QVT is an architectural basis, and that individual vendors have to

implement it. Figure 2.18 presents an overall architecture of QVT.

Figure 2.18. QVT architecture [115]

TABLE 2.7. Comparison of transformation languages

Language Mapping Update-in-place Bidirectionality Change-
propagation

UML-RSDS X X X ×
ATL X X (partial) × ×
QVT X X (partial) X X

ETL X X × ×

Comparison of Transformation Languages

In this section, we are going to compare the functionality of model trans-

formation languages. ATL has a restricted form of update-in-place pro-

cessing, called refining mode. This makes a copy of the source model

and then updates this copy based on the (read-only) source model. Thus

the effects of updates cannot affect subsequent rule applications. QVT

also adopts this approach, but repeatedly applies the copy and update

process until no further changes occur. In contrast, UML-RSDS and

ETL directly apply updates to the source model. Bidirectionality in

UML-RSDS is partly supported by the synthesis of inverse transforma-

tions from mapping transformations. QVT provides the capability to

65

2.6. Model Transformation

apply a transformation in different directions between the domains (pa-

rameters) of the transformation rules. However, as with UML-RSDS,

this capability is essentially limited to bijective mapping transformations

[135]. QVT additionally supports change-propagation, by deleting, cre-

ating and modifying target model objects when an incremental change to

the source model takes place. This also applies only to mapping transfor-

mations and not to update-in-place transformations. Table 2.7 illustrates

a comparison of the four selected MT languages.

2.6.3 Model Transformation Examples

In this section, we have chosen to review three types of model transfor-

mation: refactoring, migration and refinement.

Refactoring

The general idea behind refactoring is to improve the structure of the

model to make it easier to understand, and to make it more maintain-

able and amenable to change. According to Fowler, refactoring could

be defined as “changing a software system in such a way that it does

not alter the external behaviour of the code, yet improves its internal

structure” [37].

We will go through a case study [91], an example categorized under

refactoring/restructuring transformations. It is an example of an update-

in-place model transformation, which carries out a refactoring of a class

diagram to improve its quality. The aim of the transformation is to re-

move situations of apparently duplicated attributes in different classes

from the diagram. For example, if all subclasses (more than one) of a

given class have an attribute with identical name and type, then these

copies can be replaced by a single attribute in the superclass. Figure 2.19

is a representation of the metamodel for the source and target transfor-

mation language where the metamodel is represented by UML 2.0 class

diagram language.

66

2.6. Model Transformation

Figure 2.19. Class diagram metamodel [75]

The initial assumption for models in this case is:

• Class name uniqueness

• Type name uniqueness

• Property name uniqueness in classes

• Single inheritance

According to the assumptions, two classes with the same name, two

types with the same name, two attributes of a class with a distinct name

with another attribute of its own class and with the attributes of any

superclass must not exist. Moreover, there must not be any multiple

inheritance, i.e., the multiplicity of generalisation is restricted to 0::1.

Not only must these assumptions be preserved, but also the following

properties of the transformation itself must hold.

• Moving up common attributes of all direct subclasses to their su-

perclass: If the set g = c.specialisation.specific of all the direct

subclasses of a particular class c has two or more elements, and all

classes in g have an owned attribute with the same name n and

type t, then add an attribute of the same name and type to c , and

remove the copies from each element of g (Figure 2.20).

67

2.6. Model Transformation

Figure 2.20. Rule 1 [75]

• A new subclass created for duplicated attributes: If there is a class

called c that has two or more direct subclasses g, g= c.specialisation

.specific, and there is a “subset g1 of g, of size at least 2, all the

elements of g1 have an owned attribute with the same name n and

type t, but there are elements of g− g1 without such an attribute

that introduce a new class c1 as a subclass of c. c1 should also

be set as a direct superclass of all those classes in g which own a

copy of the cloned attribute. In order to minimise the number of

new classes introduced, the largest set of subclasses of c which all

contain a copy of the same attribute should be chosen. Add an

attribute of name n and type t to c1 and remove the copies from

each of its direct subclasses” [75] (Figure 2.21).

Figure 2.21. Rule 2 [75]

• A root class created for duplicated attributes: If there are two root

classes or more, “then all of which have an owned attribute with

the same name n and type t, create a new root class c. Make c

the direct superclass of all root classes with such an attribute, and

68

2.6. Model Transformation

add an attribute of name n and type t to c and remove the copies

from each of the direct subclasses” [75] (Figure 2.22).

Figure 2.22. Rule 3 [75]

The refactoring example operates on UML class diagrams to remove

cases where all subclasses of a given class have an attribute with a com-

mon name and type. The requirements of the case study are described

in more detail in [75], but here we suffice to briefly list the functional and

non-functional requirements:

• Functional requirements: the assumptions are precisely defined;

three intended transformation steps (refactoring requirements) are

described in text and concrete syntax diagrams.

• Non-functional requirements: invariance of the assumptions is spec-

ified. Effectiveness is specified in terms of minimising the number

of new classes created.

Missing are requirements for model-level semantic preservation for

model quality improvement, reliability, extensibility, efficiency and com-

prehensibility.

The above MT example (refactoring) was a case study proposed by

Transformation Tool Contest (TTC), where participants submitted their

solutions by using their preferred transformation tool and language. The

outcome of the submitted solutions for this case study were that:

• None of the five published solutions in [75] provide proof of model-

level semantic preservation. Some solutions do not achieve such

69

2.6. Model Transformation

preservation, because they use a different set of rules to those in-

dicated in the functional requirements. This was due to the fact

that requirements were not stated clearly and explicitly which re-

sulted in requirements’ ambiguity and misinterpretation amongst

the participants.

• None of the solutions in [75] achieve more than a neutral measure

of usability or extensibility.

• Only two solutions in [75] have a practical efficiency in processing

large models.

Migration

Model migration transformation is part of model transformation which

itself is a key element of model-driven software development. In model

migration, instances of models are updated in order to conform to the

evolved metamodel. For this type of transformation, a case study, TTC

2010 [123], has been chosen which involves the transformation of models

of the UML 1.4 activity diagram language [137] into models of the UML

2.2 activity diagram language [139].

The Unified Modeling Language (UML) has changed in a number of

ways from version 1.4 to version 2.2. For instance, in UML 1.4 model

elements, which defines what or who is responsible for a particular role,

are represented as partitions, while in UML 2.2 it is represented as activ-

ity partitions. In general the most important changes between these two

UML versions are activity diagrams. The structure of activity diagrams

has changed between UML versions of 1.4 and 2.2. Activity diagrams

are used in UML to model low-level behaviours by emphasising sequenc-

ing and co-ordination conditions. An activity diagram consists of three

elements:

• Activities (as rounded rectangles)

• Transitions (as directed arrows)

70

2.6. Model Transformation

• Decisions (as diamonds)

On an abstract level, Table 2.8 provides information regarding the

differences between UML 1.4 and UML 2.2 [6].

TABLE 2.8. Model elements in UML [6]

UML 1.4 element names UML 2.2 element names

Association end Member end and property

Object (when used in activity diagrams) Object node

Object (when used in sequence diagrams) Lifeline

Collaboration diagrams Communication diagrams

Swimlane (or partition) Activity partition

Activity Structured activity node

Decision Decision node or merge node

Final state or end state Final activity node

Initial state or start state Initial node

Object instance (in activity diagrams) Central buffer node

State Structured activity node

State machine Structured activity node

Synchronization bar (synch bar) Fork node or join node

Transition (on an activity diagram) Control flow

Transition condition (guard condition) Control flow guard

Formal argument Template parameter substitution

Formal arguments (collection of formal argu-
ments)

Template binding

Three-tiered diagrams Class diagrams

Class instance Lifeline

Self-link Message pathway

Connection relationship Communication path

Process (in a deployment diagram) Artifact

Processor Execution environment

Destruction marker Stop node

Focus of control Execution occurrence

Action UML activity

State diagram Statechart diagram

71

2.6. Model Transformation

The structure and rules of a model are defined by its metamodel,

therefore if a metamodel evolves, instances of the models might no longer

conform to the metamodel. In that case, instances cannot be manipu-

lated by the editor and managed with model management operations and

may not even be loaded with the modelling tools. The aim of this case

study is to explore the ways in which model transformation languages

can be used to update models in response to metamodel changes.

The model migration example concerns the migration of UML 1.4

activity diagram models to UML 2.2 activity diagrams [123]. The re-

quirements consist of:

• Functional requirements: the transformation should successfully

migrate one example activity diagram which includes all of the

core elements of UML 1.4 activity diagrams.

• Non-functional requirements: size and comprehensibility of the

specification should be optimised.

It can be seen that many of the categories of requirements are missing

for this case study, in particular: what assumptions can be made upon the

input model, model-level semantic preservation, confluence, reliability,

time performance. The required functionality is only indicated by one

examplar case of a source model and its intended target.

The poor quality of the published solutions [123] may result in part

from these incomplete requirements:

• The highest score for correctness for the 9 solutions was 5.5 out of

10.

• No solution provided a proof of model-level semantic preservation.

The proposed migration strategy would lose semantic information

(the action performed in action states).

• The issue that some valid UML 1.4 activity diagrams are not valid

as UML 2.2 activities (when directly translated according to the

example given) was not addressed by any solution [89].

72

2.6. Model Transformation

All of these aspects would hinder the practical use of transformations

for this migration problem.

Refinement

In general, refinement [23] can be interpreted as replacing some artefact

S safely by a refinement R in a way that properties of S are preserved. Re-

finement transformations on UML specifications can be used to improve

the structure of a model, or to progress the model towards implementa-

tion [83]. For instance, transforming a UML PIM to a relational database

PSM is a type of refinement transformation where some constructs should

be removed. The following is some of the main structures that need to

be removed in order to transform a UML class diagram to a relational

database:

• Many-to-many associations removal: In relational databases, ex-

plicit many-to-many associations cannot be constructed by using

foreign keys. All many-to-many associations must be replaced by a

new class which has two many-to-one associations. The new class

must associate only those objects that were connected by the orig-

inal association, and must not duplicate such links: c1 : C & c2 :

C & |c1.ar & ca.br = c2.br ⇒ c1 = c2 [83]. For instance, a : A

and b : B are associated by A B, and there is an AB object, x, such

that x.ar′′ = a and x.br′′ = b, and vice-versa. Thus the original

a.br set is a.xr.br′′ in the new model (Figure 2.23) [84].

• Inheritance-association replacement: During the refinement of a

PIM to a PSM, inheritance should be removed as the PSM plat-

form does not support inheritance. Therefore, all inheritance re-

lationships between two classes must be replaced by associations.

“For instance, inheritance of A by B must be replaced by a direct

reference from B to A. Features f of A used in B must be referred

to as ar.f in the new model” (Figure 2.24) [84].

73

2.6. Model Transformation

Figure 2.23. Removing a many-to-many association

Figure 2.24. Replacing an inheritance by an association

• Introducing superclass: This construct can be applied if two classes

have common features. “A new superclass is usually abstract, be-

cause only A and B instances existed in the original model. Com-

mon features are moved to superclass, common operations become

abstract in superclass” (Figure 2.25) [84].

Figure 2.25. Introducing a superclass

74

2.7. Summary

2.7 Summary

In this chapter we investigated and analysed the background and related

literature of the requirements engineering concept as well as model trans-

formation. It provides a detailed overview of the principles of require-

ments engineering and requirements engineering process. It describes

what MDE is and provides a explanation regarding MDE’s branches such

as MDD, MDA and MT. Moreover, transformation types, properties and

languages are presented.

We have given a detailed explanation about the most important and

elementary concepts of each term through examples and case studies.

To conclude, this chapter provides a substantial amount of information

regarding RE and MT and their current applications.

75

Chapter 3

Requirements Engineering in

MT Development

In order to have a better understanding of model transformation develop-

ment in the industrial world and the role of RE, we decided to carry out

an interview-based study. This chapter is the result of an exploratory

interview study based on industrial model transformation projects in-

volving seven industry experts in model transformation. We discuss the

types of projects often seen in model transformation development, their

embedding in the context of other projects and organisations, the roles

of stakeholders, and the requirements engineering techniques employed

in practice, and we consider future research directions. The aim of this

study was to explore transformation projects from a requirements engi-

neering perspective. Specifically, we are interested in finding out what

requirements engineering techniques, if any, are applied in model trans-

formation development.

3.1 Introduction

The size and complexity of model transformations grow as they face more

wide-spread use in industry. As a result, systematic approaches to the

development of high-quality and highly reliable model transformations

77

3.1. Introduction

become increasingly important. However, because little is known about

the context in which model transformations are developed, it is very dif-

ficult to know what would be required from such systematic approaches.

This section provides some initial results and analysis of an interview-

based study of requirements engineering in MT developments. We have

interviewed industry experts in MT development, with the goal of under-

standing the contexts and ways in which transformations are developed

and how their requirements are established. The types of stakeholders of

transformations were identified, as well as their role in the transforma-

tion development. We also discovered a possible differentiation amongst

the development of model transformation projects and general software

development projects.

Model transformations are central to model driven engineering [131].

They can be used for a range of purposes, including to improve the

quality of models, to refactor models, to migrate or translate models from

one representation to another, and to generate code or other artifacts

from models [108]. Model transformations are used to transform one

model into another, generate text (such as code) from a model or to do

reverse engineering (i.e. extracting models from text/code). In any case,

they aim to automate repetitive development tasks, ensuring different

situations are treated in a generalised manner.

As MDE is being used more intensively [59], systematic development

of the transformations becomes more important [46]. However, as Selic

argues [129]: “we are far from making the writing of model transfor-

mations an established and repeatable technical task”. The software

engineering of model transformations has only recently been considered

in a systematic way, and most of this work has focussed on design and

verification rather than on requirements engineering.

We are interested in understanding what requirements engineering for

model transformation development should look like. To this end, we need

to understand the context in which model transformations are typically

developed and what, if any, requirements-engineering techniques are al-

ready applied. This will help us understand how existing RE techniques

78

3.2. Methodology

might be applied (or may have to be adapted) for the context of MT

development.

The remainder of this chapter is structured as follows: After a brief

discussion of our methodology in Section 3.2 and related work in Sec-

tion 3.2.1, we present some of our findings from the interviews. We

begin with a discussion of the types of projects in Section 3.3, followed

by a discussion of stakeholders in Section 3.4. Section 3.5 discusses the

requirements engineering techniques identified by our participants, fol-

lowed by a brief analysis of project outcomes in Section 3.6.

3.2 Methodology

We identified seven participants that are experts in the MT development

field and have industrial experience. The selection was based on partic-

ipants’ experience and the work that they have done. Our participants

have between eight to twenty years of experience in MT development.

We asked participants to focus their responses on self-selected recent

projects. All participants had a leading role in these projects. Partici-

pants were interviewed regarding the project(s) in which they were in-

volved (ten projects in total), and their views regarding the requirements

engineering process in relation to these projects.

We conducted semi-structured interviews of approximately one hour

duration. The same questions in the same order were given to all par-

ticipants. The questions concerned the project context and scale, the

stakeholders, the requirements engineering techniques and process used,

and the project outcomes.

Our approach is thus qualitative, investigating in depth the ‘why’

and ‘how’ of decision making for particular requirements engineering

techniques and activities in model-transformation development. More

information about the interview prompts can be found in the Appendix

B.

Threats to the validity of conclusions drawn from the interviews in-

79

3.2. Methodology

clude: (i) that the interviewees and examined cases are not representative

of transformation developers and projects, (ii) that interviewees selected

unrepresentative projects, (iii) that interview questions were aimed at

elicitating a particular response.

We tried to avoid potential problems (i) by requesting interviews with

a wide range of MT experts. The candidates for interviews were selected

from our previous literature surveys of RE in MT. 15 candidates were

approached, of whom seven agreed to be interviewed. These represent a

diverse range of organisations, and the projects cover a range of domains:

embedded systems, finance, re-engineering, defence and business. Re-

garding (ii), projects with poor outcomes, such as 3 and 6, were included

in addition to successful projects. Regarding (iii), the questionnaire and

methodology was examined by an expert committee for ethical approval.

3.2.1 Related Work

There has been very limited empirical research into model-transformation

development. The only relevant studies have been based on MDE in

general, such as that of [59, 147], which used interviews as well as a

questionnaire-based survey. The main aim of this study was to capture

the success and failure factors for MDE based on industry evidence. They

conducted 22 interviews with MDE practitioners. The survey found that

some use of MDE is made in a wide range of companies and industry sec-

tors, however this use tended to be based on Domain-Specific Languages

(DSLs) and modelling of narrow specialised domains. Transformations

were used to generate artefacts from the DSL models, however code gen-

eration was not itself a primary benefit of MDE, instead the benefits

came from the ability to abstract system architectures and concepts into

models. The evidence from this survey suggests that transformations are

often developed based on the expert knowledge of software developers,

to encode and automate previously manual procedures.

A high degree of domain knowledge appears essential for the successful

construction of the transformations. The survey of [110] considered in

80

3.3. Transformation Development Projects

depth four companies adopting MDE, but did not specifically consider

requirements engineering. One concern of the companies in [110] was the

cost of developing transformations, a factor which could be improved by

more systematic RE for MT.

The transML methodology defines an outline RE approach and meth-

ods for the RE of MT [46]. They adopt SysML and scenarios to analyse

and document requirements.

In our work, we focus specifically on model transformation develop-

ments, whether as part of an MDE process or as an independent devel-

opment. For MT developments, we examine how RE techniques and the

RE process is carried out.

3.3 Transformation Development Projects

In this section, we will describe the MT projects which our participants

focused on in their descriptions. All of our interviewees are either the

sole developers or the lead developers for these projects. Each project

has been categorised according to the MT field that it belongs to. The

scale, developer’s time and effort for some of these projects will also be

described.

Ten MT development projects were considered in this study:

1. Automated generation of documentation for international

standards. This transformation concerns the generation of stan-

dard documentation text from metamodels, to ensure consistency

of the documentation. The source metamodels are of the order of

600 meta-classes. The development effort was not available.

2. Reverse-engineering and re-engineering of banking systems

and web-services. The idea of this project was to build trans-

formations to construct models of existing applications, and to

forward-engineer these models to new platforms. The scale of

the finance system re-engineering is approximately three million

81

3.3. Transformation Development Projects

LOC extracted from 100 million LOC legacy code, the scale of

the web services re-engineering is approx 15 million LOC. The re-

engineering process must be done in a way that not only reveals the

actual functionality of the system, but also enables further analysis

according to system requirements. The development effort was not

available.

3. Code-generation of embedded software from DSLs. In this

project transformations are defined to map between embedded sys-

tem DSLs forming C extensions, and from these DSLs to C code.

These extensions are used by embedded software developers. More

than 25 different DSLs are involved, and approx 30 person-years of

effort.

4. Petri-net to statechart mapping. This model transformation

maps Petri-net models to statecharts, in order to analyse the Petri-

nets. It involves both refactoring and migration aspects. The trans-

formation is intended to map large-scale models with thousands of

elements. Effort was three person-months.

5. Big Data analysis of IMDb. The Internet Movie Database

(www.imdb.com) can be regarded as a Big Data case. It has in-

formation about the title of movies, names of actors, rating of

movies and actors playing roles in which movies. In this case, a

model transformation was developed to implement IMDb searches

by users. Effort was 3 person-months.

6. UML to C++ code generator. This case involved the construc-

tion of a transformation for the generation of multi-threaded/multi-

processor code from UML. The transformation generates C++ code

as well as providing a run-time layer to support the generator. Ef-

fort was four person-years.

7. Reverse-engineering of a code generator. This MT project

was an example of re-engineering of an existing transformation.

82

3.3. Transformation Development Projects

In this case study an existing code-generation transformation was

analysed and re-engineered to improve its functionality. Effort was

four person-months.

8. Automation of railway network engineering. This case in-

volved using models and transformations to support railway net-

work design. This is a safety-critical case, with an approximate

value of £150,000 per year. The metamodels operated on have

about 200 classes.

9. MDE Platform. A generative software platform based on trans-

formations and DSLs. This ongoing project consumes up to 300

person days per year.

10. SOA for insurance. Generation of middleware from DSLs, for

service integration. The effort was approximately 20 person years.

3.3.1 Types of Project

Here is a recap of the types of software development projects [143] as

mentioned in Chapter 2:

• Greenfield vs Brownfield

In a Greenfield type of project, the system is completely new, there-

fore the developers have to start from scratch and build the system

from the beginning. On the other hand, in Brownfield projects, a

system already exists but it has to be further developed and im-

proved.

• Customer vs Market Driven

Software could be either a solution for a particular type of client

in the market (customer driven) or a solution which would cover

the need of a large percentage of the market (market driven). In

customer-driven types of projects, the software is designed accord-

ing to the needs of a specific type of client, whereas in market-driven

83

3.3. Transformation Development Projects

projects, a larger scope of solution is considered covering more than

just one particular type of client.

• In-House vs Outsourced

A project could be regarded either as an in-house project where

it is assigned to a particular organization in order to carry out all

the project’s life-cycle processes or it could be outsourced where

it is assigned to different companies according to different project

phases. In an in-house type of project, one team/company will

carry out all the phases in the project, whereas in an outsourced

project, usually once the requirements have been identified different

teams from different companies will carry out the different phases

such as design, implementation, testing, etc.

• Single Product vs Product Line

The outcome of a project could have only one version which would

satisfy the customer’s need or it could have different versions each

of which would cover particular needs in a large organisation. “In

a single-product project, a single product version is developed for

the target customer(s). In a product-line project, a product family

is developed to cover multiple variants” [143].

According to our interviews, three out of the ten projects, (3), (7) and

(9), can be regarded as Brownfield projects mainly due to the fact that

these projects were either extending, adapting or re-engineering existing

transformations. The customers already had an existing transformation

and required to improve or extend it. Seven projects were Greenfield

as the transformation had to be done from scratch because either the

project was completely new, or because developers wanted to use their

own tools and technology.

All projects except for (9) were customer-driven as they were specified

for particular client(s). All the projects were in-house, single-product

projects. Each project was assigned to a different, single company to

do all the transformations, therefore there was no need of outsourcing,

84

3.4. Stakeholders in MT

and only a single version of the project was developed. Eight of the ten

projects were industrial, and two were academic. Table 3.1 summarises

this classification of the MT projects in our study.

TABLE 3.1. Types of MT project

Case Brown-
field

Green-
field

Customer-
driven

Market-
driven

In-
house

Out-
sourced

Single-
product

Product-
line

Project 1 X X X X

Project 2 X X X X

Project 3 X X X X

Project 4 X X X X

Project 5 X X X X

Project 6 X X X X

Project 7 X X X X

Project 8 X X X X

Project 9 X X X X

Project 10 X X X X

MT development often occurs within a wider software development

project, although there are also cases where MT development is the main

part of software development (e.g. Project 1).

As a result, we have found it useful to differentiate explicitly between

properties of the transformation-development project and the project this

was embedded in. For example, while most of containing projects were

Brownfield projects, most of the transformation-development projects

were Greenfield as no previous transformation existed for the specific

required purpose.

3.4 Stakeholders in MT

A stakeholder can be defined as an individual or an organisation or group

of people who is either affected by or has an effect on the outcome of

a given project [122]. Stakeholders are categorized into three different

types: Operational, Containing Business and Wider Environment (Fig-

ure 3.1).

85

3.4. Stakeholders in MT

Figure 3.1. Onion model of stakeholder general relationships [3]

The Operational stakeholders have a direct interaction with the sys-

tem. They consist of normal operators, people who will eventually oper-

ate and use the developed product, and maintenance operators, people

from which the maintainability requirements can be discovered.

Stakeholders in the Containing Business area are those who somehow

benefit from the system and consist of the Sponsor, the Customer and

the Functional Beneficiaries. More specifically, sponsors are stakehold-

ers that have the responsibility to pay for the developed product. The

customer buys the product and sometimes it can be the case where the

customer is also the end user of the developed product.

The Wider Environment area contains stakeholders which have an

effect on or interest in the system, but only an in-direct influence. For

example, Subject Matter Experts could consist of “internal and external

consultants, may include domain analysts, business consultants, busi-

ness analysts, or anyone else who has some specialized knowledge of the

business subject” [122].

The Core Development Team consists of developers that are in charge

of developing the product.

We have adapted the onion model to classify the stakeholders in MT

development based on our participants’ descriptions and have identified

the following for all of the MT projects (Figure 3.2):

86

3.4. Stakeholders in MT

• The Core Development team consisted solely of transformation de-

velopers.

• The Customers consisted of the committee that was interacting

with the transformation developers in order to explain the problem

space and what was needed.

• The Sponsors were the companies which were represented by the

customers, and did not interact with MT developers directly.

• The Normal and Maintenance Operators consisted of the people

who were going to use the result of the transformations as end

users.

Table 3.2 presents the Sponsors, Customers and the Operators of the

MT projects.

TABLE 3.2. Stakeholders of model transformation projects

Case Sponsor and Customer Normal and Maintenance
Operator

1 Technology standards consortium Users of the standards

2 Financial/Telecom organisations Users of re-engineered systems

3 Commercial companies Embedded software developers

4 External customer Users of the produced models

5 External customer Users searching the data

6 Government & defence industries Users of C++ applications

7 Commercial client Users of the code generator

8 External customer; parent company Railway engineers and opera-
tors

9 Own company; MDE users Consultants, toolkit customers

10 Insurance company IT team of company

As mentioned earlier, the MT projects that we analysed are typically

embedded within wider projects. As a result, the role of stakeholders of

the wider project changed according to the embedded MT project. For

87

3.4. Stakeholders in MT

example, in one case (Project 2) the members of the core development

team of the wider project turned into the customers interacting with

transformation developers for technical issues. Therefore, the transfor-

mation developers were facing two types of customers for this project: one

to explain the general requirements of the overall system and one to deal

with more detailed requirements and technical difficulties of the trans-

formation. The impact of other stakeholders of the containing project

(i.e. from the Containing Business or Wider Environment) on the trans-

formation development has become more indirect. Understanding fully

the role of these stakeholders in the context of transformation develop-

ment seems important for successfully developing requirements engineer-

ing techniques for MT development. For example, the indirect nature

of contact with the stakeholders of the enclosing development project is

likely to have an impact on the use of RE techniques that require stake-

holder interaction. Figure 3.2 is a first attempt at showing some of the

relationships amongst the MT developers and general stakeholders in a

generalised onion model.

Figure 3.2. Adapted onion model of MT stakeholder relationships

88

3.5. Requirements Engineering Process

3.5 Requirements Engineering Process

In this section, we will present our findings regarding the requirements

engineering process applied in the ten examined projects. We start by

showing the overall RE process used, before focusing on requirements

elicitation and cataloguing typical RE techniques employed.

3.5.1 Overall RE Process

Requirements engineering is specialized and unique for any type of soft-

ware development, similarly model transformation is no exception and it

is specialized and unique in its own right. There are some key aspects

which cause this uniqueness, as listed below:

• Type of system

Critical systems need a complete and consistent set of requirements

that can be analysed in advance. For business systems, work can

start with an outline of the requirements that are then refined dur-

ing development.

• Type of development process

Plan-based processes require all requirements to be available at the

start of the project, whereas in an agile approach, requirements are

developed incrementally.

• Type of environment

In some cases, users and other stakeholders are available to pro-

vide information about the requirements; in others they are not.

These require different approaches for RE in their starting point

for implementation.

• Reusebility extent

The extent to which other systems are reused in a system that is

being developed, needs to be measured. Generally, requirements for

reused systems are not available. Thus, the RE process needs to

reverse engineer these requirements from the existing system [134].

89

3.5. Requirements Engineering Process

Sommerville et al. [133] have proposed a process model for the RE

process which is widely accepted by researchers and professional experts.

In this study, we used this model as our template to investigate the MT

projects. The most important phases of RE which have to be applied are:

Domain Analysis & Requirements Elicitation, Evaluation & Negotiation,

Specification & Documentation and Validation & Verification.

The initial step in the RE process, that of Domain Analysis & Re-

quirements Elicitation, is the act of obtaining detailed knowledge regard-

ing the domain of the current problem, the organization or company con-

fronting the problem and the existing system that is facing the problem.

Once the required knowledge has been acquired, a draft document is pro-

vided which would help system developers to understand the context of

the actual problem as well as enabling them to identify the stakeholders’

actual needs and requirements.

At the next stage of Evaluation & Negotiation, it is assumed that

the previous stage (Domain Analysis & Requirements Elicitation) has

been performed effectively. The Evaluation & Negotiation stage identifies

inconsistencies and conflicts between requirements. The likelihood of

such conflicts will increase if the requirements have been gathered from

multiple and different stakeholders. Negotiation with stakeholders takes

place to resolve conflicts and potentially infeasible requirements.

The third phase, that of Specification & Documentation of the RE

process makes a precise set of agreed statements by all relevant sides

of the project such as: requirements, assumptions, and system proper-

ties. Based on the specification, the requirements documentation can be

drafted.

During the last phase, namely the Validation & Verification stage,

the specifications are analysed and then validated by the stakeholders to

ensure they satisfy their actual needs. Furthermore, specifications should

be verified in order to check their consistency and to avoid conflicts and

omissions. Any potential error and flaw must be fixed during this phase

and before the actual development in order to save cost, effort and time.

Table 3.3 shows the requirements engineering process that was used

90

3.5. Requirements Engineering Process

in the examined MT development projects. Each MT project has been

categorised into the four RE stages: Domain Analysis & Requirements

Elicitation, Evaluation & Negotiation, Specification & Documentation,

Validation & Verification and for each project the individualized tech-

niques and approaches that were used is listed.

TABLE 3.3. Requirements engineering techniques in MT projects

Case Elicitation Evaluation Specification Validation

1 document mining, informal conflict UML/OCL inspection

prototyping resolution

2 brainstorming, impact analysis UML, graphs testing

prototyping,

reverse engineering

3 informal techniques, none none testing

prototyping

4 prototyping scenario analysis UML/OCL testing,

inspection,

proof

5 prototyping scenario analysis UML/OCL testing,

inspection

6 prototyping goal decomposition UML, metamodelling testing

7 reverse-engineering goal decomposition formal/logic proof

8 prototyping customer feedback, UML class diagram testing,

prioritisation static analysis

9 domain analysis, customer feedback, UML, BPMN testing

prototyping prioritisation

10 prototyping, joint reviews with UML class diagram testing

interviews, customers, conflict

workshops resolution

3.5.2 Changes and Conflicts in Requirements

It is always possible that requirements may change in the middle of the

life cycle development. This can be due to stakeholder’s change of mind

or circumstances or the need for more requirements in addition to the

existing ones. Based on our study, we realized that the transformation

developers also experienced a need to change the requirements in the

91

3.5. Requirements Engineering Process

middle of the life cycle when dealing with requirements modifications,

unrealistic requirements and conflict amongst the requirements.

“Don’t do what you are told, but always do what is needed”

(Study participant).

In Table 3.4, we have identified MT developer’s responses when con-

fronted with common problems that may occur during the MT develop-

ment.

TABLE 3.4. RE revision activity in MT projects

Project Problem Reaction, paraphrased from participant comments

1, 2, 3, 4,

6, 7, 8

Unrealistic

requirements

- Implementing “what is needed” rather than what is wanted

- Implementing “the underlying system”

- Feedback to customers the estimated cost

1, 2, 3, 6,

7, 8

Change of

requirements

- Agile provides sufficient time via weekly deployments

- Confirming the requirements at the beginning of every iteration

- Charging extra for additional requirements

1, 2, 3, 4,

5, 10

Requirements

conflict

- Resolving conflicts through common sense

- Trade-off amongst the conflict requirements

2, 3, 4, 5,

6, 7, 8

Requirements

uncertainty
- Contacting the stakeholders for clarifications

3.5.3 Requirements

According to our investigation, the requirements elicitation process in

model transformations often starts with having an initial meeting with

customers. Their input is central to the process at this stage.

“It is the process and an engagement that starts with the

customer” (Study participant).

Customers often only have a very high-level view of what they need

the transformation to achieve. For instance, a customer may only be

aware of the language that his/her company wants the code to be gen-

erated into or the kind of platform it wants it to operate in.

92

3.5. Requirements Engineering Process

“Stakeholders are not very technical but they know what they

need to see from the system at the end” (Study participant).

Therefore, transformation developers suggest joint sessions with the

stakeholders in order to gain explicit knowledge about the system. Dur-

ing these sessions, brainstorming methods are applied to confirm the

functional and non-functional requirements and specifications in more

detail.

Customers often leave it up to the MT developers to flesh out the

nature of those high-level requirements based on their expertise. The

task of requirements elicitation and requirements engineering in general

is done by MT developers. Not only are they in charge of implementation,

but also eliciting the requirements is carried out by them as well.

“Stakeholders give high-level goals and it is for you to decide

how to get there and what to use” (Study participant).

Therefore, initially the customer provides the developers with some

high-level goals. Next, developers decompose the goals into sub require-

ments and once they have analysed them then they meet the customers

again for a confirmation. Once there is an initial confirmed draft of

the requirements of the overall system then the implementation phase is

started. During the implementation, at the end of every stage developers

provide prototypes for stakeholders.

“It starts with the customer, proof of concept, then taking

some code from the customer and presenting what can be

done by prototyping, with a tool, which provides analysis on

code” (Study participant).

Once the prototype is delivered to the stakeholders, they will have the

opportunity to raise any issues should there be something wrong or miss-

ing, otherwise the next stage of implementation will start. Prototypes

were very popular amongst the model transformation projects that we

analysed as these help both developers and stakeholders to understand

the problem space. According to a participant’s paraphrased quote,

93

3.5. Requirements Engineering Process

“A good prototype is one which is a subset of the complete

system”.

3.5.4 RE Techniques

There are several methods and techniques proposed by the requirements

engineering community, however, selecting an appropriate set of require-

ments engineering techniques for a project is a challenging issue. Most

of these methods and techniques were designed for a specific purpose

and none cover the entire RE process. Researchers have classified RE

techniques and categorised them according to their characteristics. For

instance, Hickey et al. [54] proposed a selection model of elicitation tech-

niques, Maiden et al. [101] came up with a framework that provides re-

quirements acquisition methods and techniques. According to our study,

in MT projects, RE techniques are selected and applied mainly based on

personal preference or companies’ policy rather than characteristics and

specifications of a project.

There are several different requirements engineering techniques from

a variety of sources that can be employed during MT development. In

Table 3.5, we present some of those that were more widely used in the MT

projects. In the first column a Category is defined, where RE techniques

have been categorized into: groups of human communication, process

techniques, knowledge development and requirements documentation. In

the second column the applied RE techniques are listed. Column three

shows the MT project in which the RE techniques were applied. In the

fourth column that of Rationale, the selection criteria of the techniques

as described by interviewees are listed.

94

3.6. Outcomes

TABLE 3.5. RE techniques in MT projects

Category RE Technique Project Rationale

Human

communication

Online conference 1, 2, 3, 6

- Distribution of stakeholders

- Lack of accessibility

- Convenience

Brainstorming 1, 2, 6

- Enabling both stakeholders and

developers to understand each other

as well as the requirements

Process

techniques

Joint requirements

development session
2, 10

- Resolving any possible issue

which is not clear

Categorisation
1, 2, 3, 4

5, 6, 7, 10

- Identifying functional and

non-functional requirements

Knowledge

development

Prototyping

1, 2, 3, 4,

5, 6, 8, 9,

10

- Receiving feedback based on

the prototype

- Informing the stakeholders of

the progress

Scenario 4, 5
- To decompose the requirements

- Identify implications

Negotiation 2, 3, 6, 8, 10
- To prioritize the requirements

- Identify trade-offs

Requirement

documentation

Diagrams

1, 2, 3, 4,

5, 6, 7, 8,

9, 10

- Providing a general view of

the system

Textual

1, 2, 3, 4,

5, 6, 7, 8,

9, 10

- Presenting the system formally

- Providing a contract for stakeholders

3.6 Outcomes

In evaluating the outcomes of the MT projects, the development effort

and the encountered problems are considered, together with the degree to

which the delivered transformation achieved the customer’s expectations.

