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Abstract 

Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine 

system by mimicking or antagonising the effects of endogenous hormones, by altering the 

synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The 

synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen 

benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a 

natural endogenous ED. Although the biological effects of these individual EDs have 

partially been studied previously, their toxicity when acting in combination has not yet been 

investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination 

and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 

(CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the 

inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA 

adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after 

activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and 

with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of 

CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on 

the expression of these enzymes. However, when EE2 was administered to rats together with 

BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene 

expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced 

CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not 

form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo 

and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted 

from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results 

indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is 

modulated by estradiol and its synthetic derivative EE2.  

Keywords: Endocrine disruptors; 17alpha-ethinylestradiol; Estradiol; Benzo[a]pyrene; 
Cytochrome P450; DNA-adducts. 
 
Abbreviations: AhR, aryl hydrocarbon receptor; BaP, benzo[a]pyrene; BPDE, 
benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; COMT, catechol-O-methyltransferase; CYP, 
cytochrome P450; EE2, 17α-ethinylestradiol; DMSO, dimethylsulfoxide; ED, endocrine 
disruptor; dG-N2-BPDE, 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-
tetrahydrobenzo[a]pyrene; EROD, 7-ethoxyresorufin O-deethylation; GAPDH, 
glyceraldehyde 3-phosphate dehydrogenase; NADPH, nicotinamide adenine dinucleotide 
reduced; mEH, microsomal epoxide hydrolase; NQO1, NAD(P)H:quinone oxidoreductase 1; 
PAH, polycyclic aromatic hydrocarbon; POR, NADPH:CYP reductase; TLC, thin layer 
chromatography; RAL, relative adduct labelling.  
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1. Introduction 

The term “endocrine disruptor” (ED) is used for compounds that mimic or antagonise 

the effects of endogenous hormones, alter the synthesis and metabolism of natural hormones 

or modify hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the 

carcinogenic environmental pollutant benzo[a]pyrene (BaP) belong to a group of chemicals 

assigned as exogenous endocrine disruptive compounds while the estrogenic hormone 

estradiol, or more precisely, 17β-estradiol, is a natural endogenous ED. The biological effects 

of these EDs depend on their metabolism. Although the toxic effects of these EDs are 

partially known, apart from BaP, information on their genotoxic and carcinogenic properties 

mediated during metabolism is scarce. 

BaP is a polycyclic aromatic hydrocarbon (PAH) that has been classified as human 

carcinogen (Group 1) by the International Agency for Research on Cancer  IARC) (IARC, 

2010). BaP and other PAHs are produced mainly by incomplete combustion of organic 

matter. Their ubiquitous presence in the environment leads to measurable background levels 

of exposure in the general population (IARC, 2010). Beside the inhalation of polluted air, the 

main sources of exposure are tobacco smoke and diet (Baird et al., 2005). BaP has been 

shown to cause cytotoxic, genotoxic, neurotoxic, mutagenic and carcinogenic effects in 

various tissues and cell types (Siddens et al., 2012; Wohak et al., 2016; Krais et al., 2016; 

Long et al., 2016; 2017; Chepelev et al., 2016). BaP requires metabolic activation prior to 

reaction with DNA (Reed et al., 2018). Cytochrome P450 (CYP) enzymes, mainly CYP1A1 

and 1B1, are the most important enzymes involved in this process, in combination with 

microsomal epoxide hydrolase (mEH) (Figure 1) (Nebert et al., 2013; Arlt et al., 2015; 

Stiborova et al., 2014; 2016a; 2016b). First, CYP1A1 enzyme oxidises BaP to an epoxide that 

is then converted to a dihydrodiol by mEH (i.e. BaP-7,8-dihydrodiol). Further bioactivation 

by CYP1A1 leads to the ultimately reactive species, BaP-7,8-dihydrodiol-9,10-epoxide 

(BPDE) that can react with DNA, forming adducts preferentially at guanine residues (Figure 

1). The 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-

N
2-BPDE) adduct is the major product of the reaction of BPDE with DNA in vivo (Arlt et al. 

2008; 2012) and preferentially leads to the induction of G to T transversion mutations 

(Alexandrov et al. 2016; Kucab et al. 2015; Nik-Zainal et al. 2015). Alternatively, BaP-7,8-

dihydrodiol can be activated by aldo-keto reductases leading to BaP-7,8-dione which is also 

capable of forming DNA adducts and generating oxidative damage to DNA (Penning, 2014). 

However, BaP is also oxidised to other metabolites such as other dihydrodiols, BaP-diones 
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and further hydroxylated metabolites (Indra et al., 2013; 2014; Stiborova et al., 2014; 2016a; 

2016b; Sulc et al., 2016). Although most of these metabolites are detoxification products, 

BaP-9-ol (9-hydroxy-BaP) is the precursor of 9-hydroxy-BaP-4,5-epoxide that can form 

another adduct with deoxyguanosine in DNA (Figure 1). Expression of CYP enzymes of the 

family 1 (CYP1A1 and 1B1), which predominantly metabolise BaP, are known to be up-

regulated by the aryl hydrocarbon receptor (AhR); BaP itself can bind to and activate AhR 

thereby enhancing its own metabolic activation (Hockley et al., 2007; 2008). 

