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Abstract 

Articular cartilage lesions cause pain, morbidity and may progress to osteoarthritis, 

which in terms of medical care, has been approximated to cost 1-2.5% of the gross 

national product of USA, UK, France and other countries. Current repair strategies 

have considerable limitations and have prompted the development of cartilage 

tissue engineering (CTE) approaches. One of the challenges of CTE is the expansion 

and differentiation of adult stem cells in vitro, into functional articular chondrocytes 

whilst avoiding hypertrophy.  Hypoxia is an important environmental factor required 

for cartilage development, for stimulating articular chondrogenesis and ECM 

formation. There remains, however, a number of questions regarding the in vitro role 

of hypoxia and HIF stabilization in the development of CTE strategies. These include: 

a) the appropriate level of hypoxia required for chondrogenesis, b) determining if 

artificial HIF stimulation has advantages over physiological hypoxia, c) which of the 

commonly-used HIF-stimulating compounds most potently induces HIF-mediated 

articular chondrogenesis and d) if there exists a relationship between 

mechanostransduction and HIF during chondrogenesis. Compared to normoxia, 

hypoxia (2%O2 and 5%O2) induced the expression HIF target genes (including VEGFA, 

PGK1 and EGLN) but only 5% inhibited hypertrophic collagen type X expression. 

Artificial stimulation of HIF-1a by DMOG induced greater expression of HIF 

chondrogenic targets (SOX9 and collagen-modifying enzymes) than other 

compounds used (CoCl2 and DFX) and physiological hypoxia. DMOG also reduced 

collagen type X at the mRNA level compared to the other HIF stabilising compounds. 

In terms of the effect of hypoxia on mechano-signalling during chondrogenesis, 

exposure to 2%O2 induced ROCK activity, actin re-organisation and SOX9 expression 

during BM-MSC chondrogenesis on soft polyacrylamide gels. No such changes were 

induced on stiff substrates. This suggests the existence of specific crosstalk between 

HIF and stiffness-sensing pathways, which may inform CTE strategies in which 

hypoxia-mediated chondrogenesis of BM-MSCs is conducted within biomaterial 

scaffolds of a defined stiffness.  
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Guanosine Di-Phosphate (GDP) 

Guanosine Exchange Factors (GEFs) 

Myosin Phosphatase (MYP)   

Globular Actin (G-actin)  

Yes-Associated Protein  

PDZ-binding motif (TAZ) 

TEA Domain (TEAD) 

Small Interfering RNA (siRNA) 

Runt-Related Transcription Factor 2 (RUNX2) 

Myocardin-Related Transcription Factors (MRTFs) 

Serum Response Factor (SRF) 

Linker of Nucleoskeleton and Cytoskeleton  

Megakaryoblastic Leukemia (Translocation) 1 (MKL1) 

Megapascal (MPa) 

Tissue Culture Plastic (TCP) 

Dimethyloxalylglycine (DMOG)  

Imperial College Healthcare Tissue Bank (ICHTB) 

National Institute for Health Research (NIHR) 

United Kingdom (UK) 

National Health Service (NHS) 

Fluorescein Isothiocyanate (FITC)  

Phycoerythrin (PE) 

Growth media (GM) 

Carbon Dioxide (CO2) 

Fetal Bovine Serum (FBS) 

Phosphate Buffered Saline (PBS) 

Ethylenediaminetetraacetic acid (EDTA) 

α-Minimal Essential Media (αMEM) 

Dimethyl sulfoxide (DMSO) 

Relative Centrifugal Field (RCF) 

Dulbeccos MEM (DMEM) 

Antibiotic Antimycotic (ABAM) 

Chondrogenic Differentiation media (CDM). 

Cobalt Chloride (CoCl2) 

Desferrioxamine (DFX) 

Acriflavine (ACF) 

Sodium Hydroxide (NaOH) 

Dichlorodimethylsilane (DCDMS)  

Tetramethylethylenediamine (TEMED) 

Ammonium Persulfate (APS) 

sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (Sulfo-SANPAH) 



  

15 
 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 8.5) (HEPES) 

Paraformaldehyde (PFA) 

Hydrochloric Acid (HCL) 

Double-Stranded DNA (dsDNA) 

Cadmium Chloride (CdCl2) 

Sodium Dodecyl Sulfate (SDS) 

Deionised Water (dH2O) 

Bicinchoninic Acid (BCA) 

Bovine Serum Albumin (BSA) 

Polyacrylamide Gel Electrophoresis (PAGE) 

Polyvinylidene difluoride (PVDF) 

Non-fat milk (NFM) 

Molecular Weight (MW) 

Moloney Murine Leukemia Virus Reverse Transcriptase (MLV-RT) 

Polymerase Chain Reaction (PCR) 

Quantitative Polymerase Chain Reaction (qPCR) 

Nation Centre for Biotechnology Information (NCBI) 

4',6-diamidino-2-phenylindole (DAPI) 

Poly(ɛ-Caprolactone) (PE) 

Phosphoglycerate Kinase (PGK1)    

Gremlin1 (GREM1)  

Dickkopf WNT Signalling Pathway Inhibitor 1 (DKK1) 

Reactive Oxygen Species (ROS) 

Insulin growth factor II (IGF2) 

Mitogen Inducible Gene 6 (MIG6) 

Inhibin Beta A Subunit (INHBA) 

Enzyme-Linked Immunosorbent Assays (ELISAs) 

Mitogen-Activated Protein Kinase (MAPK) 

Mitogen-Activated Protein Kinase Kinase (MEK) 

Extracellular Signal-Regulated Kinase (ERK) 

Activator protein 1 (AP-1) 

Unfolded Protein Response (UPR) 

N-Oxalyl-(d)-Phenylalanine (NOFD) 

Distal-less Homeobox 5/6 (Dlx5/6) 

Traction Force Microscopy (TFM) 

N-Oxaloylglycine (NOG) 

Ciclopirox Olamine (CPX) 
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1. Introduction 

1.1. Articular Cartilage 

1.1.1. Structure & Function 

Articular or hyaline cartilage overlies the subchondral bone within articulating joints. 

It is an Extracellular Matrix (ECM)-rich tissue consisting of distinct regions from the 

articulating surface down to the underlying calcified bone, which vary in structural 

organisation, as shown in figure 1.1. Despite this heterogeneity, the constituents of 

each region are a mixture of collagens, glycosaminoglycans (GAGs), water, and a 

specialised cell type- the articular chondrocyte. These cells constitute only 

approximately 1-5% by volume of the whole tissue [2], have a low metabolic activity 

and are responsible for synthesis of cartilage ECM [3].  

The primary functions of articular cartilage are to reduce friction between opposing 

surfaces of the joint, providing resistance to the compressive and tensile forces on 

the joint during movement, and protecting the underlying subchondral bone from 

compression-induced damage [2]. The superficial layer, proximal to the synovial fluid, 

functions as an impermeable barrier for protection of the remainder of the tissue 

and enables resistance to tensile forces experienced during limb movement [4].  It 

consists of tightly arranged network of Collagen Type II and IX fibrils, parallel with the 

articulating surface of the joint, together with chondrocytes of a high aspect ratio [5, 

6]. The middle zone contains collagen fibrils of obliquely-arranged orientation, in 

addition to proteoglycans and a sparse arrangement of rounded chondrocytes. This 

region grants the articular cartilage its resistance to compressive forces. It functions 

in tandem with the deep zone, which consists of collagen fibrils arranged 
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perpendicularly to the articulating surface and the highest concentration of 

proteoglycans [3].  

Hyaline cartilage is present on the articulating surface of all diarthroidal joints, 

including the knee, hip and ankle. Despite articular cartilage being largely similar in 

composition and function between the different joints in which it is present, distinct 

differences have been identified. These are thought to be due to the varying degree 

of compressional force which each of these joints encounter. Shepherd and Seedhom 

made observations on the differences in cartilage thickness between different joint 

types and found that of the knee to be greater than that of the ankle or hip [7]. 

Moreover, this thickness appeared to correlate with the size, height and body mass 

index of the donor, with an inverse relationship identified between thickness and the 

compressive forces experienced by the joint.  

Interestingly, the susceptibility to degradation also varied between joints. Upon 

dissection from human joints, chondrocytes within the knee were found to be more 

susceptible to catabolic factors than those in the ankle, which displayed an increased 

rate of a production of GAGs required for repair [8]. This observation was similar to 

that described by Eger et al who, in explant models, demonstrated the increased 

resistance to degeneration of articular cartilage within the ankle compared to that of 

the knee [9]. It may be hypothesized that the increased load bearing on the articular 

cartilage within the knee, increases its susceptibility to degeneration. The increased 

thickness of the articular cartilage within this joint may also result in reduced 

availability of the tissue to nutrients and regenerative factors from the synovial fluid. 
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Figure 1.1. Osteochondral Tissue Structure. A: The gross structure of an articulating 
joint present at the end of limb bones. B: Structure and regions of osteochondral 
tissue. 
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1.1.2. The components of articular cartilage  
 

1.1.2.1. Articular chondrocytes 
 

 The low metabolic rate of the chondrocyte population within articular cartilage is a 

result of a lack of vasculature and subsequent low nutrient supply [10]. This is in part 

due to regression of vasculature at the limb bud stage of limb development [11] but 

also is due to expression of anti-angiogenic protein expression by articular 

chondrocytes [12]. Proteins such as Chondromodulin-1 inhibit endothelial cell 

growth, thereby inhibiting vessel formation [13]. If left unhindered, angiogenesis is 

inhibitory to articular chondrocyte function and is a driver of cartilage degeneration 

in osteoarthritis (OA) [14, 15]. The development of an essential anti-angiogenic 

milleu by articular chondrocytes implies that this cell population functions most 

optimally in a low metabolic state. Corresponding to their low metabolic rate, 

articular chondrocytes generate a required level of Adenosine Tri-Phosphate (ATP) 

via glycolytic pathways (Lane, 2015 #1384).  

Another advantage of the slow-metabolism and proliferation of chondrocytes is with 

regards to the stabilisation of articular cartilage ECM. The articular chondrocytes 

generally do not proliferate and remain in the ECM for a long period of time [10]. It 

is this aspect which enables them to maintain the ECM of the articular cartilage over 

the majority of an individual’s lifetime. The half-life of collagen type II is estimated to 

be 117 years [16] with proteoglycans described to reside in the ECM for 3-24 years 

[17].  

Whilst such an ECM turnover rate is benefical for maintance of articular cartilage 

which is able to maintain the compressive and tensional forces applied during joint 
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movement [3, 18], it also provides a stable extracellular environment for the articular 

chondrocytes. For example, interactions with Collagen Type II is thought to inhibit 

apoptosis of articular chondrocytes via Annexin V [19]. However, despite these 

advantages of the slow turnover of articular chondrocytes and the ECM in which they 

reside, repair or acute chondral defects is a major issue as described in later sections 

of this chapter. Relatively low rates of both chondrocyte proliferation and secretion 

of new ECM components are inhibitory to endogenous repair of lesions which exceed 

the superficial layer of articular cartilage [20].  

 
1.1.2.2. The extracellular components of articular cartilage 

 

Water constitutes a large proportion of the wet weight of articular cartilage, 

approximately 80% in the superficial and 65% of the deep zone composed of water 

[2]. It functions to maintain a flow of nutrients to the residing chondrocytes and is 

integral in order for the ECM to maintain the compressive resistance of the tissue to 

external forces [3]. It is also essential in lubricating the articular surface and inhibiting 

friction between opposing bones. The other major constituents, Collagen and 

proteoglycans, each contributing to approximately 10-20% of the total cartilage wet 

weight.   

 

1.1.2.2.1. Collagen Type II 

The major collagen subtype in articular cartilage is Type II Collagen. Its synthesis by 

articular chondrocytes begins at transcription of the COL2A1 gene, which encodes 

the Collagen Type II alpha-helix [21]. The nascent pre-messenger ribonucleic acid 
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(mRNA) molecule is then processed and spliced to generate the protein-coding 

mRNA. Two variants of mature COL2A1 mRNA have been identified and are classified 

based on the inclusion of exon 2 or not, with their differential expression 

hypothesized to alter Collagen Type II bio-synthesis [22]. Interestingly, each of these 

mRNA isoforms have also been shown to mark distinct chondrocyte populations, 

with mature chondrocytes and chondroprogenitors shown to express differential 

levels of the exon 2-containing and exon 2–free forms [23]. Inactivation of a single 

allele of COL2A1 in developing mice results in a decrease in Collagen Type II protein 

in the ECM of the cartilage overlying the humerus head [24]. A decrease in the 

formation of ordered, parallel fibrils was also observed with a softer cartilage being 

generated as a whole. Complete deletion of COL2A1 resulted in ECM disorganization 

of the developing mouse limb which resembled that observed in cases of OA. The 

importance of COL2A1 gene transcription for cartilage function was also highlighted 

by Tiller et al who identified the cause of a large spectrum of chondrodysplasias. The 

phenotypes observed were due to dominant mutations within the COL2A1 gene 

which increases the susceptibility of articular cartilage to degradation [21].  

The tertiary protein structure of Collagen Type II in cartilage ECM consists of a triple 

helix of alpha 1 collagen chains [25]. As described by Bruckner and Van der Rest [25], 

Collagen Type II is secreted as a pro-collagen molecule, linked to both its C- and N-

terminal ends by short sequences known as telopeptides. The C-terminal is important 

in determining the organisation of each pro-collagen chain and their association with 

other monomers. Simultaneous with integration into a triple helical arrangement, 

the N and C-terminal ends of the pro-collagen chain are degraded by specific 

proteases. A characteristic feature of the collagens is their post-translational 
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modification during their incorporation into the ECM. Proline hydroxylation of the 

pro-collagen molecules is required for their assembly in triple helix structures [26] 

whereas lysine hydroxylation is required for the complete stability of the 

supramolecular structures formed from multiple triple-helices [27].  

Spatial organization of Collagen Type II fibrils as described by Fox et al [3], is 

dependent on the region of articular cartilage in which they reside. The superficial 

zone is composed of fibrils which are arranged in a parallel manner relative to the 

articular surface. Towards the subchondral bone of the joint, the collagen fibrils are 

arranged in arranged in progressively perpendicular orientation through the middle 

region to the deep region. To examine the organisation of collagen fibrils via a non-

invasive method, Bergholt et al utilized a technique known as Raman Spectroscopy. 

During Raman Spectroscopy, differential scattering of donor monochromatic light 

occurs due to differentially-arranged collagen fibrils which enable resolution of the 

supramolecular structure of this ECM component. Bergholt et al confirmed the 

observations made by histological methods. They observed the collagen fibrils adopt 

a parallel, oblique and perpendicular arrangement relative to the articulating surface 

in the superficial, middle and deep zones respectively [28].  

In terms of function, Collagen Type II forms a backbone for Collagen Types IX and XI 

[29] and together, these fibrillary structures function to maintain the integrity of 

cartilage in response to shear and tensile stresses.  The Collagen Type II proximally-

located to the articular chondrocytes are also integral in maintaining the viability of 

these cells. [30]. Kim and Kirsch identified a role for cartilage collagens in inhibiting 

the premature hypertrophy of chondrocytes and mineralisation of the surrounding 
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matrix [19]. This was observed to occur via an interaction of collagen type II with cell-

surface marker- Annexin V. The interaction of Collagen Type II and Type XI also 

stabilizes the GAG network which is required for the maintenance of the mechanical 

characteristics of the cartilage ECM [18]. Collagen Type II also plays an indirect role 

in the reduction of friction between opposing articular surfaces. This function of 

Collagen Type II is mediated by Lubricin [31] which is secreted by articular 

chondrocytes in the superficial layer and also acts to inhibit chondrocyte apoptosis 

[32]. 

1.1.2.2.2. Aggrecan 

Articular cartilage contains multiple proteoglycans, and Aggrecan is the most 

abundant of these. Mutations in the gene encoding its protein core, ACAN [33] results 

in phenotypic outcomes which are grouped together into the Aggrecanopathies. For 

example a mutation within the ACAN gene has been shown to predispose patients to 

Osteochondritis Dissecans which in juvenile patients, increases the rate of 

subchondral bone lesions [34]. In the ECM, the core protein region of Aggrecan 

consists of 3 globular regions- G1, G2 and G3 [35]. The first of these functions to 

tether Aggrecan to another major cartilage ECM, Hyaluronic Acid (HA). Between each 

of globular domains is the inter-globular domain, to which are attached the 

carbohydrate portion of the proteoglycans – the GAGs, which are classified into 

chondroitin and keratin sulphates [35]. Aggrecan does not form isolated structures 

in the ECM of cartilage but rather, multiple Aggrecan molecules via the G1 domains 

of their protein cores bind to a core HA polymer.  
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HA is synthesized at the membrane region of cells by HA Synthase [35]. Following 

production, it is then secreted in the extra-cellular space and forms a coat around 

the cell where it complexes with Aggrecan molecules. This complex is formed via a 

link protein which has also plays a role in the protection of HA from HAase-mediated 

digestion. The chemical structure and ionic charge of the HA-Aggrecan complex 

enables the cartilage matrix to absorb water and swell in size accordingly [35]. The 

presence of large amounts of Aggrecan in the chondrocyte extracellular space 

increases the amount of water retained in the matrix. This results an equilibrium 

being attained between the swelling of the ECM structure and the tensional force 

created by the ability of the Collagen Fibrils to resist this swelling. The HA-Aggrecan 

complex therefore enables cartilage to maintain the viscoelastic nature of cartilage 

and provide resistance to compressive forces on the joint [35]. This equilibrium 

between the Aggrecan-induced swelling and Collagen-induced tension, also 

maintains the resistance of cartilage to fluid flow-induced deformation [36]. 

 

1.1.3. Development 

During development, articular cartilage is formed during endochondral ossification, 

a process required for formation of the appendicular skeleton [37]. The initial stage 

of limb development is the formation of a condensed population of mesenchymal 

precursors, which go on to form the initial cartilaginous anlage required for bone 

formation. Following chondrogenesis of the limb bud mesenchyme, vascular 

infiltration from the perichondrium is the signal for formation of the primary 

ossification centre of endochondral bones [38]. Hypertrophic differentiation of the 
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newly formed chondrocytes occurs, resulting in their cell death, remodeling of the 

cartilage matrix and differentiation of invading osteoblast precursors. Synchronous 

with this process is the preservation of a population of resting chondrocytes within 

the growth plate, whose phenotype are maintained and go on to form the articular 

cartilage. 

 

1.1.3.1. Limb bud specification 

At the onset of limb mesenchyme formation, the family of Hox transcription factors 

expressed in the lateral plate mesoderm [39] stimulate expression of T-Box 5/4 

(TBX5/4) [40, 41] which via Fibroblast Growth Factor (FGF) 10, stimulate subsequent 

expression of FGF8 in the Apical Ectodermal Ridge (AER) [42], a thickened epithelial 

layer at the distal tip of the prospective limb bud. This process specifies the hind- and 

forelimbs, with FGF8 initiating and propagating the proximal to distal growth of the 

pre-cartilage mesenchymal population [43]. Another signalling centre, the zone of 

polarizing activity [44] functions to specify digit formation along the anterior to 

posterior axis via Sonic Hedgehog (Shh) signalling [45]. Finally, a 3rd signalling centre- 

the non-AER limb bud ectoderm, functions to generate the dorsal to ventral polarity 

of the mesenchymal condensation, via Wnt7a and Bone Morphogenetic Protein 

(BMP) signalling [46].  

The importance of FGF signalling in limb bud formation was shown by studies such 

as that by Moon et al, who observed skeletal deformation due to a conditional 

knockdown of FGF8 in forelimb progenitor cells in addition to downregulation of SHH 

and BMP2 expression [47]. Overall, prior to chondrogenesis, spatially-controlled 
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patterns of mesenchymal condensation occurs within the limb bud. These regions 

are delineated by expression of transcription factors such as Paired-Related 

Homeobox 1 (PRX1) and Msh Homeobox 1 (MSX1), required for early induction of 

chondrogenesis [48, 49].  

 

1.1.3.2. Chondrogenic commitment of limb bud progenitors 

Following formation of the limb bud, the resident mesenchymal population 

undergoes chondrogenic differentiation and further division into two sub-

populations [50].  One of these populations goes through a proliferative phase, 

followed by senescence, hypertrophic differentiation and apoptosis, prior to 

endochondral ossification. The second population enters a resting state and 

constitute the articular cartilage at the end of long bones.  

Between the mesenchymal and proliferative/articular chondrocyte stage, the 

differentiating cells go through an osteochondral progenitor phase in which the 

transcription factors SOX9 and Runt-Related Transcription Factor 2 (RUNX2) are both 

expressed [51], and play key roles in switching the cell fate between that of a 

chondrocyte or osteoblast. SOX9 has been shown to inhibit the osteoblastic factor, 

RUNX2 [52] as well as chondrocyte hypertrophy [53], and is indispensable during 

chondrogenesis, as it functions with SRY Box-5 (SOX5) SRY Box-6 (SOX6) as a 

transcription factor complex [54], inducing transcription of genes required for 

cartilage formation such as COL2A1 [55] and ACAN [56]. In addition to this complex, 

other transcription factors are a requirement during chondrogenesis including Paired 

Box (PAX) 1 and 9 [57]. Both these transcription factors, as with SOX9, are present 
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from the limb bud stage throughout articular cartilage patterning [57] and are 

required for chondroprogenitor specification [58]. Other factors include Nkx3.1/3.2 

which are required throughout chondrogenesis, playing roles in chondro-

specification [59] and chondrocyte hypertrophy [60].  

 

1.1.3.2.1. Role of cell-cell adhesion 

The condensation of mesenchymal populations is deemed a pre-requisite for 

cartilage development. Accordingly the temporal expression and activity of cell-cell 

adhesion molecules such as Neural Cell Adhesion Molecule (NCAM) and N-cadherin 

have been shown to be indispensable during chondrogenesis [61] with their 

expression reduced following chondrocyte formation [62]. In hMSCs, N-cadherin-

mediated cell-cell adhesion has been shown to enhance membrane localization of β-

catenin [63], the transcriptional co-activator at the bottom of the canonical Wnt 

signalling pathway [64]. β-catenin has been shown to be detrimental to 

mesenchymal progenitor chondrogenesis [65], as well as inducing a bias towards 

osteoblastic differentiation and bone formation [66]. Cell-cell contact and N-

Cadherin binding is therefore integral in minimizing Wnt-induced suppression of 

chondrogenesis, a function also mirrored by SOX9 [67]. In addition, BMP-induced 

chondrogenesis was also shown to be inhibited upon blocking of N-Cadherin [68] and 

was also shown to reduce Transforming Growth Factor-Beta (TGF-β)-mediated 

chondrogenic differentiation [69]. These studies demonstrate the requirement of cell 

adhesion in growth factor-mediated cartilage development. 
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1.1.3.2.2. Role of the TGF-β family of growth factors 

A host of growth factor ligand-receptor bindings are required during cartilage 

development. The TGF-β family of ligands and receptors play an important role in 

this process, demonstrated by the deletion of BMP receptors or overexpression of 

BMP inhibitor, Noggin which both result in reduced chondrogenesis [70, 71]. 

Chondrocyte-specific BMP2 knockdown also reduces proliferation and survival of this 

cell population in the growth plate [72] as well as inhibiting bone regeneration in a 

murine fracture model [73]. TGF-β ligands, expressed highly in the mesenchyme and 

cartilaginous elements, have been shown to enhance initial mesenchyme 

condensation [74], chondrogenic lineage commitment [75] and arrest chondrocyte 

hypertrophy [76]. Both BMP and TGFβ ligands exert their effect on cartilage 

development via the SMAD family of proteins, which transduce the signal generated 

upon engagement of BMP/TGFβ receptors into transcriptional changes. TGF-βs bind 

the TGF receptor types 1 and 2 induce activation of SMAD2/3 and binding by SMAD4 

before their translocation to the nucleus and transcription of specific target genes. 

For example nuclear SMAD2/3 enhances SOX9-dependent transcription of 

chondrogenic genes such as COL2A1 [77]. Upon binding of a different set of receptors 

by BMPs, SMAD1/5/8 phosphorylation and activity have been shown to be essential 

in induction of chondrogenic phenotype from MSCs [78] in addition to cartilage and 

endochondral bone development [79]. 

 

1.1.3.3. Patterning of articular cartilage 
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Following chondrogenesis and formation of the cartilage growth plate from the 

mesenchymal limb bud, the chondrocytes then undergo a complex program of 

events to pattern the formation of mineralised bone and articular cartilage of the 

limb. From the terminal regions of the prospective long bone, along the longitudinal 

axis, chondrocytes form distinct groups, each of varying proliferative rates and 

phenotype. The end of the cartilage template consists of resting chondrocytes. These 

express genes such as SOX9, SOX5, SOX6 [80] and GDF5 [81] in a specific temporal 

program, creating an ECM rich in Collagen Type II, and XI and Aggrecan [82]. These 

articular chondrocytes also express PRG4 [83]. This encodes Lubricin which as 

described, is important in joint articulation.  

Further along the developing bone are a group of highly proliferative chondrocytes, 

the turnover of which is required for longitudinal bone growth. Further along still, 

towards the centre of the growth plate are a group of chondrocytes which have left 

the cell cycle and have begun to de-differentiate into hypertrophic chondrocytes. 

Following their completion of hypertrophy, these chondrocytes, which exhibit an 

enlarged morphology, express RUNX2 and COL10A1 [84] and secrete a Collagen Type 

X-rich ECM [85].  

The ECM surrounding hypertrophic chondrocytes is also marked by degradation of 

Collagen Type II and Aggrecan. Matrix Metalloproteinase 13 (MMP13) has been 

shown to largely govern Collagen Type II degradation prior to the onset of 

endochondral ossification [86] with Aggrecanases such as Adamts5 [87] digesting 

Aggrecan in the growth plate. The lack of a proteoglycan and Collagen Type II-rich 

network as in articular cartilage, results in unique mechanical properties of 
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hypertrophic cartilage with compared to that at the articulating surface. This is due 

to a lack of water perfusion of hypertrophic cartilage and a subsequent decrease in 

resistance to compressive forces. This was demonstrated by Sibole and Herzog who 

observed the increased deformation of hypertrophic cartilage compared to articular 

cartilage in response to a compression force on the tissue [88].Following remodeling 

of the growth plate ECM, apoptosis of the hypertrophic chondrocytes occurs [89] 

followed by osteoblastic invasion and mineralisation of the vacant space [90]. 

 

1.1.3.3.1. Control of articular cartilage patterning by Indian Hedgehog Signalling 

Indian Hedgehog (Ihh) signalling is considered the master regulator of chondrocyte 

de-differentiation during limb development. The Ihh ligand produced by pre-

hypertrophic and hypertrophic chondrocytes [91], diffuses along the longitudinal axis 

of the developing limb, to the pool of proliferative chondrocytes where it binds to 

Patch1 receptors [92]. This results in inhibition of another transmembrane protein, 

Smoothened, enabling nuclear translocation of the Gli family of transcription factors. 

This induces expression and secretion of Parathyroid Hormone Related Peptide 

(PTHrP) which upon binding to Parathyroid Hormone receptors (PTH) on neighboring 

pre-hypertrophic and immature chondrocytes, stimulates their proliferation and 

reduces hypertrophy [93].  

Chondrocytes further away from the PTHrP-producing proliferative chondrocytes, 

undergo hypertrophic differentiation due to a lack of PTHrP-PTH binding. Upon 

entering the post-mitotic hypertrophic phase these cells in turn, secrete Ihh in a 

negative feedback loop to maintain the proliferative chondrocyte pool. The anti-
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hypertrophic role of the Sox9/5/6 complex has been shown to function through this 

IHH-PTHRP signalling loop, inducing expression of IHH/PTHRP components required 

for regulation of chondrocyte phenotype [94]. This system enables controlled rates 

of chondrocyte proliferation and de-differentiation, required for endochondral bone 

development [95].  

 

1.1.3.3.2. Control of articular cartilage patterning by Wnt signalling 

Another pathway heavily implicated in the progression of chondrocyte hypertrophy 

is the Wnt signalling pathway. The canonical Wnt pathway acts via the transcriptional 

co-activator, β-catenin. Upon binding of Frizzled receptor [96] by a canonical Wnt 

ligand, a protein complex composed of Axin, Glycogen Synthase Kinase, β-catenin 

and others is dissociated, resulting in nuclear translocation of β-catenin [97]. β-

catenin then binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of 

transcription factors, resulting in transcription of target genes associated with 

canonical Wnt signalling [98].  

As with other pro-hypertrophy signals, the source of Wnt ligands during 

endochondral ossification is the surrounding perichondrium [99], with the 

hypertrophic effect of these mediated through RUNX2-dependant mechanisms 

[100]. Conversely, one of the anti-hypertrophic mechanisms of SOX9 is through 

inhibition of β-catenin-TCF/LEF [67(Topol, 2009 #217], implicating canonical Wnt 

signalling as an antagonizing mechanism to Sox9-mediated chondrogenesis. Wnt 

signalling also drives the key fate switch of mesenchymal limb bud progenitors, 

inducing a bias for osteoblastic/hypertrophic differentiation rather than 
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chondrogenesis [66]. Finally, antagonists of canonical Wnt signalling such as those 

which block Wnt-Frizzled binding have a protective role in OA, preventing de-

differentiation of articular chondrocytes [101]. 

 

1.2. Cartilage Regenerative Medicine 

Acute trauma/stress-related injury to the diathroidal joint may result in damage to 

the residing articular cartilage [102]. As described by Rai et al, compared to highly 

vascularized subchondral bone, articular cartilage has a reduced ability to repair itself 

following the occurrence of lesions which penetrate further than the superficial layer 

[103]. The articular cartilage is avascular as a result of regression of the blood vessels 

at the limb bud stage of development and this is coupled with formation of a vascular 

network at the primary and secondary ossifications centres [104]. The lack of vascular 

system in the articular cartilage reduces the delivery of nutrients and cells required 

for cartilage repair. Damage to articular cartilage may result in patient pain, 

immobility and constitute a large percentage of injury-cases of the diarthoidal knee 

joint. In a study conducted from 1989-2004, from 25,124 arthroscopies conducted 

due to various knee joint complications, 67% were deemed to have suffered chondral 

or osteochondral fractures, with 36% of these lesions measuring over the self-repair 

threshold in terms of defect size [105].  

In addition to symptoms of pain and reduced locomotive ability, chondral lesions may 

result in damage and remodeling to the surrounding tissue due to abnormal 

transmission of compressive forces on the joint during movement [106]. This has 

been documented to result in further cartilage loss [107] and progression to 
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osteoarthritis if left untreated [108, 109]. The incidence rates of OA are extremely 

high, with occurrence in 19.2%-27.8% of the US population aged ≥45, and 37% of 

people aged ≥60. The management of OA also represents a significant economic 

burden on healthcare systems. As described by Hunter et al – ‘the cost of OA in the 

USA, Canada, UK, France and Australia has been estimated to account for between 

1% and 2.5% of the gross national product of these countries’ [110].  

 

1.2.1. Current reparative & restorative strategies for cartilage repair 

The pain, immobility, and potential progression to OA, emphasises the requirement 

for immediate repair of acute chondral defects. Current clinical strategies for repair 

of these defects have been deemed unsuitable for a number of reasons [111]. 

Autologous/allogeneic transplantation is not a suitable measure for acute lesions due 

to the risk of disease transmission/immune rejection, the requirement of multiple 

surgical procedures, donor site morbidity and low tissue availability [112]. 

Subchondral drilling or microfracture [113] enables access of the lesion to the 

endogenous source of mesenchymal stem cells within the bone marrow. This 

technique shows some clinical success, but in younger patients only [114]. In some 

cases following microfracture, the defect site is occupied with tissue that resembles 

fibrocartilage [115]. This is mechanically-inferior to articular cartilage, degenerates 

in the long-term [114] and as a result, may predispose the patient to OA [116].  

An improvement on microfracture [117] is Autologous Chondrocyte Implantation 

(ACI) [118] which works under the principle of implanting isolated and expanded 

healthy autologous chondrocytes, into the patient defect area [119]. This procedure 
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requires multiple surgeries however, to harvest autologous cells and for the 

subsequent implantation, during which the donor site under the periosteal flap may 

also suffer from hypertrophy [120]. Another key hurdle with ACI is faced during 

expansion of chondrocytes prior to their implantation. In vitro culture of articular 

chondrocytes and passaging reduces expression of genes which denote the articular 

chondrocyte phenotype. This is synchronous with their hypertrophic differentiation 

[121] which reduces their suitability for repair of articular cartilage.  

 

1.2.2. Mesenchymal stem cell-based cartilage tissue engineering. 

The problems described in chapter 1.2.1 associated with conventional treatment 

methods for chondral defects may be alleviated with the use of Cartilage Tissue 

Engineering (CTE). CTE is the combination of cells, soluble factors and biomaterials 

for de novo cartilage formation, for the purpose of repairing degenerative tissue. One 

of the key questions which arises when designing a CTE strategy, is that of cell source. 

For this reason, the use of mesenchymal stem cells for CTE has been under the 

research spotlight as a genuine alternative to the use of primary chondrocytes. Their 

ability to be expanded for multiple passages without loss of phenotype [122], their 

capability for chondrogenic differentiation [123], together with their abundance 

[124], indicates their advantage to primary chondrocytes for CTE. The potential for 

BM-MSCs in CTE was demonstrated by their ability to repair chondral defects when 

implanted into a defect site within a HA hydrogel. When compared with a 

microfracture technique in which HA without exogenous MSCs were utilized, 
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patients in the MSC-treatment group exhibited reduced pain and increased joint 

locomotion [125].  

1.2.3. Non bone marrow-derived mesenchymal stem cell types for articular 

cartilage regeneration 

 This thesis will focus on the use of BM-MSCs in CTE, however it is important to focus 

on the potential other cell types for such an application. Whilst the ease of isolation, 

multipotentcy and self-renewing ability of BM-MSCs [126, 127], denotes them as an 

appropriate cell choice for cartilage regeneration, other cell types may also be suited 

for repair of chondral defects. As pertained to, articular chondrocytes, despite their 

ability to maintain a Collagen Type 2 and GAG-rich ECM [119], are subject to de-

differentiation in culture [121, 128]. This inhibits their expansion and the generation 

of the large cell population required for adequate cartilage regeneration.  