We use qualitative five point scales (Very Large, Large, Medium, Small,

Very Small) for project scale, business value and customer satisfaction.

Table 3.6 summarises the outcomes of the different MT projects.

Project 1: There were development problems stemming from the com-

plexity and size of the metamodels to be processed. The intent and

rationale for certain UML/OCL constructs needed to be clarified,

as these were not clear from the metamodels or the existing docu-

95

3.6. Outcomes

mentation. The results of the developed transformation have been

adopted by the customer. We regarded the size of this transfor-

mation as large, since there are of the order of approximately 600

rules.

Project 2: In this project also, development problems arose mainly

from the nature of the transformation input data namely the large-

scale legacy system code, and the effort needed to understand this

before regenerating a modernised version. There was generally

good communication between the developers/analysts and the cus-

tomers, and thus negotiation over requirements was effective. There

was good acceptance of the re-engineering work by customers. We

regarded the size of this transformation as very large, as the size

of the data was extremely high and over 1500 transformation rules

were used.

Project 3: The transformation language used (Java-based syntax tree

processor) was too procedural in style, which made analysis diffi-

cult, and in particular obstructed analysis of the semantic inter-

action between different transformations (code generators). The

development process used was an agile ‘implement first’ process,

with minimal documentation. This led to high costs in reworking

the translators when errors were discovered. The customer was un-

willing to participate in any structured requirements engineering

process, and some of their requirements were infeasible. For these

reasons we categorise the development costs as high. Not all of

the desired customer requirements could be achieved, so we give a

value of moderate here. We considered this transformation to be

large in terms of size, since it involved about 500 transformation

rules.

Project 4: Although the size of this transformation was quite small

(about 20 rules), it had a complex behaviour due to the (under-

determined) interaction of the rules, which simultaneously refactor

96

3.6. Outcomes

and translate Petri-Net models to state machines. This made it

difficult to verify correctness properties such as confluence. Many

development iterations (over 10) were needed. The resulting trans-

formation did satisfy all the customer’s functional requirements,

but capacity requirements to handle large models were not fully

achieved.

Project 5: This was a relatively small transformation (approximately

30 rules), but with large-scale data (100MB and larger). Many

development iterations (over 10) were needed. The resulting trans-

formation did not satisfy all of the efficiency requirements, and was

not able to process the complete movie database data. Thus, we

have given a value of moderate for customer acceptance.

Project 6: This case study involved a complex and difficult code gen-

eration problem for C++ multi-threaded and multi-processor code

on multiple platforms. We consider this transformation to be of

large size as a few hundred transformation rules were used. The

semantic complexity of the target language and platforms caused

the development effort and costs to be significantly higher than for

other code generators developed by the company. In addition, the

complexity of the resulting generator has hindered its adoption,

which has been limited. Thus we give a rating of moderate for

customer acceptance in this case.

Project 7: This case involved re-engineering of an existing code gener-

ator: extracting its requirements from its code and then writing a

new improved generator to satisfy these requirements. The scale

of the work was relatively low, and the main difficulties concerned

extracting the requirements and identifying incorrect functionality

in the existing translator. The new translator was accepted by the

customer.

Project 8: This case involved the development of transformations to

support railway network design. The scale of the models was

97

3.6. Outcomes

relatively large, with over 200 entities and transformation rules.

An agile methodology was followed throughout the development,

enabling rapid customer feedback, requirements prioritisation and

fast responses to changing requirements. The project was a success

and was accepted by the customer.

Project 9: This was a substantial MDE platform, which was the basis of

the company’s business. The scale was large. An evolutionary and

incremental methodology was followed for its development. The

project was successful, with application of the tools in several com-

mercial projects.

Project 10: This case involved the generation of middleware code from

DSLs. The transformations were written partly in Java and partly

in a custom MT language. It was of moderate scale, although

substantial resources were used. The project was a success from

the standpoint of customer satisfaction.

Development problems were encountered in Projects 1 and 6 due to

the scale of the metamodels and in Projects 2 and 5 due to the mod-

els and programs involved in the transformations. The complexity of

metamodels in Project 6 and the need to manage multiple versions of

metamodels in Project 3 also caused problems. One conclusion that can

be provisionally drawn is that large-scale transformation developments

with relatively low levels of application of requirements engineering tend

to have poor outcomes such as Projects 3 and 6. In contrast, a more

detailed RE process can help to counteract the impact of the scale of a

model such as Projects 2 and 8.

3.6.1 MT Project Failures

From the interview study, we identified three project cases that partially

failed. In the terms of [100], these were: a process failure in the case

98

3.6. Outcomes

TABLE 3.6. Outcomes of MT projects

Project Transformation scale Development cost Customer
satisfaction

1 Large Moderate High

2 Very Large Moderate High

3 Large High: specifications too pro-
cedural, hard to analyse or
modularise

Moderate

4 Small Moderate High

5 Medium Moderate Moderate

6 Large High: complex and detailed
semantics

Moderate

7 Medium Moderate High

8 Large Moderate High

9 Large High High

10 Medium Moderate High

of Project 3, where the process cost was excessive; an interaction failure

in the case of Project 6, with relatively low uptake of the system; and

an expectation failure in the case of Project 5, with the capacity of the

developed transformation being inadequate to meet expectations. The

causes of these failures correlate with those described in [100] as follows:

• Project 3: the cost of the process was due in part to poor commu-

nication with stakeholders, and to a lack of a systematic process.

• Project 6: the poor uptake seemed in part due to poor communica-

tion with the end users of the transformation and lack of knowledge

of what they needed or would use.

• Project 5: the failure was in part due to lack of understanding of

the IMDb and how it supports query optimisation, and also due to

technical inadequacy of MT technology to process big data.

Poor communication with stakeholders is a potential problem in many

MT developments due to the fact that these are often embedded within

larger MDE projects. The MT developers receive requirements from the

MDE team, but these may contain incorrect or incomplete understanding

of the complete system requirements. Techniques such as joint applica-

99

3.7. Summary

tion design (JAD) workshops are recommended by [100] to enable active

participation of end users and other stakeholders in the RE process.

Technological problems are also a factor in MT project failure due to

the relative immaturity and non-standardised nature of MT languages

and tools. It may be infeasible to solve a problem such as that in Project

5, with MT technologies and infeasible to manage and maintain the spec-

ifications and implementations in MT languages such as that in Project

3. The Validation & Verification stage of the RE process is particularly

affected by the lack of tools for MT analysis and verification. Experimen-

tal techniques may be used in production projects (Project 6), resulting

in high costs.

3.7 Summary

In this chapter, we have reported on the results of an exploratory study

of requirements engineering for model transformation development. We

have presented our initial findings from seven semi-structured interviews

with industrial experts in the field. Clearly, more research is needed, but

some interesting points have already emerged from this study and are

worth closer attention:

First, we have been able to identify that model transformation projects

are typically individual projects that are embedded in wider software de-

velopment projects. We have briefly commented on how this impacts the

identification of and communication with stakeholders in the transforma-

tion development. The projects we have discussed are mainly Greenfield

projects, which is different from the wider software development reality.

This may be because model transformations are still a relatively young

technology in industrial practice.

Threats to the validity of conclusions drawn from the interviews in-

clude: (i) that the interviewees and examined cases are not representative

of transformation developers and projects, (ii) that interviewees selected

unrepresentative projects, (iii) that interview questions were aimed at

100

3.7. Summary

elicitating a particular response. We tried to avoid potential problems

(i) by requesting interviews with a wide range of MT experts. The can-

didates for interviews were selected from our previous literature surveys

of RE in MT. 15 candidates were approached, of whom seven agreed to

be interviewed. These represent a diverse range of organisations, and

the projects cover a fairly wide range of domains such as: embedded

systems, finance, re-engineering, transport, defence and business. Re-

garding (ii), projects with poor outcomes, such as Project 3 and Project

6, were included in addition to successful projects. Regarding (iii), the

questionnaire and methodology were examined by an expert committee

for ethical approval.

The interaction between the needs of the wider project and the highly

technical nature of model transformation development seems to have an

impact on the requirements elicitation process in particular. We have

seen that while prototyping and example-based generalisation seem to

play an important role in understanding the requirements in model trans-

formations, no systematic process seems to be followed. Although devel-

opers apply some requirements engineering techniques in transformation

projects this is often based on their experience and common sense as

there is no specific requirements engineering process designed for model

transformation development. At present, the focus of transformation de-

velopment is mainly on the specification and implementation stages and

the development team is responsible for all development process activities

including the requirements engineering process.

101

Chapter 4

Systematic Literature Survey

After the interview-based study, we decided to expand our understand-

ing of requirements engineering in model transformation through further

investigation of model development projects by means of a systematic lit-

erature review (SLR). In this chapter, we present the results of a system-

atic literature survey of the current process of requirements engineering

in MT developments. 160 papers have been reviewed and analysed from

the past 10 years rendering it one of the largest existing surveys in MT.

All the papers contained either industrial or academic MT developments.

4.1 Introduction

Transformations are used widely in model-driven engineering (MDE) and

model-based development (MBD). Their uses include migration of mod-

els from one language to another, refactoring of models to improve qual-

ity, refinement of models from a specification to a design, or from de-

sign to implementation, code generation to generate program code from

models, bidirectional transformations to synchronise two different models

and to maintain their consistency. Transformations can also be used for

data analysis to analyse and extract information from models. Semantic

mapping transformations map a model to a semantic domain to support

precise analysis.

103

4.2. Related Work

Similar to any other field, MT also requires an appropriate RE process

in order to develop correct transformation applications. In this chapter

we consider specific aspects of RE for model transformation. In order

to achieve any given goal using software (such as in a transformation),

having a scheme in which its requirements have been identified is essen-

tial. Requirements engineering has been a relatively neglected aspect of

model transformation development; the emphasis in transformation de-

velopment has been upon specification and implementation. The failure

to explicitly identify requirements may result in developed transforma-

tions which do not satisfy the needs of the transformation users. Prob-

lems may arise because implicitly-assumed requirements have not been

explicitly stated. It might be possible to skip the requirements engineer-

ing process in small projects and jump directly into the implementation

phase, however, it is unlikely to be possible and effective in large and

industrial projects.

This chapter is organized as follows: Section 4.2 describes the related

work. Section 4.3 describes the methodology we used to carry out the

systematic literature review. Section 4.4 reveals the results obtained

from the survey followed by Section 4.5 which discusses the threats to

the validity of the results. Finally, Section 4.6 presents our concluding

remarks from this survey study.

4.2 Related Work

The survey of [110] considered in depth four cases of MDE application,

but did not specifically consider the requirements engineering of these

cases. One concern of the companies in [110] was the cost of developing

transformations, a factor which could be improved by more systematic

RE for MT. The survey of [99] considers the use of RE in MDE, and

concludes that the use of rigorous techniques for RE in MDE is limited:

the majority of surveyed cases did not have tool support for RE, and

in most cases the RE process was not integrated into the MDE process.

104

4.3. Research Methodology

These results are consistent with our own findings for RE use in the

more specialised field of MT development. The survey [11] of concrete

MT developments analyses 82 MT cases with regard to their type and

outcomes, but does not specifically consider RE aspects.

In our RE in model driven engineering SLR, we focus specifically on

model transformation developments, whether as part of an MDE process

or as independent developments. For MT developments, we examine how

RE techniques and the RE process is carried out. We consider a wide

spectrum of RE techniques and approaches.

4.3 Research Methodology

For the Systematic Literature Review (SLR), we follow the methodology

proposed by Kitchenham [72] defining an SLR as a means to identify,

evaluate and interpret a series of available relevant research topics for a

particular research question, area or phenomenon of interest. Accord-

ing to this methodology, an SLR consists of different stages including

planning, conducting and reporting the review. In the planning stage of

the review, the actual need of the review as well as specific questions re-

garding the review’s protocol are defined. In the conducting stage of the

review, the scope of the research as well as primary studies regarding the

research are identified. The study quality assessment is defined, along-

side with data extraction, monitoring and synthesis. Last but not least,

in the reporting stage of the review the overall disseminated structure is

specified and the review results are presented.

4.3.1 Research Question

The main question we consider is:

What requirements engineering process and techniques, if

any, have been applied in model transformation development?

The purpose of this question is to investigate the recent and current role

105

4.3. Research Methodology

of RE in MT. We aim to collect the current available knowledge regarding

MT developments and the role of RE in these developments. It will

also be used to identify any potential gaps in research and practice, and

guide the proposal of solutions and suggestions for further investigations

and future work. We have defined the structure of the SLR according

to the following procedure known as PICOC (population, intervention,

comparison, outcome, context) criteria [99]:

• Population: research papers presenting MT developments and case

studies.

• Intervention: RE process and techniques.

• Comparison: analysis of the current state of RE in MT.

• Outcome: guidelines for a specific RE framework for MT.

• Context: MT engineering and development.

4.3.2 Source Selection

The selection process of relevant and appropriate papers was done in two

different ways. Firstly, an automatic search method was used from the

most credible scientific paper databases as follows: IEEE Xplore (IE),

ACM Digital Library (ACM), Research Gate (RG), Google Scholar and

SpringerLink (SL). Secondly, a manual search method was used from

the following representative journals and conferences: Transformation

Tool Contest (TTC), Model Driven Engineering Languages and Systems

(MODELS), International Conference on Model Transformation (ICMT),

International Journal on Software and Systems Modeling (SoSyM) and

Journal of Systems and Software (JSS). One of the main advantages of

applying the manual search was that it allowed us to carry out a more in-

depth study of some particular works based on specific topics and areas.

It also served as a verification method in order to verify the correctness

of the automatic search method.

106

4.3. Research Methodology

In addition to the above, we included the 82 papers considered in the

survey [11] of concrete MT developments in our initial selection.

4.3.3 Primary Studies Selection

In order to identify the primary studies, a search string was created

based on the research question. There are two parts within the search

string: the first part is about industrial and academic works that describe

MT developments and the second part is related to the use of RE in

MT development. There are several search strings that have been used

throughout this SLR, the following is just a sample:

(Model transformations OR model transformation case studies OR

requirements engineering in model transformations OR requirements en-

gineering technique in model transformations) AND (MDA OR MDE

OR model-driven OR model-based OR model*)

Since we are interested in discovering the prevalence of RE use in

MT development, we do not include a term such as requirements as an

obligatory part of the search string.

4.3.4 Selection Criteria

We imposed some limitations and restrictions on the reviewed papers

and context. We only considered papers which presented MT develop-

ment case studies, instead of purely theoretical papers. Furthermore,

we only included published papers in conferences, workshop proceedings

and scientific journals within the past decade (January 2006 to July 2016)

for this SLR. Moreover we have excluded the papers with the following

criteria: i) papers only describing MT languages and tools, ii) papers

presenting RE in general and not related to MT development, iii) short

papers (less than 5 pages), iv) PhD thesis, poster publications and tuto-

rials, v) papers written in any language other than English. Appendix D

lists all the reviewed papers.

107

4.3. Research Methodology

4.3.5 Information Extraction

We have extracted the data and information according to our research

question. In this section, we will explain the research question according

to the following criteria in more detail:

• Type of transformation (criteria 1). Model transformation is one of

the most important parts of MDE approaches in today’s software

development. Transformations are often used for: restructuring

and refactoring models, migrating models and refining models from

PIM to PSM. In general, it could be said that transformations are

generally useful to translate the semantic content of a model from

one language to that of another [34].

• Transformation development scope (criteria 2). Only information

concerning the development of model transformation projects and

case studies was collected.

• Type of RE techniques (criteria 3). In case there was usage of a

particular type of requirements engineering technique throughout

the MT development, the information regarding the technique and

the requirements engineering is gathered. These techniques can be

for either functional and non-functional requirements.

• Transformation development projects (criteria 4). We are inter-

ested to find out how MT development is currently applied and in

what type of projects it is used. Moreover, the scale, developer’s

time and effort for some of the MT development projects are other

criteria of interest.

• Type of project (criteria 5). In general, software development

projects can be classified into several types such as: Greenfield vs

Brownfield, Customer vs Market driven, In-house vs Outsourced,

Single product vs Product line.

• Stakeholders (criteria 6). We are interested to identify the type of

stakeholders in MT development projects for this SLR.

108

4.3. Research Methodology

• Requirements elicitation (criteria 7). Identifying the requirements

elicitation process in model transformations is an important factor

that needs to be reviewed for this SLR.

• Requirements category (criteria 8). We are interested in the cat-

egories of requirements (functional, non-functional, local, global)

which are considered in MT requirements engineering.

Figure 4.1. Surveyed cases per year

4.3.6 Conducting the Review

Following the format used in [99], we have conducted the review according

to these activities: selecting primary studies, extracting the data and

data synthesis. The primary sources, namely journals and conferences,

were identified. The searching process resulted in over 600 items, from

which we selected 189 papers that we considered to be most appropriate

and useful for this research topic. Our primary searching method to find

the relevant papers was an automatic search, however a manual searching

method was also conducted to discover potential papers that were not

identified via the automatic search.

Table 4.1 shows the initial results from both the automatic and the

manual search as well as the final result. The initial result’s section shows

109

4.3. Research Methodology

the total number of papers obtained from different sources and the final

result’s row indicates the actual number of papers that were selected to

be reviewed. We have discarded duplicated papers along with the older

and less updated version of a particular version. Remaining were 160

papers which satisfied our criteria for detailed analysis. Figure 4.1 shows

the distribution of the surveyed papers over time.

TABLE 4.1. Number of reviews

Automatic search Manual search

Source IE SL ACM RG TTC/ MODELS/STAF/SoSyM [11] Total

Initial

result

5 8 5 16 73 82 189

Final result 2 6 3 13 56 80 160

4.3.7 SLR Results

This section presents the outcome of the systematic literature survey

together with the specified criteria as listed in Section 4.2.5. Table 4.1

shows a summary of the total number of papers analysed throughout

this SLR. Tables A.1, A.2 and A.3 show information on the stakeholders

of the considered cases. Table A.4 shows the categories of requirements

occurring in the cases. Tables A.5 and A.6 shows information about the

type of projects in each case, and Tables A.7, A.8, A.9 and A.10 show

information about the RE methodology and techniques used.

Regarding the stakeholders (criterion 6), the results in Tables A.1 and

A.2 show the main stakeholders of the analysed papers; of these 62.5%

were MDE practitioners, 7.5% were financial companies, 7.5% were users

requiring analysis of data, 6.25% were embedded system developers, and

16.25% were other types of stakeholders as represented in Figure 4.2a.

Of the projects, 86% were academic and 14% were industrial. The

industry cases are numbers 25, 27, 29, 30, 58, 59, 60, 61, 62, 63, 64, 65,

110

4.3. Research Methodology

(a) Transformation stakeholders (b) Reaching stakeholders

Figure 4.2. SLR MT stakeholders

66, 69, 114, 120, 141, 142, 151, 152, 155, 161 as listed in the Systematic

Literature Survey Papers, Appendix D.

About 38% of the cases used online forums and email as a means of

communication between the developers and the stakeholders. In many

cases (52%) there seemed to be no attempt made to reach stakehold-

ers, instead the transformation developers made their own assumptions

about the needs of the stakeholders. Direct stakeholder participation in

development or direct stakeholder consultation took place in only 8% of

cases (Figure 4.2b).

The result for the transformation type (criterion 1) as presented in

Table A.5 shows that about 33% of the transformation case studies were

of the refinement type, 22.5% were of the migration type, 11% of the

refactoring type, 11% were of the code generations type, and 9.5% were

of the semantic mapping type (Figure 4.3).

The result for the scope of transformation developments (criterion 2)

shows that from the reviewed papers, 100% of them were involved in

developing a transformation project or case study.

The result for applying RE techniques (criterion 3) throughout the

development as presented in Table A.7 and Table A.8, shows that 50% of

111

4.3. Research Methodology

Figure 4.3. Transformation types

cases applied some requirements engineering technique during the devel-

opment life cycle as follows: scenario analysis: 43 cases, semi-formal or

formal rule specifications (not in an MT language): 27 cases, prototyp-

ing: 18 cases, prioritization: 9 cases, participant interaction techniques

(interviews, questionnaire, observation, survey): 10 cases. 50% of cases

did not apply any RE technique, according to their presentation of the

cases. Figure 4.4 shows these statistics in a graphical format.

Around 70% used UML class diagrams for documentation, 14% used

no diagrams, and 12% used concrete syntax of the source or target lan-

guages.

Table A.4 identifies which kinds of requirements were considered in

the surveyed papers. We divide requirements into functional and non-

functional, and the former into local and global functional requirements.

Local requirements express how individual model elements or small

groups of related model elements should be mapped to elements of an-

other model, or should be refactored in-place. In the case of bidirectional

transformations (bx), local correspondence requirements express how el-

ements of one model should correspond to elements of the other. Global

requirements concern properties of source or target models considered as

a whole.

112

4.3. Research Methodology

Figure 4.4. RE technique used in MT cases

The most common requirements are local mapping (63 cases), effi-

ciency (54 cases), semantic correctness (44 cases), syntactic correctness

(35 cases) and semantic preservation (27 cases).

Syntactic correctness is the property that the transformation pro-

duces models which conform to the constraints of the target language.

Semantic correctness expresses that necessary semantic properties of the

target model relative to the source model are satisfied. Semantic preser-

vation states that the semantics of the source model are preserved in the

target model. Efficiency concerns with the performance of the applica-

tion.

The result for transformation development projects (criterion 4) in

Table A.5 was not very explicit as not many developers explained the

scale of the transformation and the time and effort that they consumed

regarding the development in the analysed papers. The result for type of

transformation in terms of Greenfield vs Brownfield, customer vs market

driven, in-house vs outsourced, single product vs product line (criterion

5), shows that almost all cases were Green, customer driven, in-house

and single transformation projects.

113

4.3. Research Methodology

The result of the RE process (criterion 7) regarding requirements en-

gineering for model transformation in Tables A.7, A.8 and A.9 shows that

around 95% of the MT projects did not follow any systematic require-

ments engineering process during the development, only 5% (8 cases)

used such a process (cases 25, 27, 28, 37, 61, 125, 141, 161).

Tables A.11 and A.12 compare the relationship between RE quality

and the project outcome for each case and Figure 4.5 shows a scatter

plot of the values. Both the average quality of RE, measuring 3.4 out of

9, and the average outcome, measuring 2.9 out of 6, is low.

Figure 4.5. SLR case RE rigour (x-axis) versus outcomes (y-axis)

114

4.4. Comparison

The resulting correlation is 0.49. This is statistically significant at

the 1% level using a 2-sided t-test with 146 degrees of freedom [146].

The strength of the correlation is low, representing that only about 25%

of the difference in outcomes is due to differences in the RE rigour of the

cases. Firstly, there are several cases where a development had a good

outcome despite a low RE score, such as cases 15, 51, 52, 53. This can

occur due to the high skill level of the developers, who in the reviewed

literature cases generally have advanced degrees and qualification levels

which probably would not be the situation for transformation developers

in general. Secondly, there are cases with evidently good RE rigour but

nonetheless had low evidence of successful outcomes, such as cases 124,

142, 145, 149. This is due to the presentation of the work at a too early

stage, lack of evaluation by stakeholders or because of the large scale of

the project. This low correlation is due to the fact that the source of the

cases were mainly academic and a stronger correlation between RE and

outcomes is expected in industrial cases.

The results of the SLR show a lack of a systematic RE process for MT,

and a lack of guidelines for the use of RE techniques for transformations.

In particular, the survey has shown the relevance of scenario analysis

and prototyping as RE techniques for MT development, and the need

to consider specific forms of requirements for transformations. We will

incorporate the findings of this survey into our work on an RE framework

for MT as presented in Chapter 5.

4.4 Comparison

The results of the SLR and the interview study can be compared as

shown in Table 4.2. We aimed to focus on industrial case studies for our

interview study, and this resulted in a much higher percentage of indus-

trial cases compared to the SLR. There is a close correlation between

industrial cases and large project scale: in the interview study 60% of

the cases were either large or very large, in the SLR only 10% were in

115

4.4. Comparison

this category (Figure 4.6b).

TABLE 4.2. Comparison of results

Aspect Interviews SLR

Industry/Academic 80%/20% 14%/86%

Scale (Large/Medium/Small) 60%/30%/10% 10%/23%/67%

Used RE techniques 90% 50%

Used RE process 30% 5%

Likewise, larger scale and industrial cases were more likely to use

some RE techniques: 90% of the interview cases versus 50% in the SLR

cases. In both, however, a systematic RE process was only used by a

small minority of cases.

(a) interview cases (b) SLR cases

Figure 4.6. MT projects scale

Considering the 170 combined interview and SLR cases, of the 30

industrial cases, 27 used some RE techniques (90%), whereas only 63 of

the 140 academic cases (45%) used RE techniques. 8 of the 30 indus-

trial cases used a systematic RE process (27%), whilst only 3 of the 140

academic cases did so (2%).

116

4.4. Comparison

With regard to elicitation techniques, the interview cases more often

used prototyping (90% of the cases) compared to the SLR cases (11%),

and were less likely to use scenario analysis (20% versus 27%). There

was a higher rate of usage of prioritisation (20% compared to 6%) and

of UML class diagrams (80% compared to 70%).

Evaluating outcomes against RE rigour for the interview cases gives

the scatter diagram of Figure 4.7. Here the average RE quality is much

higher (6.5) than for the SLR cases, as is the outcome measure (5.4).

Figure 4.7. Interview case RE rigour (x-axis) versus outcomes (y-axis)

117

4.5. Threats to Validity

4.5 Threats to Validity

In this section, we discuss the potential threats which might affect the

validity of our SLR. One possible limitation of the SLR study is that the

authors may not have explicitly and fully explained the RE process that

they have applied throughout the transformation development, nor other

details of the case context and outcomes. In many cases only outline in-

formation about the transformation details and development process are

given. We have made the assumption that if details of RE or development

processes are not provided, then that means that the processes were not

used. Moreover other factors such as publication bias, data extraction

and misunderstandings are other factors that may have a negative im-

pact towards the validity of this SLR [72]. One of the ways that we have

validated our review is the selection of credible resources such as digital

libraries in order to maximise the correctness and completeness of our

review toward the specified objectives. As mentioned earlier, the search

string was expressed via a combination of different terms and expressions

from the type of papers concerning model transformation development

case studies and requirements engineering. We have also attempted to

reduce the misunderstandings and data extraction inaccuracy by having

two independent reviewers for every selected paper.

4.6 Summary

In this chapter, we have reported on an exploratory study of requirements

engineering for model-transformation development. We have reported on

our initial findings from the analysis of 160 published papers of MT de-

velopments. Clearly, more research is needed, but some interesting points

have already emerged from this study and are worth closer attention.

After analysing the result of both our interviews and SLR, we can con-

clude that at present, the focus of transformation development is mainly

on the specification and implementation stages. Developers may ap-

ply some requirements engineering techniques in transformation projects,

118

4.6. Summary

however this is often based on their experience and common sense as there

is no systematic requirements engineering process designed for model

transformation development. Almost none of the cases we considered in

the interview study or SLR allocated a substantial phase for RE dur-

ing the MT development. Most of the RE techniques were applied in

an informal manner supported by mainly personal experience regarding

that particular technique. Developers do not model the functional and

non-functional requirements for a transformation, and they often only

concentrate on implementing the main goal(s) of a transformation (i.e.

refactoring or model to model migration). Developers usually start the

validation process after the transformation has been developed and they

check the transformation to see which of the quality requirements are

satisfied.

To summarise, the obstacles for the use of RE in MT appear to be:

• Restricted access to stakeholders by the MT developers, limiting

the use of RE techniques such as interviews and brainstorming.

• The lack of RE techniques and guidelines specific to MT.

• The absence of a systematic RE process defined for MT.

• The lack of published case studies of RE systematically applied to

MT projects.

Chapter 5 will show our research work in this area which includes a

more systematic process for requirements engineering in the context of

MT development [151]

119

Chapter 5

Requirements Engineering

Activity for MT

This chapter presents recommendations for the application of require-

ments engineering in model transformation followed by an adaptation

of the Sommerville et al. model for MT. Furthermore, it presents the

criteria for selecting appropriate requirements engineering techniques for

MT, and proposes a framework for this selection process. This frame-

work is aimed to facilitate the process of choosing the appropriate set

of requirements engineering techniques according to the type of project

(where the competing techniques in a given selection-process are the can-

didates for a given RE phase) in this case model transformation. Differ-

ent sections of this chapter have been published in several conferences

[149, 150, 151, 152], one journal [153] and a book [86].

5.1 Application of RE in MT

As concluded from Chapter 3 and 4, the development of model transfor-

mation is mainly focused on the specification and implementation phases,

whereas there is a lack of support in other phases including: requirements,

analysis, design and testing. Furthermore, there is a lack of cohesive sup-

port for transformations including: notations, methods and tools within

121

5.1. Application of RE in MT

all phases during the development process, which makes the maintenance

and understandability of the transformation code problematic [46].

In model transformation, requirements and specifications are very

similar and sometimes are considered as the same element. Requirements

determine what is needed and what needs to be achieved while taking

into account the different stakeholders, whereas specifications define how

to achieve the requirements.

Once the functional and non-functional requirements are identified,

the scenarios of the transformation can be written as use cases in UML.

Failure to explicitly identify requirements may result in developing trans-

formations which do not completely satisfy the client’s needs or may lead

to developing something that differs from what is actually needed. If the

requirements are not being expressed explicitly and they are assumed

implicitly, problems may arise during the transformation. For instance,

in a migration or refactoring transformation that the semantics of its

source model should be preserved in the target model, or that the trans-

formation should only be required to operate on a restricted range of

input models. Without thorough requirements engineering, important

requirements may be omitted from consideration, resulting in a devel-

oped transformation which fails to achieve its intended purpose [149].

In model transformation, the initial requirements, which describe the

intended functional behaviour of the transformation, are often displayed

in terms of concrete syntax. This is especially helpful from a require-

ments engineering’s point of view which has a direct interaction with the

stakeholders. Having the requirements and specifications of the intended

functionality of the transformation expressed in concrete syntax rule (as

opposed to abstract syntax rule) is more convenient for the stakeholders.

This is because concrete syntax is usually more familiar to the stake-

holders (the requirements engineer needs to be aware of these issues, not

necessarily the stakeholder). However, concrete syntax may not always

be completely precise since there may be significant details of models

which have no representation in concrete syntax, or there may be am-

biguities in the concrete syntax representation. Therefore, conversion of

122

5.1. Application of RE in MT

the concrete syntax rules into precise abstract syntax rules is a necessary

step as part of the formalisation of the requirements [149].

Requirements engineering for model transformation involves specialised

techniques and approaches, because transformations: (i) have highly

complex behaviour, involving non-deterministic application of rules and

construction of complex model data, (ii) are often high-integrity and

business-critical systems, with strong requirements for reliability and cor-

rectness, (iii) are often embedded in large MDE projects and (iv) do not

usually involve much user interaction since they are batch-processing sys-

tems, but may have security requirements if they process secure data.

The source and target languages of a transformation must be precisely

specified by metamodels. However the requirements for its processing

may initially be quite unclear.

For a migration transformation, analysis will be needed to identify

how elements of the source language should be mapped to elements of

the target; there may not be a clear relationship between parts of these

languages, there may be ambiguities and choices in mapping, and there

may be necessary assumptions on the input models for a given mapping

strategy to be well-defined. There are specialist tools and languages for

migrations, such as COPE [53] and Epsilon Flock [124], which may be

selected. The requirements engineer should identify how each entity type

and feature of the source language should be migrated.

For refactorings, the additional complications arising from update-in-

place processing need to be considered. For instance, the application of

one rule to a model may enable further rule applications which were not

originally enabled. The choice of transformation technology will need to

consider the level of support for update-in-place processing. Some lan-

guages such as ATL [64] and QVT [115] have limited update-in-place sup-

port. The requirements engineer should identify all the distinct situations

which need to be processed by the transformation such as arrangements

of model elements and their inter-relationships and significant feature

values.

Code-generation transformations may be very large, with hundreds of

123

5.1. Application of RE in MT

rules. The effective organisation and modularisation of the transforma-

tion, and the selection of appropriate processing strategies, are important

aspects to consider. Template-based generation of program language text

is a useful facility for code generators, and is provided by transformation

technologies such as Epsilon Generation Language (EGL) [125] and ATL

templates. The requirements engineer needs to identify how each source

language construct should be translated into code.

5.1.1 Requirements Taxonomy

In order to make the requirements engineering process more systematic,

we have created a functional and non-functional requirements taxonomy.

Taxonomizing the requirements according to their type not only would

make it clearer to understand what the requirements refer to, but also by

having this type of distinction among them will allow for a more semantic

characterization of requirements.

We propose that requirements are distinguished into local require-

ments and global requirements :

• Local requirements are concerned with the mappings between one

localised part of one or more models. Mapping local requirements

define when and how a part of one model should be mapped onto a

part of another. Refactoring local requirements dictate when and

how a part of a model should be transformed in-place.

• Global requirements identify properties of an entire model. For

example, that some global measure of complexity or redundancy

is decreased by a refactoring transformation. Assumptions, model

quality improvement, postconditions and invariants often have an

effect on the entire model level.

Figure 5.1 shows a taxonomy of functional requirements for model

transformations based on our findings of transformation requirements.

124

5.1. Application of RE in MT

Functional requirements

Local requirements Global requirements

Mapping Refactoring Assumptions Model
quality

improvement

Postconditions Invariants

Figure 5.1. A taxonomy of functional requirements

Figure 5.2 shows a taxonomy of non-functional requirements that

need to be considered during the RE process. It shows a general de-

composition of non-functional requirements for model transformations.

The quality of service categories correspond closely to the software qual-

ity characteristics identified by the IEC 25010 software quality standard

[21].

Non-functional requirements

Quality of servive Suitability Development
constraint

Architectural
constraint

Compliance

Performance Reliability Accuracy Interface

Time Space Maturity Fault
tolarance

Correctness Completeness User
interaction

Software
interoperability

Effectiveness,
Development

effort, etc.

Cost Deadline Variability Maintainability Installation Distribution Conformity
to standard

Figure 5.2. A taxonomy of non-functional requirements for MT

Non-functional requirements for model transformations could be fur-

ther detailed. For instance, regarding the performance requirements,

boundaries (upper/lower) could be set on: execution time, memory usage

for models of a given size, and the maximum capability of the transforma-

tion (the largest model it can process within a given time). Restrictions

can also be placed upon the rate of growth of execution time with input

model size, for example, that this should be linear.

Similarly, reliability requirements for a transformation which are cat-

egorized into maturity and fault tolerance, could also be more detailed.

For maturity requirements, it can be measured depending on its history

and the extent to which the transformation has been used. For fault

tolerance requirements, it can be quantified in terms of the proportion of

execution errors which are successfully caught by an exception handling

125

5.1. Application of RE in MT

mechanism, and in terms of the ability of the transformation to detect

and reject invalid input models.

The accuracy characteristic includes two sub-characteristics: correct-

ness and completeness. Likewise, correctness requirements could be fur-

ther divided into the following [90]:

• Syntactic correctness : a transformation τ is syntactically correct if

wherever τ terminates, when applied to a valid model m of source

language S, it produces a valid target model n in terms of confor-

mation to the T’s language constraints.

• Termination: a transformation τ will always terminate if applied

to a valid S model.

• Confluence: all result models produced by transformation τ from

a single source model are isomorphic.

• Model-level semantic preservation: a transformation τ is preserved

model-level semantically, if m and n have equivalent semantics under

semantic-assigning maps SemS on models of S and SemT on models

of T.

• Invariance: some properties Inv should be preserved as true during

the entire execution of transformation τ [90].