Synthetic estrogen EE2 (Figure 2) is widely used as a major component in oral 

contraceptives (Bolt, 1979). Incorporation of an acetylenic moiety into the estradiol molecule 

resulted in increased oral availability of the drug. Although there is evidence for 

carcinogenicity of EE2 in experimental animals (IARC, 1979), reports on the genotoxic 

potential of this ED are contradictory (Siddique et al., 2005). EE2 is metabolised by 

hydroxylation at the 2, 4, 6, and 16α position of the steroid nucleus (Back et al., 1984; Rogers 

et al., 1987; Stanczyk et al., 2013; Zhang et al., 2007). The 2-hydroxy-EE2 derivative can 

subsequently be methylated in vivo to give 2-methoxyethinylestradiol (Back et al., 1984; 

Rogers et al., 1987). The CYP enzymes predominantly catalysing the 2-hydroxylation of EE2 

in human liver microsomes are CYP2C9 and 3A4, whereas CYP2C8, 2C19, and 1A2 only 

contribute to a lesser extent to this reaction. EE2 is also a substrate of various rat hepatic 

CYPs. Rat CYP2C6 and 2C11 are most efficient in catalysing the formation of the major EE2 

metabolite 2-hydroxy-EE2, whereas EE2 hydroxylation by rat CYP2A and 3A predominantly 

leads to a minor hydroxylation metabolite, whose structure remains to be identified (Borek-

Dohalska et al., 2014; 2015).  

Metabolism of the estrogenic hormone estradiol (Figure 2) has been extensively studied 

in a large number of studies. It can act as a weak carcinogen and weak mutagen capable of 

inducing genetic lesions (Liehr et al., 2000). Estradiol undergoes extensive oxidative 

metabolism at various positions leading to the formation of various hydroxylated or keto 

metabolites. This oxidative metabolism is catalysed by several CYPs present in liver and in 

extrahepatic estrogen target organs, including enzymes of the CYP1, CYP3A and CYP2C 

subfamilies (reviewed in Zhu and Lee, 2005). Aromatic hydroxylation at either the C2 or C4 

position is the major route of estradiol metabolism in humans and other mammals, although 

there is less 4-hydroxylation than 2-hydroxylation. 2-Hydroxyestradiol is considered as a 

non-toxic metabolite, whereas 4-hydroxyestradiol, which is primarily formed by the 

extrahepatic CYP1B1, is known to be genotoxic (Lee et al., 2003). Several CYPs including 

CYPs of the subfamily 1A, CYP1B1, CYPs of the subfamily 2C, CYPs of the subfamily 3A 
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and CYP2D6 were shown to catalyse the hydroxylation of estradiol to 2-hydroxyestradiol 

and/or 4-hydroxyestradiol. CYP1A2 and 3A4 also catalyse the 16α-hydroxylation of 

estradiol to estriol (Badawi et al., 2001).  

Although the biological effects caused by individual EDs have partially been 

investigated, their combined impact has essentially not been studied. Therefore, the aim of 

the present study was to investigate the effect of EE2 and estradiol on the CYP-mediated 

genotoxicity of BaP. Male Wistar rats were used as animal model and the formation of 

covalent BaP-derived DNA adducts was studied in vivo in the liver and in in vitro incubations 

using hepatic microsomes of rats exposed to EDs. Complementary in vitro studies used 

recombinant rat CYP1A1 in Supersomes™. Besides studying BaP-DNA adduct formation by 
32P-postlabelling, we examined the influence of EE2 and estradiol on expression of major 

CYP enzymes (CYP1A1 and 1B1) catalysing BaP activation using qPCR and Western 

blotting. Livers of male rats were utilised because liver tissue contains most 

biotransformation enzymes (e.g. CYPs) known to activate BaP by oxidition and previous 

studies have shown that these enzymes can also be induced in rat liver (Hodek et al., 2013), 

thereby modulating the genotoxicity (i.e. DNA adduct formation) of this carcinogen. In our 

experiments, rats were treated with BaP, EE2 and estradiol alone or in combinations and 

livers of these animals were analysed for these effects.  
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2. Materials and methods 

 

2.1. Chemicals and enzymes 

 17α-ethinylestradiol (EE2), glucose-6-phosphate, NADP+, NADPH, 17β-estradiol, 7-

ethoxyresorufin, benzo[a]pyrene (BaP) were obtained from Sigma Chemical Co. (St. Louis, 

MO, USA). Sudan I was purchased from BDH (Poole, UK), glucose-6-phosphate 

dehydrogenase from Serva (Heidelberg, Germany) and bicinchoninic acid from Pierce 

(Rockford, IL, USA). All other chemicals were of analytical purity or better. Rat CYP1A1-

Supersomes™, microsomes isolated from insect cells transfected with a baculovirus construct 

containing cDNA of recombinant rat CYP1A1 and NADPH:CYP reductase (POR), were 

purchased from Gentest Corp. (Woburn, MI, USA). 