A potential source of stem cells which are capable of restoring damaged articular 

cartilage are those from the periosteum. This tissue forms a vascularized, bone-

covering layer and contains a resident population of progenitor cells capable of rapid 

proliferation, osteogenesis and chondrogenesis [129]. The cartilage regenerative 

properties of the periosteum have been demonstrated extensively [130]. Following 

the isolation of periosteal stem cells by Fell, studies have documented the ability of 

these cells to contribute significantly to the repair of articular cartilage defects when 

implanted in vivo [131] or re-surfacing of the the entire articulating surface [132]. 

Another potential alterative to BM-MSCs, are mesenchymal stem cells derived from 

adipose tissue. These cells represent a much more abundant source than that from 

the bone marrow, with 300-fold more MSCs isolated from 100g of adipose tissue 
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than the 100ml of bone marrow aspirate [133]. Combined with the ability of adipose-

derived MSCs for articular chondrogenesis and cartilage tissue regeneration [134, 

135], points to a potentially important reservoir of cells for development of CTE 

strategies.  

 

1.2.3.1. Bone marrow mesenchymal stem cells 

Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) residing in the stroma or 

perivascular region of the bone marrow [136, 137] are Adult Stem Cells (ASCs). ASCs 

like other stem cell subtypes, are able to self-renew [127] but unlike those types 

observed at earlier points in development, such as pluripotent embryonic stem cells 

[138], display a more limited, multipotent potential for differentiation [126]. BM-

MSCs were discovered by Friedenstein, who observed colony formation from 

adherent fibroblast-like cells with the potential for osteogenic differentiation [139]. 

These were subsequently shown to be capable of differentiation into cartilage, fat, 

muscle and neural tissue [140].  

 

1.2.3.1.1. Developmental origin 

The specification of a mesodermal population occurs as early as the epiblast stage of 

embryonic development [141] [142]. The mesodermal germ layer is formed during 

the Epithelial-to-Mesenchymal-Transition (EMT) of the epiblast epithelium as it 

migrates through the primitive streak, a process known as gastrulation [143]. More 

specifically, the region towards the posterior side of the primitive streak, forms the 
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Lateral Plate Mesoderm (LPM) which is located between the extraembryonic and 

intermediate mesoderm [144]. The mesodermal populations in the LPM undergo a 

series of EMT and Mesenchymal-to-Epithelial Transitions (MET), one of which divides 

the LPM into the somatic and Splanchnic LPM epithelial layers [145], with the former 

generating the mesenchymal-progenitor-containing limb bud [146] and is 

hypothesized to be the tissue from which resident BM-MSCs are generated. This is 

suggested due to the similar set of markers expressed in the somatic LPM during limb 

bud development, and bone marrow mesenchymal stem cells. These markers include 

alpha-smooth muscle actin [147], Paired Related Homeobox 1 [148] and SRY Box-9 

(SOX9) [51]. 

 

1.2.3.1.2. Tri-lineage differentiation potential  

The predisposition for BM-MSCs to undergo osteogenic, chondrogenic and 

adipogenic differentiation was shown by Banfi et al. These authors observed an 

expression of genes conducive for each cell fate decision during their expansion 

period prior to their induced differentiation [149]. These authors also demonstrated 

the maintenance of the osteo-chondro differentiation potential throughout the 

continued passages of BM-MSCs. This culminated in their ability to differentiate 

following proliferative senescence, which was shown to be reached after 22-25 

population doublings following isolation from bone marrow.  

Primary BM-MSCs following their isolation, appear to retain a specific epigenetic 

profile which grants them their tri-lineage differentiation potential. Almeida et al 

observed the presence of a specific epigenetic profile of BM-MSCs following long-
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term culture which was conducive for osteogenic/chondral differentiation. This pre-

disposition for cartilage and bone differentiation was greater than that exhibited of 

Adipose-derived MSCs (AMSCs) [150]. Amongst the osteogenic, chondrogenic and 

adipogenic lineages, Meyer et al demonstrated an epigenetic prolife of unstimulated 

BM-MSCs to favour that of osteogenic differentiation [151]. However upon 

adipogenic induction, these authors demonstrated a clear increase in activating 

epigenetic marks at the gene loci encoding targets of the master adipogenic 

transcription factor- Peroxisome Proliferator-Activated Receptor-γ (PPARγ). 

Herlofsen et al in BM-MSCs, also demonstrated the shift towards a specific pattern 

of histone marks which delineate activation of a chondrogenic transcriptional profile 

[152].  The primary nature of BM-MSCs was demonstrated to be key in generating 

this epigenetic profile conducive for tri-lineage differentiation. Brown et al, 

demonstrated the increased osteogenic, chondrogenic and adipogenic induction of 

primary BM-MSCs compared to that of MSC generated from in vitro differentiation 

of embryonic stem cells [153].  

 

1.2.3.1.3. Immunomodulation 

The differentiation potential of BM-MSCs therefore presents them as a useful tool 

for the study of mesenchymal tissue development in addition to a cell source for 

regenerative strategies for repair of osteochondral tissue. In addition, a unique 

characteristic of BM-MSCs are their immunomodulatory properties. Puissant et al 

demonstrated the ability of BM-MSCs to inhibit the activation of lymphocytes, with 

a reduction in proliferation observed of lymphocytes and Peripheral Blood 
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Mononucleocytes (PBMCs) [154]. In addition, BM-MSCs have been shown to reduce 

the activity of both CD4+ and CD8+ T-Cells which were initially activated in response 

to murine skin engraftment of the MSCs [155].  

This immunomodulatory properties of BM-MSCs has implications for regenerative 

medicine strategies. This was demonstrated for example by Reinders et al who 

intravenously-delivered autologous BM-MSCs alongside a kidney allograft which was 

previously subjected to immune-reactivity and rejection by the recipient patient 

[156]. The delivered BM-MSCs appeared to generate a systemic immunomodulatory 

milieu which compared to transplantation without BM-MSC treatment, reduced 

fibrosis and atrophy of the tubular structures in the transplanted kidney. 

Administration of the BM-MSCs in this study reduced PBMC proliferation and 

circulating immune-stimulatory cytokine levels such as interferon-γ. 

 

1.2.3.1.4. Isolation and characterisation 

In addition to the MSCs, the bone marrow compartment is comprised of multiple 

cells types including hematopoietic stem cells [157], osteoblasts [158] and 

lymphocytes [159]. Therefore prior to any study utilising BM-MSCs, including for CTE, 

it is required to separate these cells from the other contaminating populations. Aside 

from demonstration of tri-lineage differentiation potential, a primitive selection 

factor for BM-MSCs is their ability for adherent culture in vitro. This separates MSCs 

from cells of the hematopoietic origin and thus demonstrates a simple method to 

remove this unwanted cell type [160].  
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Another major criterion which distinguishes BM-MSCs from other cell types is the 

expression of specific cell-surface markers. These were originally defined by The 

International Society for Cellular Therapy (ISCT) [161].  The three markers which are 

deemed by these guidelines to identify BM-MSCs are Cluster of Differentiation (CD) 

105 (CD105)[162], 73 (CD73)[163] and 90 (CD90) [161]. These are involved in 

transduction of TGF–β signalling during chondrogenesis [162], MSC migration [164] 

as well as their adhesion to other cells [165] and the surrounding stroma [163]. On 

their own however or in combination, these markers do not delineate a BM-MSC. 

Indeed, expression of CD105 and CD73 have been shown to select for both 

endothelial cells [166] and skin fibroblasts [167]. Fibroblasts have a reduced capacity 

for colony formation and multi-lineage differentiation compared to MSCs, despite 

similar morphological characteristics [167]. Therefore, to further separate these 

stromal stem cells from the hematopoietic compartment of the bone marrow, the 

absence of expression CD11b or CD14, CD19 or CD79a, CD34, CD45, and Human 

Leukocyte Antigen-DR, together with the positive expression of CD105, 73 and 90 are 

required.  

Despite the existence of the ISCT guidelines described above, debate exists over the 

phenotypic markers which distinguish BM-MSCs. For example, CD271 and 

Mesenchymal Stem Cell Antigen-1 have also been reported to delineate BM-derived 

cells capable of osteogenesis, chondrogenesis and adipogenesis [168, 169]. Stro-1 

was also demonstrated as a marker of BM-MSCs but reports of Erythrocytes also 

expressing this antigen have prompted the requirement for examining Stro-1 

expression in conjunction with other bona fide BM-MSC antigens [170]. The ability of 

MSCs expressing these and other markers for tri-lineage differentiation is suggestive 
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of a complex set of phenotypic criteria which mark BM-MSCs, beyond that required 

by ISCT. Cells which are selected based on the ISCT criteria may therefore omit 

specific subsets of BM-MSCs which are capable of tri-lineage differentiation and 

represent viable cells for study of mesenchymal development or tissue engineering. 

 

1.2.3.2. Scaffolds for cartilage tissue engineering 

A primitive example of CTE is Matrix-Assisted ACI (MACI) in which, akin to ACI, cells 

are expanded following isolation from the patient. However, unlike ACI, 

chondrocytes are then seeded onto Collagen Type I/III scaffolds to facilitate 

proliferation and stabilisation of their phenotype [171]. Despite increasing cartilage 

regeneration compared to techniques such as microfracture [172], an improvement 

of clinical success due to MACI was not observed in a direct comparison with ACI 

[173]. This is also is compounded with MACI also requiring multiple surgical 

procedures and the time-consuming process of in vitro expansion. MACI did 

however, demonstrate the potential of ECM scaffolds for improving cartilage repair. 

The use of scaffolds for CTE is demonstrated by the field of mechanotransduction. 

Research. Mechanotransduction is the mechanism behind cell response to 

mechanical stimuli in the cell microenvironment. Studies in this field have 

demonstrated the need for CTE strategies which provide the correct physical cues for 

tissue repair [174], as described in section 1.4. 

 

1.2.3.2.1. Artificial polymers for cartilage tissue engineering 
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The choice of scaffold is important due to their ability to dictate cell survival, 

phenotype and host tissue integration following in vivo implantation. Artificial 

polymers such as Polylactic Acid (PLLA) were utilised in one of the earliest attempts 

at osteochondral tissue engineering, and was shown to enable survival of implanted 

rib perichondrial cells into a rabbit defect model, despite promoting formation of 

fibrous Collagen Type I [175]. Such polymers can be highly customized in terms of 

attachment of bioactive moieties, are able to be expanded up to production on an 

industrial scale to meet clinical standards. For example Poly(Vinyl Alcohol)-

Polycaprolactone (PVA/CL) nanofiber scaffolds demonstrated great promise when 

seeded with rabbit-derived mesenchymal stem cells and implanted into a full-

thickness defect of a rabbit medial condyle. Repaired tissue showed increased 

staining for GAGs and Collagen Type II compared to non-treated controls and 

improved MSC proliferation and differentiation during in vitro, preliminary assays 

[176]. 

 

1.2.3.2.2. Natural scaffolds for cartilage tissue engineering  

Natural scaffolds offer a host of advantages compared to artificial polymers. One of 

these is their increased bioactivity due to the presence of specific sequences within 

their structure which guides cell growth and tissue formation during development. 

HA is an example of such a material. It functions as a backbone of articular cartilage 

ECM, linking Collagen Type II fibrils with proteoglycans and has been shown to be key 

during limb morphogenesis and formation of the cartilage growth plate. HA synthase 

is abundantly expressed in the AER of the limb bud [177] and HA is required for cell-
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cell adhesion in the pre-cartilage condensation of the limb bud [178]. HA-based 

scaffolds have demonstrated much promise for CTE with their chondrogenic effect 

on encapsulated human MSCs have been observed compared to that of inert 

Polyethelene Glycol (PEG)-based scaffolds [179].  

HA was shown to aid the cartilage-forming ability of co-cultured adipose-derived 

MSCs and human chondrocytes, enhancing GAG synthesis from such cultures whilst 

inhibiting Collagen Type X production [180]. The translational properties of HA are 

demonstrated by its use in the clinically-tested product Hyalograft-C which is a 

combination of autologous chondrocytes and HA-derived matrix. Implantation with 

Hyalograft-C has been shown to result in a positive outcome for patients with 

articular cartilage lesions following 3 years post-surgery [181]. Other natural 

polymers has also shown the potential for their use in CTE. For example, collagen-

based hydrogels seeded with human MSCs from the illac crest of donors were shown 

to enhance chondrogenesis and provide a bias for chondrocyte induction over 

osteogenesis [182].  

 

1.2.3.3. Supplements for inducing cartilage ECM formation 

The continued optimization of BM-MSC chondrogenesis demonstrates the reliance 

on these cells for CTE strategies. As described below, the role of supplements which 

stimulate the post-translational processing and secretion of pro-collagen 

polypeptides have been demonstrated. This is in conjunction with the use of growth 

factors which induce a transcriptional program within MSCs that is conducive for 

articular chondrogenesis.  
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Ascorbic acid is important in the collagen synthesis and maintenance of collagen 

triple helices. One the initial studies which examined this mechanism behind this 

phenomenon was that by Murad et al in 1981. These authors built upon previous 

observation of the increased growth of avian long bones cultured in a Ascorbate-rich 

medium [183]. Murad et al observed the increase in Collagen biosynthesis in human 

skin fibroblasts due to Ascorbic acid treatment, with an induction also in the activity 

of both Lysyl and Prolyl hydroxylases [184]. Corresponding to this, a study by Myllyla 

et al demonstrated the role of Ascorbic Acid in reducing the oxidized Fe3+ ion which 

is created as a by-product during proline hydroxylation. Following conversion back to 

the reduced, divalent form of iron (Fe2+), re-activation of the prolyl hydroxylase 

occurs. This therefore implicates Ascorbate in maintaining hydroxylation of Collagen, 

thereby maintaining its formation of triple helices and structural integrity of the 

entire ECM [185]. This role as a potential supplement was shown by studies such as 

by Temu et al who observed an increase in Collagen Type II protein produced by 

chondrogenically-induced ATDC5 cells in the presence of Ascorbic Acid [186]. 

Interestingly, these authors also demonstrated the ability of ascorbate to increase 

levels of COL2A1 mRNA and GAG production, indicating the general pro-

chondrogenic effect of Ascorbic Acid.   

A role for other supplements was also shown in terms of BM-MSC chondrogenesis 

and cartilage ECM formation. For example, hydroxylated proline residues in Collagen 

triple helix formation is suggestive of a role for L-Proline in chondrogenic media, to 

provide the necessary building blocks for Collagen polypeptide biosynthesis [187]. 

Another major supplement routinely used as an inducer of cartilage formation from 

BM-MSCs is the steroid, Dexamethasone. Grigoriadis et al demonstrated the dose-
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dependent effect on formation of GAG-rich nodules from mouse BM-MSCs [140]. 

This in vitro chondrogenic effect of Dexamethasone was also demonstrated to 

specifically occur in the presence of TGF-β1-treated bovine BM-MSCs. In this study, 

an upregulation of chondrogenic genes was observed, however no such change 

occurred when Dexamethasone was utilised in conjunction with BMP2 [188].  

 

1.2.3.4. The TGF-β family of growth factors in cartilage tissue engineering 

The family TGF-β growth factors are of particular focus due to the role of TGF-β1/3 

and BMP ligands in both cartilage development [189] and regeneration [190]. For 

example, a TGF-β1 and BMP-6-supplmented medium was shown to induce a 

transcriptional program within hBM-MSC pellet cultures that resembles that which 

occurs during developmental chondrogenesis. This includes specific peaks in the 

levels of mRNA encoding SOX5, SOX6 and SOX9 and progressive increases in COL2A1 

and ACAN expression throughout the chondrogenic differentiating period [191].  

Regarding application for CTE, Bian observed an increase in COL2A1 and ACAN 

expression and increase in GAG production of hBM-MSCs within a HA scaffold loaded 

with alginate-encapsulated TGF-β3. This was observed at 4 weeks following 

subcutaneous implantation of the HA hydrogels, compared to that in which the 

alginate beads contained no TGF-β3 [192]. Diao et al. also demonstrated the ability of 

scaffolds seeded with TGF-β1-positive plasmids for gene delivery of this growth factor 

to BM-MSCs [193]. The authors observed an increase in chondrogenesis and cartilage 

ECM formation upon scaffold-implantation into a rabbit-defect model This was 

compared to that resulting from implantation of a Green Fluorescent Protein (GFP)-
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plasmid-containing scaffold as the control conditions. The cartilage ECM also was 

observed to remain stable following a 10-week post-operative time period. Pagnotto 

et al also observed an increase in cartilage regeneration due to ectopic TGF-β1 

expression in human MSCs implanted as pellets within a rat knee defect site. Again, 

this was compared to hMSCs transduced with GFP Complementary Deoxyribonucleic 

Acid (cDNA) [194].  

The potential of a combinatorial therapy with TGF-β3 and BMP2 was demonstrated 

by Tomas et al, who delivered plasmids encoding these two growth factors to BM-

MSCs within alginate hydrogels. Following a 28-day in vitro differentiating period, a 

combination of TGF-β3 and BMP2 compared to treatment of either factor alone, 

induced formation of ECM which was indicative of articular cartilage [195]. These 

authors also observed a reduction hypertrophic cartilage and ossified matrix due to 

the combination therapy.  

 

1.2.4. The risks of chondrocyte hypertrophy in current cartilage tissue engineering 

strategies 

Despite the pro-chondrogenic effect propagated by the TGF-β family of growth 

factors, their potential to induce chondrocyte hypertrophy in a tissue engineering 

context has also been demonstrated. For example, TGF-β3-induced chondrogenesis 

of BM-MSCs in Poly(ɛ-Caprolactone) (PE) scaffolds resulted in formation of 

mineralised tissue consisting of increased calcium content and Alkaline Phosphatase 

activity [196]. This enzyme is required for mineralisation of tissue following 

hypertrophy of the growth plate and ossification of the cartilage anlage [197]. This 
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was also demonstrated by Ichinose et al, who observed the development of a 

fibroblastic phenotype from BM-MSCs within Alginate capsules, following their 

chondrogenic induction [198]. This was also accompanied by the presence of 

Collagen Type X within the ECM. 

One mechanism behind these observed cases of hypertrophy may be due to the 

supraphysiological levels of TGF-β growth factors present in standard chondro-

induction protocols. Overexpression of TGF-β1 in the murine knee results in 

progression of OA and joint fibrosis, implicating its potential danger in CTE [199]. 

Gene therapy with DNA encoding BMP-2 or ectopic treatment of the BMP-2 ligand, 

despite increasing GAGs and Collagen Type II during hBM-MSC chondrogenesis, also 

produced extensive staining for Collagen Type X and ALP activity [200] [201]. This 

suggests the hypertrophy of these cultures which is unsuitable due to the contrasting 

mechanical properties of articular and hypertrophic [202].  

The inappropriate hypertrophy and ossification due to such growth factors could 

perhaps be predicted due to the specific temporal and spatial pattern of their 

expression and activity during native cartilage development in which hypertrophy is 

tightly regulated. The TGF-β1 receptor, ALK5 and BMP receptors ALK3 and ALK6 have 

been shown to be differentially expressed during embryogenesis with their mRNA 

levels at a peak during pre-cartilage mesenchymal condensation [203]. This 

corresponds to experiments in which a severe phenotype was observed due to 

knockout of the TGF-β1/3 receptor in pre-cartilage mesenchymal condensations [204]. 

This contrasts with the milder phenotype observed due to knockdown of these 

receptors at the onset of chondrogenesis [205]. Evidence also exists for the increased 
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expression of TGF-β1 and TGF-β3 in proliferative and hypertrophic chondrocytes 

compared to resting, articular chondrocytes [206, 207]. This is suggestive of a 

temporal role of these growth factors during the transition of immature growth plate 

chondrocytes into either chondrocytes which contribute to endochondral 

ossification or articular cartilage, the latter of which being the preferred final product 

for CTE strategies.  

The potential for TGF-β to potently induce a chondrogenic differentiation program 

but also cause hypertrophy of implanted cartilage grafts, suggests a requirement for 

additional factors which suppress the negative effect of TGF-β supplements. As 

described below, one developmental cue which is integral in articular cartilage 

morphogenesis, is that of hypoxia and its downstream signalling pathways. 

 

1.3. Hypoxia in cell biology – a result of vertebrate evolution 

Oxygen (O2) is integral in biological systems due to its role as an electron vehicle in 

the final stages of oxidative phosphorylation which is required for ATP)synthesis. 

Hypoxia, which is defined as the diminished availability of oxygen relative to 

atmospheric conditions, arose as a result of higher-order metazoan evolution. 

Oxygen was introduced into our atmosphere approximately 2.5 billion years ago. 

Accordingly, lesser-evolved species of the metazoan kingdom are able to absorb 

atmospheric oxygen to such an extent as to supplement all cells in the organism. This 

includes the Caenorhabditis elegans in which oxygen is able to freely diffuse into all 

cells [208] and in Drosophila melanogaster in which the simple gas-perfusion 

mechanisms enable full-body oxygenation [209]. However, during the evolution of 
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complex, multi-organ vertebrates in which larger diffusion distances for gases exist, 

abundant oxygen availability is restricted to certain tissues. Accordingly, the 

evolution of complex transport systems brought about the introduction of oxygen to 

organs which would normally be devoid of such a molecule [210].  

Despite the mechanisms which serve to increase supply of oxygen to tissues which 

are not easily perfused by O2, sub-par levels relative to that of atmospheric 

conditions are still experienced by multiple organs [211]. This is due to a lack of 

vasculature in these tissues. This  avascularity arises due to specific developmental 

programs which dictate patterning and regression of the vasculature following early 

embryogenesis [11]. For example, Iwagaki et al observed a regression of cochlear 

blood vessels at the onset of development [212]. Accordingly, such tissues have 

adapted to develop and maintain themselves in hypoxic conditions.  

 

1.3.1. The functions of hypoxia 

Hypoxia stimulates signal transduction pathways which result in upregulation of 

protein such as Erythropoietin and Vascular Endothelial Growth Factor (VEGF) [213, 

214]. These are integral for erythropoiesis and angiogenesis respectively and 

together, increased neovascularization and blood flow to ischemic tissues. Genes 

upregulated also include those involved in glycolysis, enabling sufficient ATP 

production in anaerobic conditions [215], as well as those which increase efficiency 

of electron transfer during oxidative phosphorylation [216].  
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In addition to enabling metabolic adaptation, hypoxia has a role in tissue 

development, stimulating proliferation and cell fate changes to enable the correct 

architecture and function of the tissue. For example, at 8-10 weeks of human 

gestation, extravillous trophoblasts are thought to exist in a hypoxic environment 

due to the occlusion of maternal blood [217]. This is thought to promote their 

differentiation as they are invade the endometrium [218]. The proliferation of villous 

trophoblasts is also thought to be induced by hypoxia, enabling formation of a 

population of Syncytiotrophoblasts which is essential for nutrient circulation 

between the mother and placenta. In heart development, the switch from single to 

double circulation is in part mediated by hypoxia. The apoptosis of a specific 

population of cardiomyocytes in the embryonic outflow track is mediated by hypoxic 

signalling, and this is a pre-requisite for the remodeling-induced switch in circulation 

[219].  

The role of hypoxic signalling in enabling an adaptive response to low-oxygen 

conditions is also essential in tumour progression. As cancer cells proliferate 

uncontrollably, they create a mass or tumour that is devoid of vasculature. This 

creates a subsequent hypoxic microenvironment [220] which in turn upregulates 

high rates of ATP production via glycolysis, a phenomenon known as the Warburg 

Effect [221]. There is also an upregulation of angiogenic factors such as VEGFA. This 

results in formation of a vascular bed within the malignant growth which enables the 

continued malignancy of the tumor [222].  
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1.3.2. Hypoxia Inducible Factor – the transducer of hypoxia-mediated transcription 

The Hypoxia Inducible Factor [223] complex transduces physiological hypoxia into 

gene transcriptional changes. This was first discovered by Semenza et al, who 

observed the increase in expression of erythropoietin by a protein, the levels of 

which were increased in hypoxic conditions [213]. HIF is a transcriptional complex, 

principally composed of an alpha subunit, either HIF-1α/HIF-2α and the HIF-1β 

subunit [224]. Other co-binding partners required for its transcription, include CREB-

Binding Protein/p300 (CBP/p300) [225] and the metabolic enzyme Pyruvate Kinase 

(PKM) 2 [226]. Both HIF-1/2α and HIF-1β contain DNA-binding domains, which 

recognise a specific sequence of bases in the promoter regions of target genes [227]. 

This consensus sequence is known as the HIF-Response Elements (HRE) and is also 

represented in reverse by the HIF Ancillary Sequence (HAS)[213, 228]. When the 

HREs/HASs are bound by HIF-1/2-HIF-1β dimer, transcription of the corresponding 

genomic coding to which the promoter belongs, is induced. This induction of 

transcription occurs via the N- and C-terminal transactivation domains (N-TAD and C-

TAD) of HIF-1α [229].  

The spatial distribution of HIF-1α and HIF-2α vary, with HIF-1α expressed 

ubiquitously and HIF-2α expressed in specific tissues such as endothelial cells and 

lungs during development [230]. There exists a large number of transcriptional 

targets of the HIF complex, with each HIF-1/2α-containing HIF complexes inducing 

transcription of a differing subset of genes. HIF-1α induces transcription of genes 

involved in angiogenesis [213, 214], metabolism [215], cell survival [231], migration 

[232] and proliferation [233]. HIF-2α, whilst also upregulating pro-angiogenic VEGFA 
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as HIF-1, does not induce glycolytic enzyme synthesis [234]. A third alpha subunit- 

HIF-3α does not contain a C-TAD, and as such induces transcription to a weaker 

extent relative to that mediated by HIF-1/2α [235] [236]. Another implicated role of 

HIF-3α is that of a negative-regulator of HIF-1α, via competition with HIF-1β and 

inhibition of a functional HIF complex. 

 

1.3.3. Regulation of Hypoxia Inducible Factor-1/2α 

 

1.3.3.1. Protein stability 

The rate of HIF-mediated transcription is dependent on the stability of HIF-1/2α and 

not that of HIF-1β. This is due to the susceptibility of HIF-1/2α to hydroxylation, 

ubiquitination and degradation by the Prolyl Hydroxylase 2 (PHD2)-Von Hippel–

Lindau Tumor Suppressor (VHL) pathway, whilst HIF-1β is constitutively present [237] 

(Figure 1.2). PHD2, a proline-hydroxylating enzyme, requires oxygen, ascorbic acid, 

Fe2+ and 2-Oxoglutarate (2-OG) as substrates for its function [238]. At normoxia in 

which local oxygen molecules are in abundance, PHD2 is activated and it hydroxylates 

specific residues (Proline402/564) on the oxygen-dependent degradation domain 

(ODDD) of HIF-1α [239]. The newly formed hydroxylated residues of HIF1α then serve 

as recognition motifs by VHL which is part of an E3 ubiquitin ligase complex [240]. 

VHL binds and causes the ubiquitination of the hydroxylated proline residues of HIF-

1α [241], resulting in the subsequent proteasomal degradation of this alpha subunit 

[242].  
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In hypoxic conditions, the lack of oxygen available for PHD2 activity results in the 

downregulation of its HIF-1α-hydroxylating ability, thereby enabling HIF-1α cytosolic 

accumulation, nuclear translocation and expression of its target genes in the HIF 

heterodimeric complex. Interestingly, expression of the gene encoding PHD2- EGLN, 

is induced by excessive HIF-1α stabilization. This results in a negative feedback loop 

to prevent hyper-activation of HIF-mediated transcription [243]. Other pathways 

central to regulating HIF-1α degradation are The Receptor for Activated C Kinase 1 

(RACK1) and Heat Shock Protein90 (HSP90) as demonstrated by Liu et al. RACK1 has 

been demonstrated to compete with HSP90 in binding to HIF-1α and in doing so, 

recruits the identical ubiquitinating complex utilised by VHL, thereby resulting in HIF-

1α degradation [244]. Conversely, HSP90 functions by binding HIF-1α and blocking 

RACK1-HIF-1α binding and degradation [245]. RACK1-dependant degradation of HIF-

1α is independent of PHD2 function. Liu et al therefore suggest the role of HSP90 and 

RACK1 and their relative binding affinities for HIF-1α, are to determine the basal, 

steady state levels of HIF function in different cell types [244]. Calcium signalling has 

also been shown play a role in the regulation of HIF-1α stability. Liu et al identified 

the ability of Calcineurin to abolish RACK1-mediated ubiquitination and proteasomal 

degradation of HIF-1α [246]. Calcineurin is stimulated by increased intracellular Ca2+ 

and calmodulin activity [246].  

 

1.3.3.2. Co-factor binding 

Essential for the conformational changes in the HIF-1α-HIF-1β dimer [247] which are 

required for the induction of gene expression when bound to the HRE in target gene 
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promoters, is the recruitment of p300/CBP (Figure 1.2). Structural crystallography 

studies of HIF-1α binding to these co-factors have revealed the necessity of this 

interaction for activation of the CTAD of HIF-1α [247]. This process is required to act 

synergistically with activity of the NTAD to stimulate HIF-target gene expression, due 

to the relatively weak ability of NTAD alone in stimulating transcription.  

One of the key residues involved in the binding between HIF-1α and p300/CBP is 

Asparagine-803 (Asn-803) of HIF-1α. This amino acid is a target of another 

hydroxylase enzyme, Factor Inhibiting HIF (FIH) which regulates HIF transcriptional 

activity independent of the protein stability of HIF-1/2α [248]. FIH-meidated 

hydroxylation of Asn-803 of HIF-1α inhibits the binding of p300/CBP to HIF-1α and 

therefore disrupts formation of the HIF-transcriptional complex [247]. As with PHD2, 

FIH utilizes oxygen, ascorbic acid, Fe2+ and 2-OG [249]. Correspondingly, FIH is 

inhibited by a lack of local oxygen, thereby enabling CBP/p300 binding to HIF-1α in 

hypoxic conditions. 
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Figure 1.2. Regulation of HIF-mediated transcription by HIF-1α stability and co-
factor binding. In response to molecular oxygen from local vasculature for example, 
FIH and PHD2 each hydroxylate a specific amino acid residue of HIF-1α. A: FIH-
mediated hydroxylation results in the blocking of the co-factors, CBP/p300 from 
binding to HIF-1α, thereby reducing HIF transcriptional activity. B: PHD2-mediated 
hydroxylation results in ubiquitination of the ODDD domain of HIF-1α by the VHL 
component of an E3 ubiquitin ligase, thus promoting the proteasomal degradation 
of HIF-1α and significantly reducing HIF transcriptional activity. C: In hypoxic 
conditions, PHD2 and FIH remain inactivate, thus enabling HIF-1α to translocate and 
accumulate in the nucleus, where it activates expression of HIF target genes as part 
of a transcriptional complex with HIF-1β, CBP/p300 and other co-factors. A negative 
feedback mechanism exists in which PHD2 expression is also enhanced by HIF 
activity. 
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1.3.3.3. Translation 

Control of proteasomal degradation and transcriptional co-factor binding, represent 

the major mechanisms of HIF-1α regulation. However, regulation of HIF-1α protein 

translation also contributes to the overall rate of HIF-mediated transcription. Growth 

factor signalling has been heavily implicated in HIF-1α translation both in normoxic 

and hypoxic conditions. Phosphatidylinositol 3-kinase-protein kinase B (PKB) and 

mammalian target of rapamycin (mTOR) have together, been shown to stimulate HIF-

1α translation and HIF-mediated gene expression [250]. mTOR-mediated translation 

of HIF-1α is thought to occur through phosphorylation of S6 kinase and 4E-BP1 which 

results in cap-dependent initiation of translation. Calcium signalling has also been 

implicated in enhancing HIF-1α translation. Inceased intracellular Ca2+ levels result in 

upregulation of Protein Kinase C, which causes a subsequent induction of mTOR 

activity and HIF-1α translation [251].  

 

1.3.3.4. Transcription 

The contribution of HIF1A mRNA to overall HIF-1α levels and HIF-mediated 

transcription appears to dependant on the cell and tissue type in which it is 

expressed. For example in Hep3B hepatoma cells, no changes in HIF1A mRNA was 

observed due to hypoxic incubation, despite increases observed in HIF-1α binding of 

the VEGFA promoter [252]. Similar, post-transcriptional regulation of HIF-1α was also 

observed in lung epithelial cells [253]. These studies are suggestive of the redundancy 

of HIF1A transcription in activity levels of the HIF transcriptional complex, but are 
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contrasted with that observed by Page et al. These authors demonstrated an increase 

in mRNA encoding HIF-1α in Vascular Smooth Muscle Cells, not in response to culture 

at 1%O2, but by treatment of vasodilative proteins Angiogenin II and Thrombin [254]. 

HIF1A transcription was subsequently shown to occur via Protein Kinase C and PI3K-

mediated mechanisms. This demonstrates the HIF-inductive mechanisms required in 

response to an ischemic microenvironment which increase angiogenic factor 

expression and tissue blood perfusion [252].  

Despite this evidence of hypoxia-independent upregulation of HIF1A mRNA, cells 

incubated at low oxygen levels were shown to induce HIF1A expression by Turcotte 

et al in Renal Cell Carcinoma cells. This was mediated by RhoA-dependent 

mechanisms [255]. Hypoxia-mediated transcription of HIF1A was also demonstrated 

by BelAida et al who demonstrated an increase in HIF1A mRNA due PI3K/PKB-

dependent mechanisms in response to hypoxic incubation. A dependence of HIF1A 

transcription was also observed on the activity of the transcription factor; Nuclear 

Factor kappa-Light-Chain-Enhancer of Activated B cells (NF-κB). Together, these 

studies demonstrate that transcriptional control of HIF-1α is unlike PHD2/VHL-

mediated control of HIF-1α stability which is a conserved mechanism. Instead, the 

contribution of HIF1A mRNA to hypoxia-induced HIF activity is highly context 

dependent.  