An additional accuracy property that could be considered is the ex-

istence of invertibility in a transformation σ : T → S, which inverts the

effect of τ . Given a model n derived from m by τ , σ applied to n pro-

duces a model m′ of S isomorphic to m. A related property is change

propagation, which means that small changes to a source model can be

propagated to the target model without re-executing the transformation

on the entire source model. A further property, verifiability, is important

for transformations, which is part of a business-critical or safety-critical

process. This property identifies how effectively a transformation can be

verified. Size, complexity, abstraction level and modularity are contrib-

utory factors to this property.

126

5.1. Application of RE in MT

The traceability property is the requirement that an explicit trace

between mapped target model elements and their corresponding source

model elements should be maintained by the transformation, and be

available at its termination.

The interface property is subdivided into user interaction, which in

turn is subdivided into usability and convenience, and software interop-

erability.

The suitability property is defined according to [28] as the capability

of a transformation approach to provide an appropriate means to ex-

press the functionality of a transformation problem at an appropriate

level of abstraction, and to solve the transformation problem effectively

and with acceptable use of resources such as developer time, compu-

tational resources, etc. In [75] the following subcharacteristics for the

suitability quality characteristic of model transformation specifications

were identified as: abstraction level, size, complexity, effectiveness and

development effort.

Taxonomy Example

We have applied the requirements taxonomies according to model trans-

formation characteristics as shown in Table 5.1. All types of functional

requirements for model transformations including: mapping, refactoring,

assumptions, model quality improvement, post-conditions and invariants

requirements have been categorised.

Concrete syntax is often used at the early stages (RE stage) of the

development cycle in order to validate the requirements by the stakehold-

ers since the concrete syntax level is more convenient for them, whereas

abstract syntax rule is often used in the implementation phase for de-

velopers. However, there should be a direct correspondence between the

concrete syntax elements in the informal or semi-formal expression of

the requirements, and the abstract syntax elements in the formalised

versions.

Non-functional requirements mainly consider the necessary quality of

127

5.1. Application of RE in MT

TABLE 5.1. Transformation requirements catalogue

Refactoring Refinement Migration

Local
Functional

Rewrites/
Refactorings

Mappings Mappings

Local
Non-
functional

Completeness (all
cases considered)

Completeness (all
source entities,
features
considered)

Completeness (all
source entities,
features
considered)

Global
Functional

Improvement in
quality
measure(s),
Invariance of
language
constraints,
Assumptions,
Postconditions

Invariance,
Assumptions,
Postconditions

Invariance,
Assumptions,
Postconditions

Global
Non-
functional

Termination,
Efficiency,
Modularity,
Model-level
semantic
preservation,
Confluence, Fault
tolerance,
Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence, Fault
tolerance,
Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence, Fault
tolerance

128

5.1. Application of RE in MT

a transformation. There may be a wide range of different non-functional

requirements for a system [143], in categories such as quality of service,

compliance, development constraint, etc. Some requirements categories,

such as safety and security, are not generally properties of concern for

model transformations. This is due to the fact that transformations

are usually used internally within the organization. Amstel et al. [140]

propose a set of quality characters regarding model transformation in-

cluding: understandability, modifiability, reusability, modularity, com-

pleteness, consistency, and conciseness. Obviously the number of these

taxonomies could be extended and varied depending on the type of model

transformation.

For quality of service requirements, specific quantifiable measures for

the properties of interest should be identified, and precise bounds on

the permitted values of these measures (or ranges of acceptable values)

specified. We have chosen the ISO 9126-1 [21] quality framework as

our standard from which the requirements are to be measured. The

International Organisation for Standardization provides a set of metric

and quality standards for measuring the quality of developed software.

The ISO 9126 contains different metrics for all kinds of software. Table

5.2 shows some of the quality characteristics of model transformations as

well as their sub-characteristics according to the ISO framework.

TABLE 5.2. Standard quality framework (ISO 9126)

Characteristics Subcharacteristics

Functionality Suitability, Accuracy, Interoperability, Security, Functionality

Reliability Maturity, Fault tolerance, Recoverability, Reliability compli-
ance

Usability Understandability, Learnability, Operability, Attractiveness,
Usability compliance

Efficiency Time behaviour, Resource utilisation, Efficiency compliance

Maintainability Analysability, Changeability, Stability, Testability, Maintain-
ability compliance

Portability Adaptability, Installability, Co-existence, Replaceability,
Portability compliance

129

5.2. RE Process Adaptation for MT

5.2 RE Process Adaptation for MT

In this section, it will be shown how the Sommerville et al. [133] RE

process model can be adapted for model transformation based on our

studies.

5.2.1 Domain Analysis and Requirements Elicita-

tion

Aa a result of our study, a large number of requirements elicitation tech-

niques have been surveyed. We summarise these and consider their rele-

vance for the requirements analysis of transformations as follows:

• Observation

This involves the requirements engineer observing the current man-

ual or semi-automated process used for the transformation. It is

relevant if a currently manual software development or transforma-

tion process is to be automated as a transformation. For example,

if a procedure for constructing web applications or Enterprise In-

formation System (EIS) of a particular architectural form is to be

automated. Observation can capture the elements of the manual

process currently used by developers. The technique is relevant for

refinement, code generation, migration and refactoring transforma-

tions.

• Unstructured interviews

In this technique the requirements engineer asks stakeholders open-

ended questions about the domain and current status of the trans-

formation. The technique is relevant in identifying the important

issues which a transformation should have as goals. For refac-

torings, these could be what are the important goals for quality

improvement of a model or a system. For refinements, what are

the important properties of the generated code (e.g. efficiency,

conformance to a coding standard, readability, etc.). For migra-

130

5.2. RE Process Adaptation for MT

tions, what is the scope of mapping (which forms of input models

are intended to be processed), what semantic properties should be

preserved, and what required restrictions are there on the output

model structure.

• Structured interviews

In this technique the requirements engineer asks stakeholders pre-

pared questions about the domain and the system. The require-

ments engineer needs to define appropriate questions which help to

identify the scope of the transformation and the required proper-

ties of the product (output model requirements). This technique is

relevant to all forms of transformation problems. We have defined

a catalogue of MT requirements for refactorings, refinements and

migrations, as an aid for structured interviews, and as a checklist

to ensure that all forms of requirements appropriate for the trans-

formation are considered as shown in Table 5.1.

• Brainstorming

In this technique the requirements engineer asks a group of stake-

holders to generate ideas about the system and problem. This

may be useful for very open-ended and new transformation prob-

lems where there is no clear understanding of how to carry out

the transformation. For example, for complex forms of migration

where it is not yet understood how data in the source and target

languages should correspond, likewise for complex refinements, per-

haps involving synthesis of information from multiple input models

to produce a target model. Complex refactorings such as the intro-

duction of design patterns could also use this approach.

• Rapid prototyping

In this technique a stakeholder is asked to comment on a prototype

solution. This technique is relevant for all forms of transforma-

tion, where the transformation can be effectively prototyped. Rules

could be expressed in a concrete grammar form and reviewed by

131

5.2. RE Process Adaptation for MT

stakeholders, along with visualisations of input and output mod-

els. This approach fits well with an Agile development process for

transformations. Some transformation tools and environments are

well-suited to rapid prototyping, such as GROOVE (GRaph-based

Object-Oriented VErification) [120], a software model checking of

object-oriented systems. For others, such as ETL [77] or QVT[115],

the complexity of rule semantics may produce misleading results.

• Scenario analysis

In this approach the requirements engineer formulates detailed sce-

narios or use cases of the system for discussion with the stakehold-

ers. This is highly relevant for MT requirements elicitation. Sce-

narios can be defined for different required cases of transformation

processing. The scenarios can be used as the basis of requirements

formalisation. This technique is proposed for transformations in

[46]. A risk with scenario analysis is that this may fail to be com-

plete and may not cover all cases of expected transformation pro-

cessing. It is more suited to the identification of local rather than

global requirements.

• Ethnographic methods

This approach involves systematic observation of actual practice

in a workplace. Like Observation, this may be useful to identify

current work practices (such as coding strategies) which can be

automated as transformations. In general, techniques capturing

process and behaviour information are more relevant than those

capturing data, because the data (metamodels) of transformations

are often explicitly provided and are fixed.

5.2.2 Evaluation and Negotiation

Prototyping techniques are useful for evaluating requirements, and for

identifying deficiencies and areas where the intended behaviour is not

yet understood. A goal-oriented analysis technique such as KAOS [143]

132

5.2. RE Process Adaptation for MT

or SysML [42] can be used to decompose requirements into sub-goals. A

formal modelling notation such as OCL, state machines or state charts

can be used to expose the implications of requirements. For transfor-

mations, state machines may be useful to identify implicit orderings or

conflicts of rules which arise because the effect of one rule may enable or

disable the occurrence of another.

Requirements have to be prioritized according to their importance

and the type of transformation. In general, all requirements must be sat-

isfied according to their importance. Primary requirements have a higher

priority compared to the secondary requirements. All primary require-

ments have to be satisfied first and then secondary requirements. have

to be satisfied according to their importance. A transformation may still

be valid if a secondary requirement is not met, but with a less degree of

validation. For instance, in a refinement transformation, the semantics

of the source and target models have to be equivalent as the primary

requirement and to have the traceability feature as a secondary require-

ment. In Table 5.3, we have categorised the requirements according to

the type of transformation.

Furthermore, there should be no conflict among the requirements. For

instance, there is often a conflict between the time, quality and budget

of a project. The quality of the target model should be satisfactory with

respect to the performance (time, cost and space) of the transformation.

133

5.2. RE Process Adaptation for MT

TABLE 5.3. Requirements priority for different types of transformation

Category Primary requirement
Secondary

requirement

Refactoring

Model quality improvement

Model-level semantic preservation Invariance

Syntactic correctness Confluence

Termination

Migration

Syntactic correctness Invertibility

Model-level semantic preservation Confluence

Termination Traceability

Refinement

Syntactic correctness

Traceability
Model-level semantic preservation

Confluence

Termination

5.2.3 Specification and Documentation

Regarding the specification and documentation process, the following

techniques could be applied for model transformations:

• Structured language template

Templates can be used to impose a standard structure on the docu-

mentation of transformations. There are several templates, the fol-

lowing is an example of an IEEE Standard-830 [114], a well-known

template:

134

5.2. RE Process Adaptation for MT

– Introduction

∗ Purpose of the requirements document
∗ Scope of the transformation
∗ Definition, acronyms and abbreviations
∗ References
∗ Overview of the remainder of the documents

– General description

∗ Transformation perspective
∗ Transformation functions
∗ Transformation/Transformer characteristics
∗ General constraints
∗ Assumptions and dependencies
∗ Apportioning of requirements

– Specific requirements

∗ Functional requirements
∗ External interface requirements
∗ Performance requirements
∗ Design constraints
∗ Software quality attributes
∗ Other requirements

– Appendices

– Index

• Diagrammatic notations

Another way of documenting is by using semi-formal specification

languages. There are several types of diagrams through which a

problem can be presented. Interaction scenario is a useful tech-

nique to specify and document transformations. In this technique,

a set of possible events are simulated and documented. The aim

of this technique is to think about the current problem, different

possibilities, assumptions related to these possibilities, action op-

portunities and risks [60]. Through the SLR and interview-based

135

5.2. RE Process Adaptation for MT

study it can be deduced that UML and OCL are popular tech-

niques in model transformations. UML is used as a diagrammatic

notation and OCL is often used to express transformation rules.

• Formal specifications

In general, a software application can be seen as a formal descrip-

tion that can be analysed by using logic. Logic allows developers to

express reasoning steps explicitly. One of the main roles of require-

ments engineering is to fill the gap between the informal needs of

stakeholders and the formal needs of the software. There are dif-

ferent types of logic which express different aspects of the required

transformation.

An approach which seems particularly well-aligned with require-

ments engineering of model transformations is KAOS [143], which

supports requirements elaboration using temporal logic. Tempo-

ral logic [113] describes information regarding timing, it identifies

permissions and it imposes obligations.

Moreover, another advantage of using logic based approaches is

that they are amenable to perform reasoning and analysis tasks

automatically which aligns with the nature of transformations. The

‘Cease’ goal pattern of KAOS fits the usual case of refactoring

transformations which must remove structures of particular kinds

in the model. Each local refactoring requirement can be expressed

by such a goal pattern, asserting that each occurrence of a condition

ϕ which should be removed will eventually be removed, and will

not be reintroduced:

model elements x1, ..., xn satisfy property ϕ ⇒
♦ � (x1, ..., xn do not satisfy ϕ)

Transformation invariants (Inv) can be expressed using the ‘Main-

tain’ goal pattern according to the assumptions (Asm):

Asm ⇒ �(Inv)

136

5.2. RE Process Adaptation for MT

General postconditions can be expressed using the ‘Achieve’ pat-

tern:

Asm ⇒ ♦ � (Post1 ∧...∧ Postm)

Formalised requirements in temporal logic could then be checked

for particular implementations using model-checking techniques, as

in [121].

Techniques for this stage include: UML and OCL modelling, struc-

tured natural language, formal modelling languages. We use SysML with

SBVRSE [138] structured English descriptions of individual functional

requirements. Structural assertions concerning the source and target

languages can be mapped from SBVRSE to UML following the proce-

dure in [56]. We have also defined mappings from behavioural assertions

to OCL.

Abstract grammar transformation cases are used to formalise MT

requirements in [45]. In UML-RSDS the specification of a transforma-

tion consists of one or more UML use cases, each consisting of one or

more transformation rules defined by use case postcondition constraints

in OCL. Similar structures are available in other MT languages, such as

modules with OCL-based rules in ATL and QVT-R.

5.2.4 Validation and Verification

Techniques for this stage include: prototyping with testing, formal re-

quirements inspection, requirements checklists, static analysis, formal

modelling and model checking.

The formalised rules produced by the previous stage should be stati-

cally checked for internal correctness properties such as definedness and

determinacy, which should hold for meaningful rules.

Correct data-dependency relations should hold within a use case defi-

nition. For instance, data should be defined before use, and should not be

written after it has been used. These checks are performed by the Gener-

ate Design option of the UML-RSDS tools, and the results are displayed

137

5.2. RE Process Adaptation for MT

on the console window. A prototype implementation can be generated,

and its behaviour on a range of test case input models, covering all of

the scenarios considered during requirements elicitation, can be checked

against stakeholder expectations. Global correctness requirements should

be refined to local rule correctness requirements as follows:

• Model-level semantic preservation for an update-in-place transfor-

mation is refined into an invariance requirement (that the semantics

of the model is equal to its original semantics), and then decom-

posed into local requirements that this invariant is preserved by

each rule application.

• Syntactic correctness of update-in-place transformations is refined

to an invariance property that the model satisfies (is conformant

with) the metamodel, and then further decomposed into subgoals

that each rule application maintains this invariant.

Invariance properties for UML-RSDS, QVT-R and ATL specifications

can be checked by proof, using the B formalism [88]. Proof can also be

used to show that model quality measures are increased by rule applica-

tions for refactoring transformations.

When a precise expression of the functional and non-functional re-

quirements has been defined, these can be validated with the stakehold-

ers to confirm that they do indeed accurately express the stakeholders’

intentions and needs for the system. The formalised requirements of a

transformation τ : S → T can also be verified to check that they are

consistent as follows:

• The functional requirements must be mutually consistent

• The assumptions and invariant of τ , and the language constraints

of S must be jointly consistent

• The invariant and postconditions of τ , and the language constraints

of T must be jointly consistent

138

5.2. RE Process Adaptation for MT

• Each mapping rule left-hand side (LHS) must be consistent with

the invariant, as must each mapping rule right-hand side (RHS).

These consistency properties can be checked using tools such as Z3 or

Alloy, given suitable encodings [4, 31]. Model-level semantic preservation

requirements can in some cases be characterised by additional invariant

properties which the transformation should maintain. For each functional

and non-functional requirement, justification should be given as to why

the formalised specification satisfies these requirements. For example, to

justify termination, some variant quantity Q:Integer could be identified

which is always non-negative and which is strictly decreased by each

application of a mapping rule [90]. Formalised requirements in temporal

logic could then be checked for particular implementations using model-

checking techniques, as in [152].

Figure 5.3. Functional requirements decomposition

139

5.2. RE Process Adaptation for MT

5.2.5 Tool Support for RE in MT

The UML-RSDS tools provide a requirements editor, which uses SysML

diagrams to document requirements and their decompositions (Figure

5.3)

The numeric ordering of subgoals indicates sequential composition

(for separate model transformations) or relative priorities (for update-

in-place transformations). Scenarios are attached to local requirements,

and may have three forms of descriptions: informal (text, sketches), semi-

formal (structured text, concrete grammar rules), formal (OCL, abstract

grammar rules). The informal and semiformal descriptions are more

suitable for evaluation by stakeholders. Structured English descriptions

of the form:

It is necessary that each SCond instance s maps to a T1 instance

t1 [and to a Tj instance tj]∗ such that P(s, t1, ..., tn)

Each S1 is considered to be a SCond if it has SP

are formalised as:

S1::

SP => T1 -> exists(t1 |...

Tn->exists(tn | P(self,t1,...,tn)) ...)

SCond is a linguistic term to represent S1 → select (SP). The con-

straint expresses that each such S1 instance maps to T1, T2, ..., Tn in-

stances such that the condition P holds.

Requirements and scenarios are linked to the use cases which are

defined to satisfy these requirements and scenarios. A use case post-

condition can be derived as the ordered conjunction of its formalised

scenarios.

Requirements specification is supported by the use of OCL constraints

to specify the preconditions and postconditions of use cases and opera-

tions. Validation and verification is supported by several static analysis

140

5.3. A Framework for Selecting Suitable RE Techniques

checks on use case definedness, determinacy and data-dependency rela-

tions [87]. Formal proof of invariance, syntactic correctness and model-

level semantic preservation is also supported via the B formal method

[88].

5.3 A Framework for Selecting Suitable RE

Techniques

There are several methods and techniques proposed by the requirements

engineering community, however selecting an appropriate set of require-

ments engineering techniques for a project is a challenging issue. Most

of these methods and techniques were designed for a specific purpose

and none cover the entire RE process. Researchers have classified RE

techniques and categorised them according to their characteristics. For

instance, Hickey et al. [54] proposed a selection model of elicitation tech-

niques, Maiden et al. [101] came up with a framework for requirements

acquisition methods and techniques. However, lack of support for select-

ing the most appropriate set of techniques for a software project has made

requirements engineering one of the most complex parts of the software

engineering process.

While there are some approaches regarding the selection of RE tech-

nique for general projects, there is no systematic guideline available for

MT projects. Traditionally, the selection of RE techniques is mainly

based on personal preference rather than on characteristics and specifi-

cations of the project, and MT projects are no exception. From our SLR

and interview-based study, we discovered that there is a lack of guidance

on RE in MT in general, which includes lack of guidance regarding the

selection of RE techniques for certain activities in MT context.

This section focuses on a description of our proposed framework for

selecting suitable RE techniques designed for MT. It aims to help MT

developers to find the most suitable RE technique in an MT project

for any particular requirement. This framework is based on in-depth

141

5.3. A Framework for Selecting Suitable RE Techniques

research (SLR and interview-based study) into MT applications as well

as RE techniques via analysis, synthesis, and classification mechanisms.

Our proposed framework allows MT developers to:

• Identify MT project attributes and RE technique attributes and a

possible link between them

• Provide a systematic RE process designed for MT developments

This framework for selecting a suitable RE technique has been applied

in two real case studies as presented in Chapter 6, which shows the

framework provided an effective decision support for RE selection with

a positive outcome.

We use Basili’s GQM [10] framework to define the framework and to

identify the metrics of the RE technique in order to make precise the

selection criteria. The top-level goal is “identifying the most relevant

requirements engineering techniques for a particular MT project”. This

goal could be decomposed into three questions:

• Q1. How do the characteristics of the MT project requirements

affect the relevance of the RE techniques for the project?

• Q2. How does the size, cost and other attributes of the project

affect the relevance of RE techniques for the project?

• Q3. How does the experience level of the MT developers in the RE

techniques affect their relevance for the project?

For Q1, we adapt and extend the measures of RE techniques’ rele-

vance designed by Jiang [62]. For Q2, we identify nine project attributes

and evaluate the relevance of the RE techniques for each of these. For

Q3, we assign a measure in [0, 1] to represent the experience level. We

consider separately the relevance of techniques in each stage: Domain

Analysis & Requirements Elicitation, Evaluation & Negotiation, Spec-

ification & Documentation and Validation & Verification. Overall, the

142

5.3. A Framework for Selecting Suitable RE Techniques

relevance of a technique is the product of the three measures for Q1, Q2

and Q3.

Classification of RE techniques have a direct relation with the type

of the proposed project, the organization and the internal attributes of

a specific technique. In general, a project is assigned to an organization

in order to be developed. Usually the software developing organization

is selected according to the type of project. In the following section, we

present attributes of these three factors, namely that of: (i) the technique

(technique attribute), (ii) the project (project attribute) and (iii) the

organization (organizational attribute) in order to identify the most well-

suited set of techniques to use in MT for a particular type of project.

5.3.1 Technique Attribute

As mentioned earlier, multiple RE techniques can be used during the

RE stage. Each technique has some attributes that would render it more

suitable for a particular RE activity. Identifying the technique attributes

could be very useful as they allow us to compare the different techniques.

We have identified 33 attributes from which 23 were defined by [62].

These attributes are categorized according to the RE phases that they

belong to based on Sommerville et al. [133]. These attributes are selected

based on characteristics of RE techniques as well as other researchers’ cri-

teria and frameworks [100, 101, 133]. The following are the attributes

that we have identified according to MT characteristics: ability to elicit

MT requirements, ability to identify MT stakeholders, ability to analyse

and to model requirements with relevant MT notations, ability to iden-

tify accessibility of the transformation, ability to prioritize requirements

according to the transformation, ability to use re-usability of MT require-

ments, ability to specify completeness of semantics and notations, ability

to write precise requirements using MT notation, ability to support MT

language, maturity of supporting tool.

For instance, some RE techniques are well-suited for identifying non-

functional requirements. Therefore, if non-functional requirements in

143

5.3. A Framework for Selecting Suitable RE Techniques

a particular project have high priority, then the attribute of ability to

help identify non-functional requirements is important and applying the

appropriate RE technique such as NFR framework [26] to find non-

functional requirements would be necessary. In Table 5.4 we have adapted

the attributes of [62] and have made additions to these attributes to make

them specific for MT.

144

5.3. A Framework for Selecting Suitable RE Techniques

TABLE 5.4. RE technique attributes and classifications adapted and extended
from [62]

ID Categories Attributes of techniques

1 Domain Analysis & Requirements
Elicitation

Ability to elicit MT requirements

2 Ability to facilitate communication

3 Ability to understand social issues

4 Ability to get domain knowledge

5 Ability to get implicit knowledge

6 Ability to identify MT stakeholders

7 Ability to identify non-functional requirements

8 Ability to identify viewpoints

9 Evaluation & Negotiation Ability to model and understand requirements

10 Ability to analyse and to model requirements with

relevant MT notations

11 Ability to analyse non-functional requirements

12 Ability to facilitate negotiation with customers

13 Ability to prioritize requirements according to

stakeholders need

14 Ability to prioritize requirements according to the

transformation

15 Ability to identify accessibility of the transforma-
tion

16 Ability to model interface requirements

17 Ability to use re-usability of MT requirements

18 Specification & Documentation Ability to represent MT requirements

19 Ability to verify requirements

20 Ability to specify completeness of semantics and
notations

21 Ability to write precise requirements using

MT notation

22 Ability to write complete requirements

23 Ability to consider requirements management

24 Ability to design highly modular systems

25 Ability to implement used notation

26 Validation & Verification Ability to identify ambiguous requirements

27 Ability to identify inconsistency and conflict

28 Ability to identify incomplete requirements

29 Other aspects Ability to support MT language

30 Maturity of supporting tool

31 Learning curve

32 Application cost

33 Complexity of technique

145

5.3. A Framework for Selecting Suitable RE Techniques

Tables 5.5 –5.8 present technique attributes and sample assessment

data of techniques provided by Jiang [61]. These scored attributes are

static and fixed, independent of particular projects and represent fitness

V(X, Y) of X (technique) for Y (specific requirement attribute). The tech-

nique scoring tables are based on Jiang’s survey of many RE projects.

Jiang’s work has been published in several well-known conferences and

journals and it is highly credible.

It is worth mentioning that these RE technique attributes are only

a sample of available RE techniques and attributes. Depending on the

nature of any given project, they can be extended and modified. For

this research, we are only taking a sample of 33 RE technique attributes,

however there is no limit for having further attributes.

TABLE 5.5. Domain Analysis & Requirements Elicitation technique attributes
evaluation V(ax, t)

Attribute Interview
Question-

naire

Document

Mining

Brainstor-

ming

Proto-

typing
Scenario

Ethno

Methodology

Eliciting

MT requirements
1 0.8 1 0.8 1 1 0.8

Facilitating

communication
1 1 0 0.8 0.8 1 0.6

Understanding

social issues
0.8 1 0.8 0.4 0.2 0.6 0.8

Getting domain

knowledge
0.6 0.6 1 1 0.4 0.4 1

Getting implicit

knowledge
0.2 0.2 0.2 0.2 0.2 0.2 1

Identifying MT

stakeholders
1 0.8 0.2 1 0 0.4 0.6

Identifying

non-functional

requirements

1 0.6 0.8 1 0.2 0.2 0.4

Identifying

viewpoints
0.8 0.6 0.4 0.8 0 0.8 0.4

146

5.3. A Framework for Selecting Suitable RE Techniques

TABLE 5.6. Requirements Evaluation & Negotiation technique attributes
evaluation V(ax, t)

Attribute
Proto-

typing
Scenario UML

Goal-

oriented

Analysis

Functional

Decom-

position

Modelling MT

requirements
0.8 1 1 0.8 0.6

Analysing requirements

with relevant MT

notations

0.6 1 0.8 0.8 0.8

Analysing non-functional

requirements
0.2 0.2 0 0.6 0.2

Facilitating negotiation

with stakeholders
0.8 0.6 0.8 0.8 0.4

Prioritizing requirements

based on stakeholders
0.2 0.4 0 0.4 0.2

Identifying accessibility

of the transformation
0.8 0.8 0.6 0.6 0.2

Modeling interface

requirements
0.6 1 1 0.4 0.2

Re-usability of MT

requirements
0 0 1 0.2 0

TABLE 5.7. Requirements Specification & Documentation technique attributes
evaluation V(ax, t)

Attribute SysML KAOS

Structured

language

template

SADT
Evolutionary

Prototyping
UML

Representing MT

requirements
0.8 0.8 0.8 0.6 0.8 1

Requirements verification 1 1 0 0.4 0.8 0.8

Semantic completeness 0.8 1 0.4 0.6 0.2 0.8

Representing requirements

using MT notations
0.6 0.4 0.4 0.4 0.2 1

Writing complete

requirements
0.8 0.8 0.6 0.6 0.4 0.8

Requirements management 0.8 0.4 0.6 1 0 0.8

Designing highly

modular systems
0.8 0.6 0.2 0 0 0.8

Implementability of

the notation(s)
1 1 0 0 0.8 0.8

147

5.3. A Framework for Selecting Suitable RE Techniques

TABLE 5.8. Requirements Validation & Verification technique attributes
evaluation V(ax, t)

Attribute Inspection Desk-Checks
Rapid

Prototyping
Checklist

Identifying ambiguous

requirements
0.4 0 0.4 0

Identifying inconsistency

and conflict
0.4 1 0.8 1

Identifying incomplete

requirements
0.8 0.8 0.8 0.8

The set T of all RE techniques to be considered (e.g. interview, pro-

totype) in each category (Domain Analysis & Requirements Elicitation,

Evaluation & Negotiation, Specification & Documentation and Valida-

tion & Verification) should be identified. For each requirement technique

that has been identified for the project, the RE technique t ∈ T, a value

RA(t) (Requirement Attribute of a technique) is calculated, which repre-

sents the suitability of applying t in the project, which is based on the

technique attributes. The function RA : T 7−→ [0, 1] is defined as:

RA(t) =

∑
ax∈A

I(ax)× V(ax, t)∑
ax∈A

I(ax)

This expresses that ‘there are (
∑

) attributes ax ∈ A, important (I)

to the project and for which t is relevant (V)’. Normalization can be

defined by dividing the result by
∑

(I).

In the definition:

• The set of all technique attributes in the MT project (i.e. facili-

tating communication, identifying MT stakeholders) is A. For in-

stance, A = {eliciting MT requirements, facilitating communica-

tion, . . . , identifying incomplete requirements}.

• I(ax) which is a value in the range [0, 1], represents the importance

of an attribute ax ∈ A for the project. A low I(ax) value for an

148

5.3. A Framework for Selecting Suitable RE Techniques

attribute ax ∈ A means ax is not important for the MT project and

a high I(ax) value for an attribute ax ∈ A represents high impor-

tance for the project. The assignment of I(ax) to each ax ∈ A is

done by MT developers according to the initial project description

and the stakeholders. For instance, in a project where the stake-

holders are not accessible and “documentation” is identified as an

important requirement, then the technique attribute “ax = identi-

fying MT stakeholders” is assigned a lower I(ax) value (than I(ax)

of documentation), because it is a secondary task compared to the

documentation requirement.

• V(ax, t) is a function V : A × T 7−→ [0, 1] which given a technique

attribute and an RE technique, assigns a [0, 1] value. These values

are static and fixed, independent of the project and are based on

the technique attribute measures of [61] as well as other attributes

that we have added to make them specific for MT for this research.

Tables [5.5, 5.6, 5.7, 5.8] give examples of these adapted attribute

measures.

149

5.3. A Framework for Selecting Suitable RE Techniques

5.3.2 Project Attribute

A transformation project’s attribute is also an important factor in select-

ing the most suitable RE techniques. Each project has a set of attributes

and the priority of each attribute may vary based on the characteristics of

a project. For instance, the category of a project that it belongs to is an

attribute, therefore RE techniques for a category of safety-critical system

may vary from a non-critical system. In this research, we have identified

nine attributes, which shall be analysed in more detail according to the

type of transformation project. These attributes are only a sample of

all possible existing attributes. According to [36, 63, 107, 155], these

attributes are considered important factors as their values determine the

essential characteristics of the software project. We have defined some

transformation project attributes in more detail as follows:

Size Very Big : when the estimated number of transformation

rules are more than 300

Big: when the estimated number of transformation rules

are between 150 and 300

Medium: when the estimated number of transformation

rules are between 100 and 150

Small: when the estimated number of transformation rules

are between 50 and 100

Very Small: when the estimated number of transformation

rules are less than 50

150

5.3. A Framework for Selecting Suitable RE Techniques

Volatility Very High: transformation requirements keep changing

throughout the entire development (more than 50% change

of requirements)

High: transformation requirements keep changing through-

out the entire development (25%-50% change of require-

ments)

Medium: Some of the requirements change during the de-

velopment (10%-25% change of requirements)

Low: A few requirements may change during the develop-

ment (5%-10% change of requirements)

Very Low: Change of requirements is unlikely to happen

Complexity1 Very High: transformation correctness, completeness and

effectiveness are very complicated (at least three compli-

cating factors apply)

High: transformation correctness, completeness and effec-

tiveness are complicated (at least two complicating factors

apply)

Medium: transformation correctness, completeness and ef-

fectiveness are medium level (at least one complicating fac-

tor applies)

Small: transformation correctness, completeness and effec-

tiveness are clear (no complicating factors, some non-trivial

functionality)

Very small: transformation correctness, completeness and

effectiveness are easy to achieve (only simple processing is

present, e.g. copying of data)

1 Due to factors such as (i) complex rule logic, (ii) repeated refactoring process,
(iii) complex computations, (iv) non-standard processing (e.g. genetic algorithm), (v)
use of multiple MT languages, (vi) bidirectionality or change propagation

151

5.3. A Framework for Selecting Suitable RE Techniques

Relationship Very High: there is a very good and constant interaction

amongst the developer and the customer (the customer is

directly available when required)

High: there is a good and constant interaction amongst the

developer and the customer (the customer is available with

delay of one day)

Medium: there is some contact between the developer and

the customer when necessary (there is limited access to the

customer (delay of > day))

Low: there are few meetings between the two parties, only

when essential (there is very limited access to the customer

(delay > week))

Very Low: there is no contact between the customer and

developer throughout the development (no access to the

customer)

Safety Very High: there is a very high likelihood that the trans-

formation will have safety consequences (it will be used to

produce, modify, or analyse safety-critical systems)

High: there is a high likelihood that the transformation

will have safety consequences (it may be used to produce,

modify, or analyse safety-critical systems)

Medium: there is moderate likelihood that the transfor-

mation will have safety consequences (it will be used to

produce, modify, or analyse safety-related systems but not

safety-critical system)

Low: there is low possibility that the transformation could

cause any danger (it may be used to produce, modify, or

analyse safety-related systems but not safety-critical sys-

tem)

Very Low: the transformation has no possibility of caus-

ing any danger (it will not be used for any safety-related

systems)

152

5.3. A Framework for Selecting Suitable RE Techniques

Quality Very High: the transformation has a very high level of func-

tionality, reliability and usability requirements (≥ 100 re-

quirements)

High: the transformation has a high level of functionality,

reliability and usability requirements (≥ 50 requirements)

Medium: the transformation has a medium level of func-

tionality, and usability requirements (≥ 20 requirements)

Low: there are low reliability, etc. requirements (≥ 10

requirements)

Very Low: there are very low levels of reliability, etc. re-

quirements (< 10 requirements)

Time Very High: the transformation has very restrictive develop-

ment time constraints (less than 5% extension is possible)

High: the transformation has a high level of development

time constraints (less than 10% extension is possible)

Medium: the transformation has a medium level of develop-

ment time constraints (less than 20% extension is possible)

Low: the transformation has low development time con-

straints (up to 50% extension is possible)

Very Low: the transformation has very low development

time constraints (more than 50% extension is possible)

Cost Very High: the budget is very tight (less than 5% extension

is possible)

High: the budget is tight (less than 10% extension)

Medium: the transformation has a limited budget (less than

20% extension)

Low: the transformation has the budget to cover different

aspects and unforeseen circumstances (up to 50% extension

permitted)

Very Low: the budgets are flexible (more than 50% exten-

sion is possible)

153

5.3. A Framework for Selecting Suitable RE Techniques

Domain

knowledge

Very High: developers have good background knowledge

and previous experience regarding the domain (at least 5

years experience)

High: there is a good amount of knowledge and experience

regarding the domain (at least 2 years experience)

Medium: there is some background knowledge and experi-

ence regarding the domain (at least 1 year experience)

Low: the amount of experience and knowledge regarding

the domain is low (some experience, less than 1 year)

Very Low: there is no experience or knowledge about the

domain (no experience)

Table 5.9 shows these transformation project attributes’ weightings

in a tabular format.

TABLE 5.9. Project attributes weighting

Project attribute Value

Very high/large 0.8 - 1

High/large 0.6 - 0.8

Medium 0.4 - 0.6

Low/small 0.2 - 0.4

Very low/small 0 - 0.2

These MT attributes are only a selection of available project at-

tributes. Depending of the nature of a given project, they can be ex-

tended and modified. The value given for each transformation project

attribute is assigned by the developer according to the initial project

description. For this research, we are only taking a sample of nine MT

project attributes, however there is no limit for having further attributes.

In the following section, we will show how to identify the (MT) project

attributes. For each requirement (r) identified within the project, each

RE technique t ∈ T is assigned a value PD(t) (for Project Description)

representing the suitability of applying t to fulfil this requirement, based

154

5.3. A Framework for Selecting Suitable RE Techniques

on the project’s descriptions. The function PD : T 7−→ [0, 1] is defined as:

PD(t) =
∏
dx∈D

{
1− W(dx) if dx ∈ IDt

W(dx) otherwise

This expresses that ‘the technique t is relevant based upon all (
∏

)

the project attributes dx ∈ D’.