 

2.2. Treatment of rats 

All animal experiments were conducted in accordance with the Regulations for the 

Care and Use of Laboratory Animals (311/1997, Ministry of Agriculture, Czech Republic), 

which is in compliance with the Declaration of Helsinki. Male Wistar rats (150 g,  AnLab, 

Czech Republic), were housed in groups of 3 in wire cages at 22°C with a 12 h light/dark 

period and ad libitum diet (ST-1 diet from Velaz, Czech Republic) and water access.  

Rats were divided into seven groups (n=3/group). Three groups were treated by oral 

gavage with one dose of either BaP (150 mg/kg body weight [bw]), estradiol (20 mg/kg bw) 

or EE2 (20 mg/kg bw). The next three groups were treated once with combinations of BaP 

with EE2, BaP with estradiol or EE2 with estradiol. Test compounds were all dissolved in 

sunflower oil. The control group received sunflower oil only. All animals were sacrificed 

after 48 hours and liver tissues were snap-frozen in liquid nitrogen and stored at ‒80°C until 

further analysis.     

 

2.3.BaP-DNA adduct detection by 
32

P-postlabelling analysis  

Genomic DNA from whole liver tissue was isolated by a standard phenol-chloroform 

extraction method and DNA adducts were measured for each DNA sample using the nuclease 

P1 enrichment version of the thin-layer chromatography (TLC)-32P-postlabelling method as 

described previously (Arlt et al. 2008). After chromatography TLC plates were scanned using 

a Packard Instant Imager (Downers Grove, IL, USA). DNA adduct levels were calculated as 

described (Schmeiser et al., 2013). Results were expressed as relative adduct labelling (RAL).  
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2.4. Preparation of microsomes 

Hepatic microsomes from all groups of rats were isolated as described previously 

(Arlt et al. 2008; Stiborova et al., 2013). Microsomes were isolated from 3 pooled livers of 

rats of each treatment group. Protein concentration in the microsomal fraction was measured 

using the bicinchoninic acid protein assay with bovine serum albumin as standard. Pooled 

microsomal fractions were used for further experiments. 

 

2.5. Western blot analysis  

For the detection of individual CYP enzymes, 75 µg of microsomal protein was 

separated via sodium dodecylsulfate polyacrylamide gele electrophoresis (SDS-PAGE) (10% 

acrylamide, Bio-Rad). The polyvinylidene fluoride (PVDF) membrane after the 

electrotransfer was blocked in a solution of 5% skim milk in TBST-Tween buffer (20 mM 

Tris/HCl, 150 mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h at room temperature. The CYP1A1 

was detected with a rabbit anti-rat CYP1A1 primary antibody (BioTech, Czech Republic) 

(dilution 1:2500) and CYP1B1 with a rabbit anti-rat CYP1B1 primary antibody (Santa Cruz 

Biotechnology, USA) (dilution 1:400) diluted in 5% skim milk in Tris-buffered saline with 

Tween 20 (TBST-Tween buffer) over night at 4°C. After washing in TBST-Tween buffer, 

membrane was incubated with alkaline phosphatase-conjugated rabbit IgG anti-rabbit IgG in 

in 5% skim milk in TBST-Tween buffer (dilution 1:1430) for 1 h at room temperature. 

Protein bands were visualized with the alkaline phosphatase substrate, 5-bromo-4-chloro 3- 

indolyl phosphate/nitro blue tetrazolium tablet. To assure comparable protein amount and 

expression, we routinely use anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for 

normalisation of the Western blot data.  

 

2.6. CYP1A enzyme activity assays 

The rat hepatic microsomal fractions were characterised for CYP1A1 enzyme activity 

using Sudan I hydroxylation (Stiborova et al. 2002; 2005) and for CYP1A enzyme activities 

we used 7-ethoxyresorufin O-deethylation (EROD) (Stiborova et al. 2002; 2005).  

 

2.7. CYP1A1 and 1B1 mRNA content in rat livers 

 Total RNA was isolated from frozen livers of all rat groups and mRNA quantified by 

RT-PCR exactly as described (Stiborova et al., 2008).  
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2.8. Microsomal incubations for BaP-DNA adduct formation 

Incubation mixtures consisted of 50 mM potassium phosphate buffer (pH 7.4). 1 

mM reduced nicotinamide adenine dinucleotide (NADPH), pooled hepatic microsomal 

fraction (0.5 mg/ml protein) from all treatment groups, 0.1 mM BaP (dissolved in 7.5 µl 

dimethylsulfoxide [DMSO]) and calf thymus DNA (0.5 mg) in a final volume of 750 µl. 