In the context of articular cartilage, hypoxia upregulates HIF1A mRNA levels during 

chondrogenesis of cartilage endplate cells [256]. Adult articular chondrocytes have 

been shown to upregulate HIF1A mRNA in response to inflammatory/OA-inducing 

stimuli without exposure to hypoxic conditions [257]. This again suggests that 
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hypoxia-induced HIF activity via HIF1A transcription is not a conserved mechanism 

across different tissue types and developmental stages. 

 

1.3.4. The role of hypoxia in osteochondral development  

Specific morphogen gradients such as that of Wnt and BMP ligands, exist across 

developing and adult osteochondral tissue and are essential in the formation and 

maintenance of distinct regions of cartilage and bone [258]. Another such gradient 

between vascularised subchondral bone and avascular cartilage, is that of oxygen 

[259]. This gradient which also exists in the mesenchymal condensations of the limb 

bud, has been shown to play key roles in the formation and maintenance of the 

distinct regions of osteochondral tissue.  

The oxygen concentrations in adult human articular cartilage are reported to be 

between 1-6% with that of subchndral bone reaching up to 21% [260].  and as 

described by Maes et al, the early limb bud and cartilage growth plate are also subject 

to a hypoxic microenvironment. This is due to the regression of embryonic 

vasculature [261]. This has been shown in studies by Schipani and Provot who also 

demonstrated the requirement of HIF-1α-mediated hypoxic signalling for 

chondrogenesis of the limb bud mesenchymal population, cartilage ECM formation 

and subsequent survival of the chondrocyte population within the growth plate [259, 

262].  

The studies by Schipani and Provot are suggestive of an essential role for HIF in 

mediating a pro-chondrogenic and anti-hypertrophic transcriptome when activated 
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at low oxygen levels [263]. This effect is reversed in regions of higher O2 

concentration due to downregulation HIF activity, which would result in a bias 

towards a hypertrophic/osteoblastic cell fate of mesenchymal precursors (Figure 

1.3).  
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Figure 1.3. The oxygen and HIF gradients present across development and adult 
osteochondral tissue. Diagrammatic representation of oxygen and result HIF activity 
gradients present across the mesenchymal limb bud (A) and growth plate (B) stages 
of limb development. C: Oxygen resulting HIF-1α protein gradients across adult 
osteochondral tissue with Blue gradients = Proteins upregulated by HIF, Red 
gradients = proteins downregulated in presence of HIF activity. 
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1.3.5. The role of hypoxia in osteochondral tissue engineering  

Previous efforts of osteochondral tissue engineering (OCTE) via development of two 

independent bone and cartilage grafts before their attachment by suture or fibrin 

glue (Fig. 1.4A)[264], have been shown to fail due to shearing of the graft by 

mechanical movement of the joint [265]. Therefore for treatment of such cases, it is 

advantageous to achieve synchronous regeneration of both the bone and cartilage 

on the same continuous biomaterial scaffold (Fig. 1.4B).  

An advantage of osteochondral regeneration within a continuous scaffold is the 

mimicry of synchronous in vivo development of native articular cartilage and 

subchondral bone. Following formation of the growth plate from the limb bud 

mesenchymal condensations, the fate of the highly proliferative chondrocytes is that 

of either hypertrophy or senescence. These two paths which contribute to formation 

of ossified bone and articular cartilage respectively, occur simultaneously with the 

fate of growth plate chondrocytes subject to influence by gradients of signals such 

that of Indian Hedgehog or HIF [91, 266]. This synchronous development of articular 

cartilage and subchondral is required for the communication of forces between the 

chondral and bone layers which are applied on the joint during movement.  

A case-study in which such a strategy was employed for osteochondral regeneration 

was conducted by Mohan et al. Within a single biomaterial scaffold, these authors 

created two opposing gradients of chondrogenic and osteogenic factors respectively 

which were incorporated within PLGA microspheres [267]. The region of the scaffold 

that was abundant in the pro-chondrogenic signal (TGF-β3) with the opposing area 

rich in osteogenic signals (BMP2 and hydroxyapatite crystals), induced region-specific 
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formation of cartilage and bone. As identified by Magnetic Resonance Imaging and 

histological analysis, these scaffolds when implanted into a rabbit osteochondral 

defect model also resulted in regeneration of distinct cartilage and bone phases in 

vivo.  

Aricular cartilage and subchondral bone require differing levels of oxygen for their 

development and maintenance [259], as decribed in figure 1.3. Together with the 

the pro-chondrogenic and anti-hypertrophic/osteogenic effects of HIF, this suggests 

the potential HIF for OCTE in which a continuous biomaterial scaffold is utilised. 

Controlling the spatial organisation of physiological hypoxia however, may be 

logistically impossible. Therefore it may be advantageous to spatially control 

chemical agents which stimulate the HIF pathway as an alternative [268].  

Agents which act to stabilise the HIF-1α subunit of the HIF transcriptional complex, 

would therefore enable spatial control of HIF-mediated transcription when 

themselves deposited in a graded manner on a biomaterial scaffold with seeded cells. 

It could be envisaged that within a region of graded scaffold that is rich in a HIF-

stimulating compound, chondrogenesis would represent the preferred lineage 

commitment of the scaffold-seeded hBM-MSCs (Fig. 1.4C). This would be 

accompanied by a suppression of with osteoblast differentiation and hypertrophy. 

This would contrast to regions of the scaffold which are depleted for the HIF-

stimulating compound and in which HIF activity is relatively lower. In such a region, 

there may be a bias for osteoblastic differentiation of the hBM-MSCs when cultured 

in an osteogenic-chondrogenic co-induction media. This would be due to the lack of 

osteogenic/hypertrophic-inhibitory signals provided by HIF-mediated transcription 
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but also due to the bias of BM-MSCs for osteogenesis relative to that for other 

lineages [151].  
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(*61) Figure 1.4. Biphasic, Continuous and HIF-graded Scaffolds. A: Biphasic 
osteochondral graft, generated via attachment of pre-differentiated cartilage and 
bone tissue engineered grafts B: Continuous scaffolds, enabling synchronous 
development of cartilage and bone regions from one biomaterial and one cell 
population with a gradual transition from one phase to another, synthesised via 
incorporation of a graded microenvironment on the scaffold. C: HIF-graded scaffold. 
D: MSC-seeded biomaterial scaffold containing a gradient of a HIF-stabilising agent. 
E: During osteochondrogenic co-induction of the scaffold-seeded MSCs, the 
differential levels of the HIF-activating agent across the scaffold may promote the 
pro-chondrogenic, anti-hypertrophic and anti-osteoblastic function of HIF in the 
region of high concentration, whereas this would not occur in the region of low 
concentration. F: The potential continuous osteochondral graft generated using the 
HIF-regulating scaffold, containing spatially restricted regions of articular cartilage 
and subchondral bone. 
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1.3.6. The role of hypoxia and HIF-1α in articular cartilage development and 

maintenance. 

 

1.3.6.1. Mesenchymal progenitor differentiation 

In 2007, Provot et al highlighted the role of HIF-1α in promoting the activity of SOX9, 

the master chondrogenic transcription factor, in mesenchymal precursors of the limb 

bud condensations which give rise to the growth plate [262] (Figure 1.5). This group 

showed that upon conditional knockout (CKO) of HIF-1α, expression of the SOX9 

target; COL2A1, was reduced. HIF-1α CKO also resulted in a disorganised morphology 

of the resulting cartilage ECM. Concurrent with this study, Amarilio et al 

demonstrated the role of HIF-1α in stimulating SOX9 expression in pre-chondrogenic 

precursors during mouse limb development. These authors observed the reduced 

expression of SOX9 and its downstream targets COL2A1 and ACAN upon HIF-1α CKO 

(Figure 1.5). They also observed a decrease in mRNA encoding SOX6 [263].  

From an in vitro perspective, HIF has been shown to upregulate SOX9 mRNA and the 

downstream chondrogenic targets of SOX9 in a BM-MSC line. Following induction of 

chondrogenesis, reduced SOX9-linked luciferase activity was observed upon deletion 

of HREs from the SOX9 promoter. This was relative to cells in which the HREs were 

left intact [269]. Moreover, in rat MSCs, Kanichai et al demonstrated the upregulation 

of HIF-1α due to hypoxia. This effect was mediated by PKB and p38 mitogen-activated 

protein kinase resulting in expression of chondrogenic factors [270]. Further 

cementing the role of HIF in chondrogenesis, adenovirally-delivered HIF-1α was 

shown to potentiate BMP2-induced chondrogenic induction of MSCs [271]. The role 
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of HIF-1α in chondrogenesis of BM-MSCs within alginate beads was also observed. 

This was demonstrated by a lack of SOX9, SOX5, SOX6, ACAN and COL2A1 mRNA 

upregulation in differentiating conditions in response to treatment of cells with a 

double-negative HIF-1α vector, compared to the transcriptional profile observed in 

wild type cells [272].  

The interplay between HIF-1α and chondrogenesis is also indicated by observation of 

HIF-1α upregulation during growth factor-mediated cartilage regeneration at 

normoxia. In this study, Gelse et al utilised a porcine chondral defect model 

implanted with autologous porcine BM-MSCs. Following implantation, they observed 

an increase in HIF-1α in host chondrocytes within the deep zone of the repaired 

cartilage. This was compared to that within host chondrocytes following implantation 

of the MSCs without BMP2/insulin growth factor stimulation. These authors also 

demonstrated the role of in vitro periosteal cells to upregulate HIF-1α protein in 

response to BMP2 and Insulin Growth Factor 1 treatment [275]. Correspondingly, 

McMahon et al also observed a similar effect of the TGF-β family of transcription 

factors. In human hepatoma cells, an upregulation of HIF-1α protein and HIF-

mediated transcription was observed in response to TGF-β1 treatment [273].  

  

1.3.6.2. Secretion of cartilage extra-cellular matrix  

The specific composition and architecture of the ECM surrounding articular 

chondrocytes, gives hyaline cartilage its ability to resist compressive forces and 

tension on the joint. It also enable lubrications between opposing articulating 

surfaces [3].  Hypoxia has been shown to enhance GAG’s and Collagen Type II 
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synthesis by cultured Human Articular Chondrocytes (HACs), relative to that seen at 

normoxic conditions [270].  Additionally, reduced oxygen concentration have been 

shown induce a more ordered morphology of collagen fibrils which is representative 

of that observed in native articular cartilage. This was observed in chondrocyte 

pellets cultured at 5%O2 compared to that at normoxia [274]. Hypoxia has also been 

shown to have a beneficial effect with regards to ECM production by chondrocytes 

embedded in biomaterial scaffolds.  Coyle et al observed an increase of a GAG and 

Collagen Type II-rich ECM due to culture of bovine articular chondrocytes at 2%O2, 

following embedding of the chondrocytes in alginate capsules [275]. A similar pattern 

of ECM formation was also induced by hypoxic incubation of hypertrophic 

chondrocytes within a Poly(Lactic-co-Glycolic Acid) (PLGA) scaffold [276].   

HIF-1α has been implicated in this hypoxic-induction of cartilage ECM production. 

Conditional knockdown of HIF-1α in developing murine limbs result in abnormal ECM 

morphology. Growth plate chondrocytes isolated from HIF-1α-CKO mice also exhibit 

reduced cartilage proteoglycan and collagen type II production compared to mice in 

which in which HIF1A was left intact [262, 277]. Chemical induction of HIF-1α was 

shown to also significantly raise Collagen Type II protein levels secreted by HAC’s 

[278] as well as that of Aggrecan, and this effect was abolished in HACs in which HIF-

1α was knocked down [279].  

In addition to the effect in chondrocytes, HIF has also been shown to increase 

cartilage ECM in the cultures of various MSC types when induced towards a 

chondrogenic lineage [270, 272] (Figure 1.5). One of the main mechanisms by which 

HIF increases cartilage ECM production is via enhancement of SOX9 activity and 
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subsequent COL2A1 and ACAN mRNA [262, 272]. HIF has also been proposed to play 

a role in the post-translational modification of pro-collagen type II chains which as 

previously described, is required for stabilisation and function of Collagen Type II 

within the cartilage ECM. This occurs via upregulation of mRNA encoding Collagen 

Prolyl Hydroxylase (CP4HA1) which is required for the addition of 4-hydroxyproline 

residues to single collagen fibrils to enable formation of collagen triple helices [280]. 

Additionally, HIF induces expression of Lysyl Oxidase (LOX) which is an enzyme whose 

activity is required for the crosslinking of collagen triple helices. Makris et al observed 

an increase in expression of LOX in response to 2%O2 culture of bovine articular 

cartilage explants [285].  They went on to demonstrate the effect of hypoxia in 

increasing formation of pyridinoline cross-links between collagen fibres, together 

with an increase in the mechanical stiffness of the explant. These increases were 

reduced by treatment of the explants with the LOX inhibitor- beta-

aminopropionitrile. Together, the findings by Makris et al suggest a role for hypoxia 

in maintaining a stable articular cartilage ECM via collagen post-translational 

modification. This crosslinking is required to maintain the overall ECM tensile and 

compressive strength in response to forces experienced by the joint during 

locomotion [281]. 

 

1.3.6.3. Inhibition of chondrocyte hypertrophy 

Signalling gradients such as that of Ihh exist to retain populations of chondrocytes in 

their non-hypertrophic form, priming them for a permanent, articular chondrocyte 

cell fate [258]. The oxygen gradient in osteochondral tissue has also been proposed 
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to limit chondrocyte hypertrophy, with HIF playing a key role in this process (Figure 

1.5). HIF subunits have been shown to be expressed in human adult chondrocytes 

[282] and Lafont et al also showed the role of these in maintaining SOX9 expression 

in articular chondrocytes. This was subsequently shown to be crucial for expression 

of the downstream transcriptional targets of SOX9 which are required for 

stabilization of the articular chondrocyte phenotype [283]. This role of HIF was also 

shown to occur via SOX9-independent pathways [284]. HIF has been shown to 

downregulate the expression of hypertrophic fibroblast-like markers such as collagen 

type X, and cartilage degrading enzymes in hypertrophic chondrocytes [279]. In 

addition to inhibiting hypertrophic factors, hypoxia has also been shown  to 

upregulate chondro-protective proteins such as MMP inhibitors [285] and other anti-

catabolic factors  [286]. This is also supported by the observation that HIF-1α CKO in 

developing murine cartilage reduces mRNA expression of articular chondrocyte-

specific markers such as Growth Differentiation Factor 5 [263].  

The ability of hypoxia to promote an articular chondrocyte phenotype is mediated 

via a multitude of signalling pathways. Following chondrogenesis of the growth plate, 

canonical Wnt signalling has been shown to be conducive for chondrocyte 

hypertrophy in preparation for endochondral ossification [100]. Hypoxia has been 

correspondingly shown to increase expression of Wnt antagonists during BM-MSC 

chondrogenesis. This has the downstream effect of increasing expression of articular 

chondrocyte markers and downregulating mRNA encoding hypertrophic markers. 

[287]. The Wnt-inhibitory role of hypoxia also functions through HIF-1α which binds 

and sequesters β-Catenin. This inhibits the primary function of β-Catenin which is the 
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induction of TCF-LEF target genes such as which are conducive for hypertrophy, such 

as MMP13 [288].  

HIF is also important in promoting a bias for chondrogenic over osteoblastic 

differentiation of mesenchymal precursors, a cell fate decision which generates the 

growth plate or intramembranous bones respectively. The hypoxia-responsive 

transcription factor via HIF-1α-stabilising compounds [271] or constituitive HIF-1α 

activation [289] has been shown in vitro to downregulate factors involved in 

osteogenic differentiation and maturation (Figure 1.5). This includes RUNX2, Alkaline 

Phosphatase [290] and Wnt signalling [291] and as such, generate a bias for 

chondrogenic differentiation over osteoblast formation, and formation of cartilage-

specific ECM as opposed to mineral bone matrix.  

  



  

72 
 

 
 

Figure 1.5. Induction of a transcriptional profile by HIF which favours formation of 
articular cartilage from mesenchymal precursors. A: Following hypoxia-mediated 
formation of the HIF complex and binding to the HRE of target genes, induction of 
transcription occurs. B+C: Upregulation of SOX9 transcription (B) and subsequent 
upregulation of SOX9 target gene, COL2A1 and ACAN which results in an increase in 
secretion of Aggrecan-containing proteglycans and pro-Collagen Type II by the 
differentiating cell (C). D-F: SOX9-mediated downregulation of RUNX2 activity and 
HIF-mediated reduction of RUNX2 transcription (D) together resulting in decrease in 
transcription of genes encoding osteoblastic (E) and hypertrophic factors (F). H: HIF-
mediated transcription of genes which encode anti-hypertorphic factors such as 
GREM1 and DKK1 which inhibit BMP and canonical Wnt signalling respectively. G: 
HIF-mediated upregulation of genes which encode glycolytic enzymes. Yellow arrows 
= processes stimulated by HIF, and red arrows = processes inhibited by HIF. 
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1.4. Mechanotransduction and the influence of hypoxic signalling 

Cells are able to respond to changes in the mechanical factors of immediate 

microenvironment. These mechanical changes, for example the elasticity of the 

substrate on which they reside, have been shown to influence cell behavior. One 

aspect of such behavior is chondrogenic differentiation, which has been shown to be 

heavily influenced by the mechanical properties of the stem cell extracellular space. 

Furthermore, as described below, evidence exists of the role of hypoxia in regulating 

mechanotransducive pathways that are involved in BM-MSC chondrogenesis. 

Insights into the crosstalk between hypoxia and mechanotransducive pathways ay 

inform CTE techniques where the optimal mechanical microenvironment for 

chondrogenesis is to be combined with HIF-dependent signalling. 

 

1.4.1. The tensegrity model of the cytoskeleton 

As described by Mitchison, the cytoskeleton is composed of actin microfilaments, 

intermediate filaments and microtubules composed of tubulin monomers [292]. 

Actin is an ATPase, with ATP bound in lobed structures within the polymer sequence. 

The steady-state structure of actin is that a homotypic double helix. These helices are 

unlike the microtubules, display flexibility and yielding in response to tensional 

forces. This property of actin is required during the formation of high tensed stress 

fibres which are induced upon contraction of the actin-bound Myosin Light Chain-II 

(MLC2). As described by Lutz and Lieber, MLC2 contraction is an ATP-dependent 

process. Following binding of the ‘head’ subunit of MLC2 to the Actin helix, the bound 

ATP is hydrolysed, which induces the power-stroke movement of the MLC2 head. 
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This subsequently induces contraction of the actin microfilament, with the sum of 

tension produced by all actin microfilaments contributing to the tension generated 

by the cytoskeleton as a whole [293].  

Donald Ingber likened the cytoskeletal tension created by MLC contraction to 

structures whose continuous tension maintains their structural integrity [294]. Such 

structures include the Buckminsterfullerene, a 60-carbon structure made by Harold 

Kroto, Robert Curl and Richard Smalley [295]. This structure resembled those 

discovered by Richard Buckminster Fuller who coined the term ‘Tensegrity’ upon 

observation of the ability of such structures to maintain their integrity by increased 

tension of the inter-carbon bonds [296]. The Buckminsterfullerene did indeed exhibit 

this same tensegrity, which was investigated due to the observation by Russel Chu 

that the structure would not be viable without secondary structures in which 

tensional forces were continuously transferred [297].  

Ingber in his comparison between Buckminsterfullerene-like structures and that of 

the cytoskeleton, suggested that the actin network also experiences changes in 

tensional forces, with an increase responsible for maintaining cell shape and 

integrity. This was based on pioneering observations of opposing forces produced by 

the actin microfilament and the microtubules [298] and of myosin-actin tension 

orientated towards the centre of the cell [299]. Correspondingly, Harris and Stopak 

observed a pulling-force by chick cardiac fibroblasts on the surrounding silicon-based 

surface on which they were seeded, as assessed by the degree of inward ‘wrinkling’ 

of the material [300].  
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1.4.2. Regulation of cytoskeletal tension and cell shape by substrate stiffness 

During development, there exists a requirement of ECM which is able to resist 

deformation in response to cell attachment cell-derived tension. Banerjee et al 

demonstrated the requirement of a basal lamina during salivary gland development 

for the maintenance of  cell morphology and a specific cytoskeletal arrangement that 

are conducive for formation of the salivary gland lobular structures [301]. Upon 

enzymatic digestion of the supporting mesenchyme, these authors observed the loss 

of cell-ECM attachment, cytoskeletal disorganization and the rounding up of 

submandibular epithelial cells. Supporting this, Li and Sakaguchi identified the role of 

cell-ECM attachment during development of the retina [302]. They observed a 

disruption and ‘rounding up’ of the retinal lamina upon injection of the embryonic 

tissue with an antibody which blocked a specific cell surface receptor responsible for 

mediating cell-ECM interactions. This receptor is a member of the Integrin family 

which are integral in mediating the transmission of signals from the ECM through the 

cell. The exact molecular nature of this is described in subsequent sections of this 

chapter.  

In addition to the effect of either the presence or absence of ECM on cell behaviour, 

the magnitude of tensional force applied by the cell onto its ECM is determined by 

elasticity of the ECM. The elasticity or stiffness of a substrate on which a cell is seeded 

is defined as the extent to which it resists deformation in response to tensional forces 

produced by the cell. As pertained to, the attachment point of a cell to its ECM is 

primarily mediated by Integrin receptors, which enables formation of focal adhesion 

complexes at discrete regions along the cell-ECM interface. As described by Ingber, 
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it is the elasticity of the ECM between these attachment points which determines the 

tension generated within the cell. A substrate of relative high stiffness will not 

deform between sites of cell attachment and adhesion formation. This will result in 

a high tensional forces generated by the cell cytoskeleton to reach an equilibrium 

with the tension generated within the ECM [303]. Morphologically, this results in cell 

spreading and observation of visible actin stress fibres [304].  

On a relative soft substrate, despite cells exhibiting lower cytoskeletal tension 

compared to those on a stiff substrate, actin-myosin contraction is present. 

Therefore when present on an ECM which undergoes deformation more readily in 

response to a pulling force, a cell generates a rounded morphology. This is due to a 

cytoskeletal tension-mediated retraction of the actin network towards the nucleus 

in a concentric manner, which occurs due to the low relative tension and binding 

affinity of cell-ECM anchors. Mih et al demonstrated the importance of myosin 

contraction in generating a rounded cell morphology by observation of fibroblast 

spreading on a soft substrate in response to Blebbistatin treatment. This was 

compared to cells without inhibitor treatment in which a round morphology was 

observed [305]. This was also observed in the study by Vishavkarma et al in which 

the cell area of murine MSC on a substrate of 3-4 Kilopascal (KPa) increased in 

response to Blebbistatin treatment [306].  

 

1.4.3. Regulation of lineage commitment by cytoskeletal tension and actin 

arrangement 
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A study by McBeath et al observed how changes in cytoskeletal tension and cell 

shape affected MSC fate. When cultured at high density, MSCs were shown to adopt 

a rounded cell shape. This change in cell shape was shown to mediate the bias 

towards adipogenic differentiation over that of an osteoblast, despite culture of the 

MSCs in media containing factors conducive for differentiation down either lineage 

[307]. Furthermore, when MSC spreading was restricted on 1024µm2 islands, there 

was a bias for adipogenesis of seeded cells compared to an osteogenic cell fate which 

was preferred on larger, 10,000µm2 islands. In further experiments, a reduction in 

osteogenesis was observed on the large island in the presence of an inhibitor of 

myosin contraction. Also, transfection of a constitutively-active Rho-Associated 

Protein Kinase (ROCK) which functions to induce cytoskeletal tension, decreased 

adipogenesis of MSCs cultured on the smaller substrate. These observations 

demonstrate the control of lineage commitment by cell shape is dependent on 

cytoskeletal tension. 

 

1.4.4. Regulation of cytoskeletal tension-mediated lineage commitment by 

substrate stiffness 

Supplementing that observed by McBeath et al, a seminal study by Engler et al also 

demonstrated a correlation between substrate stiffness and cytoskeletal tension-

mediated lineage commitment. These authors observed, on a Collagen Type I coated 

soft Polyacrylamide surface, in non-differentiating media, thats MSCs adopted a 

relatively smaller cell shape with which a neural fate was favoured. Neural specific 

proteins were expressed in MSCs on the soft substrate with an associated branching 
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morphology observed, resembling native neurons. This is in contrast with MSCs on a 

stiff substrate on which a spread morphology and increased propensity for osteoblast 

differentiation was exhibited. This conclusion were made due to the increased 

expression of Osteocalcin and formation of a rigid ECM resembling mineralised bone 

[304]. Critically, as substrate stiffness increased, these authors observed a positive 

correlation with actin stress fibre formation, contraction of MLC2 and stiffness of the 

cells. The role of increased cytoskeletal tension in dictating the stiffness-mediated 

differentiation of the MSCs was then confirmed by use of the inhibitor of myosin 

contraction- Blebbistatin. Treatment of MSCs on all substrates with Blebbistatin 

reduced the commitment down the originally-preferred lineages. 

Guvendiren and Burdick demonstrated a similar phenomenon to Engler et al, upon 

the culture of hMSCs on soft, stiff and dynamic stiffening Polyacrylamide (PA) 

substrates [303]. They observed a round and spread cell morphology on the soft and 

stiff surfaces respectively, with a 10-fold increase in traction force generated by cells 

on the 30KPa substrate compared to those at 3KPa. MSCs on the dynamic gel 

exhibited a cell morphology and traction force indicative of culture on the soft 

substrate which transformed into that indicative of a stiff surface following in situ 

stiffening of the PA gel. Corresponding to the changes in cell shape and traction 

forces, which correlate with the tensional forces within the cytoskeleton [308], a 

predisposition for adipogenic and osteogenic differentiation was induced on the 3 

and 30KPa substrates respectively.  

Finally, Guvendiren and Burdick conducted the differentiation of cells on the 

dyanomic stiffening substrate following a 14-day culture period. In response to gel-
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stiffening at day 1 of the differentiating period, a clear bias for osteogenesis was 

observed. However, upon stiffening at day 7 of the culture period, MSCs within the 

culture appeared to differentiate down both lineages with an approximate 50% 

difference observed between adipo- and osteogenesis. This implies that early 

responses to substrate stiffness are integral in determining cell fate, compared to 

stiffness-mediated stimuli at latent stages of differentiation. Again, cytoskeletal 

tension mediated the switch in cell fate as observed by the abolishment of 

osteogenesis and preservation of adipogenesis in response to inhibition of myosin 

contraction. 

 

1.4.5. Mechanisms by which substrate stiffness regulates cytoskeletal tension 

 

1.4.5.1. Sensing of substrate stiffness by integrin receptors 

Cells sense the stiffness of their environment via integrin receptors which link the 

extracellular environment with the cell cytoskeleton, and different subtypes 

exhibiting affinity with different ECM proteins [309, 310]. Upon engagement of ECM 

by the extracellular domains of integrins and binding of their cytoplasmic tails by 

Talin [311] and Kindlins [312], clustering occurs of multiple integrin receptors [313]. 

This results in the formation of focal adhesion complexes. These complexes, 

consisting of proteins such as Vinculin and Paxicillin, via Focal Adhesion Kinase (FAK) 

initiate a downstream cascade of events resulting in contraction of MLC2 and 

formation of Filamentous Actin (F-Actin) bundles [314, 315].  
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Upon engagement of integrin receptors by ligands in the ECM and actin-myosin 

contraction, the cell generates tension if present on a non-compliant substrate which 

results in a strengthening of the integrin-ECM interaction. This induces further focal 

adhesion maturation in a positive feedback loop, enabling continued response to the 

stiffness of the cell environment which actin stress fibres [316]. If the cell is present 

on a softer substrate, it will be unable to generate tension against a more easily 

deformed ECM substrate, therefore generating relatively weak integrin-ECM 

interactions. This generates a cortical actin organisation within the cell with few 

accompanying actin stress fibres.  

 

1.4.5.2. Transduction of mechanical stiffness to the nucleus by RhoA and ROCK  

One of the key mechanisms by which integrin-ECM binding is transduced into 

cytoskeletal tension, is via modulation of the Homolog Gene Family, Member A 

(RhoA)/ROCK pathway [307]. FAK is auto-phosphorylated in the focal adhesion 

complex [317], promotes the hierarchal addition of proteins to this complex [318] 

and indirectly activates RhoA [319]. RhoA is a member of the (Guanosine Tri-

Phosphatase) GTPase family of proteins which in an active conformation, hydrolyses 

its bound (Guanosine Tri-Phosphate) GTP to Guanosine Di-Phosphate (GDP) and in 

doing so becomes inactive. The re-activation of RhoA is induced by the exchange of 

GDP for GTP which itself is mediated by Guanosine Exchange Factors (GEFs). Zaidel-

Bar et al observed the ability of integrin-stimulated FAK in increasing activity of a 

RhoA-specific GEFs [319].  
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Activation of ROCK by RhoA [320, 321] stimulates the dual effect of ROCK on MLC2 – 

1) direct phosphorylation of MLC2 [322] and 2) Inhibition of myosin phosphatase 

(MYP) [323] which functions to de-phosphorylate MLC2. This process is also 

simultaneous with the polymerisation of Globular Actin (G-actin) into F-actin-rich 

stress fibers [324]. This is induced by ROCK via inhibition of actin-binding protein, 

cofilin which enables polymerisation of G-Actin monomers [325, 326]. Together, 

RhoA/ROCK-mediated actin polymerization and contraction of MLC generates 

cytoskeletal tension.  

 

1.4.6. Mechanisms by which cytoskeletal tension regulates gene expression 

 

1.4.6.1. YAP/TAZ 

The precise steps between ROCK-mediated cytoskeletal tension and induction of 

specific gene expression patterns observed are poorly understood. However, one 

transcription factor complex, Yes-Associated Protein [327] [327]/Transcriptional 

Coactivator with PDZ-Binding Motif (TAZ) has been shown to be central to this 

process [327]. This complex is classically the effector of the Hippo signalling pathway. 

Upon cell-cell contact and engagement of the Fat4 receptor, specific kinases 

negatively regulate YAP by phosphorylating and targeting it for proteosomal 

degradation. Conversely when the Hippo pathway is inhibited, non-phosphorylated 

YAP translocates to the nucleus where it binds to TEA Domain (TEAD) transcription 

factors and induces gene expression [328].  
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The ability of YAP/TAZ to respond to changes in substrate stiffness has also been 

shown, both via [329] and independently of the Hippo pathway [330]. On substrates 

of increased stiffness on which cytoskeletal stress fibre formation is induced, 

YAP/TAZ are localized to the nucleus. This was shown to be mediated by ROCK-

induced MLC contraction, by observation that treatment with Blebbistatin or ROCK 

inhibitor, Y-27632 abolished stiffness-mediated YAP translocation.  Nuclear shuttling 

of YAP also requires inhibition of Cofilin and de-repression of actin polymerization 

[331].  

On a relative stiff ECM, following YAP/TAZ translocation into the nucleus, a cell fate 

switch occurs which was previously demonstrated by MSCs on this substrate [307]. 

That is, a bias towards osteogensis at the expense of adipogenesis. Conversely, 

adipogenesis was higher in MSCs on a softer substrate, within which cytoplasmic 

YAP/TAZ was observed [330]. Small Interfering RNA (siRNA) knockdown of YAP and 

TAZ in MSCs on the stiff substrate appeared to abolish osteogenesis, whilst inducing 

adipogenesis. Correspondingly, TAZ has been shown to bind to and potentiate the 

function of the key regulator of osteogenesis, RUNX2 whilst inhibiting the key 

regulator of adipogenesis, PPAR-γ [332]. 

 

1.4.6.2. MRTF-SRF  

In addition to YAP/TAZ, other transcription factors which are regulated by 

cytoskeletal tension are the Myocardin-Related Transcription Factors (MRTFs) which 

are co-activators of Serum Response Factor (SRF)-target genes [333]. MRTF nuclear 

import is inhibited by actin de-polymerisation within the cell [334]. Recue of MRTF 
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nuclear import requires RhoA activity, ROCK-mediated phosphorylation of Cofilin and 

G-actin polymerisation [335]. MRTF-SRF functions to maintain the mechanosensing 

ability of the cell in a positive feedback loop. Their targets include genes whose 

products are involved in actin and ECM re-organization in addition to those required 

for cell-cell adhesion [336]. TAZ mRNA and expression of YAP-TEAD targets have also 

been shown to be stimulated by MRTF-SRF activity [337]. 

 

1.4.6.3. The LINC complex and Nuclear Lamins  

Observations have been made of the effect of integrin-mediated cytoskeletal tension 

on inducing corresponding tension with the nucleus [338]. This has been shown to 

require in part, the Linker of Nucleoskeleton and Cytoskeleton [339] [339] complex. 

This complex connects the actin-myosin cytoskeleton with the nucleoskeleton [340] 

and mediates the force transmitted to the nucleus in response to cytoskeletal tension 

[341]. Nuclear YAP localization and subsequent transcription of TEAD-targets has 

been shown to depend on the LINC complex in strain-responsive cells [342], 

indicating a link between nuclear tension and changes in gene expression.  

Another class of structural components within the nucleus, the Lamins, may also play 

key roles in the transduction of mechanical signals from the cytoplasm [343]. Lamins 

regulate nuclear architecture, chromatin organization [344] and epigenetic control 

of gene expression [345]. They are localisaed to the nuclear lamina, between the LINC 

complex and chromatin bundles [346]. LaminA expression in MSCs correlates with 

tissue stiffness and has also been shown to be greater in cells exposed to stiffness-

mediated increases in cytoskeletal tension [347]. LaminA has also been shown to 
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coordinate actin dynamics of the cytoskeleton. It ensure formation of contracted 

actin bundles, and nuclear translocation of mechanoresponsive transcription factors, 

YAP [347] and Megakaryoblastic Leukemia (Translocation) 1 (MKL1) [348] [349]. 