Where:

• The set of all project descriptors (e.g. size, complexity) is D. In this

thesis, we assume D = {size, complexity, volatility, relationship,

safety, quality, time, cost, domain knowledge}. It should be noted

that these are only an arbitrary selection of all possible existing

attributes of a project.

• W(dx) is a function W : D 7−→ [0, 1] which represents the magnitude

of a specific descriptor in the project. For example, for d = cost, a

high value represents that the budget of the project is tight, while

a low value indicates that the budget is flexible. Then for d =

estimated size, a high value means that the project involves a large

number of transformation rules while a low value indicates a small

number of rules is involved.

• IDt ⊆ D is a set containing all descriptors with inverse impact for

a specific RE technique t. More specifically, for each d ∈ IDt, the

higher the value of W(dx) the more negative the impact of applying

t in that project. An example of such a descriptor for technique

“interview” is time, where the higher the value of W(time) in a

specific project, the more negative the relevance of interviewing as a

technique for this project. Table 5.10 is an example of RE technique

weight descriptor values, where −1 indicates that 1 − W (dx) is

used and 1 idicates that W(dx) is used. This is static and fixed,

independent of particular projects.

155

5.3. A Framework for Selecting Suitable RE Techniques

TABLE 5.10. Technique weight descriptor values

Attributes Size Complexity Volatility Relation Safety Quality Time Cost Knowledge

Interview 1 1 1 1 1 1 -1 -1 1

Questionnaire 1 1 -1 -1 1 1 1 1 1

Scenario -1 -1 -1 1 1 1 1 -1 1

Prototype -1 -1 -1 1 1 1 1 -1 1

Rapid proto-
typing

-1 -1 1 1 1 1 1 -1 1

For a detailed description of a particular RE technique and its corre-

lating project attributes refer to Appendix C.

5.3.3 Organisational Attribute

Every software developing organization applies the RE process in a dif-

ferent manner. This difference is caused by the behaviour of developers

and stakeholders involved in the project. This behaviour is influenced

by different factors of the organization such as: size, culture, policy and

complexity. These factors have a direct effect on the way the RE process

is performed. For instance, in a small organization, new technologies

and expensive RE techniques may not be the first choice due to the high

cost of it, whereas in a large and complex organization more flexible and

disciplined techniques are required to do RE tasks. Although there is no

limit to the attributes of an organization, we have identified the level of

experience and familiarity with a particular RE technique as the main

organization attribute for this research study.

In this section, we are going to identify the level of experience regard-

ing particular RE techniques for a particular MT requirement. Evaluat-

ing the degree E (for Experience) of experience/expertise regarding the

RE technique t available in the development team. E : T 7−→ [0, 1] is

a function where E(t) represents the level of experience and practical

and theoretical knowledge of the developer regarding t. For instance,

depending on the number of projects in which the developer has applied

a particular RE technique, the weight of E may vary. If the developer

156

5.4. Application Framework Example

has used a particular RE technique in more than 20 different projects,

then the weight of E should be closer to 1.

It is worth mentioning that the given values of the technique attribute,

the project attribute and the organization attribute may be modified

according to the progress of the MT project and the MT developer’s

learning capability regarding the project’s domain and RE techniques.

Once all attributes have been identified, we can calculate the tech-

nique suitability score, S(t), of a particular technique t. By using S(t),

the overall suitability score of a particular RE technique (t ∈ T) can be

determined, and hence it would be possible to define a ranking of tech-

niques t based on their suitability scores S(t) for use in the project.

Techniques can thus be ranked according to their suitability score. The

higher the value of S(t) the more suitable is that particular technique.

S(t) is defined in terms of the requirement attribute score RA(t), the

project description score PD(t), and the experience score E(t) of RE

technique t as follows:

S(t) = RA(t)× PD(t)× E(t)

This expresses that ‘the suitability of a technique, S(t), is based upon

the requirement attributes of that technique, RA(t), the project descrip-

tion attributes of that technique, PD(t), and the experience attributes of

that technique, E(t)’.

5.4 Application Framework Example

Our overall procedure for selecting RE techniques for a MT project is

presented in a running example consisting of six sections.

Example 1 (Running Example). We will choose a refactoring type of

MT project as an example and will apply our proposed technique frame-

work step by step. The general idea behind refactoring is to improve

the structure of the model to make it easier to understand, and to make

157

5.4. Application Framework Example

it more maintainable and amenable to change. We describe an exam-

ple [92] of an in-place endogenous transformation which refactors class

diagrams to improve their quality by removing redundant feature decla-

rations where: (i) there is a complex rule logic and (ii) there are repeated

refactoring steps. In this section, we are going to describe a systematic

procedure by which the requirements attribute of, RA, a technique, t, in

the MT project is identified as follows, using the formula:

RA(t) =

∑
ax∈A

I(ax)× V(ax, t)∑
ax∈A

I(ax)

Example 2 (Continuation of Example 1). In this section, we apply the

framework to find the RA value for the refactoring example:

• category: Domain Analysis & Requirements Elicitation

– The techniques in Telicitation are our chosen sample because the

developers had some experience with these techniques.

– Telicitation= {interview, prototyping, questionnaire, document

mining, brainstorming, scenario, ethno methodology}

– t1= interview, t2= questionnaire are chosen arbitrarily and

any number of these techniques can be chosen.

– I(a) has a dynamic weighting which can be assigned from

a range [0,1] according to the importance of the technique

attributes, A1 and A2, which is determined by the developers

according to the initial project description and stakeholders.

– I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes2 :

2 The set of attributes (A1, A2) has been grouped according to stakeholder infor-
mation and developer understanding

158

5.4. Application Framework Example

∗ A1={eliciting MT requirements, getting domain knowl-

edge, identifying non-functional requirements}
∗ A2 = {identifying MT stakeholders, facilitating communi-

cations}
∗ A3 = A− (A1 + A2)

– v(ax, t1) for A1 is {1, 0.6, 1}

– v(ax, t1) for A2 is {1, 1}

– v(ax, t2) for A1 is {0.8, 0.6, 0.6}

– v(ax, t2) for A2 is {0.8, 1}

•

RA(t1) =
[(1× 1) + (1× 0.6) + (1× 1) + (0.8× 1) + (0.8× 1)]

4.6

=
4.2

4.6
= 0.91

•

RA(t2) =
[(1× 0.8) + (1× 0.6) + (1× 0.6) + (0.8× 0.8) + (0.8× 1)]

3.8

=
3.44

3.8
= 0.9

• category: Evaluation & Negotiation

– TEvaluation= {prototyping, UML, scenario, goal-oriented anal-

ysis}

– t3 = scenario, t4 = prototyping

– I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

∗ A1={modelling MT requirements, identifying accessibility

of the transformation}
∗ A2 = {prioritizing requirements based on stakeholders,

analysing non-functional requirements}

159

5.4. Application Framework Example

∗ A3 = A− (A1 + A2)

– v(ax, t3) for A1 is {1, 0.8}

– v(ax, t3) for A2 is {0.4, 0.2}

– v(ax, t4) for A1 is {0.8, 0.8}

– v(ax, t4) for A2 is {0.2, 0.2}

–

RA(t3) =
[(1× 1) + (1× 0.8) + (0.8× 0.4) + (0.8× 0.2)]

2.4

=
2.28

2.4
= 0.95

–

RA(t4) =
[(1× 0.8) + (1× 0.8) + (0.8× 0.2) + (0.8× 0.2)]

2

=
1.92

2
= 0.96

• category: Specification & Documentation

– T = {interview, UML, evolutionary prototyping, question-

naire, formal methods, structured language template, check-

list}

– t5 = evolutionary prototyping, t6 = UML

– I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

∗ A1={requirements verification, semantic completeness}

∗ A2 = {representing requirements using MT notations}

∗ A3 = A− (A1 + A2)

– v(ax, t5) for A1 is {0.8, 0.2}

– v(ax, t5) for A2 is {0.2}

– v(ax, t6) for A1 is {0.8, 0.8}

160

5.4. Application Framework Example

– v(ax, t6) for A2 is {1}

–

RA(t5) =
[(1× 0.8) + (1× 0.2) + (0.8× 0.2)]

1.2
1.16

1.2
= 0.96

–

RA(t6) =
[(1× 0.8) + (1× 0.8) + (0.8× 1)]

2.6
2.4

2.6
= 0.92

• category: Validation & Verification

– T = {interview, UML, rapid prototyping, questionnaire, for-

mal methods, structured language template, checklist}

– t7 = rapid prototyping

– I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

∗ A1={identifying incomplete requirements, identifying in-

consistency and conflict}

∗ A2 = {identifying ambiguous requirements}

∗ A3 = A− (A1 + A2)

– v(ax, t7) for A1 is {0.8, 0.8}

– v(ax, t7) for A2 is {0.4}

–

RA(t7) =
[(1× 0.8) + (1× 0.8) + (0.8× 0.4)]

2
1.92

2
= 0.96

161

5.4. Application Framework Example

Example 3 (Continuation of Example 2). In this section, we are going

to apply the framework to calculate the value for PD(t) on the refactoring

example based on the following formula:

PD(t) =
∏
dx∈D

{
1− W(dx) if dx ∈ IDt

W(dx) otherwise

• According to the transformation project attributes, the size of this

transformation is small, there are two complicating factors, there

is 5%-10% change of requirements, there is limited access to the

customer, the transformation may be used to refactor safety-related

systems, there exists approximately 20 requirements, up to 50%

extension is possible regarding the time, the budget is tight (less

than 10% extension) and developers are quite familiar with the

domain (at least one year of experience). In other words, we have

the following values3:

– size: small (0.2), complexity: high (0.8), volatility: low (0.2),

customer-developer relationship: low (0.4), safety: low (0.2),

quality: medium (0.5), time: low (0.2), cost: high (0.8), do-

main knowledge: medium (0.6)

• D = {size, complexity, volatility, relationship, safety, quality, time,

cost, domain knowledge}

• IDinterview = {time, cost}

• IDquestionnaire = {volatility, relationship}

• IDscenario = {size, volatility, time, cost }

• IDprototype = {size, complexity, volatility, cost }

• IDevolutionaryprototyping = {size, complexity, volatility, cost}
3 The values have been determined from the transformation project attributes

weighting (Table 5.9)

162

5.4. Application Framework Example

• IDUML = {complexity, volatility}

• IDrapidprototyping = {size, complexity, cost}

• PD(t1) = (0.2)× (0.8)× (0.2)× (0.4)× (0.2)× (0.5)× (0.8)×
(0.2)× (0.6) = 0.0001

• PD(t2) = (0.2)× (0.8)× (0.8)× (0.6)× (0.2)× (0.5)× (0.8)×
(0.8)× (0.6) = 0.0029

• PD(t3) = (0.8)× (0.8)× (0.8)× (0.4)× (0.2)× (0.5)× (0.8)×
(0.2)× (0.6) = 0.0019

• PD(t4) = (0.8)× (0.2)× (0.8)× (0.4)× (0.2)× (0.5)× (0.2)×
(0.2)× (0.6) = 0.0001

• PD(t5) = (0.8)× (0.2)× (0.8)× (0.4)× (0.2)× (0.5)× (0.2)×
(0.2)× (0.6) = 0.0001

• PD(t6) = (0.2)× (0.2)× (0.8)× (0.4)× (0.2)× (0.5)× (0.2)×
(0.8)× (0.6) = 0.0001

• PD(t7) = (0.8)× (0.2)× (0.2)× (0.4)× (0.2)× (0.5)× (0.2)×
(0.2)× (0.6) = 0.00003

Example 4 (Continuing Example 3). Evaluating the degree E (for Expe-

rience) of experience/expertise regarding the RE technique t available in

the development team. E : T 7−→ [0, 1] is a function where E(t) represents

the level of experience and practical and theoretical knowledge of the de-

veloper regarding t. The value of E is established based on developer

experience and is determined by the developer.

Example 5 (Continuing Example 4). For this refactoring example, here

we list the suitability score S(t) of the different techniques (t ∈ T) that

have been identified throughout this example. S(t) values reflect the

relevance of a particular technique, the higher the S(t) value the higher

the priority of that technique.

163

5.4. Application Framework Example

• S(t1) = 0.91× 0.0001× 1 = 0.00009

• S(t2) = 0.9× 0.0029× 0.8 = 0.002

• S(t3) = 0.95× 0.0019× 0.6 = 0.001

• S(t4) = 0.96× 0.0001× 0.8 = 0.00007

• S(t5) = 0.96× 0.0001× 0.8 = 0.00007

• S(t6) = 0.92× 0.0001× 0.8 = 0.00007

• S(t7) = 0.96× 0.00003× 0.8 = 0.00002

Table 5.11 shows the overall calculation of the metric framework of

this example.

TABLE 5.11. Attributes calculation of RE techniques

RE technique RA(t) PD(t) E(t) S(t)

Interview (t1) 0.91 0.0001 1 0.00009

Questionnaire (t2) 0.9 0.0029 0.8 0.002

Scenario (t3) 0.95 0.0019 0.6 0.001

Prototyping (t4) 0.96 0.0001 0.8 0.00007

Evolutionary prototyping (t5) 0.96 0.0001 0.8 0.00007

UML (t6) 0.92 0.0001 0.8 0.00007

Rapid prototyping (t7) 0.96 0.00003 0.8 0.00002

Example 6 (Example Result). In this section, we present the result of

applying our proposed suitability technique framework on the refactoring

example according to the standard RE stages. The properties for this

type of transformation are: endogenous, model-to-model, many-to-many

(source to target model), horizontal, semantic preservation, explicit con-

trol/rule application scoping, rule iteration, traceable and that it is a

unidirectional transformation.

164

5.4. Application Framework Example

• Domain Analysis & Requirements Elicitation for Refactoring

The initial requirements statement is to refactor a UML class dia-

gram to remove all cases of duplicated attribute declarations in sib-

ling classes (classes which have a common parent). This statement

is concerned purely with functional behaviour. Through structured

interviews with the customer (and with the end users of the refac-

tored diagrams and the development team) we can further uncover

non-functional requirements as follows: efficiency, the refactoring

should be able to process diagrams with 1000 classes and 10,000

attributes in a practical time (less than 5 minutes); correctness, the

start and end models should have equivalent semantics; minimality,

the number of new classes introduced should be minimized to avoid

introducing superfluous classes into the model; confluence, would

be desirable but is not mandatory.

The functional requirements can also be clarified and more precisely

scoped through the interview process. A global functional require-

ment is the invariance of the class diagram language constraints

meaning that there is no multiple inheritance, and no concrete class

with a subclass. It is not proposed to refactor associations because

of the additional complications this would cause for the developers.

Only attributes are to be considered. Through scenario analysis

using concrete grammar sketches, the main functional requirement

is decomposed into three cases: (i) where all (two or more) direct

subclasses of one class have identical attribute declarations, (ii)

where two or more direct subclasses have identical attribute decla-

rations, (iii) where two or more root classes have identical attribute

declarations.

• Evaluation & Negotiation for Refactoring

At this point we should ask whether these scenarios are complete

and if they cover all intended cases of the required refactorings.

Through the analysis of the possible structures of class diagrams,

165

5.4. Application Framework Example

and by taking into account the invariant of single inheritance, it

can be deduced that they are complete. Through exploratory pro-

totyping and execution on particular examples of class diagrams, we

can identify that the requirement for minimality means that rule 1

Pull up attributes should be prioritised over rule 2 Create subclass

or 3 Create root class. In addition, the largest set of duplicated

attributes in sibling classes should be removed.

• Specification & Documentation for Refactoring

To formalise the functional requirements, we express the three sce-

narios in abstract grammar of the language.

Rule 1: If the set g= c.specialisation.specific of all direct subclasses

of a class c has two or more elements, and all classes in g have an

owned attribute with the same name n and type t, add an attribute

of this name and type to c, and remove the copies from each element

of g.

Rule 2: If a class c has two or more direct subclasses g= c.speciali

sation.specific, and there is a subset g1 of g, of size at least 2, all the

elements of g1 have an owned attribute with the same name n and

type t, but there are elements of g− g1 without such an attribute,

introduce a new class c1 as a subclass of c. c1 should also be set

as a direct superclass of all those classes in g which own a copy of

the cloned attribute. Add an attribute of name n and type t to c1

and remove the copies from each of its direct subclasses.

Rule 3: If there are two or more root classes all of which have an

owned attribute with the same name n and type t, create a new

root class c. Make c the direct superclass of all root classes with

such an attribute, and add an attribute of name n and type t to c,

and remove the copies from each of the direct subclasses.

• Validation & Verification for Refactoring

The functional requirements can be checked by executing the proto-

type transformation on test cases. In addition, informal reasoning

166

5.5. Framework Implementation

can be used to check that each rule application preserves the in-

variants. For example, no rule introduces new types, or modifies

existing types, so the invariant that type names are unique is clearly

preserved by rule applications. Likewise, the model-level semantics

is also preserved. Termination follows by establishing that each

rule application decreases the number of attributes in the diagram,

i.e., Property.size (since it is bounded below by 0, there can only be

finitely many rule applications). The efficiency requirements can

be verified by executing the prototype transformation on realistic

test cases of increasing size.

5.5 Framework Implementation

Our proposed framework for selecting the most suitable RE technique

would help MT developers to choose the most suitable RE technique for

a specific requirement or set of requirements. Applying the framework

manually could result in high human error-rate calculation and be quite

time consuming for developers. For this reason, we decided to implement

our framework in UML-RSDS in order to not only facilitate the calcu-

lation in an automated way, but also to reduce the calculation error.

Moreover, we will be using UML-RSDS tool to do the two case studies

in the next chapter. Figure 5.4 is an illustration of the metamodel of our

framework. The ElicitationAttributes and ProjectDecriptors class data

are defined for each project, whereas ElicitationTechnique and Elicita-

tionTechniqueSuitability class data are fixed tables independent of each

project.

167

5.5. Framework Implementation

Figure 5.4. RE technique framework metamodel in UML-RSDS

In this section, we will go through the framework’s implementation in

UML-RSDS for the Domain Analysis & Requirements Elicitation stage.

Technique attributes and their values have been defined in a .csv file for

each RE stage (Domain Analysis & Requirements Elicitation, Evaluation

& Negotiation, Specification & Documentation and Validation & Verifi-

cation). The formula regarding RA(t) calculation has been generated as

an operation according to UML-RSDS syntax as follows:

*** Operations of entity ElicitationTechnique:

RA(req: ElicitationAttributes): double

pre: true

post: result = (req.elicitMTreqs * elicitMTreqs +

req.facilitateComm * facilitateComm + req.understandSocial *

understandSocial + req.getDomainKnowl * getDomainKnowl +

req.getImplicitKnowl * getImplicitKnowl +

req.identifyMTstakehs * identifyMTstakehs +

req.identifyNFReqs * identifyNFReqs + req.identifyViewpoints *

identifyViewpoints) / req.sumFactors()

Project attributes and their values have been defined in a .csv file for

a given MT project. The formula regarding PD(t) calculation has been

generated as an operation according to UML-RSDS syntax as follows:

168

5.6. Summary

*** Operations of entity ProjectDescriptors:

query PD(prj: ProjectDescriptors): double

pre: true

post: result = projectFactor(prj.projectSize,projectSize) *

projectFactor(prj.complexity,complexity) *

projectFactor(prj.volatility,volatility) *

projectFactor(prj.custRelationship,custRelationship) *

projectFactor(prj.safety,safety) *

projectFactor(prj.quality,quality) *

projectFactor(prj.time,time) * projectFactor(prj.cost,cost) *

projectFactor(prj.domainKnowl,domainKnowl)

Moreover, we have given the value 1 for direct proportion and −1 for

inverse proportion for every RE technique as follows:

*** Operations of entity projectFactor:

query projectFactor(att: double,proj: double): double

pre: true

post: (proj < 0 => result = 1 - att) &

(proj > 0 => result = att)

Using the S operation, the overall suitability score of a particular RE

technique, S(t), can be calculated as follows:

"S for technique X is: "->display() &

(ElicitationTechnique[s].RA(atts) *

ElicitationTechniqueSuitability[s].PD(des) *

TechniqueExperience[s].experience)->display()

5.6 Summary

We have identified ways in which requirements engineering can be applied

systematically to model transformations. Comprehensive catalogues of

functional and non-functional requirements categories for model trans-

formations have been defined. We have examined a case study which

169

5.6. Summary

is typical of the current state of the art in transformation development,

and identified how formal treatment of functional and non-functional re-

quirements can benefit such developments. Moreover, we have defined

our proposed metric for the suitability of RE techniques for MT as well

as implementing the framework in UML-RSDS.

170

Chapter 6

Evaluation

In this section, we illustrate the application of our proposed RE pro-

cess and RE selection procedure, we show how these have been used on

two substantial and industrial MT case studies using UML-RSDS. We

will evaluate the proposed framework, which has been implemented in

UML-RSDS, in order to facilitate the calculation of the RE technique

suitability value, by applying it to these two real industrial cases: UML

to C Transformation and Collateralized Debt Obligations (CDO).

6.1 Case study 1: UML to C Transforma-

tion

This case study concerns the development of a code generator for the

UML-Rigorous Systems Design Support (UML-RSDS) [85] dialect of

UML. UML-RSDS is a model transformation tool, which is able to man-

ufacture software systems in an automated manner. Given a valid UML-

RSDS model, the UML2C transformation should produce a C application

with the same semantics. The target code should be structured in the

standard C style with header and code files and standard C libraries

may be used. The produced code is then compared to the hand-written

code to verify its efficiency. The code generation process should not take

longer than 1 minute for class diagrams with fewer than 100 classes.

171

6.1. Case study 1: UML to C Transformation

Before applying any RE process, we need to identify the stakeholders,

which are listed below:

(i) the UML-RSDS development team

(ii) users of UML-RSDS who require C code for embedded or limited

resource systems

(iii) end-users of such systems

Through the use of Tables of 5.5 –5.8 we are going to apply our

proposed framework for the RE process, which calculates the suitability

score of a particular RE technique, S(t), through the use of this formula:

S(t) = RA(t)× PD(t)× E(t)

The following are calculations for the Domain Analysis & Require-

ments Elicitation stage of the translation of UML to C case, by using

Table 6.1 adapted from Jiang [61]. These scored attributes are static

and fixed, independent of particular projects and represent fitness of X

(technique) for Y (specific requirement attribute). Step by step applica-

tion of this stage is presented below:

• category: Domain Analysis & Requirements Elicitation

– The techniques in Telicitation are our chosen sample because the

developers had some experience with these techniques.

– Telicitation = {interview, prototyping, questionnaire, document

mining, brainstorming, scenario, ethno methodology}

– t1= interview, t2= questionnaire, t3= document mining are

chosen arbitrarily for this example (Note that any number of

techniques can be chosen).

– I(a) has a dynamic weighting which can be assigned from

a range [0,1] according to the importance of the technique

attributes, A1 and A2, which is determined by the developers

according to the initial project description and stakeholders.

172

6.1. Case study 1: UML to C Transformation

TABLE 6.1. Domain Analysis & Requirements Elicitation technique attributes
evaluation

Attribute Interview
Question-

naire

Document

Mining

Brainstor-

ming
Scenario

Eliciting

MT requirements
1 0.8 1 0.8 1

Facilitating

communication
1 1 0 0.8 0.8

Understanding

social issues
0.8 1 0.8 0.4 0.2

Getting domain

knowledge
0.6 0.6 1 1 0.4

Getting implicit

knowledge
0.2 0.2 0.2 0.2 0.2

Identifying MT

stakeholders
1 0.8 0.2 1 0

Identifying

non-functional

requirements

1 0.6 0.8 1 0.2

Identifying

viewpoints
0.8 0.6 0.4 0.8 0

– I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

∗ A1= {eliciting MT requirements, getting domain knowl-

edge, getting implicit knowledge}

∗ A2 = {identifying MT stakeholders, facilitating communi-

cations, identifying non-functional requirements}

– v(ax, t1) for A1 is {1, 0.6, 0.2}

– v(ax, t1) for A2 is {0.8, 0.8, 0.8}

– v(ax, t2) for A1 is {0.8, 0.6, 0.2}

– v(ax, t2) for A2 is {0.8, 1, 0.6}

– v(ax, t3) for A1 is {1, 1, 0.2}

– v(ax, t3) for A2 is {0.2, 0, 0.8}

173

6.1. Case study 1: UML to C Transformation

•

RA(t1) =
[(1× 1) + (1× 0.6) + (1× 0.2) + (0.8× 0.8) + (0.8× 0.8) + (0.8× 0.8)]

4.8

=
4.2

4.8
= 0.77

•

RA(t2) =
[(1× 0.8) + (1× 0.6) + (1× 0.2) + (0.8× 0.8) + (0.8× 1) + (0.8× 0.6)]

4

=
3.52

4
= 0.88

•

RA(t3) =
[(1× 1) + (1× 1) + (1× 0.2) + (0.8× 0.2) + (0.8× 0) + (0.8× 0.8)]

3.2

=
3

3.2
= 0.93

• According to the transformation project attributes, the estimated

size of this transformation is large as it has over 250 rules, therefore

a value of 0.8 is given for size. There are two complicating factors:

complex rule logic and bidirectionality, therefore a value of 0.8 is

given for complexity. There is 5%-10% change of requirements,

therefore a value of 0.2 is given for the volatility attribute. There

is limited access to the customer, therefore a value of 0.2 is given

for customer relationship. The transformation may be used for

safety-related systems but not safely-critical systems, therefore a

value of 0.5 is given for the safety project attributes. There exists

approximately 50 requirements, therefore a value of 0.8 is given

for the transformation quality attribute. Up to 20% extension is

possible regarding the time attribute, therefore the value of 0.5 is

given for the time attribute. The budget restriction is low (up to

50% extension), therefore a value of 0.2 is given for the budget

174

6.1. Case study 1: UML to C Transformation

attribute. Developers are not very familiar with the domain (some

experience, less than one year of experience), therefore a value of

0.4 is given for the domain knowledge attribute.

In other words, we have the following1:

– Project attributes: size: large (0.8), complexity: high (0.8),

volatility (0.2): low, customer-developer relationship: low (0.2),

safety: medium (0.5), quality: high (0.8), time: medium (0.5),

cost: low (0.2), domain knowledge: medium (0.4)

• D = {size, complexity, volatility, relationship, safety, quality, time,

cost, domain knowledge}

• IDinterview = {time, cost}

• IDquestionnaire = {relationship}

• IDdocumentmining = {relationship, domain knowledge}

• PD(t1) = (0.8)× (0.8)× (0.2)× (0.2)× (0.5)× (0.8)× (0.5)×
(0.8)× (0.4) = 0.0016

• PD(t2) = (0.8)× (0.8)× (0.2)× (0.2)× (0.5)× (0.8)× (0.5)×
(0.2)× (0.4) = 0.0004

• PD(t3) = (0.8)× (0.8)× (0.2)× (0.8)× (0.5)× (0.8)× (0.5)×
(0.2)× (0.6) = 0.0024

• E(t) values regarding each RE technique for this stage are listed in

Table 6.2 for calculating S(t).

• S(t1) = 0.77× 0.0016× 1 = 0.0012

• S(t2) = 0.88× 0.0004× 0.6 = 0.0002

• S(t3) = 0.93× 0.0024× 0.8 = 0.0017

1 The values have been determined from the transformation project attributes
weighting (Table 5.9)

175

6.1. Case study 1: UML to C Transformation

Table 6.2 presents the value of each attribute RA(t), PD(t), E(t) and

S(t) for the selected RE techniques for the Domain Analysis & Require-

ments Elicitation stage.

TABLE 6.2. Domain Analysis & Requirements Elicitation technique attributes
evaluation for UML to C case

Measures Brainstorming Interview Mining Scenario Questionnaire

RA(t) 0.88 0.77 0.93 0.9 0.88

PD(t) 0.0004 0.0016 0.0024 0.0016 0.0002

E(t) 0.4 1 0.8 1 1

S(t) 0.0001 0.0012 0.0017 0.0014 0.0002

The S(t) results indicate that document mining (0.0017), scenario

(0.0014) and interview (0.0012) techniques are best suited for this trans-

lation, therefore document mining, scenario and interview were used for

the Domain Analysis & Requirements Elicitation stage.

As an initial phase of the requirement’s elicitation for this system,

document mining, scenario and interview were conducted. Document

mining consisted of research into the ANSI C language and existing UML

to C translators. Scenario was used to consider different scenarios (model

elements and structures of linked elements), and a semi-structured inter-

view with the principal stakeholder was carried out.

• Document mining: this involves comprehensive background research

into relevant documents and software, specifically C standards,

textbooks, compilers and forums, and review of existing code gen-

erators for C and the UML-RSDS code generators.

• Scenario analysis: detailed consideration of specific scenarios (model

elements and structures of linked elements) which the translator

should process. Both normal and abnormal (error) scenarios can

be considered. Scenario analysis is a widely-used technique, how-

ever it can suffer from incompleteness, since in general it is not

possible to identify all scenarios. In the case of model transfor-

mations this problem can be addressed by systematically defining

176

6.1. Case study 1: UML to C Transformation

scenarios for each permitted construct of source models that satis-

fies the constraints of the source metamodel(s).

• Interview: elicitation of requirements from stakeholders via struc-

tured interviews.

This initial phase of Domain Analysis & Requirements Elicitation

produced an initial set of functional (F) and non-functional requirements

(NF) of the project as follows:

• Functional requirements:

– F: Translate UML-RSDS designs (class diagrams, OCL, activ-

ities and use cases) into ANSI C code

– F: Translation of types

– F: Translation of class diagrams

– F: Translation of OCL expressions

– F: Translation of activities

– F: Translation of use cases

– F: Syntactic correctness: given correct input, a valid C pro-

gram will be produced

– F: Model-level semantic preservation: the semantics of the

source and target models are equivalent

– F: Traceability: a record should be maintained of the corre-

spondence between source and target elements

– F: Bidirectionality between source and target

– F: Confluence

• Non-functional requirements

– NF: Termination: given correct input

– NF: Efficiency: input models with 100 classes and 100 at-

tributes should be processed

177

6.1. Case study 1: UML to C Transformation

– NF: Modularity of the transformation

– NF: Flexibility: ability to choose different C interpretations

for UML elements

After a further interview, the application of model-based testing and

bidirectional transformations (bx) to achieve model-level semantic preser-

vation was identified as an important area of work. Tests for the syn-

thesised C code should, ideally, be automatically generated based on the

source UML model. The bx property can be utilised for testing semantic

equivalence by transforming UML to C, applying the reverse transforma-

tion, and comparing the two UML models to identify whether they are

isomorphic.

The identified stakeholders included: (i) the UML-RSDS development

team; (ii) users of UML-RSDS who require C code for embedded or lim-

ited resource systems; (iii) end-users of such systems. Direct access was

only possible to stakeholders (i). Access to other stakeholders was sub-

stituted by research into the needs of such stakeholders, using document

mining of sources such as C text books, the C standard, and specialised

standards, particularly MISRA C [7].

An initial phase of requirements elicitation for this system used doc-

ument mining (research into the ANSI C language and existing UML to

C translators) and a semi-structured interview with the principal stake-

holder. This produced an initial set of requirements, with priorities. It

was determined that the complete set of language restrictions of MISRA

C would not be followed, and instead the focus would be on supporting

the implementation of UML in C for general users. Thus, we target the

ANSI 89 standard version of C, as described in [69].

We distinguish between global and local requirements for MT: a global

requirement concerns properties of the source/target model or trans-

formation considered as a whole (such as the syntactic correctness of

the target model with its metamodel), whilst local requirements concern

properties specific to particular types of model elements or particular

kinds of structures in the models (such as a mapping requirement for the

178

6.1. Case study 1: UML to C Transformation

mapping of UML inheritance to C).

In order to prioritise the requirements for this project, we used in-

terview and brainstorming techniques based on the scoring result from

the framework. We discussed the priority of the elicited requirements

with the client through interview and brainstorming techniques. This

produced an initial set of requirements, with the following priorities ac-

cording to the stakeholder and the intended use of the system:

• high-level

• medium-level

• low-level

High-level functional requirement (F) of the translation is:

F1: Translate UML-RSDS designs (class diagrams, OCL, ac-

tivities and use cases) into ANSI C code.

This high-level functional requirement was further decomposed into five

high-level priority subgoals, each of which is responsible for a separate

subtransformation as follows:

• F1.1: Translation of types

• F1.2: Translation of class diagrams

• F1.3: Translation of OCL expressions

• F1.4: Translation of activities

• F1.5: Translation of use cases

Each translation in this list is dependent upon all of the preceding

translations. In addition, the translation of operations of classes depends

upon the translation of expressions and activities. The development was

therefore organised into five iterations, one for each translator part, and

each iteration was given a maximum duration of one month.

Other high-level priority functional and non-functional (NF) require-

ments identified for the translator are as follows:

179

6.1. Case study 1: UML to C Transformation

• NF1: Termination: given correct input

• F2: Syntactic correctness: given correct input, a valid C program

will be produced

• F3: Model-level semantic preservation: the semantics of the source

and target models are equivalent

• F4: Traceability: a record should be maintained of the correspon-

dence between source and target elements

Medium-level priority functional and non-functional requirements of the

translation are:

• F5: Bidirectionality between source and target

• NF2: Efficiency: input models with 100 classes and 100 attributes

should be processed within 30 seconds

• NF3: Modularity of the transformation

• NF6: Produce efficient code, of similar or higher efficiency as equiv-

alent hand-produced code

• NF7: Produce compact code, of the same or smaller size as equiv-

alent hand-produced code

Low-level priority functional and non-functional requirements of the trans-

lation are:

• F6: Confluence

• NF4: Flexibility: ability to choose different C interpretations for

UML elements

There are potential conflicts between the requirements:

180

6.1. Case study 1: UML to C Transformation

• NF2 conflicts with F4, F5 and NF3 because the additional struc-

ture needed for tracing and bx properties impairs efficiency, and

the decomposition of the transformation into subtransformations

composed sequentially also slows execution

• NF4 conflicts with NF10 as the additional work required for NF4

would need substantial additional time resources

• NF6 conflicts with F3 because in some cases semantic correctness

will require inefficient coding, eg., because OCL collection operators

produce modified copies of their arguments instead of updating

them in-place

Figure 6.1 shows part of the requirements subdivisions and goal de-

composition using SysML. It shows the prioritization and dependency

relationship of the requirements.

Figure 6.1. Functional requirements decomposition in SysML

For the RE technique suitability score, S(t), of the remaining three

stages (Evaluation & Negotiation, Specification & Documentation and

Validation & Verification), we have to apply a similar procedure for each

181

6.1. Case study 1: UML to C Transformation

particular technique at each stage. However, for brevity reasons, we are

going to give the overall result of the suitability score of each selected

technique without presenting any further calculation steps.

The overall ranking of techniques in the Evaluation & Negotiation

stage according to importance based on S(t) values is: (i) scenario, (ii)

UML, (iii) prototyping, as shown in Table 6.3.

The overall ranking of techniques in the Specification & Documenta-

tion stage according to importance based on S(t) values is: (i) natural

language and UML, (ii) SysML, as shown in Table 6.4.

The overall ranking of techniques in the Validation & Verification

stage according to importance based on S(t) values is: (i) prototyping,

(ii) checklist, (iii) inspection, as shown in Table 6.5. These tables are

based upon Tables 5.5 –5.8.

• Prototyping: parts of the transformation are implemented in an

initial form and tested using example models to identify if the in-

tended mappings are correctly defined. This is an iterative process

with successive refinement of the implementation based upon stake-

holder feedback. In our case, the evolved prototype is also the final

deliverable.