Incubations were carried out at 37°C for 90 minutes (Arlt et al. 2008). Control incubations 

were carried out: (i) without microsomes; (ii) without NADPH; (iii) without DNA; and (iv) 

without BaP. After incubation, DNA was isolated by a standard phenol-chloroform extraction 

method. BaP-DNA adduct formation was determined by 32P-postlabelling as described above.  

 

2.9. Determination of BaP-DNA adduct formation catalysed by recombinant rat CYP1A1 

and the effects of EE2 and estradiol on this process 

Incubation mixtures used for studying BaP activation to species forming BaP-DNA 

adducts by recombinant rat CYP1A1 in Supersomes™ contained in a final volume of 750 µl, 

50 mM potassium phosphate buffer (pH 7.4), 0.1 mM BaP (dissolved in 7.5 µl DMSO), calf 

thymus DNA (0.5 mg) and 100 nM rat recombinant CYP1A1 in Supersomes™ (in 

combination with its reductase POR) in the presence or absence of 0.1 mM EE2 or estradiol 

(both dissolved in 7.5 µl DMSO). Control incubations were carried out: (i) without CYP1A1-

Supersomes™M; (ii) without NADPH; (iii) without DNA; and (iv) without BaP. After the 

incubation DNA was isolated by a standard phenol-chloroform extraction method. BaP-DNA 

adduct formation was determined by 32P-postlabelling as described above.  
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3. Results 

 

3.1. Effect of EE2 or estradiol on BaP-DNA adduct formation in vivo in rats   

Covalent DNA adduct formation was determined by 32P-postlabelling in the livers of 

male Wistar rats treated with BaP alone or in combination with EE2 or estradiol. Using the 

nuclease P1 enrichment version of the assay, DNA adducts were found in all liver samples 

from rats treated with BaP, BaP/EE2 and BaP/estradiol. The BaP-DNA adduct pattern 

obtained in vivo consisted of one major adduct spot (assigned adduct spot 1) (Figure 3, insert 

A), which was previously identified as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-

tetrahydrobenzo[a]pyrene (dG-N2-BPDE) (Arlt et al. 2008). No DNA adduct were detected in 

livers of control rats (Figure 3, insert B), rats treated with EE2 or estradiol alone or rats 

treated with a combination of both EE2 and estradiol (data not shown). 

 In livers of rats treated with BaP together with EE2 or estradiol, the levels of dG-N2-

BPDE adduct were 2.3-fold and 1.6-fold lower than those in rats exposed to BaP alone, 

respectively (Figure 3). Therefore, EE2 and estradiol, when administered to rats together 

with BaP, modulate the metabolic pathway of BaP consequently leading to a decrease in 

BaP-derived DNA adduct formation in this rat organ. 

 

3.2. Effect of EE2 or estradiol on BaP-DNA adduct formation using rat hepatic 

microsomes in vitro   

Next we investigated the ability of hepatic microsomes isolated from treated and 

control rats to catalyse BaP-DNA adduct formation in vitro. The BaP-DNA adduct pattern 

obtained by 32P-postlabelling analysis in in-vitro microsomal incubations consisted of up to 

two major adduct spots (Figure 4, insert A). Adduct spot 1 was identified to correspond to 

the dG-N2-BPDE adduct (Arlt et al. 2008) and was also generated in rat livers in vivo 

(compare Figure 3). The other major spot detected by TLC (assigned adduct 2) has not yet 

been fully structurally identified, but is likely to be derived from the reaction of 9-hydroxy-

BaP-4,5-epoxide with deoxyguanine in DNA (see Figure 1) (Schoket et al., 1989; Nesnow et 

al., 1993; Fang et al., 2001). The biotransformation pathways leading to the formation of both 

these adducts are illustrated in Figure 1. The dG-N2-BPDE adduct, which was the only 

adduct detected in vivo, was formed by microsomes at lower amounts than the 9-hydroxy-

BaP-4,5-epoxide-derived adduct (adduct 2). Additionally two minor adduct spots were also 

visible by autoradiography (see Figure 4, insert A) and it has been suggested previously that 
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they also can be BaP-derived DNA adducts (Schoket et al., 1989; Fang et al., 2001). Indeed, 

these minor adducts were not found in control incubations carried out without BaP (Figure 4, 

insert B). As the origin of these adducts is currently unknown their levels were not quantified 

in the present study. 