 

1.4.7. Mechanotransduction during articular cartilage development and 

maintenance 

There is a multitude of evidence suggesting the role of mechanotransductive 

pathways during maintenance of the articular chondrocyte phenotype. Correlation 

between cell shape and stability of the articular chondrocyte phenotype has long 

been suggested, with spread articular chondrocytes compared to those of a smaller, 

polygonal shape exhibiting hypertrophic characteristics [350]. Reducing substrate 

adhesion and cell spreading enhances the cartilage ECM-producing ability of 

chondrocytes [351] and this is concomitant with that shown by Kim et al. These 

authors observed a progressively-higher susceptibility of chondrocytes to develop an 

OA-phenotype when cultured on substrates of increasing stiffness [352]. This OA-

phenotype was marked by increased mRNA expression of MMP13 and ADAMTS5, 

whilst reducing SOX9, COL2A1 and ACAN mRNA. These changes in chondrocyte 

phenotype were shown to be mediated via ROCK-induced cytoskeletal tension due 

to observations of reduced OA development upon treatment with Y-27632 and 

Blebbistatin.  
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1.4.7.1. Effect of substrate stiffness, cytoskeletal tension and actin 

organisation during chondrogenesis 

Cell shape is an influential aspect of mesenchymal progenitors in the limb bud 

condensation and the subsequent chondrogenic differentiation program. Ray et al 

demonstrated the round actin arrangement of chick limb bud mesenchymal cells 

prior to formation of the growth plate. Treatment of this ex vivo culture with 

Cytochalasin D inhibited myosin contraction and the round actin arrangement 

required for SOX9 and COL2A1 mRNA expression [353]. This implies that cortical actin 

organization is a product of cytoskeletal tension in limb bud cells and is responsible 

for their observed round morphology and downstream chondrogenesis. Gao et al 

investigated the effect of cell spreading on the chondrogenesis of hMSCs. Collagen 

Type II protein and SOX9 mRNA were increased in hMSCs which were 

chondrogenically-induced on 1024μm2 islands compared to that on 10,000μm2 

islands [354]. This study therefore directly implicates cell shape in downstream 

chondrogenic differentiation programs.  

The specific stiffnesses of cartilage and subchondral bone are important in directing 

osteochondral mesenchymal progenitors down the chondrogenic [355]/osteoblastic 

lineages [304], in addition to being required for the specific functions of each tissue. 

The elastic modulus from subchondral bone, through to articular cartilage has been 

shown to vary in the order of three magnitudes – ranging from approximately 2.3GPa 

to 2.6MPa for bone and cartilage respectively [356, 357] (Fig. 1.3) [1]. Allen et al 

utilised Collagen Type I-coated polyacrylamide gels to demonstrate stiffness 

mediated differences in hMSC chondrogenesis which were independent of a change 
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in cell shape or area [355]. In this study, despite fewer long stress fibres and more 

cortical actin observed in hMSCs on the 0.5 Megapascal (MPa) substrate compared 

to those on the 1.1MPa, no significant change in cell morphology was observed. 

Despite this lack of shape change, hMSCs on the 0.5MPa surface upregulated 

transcription of SOX9, COL2A1 and ACAN compared to that at 1.1MPa.  

In the study by Allen et al, chondrogenesis on the 0.5MPa substrate in which a cortical 

actin arrangement was present in hMSCs, was reduced by ROCK inhibition. This same 

inhibition appeared to increase cartilage differentiation on the stiff substrate on 

which hMSCs displayed long actin stress fibres. This, suggests the importance of 

ROCK-mediated cortical actin organization for chondrogenesis, as opposed to ROCK-

mediated long stress fibre formation which is detrimental to chondrogenic induction. 

Kwon et al observed an increase in SOX9 and COL2A1 mRNA and Collagen Type II 

protein by murine BM-MSCs on a 1KPa substrate, compared to those on a 150KPa 

substrate [358]. Blebbistatin treatment was observed to reduce the increases in 

chondrogenic mRNA levels on the 1KPa substrate, implicating MLC2 contraction in 

generating the specific cortical actin organization required for chondrogenesis. 

Together these studies point to polar-opposite effect of cytoskeletal tension on 

chondrogenesis, dependent on the elasticity of the substrate on which cells are 

seeded. On a soft substrate RhoA/ROCK-mediated actin reorganization may be 

conducive for chondrogenesis by inducing cortical actin formation of differentiating 

cells. This is as opposed to cells on a stiff substrate in which ROCK induces stress fibre 

formation and a spread actin network and in which chondrogenesis is inhibited. 
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1.4.7.2. Role of RhoA/ROCK during chondrogenesis 

The role that RhoA/ROCK plays in generating and maintaining an articular 

chondrocyte phenotype is context-dependent. In micromass cultures ROCK 

inhibition abolished the early expression of SOX9 targets and transcriptional co-

activators in murine limb bud mesenchymal stem cells (Woods, 2006). This decrease 

in chondrogenesis is also induced by cytoskeletal destabilisation, whilst stimulation 

of actin polymerisation increased chondrogenesis [307]. The culture system utilized 

in this study was a high-density, micromass culture, in which a rounded/oval 

morphology has been shown to be adopted by individual cells [307]. Therefore the 

finding by Wood and Beier supports previous reports of the role of RhoA/ROCK-

mediated cortical actin organization for chondrogenesis. This is also supported by the 

observation that ROCK inhibition decreases the expression of chondrogenic genes in 

ATDC5 cells on softer substrates where fewer long stress fibres and increased cortical 

actin is displayed [355]. This is contrasted with observations on comparatively stiff 

substrates where ATDC5 stress fibre formation is increased and on which, 

chondrogenesis is enhanced by ROCK inhibition. This again indicates that ROCK is 

required to maintain both cortical organization and long stress fibre formation on 

soft and stiff substrates respectively. However ROCK is required for chondrogenesis 

only when differentiating cells take on a round morphology, for example when 

present on ECM of low stiffness or in high-density cultures.  

In addition to mediating the mechanotransducive effect on chondrogenesis, 

RhoA/ROCK is able to regulate SOX9 activity directly. The stability of SOX9 in ATDC5 

cells is dependent on the phosphorylation state of serine-211 within its polypeptide 
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sequence [359]. In chondrosarcoma cells, Haudenschild et al identified a specific 

amino acid sequence within the SOX9 polypeptide which denotes it as a target of 

ROCK-mediated phosphorylation [360]. These authors then observed the ROCK-

mediated dose-dependent increase of SOX9 phosphorylation. Nuclear localization of 

SOX9 is required for transcription of its chondrogenic target genes [361]. Therefore 

observation of the abolishment of TGF-β1-induced nuclear SOX9 translocalisation by 

ROCK inhibition,  suggests the requirement of ROCK activity for SOX9 function during 

chondrogenesis [360]. The activity of RhoA and ROCK have also been demonstrated 

to positively-influence the TGF-β1/3-Smad2/3 pathways during chondrogenesis. Xu et 

al observed on an inhibition of TGF-β1-induced SOX9, COL2A1 and ACAN transcription 

in synovium-derived MSC, due to inhibition of RhoA or ROCK [362]. This was shown 

to be due to the requirement of RhoA-stimulated ROCK activity in the 

phosphorylation of Smad2 and Smad3.  

 

1.4.7.3. Role of YAP/TAZ during chondrogenesis 

The consensus for the role of YAP/TAZ during chondrogenesis is that of a down-

regulatory one. Deng et al observed a progressive decrease in YAP1 expression during 

the differentiation of chondro-progenitor cells into those capable of depositing a 

GAG-rich ECM [363]. This was synonymous with observations during endochondral 

bone development in which the cartilage growth plate expresses low levels of un-

phosphorylated, and therefore active YAP. This is in contrast to the increased 

expression in that of surrounding perichondrium, containing osteoblasts required for 

formation of the primary ossification centre. Adenoviral delivery of YAP1 to 
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chondroprogenitor cells results in a significant reduction in GAG and Collagen Type II 

production and instead, halts their differentiation whilst maintaining their 

proliferative state [363]. Karystinou et al observed a reduction in YAP1 mRNA and 

protein in response to TGF-β1-mediated chondrogenic induction of synovium-derived 

MSCs [364]. These authors also observed a decrease in chondrogenesis of the MSC 

cell line, C3H10T1/2 in response to retroviral delivery of the YAP1 gene. This was 

marked by reduced SOX9 and COL2A1 mRNA expression in addition to diminished 

Alcian Blue staining of GAGs. Mechanistically, this was proposed to be via 

downregulation of BMP signalling due to observation of reduced Smad1/5/8 

phosphorylation in YAP1-delivered MSCs.  

Zhong et al observed the decrease in transcription of RUNX2 and COL1A1 in response 

to siRNA knockdown of YAP1 in rat BM-MSCs [365]. This was accompanied by an 

increase in SOX9, COL2A1 and ACAN expression. Together this demonstrated the role 

of YAP in promoting a pro-osteogenic and anti-chondrogenic transcriptional program 

in mesenchymal progenitors. The requirement of YAP downregulation for 

maintenance of the chondrocyte phenotype has also been demonstrated by 

observation that its siRNA-mediated knockdown result in increases in SOX9, COL2A1 

and ACAN mRNA [366]. This corresponded with observations in the same study of 

the downregulation of these chondrogenic transcripts in response to siRNA 

knockdown of LATS1. This gene encodes a kinase which inhibits YAP nuclear 

translocation [367]. 

 

1.4.8. Effect of hypoxia and HIF on mechanotransductive pathways  
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1.4.8.1. Regulation of cytoskeletal tension and organisation by hypoxia and 

HIF 

The effect of hypoxia and HIF on formation of actin stress fibres and cytoskeletal 

tension has been extensively investigated. Overall, the evidence points to the ability 

of hypoxia to upregulate stress fibre formation in a variety of cell types. For example, 

Vogler et al demonstrated the increased spreading of L929 Fibroblasts upon 

incubation at 1%O2 compared to cells cultured in normoxic conditions [368].  This 

was associated with increased intensity of actin staining in cortical patterns around 

the nucleus in addition to a greater number of actin focal points. These structures 

denote regions where the cytoskeleton is linked with the ECM via adhesion 

complexes thereby signifying increased cytoskeletal tension [369]. Cytoskeletal 

contraction and re-arrangement also occurs due to hypoxia in many cancer cell types 

such as neuroblastoma [370], adenocarcinoma cells [371] and breast cancer cells 

[372]. In the case of the latter, incubation at 1%O2 for 24 hours increased the number 

of visible actin stress fibres in the MDA-MB-231 breast cancer cell line compared to 

culture at 20%O2. Hypoxia was also observed to increase tension within these breast 

cancer cells, as assessed by their ability to retract the Collagen Type I gel onto which 

they were seeded. This was accompanied by increased MLC2 phosphorylation 

denoting contraction of this myosin sub-type.  

The ability of hypoxia-incubated MDA-MB-231 cells to generate focal adhesions 

compared to that at normoxia was demonstrated. A group observed increased 

immunodetection of Vinculin-containing adhesion complexes due to hypoxic 
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incubation of the breast cancer cells. This corresponded with greater levels of FAK 

phosphorylation which is indicative of downstream integrin signalling in cells of a 

high tensegrity [373]. HIF has also been shown to regulate cytoskeletal 

rearrangement in endothelial cell spheroid cultures. In this study, Weidemann et al 

observed an increase in the concentric F-Actin arrangement around the nucleus in 

response to treatment with HIF-1α stabilizing agent- Dimethyloxalylglycine (DMOG) 

[374]. Again in breast cancer cells, siRNA knockdown of HIF-1/2α abolished hypoxia-

mediated increases in cell contraction, focal adhesion formation and 

phosphorylation of FAK, similar to levels observed at normoxic conditions [372].  

Cofilin is an actin-binding protein which by performing its function, blocks G-actin 

polymerization which is required for stress fibre formation. Knockdown of PHD2, the 

oxygen-sensing hydroxylase responsible for targeting HIF-1α for degradation, was 

observed to increased stress fibre formation in HeLa cells [375]. This phenomenon is 

mediated by increased phosphorylation and inactivation of Cofilin and was replicated 

by treatment of wild type cells with DMOG.  

Another mechanism by which HIF increases focal adhesion formation and 

cytoskeletal contraction, is via transcriptional induction of genes encoding Integrin 

receptors. For example, Skuli et al observed increases in protein levels of Integrin-β5 

in response to hypoxic incubation in a glioma cell line, and this also was accompanied 

by increases in Vinculin and FAK phosphorylation [376]. siRNA knockdown of 

Integrin-β5 inhibited hypoxia-mediated increases of phosphorylated FAK. This 

suggests the requirement of increased integrin-mediated ECM adhesion in 

generating downstream cytoskeletal tension. Hypoxia was also shown to increase 
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mRNA levels encoding Integrin-α6 in a breast cancer cell line, and this increase was 

abolished by HIF-1α knockdown [377]. Identification of a HIF-response element 

within the gene encoding this integrin subtype is suggestive of the ability of hypoxic-

induced transcription to directly upregulate integrin-mediated signalling. 

 

 

1.4.8.2. The regulation of RhoA/ROCK by hypoxia and HIF 

Corresponding to the majority of the literature which describes the positive effect of 

hypoxia on stress fibre formation, low oxygen tension has been shown to induce the 

activity levels of the both RhoA and ROCK. In breast cancer cells, Gilkes et al identified 

HIF-response elements in the promoter regions of both RHOA and ROCK1, 

demonstrating an ability of this transcription factor complex to directly upregulate 

RhoA and ROCK1 expression [372]. Indeed, these authors demonstrated an increase 

in mRNA encoding RhoA and ROCK1 in response to incubation in 1%O2 compared to 

culture at normoxia, in addition to observing increases in the corresponding proteins. 

These increases were also shown to be abolished by HIF-1/2α knockdown. Therefore 

hypoxia-induced HIF is implicated as the regulatory mechanism of RhoA/ROCK 

activity during breast cancer cytoskeletal contraction.  

González Rodríguez et al identified the hypoxia-mediated regulation of RhoA/ROCK 

in rat cardiomyocytes [378]. Interestingly, despite a lack of effect on RHOA and 

ROCK1 mRNA due to a 4-hour hypoxic incubation, an increased in RhoA and ROCK1 

protein were observed in addition to an induction of RhoA activity. Additionally, 

RhoA activity was not enhanced in myocytes in which a constitutively active HIF-1α 



  

93 
 

was present. Despite demonstrating a hypoxia-mediated induction of RhoA/ROCK 

protein, this study is suggestive of a context-dependent regulation of RHOA and 

ROCK1 transcription by HIF, despite both these genes containing HIF-response 

elements in their promoter regions. Following on from this, in colon cancer cells, 

Mizukami et al observed an increase in the active, GTP-bound form of RhoA due to 

hypoxic incubation, despite no overall increases in RhoA protein [379]. This increase 

was abolished by inhibition of phosphoinositide 3-kinases demonstrating a novel 

pathway by which hypoxia regulates RhoA activity. This effect of hypoxia on RhoA 

induction was also observed to be required for induction of the transcription of 

VEGFA, a long established HIF target [379]. This was demonstrated by hypoxia-

mediated increases in VEGFA mRNA being abolished by RhoA or ROCK inhibition. This 

indicates the potential requirement of RhoA and ROCK in mediating hypoxia-induced 

HIF signalling.  

With regards to evidence of increased ROCK activity due to hypoxia, Nakanishi et al 

demonstrated the increase of ROCK activity due to hypoxia in lung smooth muscle in 

vivo [380]. In response to incubation of a mouse in a mild hypoxia (10%O2), the 

authors observed an upregulation of MLC2 phosphorylation within smooth muscle 

cells of the lung. This was accompanied by an increase in phosphorylation of myosin 

phosphatase. These changes were abolished by ROCK inhibition with Y-27632 

thereby demonstrating the ability of hypoxia to induce activity of ROCK that is 

conducive for myosin light chain contraction. 

 

1.4.8.3. Effect of hypoxic pathways on YAP/TAZ function 
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Hypoxia has been shown to influence the availability of YAP as a binding partner for 

TEAD transcription factors in a number of cancer cell types. In prostate cancer cells 

[381], hepatocellular carcinoma cells [382] and breast cancer cells [383], the nuclear 

localisation of YAP is induced by hypoxic culture. This is simultaneous with a decrease 

in the inactive, phosphorylated YAP. In the study by Ma et al, hypoxia downregulated 

the hippo pathway and increased levels of activated YAP. This increased in YAP was 

shown to be mediated via an increase in expression of Zyxin which plays a key role in 

the focal adhesion complex in response to integrin engagement [384]. The findings 

by Ma et al are therefore suggestive of a role for hypoxia in regulating the levels of 

active YAP via changes in formation of the cell adhesion complex and the 

transduction of ECM stiffness by the cell. 

 

1.5. The research aims of the thesis - utilising hypoxia and HIF signalling in BM-MSC 

chondrogenesis  

Hypoxia plays critical roles during chondrogenesis of mesenchymal progenitors and 

cartilage ECM formation, both during limb development and in vitro chondrocyte 

specification. This suggests the role that hypoxia may play in achieving a cell 

phenotype and ECM composition from BM-MSCs which mimics articular 

chondrocytes and native articular cartilage in which they reside. Generation of 

native-like articular cartilage is required for the repair of chondral defects. This may 

enable the desired mechanical properties of the regenerated cartilage which would 

enable resistance to the compressive and tensional forces on the joint during 

locomotion. However, a disparity exists with regards to the specific hypoxic state 
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required to achieve optimal chondrogenesis and cartilage ECM formation, whilst 

inhibiting chondrocyte hypertrophy – a common issue with current CTE strategies. 

Therefore the first results chapter of this thesis - chapter 3, describes data which 

compares the effects of 5% with 2%O2 during hBM-MSC chondrogenesis.  

The primary mediator of signalling in response to physiological hypoxia is the HIF 

transcriptional complex. During BM-MSC chondrogenesis, the functions of HIF and 

its alpha subunit – HIF-1α are required for expression of articular chondrocyte 

markers and an ECM which mimics native articular cartilage. Therefore, the use of 

chemical agents which upregulate HIF-1α may provide a valid alternative to the use 

of hypoxia during hBM-MSC chondrogenesis.  

The use of HIF-1α-stimulating compounds would avoid the potential pitfalls 

associated with the incubation of BM-MSCs at low-oxygen conditions. These include 

the upregulation of the unfolded protein response which may reduce the protein 

translation required for stem cell differentiation. The use of HIF-1α-upregulating 

compounds would also enable spatial control of hypoxic signaling in BM-MSCs on a 

biomaterial scaffold. Therefore chapter 4 describes a study which compares the role 

of three widely-used HIF-1α-stimulating compounds during BM-MSC 

chondrogenesis. The aim of this study was to compare which of Cobalt Chloride, 

Desferroxamine and Dimethyloxaloylglycine are able to stimulate articular 

chondrogenesis, formation of articular cartilage ECM and inhibition of chondrocyte 

hypertrophy. 

The final results section – chapter 5, aims to investigate the crosstalk between 

hypoxic signaling, with those pathways that are stimulated in response to the 
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mechanical stiffness of the cell microenvironment. As described in section____, 

mechanotransducive pathways have been shown to be integral during BM-MSC 

chondrogenesis, with ROCK-mediated cytoskeletal tension and a round cell 

morphology required for chondrocyte differentiation. In addition to the role of 

hypoxia during chondrogenesis, regulation of components of the 

mechanotransducive pathway by low-oxygen conditions has been demonstrated. 

Together, these suggest the potential of hypoxia in upregulating 

mechanotransducive pathways that are conducive for chondrogenesis. The results in 

chapter 5 investigates this effect of hypoxia with observations potentially informing 

CTE strategies in which hypoxic culture of BM-MSCs is combined with biomaterial 

scaffolds of a defined stiffness.  

The overarching hypothesis for the thesis is as follows: hypoxia is able to improve 

chondrogenesis of BM-MSCs and inhibit hypertrophy. This improvement of 

chondrogenesis is able to be replicated by the use of a HIF-1α-stabilising compound. 

Finally, hypoxia induces BM-MSC chondrogenesis through regulation of 

mechanotransducive pathways via generation of cytoskeletal tension and cell shape 

that are conducive for articular chondrocyte differentiation. Together, chapters 3-5 

detail results which inform the improvement of BM-MSC chondrogenesis to achieve 

an articular chondrocyte phenotype which more closely mimics those present in 

native articular cartilage. Such improvements utilising hypoxia would enable the 

development of CTE strategies for repair of chondral defects by ensuring production 

of an articular cartilage ECM and inhibition of chondrocyte hypertrophy. This would 

enable the regenerated tissue to exhibit the specific mechanical properties required 
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of articular cartilage whilst inhibiting inappropriate ossification of the graft when 

implanted in vivo. 

 

 

2. Materials & Methods 

 

 

2.1. Isolation of hBM-MSC 

hBM-MSCs were provided by Dr. Holgar Auner of Department of Medicine, Imperial 

College London. Due to this material being provided by a collaborator and not 

isolated by within the lab of Dr. Eileen Gentleman, it was not possible to obtain BM-

MSCs from more than a from a single donor . This introduces a caveat to the present 

study due to the heterogeneity exhibited by BM-MSCs harvested from different 

donors with regards to their chondrogenic potential. However, there exists a 

concordance between observations made of BM-MSCs here with that in the 

literature, such as the HIF-response to hypoxic incubation and chondrogenic-

induction by TGF-β3. This suggests that the novel observations made here are not 

indicative of an anomalous BM-MSC donor source but instead, may represent BM-

MSCs of similar characteristics as utilized in the literature. Thereby, these findings 

may inform the development of chondrogenic induction protocols for BM-MSCs. 

Human samples used in this research project were obtained from the Imperial 

College Healthcare Tissue Bank (ICHTB, HTA license 12275). ICHTB are supported by 

the National Institute for Health Research (NIHR) Biomedical Research Centre based 

at Imperial College Healthcare National Health Service (NHS) Trust and Imperial 
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College London. ICHTB is approved by the United Kingdom (UK) National Research 

Ethics Service to release human material for research (12/WA/0196), and the 

samples for this project were issued from sub-collection R16052. Bone marrow 

aspirates were collected and plated in CellSTACK® (Corning) culture chambers at a 

density of 10-25x106/636cm2. Cells were then cultured in αMEM supplemented with 

5% human platelet lysate (Stemulate) and cultured under standard conditions. When 

cell confluence of 90-100% was achieved (10-14 days), cells were detached with 

recombinant trypsin (Roche) and reseeded at 5000 cells/cm2.  

Cultures were immunophenotyped and found to express CD90, CD105, CD73 and not 

express hematopoietic markers CD34 and CD45 (data now shown). Antibodies used 

identify expression of these markers were: CD90-Fluorescein Isothiocyanate (FITC) 

[166-095-403], CD105-Allophycocyanin [385-094-926], CD73- Phycoerythrin (PE) 

[385-095-182], CD34-PE [385-081-002], and CD45-FITC (#130-098-043; all from BD 

Biosciences) using a FACSCalibur™ Analyser (BD Biosciences). 

 

2.2. Expansion  and cryopreservation of hBM-MSC, bovine chondrocytes and C28/I2 

cell line 

Following their isolation, hBM-MSCs were plated onto T-175 tissue culture flasks for 

their expansion in the following conditions: 20%O2, 5% Carbon Dioxide (CO2) at 37○C.  

Growth media (GM; 10% (v/v) Fetal Bovine Serum (FBS; Life Technologies) in α-

Minimal Essential Media (αMEM; Life Technologies)) was added to each flask and 

replaced twice a week until cultures reached 90% confluency. At this point, cultures 
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were passaged by an initial wash in Phosphate Buffered Saline (PBS; Life 

Technologies) and enzymatic dettachment from the flask surface with treatment 

with 0.05% (v/v) Trypsin-Ethylenediaminetetraacetic acid (EDTA) (Life Technologies) 

for 3 minutes at 37○C. Following collection of resulting cell suspension and washing 

of residual cells from the flask with GM, cells were centrifuged at 1200 Relative 

Centrifugal Field (RCF) for 5 minutes. The resulting pellet from one flask was then re-

suspended in GM and divided equally between three recipient flasks which was also 

each added to with GM. Flasks were incubated for 24 hours before their inspection 

on a Zeiss brightfield microscope and subsequently incubated for a further 48 hours 

before the GM was changed and expansion was carried out.  

For cryopreservation of hBM-MSCs, trypsin-EDTA was used for cell detachment and 

suspensions were pelleted as with the passaging protocol but pellets from each flask 

were instead re-suspended in a 1:1 mixture of GM and Cryopreservation media (20% 

(v/v) Dimethyl sulfoxide (DMSO; Sigma Aldrich) in FBS). The suspension from one 

flask was then transferred to a single cryopreservation vial which was frozen at -80○C 

in an iso-propanol container before transfer to storage in liquid nitrogen.  

For thawing of frozen cells, each vial was removed from liquid nitrogen storage and 

thawed rapidly at 37○C. This was subsequently followed by dilution of the cell 

suspension in GM in a 1:10 ratio. Suspensions were then centrifuged at 1200 RCF for 

5 minutes, before re-suspension of the pellet and division between three T-175 flasks 

each containing GM. Flasks were incubated for 24 hours before their inspection on a 

Zeiss brightfield microscope, changing of the GM and expansion as described above. 

Bovine chondrocytes and C28/I2 cells were expanded, cryopreserved and thawed 
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with identical protocols to that used for hBM-MSC culture with the exception of the 

composition of GM. GM consisted of Dulbeccos MEM (DMEM; Sigma Aldrich) + 10% 

(v/v) FBS + 1% (v/v) Antibiotic Antimycotic (ABAM; Sigma Aldrich) for the bovine 

chondrocytes and DMEM + 10% (v/v) FBS for the C28/I2 cell line. 

 

2.3. Chondrogenic Induction of hBM-MSC and bovine chondrocytes as monolayers, 

pellets and on PA gels. 

Frozen vials of hBM-MSCs and bovine chondrocytes were thawed and expanded up 

until passage 5, before their trypsinisation and plating into multi-well tissue culture 

plates for monolayer chondrogenic induction. Following the cell counting of the BM-

MSC suspension, separate dilutions of this suspension were made in GM for seeding 

into tissue culture plates of each size of well. The cell suspensions were diluted such 

that when set volumes were pipetted into each well, a universal cell density of 

30,000/cm2 or 5000/cm2 was achieved for TCP or PA subtrates respectively . See 

appendix figure 1 for cell concentrations and pipetting volumes for wells of each size. 

See appendix figure 2 the overall workflow detailing the chondrogenesis of hBM-

MSCs. 

In addition to the universal cell densities used, other control measures were put into 

place to minimize the effect of sample-to-sample cell number variation due to 

proliferation/cell death. hBM-MSC cell number in control conditions did not vary 

significantly (p=<0.05) throughout chondrogenesis appendix figure 3. In conditions 

in which cell number at time of sample harvest did vary from the control condition, 

normalization of chondrogenic assay outputs to cell number was undertaken. See 
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each assay entry in this chapter for how quantitiative/semi-quantitative data was 

normalized to cell number . 

 In addition to chondrogenic induction of hBM-MSCs, bovine chondrocytes were 

utililsed as a positive control for cartilage ECM formation. By detection of GAG’s 

produced by bovine chondrocytes, it was possible to optimize Alcian Blue staining for 

GAGs in addition to allowing selection between TGF-β1 or TGF-β3 for future 

chondrogenic-induction experiments. 

 For pellet chondrogenesis, hBM-MSC and bovine chondrocytes were divided into 

aliquots of 2x105 cells in 15ml flacon tubes before their centrifugation at 1200 RCF 

for 5 minutes. Monolayer cultures and pellets were incubated for 24 hours in GM, 

prior to induction using standard chondrogenic differentiation media (CDM). CDM 

consisted of High Glucose Dulbecco's Modified Eagle Medium (Sigma Aldrich) + 2mM 

L-Glutamine (Thermo Fisher Scientific) + 100nM Dexamethasome (Sigma Aldrich) + 

1% (v/v) Insulin, Transferrin, Selenium Solution (Thermo Fisher Scientific) + 1% (v/v) 

ABAM solution (Sigma Aldrich) + 50μg/ml Ascorbic acid-2-phosphate (Sigma Aldrich) 

+ 40μg/ml L-proline (Sigma Aldrich). This was then supplemented with either 

10ng/ml TGF-β1 or TGF-β3 (Peprotech).  

For upregulation of HIF-1α, CDM was supplemented with the following compounds 

(Sigma Aldrich): 100μM Cobalt Chloride (CoCl2), 50μM Desferrioxamine (DFX) and 

200μM DMOG. For hypoxic incubations, hBM-MSCs in un-supplemented CDM were 

incubated in a cell culture incubator which was set to 5%O2 + 5%CO2 or in an 

incubator set at 2%O2 + 5%CO2. To achieve HIF-1α inhibition, media was further 

supplemented with 500nM Acriflavine (ACF; Santa Cruz). Preliminary experiments 
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were conducted to identify which of TGF-β1 or TGF-β3 were more optimal for 

chondrogenesis with bovine chondrocyte cultures used as a positive control for 

cartilage ECM production.  

hBM-MSCs and bovine chondrocytes were also differentiated as pellet cultures to 

ensure CDM promoted the production of cartilage ECM in 3D culture (Appendix Fig. 

4). This was due to the premise that results in the present study may enable 

improvement of strategies for cartilage tissue engineering within 3D biomaterial 

scaffolds.  Pellet cultures at time points specificed were washed in PBS and fixed in 

4% (w/v) Paraformaldehyde (PFA) before histological processing (Appendix Fig. 5). 

Following paraffin wax embedding, sectioning of pellets into 10μm slices and 

mounting onto glass cover slides, samples were then histochemically stained as 

described in Appendix Fig. 6. 

 

2.4. Polyacrylamide gel synthesis and hBM-MSC culture 

Synthesis of PA gels was conducted by Daniel Foyt who also aided in carrying out 

experiments in which BM-MSCs were chondrogenically-induced on these gels. 0.5ml 

of 100mM Sodium Hydroxide (NaOH) was dispensed evenly onto a 25mm glass 

coverslip and the water was allowed to evaporate at 80°C leaving a thin crystalline 

layer of NaOH. 0.2 mL of (3-Aminopropyl)triethoxysilane was dispensed evenly onto 

the NaOH coated coverslip and allowed to react for 5 min after which the coverslip 

was thoroughly washed with DI water and placed in 2ml of 0.5%(v/v) glutaraldehyde 

in PBS for 30min. Coverslips were then removed from the glutaraldehyde solution 

and allowed to air dry at room temperature. 40% (w/v) acrylamide, 2% (w/v) N,N′-
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methylenebis(acrylamide), and PBS were mixed in the proportions shown in 

appendix figure 10A. Gel precursors were degassed under strong vacuum for 15min. 

Glass microscope slides were coated with 0.1 ml of Dichlorodimethylsilane (DCDMS) 

and allowed to react for 2min. Microscope slides were washed with DI water and 

dried. Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) were 

added to the gel precursors according to the ratios above and vortexed for 30 sec. 

0.05ml of gel solution was dispensed onto the DCDMS coated microscope slides. 

Coated coverslips were then placed coated side down onto the gel solution and the 

gel was allowed to cure for 30 min. Substrates were washed over night in 10 ml of 

PBS with gentle agitation.  

Substrates were washed again 3 times in 5ml of PBS for 5 min. 0.5ml of 0.5mg/ml 

sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (Sulfo-SANPAH) 

dissolved in 50mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 8.5) 

(HEPES) was dispensed onto the substrates and substrates were exposed to UV light 

for 20min. Substrates were wash 3 times in 5ml of HEPES. Substrates were placed in 

2ml of 0.015mg/ml fibronectin solution in HEPES and agitated gently over night at 

4°C. Fibronectin coated substrates were washed 3 times in PBS and stored at 4°C for 

up to 2 weeks.  

After washing in PBS overnight, one PA gel was placed in each well of a 6-well plate 

prior to seeding with hBM-MSCs and chondrogenic induction for which the following 

procedure was followed. hBM-MSCs were detached from the plastic surface with 

0.05% (v/v) Trypsin-EDTA, re-suspended in GM and cells were carefully distributed in 

a 200μl aliquot to cover the entire surface of each gel at 3x104 cells/cm2. Following 
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an initial 4-hour attachment period at 20%O2, 5%CO2 and 37○C, each well containing 

a single PA gel was supplemented with 2ml GM. A further 24-hour incubation period 

was carried out and GM was then replaced by CDM containing TGF-β3 with each gel 

incubated further at either 20%O2 or 2%O2 conditions as indicated. The length of the 

final incubation step is indicated in each figure legend and represents the 

‘chondrogenic-induction phase’ of the experiment. Where also indicated, CDM was 

further supplemented with 10μM Y-27632 to achieve ROCK inhibition.  

 

2.5. PicoGreen assay for quantification of dsDNA and cell number  

At indicated time points, samples were washed in PBS and snap-frozen at -80 ⁰C 

followed by their digestion in 400μg/ml Papain in a 0.2M Trisodium Phosphate buffer 

which also included 10mM EDTA and 10mM L-Cysteine. This digestion step was 

carried out at 65⁰C for 18 hours with constant agitation after which the cell lysates 

were frozen at -20⁰C until quantification of double stranded DNA using a PicoGreen 

kit (Thermo Fisher Scientific). PicoGreen dye was diluted in a 1:200 ratio with TE 

buffer which consists of 10mM Tris-Hydrochloric Acid (HCL) and 1mM EDTA at pH 

7.5. PicoGreen dye was then further diluted in a 1:1 ratio with one of each of the 

Papain-digested lysates in a single well of an opaque 96-well plate. Samples of each 

lysate were prepared in triplicate in this manner. Following a subsequent 10-minute 

incubation step in the dark at room temperature, fluorescence intensity was 

quantified with a Flexstation fluorescent plate reader. Using double-stranded DNA 

(dsDNA) standards provided in the PicoGreen kit, a linear relationship was observed 

between PicoGreen fluorescence intensity and dsDNA. Lysates of known hBM-MSC 
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number were also used to determine a linear relationship between hBM-MSC 

number and PicoGreen fluorescence intensity. 

 

2.6. Neutral Red Assay for quantification of cell viability 

At the time points specified, cultures were washed with PBS and replaced with 

identical media + 10% Neutral red dye (Sigma-Aldrich). Samples were then incubated 

with hBM-MSCs for 2 hours in identical culture conditions as that prior to Neutral 

Red treatment.  This was followed by sample fixation in 0.1% (w/v) Cadmium Chloride 

(CdCl2) + 0.5% (w/v) PFA. Dye retained by hBM-MSC was solubilised in 1% (v/v) Acetic 

Acid + 50% (v/v) Ethanol for 10 mins with gentle agitation. Quantification of 

solubilised Neutral Red was then performed on an absorbance spectrophotometer 

at 540nm. Samples of known hBM-MSC number were also used to determine a linear 

relationship between hBM-MSC number and PicoGreen fluorescence intensity. 