• Inspection: systematic review of the specifications is performed to

check their syntactic and semantic correctness, and their validity

wrt requirements. As noted below, we found that inspection of

specifications was substantially more time-efficient than code in-

spection, corresponding to a 4-fold size reduction of the specifica-

tion compared to executable code.

182

6.1. Case study 1: UML to C Transformation

TABLE 6.3. Technique attributes evaluation of the Evaluation & Negotiation
stage V(ax, t) for UML to C case

Attribute Prototyping Scenario UML

Modelling MT

requirements
0.8 1 1

Analysing non-

functional requirements
0.2 0.2 0

Modelling interface

requirements
0.6 1 1

Facilitate negotiation 0.8 0.6 0.8

RA(t) 0.93 0.95 0.94

PD(t) 0.0004 0.0016 0.0004

S(t) 0.0002 0.0015 0.0003

TABLE 6.4. Technique attributes evaluation of the Specification &
Documentation stage V(ax, t) for UML to C case

Attribute
Natural

language
UML SysML

Representing MT

requirements
0.8 1 0.8

Semantic

completeness
0.6 0.8 1

Write complete

requirements
0.6 0.8 0.8

Modularity 0.2 0.8 0.8

RA(t) 0.80 0.95 0.95

PD(t) 0.0004 0.0004 0.0004

S(t) 0.0003 0.0003 0.0001

Decomposing the code generator into two sub-transformations im-

proves its modularity, and simplifies the constraints, which would other-

183

6.1. Case study 1: UML to C Transformation

TABLE 6.5. Technique attributes evaluation of the Validation & Verification stage
V(ax, t) for UML to C case

Attribute (rapid)Prototyping Inspection Checklist

Identifying ambiguous

requirements
0.4 0.4 0

Identifying inconsistency

and conflict
0.8 0.4 1

Identifying incomplete

requirements
0.8 0.8 8

RA(t) 0.96 0.95 1

PD(t) 0.0004 0.0001 0.0004

S(t) 0.0003 0.00005 0.0002

wise need to combine language translation and text production. There-

fore, a suitable overall architecture for the transformation was a sequen-

tial decomposition of a model-to-model transformation design2C, and

a model-to-text transformation genCtext. Figure 6.2 shows the overall

transformation architecture. This decomposition means that each of the

high-level requirements need to be satisfied by both design2C and genC-

text. The requirements for bidirectionality and traceability are however

specific to design2C.

Figure 6.2. C code generator architecture

In the following subsections we present the application of the selected

RE techniques on the case study.

184

6.1. Case study 1: UML to C Transformation

6.1.1 F1.1: Translation of Types

This iteration was divided into three phases: detailed requirements anal-

ysis, specification, testing. Detailed requirements elicitation used struc-

tured interviews to identify: (i) the source language, (ii) the mapping

requirements, (iii) the target language, (iv) other functional and non-

functional requirements, for this sub-transformation. Scenarios and test

cases were prepared.

Using goal decomposition, the requirements were decomposed into

specific mapping requirements, these are the local functional require-

ments F1.1.1 to F1.1.4 in Figure 6.1. Table 6.6 shows the informal

scenarios for these local mapping requirements, based on the concrete

metaclasses of Type and the different cases of instances of these meta-

classes. The schematic concrete grammar is shown for the C elements

representing the UML concepts. As a result of requirements evaluation

and negotiation with the principal stakeholder, using exploratory proto-

typing, it was determined that all these local requirements are of high

priority except for the mapping of F1.1.2 (Figure 6.1) of enumerations

(medium priority). The justification for this is that enumerations are not

an essential UML language element. Bidirectionality was considered a

high priority for this sub-transformation. It was identified that to meet

this requirement, all source model Property elements must have a defined

type, and specifically that elements representing many-valued association

ends must have some CollectionType representing their actual type. A

limitation of the proposed mapping is that mapping collections of prim-

itive values (integers, doubles, booleans) to C is not possible, because

there is no means to identify the end of the collection in C (NULL is used

as the terminator for collections of objects and collections of strings).

6.1.2 F1.2: Translation of Class Diagrams

This iteration also used a three-phase approach, to define a subtrans-

formation classdiagram2C. The class diagram elements Property, Oper-

ation, Entity, Generalization were identified as the input language. Ex-

185

6.1. Case study 1: UML to C Transformation

TABLE 6.6. Informal scenarios for types2C

Scenario UML element e C representation e’

F1.1.1.1

F1.1.1.2

F1.1.1.3

String type

int, long, double types,

boolean type

char*

same-named C types

unsigned char

F1.1.2 Enumeration type C enum

F1.1.3 Entity type E struct E* type

F1.1.4.1

F1.1.4.2

Set(E) type

Sequence(E) type

struct E** (array of E,

without duplicates)

struct E** (array of E,

possibly with duplicates)

ploratory prototyping was used for requirements elicitation and evalua-

tion. During requirements evaluation and negotiation it was agreed that

the metafeatures isStatic, isReadOnly, isDerived, isCached would not be

represented in C, nor would addOnly, aggregation, constraint or linked-

Class. This means that aggregations, association classes and static or

constant features are not specifically represented in C. Interfaces are also

not represented, only single inheritance is represented.

The scenarios of the local mapping requirements for class diagram

elements are shown in Table 6.7.

The source language was identified as the Type class and its subclasses

in the standard UMLRSDS class diagram metamodel as illustrated in

Figure 6.3.

6.1.3 F1.3: Translation of OCL Expressions

In this iteration, the detailed requirements for mapping OCL expres-

sions to C are identified, then this subtransformation, expressions2C, is

specified and tested. There are many cases to consider in the mapping

requirements, so we divided these into four subgroups, mapping of: (i)

basic expressions; (ii) logical expressions; (iii) comparator, numeric and

186

6.1. Case study 1: UML to C Transformation

TABLE 6.7. Informal scenarios for the mapping of UML class diagrams to C

Scenario UML element e C representation e’

F1.2.1 Class diagram D C program with D’s name

F1.2.2 Class E

struct E {...};
Global variable struct E** e instances;

Global variable int e size;

struct E* createE() operation

struct E** newEList() operation

F1.2.3.1

Property p : T

(not principal identity

attribute)

Member T’p; of the struct for p’s owner,

where T’ represents T

Operations T’ getE p(E’ self)

and setE p(E’ self, T’ px)

F1.2.3.2

Principal identity

attribute p : String of

class E

Operation

struct E* getEByPK(char* v)

Key member char* p; of the struct for E

F1.2.4 Operation op(p : P) :
T of E

C operation

T’ op(E’ self, P’ p)

with scope = entity

F1.2.5 Inheritance of A by B
Member struct A* super;

of struct B

string expressions; (iv) collection expressions. These were considered the

natural groupings of operations and operators, and these follow in part

the metaclass organisation of UML expressions.

Mapping of Basic Expressions

The basic expressions of OCL generally map directly to corresponding C

basic expressions. Table 6.8 shows the mapping for these. These mapping

requirements are grouped together as requirement F1.3.1 (Figure 6.1).

Mapping of Logical Expressions

Table 6.9 shows the mapping of logical expressions and operators to C.

These mappings are grouped together as requirement F1.3.2 (Figure 6.1).

187

6.1. Case study 1: UML to C Transformation

Figure 6.3. UML-RSDS class diagram metamodel

Mapping of Comparator, Numeric and String Expressions

Table 6.102 lists the comparator operators and their mappings to C.

These mappings are grouped as requirement F1.3.3 (Figure 6.1). Numeric

operators for integers and real numbers are shown in Table 6.11. The

types int, double and long are not guaranteed to have particular sizes

in C. All operators take double values as arguments except mod and

Integer.subrange, which have int parameters.

Other math operators directly available in C are: log10, tanh, cosh,

sinh, asin, acos, atan. These are double-valued functions of double-valued

arguments. cbrt is missing and needs to be implemented as pow(x, 1.0/3).

Mapping of Collection Expressions

Tables 6.13 and 6.14 show the values and operators that apply to sets and

sequences, and their C translations. Some operators (unionAll, intersec-

2 OCL library functions isIn, equalsSet and etc. are defined in a file ocl.h to
support the execution of OCL expressions

188

6.1. Case study 1: UML to C Transformation

TABLE 6.8. Mapping scenarios for Basic Expressions

OCL expression e C representation e’

self self as an operation parameter

Variable v

or v[ind]

v

v[ind - 1]

Data feature f

with no objectRef

Data feature f

of instance ex

self → f

ex’ → f

Operation call op(e1,...,en)

or obj.op(e1,...,en)

op(self, e1’, ..., en’)

op(obj’, e1’, ..., en’)

Attribute f

of collection exs

getAllE f (exs’)

(duplicate values preserved)

Single-valued role r : F

of collection exs

getAllE r(exs’) defined by

(struct F ∗∗) collectE(exs’, getE r)

col [ind]

ordered collection col
(col’)[ind-1]

E[v]

v single-valued

E[vs]

vs collection-valued

getEByPK(v’)

getEByPKs(vs’)

E.allInstances e instances

value of enumerated type,

numeric or string value
value

boolean true, false TRUE, FALSE

tAll, symmetricDifference, subcollections) were considered a low priority,

because these are infrequently used, and were not translated. The re-

quirements are grouped as F1.3.6 (Figure 6.1). In addition, prototyping

revealed that compiler differences made the use of qsort impractical, and

instead a custom sorting algorithm, treesort, was implemented. This has

the signature treesort(void* col[], int (*comp)(void*, void*)) and the

translation of x→sort() is then: (rt) treesort((void∗∗) x’, comp) for the

appropriate result type rt and comparator function comp. Table 6.12

shows the translation of Select and Collect expressions. These mappings

are grouped as requirement F1.3.7 (Figure 6.1).

Unlike the Types and Class diagram mappings, a recursive descent

style of specification is needed for mappings of expressions and activities.

This is because the subordinate parts of an expression are themselves ex-

189

6.1. Case study 1: UML to C Transformation

TABLE 6.9. Mapping scenarios for Logical Expressions

OCL expression e C representation e’

A =>B

A & B

A or B

not(A)

!A’ ‖ B’

A’ && B’

A’ ‖ B’

!A’

E->exists(P)

e->exists(P)

existsE(e instances,fP) fP evaluates P’

existsE(e’,fP)

E->exists1(P)

e->exists1(P)

exists1E(e instances,fP) fP evaluates P’

exists1E(e’,fP)

E->forAll(P)

e->forAll(P)

forAllE(e instances,fP) fP evaluates P’

forAllE(e’,fP)

pressions. Thus, in general it is not possible to map all the subordinate

parts of an expression by prior rules; even for basic expressions, the pa-

rameters may be general expressions. In contrast, the element types of

collection types cannot themselves be collection types or involve subparts

that are collection types, so it is possible to map all element types before

considering collection types. A recursive descent style of mapping spec-

ification uses operations of each source entity type to map instances of

that type, invoking mapping operations recursively to map subparts of

the instances.

6.1.4 Translation of Activities

In this iteration, UML-RSDS activities are mapped to C statements by

a subtransformation statements2C. UML-RSDS statements correspond

closely to those of C. Table 6.15 shows the main cases of the mapping of

UML activities to C statements.

190

6.1. Case study 1: UML to C Transformation

TABLE 6.10. Mapping scenarios for Comparator Expressions

OCL expression e C representation e’

x : E

E entity type

x : s

s collection

isIn((void∗) x’, (void ∗∗) e instances)

isIn((void∗) x’, (void ∗∗) s’)

s->includes(x)

s collection
Same as x : s

x / : E

E entity type

x / : s

s collection

!isIn((void∗) x’, (void ∗∗) e instances)

!isIn((void∗) x’, (void ∗∗) s’)

s->excludes(x)

s collection
Same as x / : s

x = y

Numerics, Booleans

Strings

Objects

Sets

Sequences

x’== y’

strcmp(x’, y’) == 0

x’== y’

equalsSet((void ∗∗) x’, (void ∗∗) y’)

equalsSequence((void ∗∗) x’, (void ∗∗) y’)

x <y

Numerics

Strings

x’<y’

strcmp(x’, y’) <0

Similarly for >, <=, >=,

/=

>, <=, >=,

! =

s <: t

s, t collections
containsAll ((void ∗∗) t’, (void ∗∗) s’)

t->includesAll(s) Same as s <: t

t->excludesAll(s) disjoint((void∗∗) t’, (void∗∗) s’)

191

6.1. Case study 1: UML to C Transformation

TABLE 6.11. Mapping scenarios for Numeric Expressions

OCL expression e Representation in C

-x -x’

x + y x’ + y’

numbers

x - y x’ - y’

x* y x’ * y’

x / y x’ / y’

x mod y x’ % y’

x.sqr (x’ * x’)

x.sqrt sqrt(x’)

x.floor oclFloor(x’) defined as: ((int) floor(x’))

x.round oclRound(x’)

x.ceil oclCeil(x’) defined as: ((int) ceil(x’))

x.abs fabs(x’)

x.exp exp(x’)

x.log log(x’)

x.pow(y) pow(x’,y’)

x.sin, x.cos, x.tan sin(x’), cos(x’), tan(x’)

Integer.subrange(st,en) intSubrange(st’,en’)

TABLE 6.12. Scenarios for the mapping of Selection and Collection Expressions

UML expression e C translation e’

s->select(P) selectE(s’, fP) fP evaluates P’

s->select(x | P) as above

s->reject(P) rejectE(s’, fP)

s->reject(x | P) as above

s->collect(e) (et’∗) collectE(s’, fe)

e of type et fe evaluates e’

s->collect(x | e) as above

192

6.1. Case study 1: UML to C Transformation

TABLE 6.13. Scenarios for the translation of Collection Operators (1)

Expression e C translation e’

Set{} newEList()

Sequence{} newEList()

Set{x1, x2, ... , xn} insertE(... insertE(newEList(), x1’), ..., xn’)

Sequence{x1, x2, ..., xn} appendE(... appendE(newEList(), x1’), ..., xn’)

s->size() length((void∗∗) s’)

s->including(x) insertE(s’,x’) or appendE(s’,x’)

s->excluding(x) removeE(s’,x’)

s - t removeAllE(s’,t’)

s->append(x) appendE(s’,x’)

s->count(x) count((void∗) x’, (void∗∗) s’)

s->indexOf(x) indexOf((void*) x’, (void**) s’)

x∨y unionE(x’,y’)

x∧y intersectionE(x’,y’)

x_ y concatenateE(x’,y)

x->union(y) unionE(x’,y’)

x->intersection(y) intersectionE(x’, y’)

x->any() x’[0]

x->reverse() reverseE(x’)

x->front() subrangeE(x’,1,length((void**) x’)-1)

x->tail() subrangeE(x’,2,length((void**) x’))

x->first() x’[0]

6.1.5 Translation of Use Cases

In this iteration, the mapping usecases2C of use cases is specified and

implemented. A large part of this iteration was also taken up with inte-

gration testing of the complete transformation.

F1.5.1: A use case uc is mapped to a C operation with application

scope, and with parameters corresponding to those of uc. Its code is

given by the C translation of the activity classifierBehaviour of uc.

F1.5.2: Included use cases are also mapped to operations, and invoked

from the including use case.

F1.5.3: Operation activities are mapped to C code for the correspond-

ing COperation.

F1.5.1 is formalised as:

UseCase::

COperation->exists(cop | cop.name = name &

193

6.1. Case study 1: UML to C Transformation

TABLE 6.14. Scenarios for the translation of Collection Operators (2)

Expression e C translation e’

x->last() x’[length((void∗∗) x’)-1]

x->sort()
qsort((void∗∗) x’, length((void∗∗) x’),

sizeof(struct E∗), compareToE)

x->sortedBy(e)

qsort((void∗∗) x’, length((void∗∗) x’),

sizeof(struct E∗), compare)

compare defines e-order

x->sum()
sumString(x’), sumint(x’), sumlong(x’),

sumdouble(x’)

x->prd() prdint(x’), prdlong(x’), prddouble(x’)

Integer.Sum(a,b,x,e)
sumInt(a’,b’,fe), sumDouble(a’,b’,fe)

fe computes e’(x’)

Integer.Prd(a,b,x,e) prdInt(a’,b’,fe), prdDouble(a’,b’,fe)

x->max()
maxInt(x’), maxLong(x’), maxDouble(x’),

maxString(x’)

x->min()
minInt(x’), minLong(x’), minDouble(x’),

minString(x’)

x->asSet() asSetE(x’)

x->asSequence() x’

s->isUnique(e) isUniqueE(s’,fe)

x->isDeleted() killE(x’)

TABLE 6.15. Scenarios for mapping of UML Activities to C Statements

Requirement UML activity st C statement st’

F1.4.1
Creation statement x : T

defaultT’ is default value of T’
T’ x = defaultT’;

F1.4.2 Assign statement v := e v’ = e’;

F1.4.3 Sequence statement st1 ; ... ; stn st1’ ... stn’

F1.4.4
Conditional statement if e

then st1 else st2
if e’ {st1’} else {st2’}

F1.4.5 Return statement return e return e’;

F1.4.6 Break statement break break;

F1.4.7

Bounded loop for (x : e) do st

on object collection e of entity

element type E

int i = 0;

for (; i <length((void**)

e’); i++)

{ struct E* x = e’[i]; st’ }
New index variable i

F1.4.8 Unbounded loop while e do st while (e’) { st’ }
F1.4.9 Operation call ex.op(pars) op(ex’,pars’)

cop.scope = "application" &

cop.isQuery = false &

194

6.1. Case study 1: UML to C Transformation

cop.code = classifierBehaviour.mapStatement() &

cop.parameters = parameters.mapExpression() &

cop.returnType = CType[returnType.typeId])

Similarly for the activities of UML operations.

This case study is the largest transformation, which has been devel-

oped using UML-RSDS, in terms of the number of rules (over 250 rules/-

operations in 5 subtransformations). By using a systematic requirements

engineering and agile development approach, we were able to effectively

modularise the transformation and to organise its structure and man-

age its requirements. Despite the complexity of the transformation, it

was possible to use patterns to enforce bx and other properties, and to

effectively prove these properties. The bx properties are discussed in [70].

6.1.6 Evaluation

In this section we evaluate the outcomes of the development, the ef-

fectiveness of UML-RSDS for the development, and the RE technique

framework that we have used.

Comparison with requirements

Table 6.16 compares the functional and non-functional requirements and

the actual achieved results. In some cases it is possible to prove by the

construction of the transformation that some properties hold (e.g. ter-

mination and confluence). For syntactic and semantic correctness we

can give rigorous arguments based on considering each mapping rule and

checking that it produces valid C with the same semantics as its input.

For some aspects, such as numeric computations, semantic correctness is

only relative to the same definitions of numeric types being used in the

input UML and output C; the specifier needs to use in its specification

the same data type sizes (eg., 16 bit int type) as the target code plat-

form. For dynamic memory allocation, we assume that malloc and calloc

always succeed. Select and other iterator expressions are restricted to de-

pend on only one variable. Only collections containing string or entity

195

6.1. Case study 1: UML to C Transformation

instances can be explicitly constructed.

TABLE 6.16. Achievement of requirements

Requirement Priority Achievement

NF1: Termination High Proved

NF10: Development time High Achieved

F2: Syntactic correctness High Rigorous argument

F3: Semantic preservation High Rigorous argument

F4: Traceability High Achieved

F5: Bidirectionality Medium Partly achieved

NF2: Transformation efficiency Medium Achieved

NF3: Transformation modularity Medium Achieved

NF5: Usability Medium Achieved

NF6: Efficient code Medium Partly achieved

NF7: Compact code Medium Partly achieved

F6: Confluence Low Proven

NF4: Flexibility Low Not achieved

In order to test NF6 and NF7 we wrote a test UML specification

involving a fixed-point computation of the maximum-value node in a

graph of nodes. This has one entity A, with an attribute x : int and a

self-association neighbours : A→ Set(A). There is a use case maxnode

with the postcondition:

A::

n : neighbours & n.x > x@pre => x = n.x

This updates a node to have the maximum x value of its neighbours.

Because this constraint reads and writes A :: x, a fixed-point design is

generated, with a running time of cubic order in the number of nodes.

We obtain an overall estimate for the C code generator in Table 6.17.

Table 6.18 compares the code size and the efficiency of the C code

with the Java code for all applications, including library code and the

196

6.1. Case study 1: UML to C Transformation

TABLE 6.17. Overall development effort for C code generator

Stage Effort (person days)

Req. Elicitation 17

Eval./Negotiation 5

Specification 56

Review/Validation 57

Implementation//Testing 49

Total 184

efficiency of the C code with the Java code. The lcc compiler was used

for C. These show that code size is halved by using C, and that efficiency

is improved.

TABLE 6.18. Generated C code versus Java code

C version Java version

Code size 17Kb 35Kb

Execution time

A.size = 20 0 30ms

A.size = 50 15ms 70ms

A.size = 100 240ms 330ms

A.size = 200 1750ms 2500ms

Comparison with/without RE Technique Framework

Several code generators have previously been developed for UML-RSDS

in Java 4, Java 6, Java 7, C# and C++. Each of these was developed

using an agile development process but with manual coding in Java and

without any RE activity. Table 6.19 shows the approximate effort in

person-months expended for each of these to date. The generators for

Java 6, 7 and C# used very similar strategies and extensively reused the

code of the Java 4 version generator.

The best comparison with the C code generator (case study with RE

technique framework) is perhaps the C++ generator (case study with-

197

6.1. Case study 1: UML to C Transformation

TABLE 6.19. Development effort for code generators (person months)

Java 4 Java 6 Java 7 C# C++ C

Req. Anal. 6 1 2 3 6 4.5

Coding 12 3 4 4 6 1

Testing 6 1 1 1 2 0.5

Maintenance 6 1 1 1 3 0

Total 30 6 8 9 17 6

out RE technique framework), which involved considerable background

research into the semantics, language and libraries of C++, and signifi-

cant revision of the existing Java-oriented code generator. Likewise, the

C code generator involved substantial new research work on the code gen-

eration strategy, in addition to the technical challenge of implementing

this strategy.

The development effort amounts to 4.5 person months for require-

ments analysis/specification activities, compared to 6 months for the

manually-developed C++ generator. 49 days were spent on implemen-

tation and testing, compared to 8 months for the C++ generator (Table

6.17). A major factor in this difference is the simpler and more concise

transformation specification of the C code generator (expressed in UML-

RSDS) compared to the Java code of the C++ code generator. Not only

is the UML-RSDS specification 4 times shorter than the Java code, but

the latter is scattered over multiple source files (eg., Attribute.java, Asso-

ciation.java, Entity.java, etc.), making debugging and maintenance more

complex compared to the C translator, which is defined in 2 specification

files. The C++ generator does not construct a C++ language model,

instead language mapping and text production are mixed together, re-

sulting in complex and duplicated processing. In total, the core code

of the UML-RSDS tools is 90,500 lines of Java code, of which approxi-

mately 20% (18,100 lines) is the C++ code generator. In contrast the

UML2C specification is 2,200 (uml2Ca) and 2,700 (uml2Cb) lines, in to-

tal 4,900 lines. The OCL specification of UML2C is highly declarative

and corresponds directly to the informal requirements, hence it is easier

198

6.1. Case study 1: UML to C Transformation

to understand and modify compared to a programming language imple-

mentation. In iterations 3 and 4 the specification style is less purely

declarative than in iterations 1, 2 and 5, but instead is in a functional

programming style. It was found that this was also more concise and

easier to understand and change than the imperative Java coding of the

C++ code generator transformation.

Whilst UML2C is explicitly divided into 5 main stages, each subdi-

vided into model to model and model to text modules, the C++ gener-

ator has a monolithic structure. Only two design patterns (Iterator and

Visitor) are used in the C++ generator, whilst 13 are used to organise

UML2C.

Table 6.20 summarises the differences in software quality measures

between the C++ generator and UML2C.

TABLE 6.20. Software quality measures of C++ and C code generators

Measure C++ generator UML2C

Size (LOC) 18,100 4,900

Abstraction level Low (code) High (specification)

Software architecture Partial Detailed

Modularity Low (one module) High (10 Modules)

Cohesion Low High

Coupling Low Low

Design patterns 2 13

We can also compare the level of design flaws or technical debt in the

C++ translator and in UML2C. For the C++ translator the data has

been calculated using the PMD code size library (https://pmd.github.io).

For UML2C we have used the following measures of technical debt:

• ETS: Excessive transformation size (total complexity>1000, where

complexity is the sum of the number of operator and identifier oc-

currences)

199

6.1. Case study 1: UML to C Transformation

• ENR: Excessive number of rules (nrules >10)

• ENO: Excessive number of helpers/operations (nops >10)

• ERS: Excessive rule size (>100 identifiers + operators in a rule)

• EHS: Excessive helper size (>100 identifiers + operators in a

helper)

• EPL: Excessive parameter list (for transformation, rules, and helpers:

>10 parameters including auxiliary rule variables)

• CC: Cyclomatic complexity (of rule logic or of procedural code:

>10)

Measures EFO, DC and CBR are not measured by PMD, so are omit-

ted. There are substantial numbers of code clones and inter-operation

dependencies in the Java code, however, ETS is taken to be the same

as Excessive Class Size in PMD. The threshold values used in PMD are:

ETS 1000 LOC; EHS 100 LOC; EPL 10 parameters; CC 10; ENO 10 per

class. For comparison, the Technical Debt (TD) figures for UML2C are

also given, and these are generally lower than that of the C++ translator

(Table 6.21).

TABLE 6.21. Software quality comparison

Transformation ETS EHS + ERS CC ENO + ENR EPL

C++ translator 5 16.5 110.6 28 2

UML2C 2 13 62 4 0

200

6.2. Case Study 2: CDO Risk Estimation

6.2 Case Study 2: CDO Risk Estimation

Case study 2 is the adaptation of a procedure for calculating and eval-

uating the risk of mutiple-share financial investments. The procedure

modelled by Hammerlind [51] had to be adapted for our client’s own

company. The risk analysis model was implemented in UML-RSDS ac-

cording to the client’s specific needs in order that it could be used in his

company.

This case study has been worked on by our research group. Some

of this work has been previously published in [86] and [93]. It concerns

the risk evaluation of multiple-share financial investments known as Col-

lateralized Debt Obligations (CDO), where a portfolio of investments

is partitioned into a collection of sectors, and there is the possibility

of contagion of defaults between different companies in the same sector

[30, 51]. Risk analysis of a CDO contract involves computing the overall

probability P(S = s) of a financial loss s based upon the probability of

an individual company defaulting and the probability of default infection

within sectors. For this case study, it was required to have an approxi-

mate version of the loss estimation function P(S = s) . The case study

was carried out in conjunction with a financial risk analyst, who was

also the customer of the development. Implementations in Java, C# and

C++ were required.

We have used the following formulas: Theorem 1.1, Theorem 3.1

and equations 1 and 2, from Hammarlid [51] in order to calculate the

probability of the financial loss. The attribute L represents the credit

loss per default, in each sector. The attribute n stands for the number of

bonds that are subject to risk. The attribute k stands for a sector out of

all possible sectors K. We will convert and adapt the following formula

according to UML-RSDS specification in the following sections for this

case study to compute the probability of risk.

201

6.2. Case Study 2: CDO Risk Estimation

Theorem 1.1:

P(Nk = m) =

(
nk

m

)
(pmk(1− pk)

nk−m(1− qk)
m(nk−m)+

m−1∑
i=1

(
m

i

)
pik(1− pk)

nk−i(1− (1− qk)
i)m−i × (1− qk)

i(nk−m))

“When an outbreak occurs in sector k, each single default causes an

integer valued credit loss of Lk and the total loss of Sk = NkLk, where

Nk > 0. Conditioned on an outbreak in a sector, the distribution of the

number of defaults is”:

Equation (1):

P(Nk = m|Nk > 0) = P(Nk = m)/(1− (1− pk)
nk),m ≥ 1,

and the probability of total credit loss given an outbreak is:

Equation (2):

P(Sk = mLk) = P(Nk = m|Nk > 0)

Theorem 3.1:

P(S = 0) = exp(−
K∑

k=1

µk)

and

P(S = s) =
1

s

K∑
k=1

[s/Lk]∑
mk=1

µkmkLkP(Nk = mkLk|Nk > 0)× P(S = s− mkLk)

The requirements for this case study were quite straight forward:

• F1: Compute P(S = s) for CDO portfolios which is derived from

Theorem 3.1 based on the computation of P(Nk = m) of Hammarlid

[51].

202

6.2. Case Study 2: CDO Risk Estimation

– F1.1: Calculate probability of no contagion.

– F1.2: Calculate probability of contagion.

• F2: Calculate risk function P(S > s).

• NF1: The system must be able to compute results in a practical

time (less than 30 seconds for each s for a portfolio of 20 sectors

and 100 companies).

• NF2: The system should be accurate, within 5% of the theoretical

exact result.

• F3: The system should be extensible to handle the case of cross-

sector companies and cross-sector infection.

Table 6.22 is based upon Tables 5.5 –5.8.

TABLE 6.22. Technique attributes of the Domain Analysis & Requirements
Elicitation stage V(ax, t) for CDO case

Attribute Brainstorming Interview Mining Scenario

Getting domain knowledge 1 0.6 1 0.4

Eliciting implicit

knowledge
0.2 0.2 0.2 0.2

Eliciting MT

requirements
0.8 1 1 1

Identifying MT

stakeholders
1 1 0.2 0.4

Facilitating

communications
0.8 1 0 1

Identifying non-

functional requirements
1 1 0.8 0.2

RA(t) 0.88 0.87 0.93 0.9

We applied our RE framework as follows:

203

6.2. Case Study 2: CDO Risk Estimation

1. category: Domain Analysis & Requirements Elicitation

• Telicitation = {interview, prototyping, questionnaire, document

mining, brainstorming, scenario, ethno methodology}

• t1 = interview, t2 = brainstorming, t3 = document mining

• I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

– A1 = {eliciting MT requirements, getting domain knowl-

edge, getting implicit knowledge}

– A2 = {identifying non-functional requirements, facilitating

communication}

– According to the transformation project attributes, the

size of this transformation is small as it has approximately

less than 100 rules, therefore a value of 0.2 is given for

size. There are two complicating factors: complex rule

logic and complex computations, therefore a value of 0.8 is

given for complexity. There is 5%-10% change of require-

ments, therefore a value of 0.2 is given for the volatility

attribute. There is good access to the customer, therefore

a value of 0.8 is given for customer relationship. It may

be used to produce, modify, or analyse safety-related sys-

tems but not safety-critical system, therefore a value of

0.2 is given for the safety project attribute. There exists

approximately 50 requirements, therefore a value of 0.8 is

given for the transformation quality attribute. Up to 20%

extension is possible regarding the time attribute, there-

fore the value of 0.5 is given for the time attribute. The

budget is low (up to 50% extension), therefore a value of

0.2 is given for the budget attribute. Developers are not

very familiar with the domain (some experience, less than

one year of experience), therefore a value of 0.4 is given

for the domain knowledge attribute.

204

6.2. Case Study 2: CDO Risk Estimation

In other words, we have the following3:

– Project attributes: size: small (0.2), complexity: high

(0.8), volatility: low (0.2), customer-developer relation-

ship: high (0.8), safety: low (0.2), quality: high (0.8),

time: medium (0.5), cost: low (0.2), domain knowledge:

medium (0.4)

– D = {size, complexity, volatility, relationship, safety, qual-

ity, time, cost, domain knowledge}

∗ S(t1) = 0.0002

∗ S(t2) = 0.003

∗ S(t3) = 0.0001

2. category: Evaluation & Negotiation

• Tevaluation = {prototyping, scenario, UML, functional decom-

position, goal oriented analysis}

• t1 = prototyping, t2 = scenario

• I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

– A1 = {analysing non-functional requirements, prioritizing

requirements}
– A2 = {facilitating negotiation}
– Project attributes: size: small (0.2), complexity: high

(0.8), volatility: low (0.2), customer-developer relation-

ship: high (0.8), safety: low (0.2), quality: high (0.8),

time: medium (0.5), cost: low (0.2), domain knowledge:

medium (0.4)

– D = {size, complexity, volatility, relationship, safety, qual-

ity, time, cost, domain knowledge}

– S(t1) = 0.0013

3 The values have been determined from the transformation project attributes
weighting (Table 5.9)

205

6.2. Case Study 2: CDO Risk Estimation

– S(t2) = 0.0003

3. category: Specification & Documentation

• Tspecification = {SysML, KAOS, structured language template,

SADT, UML, evolutionary prototyping}

• t1 = Structured language template, t2 = UML,

t3 = evolutionary prototyping

• I(a) value is 1 for A1, 0.8 for A2 and 0 for the remaining at-

tributes:

– A1 = {semantics completeness, requirements verification}

– A2 = {writing complete requirements}

– D = {size, complexity, volatility, relationship, safety, qual-

ity, time, cost, domain understanding}

– S(t1) = 0.0002

– S(t2) = 0.0003

– S(t3) = 0.0059

4. category: Validation & Verification

• Tvalidation= {prototyping, inspection, desk-checks, GQM, check-

list}

• t1 = prototyping, t2 = GQM

• I(a) value is 1 for A1 and 0 for the remaining attributes:

– A1={identifying incomplete requirements, identifying in-

consistency and conflict}.

– Project attributes: size: small (0.2), complexity: high

(0.8), volatility: low (0.2), customer-developer relation-

ship: high (0.8), safety: low (0.2), quality: high (0.8),

time: medium (0.5), cost: low (0.2), domain knowledge:

medium (0.4)

206

6.2. Case Study 2: CDO Risk Estimation

– D = {size, complexity, volatility, relationship, safety, qual-

ity, time, cost, domain knowledge}

– S(t1) = 0.0013

– S(t2) = 0.0001

First, a phase of research was needed to understand the problem and

to clarify the actual computations required. Brainstorming, interview

and document mining with the stakeholder were carried out to elicit de-

tailed requirements. The work items were prioritised, with tasks F1.1

and F1.2 being scheduled for a first development iteration, as these were

considered more critical than other functionalities. Exploratory and evo-

lutionary prototyping were used within this iteration, with the specifi-

cation being progressively elaborated and tested until the functionalities

were complete and correctly passed all tests. Then, functionality F2 was

developed in iteration 2. A further external requirement F3 was intro-

duced prior to this iteration in order to handle the case of crosssector

contagion.

The required use cases and subtasks are given in Table 6.23. Use case

3 depends upon tasks F1.1 (2a) and F1.2 (2b) of use case 2.

207

6.2. Case Study 2: CDO Risk Estimation

TABLE 6.23. Use cases for CDO risk analysis application

Use case Subtasks Description

1. Load data
Read data from

a .csv spreadsheet

2. Calculate Poisson

approximation of

loss function

2a. Calculate probability

of no contagion

2b. Calculate probability

of contagion

2c. Combine 2a, 2b

3. Calculate precise

loss function

4. Write data
Write data to

a .csv spreadsheet

The following activities were employed during the RE development:

• Refactoring: the solutions of F1.1 and F1.2 were initially expressed

as operations nocontagion, contagion of the CDO class (Figure 6.4).

It was then realised that they would be simpler and more efficient

if defined as Sector operations. The refactoring Move Operation

was used. This refactoring did not affect the external interface of

the system.

• Customer collaboration in development: the risk analyst gave de-

tailed feedback on the generated code as it was produced, and car-

ried out their own tests using data such as the realistic dataset of

[51].

• Iterations: short iterations were completed within three weeks.

Figure 6.4 shows the class diagram of the solution produced at the

end of the first development iteration.

This specification expresses the problem in terms of domain concepts

from the CDO financial theory. The attribute L represents the credit

208

6.2. Case Study 2: CDO Risk Estimation

Figure 6.4. CDO version 1 system specifications

loss per default, in each sector. The attribute p is the probability of

a company defaulting, independently from the companies in the sector.