Whereas treatment of rats to BaP together with EE2 decreased the efficiency of 

microsomes to form BaP-DNA adducts in vitro, which was analogous to the process found in 

vivo, treatment of rats with BaP in combination with estradiol actually stimulated the 

enzymatic efficacy of hepatic microsomes to activate BaP in vitro, leading to a ~2-fold 

increase in BaP-DNA adduct levels (Figure 4 & Supplementary Table 1). This finding is 

opposite to the results found in vivo where treatment of rats with BaP together with estradiol 

inhibited BaP-DNA adduct formation in the livers (see Figure 3). No BaP-DNA adducts 

were formed in control incubations with microsomes of all treatment groups without BaP (see 

Figure 4, insert B, showing the autoradiography of DNA isolated from incubation of DNA 

with microsomes of BaP-exposed rats but without the addition of BaP in vitro) or with BaP 

but without microsomes (data not shown).  

Because CYP1A1 and 1B1 enzymes activate BaP to metabolites capable of forming 

DNA adducts (Stiborova et al., 2014; 2016a; Wohak et al., 2016; Krais et al., 2016; Sulc et 

al., 2016), their expression might determine the levels of BaP-DNA adducts. Therefore, we 

investigated the expression of CYP1A1 and 1B1 in hepatic microsomes and the impact of 

EE2 and estradiol on their expression.  

 

3.3. Effect of EE2 or estradiol on BaP-induced expression of CYP1A1 and 1B1 in rat 

hepatic microsomes  

As shown in Figures 5 & 6, BaP acts as a strong and moderate inducer of CYP1A1 

and 1B1, respectively, both on the transcriptional and translational levels, whereas EE2, 

estradiol or their combinations had no induction effect. However, when the estrogenic 

compounds (EE2, estradiol) were administered to rats together with BaP, they affected the 

degree of BaP-mediated CYP1A1 and 1B1 induction in rat livers on the transcriptional level 

(Figures 5A & 6A).  

As shown in Figure 5, BaP treatment of rats together with EE2 decreased BaP-

induced expression of CYP1A1, CYP1A1 protein levels and Sudan I hydroxylation, a marker 

for CYP1A1 enzyme activity (Stiborova et al., 2002; 2005). For treatment of BaP with 

estradiol, BaP-induced CYP1A1 gene expression was also decreased, but virtually no effect 
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was observed on the protein level (Figure 5A and B). Furthermore, Sudan I hydroxylation 

was slightly increased (up to 1.2-fold; P<0.01) compared to CYP1A1 enzyme activity in 

hepatic microsomes of rats treated with BaP alone (Figure 5C). Similar trends where 

observed for both EE2 and estradiol when O-deethylation of 7-ethoxyresorufin (EROD), 

another marker for CYP1 enzyme activity, was determined (Figure 5D). O-deethylation of 7-

ethoxyresorufin reaction is mainly catalysed by CYP1A1, but it can also be mediated by 

CYP1B1. Nevertheless, the efficiency of CYP1B1 to catalyse this reaction is only ~2% of the 

efficacy of the CYP1A1 enzyme (Henderson et al., 2000).  

CYP1B1 protein levels were also induced in livers of BaP-treated rats, but induction 

was much lower compared to CYP1A1 (compare Figures 5 & 6). In contrast, treatment with 

EE2 and/or estradiol essentially showed no effect Figure 6). Exposure of rats to BaP/EE2 

lowered BaP-induced CYP1B1 gene expression, but this was not reflected on the protein 

level. On the contrary, BaP/estradiol exposure slightly elevated BaP-induced CYP1B1 gene 

expression (Figure 6A) and this effect was also seen on the protein level (Figure 6B). For 

CYP1B1 no enzymatic activity could be analysed because a specific marker substrate of this 

enzyme has not been identified as yet (Henderson et al., 2000; Nishida et al., 2013; Wang et 

al., 2016). 

 

3.4. Effect of EE2 or estradiol on BaP-DNA adduct formation catalysed by rat 

recombinant CYP1A1 

In order to resolve the observed discrepancies between the influence of estradiol on 

formation of BaP-DNA adducts found in vivo and in incubations of DNA with BaP using 

hepatic microsomes in vitro, further in vitro experiments were conducted using rat 

recombinant CYP1A1 expressed in Supersomes™ (Figure 7). The effect of EE2 was also 

studied in this experimental system. The BaP-DNA adduct pattern obtained by TLC-32P-

postlabelling in incubations of BaP and DNA using rat supersomal CYP1A1 consisted again 

of two major spots, namely dG-N2-BPDE (adduct 1) and adduct 2 derived from 9-hydroxy-

BaP-4,5-epoxide (Figure 7, insert A). In this experimental system, levels of adduct 2 were 

higher than levels of adduct 1 (i.e. dG-N2-BPDE) (Supplementary Table 2). No BaP-DNA 

adducts were found in control incubations without BaP (Figure 7, insert B) or without 

CYP1A1 or with this enzyme and EE2 and estradiol instead of BaP (data not shown).  