 

 

2.7. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for separation of 

proteins in cell lysate based on molecular weight 

Following 24-hours of culture, cells were washed once in PBS and lysed in a buffer 

consisting of 2M urea, 4.8% (v/v) Sodium Dodecyl Sulfate (SDS), 8% (w/v) sucrose (all 

Sigma Aldrich) in Deionised Water (dH2O) for 10 minutes on ice. Lysates were then 

removed from the cell culture vessel with a cell scraper and transferred to 1.5ml 

Eppendorf tubes where they were passed through a 23-guage needle with a 1ml 

syringe. Samples were then stored at -20○C until quantification of total protein with 

the BCA assay kit from Thermo Fisher Scientific. Total protein levels were quantified 
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to enable equal loading of each conditions for the SDS-PAGE, thereby normalizing for 

changes in cell number at time of sample harvest . 

For the Bicinchoninic Acid (BCA) assay, 25μl of each sample was mixed with 200μl 

BCA solution (1:50 ratio of 4% (w/v) cupric sulfate:sodium carbonate+sodium 

bicarbonate+BCA+sodium tartrate in 0.1M sodium hydroxide) in a single well of a 96-

well plate followed by incubation for 30 mins at 37○C with gentle agitation 

throughout. The protein levels were then quantified using an absorbance 

spectrophotometer at 562nm wavelength. If sample were suspected to be highly 

concentrated or if lysate volume was low, samples were diluted by 2x or 5x in killer 

lysis buffer before mixing with BCA solution. 1, 0.8, 0.6, 0.4 and 0.2mg/ml solutions 

of Bovine Serum Albumin (BSA) were ran alongside samples of unknown protein 

concentration to generate a standard curve from which unknown concentrations 

could be determined.  

For running on the SDS-Polyacrylamide Gel Electrophoresis (PAGE), all samples 

quantified using the BCA assay were diluted to the same concentration. Each sample 

was then further diluted in a 1:4 ratio with Laemmli loading buffer (Biorad) containing 

10% (v/v) 2-mercaptoethnol (Sigma Aldrich) and boiled at 95○C for 5 minutes before 

resting on ice for 10 minutes. 40μl Prepared lysates in loading buffer were loaded 

into 10% (w/v) pre-cast PA gels (Biorad) and SDS-PAGE was performed at 120v for 45 

minutes in which the KaleidoscopeTM ladder (Biorad) was also ran to enable 

determination of protein molecular weight in samples. The buffer used in the SDS-

PAGE consisted of 0.3% (w/v) Trizma Base (Sigma Aldrich) + 1.4% (w/v) Glycine (Sigma 

Aldrich) + 1% (v/v) SDS (Sigma Aldrich) in dH2O. Protein from the SDS-PAGE were 
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transferred using the Trans-Blot Turbo Transfer System (Biorad) onto Polyvinylidene 

difluoride (PVDF) membranes which were pre-soaked in absolute Ethanol and 

transfer buffer (40% (v/v) absolute ethanol + 20% (v/v) BioRad Transfer Buffer in 

dH2O).  

 

2.8. Western Blot for detection of proteins separated by SDS-PAGE 

Following protein transfer, PVDF membranes were soaked in blocking solution (5% 

Non-fat milk (NFM) solution in TBST buffer (0.1% (v/v) Tween-20 (Sigma Aldrich) + 

Tris-HCL (Sigma Aldrich) in dH2O)) for 1 hour at room temperature with gentle 

agitation. Membranes were then cut and the half in which proteins were of 100Kda 

or above were incubated in a solution of anti-HIF-1α antibody (h-206; Santa Cruz) 

diluted 1:200 in 5%NFM solution, overnight at 4○C  with gentle agitation. The portion 

of the membrane in which proteins were below that of 100KDa in Molecular Weight 

(MW) were incubated with anti-β-Actin antibody (ab8227; Abcam) for 1 hour at room 

temperature with gentle agitation. β-Actin is a commonly-detected housekeeping 

protein whose expression does not change in response to hypoxic incubation. This 

therefore enabled normalization of the band due to HIF-1α to total protein/cell 

number of each sample . 

Following multiple washes in TBST, membranes were treated with a horseradish 

peroxidase-conjugated secondary antibody (sc-2004; Santa Cruz) for 1 hour at room 

temperature with gentle agitation.  Membranes were washed again in TBST and 

signal was generated from bound secondary antibody with the Chemiluminescent 

ECL substrate (Biorad) and was detected on a Chemidoc Touch imaging platform 
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(Biorad). HIF-1α and protein levels were generated by densitometric analysis with 

ImageJ and normalised to that of β-Actin.  

 

2.9. Quantitative Polymerase Chain Reaction for quantification of mRNA 

At time points specified, samples were washed in PBS, lysed in buffer consisting of 

1% (v/v) 2-mercaptoethanol in RLT buffer (Qiagen) and stored at -80○C until RNA 

extraction procedure. RNA was extracted from lysates using the RNeasy Mini Kit 

(Qiagen) in which samples were lysed further by passing through Qiashredder spin 

columns before subsequent washes in RW1 and RPE buffers in RNeasy spin columns. 

RNA was eluted from the spin columns in RNase-free H2O and quantified on a 

NanoDrop spectrophotometer.  

100ng of RNA per sample was then reverse transcribed by first incubating with 

Random Primers (Promega) at 70○C for 5 minutes. cDNA complimentary to the input 

RNA was synthesized by incubation of the RNA-Random Primer solution for 1 hour at 

42○C with a solution consisting of 4% (v/v) Moloney Murine Leukemia Virus Reverse 

Transcriptase (MLV-RT; Promega) + 20% (v/v) MLV-RT buffer (Promega) + 5.4% (v/v) 

Polymerase Chain Reaction (PCR) Nucleotide Mix (Promega) all in molecular biology 

H2O (Sigma Aldrich). Resulting cDNA of 25μl final volume was stored at -20○C until 

amplification and quantification of specific transcripts with quantitative polymerase 

chain reactions (qPCR). The loading of 100ng of RNA in the RT of each sample ensures 

that the expression value obtained from the qPCR assay is normalized to cell 

number/total RNA content . 

qPCR was carried out in a CFX384 (Biorad). Each qPCR reaction mixture consisted of 

4ng cDNA template + 50% (v/v) Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix 
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(Agilent) was used in conjunction with 250/500nM primers (IDT Technologies) 

specific to genes of interest. See qPCR reaction conditions and primer sequences in 

Appendix Fig. 7A and Appendix Fig. 7B respectively.  

Raw cycle of Ct values were converted to transcript copy number by the relative 

standard curve method of analysis, and expression levels were normalised to 

transcript levels of RPL13A . Following normalisation to the housekeeping gene, 

expression levels were then normalised to that of the untreated control to determine 

fold change in expression induced by each treatment.  

Optimal primers were identified through the use of cDNA from cell types theorised 

to express high levels of each transcript to which the primer is specific for. Each 

primer set tested following prediction of binding target with Nation Centre for 

Biotechnology Information (NCBI) Primer Blast was used to amplify serially diluted 

cDNA from these positive controls in order to generate standard curves. These 

standard curves were used to identify the existence of a linear expression between 

input cDNA concentration and Ct value in addition to enabling quantification of the 

reaction efficiency. Selection criteria for each gene of interest: single predicted 

product in NCBI Primer Blast results, a single peak in melt curve compared to no-

template control in which dH2O replaces the cDNA template and an R2 value of >0.9, 

theoretical reaction efficiency of 90-110%. 

 

2.10. Immunodetection of proteins in cultures on tissue culture plastic  

Cultures were washed in PBS, fixed in 4% (w/v) PFA for 15 minutes before further 

PBS washes and storage at 4○C until immunofluorescent staining protocol. Following 

a blocking and permeabilisation period of 1 hour at room temperature in 10% (v/v) 
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goat serum (Sigma Aldrich) + in 0.1% (v/v) Triton X-100 (Sigma Aldrich) in H2O (PBT), 

fixed monolayers were treated with primary antibody (see Appendix Fig. 8 for 

specific antibodies and concentrations) made up in blocking solution overnight at 

4○C. After binding of the primary antibody to the specific antigen, monolayers were 

washed in 0.1% (v/v) PBT. Rabbit-derived primary antibodies were visualised by 

incubating monolayers with ab150077 (Abcam) for one hour at room temperature 

(dilutions in blocking solution are specified in Appendix Fig. 8 for detection of each 

primary antibody). Mouse-derived primary antibodies were detected by treatment 

with biotin (ab6788, Abcam) for one hour at room temperature and Streptavidin 

(S11223, Thermo Fisher Scientific) for one hour at room temperature with both 

diluted by 1:350 in blocking solution. Cultures were counterstained with 0.1μg/ml 

4',6-diamidino-2-phenylindole (DAPI; Sigma Aldrich) for 1 hour min to visualise cell 

nuclei and fluorescent signal was imaged on an Axiovert200M microscope (Zeiss).  

 

2.11. Immunofluorescence staining of proteins in cultures on PA gels  

Cultures were washed in PBS, fixed in 4% (w/v) PFA for 15 minutes before multiple 

15-minute PBS washes with gentle agitation. Samples were stored at 4○C until 

immunofluorescent staining protocol. Following a blocking and permeabilisation 

period of 1 hour at room temperature in 5% (w/v) BSA + in 0.1M Triton X-100 in H2O 

(PBT), fixed PA gels were treated with primary antibody (see Appendix Fig. 8 for 

specific antibodies and concentrations) made up in 5% (w/v) BSA + PBT overnight at 

4○C. After binding of the primary antibody to the specific antigen, monolayers were 

washed in 3% (w/v) BSA (Sigma Aldrich) + PBT with gentle agitation. Rabbit-derived 

primary antibodies were visualised by incubating monolayers 
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with ab150077 (Abcam) for one hour at room temperature (dilutions in 5% (w/v) BSA 

+ PBT are specified in Appendix Fig. 8 for detection of each primary antibody). The 

secondary antibody solution also included 0.1μg/ml DAPI to visualise cell nuclei and 

fluorescent signal was imaged on an Axiovert200M microscope (Zeiss). Following 

imaging of signal generated due to detection of specific antigen, PA gels were re-

stained with Phalloidin (Sigma Aldrich) at 1:200 dilution in PBS for visualisation of the 

actin cytoskeleton.  

 

2.12. Alcian Blue Staining for detection of glycosaminoglycans 

At time point specified, cultures were washed in PBS, fixed in 4% (w/v) PFA, washed 

subsequently in PBS and stored at 4○C until Alcian Blue staining protocol. Staining 

procedure was as follows. Samples were first washed in 0.1N HCL and stained 

overnight at room temperature with 1% (w/v) Alcian Blue solution, pH 1.0 (Sigma 

Aldrich) prepared in 0.1N HCL. Following another 0.1N HCL wash, stained cultures 

were then rinsed repeatedly in PBS until the waste PBS no longer contained any 

residual Alcian Blue dye. Samples were then counterstained with Haematoxylin 

(Vector Laboratories) to visualise cell nuclei and washed in PBS until the waste PBS 

no longer contained any residual Haematoxylin dye. Staining was imaged with an 

Axiovert200M microscope (Zeiss).  

 

2.13. Glycosaminoglycan quantification 

At day 21 of chondrogenesis, cultures were washed in PBS and frozen at -80 °C before 

their digestion in Papain buffer as described in protocol for cell lysis for the PicoGreen 

assay. Glycosaminoglycans were quantified from papain-digested lysates using the 
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GAG assay kit by Blyscan™ in which GAGs were dyed with 1,9‐dimethyl‐

methylene blue and subsequently dissociated with Propan-1-ol solution before 

quantification on an absorbance spectrophotometre at 640nm. Values per culture 

were normalised to levels of dsDNA, which were quantified using the PicoGreen 

assay .  

 

2.14. Immunofluorescence quantification 

Immunofluorescence images were captured using identical gain, exposure and offset 

for all conditions in each experiment. These were determined with positive controls 

that expressed the antigen of interest, and negative controls in which the primary 

antibody was omitted. The same threshold fluorescence intensity for images of all 

conditions within an experiment was set and signal below this threshold was negated 

as non-specific immunofluorescence.  The signal produced above the threshold was 

regarded as bona fide protein detection and was used to create a binary 

representation of the protein localisation pattern of each image. The percentage of 

immunofluorescence staining present within a specified area was then determined 

for each image within each condition. This percentage was then normalized to the 

number of DAPI-positive cells to account for changes in cell number due to 

proliferation/cell death . 

 

2.15. Quantification of cell colonies, area, circularity and HIF-1α/YAP nuclear 

localisation 

For quantification of cell colonies, area, circularity and HIF-1α/YAP nuclear 

localisation, images were analysed in ImageJ. For quantification of colonies, 
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Phalloidin staining of actin cytoskeleton was used. The same threshold of 

fluorescence intensity was set for images of all conditions within a single experiment 

and below this threshold, the signal produced was negated as non-specific 

immunofluorescence. The signal produced above the threshold was regarded 

as bona fide protein detection and was converted to a binary representation of the 

protein localisation pattern of each image. Using the corresponding DAPI channel as 

a reference, colonies were counted based on classification of direct cell-cell contact 

occurring with those not engaged in cell-cell contact classified as single cells 

(Appendix Fig. 10B).  

Number of single cells and colonies were quantified in this manner and total cells 

quantified in DAPI channel. Area of counted single cells and colonies in addition to 

single cell circularity were also quantified using the ‘measure’ function in ImageJ 

following thresholding and creation of binary images as described above.  

For quantification of HIF-1α/YAP nuclear localisation, DAPI channel and Alexa488 

channel indicating HIF-1α/YAP signal were used. As before, thresholding and binary 

representations were created from each image. Each DAPI-stained nuclei was 

selected in each image and these selections were superimposed onto the 

corresponding Alexa488 channel. ImageJ’s ‘measure’ function was utilised to 

quantify the percentage of signal present within each DAPI-demarcated area in the 

Alexa488 channel. 

 

2.16. Statistical Analysis 

All statistical analyses were performed in Prism7 (GraphPad) with the Mann-Whitney 

test used to compare two conditions and Kruskal-Wallis with Dunn’s Correction for 
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multiple condition comparisons. Non-parametric tests were used as we were unable 

to demonstrate normality in all datasets. Data comprise biological replicates (n 

stated in figure legends), where each replicate represents a single cell culture 

experiment. *marks all differences which were statistically significant (p<0.05). 
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3. The role of low oxygen concentration during chondrogenic induction of human 

bone marrow-derived mesenchymal stem cells. 

 

3.1. Introduction 

CTE is required due to the insufficiency of palliative, reparative and restorative 

strategies for treatment of acute chondral and osteochondral defects. hBM-MSCs 

may represent the most suitable source for CTE due to their ease of isolation, ability 

to be expanded without loss of multipotency and the patient specificity of autologous 

cells. However, a potential limitation to the use of this cell type in articular CTE is the 

propensity for their differentiation into cells with hypertrophic characteristics. This is 

suggested due to observation of COL10A1 and COL1A1 mRNA expression in BM-MSCs 

prior to chondrogenesis [386, 387]. This indicates a priming of these cells for 

secretion of collagens required for hypertrophic and fibrotic cartilage respectively. 

BM-MSC pellet culture and chondrogenesis has also been shown to progressively 

upregulate the expression of both COL10A1 and IL1B mRNA compared to that prior 

to induction [388]. IL1B encodes Interleukin-1β which is a pro-inflammatory cytokine 

shown to induce articular cartilage hypertrophy [389] and development of an 

osteoarthritic phenotype [390]. As pertained to, TGF-β-mediated CTE may also result 

in chondrocyte hypertrophy [198] which may result in mineralisation of the 

regenerated tissue within the chondral defect site [196].  

From formation of the limb bud, through to cartilage growth plate formation and 

during homeostasis of adult articular cartilage, there exists a hypoxic state in which 

the mesenchymal progenitors and articular chondrocytes reside. Hypoxia and HIF 
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play essential roles in the proliferation, differentiation and maintenance of the 

articular chondrocyte phenotype. Unlike that of specific growth factors which are 

expressed in specific temporal patterns, hypoxia is constitutively present and plays 

active role throughout articular cartilage development [259, 262]. This suggests a 

potential role for hypoxia and HIF in CTE. Hypoxia has been shown to block 

chondrocyte hypertrophy and ossification. This demonstrates its potential for 

reducing the drawbacks associated with TGF-β treatment, whilst still allowing 

chondro-induction and cartilage formation.  

The potential for hypoxic signalling in CTE is demonstrated, for example, in a study in 

which BM-MSCs and chondrocyte co-cultures were differentiated within PE micro-

fibre scaffolds. Hypoxic incubation of differentiating cultures within these constructs 

induced expression of chondrogenic mRNA and GAG production, in addition to 

reducing activity of ALP [391]. Duval et al also demonstrated a role for hypoxia in 

improving the chondrogenic differentiation of hBM-MSCs cultured in alginate beads. 

These authors observed the induction of chondrogenic mRNA and reduction of 

transcripts which encode factors conducive for chondrocyte hypertrophy. An 

increased formation of a Collagen Type II and GAG-rich ECM was also observed of 

hypoxia-induced, alginate-encapsulated MSCs following subcutaneous implantation 

into mice [272]. The ability of hypoxia to alleviate chondrocyte hypertrophy in PLGA 

scaffolds was also demonstrated. Tan et al observed a decrease in expression of 

RUNX2 and COL10A1 and an increase in the ratio of COL2A1/COL1A1 mRNA due to 

2%O2, compared to incubation at 20%O2 [392]. Hypoxia in this study also increased 

detection of Collagen and GAGs in the ECM within the PLGA scaffolds compared to 

normoxic controls. 
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The role of hypoxia in chondrogenic differentiation and maintaining the phenotype 

of articular chondrocytes relative to CTE approaches conducted at normoxia, 

highlights the potential role for hypoxia in the repair of acute chondral defects. A key 

question however, is that which asks of the severity of hypoxia required to promote 

articular chondrogenesis. The studies by Meretoja and Duval described above utilised 

5% oxygen as their hypoxic condition, with others performing chondrogenic 

induction of BM-MSCs at 3% oxygen for example [393]. Without a direct comparison 

during chondrogenic induction, it is impossible to determine the optimal oxygen 

concentration required to improve this process. For example, the oxygen 

concentrations in the studies by Meretoja and Duval cannot be directly compared 

with that by Bornes et al, due to the use of differing biomaterial scaffolds, which may 

influence the chondrogenic differentiation program of seeded cells. 

Foldager et al demonstrated a trend towards increased mRNA expression of SOX9, 

ACAN and COL2A1 with the oxygen concentration decreased from 21, to 5, to 1% 

during both scaffold and monolayer culture of primary articular chondrocytes [394]. 

Increased GAG release was also observed from human osteoarthritic chondrocytes 

due to 2% oxygen compared to those cultured at 5%O2 [395]. These and other studies 

identifying lower oxygen concentrations as more potent HIF stabilisers [396] points 

to the importance of identifying the optimal hypoxic oxygen concentration for MSC-

based CTE efforts. However, to date there exists no such direct comparison of 5% 

and lower values during hBM-MSC chondrogenesis. Therefore, the aims, hypothesis 

and objectives for the current chapter are as follows:  
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 Aim: Identify which of 5% or 2% oxygen induces greater chondrogenic 

induction of hBM-MSCs in a 2D system on tissue culture plastic (TCP). 

 

 Hypothesis: 2% oxygen stimulates greater stabilisation of HIF transcriptional 

complex than 5%O2, resulting in a greater level of chondrogenic induction. 

 

 Objectives:  

o To identify which of 2% or 5%O2 more potently stimulates HIF stabilisation 

and downstream transcriptional activity during in vitro hBM-MSC 

chondrogenic induction on TCP. 

o To identify which of 2% or 5%O2 more potently stimulates articular 

chondrogenesis and cartilage ECM formation during in vitro hBM-MSC 

chondrogenic induction on TCP. 

o To identify which of 2% or 5%O2 more potently inhibits hypertrophy 

during chondrogenesis during in vitro hBM-MSC chondrogenic induction 

on TCP. 
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3.2. Results 

 

3.2.1. Comparison of TGF-β1 and TGF-β3 during chondrogenic induction of hBM-

MSCs as monolayer and pellet cultures 

A difference between 2% and 5% oxygen regarding the degree of hBM-MSC 

chondrogenesis induced may inform CTE strategies in which hypoxia is to be utilised. 

We initially optimised chondrogenic induction of primary hBM-MSCs in a 2D 

monolayer culture system . This is due to the heterogeneity exhibited by BM-MSCs 

from different donors in terms of regulation of the molecular pathways required for 

their expansion and chondrocyte differentiation. BM-MSCs from female donors for 

example, exhibit higher clone-forming ability than their male counterparts, resulting 

in a higher proliferation rate [397]. BM-MSCs from differing donors also underwent 

varying degrees of chondrogenic induction, with changes in SOX9, Aggrecan and 

Collagen Type II protein demonstrated [398].  

 TGF-β ligands via SMAD3 are the most established drivers of in vitro chondrogenesis 

from hBM-MSCs [77]. The indispensable role of TGF-β ligands in chondrogenic 

differentiation of  limb bud progenitors and cartilage ECM production during limb 

development rationalizes their use within an in vitro model of stem cell 

chondrogenesis [189]. Current methods for in vitro chondrogenesis utilise either TGF-

β1 or TGF-β3 with no overwhelming preference for either demonstrated in the 

literature. Therefore a comparison of these two growth factors during 

chondrogenesis at was employed, with Alcian Blue staining for GAG’s utilised at day 

21 of culture. As shown previously, Alcian Blue staining is a rudimentary indicator of 
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chondrogenesis with GAGs representing a large constituent of cartilage ECM [399], 

with a timepoint such as day 21 chosen to maximize the presence of GAGs . 

The concentration of 10ng/ml used for TGF-β1 and TGF-β3 represents that used by 

the vast majority of studies in which BM-MSCs are chondrogenically induced . In 

addition, to ensure that differentiating BM-MSCs were exposed to a bioactive 

concentration of either TGF-β ligand throughout the differentiating period, cultures 

were replaced with fresh chondrogenic media at 3-4 day intervals . Treatment of TGF-

β1/TGF-β3 was also combined with culture of hBM-MSCs at a high cell density. This is 

due to the importance of mesenchymal condensation of the limb bud at the onset of 

embryonic chondro-induction [400]. TGF-β1/TGF-β3 were also used in conjunction 

with Dexamethasome, L-Proline and Ascorbic Acid-2-Phosphate due to the role of 

these supplements in promoting cartilage ECM production in vitro [140, 184, 401] .  

Following 21 days of BM-MSC chondrogenic induction, no difference was observed 

in Alcian Blue staining of GAGs between cultures exposed to TGF-β1 or TGF-β3-

containing chondrogenic induction media (Figs. 3.1A-3.1C). This time point was 

chosen due to previous demonstration that abundant GAG production represents 

later stages of chondrogenic induction [402].  Adult bovine chondrocytes have also 

previously been used as an in vitro cartilage model due to the ability of these cells to 

abundantly produce cartilage ECM proteins in response to stimulatory conditions 

[403]. Therefore the effect of TGF-β1 and TGF-β3 again at 10ng/ml was compared 

with regards to GAG production from Bovine chondrocytes following 7 and 14 days 

of culture. At both time points, GAG production by bovine chondrocytes was greater 

due to TGF-β3 (Figs. 3.1E+3.1G) compared to that induced by TGF-β1 (Figs. 3.1D+3.1F) 
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Figure 3.1. Comparison of TGF-β1 and TGF-β3 for inducing presence of GAGs in ECM. 

Alcian Blue staining of GAG’s in the ECM surrounding hBM-MSCs and Bovine 

Chondrocytes in presence of TGF-β1/TGF-β3-containing chondrogenic media. A: hBM-

MSCs at day 21 of culture in expansion conditions. B+C: hBM-MSCs at day 21 of 

chondrogenic induction in presence of TGF-β1 (B) and TGF-β3 (C). D+E: Bovine 

chondrocyte cultures at day 7 of culture in chondrogenic media consisting of TGF-β1 

(D) and TGF-β3 (E). F+G: Bovine chondrocyte cultures at day 14 of culture in 

chondrogenic media consisting of TGF-β1 (F) and TGF-β3 (G). 
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3.2.2. Effect on Collagen Type II mRNA and protein synthesis by human Bone 

Marrow-derived Mesenchymal Stem Cells following TGF-β3-mediated 

chondrogenic differentiation 

Following observation that TGF-β3 enhanced GAG production from chondrogenically-

induced hBM-MSCs compared to that due to TGF-β1, an effect on Collagen Type II 

mRNA and protein was assessed due to TGF-β3. This is due to the importance of 

Collagen Type II both during chondrogenesis and in cartilage ECM function [29]. 

mRNA encoding the alpha helix of Collagen Type II was examined due to the 

importance of COL2A1 transcription during cartilage development [404] . 

Immunostaining of Collagen Type II in chondrogenically-differentiated cultures was 

also conducted due to the large number of post-transcriptional regulatory elements 

of Collagen Type II. Visualisation of Collagen Type II protein therefore indicates 

formation of mature articular cartilage ECM [394]  and as with GAG production , was 

examined at day 21 due to this stage representing that at which adult cartilage is 

formed in vitro ((Solchaga, 2011 #1364)) . Expression of Collagen Type mRNA has 

previously been shown to be upregulated prior to Collagen Type II production and 

incorporation into the ECM at day 21. This therefore prompted investigation of 

COL2A1 expression at 14 of in vitro cartilage induction [269] . 

Figure 2 displays the optimisation of protocols conducted for COL2A1 mRNA 

quantification and Collagen Type II immunostaining. The suitability of primers which 

enabled specific amplification of the COL2A1 gene was assessed by generation of a 

standard curve in which the concentration of serially-diluted cDNA from the 

chondrocyte cell line; C28/I2 were plotted against cycle number (Fig. 3.2A). This was 
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also repeated for identification of an optimal housekeeping gene to which all 

expression values in this study were normalised. Primers specific to the 

housekeeping gene; RPL13A were used (Fig. 3.2B). The COL2A1 and RPL13A standard 

curves demonstrate a linear relationship between cDNA concentration and cycle 

number in addition to amplifying target cDNA with a theoretical efficiency between 

90-110%. Fig. 3.2D demonstrates the binding of Collagen Type II by the primary 

antibody used in the immunostaining protocol here, following 21 days of 

chondrogenic induction. This is in contrast to that at day 0 of chondrogenesis (Fig. 

3.2C) . The lack of signal in figure 3.2E demonstrates that the signal observed in Fig. 

3.2D is due to the primary antibody and is not background signal or that due to the 

secondary antibody to which the fluorophore is conjugated. 

mRNA was extracted from differentiating cultures at day 14 and TGF-β3 was observed 

to increase levels of the COL2A1 transcript by 3-fold compared to that induced 

without TGF-β3. This was confirmed statistically by comparison of the averaged 

expression values due to each condition using a Mann-Whitney test (Fig. 3.3A). Even 

in the absence of TGF-β3, differentiating cultures at day 21 produced condensed 

clusters of Collagen Type II (Fig. 3.3B) and GAGs (Fig. 3.3D) as assessed by Collagen 

Type II immunostaining and the Alcian Blue histochemical stain respectively . This 

suggests an ability of high-density cultures + non-growth factor supplements in 

enabling a degree of cartilage ECM formation. This may perhaps have been predicted 

due to the ability of Dexamethasome, L-Proline and Ascorbate-2-Phosphate to 

induce ECM production. Despite this however inclusion of TGF-β3 appeared to 

increase the levels of Collagen Type II and GAGs (Figs. 3.3C+3.3E), demonstrating the 

use of this growth factor and overall culture system (cell density of 30,000/cm2 on 
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TCP) in our model of chondrogenesis. These precise culture conditions were 

therefore utilised throughout this chapter and chapter 5 of this document. 
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Figure 3.2. Identification of COL2A1-specific primers and optimization of Collagen 

Type II immunostaining. (A+B) Standard curve which demonstrates a linear 

relationship between input cDNA concentration and cycle (Ct) number when 

amplified using COL2A1 (A) and RPL13A (B)-specific primers. (C-E) Immunostaining of 

Collagen Type II in BM-MSC cultures incubated at 20%O2 at days 0 (C) and 21 (D+E) 

of chondrogenesis. Images C+D demonstrate immunofluorescent signal following an 

immunostaining protocol in which the primary antibody was included. Image E was 

taken following an immunostaining protocol in which the primary antibody was 

omitted. Scale bar = 200μm. 
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Figure 3.3. TGF-β3-containing chondrogenic differentiation medium enhances 
chondrogenesis of hBM-MSCs. (A) mRNA expression of COL2A1 at day 14 of 
differentiation under normoxic conditions after normalization to expression of the 
housekeeping gene; RPL13A. Values plotted are fold change relative to -TGF-β3 
condition from 4 independent experiments, with the solid line representing the 
mean.  *denotes p<0.05 compared to -TGF-β3 when compared with a Mann Whitney 
test. (B+C) Collagen Type II immunostaining with DAPI counterstain at day 21 of 
differentiation. Scale bar = 400μm. Representative images of 3 independent 
experiments are shown. (D+E) Alcian Blue staining for glycosaminoglycans with 
haematoxylin counterstain at day 21 of differentiation under normoxic conditions. 
Scale bar = 400μm. Representative images of 3 independent experiments are shown.   
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3.2.3. Hypoxia Inducible Factor stabilisation by 5% and 2%O2  

Following identification of TGF-β3-containing induction media as a driver of in vitro 

BM-MSC chondrogenesis, the next aim was to examine the ability of either hypoxic 

state; 2/5%O2 in stimulating the HIF pathway – the archetypal response of cells to 

physiological hypoxia. Each hypoxic state was induced by the culture of BM-MSCs 

within incubators into which specific levels of Nitrogen gas are introduced to displace 

the oxygen and alter its bioavailability to cultured cells . BM-MSCs were induced with 

TGF-β3-containing chondrogenic media as before in a 2D, TCP system  but incubated 

at either hypoxic state for the full differentiating period. The phenotype of the 

chondrogenically-induced cultures which were incubated at hypoxia were compared 

with cultures differentiated at the normoxic (20%O2) condition.  

Cultures were exposed to hypoxia throughout the entire differentiating protocol due 

to the constitutive presence of this factor during in vivo cartilage development [259, 

262] . Compared to normoxic conditions, constitutive hypoxia in vitro did not 

negatively affect cell number throughout the differentiating process, thus suggesting 

their suitability for further experiments . This is illustrated by immuno-labelling and 

counting the number of nuclei in day 21 BM-MSC cultures which were 

chondrogenically induced at 20%, 5% and 2%O2 (Fig. 3.4A). 

One of the key biological markers of physiological hypoxia is increased total HIF-1α – 

the oxygen-responsive subunit of HIF as well as its enhanced nuclear localization. HIF-

1α protein levels are controlled by the hydroxylase; PHD2 whose inhibition reduces 

HIF-1α degradation and correspondingly, increases its stabilization [405] .  Therefore, 

increased HIF-1α due to either 2 or 5%O2 compared to normoxic conditions would 
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demonstrate the ability of these hypoxic states to block availability of oxygen to the 

active sites of PHD2 and in doing so, stimulate the HIF pathway. This may therefore 

indicate the ability of 2 and 5% O2 to induce BM-MSC chondrogenesis compared to 

normoxic conditions, due to HIF activity being shown to enhance cartilage formation 

in vitro [272]. When assessed by whole-cell Western Blot, which is a common method 

utilised to determine total HIF-1α levels and therefore its stability [406]  , both 5% 

and 2%O2 increased HIF-1α stabilisation at day 1 of chondrogenesis compared to 

normoxic controls (Fig. 3.4B). This was validated by densitometric analysis of each 

biological repeat in which the levels to due to either hypoxic state were shown to be 

significantly higher than that at normoxia, as assessed by the Mann Whitney test (Fig. 

3.4C). The day 1 time point was selected due to the relatively rapid and acute 

upregulation of HIF-1α protein by hypoxia under chondrogenic conditions [407] . 

As with total HIF-1α protein levels, HIF-1α nuclear localization is an indicator of PHD2 

inhibition and suppression of HIF-1α degradation . This is due to evidence which 

demonstrates the passive translocation of HIF-1α into the nucleus and inhibition of 

this phenomenon occurring only due to PHD2-mediated HIF-1α degradation [44] . 

Conversely, increased levels of this protein results in enhanced nuclear translocation 

of HIF-1α and binding to target DNA sequences with the HIF complex [408] . The 

ability of 5% and 2%O2 to induce HIF-1α nuclear localisation was assessed by 

immunostaining for this protein. This was followed by semi-quantification of HIF-1α 

within the subcellular compartments of BM-MSCs in the resulting 

immunofluorescent images. As with analysis of total HIF-1α protein, this was 

conducted at day 1 of chondrogenesis. Under each condition, the total area of 

immunofluorescent signal due to the HIF-1α-specific antibody used, whose intensity 
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was above a standardized threshold, was measured in the nucleus of each cell. This 

value was then converted into a percentage of the total nucleus area of each cell 

which was demarcated by DAPI immunostaining .  

Both reduced oxygen concentrations appeared to induce more nuclear HIF-1α (Figs. 

3.4E+3.4F) compared to the normoxic control (Fig. 3.4D). Quantification of HIF-1α 

translocation in these images validated this observation in which nuclear localization 

due to either hypoxic state were shown to be significantly higher than that at 

normoxia, as assessed by the Mann Whitney test (Fig. 3.4G). At each hypoxic level 

compared to that at normoxia, there was an increased number of BM-MSCs in which 

over 50% of the nucleus was occupied by HIF-1α.  