The attribute q is the probability of default infection of a company in

a sector due to another company defaulting in that same sector, and n

is the number of companies in the sector. The attribute mu is the Pois-

son approximation parameter. It represents the probability of a specific

number of events that occur in a particular period of time [49].

Figure 6.5. CDO version 2 system specifications

In UML-RSDS, use cases define the externally-usable functionalities

provided by a system. Their effect is specified by a sequence of OCL

postconditions. The declarative interpretation is that the conjunction

of these postconditions is established by the use case. The procedu-

ral interpretation is that the postconditions are executed sequentially as

statements which are UML-structured activities.

209

6.2. Case Study 2: CDO Risk Estimation

The specification of requirement F1 is expressed as a use case test

with the following postconditions:

CDO::

s : sectors =>

s.mu = 1 - ((1 - s.p)->pow(s.n))

CDO::

ps0 = -sectors.mu.sum->exp()

CDO::

s : Integer.subrange(0,20) =>

PS(s)->display()

The first constraint initialises the mu value for each sector s. The

second initialises ps0 using these values. The third constraint calculates

and displays PS(s) for integer values s from 0 to 20. Note that the arrow

operator arg→ op(p) is used generally for function application of op(p)

to arg.

PS(s) computes the loss function P(S = s) which has been decom-

posed into combinations of failures in individual companies. P(k, m) is

the probability of m defaults in sector k, PCond(k, m) the conditional

probability of m defaults in sector k, given at least one default as shown

in the following code:

CDO::

query P(k : int, m : int) : double

pre: true

post:

result = StatFunc.comb(sectors[k].n, m) *

(sectors[k].nocontagion(m) +

Integer.Sum(1,m - 1,i, sectors[k].contagion(i,m)))

CDO::

210

6.2. Case Study 2: CDO Risk Estimation

query PCond(k : int, m : int) : double

pre: true

post:

(m >= 1 => result = P(k,m) /

(1 - ((1 - sectors[k].p)->pow(

sectors[k].n)))) & (m < 1 => result = 0)

The operation definitions are directly based upon the mathematical

specifications. Integer.Sum(a, b, i, e) represents Σb
i=ae .

PS(s) sums up the sector’s loss function VS(k, s), which sums probability-

weighted loss amounts resulting from each of the possible non-zero num-

ber of defaults in sector k:

CDO::

query cached PS(s : int) : double

pre: true

post:

(s < 0 => result = 0) &

(s = 0 => result = ps0) &

(s > 0 => result =

Integer.Sum(1,sectors.size,k,VS(k,s))/s)

CDO::

query VS(k : int, s : int) : double

pre: true

post:

result = Integer.Sum(1,

maxfails(k,s), mk,

(sectors[k].mu * mk *

sectors[k].L * PCond(k,mk) *

PS(s - mk * sectors[k].L)))

PS depends upon VS, which in turn depends upon PS. This mutual

211

6.2. Case Study 2: CDO Risk Estimation

recursion suggests that optimisation using caching/memoization is nec-

essary for PS.

Here, we will go through a simple example in order to have a better

understanding regarding the problem. In this example, (Figure 6.6), we

have Sector 1 and Sector 2, each of which contains three companies. Let’s

assume that Sector 1 has the following values for its attributes: n = 3,

p = 0.02, q = 0.01, L = 10 and Sector 2 has the following values for its

attributes: n = 3, p = 0.05, q = 0.03, L = 8. We would like to calculate

PS(s). Note that we have already specified that for this case study, the

display PS(s) for integer value s is from 0 to 20.

Figure 6.6. CDO example

The following results have been obtained by UML-RSDS which cal-

culates the loss function:

P(0) = 0.8175583521347228

P(1) = 0.0

P(2) = 0.0

P(3) = 0.0

P(4) = 0.0

P(5) = 0.0

P(6) = 0.0

P(7) = 0.0

P(8) = 0.10413595347075202

P(9) = 0.0

212

6.2. Case Study 2: CDO Risk Estimation

P(10) = 0.04617347393199138

P(11) = 0.0

P(12) = 0.0

P(13) = 0.0

P(14) = 0.0

P(15) = 0.0

P(16) = 0.018554362881747166

P(17) = 0.0

P(18) = 0.005881315652160922

P(19) = 0.0

P(20) = 0.003178989411025038

We have shown the probability of loss for different amounts. For in-

stance, the probability of (P = 4) is 0 because the quantity of loss must be

composed of 8 or 10. This is used to calculate the exact loss of a particular

company in a sector. By using the risk function, we can calculate the least

amount of a particular loss: P(loss ≥ x) = 1− (P(0) + P(1) + . . .+ P(i))

where i = x− 1.

It was originally intended to use external hand-coded and optimised

implementations of critical functions such as the combinatorial function

comb(intn, intm). However, this would have resulted in the need for

multiple versions of these functions to be coded, one for each target im-

plementation language, and also it would have increased the time needed

for system integration. It was found instead that platform-independent

specifications could be given in UML-RSDS which were of acceptable

efficiency.

The initial efficiency of the solution was too low, with calculation of

P(S = s) for all values of s ≤ 20 on the test data of [51] taking over

2 minutes on a standard Windows 7 laptop. To address this problem,

the recursive operations and other operations with high usage were given

the stereotype �cached� to avoid unnecessary re-computation. This

stereotype means that operations are implemented using the memoiza-

tion technique of [109] to store previously-computed results as shown in

Table 6.24. The resulting program is considerably more efficient than the

213

6.2. Case Study 2: CDO Risk Estimation

original manually-coded C++ version.

Figure 6.7 shows the refactored system specification at the end of the

third development iteration (requirement F3).

Figure 6.7. CDO version 3 system specifications

TABLE 6.24. Execution times for CDO versions

Version
Execution time for first

20 P(S = s) calls

Execution time for first

50 P(S = s) calls

Unoptimised Java 121s - (more than 15 minutes)

Optimised Java 32ms 93ms

C# 10ms 20ms

C++ 62ms 100ms

Original program 84s - (more than 15 minutes)

6.2.1 Evaluation

Considering the time and effort spent on this case study, not only de-

velopers were satisfied with the result of the case study, but also ac-

cording to the feedback, the client was very pleased with the overall

performance. A risk evaluation application was developed according to

the client’s request. Despite all the difficulties and problems that the

developer team was confronted with throughout this case study, the

project was completed before the assigned schedule. There were reg-

ular meetings from the beginning with the client to find out about the

214

6.2. Case Study 2: CDO Risk Estimation

main goals and requirements of this case study. The client’s involvement

was most efficient because there was thorough communication either in

person through meetings or by sending messages via emails. The main

elicitation techniques which were applied to evaluate the requirements

of the project were brainstorming, interview and document mining. Ac-

cording to the result of the interview process, several prototypes were

designed and presented to the client and the most appropriate ones were

selected. Afterwards, the client was asked about the priority for each

requirement.

User acceptance testing was another method used to evaluate the

success level of the case study. This approach was applied at the comple-

tion of the case study. The main purpose of this type of testing was to

evaluate the performance of the application with its initial requirements

according to the client’s current needs. During one of the last meetings

with the client, a live demo of the application was shown to the client

which included all the functionalities. Then the customer had the op-

portunity to verify and validate the application according to a set of test

scripts, which had been prepared before the meeting.

Table 6.25 shows the improvement in quality of the UML-RSDS ver-

sion, where the RE technique framework was applied and the most ap-

propriate RE process was then carried out accordingly, where the original

C++ version, with no specific RE process.

TABLE 6.25. CDO project comparison

Size (LOC) Call graph size Large clones

Original program 194 11 (one cyclic dependency) 2

UML-RSDS 33 11 (two cyclic dependencies) 0

215

6.3. Framework Evaluation

6.3 Framework Evaluation

In this section, we present the result of evaluations for our proposed

framework which has been implemented in UML-RSDS as specified in

Section 5.5. In order to ensure the framework works efficiently with no

problematic issues it was given to candidates for evaluation. Five candi-

dates, both students and academics, were selected from the informatics

field. Each candidate was given a five minute presentation regarding the

overall idea of the framework and the scoring procedure, 1 being least

satisfied and 5 most satisfied. Table 6.26 presents the overall scoring of

the participants regarding the use of the framework.

TABLE 6.26. Framework evaluation form

RE Technique Framework Evaluation Guidelines

Specific Questions Score (1-5)

Is the program compatible with your

computers and/or network?
5

Is technical assistance readily available

via phone or email?
3

Is the level of language that the

program offers clearly indicated?
4

Are the interface, navigation,

and the directions clear and logical?
2

Does the program include scoring? 5

If a scoring system is used, does it

make sense?
5

Can the learner easily quit something

that is beyond his/her ability?
5

If the program includes pictures, are

they (a) relevant, (b) an aid to understanding?
1 (N/A)

If the program includes sound recordings,

are they of an adequate quality?
1 (N/A)

If the program includes video sequences,

are they of an adequate quality?
1 (N/A)

Overall1 satisfaction? 4

216

6.4. Summary

6.4 Summary

Systematic software engineering of model transformations is only prac-

tised in a minority of MT developments, according to surveys of MT

development [11, 154]. The emphasis in MT developments has been

on implementation, with less attention paid to requirements engineer-

ing. One example of a detailed development process is the migration

case study of [130], which describes the techniques used in this industrial

project. Details of the development process for an industrial transfor-

mation project are also provided in [111]. We have given a detailed

description of the development process and engineering techniques used,

together with evaluations of their effectiveness.

Code generation from UML to ANSI C is also an unusual topic, with

only one recent publication describing such a translator [43]. This code

generator is described in a high-level manner, and it is not clear how

OCL expressions or UML activities are mapped to C using the trans-

formation. In contrast, by means of detailed requirements analysis, we

have produced explicit mappings for all elements of a substantial subset

of UML, including OCL. The quality of the UML2C translator was a

substantial improvement over manually-coded translator.

Regarding the CDO case study, scenario analysis led to the definition

of use cases, which provide a good structuring mechanism for financial ap-

plications. Computation steps within a financial process can be expressed

as successive postconditions within a use case, and separate stages in a

process can be defined as separate use cases, which are then included in

a use case which coordinates the sequencing of the stages. The quality

of the CDO version was substantially improved from the previous C++

version.

The case studies have identified the need for a well-defined RE pro-

cess, and to this effect a framework for selecting suitable RE techniques

has been created for using UML-RSDS for MT development, and some

techniques for improving the adoption and application of UML-RSDS, in

addition to necessary technical improvements in the tools.

217

6.4. Summary

In general, it was found that a development approach using exploratory

prototyping (of the system specification) at the initial stages, and evo-

lutionary prototyping at later stages, was effective. By applying the RE

framework on the case studies and achieving positive results and feedback

from the stakeholders, we can conclude that the process can be used to

develop specifications in a range of declarative and hybrid MT languages

and projects. Overall, the requirements engineering framework provided

a systematic basis for the construction of both case studies, leading to

an improved outcome compared to the (implementation-focussed) devel-

opment of other UML-RSDS projects. In particular, premature com-

mitment to poor code synthesis strategies in the UML to C case was

avoided, and the modularity of the generator was considerably improved

compared to the C++ translator. Similar improvements were achieved

with refactoring transformations [151].

In this chapter we chose to apply our proposed framework to a specific

language, namely UML-RSDS. However, since our proposed framework

is designed in a language-independent manner, its usage is not limited

to this specific language and can be applied to other languages such as

ATL, ETL, etc.

We have identified ways in which requirements engineering can be

applied systematically to model transformations. Comprehensive cata-

logues of functional and non-functional requirements categories for model

transformations have been defined. We have examined a case study which

is typical of the current state of the art in transformation development,

and identified how formal treatment of functional and non-functional

requirements can benefit such developments. We have proposed such

a process, and identified RE techniques that can be used in this pro-

cess. Moreover, we have identified a requirements engineering process

for model transformations, and requirements engineering techniques that

can be used in this process modelling. The use of a systematic require-

ments engineering process also helped to capture and make explicit all

requirements, avoiding ambiguity over the development tasks. The pro-

cess can be used to develop specifications in a range of declarative and

218

6.4. Summary

hybrid MT languages. We have evaluated the process and techniques on

two large scale case studies, UML to C translation and the CDO.

219

Chapter 7

Summary and Concluding

Remarks

7.1 Introduction

We have investigated the requirements engineering process in model

transformations development on different case studies using a system-

atic RE framework.

In this thesis, we have suggested improvements to the requirements

engineering process for transformations in the form of added rigor. Re-

quirements in model transformation could be divided into two categories:

functional and non-functional. Functional requirements mainly consider

the functional effect on the transformed model, whereas non-functional

requirements consider the quality of the transformation and the trans-

formed model. In general, it could be said that at the present time RE

process is not being performed efficiently in model transformation. RE

techniques are used in the MT development, but these are not used as

part of a structured RE process. Individual techniques are used in iso-

lation and are not integrated across RE stages. The lack of any RE

guidance or process specific for MTs means that RE techniques are used

in an ad-hoc manner for MTs, without any justification that they are

appropriate. Developers do not measure the degree of satisfaction of the

221

7.2. Objectives of Research

functional and non-functional requirements for a transformation, rather

they often only concentrate on implementing the main goal(s) of a trans-

formation (e.g. refactoring or model to model migration). In fact, de-

velopers start the validation process after the transformation has been

developed and they check the transformation to see which of the quality

requirements are satisfied.

7.2 Objectives of Research

The thesis identified and defined a number of goals and objectives, specif-

ically:

• Carrying out a survey on different industrial and academic trans-

formation projects

• Carrying out an interview-based study on different industrial trans-

formation projects

• Defining a requirements engineering process for MT

• Defining a taxonomy for functional and non-functional require-

ments for MT

• Defining a method for selecting suitable RE techniques for MT

• Validating the choice of RE methods and techniques through two

case studies

7.3 Overview of Thesis

Chapter 2 presents a broad background about requirements engineer-

ing and model transformations and their related concepts. It provides

some discussion on the requirements engineering process and methodol-

ogy followed by an explanation of MT as a central concept of MDE. This

chapter is about the current application of requirements engineering, its

222

7.3. Overview of Thesis

advantages, process models, methodologies and techniques. It also ex-

plains model transformation, its current application, its languages, its

relationship with model-driven engineering, and its context and various

types with some use cases. Moreover, requirements have been categorised

according to their type (functional and non-functional), and a RE pro-

cess model has been investigated and analysed. Furthermore, it presents

the definition and properties of MT and its relation to MDE community

as well as comparing different MT languages and tools. Three different

types of MT examples: refactoring, migration, and refinement, were also

presented to provide a better understanding of MT.

Chapter 3 details an empirical analysis of RE in industrial MT projects

and impact of RE in MT. In empirical research, we have carried out

in-depth interviews with industrial practitioners, covering different MT

applications. This chapter presents the requirements engineering tech-

niques that were used in the MT development process. One conclusion

that can be drawn from this chapter is that relatively few RE techniques

are used in MT development, and these are not used as part of a struc-

tured RE process. Finally this chapter ends with evaluating the outcomes

of the projects, the development effort and the encountered problems are

analysed, together with the degree to which the delivered transformation

achieved customer expectations.

Chapter 4 highlights the current status quo of RE in MT by provid-

ing a systematic literature survey in which several MT case studies have

been analysed from a RE aspect. It provides the results of a systematic

literature review (SLR) of the current process of requirements engineer-

ing in MT developments. 160 papers have been reviewed and analysed

from the past 10 years. The overall result of this analysis shows that

although developers apply some requirements engineering process and

techniques in transformation developments, this is often based on their

experience and common sense, and there are no systematic requirements

engineering processes designed for model transformation development.

It provides the results achieved from the SLR followed by discussing the

shortcomings to the validity of the results. Finally, this chapter ends with

223

7.4. Limitations

a discussion of the advantages of RE in MT and provides suggestion areas

for RE in MT investigation.

In Chapter 5, criteria for selecting appropriate requirements engineer-

ing techniques for MT have been identified, and we propose a framework

for this selection process. This framework aims to facilitate the process

of choosing an appropriate set of requirements engineering techniques ac-

cording to the type of model transformation project. Furthermore, this

chapter analyses the attributes of RE techniques and of the organization

in which the project is delivered, and the actual type of MT project for

selecting a suitable set of RE techniques for a specific MT project. Finally

this chapter presents an MT example in which our proposed framework

is applied.

Chapter 6, which could be regarded as the evaluation chapter of this

thesis, illustrates the application of our RE process and RE selection

procedure on two real substantial MT case studies using UML-RSDS:

• UML to C: This code-generation transformation is intended to map

UML class diagrams, OCL and activity pseudocode into ANSI C.

• Collateralized Debt Obligations : CDO concerns the risk evaluation

of multiple-share financial investments, where a portfolio of invest-

ments is partitioned into a collection of sectors, and there is the

possibility of contagion of defaults between different companies in

the same sector.

7.4 Limitations

The first limitation of this research was related to lack of resources re-

garding this research topic. As requirements engineering is quite a novel

topic in the model transformation field, there is not much research and

work available. Thus, it was not very convenient to evaluate the present

status of RE in MT. Consequently, we decided to do a systematic lit-

erature review as well as an interview-based study to understand the

224

7.5. Future Work

current status of RE in MT development and obtain more information

regarding industrial and academic MT development. This would result

in relying on the SLR survey and interview studies as the main source of

information, rather than first-hand observations.

7.5 Future Work

There is substantial potential for the application of requirements engi-

neering in model transformation development. This section will highlight

a specific set of future work that could possibly be undertaken to extend

this research.

7.5.1 Requirements Management in MT

Evolution is at the heart of model transformation technology which has

a direct impact on the RE process as it may introduce new requirements

and cycles. If we want to build an evolvable system, we are required

to anticipate potential changes regarding the requirements. During MT

development and after delivering the MT project, new problems or chal-

lenges may arise over time as the development of technology advances.

Therefore, during the RE process beyond system-to-be (Chapter 2) we

may need to consider system-to-be-next. “The process of anticipating,

evaluating, agreeing on and propagating changes to requirements docu-

mentation items are so called requirements management” [143]. Require-

ments management is an activity which can be carried out during all four

RE stages. The RE process model defined by [79] is illustrated in Figure

7.1.

225

7.5. Future Work

Figure 7.1. Requirements management process

Missing from this research is the requirements management activity,

its specific characteristics and the capability to identify these character-

istics. Future work could consider the incorporation of this idea into the

proposed RE framework for MT.

7.5.2 Applying the Framework to Several Cases

The proposed RE framework is applied on two substantial model trans-

formation case studies in this thesis. We have identified a requirements

engineering process for model transformations, and requirements engi-

neering techniques that can be used in this process. The process can be

used to develop specifications in a range of declarative and hybrid MT

languages. We have evaluated the process and techniques on refactor-

ing, migration and code generation cases with positive results. However,

the framework could be used to evaluate the most suitable requirements

engineering technique(s) for any kind of transformation project.

226

7.5. Future Work

7.5.3 Integration with transML

The modelling language transML [45] represents requirements in the form

of SysML diagrams. transML aims to cover the whole life-cycle of trans-

formation development such as requirements, analysis, design and test-

ing. Traceability allows engineers to link requirements of a model trans-

formation to its corresponding analysis and design models, code and

other artifacts. It is important for engineers to be able to understand

the connection between different artifacts in a model transformation pro-

cess, which allows them to check whether or not all requirements have

been applied correctly [156]. Although the significant role of traceabil-

ity is well-established, in practice, it has not yet been widespread. This

is due to the fact that different languages in model transformations do

not support the traceability creation and maintenance sufficiently. This

would cause problems especially in large developments which tend to cre-

ate and maintain a quite large amount of traceability links throughout

the transformation [156].

Potential future work could integrate the RE framework in this thesis

with transML by providing specific requirements (functional and non-

functional) metrics for source, target and the transformation itself.

7.5.4 Further Extension of the Framework

This thesis has introduced a framework for selecting the most suitable

RE technique based upon the concept of attributes, namely: technique

attribute, transformation project attribute and organizational attribute.

This framework can evidently be expanded to hold a broader range of

attributes and attributes’ properties. We realize that the number of tech-

niques, transformation projects and organization attributes can be ex-

panded. Moreover, by introducing the requirements management phase,

new properties can be introduced to these attributes which allows further

research to be undertaken in the future.

227

7.6. Concluding Remarks

7.6 Concluding Remarks

This thesis has proposed a systematic RE framework for MT development

based upon the results of interviews with MT practitioners and a system-

atic literature review of the current process of requirements engineering

in MT developments. Seven practitioners were interviewed, covering 10

projects, and 160 papers have been reviewed and analysed from the past

10 years. The framework has proposed different attributes of MT devel-

opment such as: RE technique attribute, MT project attribute and the

experience level of the developer in a particular RE technique. 33 tech-

nique attributes and nine MT project attributes have been introduced.

The selection of techniques and project attributes was mainly based on

the result from the SLR and the interview-study, however it has to be

mentioned that there is no limit to the number of possible techniques

and project attributes and in this thesis, only a sample of attributes has

been selected.

The overall SLR and interview-based study analysis shows that al-

though developers apply some requirements engineering process and tech-

niques in transformation developments, this is often based on their ex-

perience and common sense, and there are no systematic requirements

engineering processes designed for model transformation development.

Having a systematic and validated framework to perform the require-

ments engineering process for different MT development projects would

allow the MT developers to select the most appropriate (suitable) RE

technique for a particular requirement/sub-requirement in a MT project.

Applying this framework had a positive impact on time, cost and effi-

ciency of the end product. The framework has been validated through

real case studies. In the evaluation section, the capability and suitability

of the proposed framework is validated, as the requirements of the case

study were achieved successfully.

228

References

[1] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.,

et al. Agile Software Development Methods: Review and Anal-

ysis, vtt publications 478 ed. VTT Technical Research Centre of

Finland, 2002.

[2] Albrecht, A. J. Function points help managers assess applica-

tions. Computerworld, August 26 (1985).

[3] Alexander, I. F. A Taxonomy of Stakeholders: Human Roles

in System Development. International Journal of Technology and

Human Interaction (IJTHI) 1, 1 (2005), 23–59.

[4] Anastasakis, K., Bordbar, B., and Küster, J. M. Analy-

sis of Model Transformations via Alloy. In Proceedings of the 4th

MoDeVVa workshop Model-Driven Engineering, Verification and

Validation (2007), pp. 47–56.

[5] Anton, A. I. Goal Identification and Refinement in the Specifica-

tion of Software-based Information Systems. PhD thesis, Atlanta,

GA, USA, 1997. UMI Order No. GAX97-35409.

[6] Arlow, J., and Neustadt, I. UML 2 and the Unified Process:

Practical Object-oriented Analysis and Design. Pearson Education,

2005.

[7] Association, M. I. S. R., et al. MISRA C 2012: Guidelines

for the Use of the C Language in Critical Systems: March 2013.

Motor Industry Research Association, 2013.

229

References

[8] Back, R. J. Correctness Preserving Program Refinements: Proof

Theory and Applications. MC Tracts 131 (1980), 1–118.

[9] Baier, C., Katoen, J.-P., and Larsen, K. G. Principles of

Model Checking. MIT press, 2008.

[10] Basili, V. R. Software modeling and measurement: the

goal/question/metric paradigm. Tech. rep., 1992.

[11] Batot, E., Sahraoui, H., Syriani, E., Molins, P., and

Sboui, W. Systematic mapping study of model transformations

for concrete problems. In Model-Driven Engineering and Software

Development (MODELSWARD), 2016 4th International Confer-

ence on (2016), IEEE, pp. 176–183.

[12] Baudry, B., Nebut, C., and Le Traon, Y. Model-driven

Engineering for Requirements Analysis. In Enterprise Distributed

Object Computing Conference, 2007. EDOC 2007. 11th IEEE In-

ternational (2007), IEEE, pp. 459–459.

[13] Bell, T. E., and Thayer, T. Software Requirements: Are

They Really a Problem? In Proceedings of the 2nd international

conference on Software engineering (1976), IEEE Computer Soci-

ety Press, pp. 61–68.

[14] Berry, D. M., Damian, D., Finkelstein, A., Gause, D.,

Hall, R., and Wassyng, A. To do or not to do: If the require-

ments engineering payoff is so good, why aren’t more companies

doing it? In Requirements Engineering, 2005. Proceedings. 13th

IEEE International Conference on (2005), IEEE, pp. 447–447.

[15] Bezivin, J., and Gerbe, O. Towards a Precise Definition of

the OMG/MDA Framework. In Automated Software Engineering,

2001. (ASE 2001). Proceedings. 16th Annual International Confer-

ence on (2001), pp. 273–280.

230

References

[16] Biehl, M. Literature Study on Model Transformations. Royal

Institute of Technology, Tech. Rep. ISRN/KTH/MMK (2010).

[17] Boehm, B. W. Software engineering economics. IEEE transac-

tions on Software Engineering, 1 (1984), 4–21.

[18] Boehm, B. W. A Spiral Model of Software Development and

Enhancement. Computer 21, 5 (1988), 61–72.

[19] Boehm, B. W., Brown, J. R., and Lipow, M. Quantitative

evaluation of software quality. In Proceedings of the 2nd interna-

tional conference on Software engineering (1976), IEEE Computer

Society Press, pp. 592–605.

[20] Booch, G. The Unified Modeling Language User Guide. Pearson

Education India, 2005.

[21] Botella, P., Burgués, X., Carvallo, J., Franch, X.,

Grau, G., Marco, J., and Quer, C. ISO/IEC 9126 in Prac-

tice: What Do We Need to Know. In Proceedings of the First

Software Measurement European Forum (SMEF) (2004).

[22] Brambilla, M., Cabot, J., and Wimmer, M. Model-driven

Software Engineering in Practice. Synthesis Lectures on Software

Engineering 1, 1 (2012), 1–182.

[23] Büttner, F., Egea, M., Guerra, E., and De Lara, J.

Checking Model Transformation Refinement. In Theory and Prac-

tice of Model Transformations. Springer, 2013, pp. 158–173.

[24] Caldiera, V., and Rombach, H. D. The Goal Question Metric

Approach. Encyclopedia of software engineering 2, 1994 (1994),

528–532.

[25] Chung, L., and do Prado Leite, J. C. S. On Non-functional

Requirements in Software Engineering. In Conceptual modeling:

Foundations and applications. Springer, 2009, pp. 363–379.

231

References

[26] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. The

NFR Framework in Action. In Non-Functional Requirements in

Software Engineering. Springer, 2000, pp. 15–45.

[27] Clancy, T. The Standish Group Report. Chaos report retrieved

Feb 20 (1995), 2008.

[28] Commission, I. O. F. S. E., et al. Software engineering–

Product quality–Part 1: Quality model. ISO/IEC 9126 (2001),

2001.

[29] Czarnecki, K., and Helsen, S. Feature-based survey of model

transformation approaches. IBM Systems Journal 45, 3 (2006),

621–645.

[30] Davis, M., and Lo, V. Infectious Defaults. Taylor & Francis

Group (2001).

[31] de Moura, L., and Bjørner, N. Z3–a tutorial, 2006.

[32] DeMarco, T. Structured Analysis and System Specification.

Yourdon Press, 1979.

[33] DeMarco, T. Controlling Software Projects: Management, Mea-

surement, and Estimates. Prentice Hall PTR, 1986.

[34] Dictionary, O. E. OED Online. Oxford University Press.

http://www. oed. com, Accessed Nov 30 (1989), 2006.

[35] Dromey, R. G. A model for software product quality. IEEE

Transactions on Software Engineering 21, 2 (1995), 146–162.

[36] E., H., and P., D. Analyzing Projects to Decide How To Model

the Requirements. T. C. U. JRCASE, Ed., Proceedings of The

Fourth Australian Conference on RE, pp. 149–159.

[37] Ermel, C., Ehrig, H., and Ehrig, K. Refactoring of Model

Transformations. Electronic Communications of the EASST 18

(2009).

232

References

[38] Fagan, M. E. Advances in Software Inspections. In Pioneers

and Their Contributions to Software Engineering. Springer, 2001,

pp. 335–360.

[39] Fenton, N., and Bieman, J. Software Metrics: A Rigorous and

Practical Approach, Third Edition. Chapman & Hall/CRC Inno-

vations in Software Engineering and Software Development Series.

CRC Press, 2014.

[40] for Standardization, I. O., and Commission, I. E. Software

Engineering–Product Quality: Quality model, vol. 1. ISO/IEC,

2001.

[41] Fowler, M., and Highsmith, J. The agile manifesto. Software

Development 9, 8 (2001), 28–35.

[42] Friedenthal, S., Moore, A., and Steiner, R. A Practical

Guide to SysML: the Systems Modeling Language. Morgan Kauf-

mann, 2014.

[43] Funk, M., Nyßen, E., and Lichter, H. From UML to ANSI-

C-An Eclipse-Based Code Generation Framework. In Proceedings

of 3rd International Conference on Software and Data Technologies

(ICSOFT) (2008), Citeseer.

[44] Gilb, T. Competitive Engineering: A Handbook for Systems Engi-

neering, Requirements Engineering, and Software Engineering Us-

ing Planguage. Butterworth-Heinemann, 2005.

[45] Guerra, E., De Lara, J., Kolovos, D. S., Paige, R. F.,

and dos Santos, O. M. transML: A family of Languages to

Model Transformations. In Model Driven Engineering Languages

and Systems. Springer, 2010, pp. 106–120.

[46] Guerra, E., Lara, J., Kolovos, D., Paige, R., and San-

tos, O. Engineering Model Transformations with transML. Soft-

ware & Systems Modeling 12, 3 (2013), 555–577.

233

References

[47] Gunda, S. G. Requirements Engineering : Elicitation Techniques.

PhD thesis, University West, Department of Economics and IT,

2008.

[48] Guoguen, J. Linden:Techniques for Requirement Elicitation. In

1st IEEE International Symposium on Requirements Engineering,

San Diego, USA (1993), pp. 4–6.

[49] Haight, F. A. Handbook of the Poisson Distribution.

[50] Halstead, M. H. Elements of Software Science, vol. 7. Elsevier

New York, 1977.

[51] Hammarlid, O. Aggregating Sectors in the Infectious Defaults

Model. Quantitative Finance (2003).

[52] Hastie, S., and Wojewoda, S. Standish Group 2015 Chaos

Report-Q&A with Jennifer Lynch. Retrieved 1, 15 (2015), 2016.

[53] Herrmannsdoerfer, M., Benz, S., and Juergens, E. Cope-

automating coupled evolution of metamodels and models. In

European Conference on Object-Oriented Programming (2009),

Springer, pp. 52–76.

[54] Hickey, A. M., and Davis, A. M. Requirements Elicitation

and Elicitation Technique Selection: Model for Two Knowledge-

intensive Software Development Processes. In System Sciences,

2003. Proceedings of the 36th Annual Hawaii International Con-

ference on (2003), IEEE, pp. 10–pp.

[55] Hickey, A. M., and Davis, A. M. A unified model of require-

ments elicitation. Journal of Management Information Systems 20,

4 (2004), 65–84.

[56] Hnatkowska, B., and Mazurek, P. Verification of UML Class

Diagrams against Business Rules Written in Natural Language. In

234

References

Theory and Engineering of Complex Systems and Dependability.

Springer, 2015, pp. 175–184.

[57] Holzmann, G. J. The SPIN Model Checker: Primer and Refer-

ence Manual, vol. 1003. Addison-Wesley Reading, 2004.

[58] Horowitz, E., and Boehm, B. W. Practical Strategies for

Developing Large Software Systems. Addison-Wesley Reading, Ma,

1975.

[59] Hutchinson, J., Whittle, J., Rouncefield, M., and

Kristoffersen, S. Empirical Assessment of MDE in Industry.

In Proceedings of the 33rd International Conference on Software

Engineering (2011), ACM, pp. 471–480.

[60] Jarke, M. Scenarios for Modeling. Communications of the ACM

42, 1 (1999), 47–48.

[61] Jiang, L. A Framework for the Requirements Engineering Process

Development. University of Calgary, 2005.

[62] Jiang, L., Eberlein, A., Far, B. H., and Mousavi, M. A

Methodology for the Selection of Requirements Engineering Tech-

niques. Software & Systems Modeling 7, 3 (2008), 303–328.

[63] Jones, C. Software Assessments, Benchmarks, and Best Prac-

tices. Addison-Wesley Longman Publishing Co., Inc., 2000.

[64] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I.

ATL: A model Transformation Tool. Science of Computer Pro-

gramming 72, 1 (2008), 31–39.

[65] Kausar, S., Tariq, S., Riaz, S., and Khanum, A. Guidelines

for the Selection of Elicitation Techniques. In Emerging Technolo-

gies (ICET), 2010 6th International Conference on (2010), IEEE,

pp. 265–269.

235

References

[66] Kavakli, E., and Loucopoulos, P. Goal Modeling in Re-

quirements Engineering: Analysis and Critique. Information Mod-

eling Methods and Methodologies: Advanced Topics in Database

Research: Advanced Topics in Database Research 102 (2004).

[67] Kempa, M., and Mann, Z. A. Model driven architecture.

Informatik-Spektrum 28, 4 (2005), 298–302.

[68] Kent, S. Model Driven Engineering. In Integrated Formal Meth-

ods, M. Butler, L. Petre, and K. Sere, Eds., vol. 2335 of Lec-

ture Notes in Computer Science. Springer Berlin Heidelberg, 2002,

pp. 286–298.

[69] Kernighan, B. W., and Ritchie, D. M. The C Programming

Language. 2006.

[70] Kevin Lano, Sobhan Yassipour Tehrani, S. K.-R. The use

of model transformation design patterns in practice. Journal of

Systems and Software (2017).

[71] Kieras, D. GOMS Models for Task Analysis. The handbook of

task analysis for human-computer interaction (2003), 83–116.

[72] Kitchenham, B. Procedures for Performing Systematic Reviews.

Keele, UK, Keele University 33, 2004 (2004), 1–26.

[73] Kleppe, A. G., Warmer, J. B., and Bast, W. MDA Ex-

plained: the Model Driven Architecture: Practice and Promise.

Addison-Wesley Professional, 2003.

[74] Kolahdouz Rahimi, S. A Comparative Study of Model Trans-

formation Approaches through a Systematic Procedural Framework

and Goal Question Metrics Paradigm. PhD thesis, King’s College

London (University of London), 2013.

[75] Kolahdouz-Rahimi, S., Lano, K., Pillay, S., Troya, J.,

and Van Gorp, P. Evaluation of Model Transformation Ap-

236

References

proaches for Model Refactoring. Science of Computer Programming

85 (2014), 5–40.

[76] Kolovos, D., Paige, R., and Polack, F. The Epsilon Trans-

formation Language. In Theory and Practice of Model Transfor-

mations, A. Vallecillo, J. Gray, and A. Pierantonio, Eds., vol. 5063

of Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2008, pp. 46–60.

[77] Kolovos, D., Rose, L., Paige, R., and Garcıa-Domınguez,

A. The Epsilon Book. Structure 178 (2010).

[78] Kolovos, D. S., Paige, R. F., and Polack, F. A. The

Epsilon Object Language (EOL). In Model Driven Architecture–

Foundations and Applications (2006), Springer, pp. 128–142.

[79] Kotonya, G., and Sommerville, I. RE, Processes and Tech-

niques. John Wiley and Sons Ltd., New York, ISBN 13 (1998),

9780471972082.

[80] Kotoyna, G., Sommerville, I., Wiley, J., et al. Require-

ments Engineering: Processes and Techniques, 1999.

[81] Kunz, W., and Rittel, H. W. Issues as Elements of Informa-

tion Systems, vol. 131. Institute of Urban and Regional Develop-

ment, University of California Berkeley, California, 1970.

[82] Landes, D., and Studer, R. The Treatment of Non-functional

Requirements in MIKE. Springer, 1995.

[83] Lano, K. Advanced Systems Design with Java, UML and MDA.

Elsevier, 2005.