The formation of both BaP-DNA adducts was decreased in the CYP1A1-catalysed BaP 

activation by the presence of EE2 and estradiol (Supplementary Table 2). Total BaP-DNA 
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adduct levels were up to 1.8-fold lower in the presence of EE2 or estradiol (Figure 7). These 

findings corresponded to the situation in vivo where BaP-DNA adduct formation was reduced 

in livers of rats treated with BaP in combination with these estrogenic EDs (compare Figure 

3).  
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4. Discussion 

The results of the present study emphasise the importance to investigate the effects of 

EDs when they act in combination. This is also a crucial feature when examining the toxic 

effects of chemicals present in complex mixtures, because humans are usually exposed to a 

complex mixture of chemicals which can include both exogenous and endogenous EDs as 

well as carcinogens. Drug-drug interaction in combination with toxicants may also be critical. 

However, such studies are rare at the present time. Here, we investigated the combined 

effects of three EDs, exogenous compounds such as EE2 and BaP as well as estradiol as an 

example of an endogenous compound, all compounds whose (geno)toxic effects depend on 

their metabolism. Combined exposure to these chemicals could impact on xenobiotic-

metabolising enzymes thereby impacting on their metabolism and genotoxicity (i.e. BaP-

DNA adduct formation). 

In this study, BaP was found to form covalent BaP-DNA adducts in rat liver. In 

contrast none of the tested estrogenic compounds (EE2 or estradiol) were capable of 

generating covalent DNA adducts under the experimental conditions used. However, it should 

be noted that DNA adduct formation by EE2 and estradiol cannot be fully excluded. 

Metabolism of estradiol results in the oxidation to semiquinones and quinones that can 

covalent bind to DNA bases such as deoxyadenosine (Vale et al., 2017) causing apurinic sites 

(Cavalieri and Rogan, 2016). Nevertheless, those adducts cannot be detected by the 32P-

postlabelling method used in our study.  

However, both EE2 and estradiol influenced the genotoxic properties of BaP, when 

administered to rats in combination with BaP. We found that the formation of dG-N2-BPDE 

adducts in rat liver was decreased when BaP treatment was combined with EE2 or estradiol. 

We first suggested that the mechanism for the reduced BaP-DNA adduct formation could be 

linked to a decrease in the levels and activities of CYP enzymes activating BaP, mainly 

CYP1A1 and 1B1 (Luch and Baird 2005). However, in the present study we found that 

estradiol can even increase BaP-induced CYP1A enzyme activity. CYP1A1 and 1B1 are both 

also capable of metabolising estradiol (reviewed in Zhu and Lee, 2005), whereas EE2 is not 

metabolised by these CYPs (Borek-Dohalska et al., 2014; 2015; 2016). In order to test our 

hypothesis, we investigated how expression of CYP1A1 and 1B1 is influenced by the 

combined treatment of rats with BaP and estrogenic EDs, EE2 and estradiol. As expected BaP 

exposure affected CYP1A1 and 1B1 expression in rat livers differently; we found strong 

induction of CYP1A1 and moderate induction of CYP1B1, both on the transcriptional and 

translational level. Because BaP-mediated CYP1A1 induction predominates in this organ and 
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CYP1A1 is more efficient in BaP activation than CYP1B1 (Uppstad et al., 2010; Sulc et al., 

2016; Shiizaki et al., 2017), its impact on BaP-DNA adduct formation in rat liver should be 

more important than CYP1B1. More importantly, BaP-mediated induction of these enzymes 

was influenced by treatment of rats with EE2 or estradiol together with BaP. In rats treated 

with BaP/EE2 BaP-mediated induction of CYP1A1 and 1B1 was decreased. Interestingly, co-

treatment of rats with BaP together with estradiol also led to the decrease in the BaP-induced 

CYP1A1gene expression, but no changes were found in BaP-enhanced CYP1A1 protein 

levels, and CYP1A enzyme activity (Sudan I hydroxylation and EROD) was even slightly 

increased. 

The levels of BaP-DNA adducts (dG-N2-BPDE and the adduct derived from 9-

hydroxy-BaP-4,5-epoxide) formed in in-vitro incubations with hepatic microsomes isolated 

from all treatment groups correlated with CYP1A1 enzyme activities in these microsomes (r 

= 0.959, P<0.01 for Sudan I oxidation and r = 0.997, P<0.01 for EROD) (compare Figures 4 

& 5). This finding demonstrates that BaP-DNA adduct formation in hepatic microsomes is 

dictated by the CYP1A1 enzyme activities. However, we found differences between the 

effects of EE2 and estradiol on BaP-DNA adduct formation in microsomal incubations in 

vitro and in rat liver in vivo; estradiol lowered BaP-DNA adduct formation in vivo, but not in 

microsomal incubations in vitro (compare Figures 3 & 4).  