Interestingly, HIF-1α protein was detected in normoxic cultures by Western Blot (Fig 

3.4B) but localisation appeared to be solely restricted to the perinuclear region of 

differentiating BM-MSCs (Fig. 3.4D). This perinuclear localisation of HIF-1α was also 

observed in each hypoxic condition which accompanied the increased nuclear 

presence of this protein (Fig. 3.4E+3.4F). Figure 3.4H illustrates that the signal 

generated in BM-MSC cultures at 2%O2 compared to 20%O2 is due to the HIF-1α 

antibody used and background fluorescence or due to the secondary antibody. It is 

important to note that nuclear fractionation of chondrogenically-induced BM-MSCs 

was attempted for the purpose HIF-1α semi-quantification by Western Blot in the 

nuclear compartment only. However, low levels of total protein per sample 

prevented us from doing so .  
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Figure 3.4. Both 5% and 2% oxygen levels increase total HIF-1α levels and nuclear 
localisation. (A) Detection of HIF-1α, and housekeeping protein β-Actin at day 1 of 
chondrogenesis by Western Blot. Representative image of 4 experimental repeats 
shown. (B) Protein blots of HIF-1α were quantified by densitometric analysis and 
normalised to levels of β-Actin. Values plotted represent magnitude difference to 
20%O2 condition represented by the horizontal dotted line, with the solid coloured 
lines representing the mean for each condition and *denoting p<0.05 compared to 
20%O2 when assessed by the Mann Whitney test. (C-E) HIF-1α immunofluorescence 
staining at day 1 of chondrogenesis. Scale Bar = 50μm. Representative images of 3 
independent repeats shown. Images were cropped and magnified to clearly visualise 
localisation of HIF-1α. Brightness and contrast was adjusted for all channels to an 
equal degree between all conditions. (F) Quantification of nuclear HIF-1α 
immunofluorescence at day 1 of chondrogenesis. Each value plotted represents the 
percentage of a single DAPI-stained nucleus that is occupied by HIF-1α. Values from 
3 independent repeats shown with the red/black horizontal lines representing the 
mean and *denoting p<0.05 compared to 20%O2 when assessed by the Mann 
Whitney test.  (B-D) Immunostaining of HIF-1α in BM-MSC cultures incubated at 
20%O2 at days 1 of chondrogenesis at 20% (H) and 2%O2 (I+J). Images H+I 
demonstrate immunofluorescent signal following an immunostaining protocol in 
which the primary antibody was included. Image J was taken following an 
immunostaining protocol in which the primary antibody was omitted. Scale bar = 
100μm. 
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3.2.4. Induction of Hypoxia Inducible Factor target gene expression by 5% and 2%O2  

Following HIF-1α stabilisation and increased nuclear localization, an indicator of HIF-

1α upregulation is expression of genes whose promoters contain a HRE to which the 

HIF complex binds and induces transcription. In addition to being regulated by PHD2-

mediated HIF-1α degradation, the hydroxylase; FIH when active, hydroxylates HIF-1α 

and inhibits binding by its co-factors that are required for transcription of target 

genes. Therefore, expression of HIF target genes in BM-MSCs during TGF-β3-

mediated chondrogenesis at 2/5%O2, may indicate inhibition of both PHD2 and FIH 

and induction of HIF activity by these hypoxic states . 

To assess HIF-mediated transcription of target genes, qPCR was utilised to quantify 

exact number of mRNA transcripts. BM-MSC cultures differentiated in the TGF-β3-

mediated chondrogenic conditions optimized here, at 20%/5%/2%O2, were lysed and 

RNA was collected at specific time points. A day 1 time-point was selected to 

complement the studies into HIF-1α protein level and localization shown above and 

to assess early, acute effects of each oxygen concentration . PGK1, EGLN and VEGFA 

mRNA was also quantified at day 14 at which point, mature chondrogenic 

differentiation of progenitor cells is undergoing [269]. This would indicate HIF 

stabilisation and expression of HIF targets during chondrogenesis . Analysis of HIF 

target expression at day 14 would enable correlations to be made between the 

expression of established HIF targets, with those indicating chondrogensis .  

 The mRNA levels of three established HIF targets were assessed. VEGFA encodes a 

growth factor which is upregulated in response to ischemic conditions, as a primary 

mediator of vasculogenesis [409]. The product of PGK1 – Phosphoglycerate Kinase 1 
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(PGK1) is part of the array of glycolytic enzymes upregulated in response to hypoxia 

which enables the switch from aerobic to anaerobic respiration [410]. EGLN encodes 

the hydroxylase, PHD2 which is upregulated by HIF to provide a negative feedback 

loop  and preventing hyper-activation of HIF-mediated transcription [411] . RPL13A 

has been shown to be the most appropriate housekeeping gene for gene expression 

analysis of cultures exposed to physiological hypoxia. Its expression does not change 

significantly in response to hypoxic stimulation unlike that of GAPDH or ACTB [412] . 

RPL13A was therefore used throughout this and the next two chapters for 

normalization of gene expression data. 

The suitability of primers specific to VEGFA, PGK1 and EGLN were assessed by 

generation of a standard curve in which the concentration of serially-diluted cDNA 

from the chondrocyte cell line; C28/I2 were plotted against cycle number (Figs. 3.5A-

3.5C). Each standard curve demonstrated a linear relationship between cDNA 

concentration and cycle number in addition to amplifying target cDNA with a 

theoretical efficiency between 90-110%.  

Following identification of optimal primers, VEGFA, PGK1 and EGLN transcripts were 

amplified and quantified in differentiating cultures. Both 5% and 2%O2 significantly 

(p=<0.05) increased expression of VEGFA (Fig. 3.5D), PGK1 (Fig. 3.5E) and EGLN (Fig. 

3.5F), at day 1 of chondro-induction compared to that at 20%O2. However at day 14 

of culture, only 2%O2 maintained this increase of all three genes compared to 

normoxic conditions (Figs. 3.5G-5I). Furthermore, 2%O2 induced expression of VEGFA 

(Fig. 3.5G) and EGLN (Fig. 3.5I) to significantly higher levels than induced by 5%O2. 

PGK1 expression was increased by 5%O2 at day 14 compared to 20%O2 (Fig. 3.5H). 
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Overall both 2 and 5%O2 appear to induce HIF-1α stabilisation and expression of HIF 

target genes, but only 2%O2 maintained this at later stages of chondrogenesis.  
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Figure 3.5. 2%O2 induces constitutive expression of HIF target mRNA and 5%O2 
induced expression of these genes at day 1 only.  (A-C) Standard curves which 
demonstrate a linear relationship between input cDNA concentration and cycle (Ct) 
number when amplified using VEGFA- (A), PGK1- (B) and EGLN-specific (C) primers (y 
axis = Ct, x axis = [cDNA] (%). (D-I) mRNA expression of VEGFA (D+E), PGK1 (F+G) and 
EGLN (H+I) throughout chondrogenesis. Values plotted are from 4 independent 
experiments and are fold change compared to the 20%O2 condition which is 
represented by the horizontal dotted line.  The solid coloured lines represent the 
mean for each condition with *denoting p<0.05 compared to 20%O2 and #denoting 
p<0.05 between 2% and 5%O2. Significant changes were determined by Mann 
Whitney statistical tests.  
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3.2.5.  Effect of 5% and 2%O2 on chondrogenesis of hBM-MSCs 

As both 2% and 5%O2 increased levels of HIF-1α protein, HIF-1α nuclear translocation 

and expression of HIF target genes, the ability of these oxygen concentrations to 

increase chondrogenesis, utilising the same chondrogenic protocol was then 

assessed. Again, day 1 and 14 time-points were chosen to represent both early and 

more latent chronic effects of hypoxia during chondrocyte differentiation of BM-

MSCs . These time-points were also chosen to enable correlation between expression 

of established HIF target genes (VEGFA, PGK1, EGLN) with those involved in 

chondrogenesis.  

SOX9 is the master chondrogenic transcription factor that is essential during limb bud 

chondro-specification, in vitro chondrogenesis, production of an articular cartilage-

like ECM and inhibition of chondrocyte hypertrophy [94]. As described in section 

3.2.2, the product of COL2A1; Collagen Type II, plays key roles in the biology of 

chondrocytes in addition to maintaining the mechanical properties of articular 

cartilage. It is also a well-established transcriptional target of SOX9 and together with 

this transcription factor is part of a gene expression signature used to denote 

chondrogenesis [53] . Also part of this signature of cartilage differentiation is the 

gene ACAN, encoding Aggrecan which constitutes the largest proportion of the 

proteoglycans in cartilage ECM [413] . As with Collagen Type II, these proteoglycans 

are required to maintain the resistance of cartilage to compressive forces on the joint 

and residing articular cartilage [29]. 

The suitability of primers specific to SOX9 and ACAN were assessed by generation of 

standard curves in which the concentration of serially-diluted cDNA from the 
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chondrocyte cell line; C28/I2 were plotted against cycle number (Figs. 3.6A+3.6B). 

Each standard curve demonstrated a linear relationship between cDNA 

concentration and cycle number in addition to amplifying target cDNA with a 

theoretical efficiency between 90-110%. At day 1 of chondrogenesis, only 5%O2 

significantly (p=<0.05) increase mRNA of SOX9 but not at day 14 (Fig. 3.6C+3.6D). 

Increased expression of COL2A1 was only observed at day 14 of chondrogenesis due 

to 5%O2 compared to normoxic controls (Fig. 3.6F) with no changes observed due at 

day 1 (Fig. 3.6E). Despite not enhancing either SOX9 or COL2A1 expression, 2%O2 

increased the mRNA of the gene encoding Aggrecan at both day 1 and day14 with no 

change observed in the levels of this transcript due to 5%O2 (Figs. 3.6G+3.6H).  

As 5%O2 enhanced SOX9 and COL2A1 mRNA, both of which were not affected by 

2%O2, we expected to see an increase in Collagen Type II protein incorporated into 

the ECM due to 5%O2 only. However, despite observing a subtle increase (p=<0.05) 

in Collagen Type II due to 5%O2 compared to the normoxic control (Figs. 3.7A+3.7B), 

a much more drastic increase due to 2%O2 was observed (Fig. 3.7C). This immuno-

detection of Collagen Type II was quantified and the increase due to 2%O2 was 

statistically significant compared to both the normoxic cultures and those incubated 

at 5%O2 (Fig. 3.7D). When this quantification was normalised to the number of DAPI-

stained cells in each condition, the difference between 2% and 5%O2 was no longer 

statistically significant, with both hypoxic states inducing an increase compared to 

the normoxic control (Fig. 3.7E). 2%O2 also increased the number of DAPI-positive 

cells relative to that at normoxia, with no changes observed due to 5%O2 (Fig. 3.7F). 
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Figure 3.6.  5% but not 2%O2 induces expression of SOX9 and COL2A1 with 2% but 
not 5%O2 increasing ACAN mRNA. (A+B) Standard curves which demonstrate a linear 
relationship between input cDNA concentration and cycle (Ct) number when 
amplified using SOX9- (A) and COL2A1-specific (B) primers (y axis = Ct, x axis = [cDNA] 
(%). mRNA expression of SOX9 (C+D), COL2A1 (E+F) and ACAN (G+H) at days 1 and 14 
of chondrogenesis due to  5% and 2%O2. Values plotted are from 4 independent 
experiments and are fold change compared to the 20%O2 condition which is 
represented by the horizontal dotted line. The solid coloured lines represent the 
mean for each condition with *denoting p<0.05 compared to 20%O2. 
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Figure 3.7. 2%O2 increases total Collagen Type II deposition in the extracellular 
matrix with both hypoxic states inducing increases in this ECM protein per cell. (A-
C) Collagen Type II immunofluorescence staining at day 21 of  chondrogenesis due to 
incubation at 20% (A), 5% (B) and 2%O2 (C). Scale Bar = 400μm. Representative 
images of 4 independent repeats shown. (D)   Quantification of Collagen Type II 
immunofluorescence at day 21 of chondrogenesis and (E) normalised to DAPI 
immunofluorescence which equates to cell number. (F) Number of DAPI-positive cells 
at day 21 of chondrogenesis. Values plotted are from 4 independent experiments 
and are fold change compared to the 20%O2 condition which is represented by the 
horizontal dotted line.  The solid coloured lines represent the mean for each 
condition. *denote p<0.05 compared to 20%O2 and #between 5% and 2%O2. 
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3.2.6.  Effect of 5% and 2%O2 on hypertrophy of chondrogenically-induced hBM-

MSCs 

Having determined that 5% and 2% O2 induced changes in the level chondrogenic 

mRNA and proteins during BM-MSC differentiation, the effect of these hypoxic states 

on chondrocyte hypertrophy were assessed. This is due to the significant problem of 

hypertrophy observed in current CTE strategies which may promote unwanted 

mineralisation upon implantation of the cartilage graft into the defect site [414]. 

Previous evidence demonstrates the ability of hypoxia in inhibiting hypertrophic 

signaling during chondrogenesis and stabilising the articular chondrocyte phenotype 

[272]. A key transcription factor involved in hypertrophy is RUNX2 [415] . This is 

responsible for expression of COL10A1, encoding the archetypal hypertrophic 

marker- Collagen Type X, and MMP13 whose gene product is responsible for 

degrading Collagen Type II during endochondral ossification and OA pathogenesis 

[86].  

Again to correlate with the expression of chondrogenic markers and established HIF 

targets, days 1 and 14 were selected as time points for harvesting RNA from 

differentiating cultures . Figure 3.8A details the standard curve generated by the 

RUNX2-specific primers used to amplify this gene. In chondrogenically-induced BM-

MSCs, RUNX2 expression was inhibited (p=<0.05) by 2%O2 at day 1 of chondrogenesis 

(Fig. 3.9A) with no change observed at day 14 (Fig. 3.9B) and no regulation due to 

5%O2 observed at either time point.   

One of the drawbacks however, of quantifying the transcript level of a single gene is 

the lack of biological mechanism that this describes. All cellular processes require the 
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function of multiple gene products, whether it is the post-translational modification 

of Collagen or transcriptional induction of a specific gene locus. Therefore, due to the 

multipotency of hBM-MSCs and the relative ease of an epigenetic shift towards an 

osteoblastic/hypertrophic phenotype [151], the ratio of SOX9 expression to that of 

RUNX2 was analysed. The phenotype of limb bud progenitors have been described 

to be controlled by the opposing actions of SOX9 and RUNX2, with overexpression of 

either shown to negate the effect of the other [416]. In the study here when RNA was 

analysed for expression of these two master transcription factors, despite the 

decrease in RUNX2 due to 2%O2, no change was observed in the ratio of SOX9/RUNX2 

at either time point at either hypoxic state (Figs. 3.9C+3.9D).  

COL10A1 is an established target gene of RUNX2, and together expression of these 

genes denotes progression of chondrocyte hypertrophy [417] . In the present study, 

the standard curve for the COL10A1-specific primers utilized here, demonstrate 

reactions within the accepted efficiency window in addition to a linear relationship 

between cDNA concentration and cycle number (Fig. 3.8B). During BM-MSC 

chondrogenesis, both hypoxic conditions inhibited COL10A1 expression (p=<0.05) at 

day 1 (Fig. 3.9E). However at day 14, a decrease was observed due to only 5%O2 with 

an increase in COL10A1 mRNA induced by 2%O2 at this time point (Fig. 3.9F). Similar 

to the ratio of SOX9 mRNA to that of RUNX2, the ratio of COL2A1/COL10A1 may 

indicate a transcriptional program that is conducive for production of articular or 

hypertrophic cartilage ECM. Both 2% and 5%O2 enhanced the ratio of COL2A1 to 

COL10A1 at day 1 (Fig. 3.9G), with 5%O2 significantly increasing this ratio at day 14, 

compared to both the normoxic control and 2%O2 (Fig. 3.9H). Together, these results 

indicate that whilst 5%O2 is unable to reduce RUNX2 expression as observed due to 
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2%O2, it clearly inhibits expression of the established hypertrophic marker COL10A1 

at the mRNA level. 

In terms of investigating the mechanistic details behind chondrocyte hypertrophy 

such as COL10A1 expression and its inhibition by hypoxic signaling, a number of key 

pathways are implicated. Signaling in response to BMP ligands, via binding of BMP 

receptors and phosphorylation of intracellular proteins; SMAD1/5/8 has been shown 

to be involved in progression of chondrocyte hypertrophy [418]. Similarly, the 

canonical Wnt signaling pathway which is propagated by conical Wnt ligand-Frizzled 

receptor binding and β-catenin-mediated transcription also induces chondrocyte 

hypertrophy [100]. In addition, there exist regulatory mechanisms which limit the 

signaling output of the BMP and Wnt pathways and the subsequent hypertrophy 

which these pathways mediate. One such class of regulatory mechanism is via the 

inhibition of the receptors to which BMP and canonical Wnt ligands bind. For 

example, Gremlin1 (GREM1) and Dickkopf WNT Signalling Pathway Inhibitor 1 (DKK1)  

are expressed during limb development and control of chondrocyte hypertrophy 

[419, 420] via their inhibition of canonical BMP and Wnt signalling respectively [101].  

The control of hypertrophy by Gremlin1 and DKK1-mediated inhibition of the BMP 

and Wnt pathways presents one of the mechanisms by which hypoxic signaling 

regulates this unwanted transformation of articular chondrocytes . GREM1 and DKK1 

expression have previously been shown to be increased in response to hypoxia 

during BM-MSC chondrogenesis [287]. Figure 3.8C+3.8D illustrate the ability of 

GREM1 and DKK1-specific primers to amplify target cDNA with a theoretical 
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efficiency of 90-110%, ensuring a linear relationship between cDNA input and cycle 

number. 

During BM-MSC chondrogenesis only 2%O2 appeared to inhibit expression (p=<0.05) 

of GREM1 at day 1 of chondrogenesis (Fig. 3.9I) with no changes observed at day 14 

(Fig. 3.9J) or with regards to DKK1 mRNA at any time point (Figs. 3.9K+3.9L). These 

results suggest that the reduction of COL10A1 expression by culture at 5%O2 is not 

due to increases in GREM1 and DKK1, perhaps negating a role for Wnt and BMP 

signaling inhibition in that observed due to this hypoxic state. 

Collagen Type X immunostaining was utilised to investigate the protein levels of this 

hypertrophic marker at day 21 of chondrogenesis – a time point at which 

hypertrophy is observed to occur, following chondrocyte differentiation [421]  . 5%O2 

appeared to inhibit the production of Collagen Type X compared to that observed in 

the normoxic control (Figs. 3.10A+3.10B), with no noticeable change observed due 

to 2%O2 (Fig. 3.10C). Together, 5%O2 appears to confer advantages in terms of BM-

MSC chondrogenesis compared to that conducted at 20% and 2%O2 due to its unique 

ability to inhibit expression of hypertrophy, both at the mRNA and protein level. This 

therefore warrants its use in chapter 5 of the present thesis in which the role of HIF 

in CTE is further explored. 
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Figure 3.8. Standard curves which demonstrate a linear relationship between input 

cDNA concentration and cycle (Ct) number when amplified using RUNX2- (A), 

COL10A1- (B), DKK1- (C)  and GREM1-specific (D) primers (y axis = Ct, x axis = [cDNA] 

(%). 
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Figure 3.9. 5%O2 but not 2%O2 inhibits hypertrophic mRNA expression throughout 
chondrogenesis. mRNA expression of RUNX2 (A+B), COL10A1 (E+F), GREM1 (I+J) and 
DKK1 (K+L) at days 1 and 14 of chondrogenesis due to  5% and 2%O2. Ratios of mRNA 
of SOX9:RUNX2 (C+D) and COL2A1:COL10A1 (G+H) at days 1 and 14 of 
chondrogenesis due to 5% and 2%O2. Values plotted are from 4 independent 
experiments, and are fold change compared to the 20%O2 condition, represented by 
the horizontal dotted line.The solid coloured lines represent the mean for each 
condition with *denoting p<0.05 compared to 20%O2 and #denoting p<0.05 between 
2% and 5%O2.  
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Figure 3.10. 5%O2 but not 2%O2 reduces Collagen Type X protein during 
chondrogenesis of hBM-MSCs. (A-C) Collagen Type X immunofluorescent staining at 
day 21 of chondrogenesis due to incubation at 20% (A), 5% (B) and 2%O2 (C). Scale 
Bar = 400μm. Representative images of 3 independent repeats shown. 
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3.3. Discussion 

Many developing and adult tissues exist within a hypoxic microenvironment [422] 

[423]. Correspondingly, many genes which contain a HRE [424] are expressed in these 

tissues in response to transcriptional-induction by the HIF complex [211, 425]. One 

population of cells which depend on HIF signaling in response to hypoxic stimulation, 

are BM-MSCs. These cells exist within a hypoxic niche within the bone marrow [426] 

and as a result, respond to in vitro hypoxic conditions with changes in a variety of 

cellular behaviors. Such changes induced by hypoxia include migration, proliferation 

and differentiation [427]. In terms of differentiation, the lineages of differentiation 

of BM-MSCs have been shown to be differentially altered in response to hypoxia, 

with adipogenesis and chondrogenesis being elevated by hypoxia and osteogenesis 

inhibited [272, 428].  

Despite the conserved PHD2 and FIH-mediated mechanisms which exist to 

respectively control HIF-1α stabilisation and co-factor binding, the level of oxygen 

required to induce maximal HIF-mediated transcription varies from one tissue to 

another. Stroka et al demonstrated this via exposing a mouse model to systemic 

hypoxia and analysing HIF-1α stabilisation in different organs. They found that cells 

within the liver and kidney achieved maximal HIF-1α levels following 1 hour of 

hypoxic exposure, whereas a maximum was reached in 5 hours within cells of the 

brain. This demonstrates a differential sensitivity to oxygen, of the mechanisms 

regulating HIF-1α between the brain, lung and kidney, [211].  

This variation in the sensitivity of the HIF-regulatory mechanisms to oxygen is 

mediated by the milieu of signals within the specific cellular niche of each organ. 
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These impact the regulatory elements controlling HIF-1α availability. Stroka et al for 

example, observed reduced basal levels of HIF-1β at normoxia in the brain whereas 

in the lung and brain it is present at constitutively higher levels [211]. Alternatively, 

variation in expression of the HIF-1α-regulatory elements such as PHD2 results in cell-

specific regulation of HIF-1α and its participation in the HIF complex [406].  

In developing cartilage or in vitro chondrogenesis of stem cells, factors other than 

the PHD2/VHL/FIH pathway may regulate the participation of HIF-1α in the HIF 

complex. These may alter the induction of HIF in response to reduced local oxygen 

concentration compared to that observed in other systems. The TGF-β family of 

proteins may be such factors. Porcine periosteal cells when transfected with a BMP2-

overexpressing adenovirus, raised HIF-1α protein in the deep layer of articular 

cartilage following implantation back into a pig chondral defect [429]. Induction of 

HIF-1α by BMP2 was mediated by the Mitogen Activated Protein Kinase (MAPK) 

Kinase (MEK)/Extracellular Signal-Regulated Kinase (ERK) pathway, with TGF-β1 also 

shown to induce HIF-1α protein via SMAD2/3-mediated mechanisms in hepatoma 

and fibrosarcoma cell lines [273]. The elevated expression of TGF-β and its 

downstream signalling during limb development, together with its established use 

during in vitro chondro-induction protocols, may therefore suggest its role in 

regulating HIF-1α induction by hypoxia.  

Another factor utilised during in vitro chondrogenesis is Ascorbate. In addition to 

promoting collagen post-translational modification through induction of the 

Collagen-specific prolyl hydroxylase, Ascorbate has been shown to regulate HIF-1α 

levels [430]. Kuiper et al identified the potent effect of ascorbate in overcoming both 
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5%O2 and chemical stabilisation of HIF-1α to reduce levels of this HIF subunit. This 

implicates its potential role during hypoxia-mediated chondrogenesis. The chemical 

stabilisers used in this were PHD2 inhibitors, and therefore this suggests that 

Ascorbate plays a role in HIF-1α regulation independently of its ability to promote 

PHD2 activity through recycling of the Fe2+ ion. This was also suggested by Miles et al 

who observed an increase in HIF-1α protein and HIF-mediated transcription in 

response to Ascorbate treatment of human melanoma cells [431]. These authors 

negated a role of PHD2 in their observations upon siRNA knockdown of PHD2 which 

had no effect on Ascorbate-mediated increased in HIF-1α. 

Factors such as TGF-β ligands or Ascorbate that during chondrogenesis, may affect 

hypoxic-induction of HIF-α, necessitate an investigation into the effect of varying 

oxygen concentration on chondrocyte differentiation. This would enable 

determination of the levels of oxygen required to mimic the in vivo function of 

hypoxia in promoting articular chondrogenesis. The existence of an oxygen gradient 

across the mesenchymal limb bud [262] and growth pate cartilage [259] and the 

observation that HIF-1α stabilisation can vary significantly through such an oxygen 

gradient [396] supports the requirement for such a study. A study by Bracken et al 

suggested that the relationship between oxygen concentration and HIF-1α levels in 

certain cell types is not linear, and significant stabilisation of HIF-1α occurs only 

following a threshold hypoxic level [396].  

Overall, the present study demonstrates key differences between mild (5%O2) and 

more severe (2%O2) hypoxic conditions on hBM-MSC chondrogenesis. Despite 

inducing expression of established HIF targets during chondrogenesis at all time 
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points examined, 2%O2 appeared to induce a transcriptional program independent 

of that involved in chondrogenesis. Without stimulating expression of SOX9 or 

COL2A1 and inhibiting hypertrophy, this oxygen concentration raised only ACAN 

expression and increased Collagen Type II protein. At the same time points however, 

5%O2 induced formation of an anti-hypertrophic, chondrogenic expression profile. 

This is suggestive of an important role for mild hypoxic signalling in CTE due to the 

risk of hypertrophy and mineralisation in current strategies for repair of acute 

chondral defects . 

As suspected and shown previously [396], both 5% and 2%O2 increased total HIF-1α 

protein and nuclear localisation in hBM-MSCs following 24-hour incubation. These 

increased protein levels demonstrate the inhibition of PHD2 by hypoxic conditions, 

which have been shown to result in increased nuclear localisation of HIF-1α where it 

is able to function as part of the HIF transcriptional complex. An interesting result 

however, is the observation of HIF-1α protein present in the normoxic conditions, 

where PHD2 would theoretically be most active. One explanation may be based on 

observations of PHD2 inhibition by TGF-β1 treatment via SMAD2/3 [273]. Therefore 

the TGF-β3 in the induction media used in the present study may reduce HIF-1α 

hydroxylation. This would result in a net increase in HIF-1α in the presence of 20% 

oxygen. Additionally, BM-MSCs compared to MSCs from other sources and non-MSC 

cell types, appear to show reduced senstivity to PHD2 activity with regards to HIF-1α 

levels [432]. This is suggested by Palomaki et al to be due to the increased transcript 

levels encoding HIF-1 α in BM-MSCs which would result in increased HIF-1α levels in 

the face of PHD2 activity . 
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Whatever the mechanism is behind the observed HIF-1α at normoxia, it appears to 

almost exclusively localise to a peri-nuclear region of the cell under normoxic 

conditions unlike at 2%/5%O2 where it localizes to within the nucleus. Moreover, the 

discrete, clustered pattern of peri-nuclear HIF-1α suggests encapsulation within an 

intracellular organelle as opposed to being freely diffusible within the cell. Storage of 

HIF-1α within perinuclear golgi has been shown in vitro, within colon cancer cells 

[433] and bovine chondrocytes [434], where it has been hypothesised to act as a 

reservoir to allow cells to respond to a rapid metabolic changes. Coimbra et al 

observed a reduction in nuclear HIF-1α in human articular chondrocytes in 

monolayer compared to suspension culture at normoxia [282]. These authors also 

observed under normoxic conditions, reduced nuclear HIF-1α in osteoarthritic 

chondrocytes compared to those from healthy cartilage. This suggests a deregulation 

of HIF-1α upon removal form the in vivo niche. There may also exist, a role of the 

golgi as a scaffold for HIF-1α which may facilitate modification to its amino acid 

sequence such as that by PHD2. This is supported by the evidence that OS9, as a HIF-

1α-downregulatory factor, plays key roles in trafficking proteins from the 

endoplasmic reticulum to the golgi [435]. 

VEGFA, PGK1 and EGLN represent HIF target genes. With the exception of PGK1, the 

increases in the expression of these due to 5%O2 at day 1 of chondrogenesis, did not 

occur at day 14. This is unlike that due to 2%O2 which induced transcription of all 

three genes at both time points. A limitation of this study may be the relatively few 

genes chosen to represent HIF targets as a proportion of the total genomic sequences 

which contain one or more HREs. Hypoxia has been shown to induce different subsets 
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of genes between relative short and long-term culture [436]. Therefore by analysing 

a small subset of genes here, those regulated by 5%O2 other than VEGFA, PGK1 and 

EGLN, would be omitted. However, the continued upregulation of VEGFA, PGK1 and 

EGLN by 2%O2 at day 14 is suggestive of a tolerance of the hBM-MSCs to 5%O2 at this 

time point, following an initial period of hypoxic stimulation.  

As validated by its use as a HIF target gene, EGLN when upregulated by hypoxic 

conditions, propagates a feedback loop via its product- PHD2, which increases HIF-

1α degradation [243]. It is therefore plausible to suggest the inability of 5%O2 to 

initially raise nuclear HIF-1α to levels beyond which it be abolished by this PHD2-

mediated negative feedback loop. As previously demonstrated [396], this may be at 

odds with that due to 2%O2 which overcomes the PHD2-mediated tolerance to 

stimulate constitutive expression of HIF target genes. If indeed, PHD2-mediated 

negative feedback and suppression of VEGFA, PGK1 and EGLN transcription did 

occur, this may highlight another limitation of the present study. The lack of longer 

term time points than 14 days may omit observations of latent recovery of HIF target 

mRNA after this time point which is a pattern described generally of negative 

feedback loops [437].  

An alternative explanation to the reduced effect of 5%O2 at day 14 may be due to the 

specific nature of HIF regulation in BM-MSCs. These cells have been shown to express 

increased mRNA levels of HIF1A which increases subsequent protein levels of HIF-1α, 

even in normoxic conditions [432]. This may therefore suggest that the 

chondrogenically-induced BM-MSCs require severe hypoxic conditions (i.e. 2%O2 

compared to 5%O2) to induce HIF activity to levels beyond that observed in basal 
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conditions. A similar mechanism may be induced by TGF-β3 treatment in this study 

which has been shown to raise the basal levels of HIF-1α at normoxia [273]. Inclusion 

of TGF- β3 in the chondrogenic media may therefore result in the inability of a mild 

hypoxic state such as 5%O2 to raise basal levels of HIF-mediated transcription in a 

sustained manner, beyond a TGF-β3-augmented level. This theory is also supported 

by a study in which the HRE sequence was deleted within the SOX9 promoter in 

chondro-induced ST2 cells. Robins et al in this investigation, observed the inhibited 

expression of SOX9 at 20%O2 due to this deletion [269]. This therefore suggests that 

high levels of HIF-mediated transcription exist at basal/normoxic conditions. With 

regards to the current study, this again suggests that a more potent hypoxic state is 

required to elevate HIF activity to levels beyond the basal levels. 

Corresponding to the increase in HIF target mRNA at day 1 of chondrogenesis due to 

5%O2, this oxygen concentration also induced expression of the master regulator of 

chondrogenesis, SOX9 following 24 hours of induction. This matches previous studies 

such as that by Robins et al who observed an increase in SOX9 mRNA 24 hours 

following chondro-induction of ST2 cells [269]. These authors demonstrated the role 

of HIF in that observed by identification of four HREs within the promoter region of 

the SOX9 gene which when deleted, reduced hypoxia-mediated transcription. Duval 

et al also investigated the mechanisms behind hypoxia-mediated chondrogenesis 

and observed an abolishment of HIF binding at the SOX9 promoter in response to 

treatment with the inducer of proteasome activity, CdCl2 [272]. This study 

demonstrated that hypoxia-mediated increases in chondrogenic mRNA such as SOX9 

are due to inhibition of PHD2/VHL-mediated degradation of HIF-1α which suggests a 

similar mechanism in the present study. Again corresponding to the lack of increase 
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in VEFGA and EGLN due to 5%O2 at day 14, SOX9 expression was also not raised as 

this time point. This may suggest that SOX9 and those genes classically upregulated 

by hypoxia are regulated by similar mechanisms.  

COL2A1 was raised by only 5%O2 at day 14 of chondrogenesis. Induction of this gene 

at a similar time point was also previously demonstrated [269]. The product of 

COL2A1; Collagen Type II, plays an essential role cartilage ECM by forming a water-

perfused network with HA-Aggrecan to generate a structure capable of withstanding 

compressive forces on the joint. The importance of Collagen Type II in cartilage ECM 

is demonstrated by phenotypic observations following a deletion in the COL2A1 

gene. A specific mutation within the alpha helix gene results in degradation of 

Collagen Type II molecules and replacement with Type I and III collagens [438]. This 

predisposed the articular cartilage in developing limbs to OA. This was denoted as 

osteoarthritic due to the increased protein expression of Collagen Type X which is 

shown to be a common consequence of other mutations within the COL2A1 gene 

[439] [440].  

The promoter region within the COL2A1 contains multiple SOX9 binding sites [441] 

and this is concomitant with studies demonstrating the dependence of COL2A1 

expression on SOX9 activity during cartilage development [442]. The recovery of an 

articular chondrocyte phenotype from a hypertrophic state is also propagated by 

SOX9-dependant COL2A1 transcription [443]. In studies examining the relationship 

between SOX9 and COL2A1 during chondro-induction of hBM-MSCS, overexpression 

of SOX9 increases COL2A1 mRNA [272]. The early SOX9 transcription observed in the 

present study due to 5%O2 and the latent increase in COL2A1 mRNA has been 
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described previously as an in vitro-specific phenomenon. SOX9 expression is 

increased at an early time point during in vitro chondrogenesis of chick limb bud 

micromass cultures [402] whereas COL2A1 expression in vitro is generally thought to 

occur at latent stages of differentiation [444].  This contrasts with that which occurs 

during in vivo development in which both SOX9 and COL2A1 expression are observed 

at early points in the pre-cartilage cranial mesenchyme and at later time points [445]. 

This pattern of early SOX9 expression and latent COL2A1 expression by hypoxia in 

vitro was also demonstrated by Robins et al. These authors observed an increase in 

COL2A1 mRNA at day 16 due to incubation of mesenchymal progenitors at 1%O2.  