[84] Lano, K. Object-oriented Specification and Design. University

Lecture, 2010.

[85] Lano, K. The UML-RSDS Manual, 2014.

237

References

[86] Lano, K. Agile Model-Based Development Using UML-RSDS,

2016.

[87] Lano, K. UML-Reactive Systems Design Support. KCL, 2016.

[88] Lano, K., Clark, T., and Kolahdouz-Rahimi, S. A Frame-

work for Model Transformation Verification. Formal Aspects of

Computing 27, 1 (2015), 193–235.

[89] Lano, K., and Kolahdouz-Rahimi, S. Model Migration Trans-

formation Specification in UML-RSDS. In In TTC10: Transfor-

mation Tool Contest, 2010. and Model Transformation Tools for

Model Migration 33 (2010), Citeseer.

[90] Lano, K., Kolahdouz-Rahimi, S., and Clark, T. Compar-

ing Verification Techniques for Model Transformations. In Proceed-

ings of the Workshop on Model-Driven Engineering, Verification

and Validation (2012), ACM, pp. 23–28.

[91] Lano, K., and Rahimi, S. K. Case study: Class Diagram Re-

structuring. arXiv preprint arXiv:1309.0369 (2013).

[92] Lano, K., and Rahimi, S. K. Case study: Class Diagram Re-

structuring. In Proceedings Sixth Transformation Tool Contest,

TTC 2013, Budapest, Hungary, 19-20 June, 2013. (2013), pp. 8–

15.

[93] Lano, K., and Yassipour Tehrani, S. Improving the Appli-

cation of Agile Model-based Development: Experiences from Case

Studies. 11 2015.

[94] Laplante, P. A. Requirements Engineering for Software and

Systems. CRC Press, 2013.

[95] Lapouchnian, A. Goal-oriented requirements engineering: An

overview of the current research. University of Toronto (2005).

238

References

[96] Leite, J. D. P., and Gilvaz, A. P. P. Requirements Elicitation

Driven by Interviews: The Use of Viewpoints. In Software Spec-

ification and Design, 1996., Proceedings of the 8th International

Workshop on (1996), IEEE, pp. 85–94.

[97] Letier, E. Fundamentals of Requirements Engineering. Univer-

sity Lecture, 2013.

[98] Letier, E. Project initiation. University Lecture, 2013.

[99] Loniewski, G., Insfran, E., and Abrahão, S. A Sys-

tematic Review of the Use of Requirements Engineering Tech-

niques in Model-driven Development. In International Confer-

ence on Model Driven Engineering Languages and Systems (2010),

Springer, pp. 213–227.

[100] Macaulay, L. Requirements for Requirements Engineering Tech-

niques. In Requirements Engineering, 1996., Proceedings of the

Second International Conference on (1996), IEEE, pp. 157–164.

[101] Maiden, N., and Rugg, G. ACRE: Selecting Methods for Re-

quirements Acquisition. Software Engineering Journal 11, 3 (1996),

183–192.

[102] Marinelli, V. An Analysis of Current Trends in Requirements

Engineering Practice. Pennsylvania State University, Great Valley,

2008.

[103] Mashiko, Y., and Basili, V. R. Using the gqm paradigm

to investigate influential factors for software process improvement.

Journal of Systems and Software 36, 1 (1997), 17–32.

[104] McCabe, T. J. A complexity measure. IEEE Transactions on

software Engineering, 4 (1976), 308–320.

[105] McCabe, T. J., and Butler, C. W. Design complexity mea-

surement and testing. Communications of the ACM 32, 12 (1989),

1415–1425.

239

References

[106] McCall, J. A., Richards, P. K., and Walters, G. F. Fac-

tors in software quality. volume i. concepts and definitions of soft-

ware quality. Tech. rep., General Electric CO SunnyVale CA, 1977.

[107] McPhee, C. Requirements Engineering for Projects with Critical

Time-to-market. University of Calgary, 2001.

[108] Mens, T., and Van Gorp, P. A Taxonomy of Model Trans-

formation. Electronic Notes in Theoretical Computer Science 152

(2006), 125–142.

[109] Michie, D. Memo Functions and Machine Learning. Nature 218,

5136 (1968), 19–22.

[110] Mohagheghi, P., Gilani, W., Stefanescu, A., and Fer-

nandez, M. A. An Empirical Study of the State of the Practice

and Acceptance of Model-driven Engineering in Four Industrial

Cases. Empirical Software Engineering 18, 1 (2013), 89–116.

[111] Nakićenović, M. B. An Agile Driven Architecture Moderniza-

tion to a Model-Driven Development Solution. International Jour-

nal on Advances in Software Volume 5, Number 3 & 4, 2012 (2012).

[112] Neill, C. J., and Laplante, P. A. Requirements engineering:

the state of the practice. IEEE software 20, 6 (2003), 40–45.

[113] Nuseibeh, B., and Easterbrook, S. Requirements Engineer-

ing: A Roadmap. In Proceedings of the Conference on The Future

of Software Engineering (New York, NY, USA, 2000), ICSE ’00,

ACM, pp. 35–46.

[114] of the IEEE Computer Society, S. E. S. C. IEEE Recom-

mended Practice for Software Requirements Specifications. IEEE

Std 830-1998 (Oct 1998), 1–40.

[115] Omg, Q. Meta Object Facility (mof) 2.0 Query/View/Transfor-

mation Specification. Final Adopted Specification (November 2005)

(2008).

240

References

[116] Pastor, O., España, S., Panach, J. I., and Aquino, N.

Model-driven Development. Informatik-Spektrum 31, 5 (2008),

394–407.

[117] Pichler, P., Weber, B., Zugal, S., Pinggera, J.,

Mendling, J., and Reijers, H. A. Imperative versus Declar-

ative Process Modeling Languages: An Empirical Investigation.

In Business Process Management Workshops (2012), Springer,

pp. 383–394.

[118] Pinto, J. K., and Mantel, S. J. The Causes of Project Failure.

IEEE transactions on engineering management 37, 4 (1990), 269–

276.

[119] Pohl, K. Requirements Engineering: An Overview. Aachener

Informatik-Berichte. RWTH, Fachgruppe Informatik, 1996.

[120] Rensink, A. The groove simulator: A tool for state space gener-

ation. In AGTIVE (2003), vol. 3062, Springer, pp. 479–485.

[121] Rensink, A., Schmidt, Á., and Varró, D. Model Checking

Graph Transformations: A Comparison of Two Approaches. In In-

ternational Conference on Graph Transformation (2004), Springer,

pp. 226–241.

[122] Robertson, S., and Robertson, J. Mastering the Require-

ments Process (2Nd Edition). Addison-Wesley Professional, 2006.

[123] Rose, L. M., Kolovos, D. S., Paige, R. F., and Polack, F.

Model Migration Case for TTC 2010. Transformation Tool Contest

2010 1-2 July 2010, Malaga, Spain (2010), 1.

[124] Rose, L. M., Kolovos, D. S., Paige, R. F., Polack, F. A.,

and Poulding, S. Epsilon flock: a model migration language.

Software & Systems Modeling 13, 2 (2014), 735–755.

241

References

[125] Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack,

F. The epsilon generation language. ECMDA-FA 8 (2008), 1–16.

[126] Rozier, K. Y. Linear Temporal Logic Symbolic Model Checking.

Computer Science Review 5, 2 (2011), 163–203.

[127] Sargent, R. G. Verification and validation of simulation models.

In Proceedings of the 37th conference on Winter simulation (2005),

Winter Simulation Conference, pp. 130–143.

[128] Selic, B. The Pragmatics of Model-driven Development. IEEE

software 20, 5 (2003), 19–25.

[129] Selic, B. What will it take? A view on adoption of model-based

methods in practice. Software & Systems Modeling 11, 4 (2012),

513–526.

[130] Selim, G. M., Wang, S., Cordy, J. R., and Dingel, J.

Model Transformations for migrating Legacy Deployment Models

in the Automotive Industry. Software & Systems Modeling 14, 1

(2015), 365–381.

[131] Sendall, S., and Kozaczynski, W. Model Transformation the

Heart and Soul of Model-driven Software Development. Tech. rep.,

Swiss Federal Institute of Technology in Lausanne (EPFL), 2003.

[132] Soley, R., et al. Model Driven Architecture. OMG white paper

308, 308 (2000), 5.

[133] Sommerville, I., and Kotonya, G. Requirements Engineering:

Processes and Techniques. John Wiley & Sons, Inc., 1998.

[134] Sommerville, P. I. private communication by email, July 2015.

[135] Stevens, P. A Landscape of Bidirectional Model Transforma-

tions. In Generative and transformational techniques in software

engineering II. Springer, 2008, pp. 408–424.

242

References

[136] Sutcliffe, A. Scenario-based Requirements Engineering. In Pro-

ceedings 11th IEEE International Requirements Engineering Con-

ference, 2003. (Sept 2003), pp. 320–329.

[137] Taskforce, U. R. OMG UML Specification v. 1.4. Object Man-

agement Group (2001).

[138] Team, S., et al. Semantics of Business Vocabulary and Rules

(SBVR). Tech. rep., Technical Report dtc/06–03–02, Object Man-

agement Group, Needham, Massachusetts, 2006.

[139] UML, O. Version 2.2. OMG Specification Superstructure and

Infrastructure, 2009.

[140] Van Amstel, M. The Right Tool for the Right Job: Assessing

Model Transformation Quality. In Computer Software and Appli-

cations Conference Workshops (COMPSACW), 2010 IEEE 34th

Annual (2010), IEEE, pp. 69–74.

[141] Van Deursen, A., Klint, P., and Visser, J. Domain-specific

Languages. Centrum voor Wiskunde en Informatika 5 (2000).

[142] van Lamsweerde, A. Requirements Engineering: from Craft to

Discipline. In Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering (2008), ACM,

pp. 238–249.

[143] van Lamsweerde, A. Requirements Engineering: From System

Goals to UML Models to Software Specifications. John Wiley &

Sons, 9 Jan 2009.

[144] Van Lamsweerde, A., and Letier, E. Handling Obstacles

in Goal-oriented Requirements Engineering. Software Engineering,

IEEE Transactions on 26, 10 (2000), 978–1005.

[145] Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P.

Scenarios in System Development: Current Practice. Software,

IEEE 15, 2 (1998), 34–45.

243

References

[146] Wetherill, G. B. Intermediate Statistical Methods. Springer

Science & Business Media, 2012.

[147] Whittle, J., Hutchinson, J., and Rouncefield, M. The

State of Practice in Model-driven Engineering. Software, IEEE 31,

3 (2014), 79–85.

[148] Yang, W., Horwitz, S., and Reps, T. A Program Integration

Algorithm that Accommodates Semantics-preserving Transforma-

tions. ACM Transactions on Software Engineering and Methodol-

ogy (TOSEM) 1, 3 (1992), 310–354.

[149] Yassipour Tehrani, S., and Lano, K. Precise Requirements

Engineering for Model. In Software Technologies: Applications and

Foundations (STAF) (2014).

[150] Yassipour Tehrani, S., and Lano, K. The Significant role of

Requirement Engineering in Model Transformation. In In Interna-

tional Conference on New Trends in Information and Communica-

tion Technologies (2014).

[151] Yassipour Tehrani, S., and Lano, K. Model Transformation

Applications from Requirements Engineering Perspective. In The

10th International Conference on Software Engineering Advances

(2015).

[152] Yassipour Tehrani, S., and Lano, K. Temporal Logic Spec-

ification and Analysis for Model Transformations. In Verification

of Model Transformations, VOLT 2015 (2015).

[153] Yassipour Tehrani, S., and Lano, K. Requirements Engi-

neering in Model Transformation Development: A Technique Suit-

ability Framework for Model Transformation Applications. Inter-

national Journal On Advances in Software (2016).

[154] Yassipour Tehrani, S., Zschaler, S., and Lano, K. Re-

quirements Engineering in Model-Transformation Development:

244

References

An Interview-Based Study. In International Conference on Theory

and Practice of Model Transformations (2016), Springer, pp. 123–

137.

[155] Yourdon, E. Death March: The Complete Software Developers

Guide to Surviving Mission Impossible Projects. Paul, DB, 1997.

[156] Yue, T., Briand, L. C., and Labiche, Y. A Systematic Re-

view of Transformation Approaches between User Requirements

and Analysis Models. Requirements Engineering 16, 2 (2011), 75–

99.

[157] Zave, P. Classification of Research Efforts in Requirements En-

gineering. ACM Comput. Surv. 29, 4 (Dec. 1997), 315–321.

[158] Zowghi, D., and Coulin, C. Requirements elicitation: A survey

of techniques, approaches, and tools. In Engineering and managing

software requirements. Springer, 2005, pp. 19–46.

245

Appendix A

SLR Tables

246

TABLE A.1. Stakeholder information (1)

Case # How to find what was re-
quired

Stakeholders Reaching stake-
holders

1-11 Problem description, proto-
type and examples

Financial companies, case
study proposers

Forum, email

12-20 Problem description, proto-
type and examples

Users requiring analysis of
data

Forum, email

21 Research ArchStudio users None

22 Problem description, proto-
type and examples

MDE practitioners None

23 Document mining Software modellers/devel-
opers

None

24, 30,
124, 142,
157-159

Document mining MDE practitioners None

25 Interviews, document min-
ing

Automotive system (VCS)
developers, General Mo-
tors

Consultation with
domain experts

26, 70, 71,
72, 76, 78,
80, 95-97,
99, 100,
103-106,
110, 111,
113, 116-
119, 121,
125-130,
132, 133,
135, 138,
139, 146,
149, 150,
153-155,
160

Research MDE practitioners None

27 Brainstorming, customer as
developer

End users of FrontArena
software, FrontArena soft-
ware teams, SunGard man-
agement

Constant feedback,
participation in de-
velopment

28 Problem statement Software developers (users
of migrated models)

None

29 Document mining RTES developers, testers
companies with RTES
products

None

31-57 Problem description, proto-
type and examples

MDE practitioners Forum, email

58 Document mining Business process modeling
users

None

59 Document mining Risk analysts Industry collabora-
tion

247

TABLE A.2. Stakeholder information (2)

Case # How to find what was
required

Stakeholders Reaching stake-
holders

60 Document mining Alloy Analyzer users None

61 General problem descrip-
tion

Graph transformation users None

62 General problem descrip-
tion

Graphics and JavaScript ap-
plication users

None

63 General problem descrip-
tion

MDE practitioners None

64 General problem descrip-
tion

Use case model users None

65 Document mining C++ users (legacy code) None

66 Research Manufacturing system de-
signers

None

67 Research System migration engineers None

68 Document mining OCL users None

69 Communication with do-
main experts

Volvo Cars Group Consultations,
demonstrations

73, 77 Research Web application developers None

74, 79 Research Control engineers None

75 Research MT developers None

81-94 Problem statement MDE practitioners Forum, email

98 Research Process control practitioners Discussions with ex-
perts

101 Research Game application developers None

102 Research MDE practitioners, web ap-
plication developers

None

107 Research MDE practitioners, critical
system developers

None

109 Business modelling MDE practitioners None

112 Research Users exchanging web rules None

114 Research, business analy-
sis

Re-engineering projects Via consortium with
industrial users

120 Industry collaboration Embedded sys. developers Consultation

122. 123 Research, document min-
ing

MDE practitioners Experimenting with
practitioners

248

TABLE A.3. Stakeholder information (3)

Case # How to find what was
required

Stakeholders Reaching stakeholders

131 Research WSN developers None

134 Research Software developers None

136 Document mining Activity diagram modellers None

137 Document mining Quantity surveyors None

140 Research Surveillence sys. develop-
ers

Participation in develop-
ment

141 Document mining, con-
sultation with domain ex-
perts

Embedded system develop-
ers

Collaboration with prac-
titioners

143 Research UI developers None

145 Document mining DES analysts None

147 Research Businesses requiring soft-
ware modernisation

None

148 Research Workflow analysts None

151 Document mining Satellite operators Industrial collaboration

152 Document mining Digital forensic experts User collaboration

156 Research MDE practitioners Industrial collaboration

161 Problem statement MDE practitioners Consultation

162 Research SOA developers None

249

TABLE A.4. MT requirements

Category Requirement Cases

Local Local mapping 1, 5, 6, 9, 12, 13, 15, 16, 19, 20, 24, 25, 35, 39,

Functional requirements 54, 60, 65, 66, 68, 81-83, 85, 102, 104-111, 116-120,

122-132, 136, 139-141, 143, 147, 151-153, 156-161

Local refactoring 23, 35, 36, 40, 41,

requirements 53, 57, 64, 70, 71, 135

Local reactive 26, 46, 47, 51, 56, 76,

requirements 145, 155

Local correspondence 32, 59,

requirements 154

Global Syntactic 1, 2, 3, 5, 8, 10, 24, 25, 39, 58, 60, 65, 70, 71, 73,

Functional correctness 75, 77-80, 116-119, 127, 128, 134, 143, 146-151

Completeness 3, 29, 38, 47, 55, 58, 61, 72, 119, 151

Semantic 14, 24, 25, 28, 29, 31, 44, 47, 50, 52, 53, 55,

correctness 57-69, 72-75, 79, 80, 84, 86-94, 105-107

Semantic 96, 101, 102, 105-107, 112-114, 119, 120, 124, 127, 128,

preservation 132, 133, 135, 136, 139, 142, 146, 148, 149, 156-159

Confluence 36, 37, 72

Bidirectionality 24, 32, 43

Model synchronisation/ 21, 42, 45, 58,

Change-propagation 22, 121, 138, 154

Traceability 111, 121, 137

Invariance 40

Accuracy 59, 75, 98, 137, 162

Structural preservation 157, 158

Non- Efficiency 1, 3, 5, 8, 9, 11-19, 22, 31, 33, 34, 36-44, 46-54, 56,

Functional 57, 59, 61, 72, 84, 86-94, 101, 137, 138, 151

Simplicity/Clarity 1, 28, 44, 47, 58, 81-86

Fault tolerance 1, 5, 8, 9, 10, 11, 129

Modularity 1, 7, 9, 10, 11, 35, 63, 95

Size/Conciseness 6, 28, 34, 46, 81-86

Scalability 12, 13, 15-19, 25, 27, 29, 147, 151

Timing 26, 69, 76, 145, 155

Process Responsiveness 27

Reduced development effort 100, 110, 111

Architectural quality 27, 95, 102

Flexibility 30, 78, 97, 103, 108, 129, 137, 140-142, 152

Portability 99

Usability 97

Conformance to standards 30

Alignment to business view 109

Genericity 92-94

250

TABLE A.5. MT project information (1)

Case # Type of transformation Size/Scale
Green/

Brownfield

Academic/

Industry

1-11 Text-to-model, migration,
code generation

Small Green Academic

12-20 Refinement, data analysis Medium Green Academic

21, 22 Bidirectional Medium Green Academic

23, 135, 36-38,
71

Refactoring Small Green Academic

24 Bidirectional Large Green Academic

25, 58, 60, 114 Migration Large Green Industry

26, 46-48, 51,
56, 76

Reactive Small Green Academic

27, 155 Refinement, migration Large Green Industry

28, 78 Migration Medium Green Academic

29 Refinement, code genera-
tion

Large Green Industry

30 Refinement Large Green Industry

31, 32, 34, 35,
39, 147

Text/code-to-model Small Green Academic

33, 40-42, 70 Refactoring Medium Green Academic

43, 45, 50, 53,
55, 57

Java refactoring Small Green Academic

44, 49, 52, 54 Model execution Small Green Academic

59, 141 Code generation Medium Green Industry

61 Semantic mapping Large Green Industry

62 Migration/refinement Medium Green Industry

63, 69 Code generation Large Green Industry

64 Refactoring Medium Green Industry

65, 151 Code-to-code Large Green Industry

66 Migration Medium Green Industry

67, 81-88, 99,
106, 112, 118,
132, 146

Migration Small Green Academic

68, 72, 107,
139

Semantic mapping Medium Green Academic

73, 77, 80 Refinement Medium Green Academic

74, 79, 92-94,
103-105, 109-
111, 122-125,
128, 130, 134,
137, 150, 157,
158, 160

Refinement Small Green Academic

251

TABLE A.6. MT project information (2)

Case # Type of transformation Size/Scale
Green/

Brownfield

Academic/

Industry

75 Abstraction Small Green Academic

89-91, 96, 119,
127, 129, 133,
136, 148

Semantic mapping Small Green Academic

95, 162 Refinement, code genera-
tion

Small Green Academic

97, 100, 101,
116, 117, 126,
131, 138, 143,
153

Code generation Small Green Academic

98, 108, 140 Code generation Medium Green Academic

102 Migration, refactoring Small Green Academic

113 Reverse engineering Medium Green Academic

120, 161 Refinement Medium Green Industry

121, 154 Bidirectional Small Green Academic

142 Migration Small Green Industry

145 Reactive Medium Green Academic

149 Refinement Small Brown Academic

152 Code generation Small Green Industry

156 Abstraction Medium Green Academic

159 Refinement, refactoring Small Green Academic

252

TABLE A.7. Methodology information (1)

Case # Methodology Diagrams RE technique/process

1-11, 33, 34, 47,
68, 70, 71, 76-
78, 81, 93, 102,
108, 110, 112,
113, 131, 134,
137, 138, 146

None UML class di-
agram

None

12-20 None UML class di-
agram

Exploratory prototyping and
scenario analysis

21 MDE for MT UML class di-
agram

None identified. Some concrete
grammar diagrams used to ex-
press synchronisation rules

22 Incremental develop-
ment, evolutionary
prototyping

UML class di-
agram

Experimental prototyping and
scenario-based analysis, con-
crete grammar diagrams

23 None UML class di-
agram

Not explicit; scenario-based ex-
perimental prototyping

24 Incremental, iterative UML class di-
agram

No explicit RE process, concrete
grammar of the two languages
used to express correspondence
rules

25 Incremental, iterative
development using MD-
Workbench, validation
and testing

UML, class
diagram

Structured interviews, scenarios,
detailed RE process

26 Incremental, experimen-
tation

UML class di-
agram

Concrete grammar rules and sce-
nario analysis are used for RE

27 Agile MDE None Survey of developers, reverse en-
gineering of legacy code

28 MDE UML class di-
agram

Scenario analysis, exploratory
prototyping, observation, inter-
views, concrete grammar used to
express mapping examples

29 Design patterns, verifica-
tion through testing and
inspection

UML class di-
agram

Observation (implicit), individ-
ual expert knowledge, literature
analysis

30 Incremental prototyping UML class di-
agram, state
machines

Scenario analysis, experimental
prototyping, rules expressed us-
ing concrete grammar

31 None UML class di-
agram

Experimental prototyping

32, 36, 38, 46 Incremental, iterative UML class di-
agram

None

35 None UML class di-
agram

Scenario analysis, informal map-
pings

37 Incremental, iterative UML class di-
agram

Survey and questionnaire, prior-
itization, empirical studies with
representative users and tasks

253

TABLE A.8. Methodology information (2)

Case # Methodology Diagrams RE technique/process

39, 50, 57, 58 None UML class di-
agram

Prioritization

40 Design patterns, veri-
fication through test-
ing and inspection

UML class di-
agram

Scenario analysis

41, 42, 51 None None Prioritization

43 None None Exploratory prototyping and sce-
nario analysis

44, 45, 52, 53,
55, 56, 74, 82,
86, 87, 126, 132

None None None

48 Incremental, iterative UML class di-
agram

Validation scenarios

49 Incremental, iterative Object dia-
grams

None

54 None Concrete syn-
tax

Prioritization

59 MDE for MT UML class di-
agram,OCL

Scenario analysis

124, 127, 130,
162

None UML class di-
agram

Scenario analysis

60 MDA for MT OCL, UML
class diagram

Scenario analysis

61 None UML class di-
agram

Scenarios, OCL, UML, Construc-
tive Query Containment (CQC)
method

62 None Feature
diagrams

Scenario analysis

63 Refactoring OCL, UML
class diagram

Scenario analysis

64 Use case-driven ap-
proach

OCL, UML
class diagram

Scenario analysis

65 None None Scenario analysis

66 None Concrete
grammar

Scenario analysis

67 MDA for MT Concrete
grammar

None

69 Agile MDE Simulink
models

prototyping

72 None UML activity
diagrams

None

73 None BPMN dia-
grams

None

75 None Specialised None

79 None Control block
diagrams

None

254

TABLE A.9. Methodology information (3)

Case # Methodology Diagrams RE technique/process

80 MDE UML class diagrams None

83, 95, 129 None UML class, activity dia-
grams

Scenario analysis

84 None UML class, activity dia-
grams

None

85, 88 None UML activity diagrams None

89, 90 None Graph diagrams None

91, 101 None UML class, state-
machine diagrams

None

92, 155 None Customised None

94, 96, 109 None UML class diagrams Informal specifications

97 Iterative develop-
ment

UI task models, state-
charts

Prototyping

98 Iterative develop-
ment

Process models Prototyping

99, 160 MDE for MT UML class diagrams None

100 None UML class diagrams, ar-
chitecture diagrams

None

103 Derive MTs from
logical specifica-
tions

Architecture diagrams None

104 MDA UML class, statemachine
diagrams

Informal mappings

105 Prototyping UML class, statemachine
diagrams

Informal specifications

106 Formal methods Object diagrams/graphs None

107 Formal methods None None

111 None UML activity, sequence
diagrams

None

114 MT embedded in
re-engineering pro-
cess

UML class diagrams, ac-
tivity diagrams

Domain analysis

117 None UML class diagrams, None

concrete grammar

118, 119 None UML class diagrams,
concrete grammar

Formal specifications

120, 121, 128,
136

None UML class diagrams,
concrete grammar

Concrete grammar rule
specifications

122 Specification by ex-
ample

UML class diagrams Concrete grammar rule
specifications

123 None UML class diagrams Semi-formal rule spec-
ifications, experimental
evaluation

125 MDE for MT UML class diagrams Scenarios, formal rule,
specifications, partial RE
process

255

TABLE A.10. Methodology information (4)

Case # Methodology Diagrams RE technique/process

133 None None Formal rule specifications

135 None UML class diagrams, se-
quence diagrams

Formal rule specifications

139, 145,
150, 152

None UML class diagrams Formal rule specifications

140 Iterative, incremen-
tal

UML class diagrams,
feature models

Stakeholder participation

141 Iterative, incremen-
tal

UML class diagrams Stakeholder identification,
stakeholder collaboration

143 None UML class diagrams, use
case diagrams

None

147 Validation using in-
dustrial cases

UML class diagrams,
concrete syntax dia-
grams,

Concrete syntax mapping rules

148 Validation using in-
dustrial cases

Concrete syntax dia-
grams

Concrete syntax mapping rules

149 MDA UML class diagrams Formal rule specifications

151 Phased UML class diagrams Graphical mapping specifica-
tions

154 Formal methods Concrete grammar dia-
grams

None

156 MDE UML class diagrams Semi-formal specification

157 Formal methods UML class diagrams,
concrete syntax dia-
grams

None

158 Formal methods Concrete syntax dia-
grams

Formal specification

159 Formal methods UML class diagrams Formal specification

161 Controlled experi-
ments

UML use case, state-
chart diagrams

Expert validation, goal decom-
position, textual specifications

256

TABLE A.11. SLR case outcomes (1)

Cases Requirements expression, Requirements Stakeholder

techniques & process achievement satisfaction

1 4 high high

2, 32, 93 1 low unknown

3, 43, 50, 56, 1 med unknown

57, 84, 85, 92

5 3 high unknown

6, 7, 9, 33, 36, 47 2 med unknown

48, 62, 83, 86

89, 91, 31, 39

158, 74, 161, 108

8, 23, 54, 77, 90 3 med unknown

94, 95, 130, 131

133, 134, 137, 138

143, 150, 154, 156

100-103, 110, 111

113, 116, 121

10, 34, 38, 41 4 high med

63, 75

11, 19, 44, 49 3 med med

60, 80, 81, 88

12 4 low med

13 2 low med

14, 16 3 low med

15, 51-53 2 high med

17 3 high med

18, 42 2 low low

20, 55, 82 2 med med

21, 26, 76, 155 4 high unknown

120, 157, 159

24, 79, 97, 122 4 med unknown

126, 127, 129, 132

135, 139, 141, 146

153, 106, 109, 112

117, 118

25, 27, 152 7 high high

28, 119 5 med unknown

125, 145, 147, 160 5 high unknown

105, 107, 114

29 7 med high

257

TABLE A.12. SLR case outcomes (2)

Cases Requirements expression, Requirements Stakeholder

techniques & process achievement satisfaction

35, 61, 66 4 med med

37, 98, 99, 151 5 med med

40 3 med low

45 1 med low

46 1 med med

58 2 unknown unknown

64, 78, 96 5 high med

65 5 high high

69 7 high med

87 0 low unknown

123 8 high medium

128 6 medium medium

136, 140, 162 3 low unknown

148 6 high medium

142, 149, 124, 104 6 high unknown

258

Appendix B

Interview Guide

Note that this is a guide only. Questions listed in each grey box are

potential prompts, interviews will be semi-structured and not all of the

questions may be asked in each interview.

• Introduction

– Recap of motivation, purpose and method of study, point out

right to withdrawal, ask to sign consent form.

• Background and relevant expertise

– What is your current position in the organisation? What re-

sponsibilities for model transformations does this entail?

– What is your previous experience in model transformation de-

velopment?

• Relevant requirements engineering techniques

– What requirements engineering techniques are important for

the kind of projects you have been involved with?

• Obtaining model transformation requirements

– Can you talk me through an example project where there were

conflicts between the requirements? What was the result of the

trade-off? Did you use any particular technique? If yes, why?

259

• Role of requirements engineering in model transformation

– How would you distinguish general “software development projects”

and “transformation development projects”?

– How do you categorise functional and non-functional require-

ments? In case you apply requirements engineering process

in your projects, what techniques and methods would you use

during the following stages and why?

∗ Domain analysis and requirements elicitation

∗ Evaluation and negotiation

∗ Specification and documentation

∗ Validation and verification

– What kind of requirements engineering Process Model and Method-

ology do you use for your projects?

– Do functional and non-functional requirements change frequently

as a project evolves? If so, how do you account for this in

your development process? Could you give an example of such

a change occurring in your own experience and how you dealt

with it?

• Triangulation

– Is what we have discussed so far typical of software devel-

opment projects in your view? Has this changed over time?

How? Can you give concrete examples?

• Wrap up

– Is there anything else you feel we should have talked about?

– Do you have any other feedback on the interview?

• Thank participant for their time, explain what will happen next.

260

– Thank you for your time today. I will now transcribe, anonymize,

and analyse the interview recording. I will wait for at least two

weeks before doing this. If, for any reason, you wish to with-

draw from the study, you can do so within the next seven (7)

days from now. Simply contact me to let me know.

261

Appendix C

Description of RE Techniques

In the following section, we have described some RE techniques regarding

their attributes according to the SLR and interview-based study.

Interview and Questionnaire: They are very economical and easy to

apply and are useful due to simplicity and a generic way to cap-

ture the requirements from multiple stakeholders [96]. If the size

of the MT project is very large, it can be a time consuming tech-

nique to be implemented. It is an effective approach for an MT

project with very high/high complexity as it allows the developers

to elicit requirements regarding different aspects and give them a

better understanding about the requirements as well as important

quality criteria. If the volatility of the project is high then it is

not recommended to apply this technique as it is not practical to

have a high number of interview sessions with stakeholders espe-

cially if their availability is low. It is a suitable technique if the

customer-developer relation is high.

Document Mining: This is an effective technique if the developer’s

understanding regarding the project is low. Depending on the size

of the project it can be time consuming. It is a suitable technique

for low budget projects. It is effective if the level of relationship

between developers and stakeholders is low. It is not an efficient

262

technique if the transformation requirements volatility is high as it

is unlikely to have published documentations. If the transforma-

tion complexity is high, applying this technique can give a better

understanding to developers by giving a better idea regarding the

requirements.

Brainstorming: This is a useful method for complicated transforma-

tions as it allows discussions amongst the stakeholders and devel-

opers. This technique is quite expensive and difficult to conduct,

especially if there are multiple stakeholders. It has an inverse pro-

portion regarding the allocated time of project development, if time

is limited the number of brainstorming sessions will also be limited.

The suitability of this technique has a proportionally direct relation

with the level of customer-developer relationship. It is an effective

technique as it enables the developer to have a better understanding

regarding the quality criteria and different types of requirements. It

is an effective technique for small size MT projects as it allows the

developers to discuss the details and quality criteria of the project.

It is not well recommended if the volatility of the MT project is

high as it is not practical to have several brainstorming sessions as

it is often used in the preliminary stage of the project [158].

Prototyping: This is a suitable technique for Greenfield MT projects in

which it is difficult to elicit the requirements and the stakeholder’s

expectations regarding the project. It is recommended as one of

the best techniques for representing the actual transformation in a

functional and/or graphical way as it is able to capture all the de-

tails regarding the user interface. It can decrease the development

time and effort if it is being used in an evolutionary manner (evo-

lutionary prototyping) however it is more expensive than other RE

techniques and more time consuming [48]. It is an effective method

if there is a good relation between the customer and the developer

as it allows the customer to play a more active role during the

development process. It is not a well suited technique if the MT

263

project volatility is high as it requires much time and budget. If the

size of MT is very large and the complexity is high, then building a

prototype will be a challenging task as it is very expensive and time

consuming to build a prototype that covers several requirements.

It is a well suited technique for smaller MT projects.

Scenario: This is a very useful technique for small transformation projects

as it makes it feasible to consider different circumstances and sce-

narios, on the other hand it is not very practical and affordable for

very large and large projects. Defining different scenarios might

also be time consuming. “Scenarios and user centred view provides

flexibility to find the requirements while analysing different ses-

sions and their user response after interaction with the scenarios”

[65]. One of the advantages of this technique is that it represents

the specifications in detail when the complexity is high [136]. If the

project size is very large/large considering all the possible scenarios

and outcome could be costly and time consuming. It is an effective

technique if the level of volatility of the project is high. Moreover,

it is a suitable technique if the customer is not available as it allows

the developers to consider different circumstances.

Ethno Methodology: This is a useful technique for those kinds of MT

projects that have low time constraints and have no budget con-

straints [47]. It is a very useful technique to implement if the de-

veloper’s understanding regarding the requirements is low. It is

effective if the level of relationship between customer and develop-

ers is high. These involve systematic observation of actual practice

in a workplace.

UML: This technique was one of the most popular techniques according

to the data from the SLR and the interviews. This technique was

applied to almost every project regardless of its attributes.

Functional Decomposition: This is an effective technique to be ap-

plied to various functional requirements relationships. It gives

264

a better understanding regarding the overall functionality of the

project and the dependency amongst different components. Using

this technique for large and complex MT projects allows the de-

veloper(s) to have a better understanding of the requirements as it

breaks down the requirements into sub-requirements.

265

Appendix D

Surveyed Papers

266

[1] Tassilo Horn. Solving the TTC FIXML Case with FunnyQT. In

TCC@ STAF, pages 7–21. Citeseer, 2014.

[2] Christoph Eickhoff, Tobias George, Stefan Lindel, and Albert

Zündorf. The SDMLib Solution to the MovieDB Case for TTC2014.

In TCC@ STAF, pages 145–149, 2014.

[3] Dan Li, Danning Li, Xiaoshan Li, and Volker Stolz. FIXML to

Java, C# and C++ Transformations with QVTR-XSLT. TTC

2014, page 27, 2014.

[4] K Lano, S Yassipour-Tehrani, and K Maroukian. Case study:

FIXML to Java, C# and C+. TTC 2014, page 2, 2014.

[5] Frank Hermann, Nico Nachtigall, Benjamin Braatz, Thomas Engel,

and Susann Gottmann. Solving the FIXML2Code-case Study with

HenshinTGG. In TCC@ STAF, pages 32–46. Citeseer, 2014.