In order to explain the differences observed for estradiol, we utilised an additional 

experimental in-vitro system. Rat CYP1A1 recombinantly expressed in Supersomes™ was 

employed to activate BaP to form BaP-DNA adducts and the efficacy of this rat enzyme to 

form BaP-DNA adducts in the presence of EE2 and estradiol was determined. BaP-DNA 

adduct formation catalysed by rat CYP1A1 was significantly decreased by EE2 and estradiol 

in these in vitro incubations. Hence, these results corresponded to the situation in rat liver in 

vivo. A decrease in BaP-DNA adduct formation by EE2 and estradiol is probably caused by 

the inhibition of BaP oxidative activation mediated by CYP1A1, because EE2 and estradiol 

act as inhibitors of CYP1A1-catalysed EROD activity (Klinger et al., 2002; Chang et al., 

2009). Collectively these finding confirm results of former studies demonstrating the 

predominant role of CYP1A1 in the BaP-DNA adduct formation in vivo (Luch and Baird 

2005), they do however not explain the different results found in vivo and in microsomal- and 

CYP1A1-incubations. We can only speculate and several reasons for this phenomenon can be 

considered: (i) BaP-DNA adduct formation in hepatic microsomes might be mediated not 

only by CYP1A1, but also by some of other CYPs, i.e. enzymes of the CYP2C subfamily that 

metabolise BaP and are expressed in rat hepatic microsomes at high levels. CYP2C form 
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~55% of the CYP complement in rat liver (Nedelcheva and Gut, 1994; Večeřa et al. 2011; 

Zachařová et al. 2012; Stiborova et al., 2015). CYP2C enzymes can be influenced by 

estradiol in a different way than CYP1A1; for example CYP2C enzyme activities can be 

stimulated by estradiol or its metabolites; (ii) In rats treated with estradiol and BaP, estradiol 

can be metabolised to metabolites or end products that can be present as residues in hepatic 

microsomes. These might influence microsomal enzymes by stimulation causing an increase 

in formation of BaP-DNA adducts; and (iii) Several effects of EE2 and estradiol on BaP-

DNA adduct formation in vivo can also be taken into account. BaP-DNA adduct formation in 

vivo not only depends on the bioactivation of BaP (catalysed by CYPs and/or mEH) but also 

on its detoxification and EE2 and estradiol may also modulate both phase I and phase II 

enzymes that catalyse BaP detoxification. Moreover, the expression of estrogen-protective 

enzymes, catechol-O-methyltransferase (COMT) and NAD(P)H:quinone oxidoreductase 1 

(NQO1), and estrogen-activating enzymes CYP19 and CYP1B1 might influence the 

genotoxic effects of estrogens (Cavaliei and Rogan, 2016). NQO1 is also included into the 

activation of BaP. Therefore, all these enzymes may also contribute to the different results 

observed in vivo and in microsomal- and CYP1A1-incubations in vitro in our study. Further, 

BaP-DNA adduct formation in vivo also depends on the rate of repair of BaP-DNA adducts 

and EE2- and estradiol-induced gene expression may impact on DNA damage response in 

vivo. However, all these suggestions should be further investigated but were beyond the scope 

of the present study.   

Our present results demonstrate not only the importance of studying mixtures of 

xenobiotics, but they also illustrate an experimental approach how such studies should be 

carried out when investigating the metabolism and genotoxic properties of EDs or toxicants 

generally mediated by biotransformation enzymes (i.e. CYPs). A combination of in vivo and 

in vitro experiments is one of the essential approaches to be performed. Furthermore, care has 

to be taken when selecting the enzymatic in vitro systems used. In many studies pure 

enzymes or subcellular microsomal fractions are frequently employed separately, but should 

be used in combination as illustrated here. We also recommend performing correlation 

analyses of data found in experimental approaches to better relate in vivo and in vitro 

findings.  

 

5. Conclusion  

We found that both EE2 and estradiol have an effect on BaP-DNA adduct formation 

and on CYP1A1 expression, the enzyme predominantly catalysing this process in rats in vivo 
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when rats are exposed to these estrogens in combination with BaP. This suggests that EE2 

and estradiol may share a common pathway which influences CYP1A1 expression thereby 

modulating BaP bioactivation. Moreover, BaP could also influence CYP1A1-mediated 

estradiol/EE2 genotoxicity. Although not analysed in the present study estradiol is known to 

be capable of forming DNA adducts and other CYP enzymes have been shown to catalyse 

this reaction (Vale et al., 2017). Our results demonstrate the importance of studying mixtures 

of BaP with estrogenic compounds, and they also illustrate an approach how such studies can 

be carried out. Combining both in vivo and in vitro experiments is one of the essential 

approaches to be performed as illustrated in other studies investigating BaP metabolism (Arlt 

et al., 2008, Reed et al., 2018). Overall our study provides evidence that more consideration 

should be given to potential ED-ED interactions when humans are exposed to these toxicants.   
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Legends to figures 

 

Figure 1: 

Proposed pathways of biotransformation and DNA adduct formation of BaP catalysed by 

CYP enzymes and mEH. The typical three-step activation process by CYPs followed by 

hydrolysis by mEH leads to BPDE which forms dG-N2-BPDE (adduct 1) and the two-step 

activation process by CYP leads to the formation of 9-hydroxy-BaP-4,5-epoxide that can 

react with deoxyguanosine in DNA (adduct 2). Formation of BaP detoxification metabolites 

are shown in the left part of the figure.  