BM-MSCs incubated at 5%O2 were unable to maintain the day 1 increase in SOX9 

expression relative to normoxic conditions through to day 14. This perhaps indicates 

the sufficiency of early increases in SOX9 for transcription of its target genes, as also 

described by Gadjanski et al [446]. In the present study however, SOX9 cannot be 

implicated in COL2A1 transcription induced by 5%O2 by solely correlative evidence of 

increasing SOX9 and COL2A1 mRNA levels. This represents a limitation of this study 

with SOX9 deletion being required to implicate this protein in hypoxia-induced 

COL2A1 mRNA expression. Additionally, analysis of the mRNA expression encoding 

SOX9 binding partners, SOX5 and SOX6 in addition to protein analysis of these three 

transcription factors would enable a more robust conclusion to be made with regards 

to the effect of 5%O2 on the chondrogenic differentiation program.  

Unexpectedly, despite constitutive upregulation of VEGFA, PGK1 and EGLN and 

unlike that observed due to 5%O2, 2%O2 did not increase SOX9 expression at either 

time point investigated. As pertained to above, a caveat to this observation may be 
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that any increases in SOX9 mRNA due to 2%O2 would not be observed in this study if 

occurred between days 1 and 14 due to only these two timepoints utilised. This 

therefore prevents the dismissal of 2%O2 in raising SOX9 expression during 

chondrogenesis.  

Due to SOX9 transcription occurring due to 5%O2 here, it may be suggested that 2%O2 

stimulated expression of genes which do not require SOX9 to accompany the 

increases in VEGFA, PGK1 and EGLN. For example, Mitogen Inducible Gene 6 (MIG6) 

and Inhibin Beta A Subunit (INHBA) mRNA were induced by incubation of human 

articular chondrocytes cultured at 1%O2. These increases which were inhibited by 

HIF-1α deletion but were unaffected by SOX9 deletion [447]. MIG6 is involved in 

preventing hypertrophy of articular cartilage and ossification [448]. INHBA dimerises 

to form Activin A which inhibits secretion of MMP3 [449] and induces expression of 

tissue inhibitor of metalloproteinase-1. This is an anti-catabolic factor of cartilage 

[450].  

Unlike MIG6 and INHBA, expression of COL2A1 relies on SOX9 activity. Due to the 

observation in the current study that expression of SOX9 and COL2A1 were not 

increased by 2%O2 but increases were observed of established HIF target mRNA, this 

oxygen concentration may induce a SOX9-independent subset of genes in contrast 

to 5%O2. The stimulation of expression of different and specific subsets of genes by 

different hypoxic states has been suggested in the literature and is dependent on the 

ability of each hypoxic state to inhibit FIH as well as PHD2. FIH inhibition induces 

expression of HIF target genes distinct from that observed due to inhibition of PHD2 

[451]. The differentiation sensitivity of PHD2 and FIH to oxygen deprivation indicates 
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the ability of varying hypoxic states to inhibit PHD2 and FIH to different magnitudes 

[452]. This correlates with that shown by Tian et al, who observed a greater 

resistance of FIH (compared to PHD2) to hypoxia-mediated inhibition [453]. 

Therefore, in the present study, it could be hypothesized that 5% compared to 2%O2 

may stimulate HIF target gene expression primarily through PHD2 inhibition. In the 

presence of a more severe hypoxia at 2%O2, the BM-MSCs may exhibit expression of 

an alternate subset of genes through dual inhibition of PHD2 and FIH. However, with 

the observations made in this study, this theory is purely speculative. This therefore 

requires further analysis of the contribution of FIH and PHD2 before conclusions on 

the role of these enzymes can be made. 

ACAN is the most abundant non-collagenous protein in cartilage ECM, providing the 

essential structural integrity for joint function in the face of compressional load and 

fluid flow experienced during locomotion. Mutations in the ACAN gene can result in 

skeletal abnormalities and development of severe OA [413] which demonstrates the 

essential nature of this structural protein in cartilage ECM. Co-localisation of 

Aggrecan and SOX9 delineates skeletal progenitors which go onto the form the 

growth plate [454]. Expression of ACAN has been shown to be dependent on SOX9 

expression and activity.  For example, SOX9-specific siRNA reduces ACAN expression 

in articular chondrocytes [455]. Liu et al identified an enrichment of SOX9 and SOX6 

at the ACAN promoter in a growth plate chondrocyte cell line [456]. In addition, ACAN 

mRNA and Alcian Blue staining of GAGs were reduced upon deletion of SOX9 in 

developing cartilage [457] with overexpression of SOX9 in chondro-induced hBM-

MSCs inducing ACAN transcription [272]. Hypoxic conditions have been repeatedly 

shown to induce expression of ACAN and increase GAG abundance in cartilage ECM. 
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This was shown to be mediated via HIF-1α during hBM-MSC and limb bud 

chondrogenesis [263, 272]. In the present study, 5%O2 did not affect expression of 

ACAN despite its induction of SOX9 and COL2A1 transcription. This may suggest a lack 

of complete chondrogenic differentiation induced by 5%O2. This conclusion may be 

made due to ACAN expression denoting late stages of chondrocyte formation from 

mesenchymal precursors [402]. This lack of ACAN expression induction by 5%O2 may 

correspond with the lack of sustained expression of HIF targets- VEGFA and EGLN, in 

addition to SOX9 at day 14. Alternatively, an increase in ACAN expression may have 

been observed if mRNA was collected from differentiating cultures at day 21, due to 

this stage of in vitro chondrogenesis denoting the end-point for differentiating 

cultures [458]. 

In BM-MSCs in which COL2A1 expression remains constant, an increase in cell 

number would result in a cumulative increase of Collagen Type II incorporated into 

the ECM [459]. The increased cell number observed here due to 2%O2 may therefore 

represent the mechanism behind the high levels of total Collagen Type II protein 

observed compared to that induced by normoxia and 5%O2. Such a conclusion may 

be made due to the observed reduction in Collagen Type II fluorescence to similar 

levels to that of 5%O2 when the quantity of signal was normalised to the number of 

DAPI-stained cells. Interestingly, the amount of Collagen Type II in the ECM at 5%O2 

was enhanced to a significant level compared to 20%O2 only when normalised to cell 

number and not without normalisation. This increase per cell correlates with the 

induction of COL2A1 transcription due to 5%O2. A notable caveat to these 

observations is that quantification of Collagen Type II immunofluorescence is only a 

semi-quantitative measurement of its protein. In order to discern the accurate effect 
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of differential hypoxic cultures on Collagen Type II protein, Enzyme-Linked 

Immunosorbent Assays (ELISAs) must be conducted. This would enable 

quantification of Collagen Type II protein and dismiss the contributing effect of 

background fluorescence to the semi-quantitative observations here. 

Despite inducing transcription of SOX9, 5%O2 did not reduce RUNX2 mRNA as 

previously demonstrated [460] and 2%O2 induced a very marginal decrease in its 

expression. The relative activity levels of SOX9 and RUNX2 determines the respective 

chondrogenic or osteogenic lineage commitment in osteochondral progenitors 

which arise from the mesenchymal limb bud [52]. In cells destined to become resting 

chondrocytes, SOX9 overcomes the activity of RUNX2 to provide a bias towards 

articular rather than hypertrophic chondrogenesis. This has been theorised to occur 

due to the hypoxic nature of the developing limb bud, resulting in HIF-mediated 

upregulation of SOX9 [259]. Following this activation, SOX9 then inhibits the function 

of RUNX2 [461] which as a master transcription factor, stimulates chondrocyte 

hypertrophy and endochondral ossification if left unhindered [462].  

In the present study, the lack of significant increase in the ratio of SOX9 to RUNX2 

due to either hypoxic state suggests that the transcriptional programs induced by 

these conditions are not conducive for chondrogenesis at the expense of ostegenesis. 

However this observation may also be explained by the specific time points chosen 

for RNA isolation here and the possibility of significant changes in SOX9:RUNX2 

expression occurring at other points throughout BM-MSC chondrogenesis. An 

example of such as  time point may be the terminal stages of chondrogenesis where 

hypertrophic differentiation is thought to occur [463]. 
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Irrelevant of the time points chosen to examine the relative expression of SOX9 and 

RUNX2, both oxygen concentrations induced changes in the expression of COL10A1, 

a marker of hypertrophy as well as changes in the expression ratio of 

COL2A1:COL10A1. The ratio of these compounds is suggestive of the type of ECM 

that is produced by differentiating BM-MSCs or chondrocytes, with increases in this 

ratio indicating articular cartilage ECM and a decrease suggesting hypertrophic 

cartilage [464]. Expression of COL10A1 and other hypertrophic factors such as 

MMP13 [415] as well as induction of Wnt-mediated hypertrophy [100] are 

downstream effects of RUNX2-mediated transcription.  

In the present study, both hypoxic states inhibited COL10A1 expression at day 1 and 

the ratio of expression of COL2A1:COL10A1 at this time point. This early suppression 

suggests the bias of the condensed mesenchymal population to articular 

chondrogenesis and not hypertrophy. This function of hypoxia is suggestive of its role 

in patterning articular cartilage and growth plate cartilage destined to become 

ossified bone [100]. However as with any cellular process, progression of 

hypertrophy is not denoted by expression of a single gene. Therefore, analysis of 

other hypertrophic markers such as MMP13 and ADAMTS5 at the mRNA and protein 

level would be required in order to strengthen the conclusion of hypertrophy 

inhibition by hypoxia.  

Despite that observed at day 1 due to either hypoxic states, inhibition of COL10A1 

mRNA and increase in the ratio of COL2A1:COL10A1 mRNA was induced by only 5%O2 

at day 14. Conversely 2%O2 increased COL10A1 expression at this time point. A 

reduction of Collagen Type X protein was observed in the ECM in cultures exposed to 
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5%O2 with a lack of change induced by 2%O2. This suggests a requirement of 

constitutive inhibition of COL10A1 transcription may be required for corresponding 

changes in protein levels to be exhibited. It is imperative to reduce protein levels of 

this hypertrophic marker to inhibit the downstream hypertrophic signalling which it 

induces which results in apoptosis of this cells and spontaneous ossification [465]. 

These observations therefore suggest that 5%O2 compared to 2%O2 is suitable for 

CTE due to its ability to induce a transcriptional profile and corresponding ECM that 

is suggestive of articular and not hypertrophic cartilage.  

In terms of the mechanism behind this decrease in COL10A1 expression due to 5%O2 

at day 14, it could be suggested that HIF activity was not required as indicated by a 

lack of observed increase in HIF targets- VEGFA, PGK1 and EGLN at this time point. 

The increase in COL2A1 due to 5%O2 at this time point also suggests that HIF activity 

is not required for latent expression of this gene due to hypoxia. Representing a 

limitation of the present study, this lack of correlation between COL10A1/COL2A1 

and HIF targets may be due to the relatively low number of time points or HIF targets 

chosen. By not utilising time points between days 1 and 14, and with VEGFA, PGK1 

and EGLN not representing the full complement of HIF target genes, observation of 

HIF-mediated transcription required for COL10A1/COL2A1 regulation may have been 

omitted. However in terms of hypertrophy, HIF-independent inhibition of this 

process in hypoxic conditions was demonstrated by Lee et al [466]. These authors 

observed the role of PI3K/Akt-dependent mechanisms in hypoxia-mediated 

suppression of hypertrophy.  
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The increase in SOX9 expression due to 5%O2 may be involved in the latent 

suppression of COL10A1 mRNA, due to the role that SOX9 plays in inhibition of 

RUNX2-mediated hypertrophy. However, as described earlier, ablation of SOX9 

would be required in order to implicate this transcription factor in the suppression 

of hypertrophy observed due to 5%O2. This rationale would also apply in order to 

dismiss the role of HIF in regulation of COL10A1/COL2A1 expression due to 5%O2.  

The increase in COL10A1 mRNA at day 1 due to 2%O2 may be due to an absence of 

hypertrophic-suppressive mechanisms. For example in this study, mRNA encoding 

the inhibitor of BMP signalling- Gremlin1, is reduced at day 1 by 2%O2. Gremlin1 acts 

to inhibit hypertrophic signalling induced by specific BMP ligands upon binding to 

their receptors in articular chondrocytes [101]. The decrease in GREM1 due to 2%O2 

observed here suggests a role for BMP signalling in raising COL10A1 mRNA in BM-

MSCs cultured at this hypoxic state. However, as with the role of HIF and SOX9 in the 

observations due to hypoxia here, data regarding this role of Gremlin1 is correlative 

only. This therefore requires manipulation of the BMP antagonist at the genetic or 

protein level in order to discern its role in hypoxia-mediated chondrogenesis. 
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4. Comparison of HIF-stimulating compounds in the chondrogenenic 

differentiation of BM-MSCs. 

 

4.1. Introduction 

The previous chapter demonstrated the ability of both 5% and 2% oxygen to induce 

transcriptional and proteomic changes during hBM-MSC chondrogenesis, thereby 

suggesting a role for either in CTE for repair of acute chondral defects. Despite this 

however, the use of physiological hypoxia may be associated with inherent risks and 

logistical problems with regards to generating a translational product for use in the 

clinic. In addition to functioning through HIF, hypoxia has been shown to stimulate 

HIF-independent mechanisms to induce a global decrease in protein translation. This 

phenomenon occurs via inhibition of mTOR signalling [467]. mTOR controls global 

translation machinery by inducing ribosomal protein S6 kinase, eukaryotic initiation 

factor 4E binding protein 1 and eukaryotic elongation factor 2 kinase [468].  Hypoxia 

has been shown to inhibit mTOR signalling via a number of mechanisms as described 

by Wouters & Koritzinsky [469] with the overall effect being a reduction in cap-

dependent initiation of protein translation.  

Also independently of HIF, hypoxia has also been shown to induce activity of the 

Unfolded Protein Response (UPR), a cell response to endoplasmic reticulum stress 

and inefficient protein folding which results in targeting of unfolded proteins for 

proteasomal degradation [470]. HIF independent regulation of protein translation 

and UPR may have severe consequences in terms of CTE. Placing brakes on 

translation machinery may have a negative effect on chondrogenic induction of hBM-
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MSCs. This is due to the requirement of protein synthesis for propagating 

transcriptional programs and processing of cartilage ECM [471]. This also correlates 

with findings that protein synthesis is the key regulatory mechanism of cellular 

processes during differentiation [472] as opposed to protein degradation [473].  

Another potential drawback of hypoxia is the susceptibility of its downstream 

pathways to negative feedback loops, suppressing the pro-chondrogenic activity 

required throughout chondrogenic induction [289]. This was indeed observed in the 

previous chapter due to 5%O2, in which the increase in HIF target gene expression 

observed at day 1 of chondrogenesis was abolished at day 14. Such a situation may 

arise due to hypoxia-induced UPR, shown to enable tolerance of tumour cells to 

hypoxic conditions for progression of the malignancy [474].  

Logistically, hypoxia may present complications during translation to the clinic for 

CTE. As described by Liu et al, a current paradigm for repairing chondral defects is 

the requirement of injectable scaffolds loaded with a specific cell source and 

bioactive factors for regeneration [475]. Biomaterial scaffolds have evolved to retain 

these factors and release them over a sustained period of time ensuring a reservoir 

of pro-regenerative signals to the donor cells for in vivo defect repair [476]. The use 

of hypoxia would prove difficult for this strategy due to the requirement to reduce 

the bioavailability of oxygen in situ as opposed to its release.  

The use of hypoxia may also be limited for tissue engineering applications where both 

the articular cartilage and underlying subchondral bone are damaged, as observed in 

full osteochondral breaks [111]. As described in section 1.3.5, a continuous scaffold 

may be the most appropriate strategy for OCTE with compounds which stabilize HIF-
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1α perhaos enabling spatial control of cartilage and bone regeneration. In addition 

to the potential role for OCTE, the use of HIF-1α-stimulating compounds would also 

ameliorate the other pitfalls of utilising hypoxia. Injectable scaffolds with a sustained 

release of a HIF-stablising compound may aid in vivo CTE efforts, promoting articular 

chondrogenesis and inhibiting hypertrophy. In addition, stimulating HIF during hBM-

MSC chondrogenesis, as opposed to the full complement of hypoxic effects, such as 

HIF-independent mTOR inhibition or UPR stimulation would avoid the decrease in 

overall translation and tolerance of hypoxic pathways required for chondrocyte 

differentiation.  

CoCl2, DFX and DMOG are the most widely used of the HIF-stabilising compounds and 

each target PHD2 and/or FIH via different mechanisms of action. As observed in 

regions of diminished oxygen concentration, PHD2 inhibition has the net effect of 

inhibiting HIF-1α prolyl hydroxylation and its degradation with FIH inhibition reducing 

asparagine hydroxylation of HIF-1α which would result in blocking of its 

transcriptional co-factors [268]. DMOG strongly binds to the 2-OG binding pocket of 

both FIH and PHD2, acting as a competitive inhibitor [44]. DFX sequesters and 

reduces intracellular Fe2+ thereby reducing activity of both FIH and PHD2 due to their 

dependence on this ion [477]. This is unlike the effect induced by CoCl2 which binds 

directly to the PHD2 active site and demonstrates specificity for this hydroxylase 

[453].  

Evidence exists of the use of CoCl2, DFX or DMOG for cartilage regeneration. Duval et 

al demonstrated the role for CoCl2 in such a context. They observed an increase in 

SOX9 binding to the promoters of target genes in CoCl2-treated BM-MSCs 
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encapsulated within alginate beads, in addition to a corresponding increase in 

chondrogenic mRNA expression due to CoCl2 [272]. In an investigation by Huang et 

al, DFX in conjunction with TGF-β1 increased expression of SOX9, COL2A1 and ACAN 

in chondrogenically-induced ATDC5 cells compared to TGF-β1 supplementation alone 

[478]. This was also shown to increase the detection of GAGs in the ECM, again 

compared to the use the growth factor alone. Finally DMOG’s potential role in CTE 

was also implicated by Thoms et al who observed an increase in SOX9 protein in 

human articular chondrocytes treated with DMOG [278]. This corresponds to a study 

by Gelse et al, in which SOX9 mRNA was induced in murine chondrocyte cultures due 

to DMOG treatment, together with an inhibition of COL1A1 expression, required for 

matrix ossification [479]. 

In addition to aiding the CTE field, use of compounds such as CoCl2, DFX or DMOG 

enable insights to be made into the regulation of HIF by the HIF hydroxylases during 

chondrogenesis. Generally speaking, hypoxia induces complete PHD2 inhibition 

whilst FIH activity has been shown to remain in cells cultured at low oxygen levels 

[453]. This was demonstrated by Tian et al in the renal cell carcinoma line, RCC4. 

These authors observed an inhibition of HIF-1α hydroxylation due to incubation at 

1%O2 compared to those at normoxia. At this oxygen concentration, Asparagine 

hydroxylation remained and was reduced only by the much more severe hypoxia of 

0.01%O2. This study demonstrated the reliance of hypoxic conditions in inhibiting 

PHD2-mediated HIF-1α degradation which, in the presence of residual FIH activity, is 

still able to induce HIF activity [480].   
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Inhibition of FIH and asparagine hydroxylation however, is not redundant and has 

been shown to act synergistically with PHD2 suppression, stimulating maximal 

activation of HIF and expression of its target genes. An example of such a study was 

that by Huang et al who observed in mouse myoblast cells, a synergistic effect of 

PHD2 and FIH knockdown. Due to this combinatorial knockdown, these authors 

observed an increase in fluorescence of a HIF-response element-tagged reporter 

compared to knockdown of either hydroxylase alone, in addition an increase in 

mRNA encoding angiogenic factors in response to PHD2 and FIH ablation [481]. In 

addition, evidence exists for the role of FIH inhibition in propagating a specific 

transcriptional program that is separate from that induced by PHD2 ablation. FIH 

inhibition is able to induce expression of a subset of hypoxia-inducible genes, not 

observed during PHD2 ablation [451]. 

There is a lack of clear evidence of the precise mechanisms between HIF regulation 

during chondrogenesis and the contribution of PHD2 and FIH during this process. By 

comparing the effect of distinctly-functioning hydroxylase inhibitors on HIF-1α 

stabilisation, HIF-mediated transcription and chondrogenic induction, it may be 

possible to determine key mechanistic details behind HIF signalling during cartilage 

development. Therefore due to this lack of clarity of HIF regulation during hypoxic 

cartilage development, and an absence of studies which compare the roles of CoCl2, 

DFX and DMOG for cartilage regeneration, the following aim, hypothesis and 

objectives were proposed.  
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 Aim: To determine which of CoCl2, DFX or DMOG most strongly induces HIF-

mediated transcription, hBM-MSC chondrogenesis and inhibition of 

hypertrophy. 

 Hypothesis: DMOG due to its high specificity compared to CoCl2 or DFX which 

may target other iron-utilising enzymes will induce the largest effect during 

hBM-MSC chondrogenesis in terms of induction of chondrogenic mRNA 

expression and cartilage ECM production. 

 Objectives:  

o To identify non-toxic doses of CoCl2, DFX or DMOG for use in a 21-day 

protocol 

o During hBM-MSC chondro-induction, to identify which of CoCl2, DFX or 

DMOG more potently stimulates HIF stabilisation and downstream 

transcriptional activity 

o To identify which of CoCl2, DFX or DMOG more potently stimulates 

articular chondrogenesis and cartilage ECM formation. 

o To identify which of CoCl2, DFX or DMOG more potently inhibits 

hypertrophy during chondrogenesis. 

o To confirm that CoCl2, DFX or DMOG function though HIF-1α during their 

effect on hBM-MSC chondrogenesis. 
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4.2. Results 

 

4.2.1.  Identification of non-toxic doses of CoCl2, DFX and DMOG for 21-day hBM-

MSC chondrogenesis 

Observation of the hypoxia’s effect on chondrogenesis in chapter 3 suggests the role 

of compounds which stimulate HIF- the primary transducer of physiogical hypoxia, 

during chondrocyte lineage commitment and cartilage ECM formation. CoCl2, DFX 

and DMOG, which al stimulate HIF-1α were therefore included in separate TGF-β3-

containing chondrogenic induction media to determine their ability to induce HIF 

activity and subsequent chondrogenesis of hBM-MSCs. Demonstration of the ability 

of these compounds to stimulate formation of articular cartilage, whilst inhibiting 

hypertrophy may indicate new strategies for CTE. In addition, the differential 

mechanisms of action of CoCl2, DFX and DMOG may illuminate the regulatory 

mechanisms by which HIF activity is controlled during chondrogenesis. 

As previously pertained to, hypoxia and HIF activity are present throughout the entire 

phase of articular cartilage development from the limb bud mesenchyme up to the 

resting chondrocyte population. This indicates the requirement of constitutive HIF 

activity during hBM-MSC chondrogenesis for CTE. Therefore to avoid any deleterious 

effects of each of the HIF-stabilising compounds on the hBM-MSCs during chondro-

induction, CoCl2, DFX and DMOG were included in TGF-β3-containing chondrogenic 

induction media at varying concentrations. BM-MSCs in each of these media 

compositions were then cultured in the identical culture system utilised in chapter 3. 

These concentrations chosen which are shown in figure 4.1A , were based on those 
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most widely used in the literature (DMOG: 1mM (Nguyen, 2013 #343), CoCl2: 200μM 

[272], DFX: 200 μM [234]) . These values however, were utilised in cultures of 

relatively short incubation times in the studies references – approximately 24 hours-

7days, compared to the culture period utilised in the current study of 14-21 days. 

Therefore, the toxicity of a range of reduced values than those shown as shown 

previously [453], were tested to ensure high cell viability throughout chondrogenic 

induction of BM-MSCs .  

The majority of assays used to assess cell viability rely on quantification of cell 

metabolism such as the Alamar Blue or MTT assays, or quantify metabolic enzyme 

activity such as the Lactate Dehydrogenase assay. These cell parametres are affected 

by hypoxia independently of cell viability, therefore invalidating their use in the 

resent study. The neutral red assay which quantifies the neutral red dye taken up by 

viable cells within their lysosomes, was therefore used to assess cell viability. This 

was compared with the PicoGreen assay which enable cell number to be determined 

by quantification of double-stranded DNA. Figures 4.1B and 4.1C demonstrate a 

linear relationship between cell number and Neutral Red/PicoGreen quantification 

respectively. To ensure the functionality of the Neutral Red assay as a measurement 

of viability, vehicle-only and high, toxic doses of CoCl2, DFX and DMOG were utilised 

as respective negative and positive controls. 

Throughout this study, the effect of each of the three HIF-stabilising compounds, in 

addition to being assessed against an untreated control at normoxia, were also 

compared to the effect of 5%O2. This oxygen concentration was preferred to 2%, due 
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to the ability of only 5% in reducing hypertrophic marker expression which is a key 

problem faced in CTE strategies . 

 1mM of CoCl2 resulted in zero viability at days 7, 14 and 21 compared to the no-

treatment control (p<0.05) as determined by the Kruskal-Wallace multiple-

comparison test (Fig. 4.1D) . Throughout the 21-day period, 50, 100 and 200μM CoCl2 

did not alter viability until day 21 at which point the 200μM appeared to reduce 

vaibility compared to the untreated control (p>0.05) . The toxic, 1mM dose of DFX 

resulted in complete ablation of viability after 14 days (p<0.05) (Fig 4.1E) . The 100 

and 200μM doses of DFX appeared to reduce viability of the differentiating BM-MSCs 

compared to the no-treatment control at days 14 and 21 (p>0.05) . Conversely the 

20 and 50μM doses of DFX did not reduce viability compared to the untreated control 

as observed due to 100 and 200μM (p>0.05) .  5mM of DMOG also completely 

reduced viability at days 7, 14 and 21 (p<0.05) (Fig. 4.1F) . At days 7 and 14, no 

obvious change in viability was induced by any of the other DMOG doses compared 

to the untreated control. At day 21 however 500 and 1000μM concentrations of 

DMOG appeared to reduce viability (p>0.05) , with no apparent effect observed due 

to 100 or 200μM.  

Overall, 100μM of CoCl2 (Fig 4.1D), 50μM of DFX (Fig 4.1E) and 200μM of DMOG (Fig 

4.1F) were the highest concentrations of each compound to not induce ≥25% 

decrease in viability compared to the untreated control. To ensure the viability assay 

translated into actual cell number, the PicoGreen assay was used to quantify dsDNA 

throughout differentiation. None of the doses chosen of each compound altered the 

cell number throughout chondrogenesis compared to the untreated control when 
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analysed using the Kruskal-Wallace multiple-comparison statistical test (Fig 4.1G) 

(p>0.05) . Together these results indicate that 100, 50 and 200μM are the highest 

concentrations of CoCl2, DFX and DMOG respectively to be taken forward for 

experiments in which thier effect on BM-MSC chondrogenesis is to be assessed. 

These results also coccur with studies such as that by Tian et al, in which these doses 

of each compound are shown to increase HIF-1α protein levels by similar magnitudes 

[453] . 
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A  CoCl2 DFX DMOG 

Negative Control (μM) 0 0 0 

Concentration #1 (μM) 20 20 100 

Concentration #2 (μM) 50 50 200 

Concentration #3 (μM) 100 100 500 

Concentration most widely used in literature (μM) 200 200 1000 

Toxic Dose (μM) 1000 1000 5000 

 

Figure 4.1. CoCl2 at 100μM, DFX at 50μM and DMOG at 200μM do not reduce cell viability 
to below 75% during 21-day chondrogenic differentiation and do not reduce cell number 
during this incubation period. (A) Table detailing concentrations of CoCl2, DFX and DMOG 
tested. (B+C) Standard curves detailing linear relationship between Neutral Red 
(B)/PicoGreen (C) readings and cell number. (D-F) Cell viability throughout 21-day 
chondrogenic differentiation with varying concentrations of CoCl2 (D), DFX (E) and DMOG (F) 
included in the induction media as measured by the neutral red toxicity assay. Values plotted 
are a percentage of the untreated control  which is represented by the grey line. *represents 
significant difference (p<0.05) between the positive (1000/5000μM for CoCl2+DFX/DMOG 
respectively) and no treatment (0μM) control. when analysed with a Kruskal-Wallace test 
with Dunn’s correction. (G) Cell number during the chondrogenic differentiation of hBM-MSC 
in the presence of CoCl2, DFX, DMOG or 5%O2. Values plotted represent the mean from 3 
independent experiments and are a percentage of the cell number at day 0. Error bars show 
the standard error of the mean.   
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4.2.2. Induction of HIF-1α stabilisation by CoCl2, DFX and DMOG  

CoCl2, DFX and DMOG are all described as hypoxia-mimicking agents due to their 

ability to increase HIF-1α protein levels, induce its nuclear translocation and 

stimulate expression of HIF-target genes. Therefore as with experiments in which the 

stimulation of hypoxic pathways were investigated in choater 3, HIF-1α stabilisation 

by Western Blot, immunolocalisation and mRNA quantification of HIF-target 

transcripts were undertaken in BM-MSCs in response to treatment with either CoCl2, 

DFX and DMOG. As in response to hypoxia, a change in these parametres would 

demonstrate inhibition of PHD and/or FIH – two hydroxylases in the HIF pathway 

[453]. As qualitatively assessed by Western Blot and densitometric analysis, no 

compounds increased total HIF-1α levels significantly compared to the untreated 

control, however all treatments did induce a trend towards its increase (Fig. 

4.2A+4.2B).  

As with assessment of HIF-1α stabilisation by hypoxia, increase in nuclear HIF-1α 

localisation occurs as a result of PHD2 inhibition [482]. All three compounds induced 

HIF-1α nuclear localisation compared to the untreated control upon immunostaining 

of HIF-1α in the presence of each compound for 24 hours. A higher proportion of the 

nucleus of each cell was occupied by HIF-1α in the presence of CoCl2, DFX or DMOG 

compared to that due to the untreated control (Fig 4.2C). This quantification 

represents the images in Figures 4.2D-4.2K with HIF-1α-occupation of the nuclei 

increased due to each compound compared to the untreated control. Interestingly 

in each condition, a clear peri-nuclear localisation of HIF-1α was observed. This peri-
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nuclear staining was observed in discrete patterns suggesting localisation within a 

subcellular organelle.  

Overall, all three HIF-1α-stimulating compounds used here induced HIF-1α nuclear 

localization. This suggests their potential for increasing formation of an active HIF 

transcription complex and subsequent transcription of HIF target genes. A selection 

of such HIF-target genes are those whose products mediate articular chondrogenesis 

and are inhibitory to chondrocyte hypertrophy. This has been demonstrated by 

inhibition of HIF-1α during hypoxia-mediated chondrogenesis inhibiting 

chondrogenic transcript and ECM formation in BM-MSCs, whilst stimulating 

hypertrophy [272]. This demonstrates the suitability of CoCl2, DFX and DMOG for 

experiments in which their effect on BM-MSC chondrogenesis is to be investigated. 

Such a study would enable suitability of such compounds for CTE strategies for repair 

of acute chondral defects. 
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Figure 4.2. CoCl2, DFX and DMOG induce HIF-1α nuclear localisation. (A) Detection 
of HIF-1α, and housekeeping protein β-Actin at day 1 of chondrogenesis by Western 
Blot. (B) Protein blots of HIF-1α were quantified by densitometric analysis and 
normalised to levels of β-Actin. Values plotted represent magnitude difference to the 
untreated control which is represented by the horizontal dotted line. The solid 
coloured lines represent the mean for each condition with *denoting p<0.05 
compared to the untreated control. (C) Quantification of nuclear HIF-1α 
immunofluorescence at day 1 of chondrogenesis. Each value plotted represents the 
percentage of a single DAPI-marked nucleus that is occupied by HIF-1α. Values from 
3 independent repeats shown with the coloured horizontal lines representing the 
mean and *denoting p<0.05 compared to the untreated control. (D-K) HIF-1α 
immunofluorescence staining at day 1 of chondrogenesis. Scale Bar = 50μm. 
Representative images of 3 independent repeats shown. Images were cropped and 
magnified to clearly visualise localisation of HIF-1α.   
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4.2.3. DMOG induced constuitive expression of HIF target genes compared to that 

induced by CoCl2 or DFX  

To determine if the increased HIF-1α nuclear localisation induced by CoCl2, DFX and 

DMOG translated into enhanced functional activity of the HIF transcriptional 

complex, we used qPCR to quantify mRNA of established HIF targets throughout the 

entire chondrogenic induction period. The genes analysed are identical to those used 

in chapter 3 in which the effect of hypoxia was investigated. DMOG treatment at days 

1, 7 and 21 increased expression of VEGFA by approximately 5, 10 and 15x that of 

the untreated control respectively (Fig. 4.3A). At all 4 time points, DMOG also 

upregulated expression of PGK1 (4x, 7x, 6x, 6x respectively for days 1, 7, 14 and 21; 

Fig 4.3B) and EGLN (7x, 10x, 27x, 9x respectively for days 1, 7, 14 and 21 Fig 4.3C). 

DFX induced expression of PGK1 at day 14 (Fig 4.3B) and EGLN at day 21 (Fig 4.3C) 

compared to the untreated control with CoCl2 not inducing expression of any the 

three HIF-targets chosen.  