[6] Pablo Inostroza and Tijs van der Storm. The TTC 2014 FIXML

Case: Rascal Solution. In TCC@ STAF, pages 47–51. Citeseer,

2014.

[7] Steffen Zschaler and Sobhan Yassipour Tehrani. Mapping FIXML

to OO with Aspectual Code Generators. TTC 2014, page 52, 2014.

[8] Vahdat Abdelzad, Hamoud I Aljamaan, Opeyemi Adesina, Miguel

Garzón, and Timothy Lethbridge. A Model-Driven Solution for

Financial Data Representation Expressed in FIXML. In TCC@

STAF, pages 65–70, 2014.

267

[9] Géza Kulcsár, Erhan Leblebici, and Anthony Anjorin. A Solu-

tion to the FIXML Case Study Using Triple Graph Grammars and

eMoflon. In TCC@ STAF, pages 71–75, 2014.

[10] Filip Krikava and Philippe Collet. Solving the TTC’14 FIXML

Case Study with SIGMA. In Proceedings of the 7th Transformation

Tool Contest part of the Software Technologies: Applications and

Foundations (STAF 2014) federation of conferences, 2014.

[11] Horacio Hoyos, Jaime Chavarriaga, and Paola Gómez. Solving the

FIXML Case Study Using Epsilon and Java. In TCC@ STAF,

pages 87–92. Citeseer, 2014.

[12] Christopher Gerking and Christian Heinzemann. Solving the Movie

Database Case with QVTo. In TCC@ STAF, pages 98–102. Cite-

seer, 2014.

[13] Gábor Szárnyas Oszkár Semeráth Benedek Izsó, Csaba Debreceni,

and Ábel Hegedüs Zoltán Ujhelyi Gábor Bergmann. Movie

Database Case: An EMF-INCQUERY Solution. TTC 2014, page

103, 2014.

[14] Antonio Moreno-Delgado and Francisco Durán. The Movie

Database Case: Solutions using Maude and the Maude-based e-

Motions tool. TTC 2014, page 116, 2014.

[15] Edgar Jakumeit. Solving the TTC 2014 Movie Database Case with

GrGen. NET. In TCC@ STAF, pages 125–133. Citeseer, 2014.

[16] Hüseyin Ergin and Eugene Syriani. AToMPM Solution for the

IMDB Case Study. In TCC@ STAF, pages 134–138, 2014.

[17] Tassilo Horn. Solving the TTC Movie Database Case with Fun-

nyQT. In TCC@ STAF, pages 139–144. Citeseer, 2014.

[18] None. Duplicate paper.

268

[19] Kevin Lano and Sobhan Yassipour Tehrani. Solving the TTC 2014

Movie Database Case with UML-RSDS. In TCC@ STAF, pages

150–154. Citeseer, 2014.

[20] Pablo Inostroza and Tijs Van Der Storm. The TTC 2014 Movie

Database Case: Rascal Solution. In Transformation Tool Contest,

pages 155–159. CEUR, 2014.

[21] Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi. Syn-

chronizing concurrent model updates based on bidirectional trans-

formation. Software & Systems Modeling, 12(1):89–104, 2013.

[22] Tassilo Horn. Transformation tool soccer worldcup (TTC 2014 live

contest case). In TCC@ STAF. Citeseer, 2014.

[23] Sagar Sen, Naouel Moha, Vincent Mahé, Olivier Barais, Benoit

Baudry, and Jean-Marc Jézéquel. Reusable model transformations.

Software & Systems Modeling, 11(1):111–125, 2012.

[24] Alcino Cunha, Ana Garis, and Daniel Riesco. Translating between

Alloy specifications and UML class diagrams annotated with OCL.

Software & Systems Modeling, 14(1):5–25, 2015.

[25] Gehan MK Selim, Shige Wang, James R Cordy, and Juergen Din-

gel. Model transformations for migrating legacy deployment mod-

els in the automotive industry. Software & Systems Modeling,

14(1):365–381, 2015.

[26] Eugene Syriani and Hans Vangheluwe. A modular timed graph

transformation language for simulation-based design. Software &

Systems Modeling, 12(2):387–414, 2013.

[27] Mina Boström Nakićenović. An Agile Driven Architecture Mod-

ernization to a Model-Driven Development Solution. International

Journal on Advances in Software Volume 5, Number 3 & 4, 2012.

269

[28] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and FA Po-

lack. Model migration case for TTC 2010. Transformation Tool

Contest 2010 1-2 July 2010, Malaga, Spain, page 1, 2010.

[29] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. Envi-

ronment modeling and simulation for automated testing of soft real-

time embedded software. Software & Systems Modeling, 14(1):483–

524, 2015.

[30] Pieter Van Gorp and Louis M Rose. The petri-nets to statecharts

transformation case. arXiv preprint arXiv:1312.0342, 2013.

[31] Georg Hinkel, Thomas Goldschmidt, and Lucia Happe. An NMF

Solution for the Flowgraphs case study at the TTC 2013. Sixth

Transformation Tool Contest (TTC 2013), ser. EPTCS, 2013.

[32] Anthony Anjorin and Marius Lauder. A Solution to the Flowgraphs

Case Study using Triple Graph Grammars and eMoflon. arXiv

preprint arXiv:1312.0348, 2013.

[33] Georg Hinkel, Thomas Goldschmidt, and Lucia Happe. An NMF

solution for the Petri Nets to State Charts case study at the TTC

2013. arXiv preprint arXiv:1312.0596, 2013.

[34] Tassilo Horn. Solving the TTC 2013 Flowgraphs Case with Fun-

nyQT. In TTC, pages 57–68, 2013.

[35] Valerio Cosentino, Massimo Tisi, and Fabian Büttner. Analyzing

Flowgraphs with ATL. arXiv preprint arXiv:1312.0343, 2013.

[36] Wietse Smid and Arend Rensink. Class diagram restructuring with

GROOVE. arXiv preprint arXiv:1312.0350, 2013.

[37] Kevin Lano and S Kolahdouz Rahimi. Case study: Class diagram

restructuring. arXiv preprint arXiv:1309.0369, 2013.

[38] Tassilo Horn. Solving the Class Diagram Restructuring Transfor-

mation Case with FunnyQT. arXiv preprint arXiv:1312.0349, 2013.

270

[39] Jesús Sánchez Cuadrado. Solving the Flowgraphs Case with Eclec-

tic. arXiv preprint arXiv:1312.0346, 2013.

[40] Kevin Lano, S Kolahdouz-Rahimi, and Krikor Maroukian. Solving

the Petri-Nets to statecharts transformation case with UML-RSDS.

arXiv preprint arXiv:1312.0352, 2013.

[41] Tassilo Horn. Solving the Petri-Nets to Statecharts Transformation

Case with FunnyQT. arXiv preprint arXiv:1312.0351, 2013.

[42] Benedek Izsó, Ábel Hegedüs, Gábor Bergmann, Ákos Horváth, and

István Ráth. PN2SC Case Study: An EMF-IncQuery solution.

arXiv preprint arXiv:1312.0354, 2013.

[43] Sven Peldszus, Géza Kulcsár, and Malte Lochau. A Solution to the

Java Refactoring Case Study using eMoflon. In 8th Transformation

Tool Contest. CEUR, 2015.

[44] Benoit Combemale, Julien Deantoni, Olivier Barais, Arnaud

Blouin, Erwan Bousse, Cédric Brun, Thomas Degueule, and Di-

dier Vojtisek. A Solution to the TTC’15 Model Execution Case

Using the GEMOC Studio. In 8th Transformation Tool Contest.

CEUR, 2015.

[45] Georg Hinkel. An NMF solution to the Java Refactoring Case at

the TTC 2015. In 8th Transformation Tool Contest. CEUR, 2015.

[46] Georg Hinkel and Lucia Happe. An NMF solution to the Train

Benchmark Case at the TTC 2015. In 8th Transformation Tool

Contest. CEUR, 2015.

[47] Filip Křikava. Solving the TTC’15 Train Benchmark Case Study

with SIGMA. In Proceedings of the 8th Transformation Tool Con-

test, 2015.

[48] Gábor Szárnyas, Márton Búr, and István Ráth. Train Benchmark

Case: an EMF-INCQUERY Solution. In 8th Transformation Tool

Contest. CEUR, 2015.

271

[49] Stefan Lindel and Albert Zündorf. The SDMLib solution to the

Model Execution Case for TTC2015. In Proceedings of the 8th

Transformation Tool Contest, 2015.

[50] Olaf Gunkel, Matthias Schmidt, and Albert Zündorf. The SDMLib

solution to the Java Refactoring case for TTC2015. In Proceedings

of the 8th Transformation Tool Contest, 2015.

[51] Tassilo Horn. Solving the TTC Train Benchmark Case with Fun-

nyQT. In Proceedings of the 8th Transformation Tool Contest,

2015.

[52] Tassilo Horn. Solving the TTC Model Execution Case with Fun-

nyQT. In Proceedings of the 8th Transformation Tool Contest,

2015.

[53] Tassilo Horn. Solving the TTC Java Refactoring Case with Fun-

nyQT. In Proceedings of the 8th Transformation Tool Contest,

2015.

[54] Christoff Bürger. fUML Activity Diagrams with RAG-controlled

Rewriting: A RACR Solution of The TTC 2015 Model Execution

Case. In 8th Transformation Tool Contest, volume 1524, pages

27–36. CEUR Workshop Proceedings (CEUR-WS. org), 2015.

[55] Dániel Stein, Gábor Szárnyas, and István Ráth. Java Refactoring

Case: a VIATRA Solution.

[56] Dennis Wagelaar. The ATL/EMFTVM Solution to the Train

Benchmark Case for TTC2015.

[57] Gérard Paligot, Nicolas Petitprez, and Martin Monperrus.

TTC’2015 Case: Refactoring Java Programs using Spoon. In

Transformation Tool Contest, 2015.

[58] Marlon Dumas. Case study: BPMN to BPEL model transfor-

mation. In 5th International Workshop on Graph-Based Tools–

GraBaTs, 2009.

272

[59] Hessa Abdulrahman A Alfraihi Kevin Lano, Sobhan Yas-

sipour Tehrani. Improving the Application of Agile Model-based

Development: Experiences from Case Studies. volume 14, pages

5–25. Springer, 2015.

[60] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi

Ray. UML2Alloy: A challenging model transformation. In Inter-

national Conference on Model Driven Engineering Languages and

Systems, pages 436–450. Springer, 2007.

[61] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara.

A UML/OCL framework for the analysis of graph transformation

rules. Software & Systems Modeling, 9(3):335–357, 2010.

[62] Greg Freeman, Don Batory, and Greg Lavender. Lifting trans-

formational models of product lines: A case study. In Interna-

tional Conference on Theory and Practice of Model Transforma-

tions, pages 16–30. Springer, 2008.

[63] Zef Hemel, Lennart CL Kats, Danny M Groenewegen, and Eelco

Visser. Code generation by model transformation: a case study

in transformation modularity. Software & Systems Modeling,

9(3):375–402, 2010.

[64] Yasser A Khan and Mohamed El-Attar. Using model transforma-

tion to refactor use case models based on antipatterns. Information

Systems Frontiers, 18(1):171–204, 2016.

[65] Alexander Hück, Jean Utke, and Christian Bischof. Source Trans-

formation of C++ Codes for Compatibility with Operator Over-

loading. Procedia Computer Science, 80:1485–1496, 2016.

[66] Devinder Thapa, Suraj Dangol, and Gi-Nam Wang. Transforma-

tion from Petri nets model to programmable logic controller us-

ing one-to-one mapping technique. In International Conference

273

on Computational Intelligence for Modelling, Control and Automa-

tion and International Conference on Intelligent Agents, Web Tech-

nologies and Internet Commerce (CIMCA-IAWTIC’06), volume 2,

pages 228–233. IEEE, 2005.

[67] Viktoria Ovchinnikova and Erika Asnina. The algorithm of trans-

formation from UML sequence diagrams to the Topological Func-

tioning Model. In Evaluation of Novel Approaches to Software

Engineering (ENASE), 2015 International Conference on, pages

377–384. IEEE, 2015.

[68] Slavǐsa Marković and Thomas Baar. Semantics of OCL specified

with QVT. Software & Systems Modeling, 7(4):399–422, 2008.

[69] Ulf Eliasson, Rogardt Heldal, Jonn Lantz, and Christian Berger.

Agile model-driven engineering in mechatronic systems-an indus-

trial case study. In International Conference on Model Driven En-

gineering Languages and Systems, pages 433–449. Springer, 2014.

[70] Slavǐsa Marković and Thomas Baar. Refactoring OCL annotated

UML class diagrams. In International Conference on Model Driven

Engineering Languages and Systems, pages 280–294. Springer,

2005.

[71] Alexandre Correa and Cláudia Werner. Refactoring object con-

straint language specifications. Software & Systems Modeling,

6(2):113–138, 2007.

[72] Ashalatha Nayak and Debasis Samanta. Synthesis of test scenar-

ios using UML activity diagrams. Software & Systems Modeling,

10(1):63–89, 2011.

[73] Victoria Torres, Pau Giner, and Vicente Pelechano. Developing

BP-driven web applications through the use of MDE techniques.

Software & Systems Modeling, 11(4):609–631, 2012.

274

[74] Zoltn Petres, Pter Baranyi, Pter Korondi, and Hideki Hashimoto.

Trajectory tracking by TP model transformation: case study of a

benchmark problem. IEEE Transactions on Industrial Electronics,

54(3):1654–1663, 2007.

[75] Chihab eddine Mokaddem, Houari Sahraoui, and Eugene Syriani.

Towards Rule-Based Detection of Design Patterns in Model Trans-

formations. In International Conference on System Analysis and

Modeling, pages 211–225. Springer, 2016.

[76] István Dávid, István Ráth, and Dániel Varró. Streaming model

transformations by complex event processing. In International

Conference on Model Driven Engineering Languages and Systems,

pages 68–83. Springer, 2014.

[77] Valeria De Castro, Juan M Vara, and Esperanza Marcos. Model

Transformation for Service-Oriented Web Applications Develop-

ment. In MDWE, 2007.

[78] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. A

component model for model transformations. IEEE Transactions

on Software Engineering, 40(11):1042–1060, 2014.

[79] Ken Vanherpen, Joachim Denil, Hans Vangheluwe, and Paul

De Meulenaere. Model transformations for round-trip engineer-

ing in control deployment co-design. In Proceedings of the Sym-

posium on Theory of Modeling & Simulation: DEVS Integrative

M&S Symposium, pages 55–62. Society for Computer Simulation

International, 2015.

[80] Veronica Andrea Bollati, Juan Manuel Vara, Alvaro Jimenez, and

Esperanza Marcos. Applying MDE to the (semi-) automatic de-

velopment of model transformations. Information and Software

Technology, 55(4):699–718, 2013.

275

[81] Tassilo Horn. Model migration with GReTL for TTC 2010 case.

pages 10–03. Citeseer, 2010.

[82] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and Fiona AC

Polack. Migrating activity diagrams with Epsilon Flock. Transfor-

mation Tool Contest 2010 1-2 July 2010, Malaga, Spain, page 30,

2010.

[83] Elina Kalnina, Audris Kalnins, Janis Iraids, Agris Sostaks, and

Edgars Celms. Model migration with MOLA. Transformation Tool

Contest 2010 1-2 July 2010, Malaga, Spain, page 38, 2010.

[84] Andreas Koch, Ruben Jubeh, and Albert Zündorf. UML 1. 4 to

2.1 activity diagram model migration with Fujaba TTC 2010 case

study.

[85] Sebastian Buchwald and Edgar Jakumeit. A GrGen .NET solution

of the model migration case for the Transformation Tool Contest

2010. Transformation Tool Contest 2010 1-2 July 2010, Malaga,

Spain, page 61, 2010.

[86] Markus Herrmannsdoerfer. Migrating UML activity models with

COPE. Transformation Tool Contest 2010 1-2 July 2010, Malaga,

Spain, page 72, 2010.

[87] Bernhard Schätz. UML model migration with PETE. Transfor-

mation Tool Contest 2010 1-2 July 2010, Malaga, Spain, page 85,

2010.

[88] Antonio Cicchetti, Bart Mayers, and Manuel Wimmer. Abstract

and concrete syntax migration of instance models. In TTC: Trans-

formation Tool Contest, Satellite workshop to TOOLS 2010, 2010.

[89] Amir Hossein Ghamarian Maarten de Mol and Arend Rensink Ed-

uardo Zambon. Solving the Topology Analysis Case Study with

GROOVE. Transformation Tool Contest 2010 1-2 July 2010,

Malaga, Spain, page 119.

276

[90] Peter Backes and Jan Reineke. Abstract topology analysis of the

join phase of the merge protocol for TTC 2010. Proceedings of

Transformation Tool Contest (TTC 2010), Malaga, Spain, 1–2

July, 2010.

[91] Christian Heinzemann, Julian Suck, Ruben Jubeh, and Albert

Zündorf. Topology analysis of car platoons merge with Fujabart

& TimedStoryCharts - TTC2010 case study. Transformation Tool

Contest 2010 1-2 July 2010, Malaga, Spain, page 134, 2010.

[92] Enrico Biermann, Claudia Ermel, and Stefan Jurack. Modeling the

Ecore to GenModel Transformation with EMF Henshin. Transfor-

mation Tool Contest 2010 1-2 July 2010, Malaga, Spain, page 153,

2010.

[93] Jens von Pilgrim. Ecore2GenModel with Mitra and GEF3D. Trans-

formation Tool Contest 2010 1-2 July 2010, Malaga, Spain, page

166, 2010.

[94] Ábel Hegedüs, Zoltán Ujhelyi, Gábor Bergmann, and Ákos

Horváth. Ecore to Genmodel case study solution using the Via-

tra2 framework. Transformation Tool Contest 2010 1-2 July 2010,

Malaga, Spain, page 187, 2010.

[95] F Taghizadeh and SR Taghizadeh. A Graph Transformation-Based

Approach for Applying MDA to SOA. In 2009 Fourth International

Conference on Frontier of Computer Science and Technology, pages

446–451. IEEE, 2009.

[96] Michel dos Santos Soares and Jos Vrancken. A metamodeling ap-

proach to transform UML 2.0 sequence diagrams to Petri nets. In

Proceedings of the IASTED International Conference on Software

Engineering, pages 159–164, 2008.

277

[97] Eman Saleh, AMR Kamel, and Aly Fahmy. A model driven engi-

neering design approach for developing multi-platform user inter-

faces. WSEAS Transactions on Computers, 9(5):536–545, 2010.

[98] Leon Urbas and Falk Doherr. autoHMI: a model driven software

engineering approach for HMIs in process industries. In Computer

Science and Automation Engineering (CSAE), 2011 IEEE Inter-

national Conference on, volume 3, pages 627–631. IEEE, 2011.

[99] Manuel Wimmer. A semi-automatic approach for bridging DSMLs

with UML. International Journal of Web Information Systems,

5(3):372–404, 2009.

[100] Amogh Kavimandan and Aniruddha Gokhale. Automated Middle-

ware QoS Configuration Techniques using Model Transformations.

In EDOC Conference Workshop, 2007. EDOC’07. Eleventh Inter-

national IEEE, pages 20–27. IEEE, 2007.

[101] Emanuel Montero Reyno and José Á Carśı Cubel. Automatic pro-

totyping in model-driven game development. Computers in Enter-

tainment (CIE), 7(2):29, 2009.

[102] Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer,

Wieland Schwinger, and Werner Retschitzegger. Bridging webml

to model-driven engineering: from document type definitions to

meta object facility. IET software, 1(3):81–97, 2007.

[103] Ashley Sterritt and Vinny Cahill. Customisable model transfor-

mations based on non-functional requirements. In 2008 IEEE

Congress on Services-Part I, pages 329–336. IEEE, 2008.

[104] Ahmed Harbouche, Mohammed Erradi, and Aicha Mokhtari. De-

riving Multi-Agent System Behavior. International Journal of Soft-

ware Engineering and Its Applications, 7(4):137–156, 2013.

[105] Soon-Kyeong Kim, Toby Myers, Marc-Florian Wendland, and Pe-

ter A Lindsay. Execution of natural language requirements using

278

State Machines synthesised from Behavior Trees. Journal of Sys-

tems and Software, 85(11):2652–2664, 2012.

[106] Carsten Amelunxen and A Schurr. Formalising model transforma-

tion rules for UML/MOF 2. IET software, 2(3):204–222, 2008.

[107] Zhibin Yang, Kai Hu, Dianfu Ma, Jean-Paul Bodeveix, Lei Pi, and

Jean-Pierre Talpin. From AADL to timed abstract state machines:

A verified model transformation. Journal of Systems and Software,

93:42–68, 2014.

[108] Mathias Funk, Er Nyßen, and Horst Lichter. From UML to ANSI-

C-An Eclipse-Based Code Generation Framework. In Proceedings

of 3rd International Conference on Software and Data Technologies

(ICSOFT). Citeseer, 2008.

[109] Valeria De Castro, Juan Manuel Vara Mesa, Elisa Herrmann, and

Esperanza Marcos. From Real Computational Independent Models

to Information System Models: An MDE Approach. In 4th In-

ternational Workshop on Model-Driven Web Engineering (MDWE

2008), 2009.

[110] Óscar Pastor. Generating User Interfaces From Conceptual Mod-

els: A Model-Transformation Based Approach. In Computer-Aided

Design of User Interfaces V, pages 1–14. Springer, 2007.

[111] João Pedro Santos, Ana Moreira, João Araújo, and Miguel Goulão.

Increasing Quality in Scenario Modelling with Model-Driven De-

velopment. In Quality of Information and Communications Tech-

nology (QUATIC), 2010 Seventh International Conference on the,

pages 204–209. IEEE, 2010.

[112] Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner,

Sergey Lukichev, and Vladan Devedžić. Model transformations to

bridge concrete and abstract syntax of web rule languages. Com-

puter Science and Information Systems, 6(2):47–85, 2009.

279

[113] Oscar Dı́az, Gorka Puente, Javier Luis Cánovas Izquierdo, and

Jesús Garćıa Molina. Harvesting models from web 2.0 databases.

Software & Systems Modeling, 12(1):15–34, 2013.

[114] Andreas Fuhr, Tassilo Horn, Volker Riediger, and Andreas Win-

ter. Model-driven software migration into service-oriented architec-

tures. Computer Science-Research and Development, 28(1):65–84,

2013.

[115] S Mbarki and M Erramdani. Model-driven transformations: From

analysis to MVC 2 web model. International Review on Computers

and Software (I. RE. CO. S.), 4(5):612–620, 2009.

[116] Thomas Buchmann, Bernhard Westfechtel, and Sabine Winet-

zhammer. ModGraph-A Transformation Engine for EMF Model

Transformations. In ICSOFT (2), pages 212–219, 2011.

[117] Nikolaos Spanoudakis and Pavlos Moraitis. Modular JADE agents

design and implementation using ASEME. In Web Intelligence and

Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM

International Conference on, volume 2, pages 221–228. IEEE, 2010.

[118] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Werner

Retschitzegger, Wieland Schwinger, and Gerti Kappel. On using

inplace transformations for model co-evolution. In Proceedings 2nd

Int. Workshop Model Transformation with ATL, volume 711, pages

65–78, 2010.

[119] Li Dan. QVT based model transformation from sequence di-

agram to CSP. In Engineering of Complex Computer Systems

(ICECCS), 2010 15th IEEE International Conference on, pages

349–354. IEEE, 2010.

[120] Joachim Denil, Pieter J Mosterman, and Hans Vangheluwe. Rule-

based model transformation for, and in simulink. In Proceedings

280

of the Symposium on Theory of Modeling & Simulation-DEVS In-

tegrative, page 4. Society for Computer Simulation International,

2014.

[121] István Madari, László Angyal, and László Lengyel. Traceability-

based incremental model synchronization. WSEAS Transactions

on Computers, 8(10):1691–1700, 2009.

[122] Gunter Mussbacher, Jörg Kienzle, and Daniel Amyot. Transfor-

mation of aspect-oriented requirements specifications for reactive

systems into aspect-oriented design specifications. In Model-Driven

Requirements Engineering Workshop (MoDRE), 2011, pages 39–

47. IEEE, 2011.

[123] Fábio Levy Siqueira and Paulo Sérgio Muniz Silva. Transform-

ing an enterprise model into a use case model in business process

systems. Journal of Systems and Software, 96:152–171, 2014.

[124] Fabio Levy Siqueira, Paulo Sergio Muniz Silva, and Paulo

Sérgio Muniz Silva. Transforming an enterprise model into a use

case model using existing heuristics. In Model-Driven Requirements

Engineering Workshop (MoDRE), 2011, pages 21–30. IEEE, 2011.

[125] Álvaro Jiménez, David Granada, VA Bollati, and Juan M Vara. Us-

ing ATL to support model-driven development of RubyTL model

transformations. In 3rd International workshop on model transfor-

mation with ATL (MtATL2011), Zürich, Switzerland, pages 35–48.

Citeseer, 2011.

[126] Thomas Buchmann and Felix Schwägerl. Using Meta-code Gener-

ation to Realize Higher-order Model Transformations. In ICSOFT,

pages 536–541, 2013.

[127] Zekai Demirezen, Marjan Mernik, Jeff Gray, and Barrett Bryant.

Verification of DSMLs using graph transformation: a case study

with Alloy. In Proceedings of the 6th International Workshop on

281

Model-Driven Engineering, Verification and Validation, page 3.

ACM, 2009.

[128] Karim Dahman, François Charoy, and Claude Godart. Generation

of component based architecture from business processes: model

driven engineering for SOA. In Web Services (ECOWS), 2010

IEEE 8th European Conference on, pages 155–162. IEEE, 2010.

[129] Olaf Muliawan, Pieter Van Gorp, Anne Keller, and Dirk Janssens.

Executing a standard compliant transformation model on a non-

standard platform. In Software Testing Verification and Validation

Workshop, 2008. ICSTW’08. IEEE International Conference on,

pages 151–160. IEEE, 2008.

[130] Xiaofeng Cui. Co-design of the business and software architectures:

A systems engineering and model-driven method. In Software Engi-

neering Artificial Intelligence Networking and Parallel/Distributed

Computing (SNPD), 2010 11th ACIS International Conference on,

pages 209–214. IEEE, 2010.

[131] Antinisca Di Marco and Stefano Pace. Model-driven approach to

Agilla agent generation. In 2013 9th International Wireless Com-

munications and Mobile Computing Conference (IWCMC), pages

1482–1487. IEEE, 2013.

[132] Federico Ciccozzi, Antonio Cicchetti, Toni Siljamäki, and Jenis

Kavadiya. Automating test cases generation: From xtUML system

models to QML test models. In Proceedings of the 7th Interna-

tional Workshop on Model-Based Methodologies for Pervasive and

Embedded Software, pages 9–16. ACM, 2010.

[133] DA Meedeniya and Indika Perera. Model based software design:

Tool support for scripting in immersive environments. In 2013

IEEE 8th International Conference on Industrial and Information

Systems, pages 248–253. IEEE, 2013.

282

[134] Tudor Gı̂rba, Jean-Marie Favre, and Stéphane Ducasse. Using

meta-model transformation to model software evolution. Electronic

Notes in Theoretical Computer Science, 137(3):57–64, 2005.

[135] Friedrich Steimann. Constraint-based model refactoring. In Inter-

national Conference on Model Driven Engineering Languages and

Systems, pages 440–454. Springer, 2011.

[136] Eugene Syriani and Hüseyin Ergin. Operational semantics of

UML activity diagram: An application in project management.

In Model-Driven Requirements Engineering Workshop (MoDRE),

2012 IEEE, pages 1–8. IEEE, 2012.

[137] Jim Steel and Robin Drogemuller. Domain-specific model transfor-

mation in building quantity take-off. In International Conference

on Model Driven Engineering Languages and Systems, pages 198–

212. Springer, 2011.

[138] Hui Song, Gang Huang, Franck Chauvel, Wei Zhang, Yanchun Sun,

Weizhong Shao, and Hong Mei. Instant and incremental QVT

transformation for runtime models. In International Conference

on Model Driven Engineering Languages and Systems, pages 273–

288. Springer, 2011.

[139] Mirco Kuhlmann and Martin Gogolla. From UML and OCL to rela-

tional logic and back. In International Conference on Model Driven

Engineering Languages and Systems, pages 415–431. Springer,

2012.

[140] Mathieu Acher, Philippe Lahire, Sabine Moisan, and Jean-Paul

Rigault. Tackling high variability in video surveillance systems

through a model transformation approach. In Proceedings of the

2009 ICSE Workshop on Modeling in Software Engineering, pages

44–49. IEEE computer society, 2009.

283

[141] Gerd Kainz, Christian Buckl, Stephan Sommer, and Alois

Knoll. Model-to-metamodel transformation for the development

of component-based systems. In International Conference on

Model Driven Engineering Languages and Systems, pages 391–405.

Springer, 2010.

[142] Tirdad Rahmani, Daniel Oberle, and Marco Dahms. An adjustable

transformation from owl to ecore. In International Conference on

Model Driven Engineering Languages and Systems, pages 243–257.

Springer, 2010.

[143] António Miguel Rosado da Cruz and João Pascoal Faria. A

metamodel-based approach for automatic user interface genera-

tion. In International Conference on Model Driven Engineering

Languages and Systems, pages 256–270. Springer, 2010.

[144] None. Duplicate paper.

[145] Juan de Lara, Esther Guerra, Artur Boronat, Reiko Heckel, and

Paolo Torrini. Domain-specific discrete event modelling and simu-

lation using graph transformation. Software & Systems Modeling,

13(1):209–238, 2014.

[146] Kelly Garcés, Juan M Vara, Frédéric Jouault, and Esperanza Mar-

cos. Adapting transformations to metamodel changes via exter-

nal transformation composition. Software & Systems Modeling,

13(2):789–806, 2014.

[147] Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina. Extracting

models from source code in software modernization. Software &

Systems Modeling, 13(2):713–734, 2014.

[148] Haiping Zha, Wil MP van der Aalst, Jianmin Wang, Lijie Wen,

and Jiaguang Sun. Verifying workflow processes: a transformation-

based approach. Software & Systems Modeling, 10(2):253–264,

2011.

284

[149] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi

Ray. On challenges of model transformation from UML to Alloy.

Software & Systems Modeling, 9(1):69–86, 2010.

[150] Frank Hilken, Lars Hamann, and Martin Gogolla. Transforma-

tion of UML and OCL models into filmstrip models. In Interna-

tional Conference on Theory and Practice of Model Transforma-

tions, pages 170–185. Springer, 2014.

[151] Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut

Ehrig, Benjamin Braatz, Gianluigi Morelli, Alain Pierre, Thomas

Engel, and Claudia Ermel. Triple graph grammars in the large

for translating satellite procedures. In International Conference

on Theory and Practice of Model Transformations, pages 122–137.

Springer, 2014.

[152] Jeroen Van den Bos and Tijs Van Der Storm. Domain-specific opti-

mization in digital forensics. In International Conference on Theory

and Practice of Model Transformations, pages 121–136. Springer,

2012.

[153] Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and Alfonso

Pierantonio. Translational semantics of a co-evolution specific lan-

guage with the EMF transformation virtual machine. In Interna-

tional Conference on Theory and Practice of Model Transforma-

tions, pages 192–207. Springer, 2012.

[154] Jácome Cunha, João P Fernandes, Jorge Mendes, Hugo Pacheco,

and João Saraiva. Bidirectional transformation of model-driven

spreadsheets. In International Conference on Theory and Practice

of Model Transformations, pages 105–120. Springer, 2012.

[155] Eugene Syriani and Hans Vangheluwe. Programmed graph rewrit-

ing with time for simulation-based design. In International Con-

ference on Theory and Practice of Model Transformations, pages

91–106. Springer, 2008.

285

[156] Ricardo Pérez-Castillo, Ignacio Garćıa-Rodŕıguez De Guzmán, and

Mario Piattini. Implementing business process recovery patterns

through QVT transformations. In International Conference on

Theory and Practice of Model Transformations, pages 168–183.

Springer, 2010.

[157] Roy Grønmo and Birger Møller-Pedersen. From sequence diagrams

to state machines by graph transformation. In International Con-

ference on Theory and Practice of Model Transformations, pages

93–107. Springer, 2010.

[158] MF Van Amstel, Mark GJ van den Brand, Z Protić, and Tom

Verhoeff. Transforming process algebra models into UML state

machines: Bridging a semantic gap? In International Conference

on Theory and Practice of Model Transformations, pages 61–75.

Springer, 2008.

[159] Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets

to relational databases and back. In Proceedings of the 2009 ACM

SIGPLAN workshop on Partial evaluation and program manipula-

tion, pages 179–188. ACM, 2009.

[160] Mathias Kleiner, Marcos Didonet Del Fabro, and Davi De Queiroz

Santos. Transformation as search. In European Conference on

Modelling Foundations and Applications, pages 54–69. Springer,

2013.

[161] Tao Yue and Shaukat Ali. Bridging the gap between requirements

and aspect state machines to support non-functional testing: in-

dustrial case studies. In European Conference on Modelling Foun-

dations and Applications, pages 133–145. Springer, 2012.

[162] Simon Schwichtenberg, Christian Gerth, Zille Huma, and Gre-

gor Engels. Normalizing heterogeneous service description models

with generated QVT transformations. In European Conference on

286

Modelling Foundations and Applications, pages 180–195. Springer,

2014.

287

	Introduction
	Overview
	Motivation
	Research Objectives
	Overall Aims and Contributions
	Overall Thesis Structure

	Background on Software & Requirements Engineering and Model Transformation
	The Software Development Process
	Software Requirements
	Software Project Types

	Software Process Model
	Software Measurements and Metrics
	Software Quality Models
	Goal-Questions-Metrics

	Requirements Engineering
	Domain Analysis and Requirements Elicitation
	Evaluation and Negotiation
	Specification and Documentation
	Validation and Verification

	Model Driven Engineering
	Model Driven Development in MDE
	Model Driven Architecture in MDE

	Model Transformation
	Transformation Types and Properties
	Model Transformation Languages
	Model Transformation Examples

	Summary

	Requirements Engineering in MT Development
	Introduction
	Methodology
	Related Work

	Transformation Development Projects
	Types of Project

	Stakeholders in MT
	Requirements Engineering Process
	Overall RE Process
	Changes and Conflicts in Requirements
	Requirements
	RE Techniques

	Outcomes
	MT Project Failures

	Summary

	Systematic Literature Survey
	Introduction
	Related Work
	Research Methodology
	Research Question
	Source Selection
	Primary Studies Selection
	Selection Criteria
	Information Extraction
	Conducting the Review
	SLR Results

	Comparison
	Threats to Validity
	Summary

	Requirements Engineering Activity for MT
	Application of RE in MT
	Requirements Taxonomy

	RE Process Adaptation for MT
	Domain Analysis and Requirements Elicitation
	Evaluation and Negotiation
	Specification and Documentation
	Validation and Verification
	Tool Support for RE in MT

	A Framework for Selecting Suitable RE Techniques
	Technique Attribute
	Project Attribute
	Organisational Attribute

	Application Framework Example
	Framework Implementation
	Summary

	Evaluation
	Case study 1: UML to C Transformation
	F1.1: Translation of Types
	F1.2: Translation of Class Diagrams
	F1.3: Translation of OCL Expressions
	Translation of Activities
	Translation of Use Cases
	Evaluation

	Case Study 2: CDO Risk Estimation
	Evaluation

	Framework Evaluation
	Summary

	Summary and Concluding Remarks
	Introduction
	Objectives of Research
	Overview of Thesis
	Limitations
	Future Work
	Requirements Management in MT
	Applying the Framework to Several Cases
	Integration with transML
	Further Extension of the Framework

	Concluding Remarks

	SLR Tables
	Interview Guide
	Description of RE Techniques
	Surveyed Papers