 

Figure 2: 

Structures of EE2 and estradiol. 

 

Figure 3: 

DNA adduct formation by BaP (the dG-N2-BPDE adduct), measured by TLC-32P-

postlabelling, in livers of rats treated with BaP, EE2 or estradiol (ESTRA) alone and in 

combination (BaP+EE2, BaP+ESTRA or EE2+ESTRA). Insert A and B: Autoradiographic 

profiles of DNA adducts formed in liver of BaP-treated rats (A) and those treated with 

vehicle only (control) (B). Values represent mean total RAL (relative adduct labelling) ± SD 

(n=3; analyses of three hepatic samples). N.D., not detected. Statistical analysis was 

performed by ANOVA with post-hoc Tukey HSD Test. ##
P<0.01 significant differences 

between levels of dG-N2-BPDE adducts in liver of rats treated with BaP alone and with 

combination of BaP with EE2 or estradiol (ESTRA). 

 

Figure 4: 

DNA adduct formation by BaP, measured by TLC-32P-postlabelling, activated with hepatic 

microsomes isolated from livers of rats exposed to BaP, EE2, estradiol (ESTRA) alone and in 

combination (BaP+EE2, BaP+ESTRA or EE2+ESTRA). Insert A and B: Autoradiographic 

profile of DNA adducts formed in incubations of BaP and DNA with hepatic microsomes of 

rats treated with BaP (A) and that with the same microsomes but without BaP (B). Values 

represent mean total RAL (relative adduct labelling) ± SD (n=3; analyses of three 

independent in vitro incubations). ***P<0.001 (ANOVA with post-hoc Tukey HSD Test), 

levels of total BaP-adducts formed by incubations of BaP and DNA with hepatic microsomes 

of rats treated with tested EDs significantly different from incubations with microsomes of 
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control rats (treated with vehicle only). ##
P<0.01, #

P<0.05 (ANOVA with post-hoc Tukey 

HSD Test), significant differences between levels of total DNA-BaP adducts formed in 

incubations with hepatic microsomes of rats treated with BaP alone and combinations of BaP 

with EE2 and estradiol (ESTRA). 

 

Figure 5: 

Relative CYP1A1 gene expression in rat liver tissue (A), Western blot analysis of CYP1A1 

(B) and its marker activities Sudan I hydroxylation (C) and EROD (D) in hepatic 

microsomes. GAPDH protein expression was used as a loading control. Representative image 

of the Western blotting is shown, and at least triplicate analysis was performed in separate 

experiments. ***P<0.001; **P<0.01; *P<0.05;  (ANOVA with post-hoc Tukey HSD Test), 

levels of data analysed in liver (qPCR) and hepatic microsomes (CYP1A1 marker activities) 

of rats treated with EDs tested in combination with BaP significantly different from control 

rats (treated with vehicle only). ###
P<0.001; 

##
P<0.01; 

#
P<0.05 (ANOVA with post-hoc Tukey 

HSD Test), significant differences between levels of data in livers (qPCR) and hepatic 

microsomes of rats treated with BaP and tested EDs significantly different from rat treated 

with BaP alone. 

 

Figure 6: 

Relative CYP1B1 gene expression in rat liver tissue (A) and Western blot analysis of 

CYP1B1 in hepatic microsomes (B). GAPDH protein expression was used as a loading 

control. Representative image of the Western blotting is shown, and at least triplicate analysis 

was performed in separate experiments. ***P<0.001 (ANOVA with post-hoc Tukey HSD 

Test), levels of data analyzed measured in liver (qPCR) of rats treated with tested EDs 

together with BaP significantly different from control rats (treated with vehicle only). 
###

P<0.001 (ANOVA with post-hoc Tukey HSD Test), significant differences between levels 

of data in livers (qPCR) treated with BaP and tested EDs with BaP significantly different 

from rat treated with BaP alone. 

 

Figure 7: 

DNA adduct formation by BaP, measured by TLC-32P-postlabelling, activated with 

recombinant rat CYP1A1 expressed in Supersomes™ in vitro and the effect of EE2 and 

estradiol (ESTRA) on BaP-DNA adduct levels. Insert A and B: Autoradiographic profiles of 

BaP-DNA adducts formed by BaP activated with rat supersomal CYP1A1 (A) and those with 



19 

 

the same enzyme (rat supersomal CYP1A1) but without BaP (B). Values represent mean total 

RAL (relative adduct labelling) ± SD (n=3; analyses of three independent in vitro 

incubations). ##
P<0.01 (ANOVA with post-hoc Tukey HSD Test), significant differences 

between levels of total DNA-BaP adducts formed in incubations with CYP1A1 in the absence 

and presence of EE2 or estradiol (ESTRA). 
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