Taken together, despite all three compounds inducing HIF-1α nuclear localization 

only DMOG appeared to constituitively induce expression of genes documented to 

contain HREs are which are responsive to HIF induction. This therefore suggests that 

2-OG analogues compared to those which sequester Fe2+ (CoCl2/DFX) may induce 

stonger transcriptional activity at the promoter regions of HIF-target genes. This 

indicates that 2-OG inhibitors may represent the more appropriate class of inhibitor 

for CTE in which HIF-1α is required required to be elevated increased articular 

chondrogenesis. 
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Figure 4.3. DMOG stimulates transcription of HIF targets constuitively throughout 
the 21-day chondrogenic induction period. mRNA expression of VEGFA (A), PGK1 (B) 
and EGLN (C) throughout chondrogenesis. Values plotted are from 4 independent 
experiments and are fold change compared to the untreated control which is 
represented by the horizontal dotted line.  The solid coloured lines represent the 
mean for each condition with *denoting p<0.05 compared to the untreated control. 
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4.2.4. Effect of CoCl2, DFX and DMOG on transcription conducive for hBM-MSC 

chondrogenesis 

Expression of SOX9 and its downstream targets- COL2A1 and ACAN are essential for 

chondrogenesis and cartilage ECM formation. Together, these are required for the 

repair of chondral defects in CTE strategies, and replacement with tissue which 

mimicks native articular cartilage, both biochemically and mechanically. Stimulation 

of HIF-1α during chondrogenesis is important for hypoxia-mediated chondrocyte 

differentiation and expression of SOX9, COL2A1 and ACAN [262, 269]. Therefore, to 

investigate the ability of CoCl2, DFX and DMOG to stimulate expression of these genes 

during chondrogenesis qPCR was utilised to quantify their corresponding mRNA 

levels. The major role of SOX9 during chondrogenesis, from early chondrogenic 

lineage commitment to inhibition of hypertrophy promoted investigation at days 1, 

7, 14 and 21 of chondrogenesis. As in chapter 3, latent, day 14 expression of ACAN 

and COL2A1 which precedes cartilage ECM formation, denotes a typical 

chondrogenic differentiation program. 

Compared to the untreated control, DMOG induced significant expression of SOX9 at 

days 7 and 21 by approximately 4x at each of these time points (Fig. 4.4A). DFX 

appeared to show a trend towards increasing SOX9 transcripts at days 14 and 21, but 

these were not statistically significant. Unlike that shown in chapter 3, figure 3.3 

where we observed increases in SOX9 due to 5%O2 at day 1, those differences were 

no longer statistically significant when analysed using the multi-variant Kruskal-

Wallace test in which the effects of DMOG were included. Despite these increases 

observed due to only DMOG, all conditions appeared to significantly increase 
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expression of its target, COL2A1 (approximately 3.5x, 4x, 3x, 1.5x by CoCl2, DFX, 

DMOG and 5%O2 respectively; Fig. 4.4B). However, no conditions significantly raised 

expression of ACAN despite each treatment showing trend towards increases in this 

transcript (approximately 7.5x, 11x, 5x by CoCl2, DFX and DMOG respectively; Fig. 

4.4C).  

In addition to investigating the expression of ‘classic’ chondrogenic markers, it is also 

important to quantify expression of gene whose products play other key role during 

cartilage ECM formation. P4HA1 which encodes the CP4HA1 and LOX which encodes 

LOX and plays key roles in the formation of the collagen helical structure important 

in native cartilage ECM function and polymerisation of multiple collagen helices.  A 

key facet therefore of any CTE strategy is maintaining these post-translational 

modifications of the collagen helices, which are important for function of the 

collagen network in cartilage ECM [483]. The product of P4HA1 catalyses the 

hydroxylation of specific proline residues [484]. LOX coverts lysine and hydroxylysine 

residues to their aldehyde form which facilitates covalent crosslinks between 

individual collagen fibrils [483]. Both of these enzymes have been shown to be 

upregulated by HIF and hypoxia [280, 485] and indeed both DFX and DMOG induced 

LOX expression significantly by approximately 2x and 3x respectively compared to 

untreated controls (Fig. 4.4D). P4HA1 was significantly upregulated by approximately 

6x in response to DMOG treatment (Fig. 4.4E). Figures 4.4F+4.4G demonstrate the 

suitability of LOX and P4HA1-specific primers with regards to the efficiency of the 

qPCR reaction which they mediate and a linear relationship between cycle number 

and input cDNA. 
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Overall, DMOG displayed the greatest advantages with regards to induction of 

chondrogenic mRNA during BM-MSC chondrocyte differentiation. It enhanced 

expression of the master chondrogenicn transcription factor; SOX9 throughout 

chondrogenesis with no change seen due to CoCl2 or DFX. DMOG also induced 

expression of LOX and P4HA1 – genes whose products are integral in Collagen 

deposition in cartilage ECM. Together, these suggests that DMOG may have the 

greatest potential with regards to its inclusion in a CTE strategy. 
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Figure 4.4. DMOG induces a transcriptional profile in differentiating BM-MSCs 
which is conducive for chondrogenesis and cartilage formation. mRNA expression 
of SOX9 (A), COL2A1 (B), ACAN (C), LOX (D) and P4HA1 (E) throughout 
chondrogenesis. Values plotted are from 4 independent experiments, and are fold 
change compared to the untreated control which is represented by the horizontal 
dotted line.  The solid coloured lines represent the mean for each condition with 
*denoting p<0.05 compared to 20%O2. (F+G) Standard curve which demonstrates a 
linear relationship between input cDNA concentration and cycle (Ct) number when 
amplified using LOX (F) and P4HA1 (G)-specific primers. 
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4.2.5.  DMOG inhibits the presence of Collagen Type II and GAGs in the ECM during 

chondrogenesis of hBM-MSCs  

To assess if the changes in chondrogenic gene expression due to CoCl2, DFX and 

DMOG translates into an increased presence of deposited cartilage ECM 

components, we examined the presence of Collagen Type II and GAGs in the 

produced by differentiated hBM-MSCs. This was accomplished by immunostaining 

and Alcian Blue histochemical staining for Collagen Type II and GAGs respectively at 

day 21 of chondrogenesis. Such an investigation would indicate the suitability of 

CoCl2, DFX and DMOG for inclusion in a CTE strategy due to the requirement of a 

Collagen Type II and GAG-rich ECM for articular cartilage function [33, 438]. 

Neither CoCl2 (Fig. 4.5B) nor DFX (Fig. 4.5C) induced changes in Collagen Type II 

compared to the untreated control (Fig. 4.5A). This was also mirrored by a lack of 

change in staining for GAGs due to CoCl2 (Fig. 4.5F) or DFX (Fig. 4.5G) compared to 

the untreated control (Fig. 4.5E). DMOG however appeared to inhibit both 

incorporation of Collagen Type II (Fig. 4.5D) and GAG’s (Fig. 4.5H) into the ECM. 

Quantification of Collagen Type II immunofluorescence confirmed this inhibition due 

to DMOG when the signal due to the presence of Collagen Type II was normalised to 

the number of DAPI-stained nuclei in each image (Fig. 4.5I). This significance was 

determined by a Kruskal Wallace multiple comparison test (p<0.05). The decrease in 

GAGs due to DMOG were not significant (p<0.05) when total GAGs were quantified 

and normalised to cell number as determined by the PicoGreen assay (Fig. 4.5J). 

Overall, despite DMOG demonstrating advantages at the mRNA levels with regards 

to BM-MSC chondrogenesis, it appeared to reduce the production of Collagen Type 
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II by these cultures. This represents a major issue with regards to use of DMOG in 

CTE. This is due to the requirement of cartilage ECM for maintaining viability of the 

resident chondrocytes, enabling resistance to compressive forces applied on the 

containing joint and providing lubrication between articulating surfaces. 
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Figure 4.5. DMOG inhibits Collagen Type II deposition in the extracellular matrix by 
reducing its production per cell. (A-D) Collagen Type II immunofluorescence staining 
at day 21 of chondrogenesis. Scale Bar = 400μm. Representative images of 4 
independent repeats shown. Alcian Blue staining for glycosaminoglycans with 
nuclear haematoxylin counterstain at day 21 of differentiation. Scale bar = 400μm. 
Representative images of 3 independent experiments are shown. (I-J) Quantification 
of Collagen Type II immunofluorescence (I) and Glycosaminoglycans (J) at day 21 of 
chondrogenesis both without and with values normalised to DAPI 
immunofluorescence/total double stranded DNA. Values plotted are from 4 
independent experiments, and are fold change compared to the untreated control, 
represented by the horizontal dotted line.  The solid coloured lines represent the 
mean for each condition and *denotes p<0.05 compared to the untreated control. 
(K) Standard curve illustrating linear relationship between GAG mass and absorbance 
reading. 
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4.2.6. DMOG induced an anti-hypertrophic transcriptional profile and inhibits 

Collagen Type X protein levels 

To identify any changes in hypertrophy of the chondrogenically-induced hBM-MSCs 

as observed due to 5%O2 in chapter 3, we investigated changes in transcription of 

RUNX2 and COL10A1 but also quantified MMP13 mRNA in response to CoCl2, DFX 

and DMOG treatment. Increased expression of MMP13 is observed during 

chondrocyte hypertrophy [486], plays a significant role in OA pathogenesis via 

digestion of Collagen Type II [487], and is downregulated by hypoxia and HIF [288]. 

Together, an effect on hypertrophic mRNA expression would demonstrate the 

suitability of either compound for CTE strategies. Chondrocyte hypertrophy during 

BM-MSC differentiation is a significant pitfall of current attempts articular cartilage 

regenerative medicine due to the subsequent mineralisation which subsequently 

occurs [414]. 

 No conditions induced increases in RUNX2 mRNA at any time point during 

chondrogenesis (Fig. 4.6A). DMOG treatment caused a significant increase in the 

ratio of SOX9:RUNX2 mRNA at days 7, 14 and 21 (approximately 4x, 3x, 3x 

respectively) compared to the untreated control (Fig. 4.6D). DMOG also significantly 

inhibited expression of COL10A1 mRNA (Fig. 4.6B) and this significantly increased the 

ratio of COL2A1:COL10A1 by approximately 6x due to DMOG compared to the 

untreated control (Fig. 4.6E). No changes were apparent in MMP13 expression due 

to any condition (Fig. 4.6C). In terms of Collagen Type X protein, both DFX (Fig. 4.7C) 

and DMOG (Fig. 4.7D) reduced immunostaining for this hypertrophic marker 
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compared to the untreated control (Fig. 4.7A), with CoCl2 inducing a more subtle 

decrease (Fig. 4.7B).  

Overall, DMOG at the transcript level, demonstrated clear advantages with regards 

to promotion of an articular chondrocyte phenotype and inhibition of hypertrophy. 

Compared to that induced by CoCl2 or DFX, an increase of SOX9 compared to levels 

of RUNX2 and inhibition of Collagen Type X (at the mRNA and protein level) by 

DMOG, suggests its use in programming BM-MSCs down an articular chondrocyte 

lineage only in CTE. 
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Figure 4.6. DMOG induces a transcriptional profile in differentiating BM-MSCs 
which is inhibitory to chondrocyte hypertrophy. mRNA expression throughout 
chondrogenesis of RUNX2 (A), COL10A1 (B), MMP13 (C) and  SOX9 & COL2A1 
normalised to RUNX2 & COL10A1 respectively (D+E). Values plotted are from 4 
independent experiments and are fold change compared to the untreated control 
which is represented by the horizontal dotted line.  The solid coloured lines represent 
the mean for each condition with *denoting p<0.05 compared to the untreated 
control. 
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Figure 4.7.  DFX and DMOG reduce Collagen Type X protein in chondrogenically-
differentiating hBM-MSCs. (A-D) Collagen Type X immunofluorescent staining at day 
21 of chondrogenesis. Scale Bar = 400μm. Representative images of 3 independent 
repeats shown.  
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4.2.7.  Effect of CoCl2, DFX and DMOG on expression of Bone Morphogenetic 

Protein, Indian Hedgehog and Wnt pathway components during hBM-MSC 

chondrogenesis 

The differential effects CoCl2, DFX and DMOG on the chondrogenic gene expression 

profile during induction of hBM-MSCs prompted investigation into the expression of 

components of other pathways important during cartilage development. Canonical 

Wnt signalling plays a key role during limb development. β-Catenin activity is 

required for early limb bud initiation via FGF signalling [488] and plays key roles in 

determining cell fate of the early mesenchymal limb bud population between the 

osteoblastic or chondrogenic cell fates [66] It is also involved in propagating 

chondrocyte hypertrophy and endochondral ossification [100]. Secondly, BMP 

signaling has also been shown to mediate hypertrophic signaling during cartilage 

development and in vitro [489, 490]. 

The importance of Wnt and BMP signaling in cartilage hypertrophy prompted 

investigation of the effect of the HIF-1α-stabilising compounds on genes whose 

products regulate the activity of Wnt and BMP signalling. Such data may provide 

insights into how these compounds are able to inhibit hypertrophy during BM-MSC 

chondrogenesis which is an essential facet of any CTE strategy. As described in 

chapter 3, hypoxia has been shown to upregulate Wnt and BMP antagonists- DKK1 

and Gremlin1 during chondrogenesis of BM-MSCs. As HIF-1α is known to play key 

roles during hypoxia-mediated chondrogenesis, we therefore examined expression 

of DKK1 and GREM1 here in response to treatment of CoCl2, DFX and DMOG. In 

addition, the expression of canonical β-Catenin target genes was examined. 
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Expression of these targets- AXIN2 and LEF1 may give a diect indication of the activity 

of the Wnt pathway during chondrogenesis of BM-MSCs. This may therefore enable 

correlations to be made with hypertrophic marker expression and how these 

together are regulated by HIF-1α-stabilising compounds.  

Compared to the untreated control, expression of DKK1 appeared to follow a trend 

towards downregulation at day 1 and upregulation at day 21 due to DMOG (Fig. 

4.8A). DFX induced a trend of upregulation in DKK1 at days 7, 14 and 21 of 

differentiation (Fig. 4.8A). No effect on DKK1 expression appeared to be induced by 

CoCl2. Compared to the untreated control, all compounds appeared to also show 

trends towards increases of Wnt targets AXIN2 (Figs. 4.8C) and LEF1 (Figs. 4.8D) at 

day 14, with an increase in LEF1 also observed at day 1 due to DMOG. Interestingly, 

this effect at day 14 was also preceded by a suppression of AXIN2 at day 7 due to all 

compounds compared to the no-treatment control (Figs. 4.8C). In terms of 

expression of the BMP antagonist- GREM1, CoCl2 and DMOG appeared to more 

strongly induce GREM1 expression at days 7 14 and 21 compared to that observed 

due to DFX and the untreated control (Figs. 4.8B).  

Overall, all 3 compounds appeared to induce DKK1 or GREM1 expression, however 

this did not appear to correlate with expression of Wn targets, AXIN2 and LEF1. In 

addition, the inhibition of hypertrophy specifically by DMOG shown previously did 

not appear to correlate with an inhibition of Wnt or BMP signaling. This perhaps 

indicates that DMOG’s anti-hypertrophic effect is not mediated through inhibition of 

Wnt/BMP-induction of RUNX2/COL10A1 etc. 
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Indian Hedgehog signalling is another pathway whose output is important in 

regulating the phenotype of different populations of chondrocytes during 

endochondral ossification. It maintains articular chondrocytes distally located from 

the primary ossification centre, whilst inducing hypertrophy in those more proximal 

to the centre of the developing bone. The gene product of IHH, which upon binding 

to Patch1 receptors on articular chondrocytes, sitmulates expression of PTHRP 

whose product inhibits hypertrophic progression. Therefore, expression of IHH and 

PTHRP  in response to treatment of chondrogenically-induced BM-MSCs with HIF-1α-

stabilising compounds, would also illustrate regulation of hypertrophic signaling by 

these compounds.  

Despite there being no significant changes in expression of the genes encoding the 

two ligands- IHH (Figs. 4.8E) and PTHRP (Figs. 4.8F), there was a trend towards 

increase in the mRNA of those at day 14 in the presence of all compounds. There was 

also a similar trend at in expression of IHH at day 1 due to DMOG (Figs. 4.8E). Overall 

and as with expression of Wnt/BMP antagonists, there appeared to be no correlation 

between the DMOG’s unique inhibition of hypertrophy and expression of anti-

hypertrophic Indian Hedghog signaling genes. Instead all three compounds appeared 

to upregulate IHH and PTHRP, indicating the ability of CoCl2, DFX and DMOG to 

provide an anti-hypertophic signaling milleu during BM-MSC chondrogenesis. Figure 

4.8G-4.8J demonstrate the ability of AXIN2, LEF1, IHH and PTHRP-specific primers to 

amplify input cDNA with reaction efficiencies between theoretical values of 90-110%. 

Linear relationships were also demonstrated between input cDNA and cycle number. 

  



  

199 
 

 

 

 

 

 

Figure 4.8. During BM-MSC chondrogenesis, CoCl2, DFX and DMOG induce changes 
in the mRNA of genes whose products are involved in the Bone Morphogenetic 
Protein, Wnt and Indian Hedgehog signalling pathways. (A-F) mRNA expression of 
DKK1 (A), GREM1 (B), AXIN2 (C), LEF1 (D), IHH (E) and PTHRP (F) throughout 
chondrogenesis. Values plotted represent the mean value of 4 independent 
experiments and are fold change compared to the untreated control (20%O2). Data 
illustrated as scatter plots in appendix figure 6. [491] Standard curves which 
demonstrate a linear relationship between input cDNA concentration and cycle (Ct) 
number when amplified using AXIN2- (G), LEF1- (H), IHH- (I)  and PTHRP- (J) specific 
primers (y axis = Ct, x axis = [cDNA] (%).  
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4.2.8.  Identification of a HIF-1α inhibitor for use during hBM-MSC chondrogenesis 

The regulation of HIF-1α during chondrogenesis of BM-MSCs is poorly understood. 

The use of CoCl2, DFX and DMOG during this process may enable elucidation of HIF-

1α control due to the differential mechanism of action of these compounds and 

varying extent to which they inhibit PHD2 and FIH. However, before any 

interpretation can be made from experiments in which CoCl2/DFX/DMOG stimulate 

chondrogenesis, it is required to confirm that these effects are indeed mediated via 

HIF-1α. Therefore, to determine if the potent transcriptional effect of DMOG is 

mediated via stabilisation of HIF-1α, we sought to identify an inhibitor of its HIF-1α 

that is downstream of the proposed effect of DMOG which inhibits PHD2 and FIH-

mediated hydroxylation of HIF-1α.  

One such compound is Acriflavine which acts to block the dimerization of HIF-1α with 

an essential transcriptional co-factor in the HIF complex- HIF-1β [492]. ACF has 

therefore been demonstrated to reduce the availability of HIF-1α in the HIF 

transcriptional complex, without affecting its protein levels [493]. To determine if 

ACF retained this biological effect when used in conjunction with TGF-β3-containing 

chondrogenic media and DMOG, we quantified the effect of 5μM ACF on the levels 

of mRNA encoding established HIF targets after a 24 hour treatment period.  DMOG 

induced expression of VEGFA, EGLN, PGK1 and GLUT2 by approximately 9x, 2.5x, 3x 

and 4x respectively compared to the untreated control, and these increases were 

abolished in the presence of ACF (Fig. 4.9A). To ensure ACF treatment did not 

significantly alter cell number throughout chondrogenic differentiation we measured 

the number of DAPI-stained nuclei after 14 days of culture. No difference in cell 
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number was observed due to ACF in the presence of DMOG compared to DMOG 

treatment alone (Fig 4.9B).  

Together, these results demonstrate that ACF can be used to inhibit DMOG-mediated 

expression of HIF targets without negatively affecting cell number for 14 days, at 

which point chondrogenic transcripts are upregulated by hypoxia and HIF 

stimulation. 
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Figure 4.9. Acriflavine abolished DMOG-mediated upregulation of HIF target 
transcription and does not alter cell number after 21 days in DMOG-supplemented 
conditions. (A) mRNA expression of VEGFA, EGLN, PGK1 and GLUT2 following a 24-
hour incubation period (n=1). Values plotted are fold change compared to the 
untreated control without DMOG. (B) Quantification of DAPI-stained nuclei following 
14-day incubation in chondrogenic conditions in the presence of DMOG+/-
Acriflavine. Values plotted are from 4 independent repeats and are fold change 
compared to DMOG treatment without Acriflavine which represented by the 
horizontal is dotted line. The mean value is represented by the horizontal orange line. 
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4.2.9.  DMOG-mediated changes in transcription during hBM-MSC chondrogenesis 

are mediated by HIF-1α 

Acriflvaine was shown to be a suitable HIF-1α inhibitor to investigate the mechanism 

of DMOG-mediated gene expression changes and thereby give insight into HIF-1α 

regulation during chondrogenesis. The effect of ACF at day 14 of BM-MSC 

differentiation was subsequently examined due to many of the DMOG-induced 

expression changes occurring at this time point, relative to the untreated control. 

Such changes include genes involved in correct folding and polymersiation of 

Collagen Type 2 triple helices as well as those involved in chondrocyte hypertrophy. 

The significant increases in SOX9 mRNA due to DMOG compared to the untreated 

control (approx 6x), were abolished in the presence of ACF (Fig. 4.10A) and this 

pattern was observed when the expression of HIF targets- VEGFA and EGLN were 

quantified. DMOG as before induced significant increases in both VEGFA (Fig. 4.10B) 

and EGLN (Fig. 4.10C) at day 14 of chondrogenesis compared to the untreated control 

(increases of 20x and 6x respectively) and these significant differences were not 

present following ACF treatment. The significant increase in COL2A1 mRNA by DMOG 

compared to the untreated control (approximately 2x) was also abolished by ACF 

(Fig. 4.10D) and the significant downregulation of COL10A1 mRNA due to DMOG 

compared to the untreated control (approx. 0.5x) was also abolished in the presence 

of ACF (Fig. 4.10E). A corresponding significant reduction in the ratio of 

COL2A1:COL10A1 due to DMOG was observed in the presence of ACF. This is in 

comparison to the ACF-free conditions in which the COL2A1:COL10A1 ratio was 

increased by DMOG compared to the untreated control (Fig. 4.10F).  
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ACF also had an effect with regards to the gene expression induced by 5%O2. In the 

ACF-free conditions, 5%O2 induced no changes in expression of SOX9 and COL2A1 

mRNA. In the presence of ACF, hypoxic incubation significantly reduced SOX9 (Fig. 

4.10A) and COL2A1 (Fig. 4.10D) mRNA, as well as the ratio of COL2A1:COL10A1 (Fig. 

4.10F).  

The global effect of DMOG on HIF target and chondrogenic transcripts are shown in 

Figures 4.10G-4.10N. DMOG induced a trend towards the upregulation of SOX9 (Fig. 

4.10G), COL2A1 (Fig. 4.10H), VEGFA (Fig. 4.10I), EGLN (Fig. 4.10J), DKK1 (Fig. 4.10K) 

and LOX (Fig. 4.10L) mRNA and inhibits COL10A1 (Fig. 4.10N) transcription compared 

to all other conditions. The effect of ACF in reducing the observed expression changes 

due to each of the three HIF-stimulating compounds is most apparent in the presence 

of DMOG. The reduction in DMOG-mediated gene expression changes by ACF appear 

to be larger than the differences observed in the presence of either CoCl2 or DFX.  In 

addition, for COL10A1 expression, the decreases induced by CoCl2 and DFX were not 

reversed as emphatically by ACF as observed in the presence of DMOG (Fig. 4.10N). 

Overall, DMOG’s effects on stimulating the expression of pro-chondrogenic mRNA at 

day 14 of chondrogenesis were inhibited by ACF treatment. This demonstrates the 

importance of HIF-1α in the HIF transcriptional complex in response to DMOG 

treatment and its integral role in expression of HRE-containing genetic loci. In 

addition ACF had a greater impact on DMOG-mediated gene expression compared 

to the effect of ACF when used in conjunction with CoCl2/DFX. This indicates that HIF-

1α mediates DMOG’s effect to greater extents than CoCl2/DFX’s effects and suggests 

that during chondrogenesis, the HIF-1α hydroxylases; PHD2 and FIH are dependant 
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more on 2-OG than Fe2+. This also has importance implications for CTE strategies and 

indicates the role that 2-OG inhibitors may play in enhancing BM-MSC articular 

chondrogenesis via HIF-1α. The use of such inhibitors may be essential due to 

demonstration that HIF-1 deletion in adult articular cartilage results in chondrocyte 

death and development of an OA-like phenotype [288]. 2-OG inhibitors may 

therefore enable formation of a cell population that faithfully mimics those found in 

native articular cartilage.  
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Figure 4.10. Acriflavine, an inhibitor of HIF-1α+HIF-1β binding, reduces DMOG-
mediated transcriptional changes during chondrogenesis. mRNA expression 
throughout chondrogenesis of SOX9 (A), VEGFA (B), EGLN (C), COL2A1 (D), COL10A1 
(E) and the ratio of COL2A1/COL10A1 (F). Values plotted are from 4 independent 
experiments and are fold change compared to the untreated control without DMOG 
which is represented by the horizontal dotted line. The solid coloured lines represent 
the mean for each condition. *denotes p<0.05 when compared to 20%O2+/-ACF and 
#denotes p<0.05 between +/-ACF conditions within DMOG and 5%O2 groups. The 
heat maps shown in G-N illustrate the effect of Acriflavine in the presence of each 
HIF-stabilising compound. Each value represents the mean fold change over the 
untreated control. 
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4.2.10. HIF-1α inhibition alleviates the decrease in Collagen Type II observed due to 

DMOG 

With observation that the gene expression changes induced by DMOG are mediated 

by HIF-1α, we sought to identify if the ability of DMOG to inhibit incorporation of 

Collagen Type II into the ECM was also mediated by HIF-1α. As previously, DMOG 

reduced Collagen Type II in the ECM (Fig. 4.11B) compared to the untreated control 

(Fig. 4.11A), and this decrease was alleviated slightly in the presence of ACF (Fig. 

4.11C). This is represented in the quantification of this immunofluorescent staining 

in which the significant decrease due to DMOG, is rendered no longer significant by 

the addition of ACF (Fig. 4.11D). This result indicates that the DMOG’s determental 

effect on Collagen Type 2 production by BM-MSCs is in part mediated by HIF-1α. 
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Figure 4.11. Inhibition of HIF-1α partially rescues the DMOG-mediated decreases in 
the presence of Collagen Type II in the ECM. (A-C) Collagen Type II 
immunofluorescent staining at day 14 of chondrogenesis due to DMOG in the 
absence and presence of Acriflavine. Scale bar = 400μm. Representative images of 3 
independent repeats shown. (D) Quantification of Collagen Type II 
immunofluorescence at day 14 of chondrogenesis due to DMOG in the absence and 
presence of Acriflavine. Values plotted are from 4 independent experiments, and are 
fold change compared to the untreated control without DMOG which is represented 
by the horizontal dotted line. The solid orange lines represent the mean for each 
condition and *denotes p<0.05 compared to the untreated control without DMOG. 
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4.2.11. Late treatment of DMOG induces pro-chondrogenic transcriptional changes 

whilst maintaining cartilage ECM 

To attempt to alleviate the effect of DMOG in inhibiting production of Collagen Type 

II which is an important structural component of articular cartilage, the period of 

DMOG treatment during hBM-MSC chondrogenesis was adjusted. Treatment of 

DMOG for the final 7 days of chondrogenic induction could potentially reduce the 

cumulative inhibitory effect on Collagen Type II incorporation into the ECM. 

Chondrogenic transcript quantification by qPCR and collagen type 2 immunostaining 

were performed at day 21 of chondrogenesis following either continuous DMOG 

treatment or supplementation for the final 7 days of culture.  

Treatment of DMOG for days 14-21 of the chondrogenic protocol only did not reduce 

Collagen Type II in the ECM (Fig. 4.12C) compared to the untreated control (Fig. 

4.12A) as was observed due to continuous treatment for the full 21 days of 

chondrogenesis (Fig. 4.12B). This was confirmed by quantification of the 

immunostaining which were normalised to the number DAPI-stained cells (Fig. 

4.12D). Despite achieving similar Collagen Type II protein compared to the untreated 

control, DMOG treatment for days 14-21 enhanced mRNA expression of SOX9 (Fig. 

4.12E), P4HA1 (Fig. 4.12G) and HIF targets- VEGFA (Fig. 4.12H) and EGLN (Fig. 4.12I), 

as observed due to continuous treatment for 21 days. Unlike these transcripts, the 

SOX9 target- COL2A1 was not induced by late treatment as with continuous dosage 

(Fig. 4.12F). 

Overall, late DMOG treatment appeared to alleviate the determinal effect of 

continuous treatment on Collagen Type II production by BM-MSCs, whilst still 
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maintaining the strong induction of transcription of chondrocgenic mRNA. This 

therefore indicates tha late DMOG treatment may be a valid CTE strategy for 

improving chondrogenic differentiation of BM-MSCs whilst maintaining the cartilage 

ECM required for articular cartilage function in the joint. 
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Figure 4.12. Late treatment of DMOG does not reduce Collagen Type II in the 
ECM as with continuous exposure, but still induces chondrogenic gene 
expression in differentiating BM-MSCs.  (A-C) Collagen Type II 
immunofluorescence staining at day 21 of chondrogenesis. Scale Bar = 400μm. 
Representative images of 4 independent repeats shown. (D) Quantification of 
Collagen Type II immunofluorescence at day 21 of chondrogenesis which was 
normalised to DAPI immunofluorescence. Values plotted are from 4 independent 
experiments and are fold change compared to the untreated control without 
DMOG which is represented by the horizontal dotted line. The solid coloured lines 
represent the mean for each condition and *denotes p<0.05 compared to the 
untreated control without DMOG. (E-I) mRNA expression throughout 
chondrogenesis of SOX9 (E), COL2A1 (F), P4HA1 (G) VEGFA (H) and EGLN (I). 
Values plotted are from 4 independent experiments and are fold change 
compared to the untreated control without DMOG which is represented by the 
horizontal dotted line. The solid orange lines represent the mean for each 
condition with *denoting p<0.05 compared to the untreated control without 
DMOG. 
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4.3. Discussion 

The pro-chondrogenic effects of hypoxia are thought to be mediated primarily 

through HIF-1α which is part of an active transcription factor complex at target genes. 

It has been shown to mediate not only initial chondrogenic differentiation of 

mesenchymal precursors [262] but also have a role in stabilising the articular 

chondrocyte phenotype [288] and ensuring cartilage ECM production [277]. 

Therefore it is not overly presumptive to predict that compounds which stimulate 

HIF-1α, may improve de-novo articular cartilage formation. Previous studies have 

examined the effect of CoCl2 [272], DFX [494] and DMOG [278]; compounds with HIF-

α-stabilising ability, for enhancing cartilage ECM formation from articular 

chondrocytes, reducing hypertrophy or even rescuing from an osteoarthritic 

phenotype. However, no evidence exists for the comparison of the effect of DMOG, 

a 2-OG analogue with that of Fe2+ analogue and chelator, CoCl2 and DFX [467] during 

chondrogenesis of hBM-MSCs.  

The results detailed in this chapter clearly indicate an advantage of DMOG in 

stimulating expression of chondrogenic mRNA including those whose products are 

quired for chondrocyte differentiation and complete folding and polymerization of 

Collagen Type II triple helices. In addition, compared to that observed due to CoCl2 

or DFX, DMOG inhibited expression of hypertrophic markers at the mRNA and 

protein leevsl. Together, these suggest the suitability of DMOG for incorporation into 

a CTE strategy in which BM-MSCs or a similarly multipotent cell population are 

directed down an articular chondrocyte lineage within a 3D biomaterial scaffold. The 

ECM synthesized by BM-MSCs that are differentiated in the presence of DMOG may 
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produce cartilage that resembles that which arises during native articular cartilage 

development – essential for repair of acute chondral defects. However, a potential 

pitfall is demomstrated by the decrease in Collagen Type II protein induced by DMOG 

treatment. This was alleviated by treatment of DMOG for the final 7/21 days of 

chondrogenesis only whilst maintaining the transcriptional changes induced by this 

2-OG inhibitor.  

Prior to assessing the role of these HIF-stabilising compounds for chondrogenic 

induction, it was imperative to identify concentrations which were not toxic to the 

hBM-MSCs and did not significantly reduce cell number during the 21-day 

differentiating period. The highest concentrations of each compound which were 

used as a positive control for cell death, did not cause a complete abolishment in cell 

viability at 0.5 days for CoCl2 and DMOG and not at day 0.5 or 7 for DFX. This suggests 

either a lack of drug absorption by the cells prior to 0.5 days which would have 

otherwise resulted in a cumulative toxic dose.Alternatively, and particularly in the 

case of DFX, hBM-MSCs may retain have been able to excrete/metabolise the 

compounds at early time points before their toxicity took effect. The constitutive 

treatment and build-up of each compound following 0.5-7 days may then have 

overcome any ability of the cell for excretion or metabolism.  

Another possibility for the lack of toxicity at these early time points is that observed 

may be due to the initial ability of hBM-MSC treated with these compounds to inhibit 

apoptotic processes via HIF-mediated mechanisms. Although HIF-1α stabilisation 

was not examined at 0.5 days, each compound increased nuclear HIF-1α at 24 hours, 

indicating a possibility of HIF-induced tolerance to drug toxicity. This has been shown 
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previously in breast cancer cells, where resistance to a chemotherapeutic agent 

being abolished upon HIF-1α deletion [495], and also in a hepatocyte cell line in which 

fatty acid-induced apoptosis was inhibited by HIF-1α overexpression [496]. Following 

the initial tolerance, DFX appeared to cause a larger drop in viability due to the 100 

and 200μM doses. This was unlike that observed due to CoCl2 at these doses. This 

may suggest the propensity of DFX, which is a specific iron-chelating agent, to 

sequester Fe2+ ions from enzymes responsible for maintaining cell viability, such as 

cytochrome complexes of the mitochondria [497].  

Following identification of appropriate doses to use of each compounds, the ability 

of CoCl2, DFX and DMOG to induce HIF-1α nuclear localisation was confirmed. In 

addition, as with hypoxic incubations, treatment with each of the compounds did not 

alter the peri-nuclear localisation of HIF-1α observed in the control conditions. 

Subcellular localisation of the HIF hydroxylases is important in their regulation of HIF-

1α. It has been reported that PHD2 protein primarily resides and hydroxylates  of HIF-

1α within the nucleus in certain cell types [498] which perhaps rationalises the 

presence of HIF-1α external to the nucleus. This is also supported by the observation 

of increased hydroxylase activity of nuclear PHD2 compared to the cytoplasmic 

fraction [498]. In normoxic untreated conditions, this may result in a net increase in 

hydroxylation, ubiquitination and degradation of nuclear HIF-1α and comparatively, 

a preservation of HIF-1α in the cytoplasm.  

Despite each compound inducing nuclear HIF-1α localisation compared to the 

untreated control, only DMOG appeared to constitutively induce mRNA expression 

of HIF targets throughout chondrogenesis, with DFX inducing fewer changes and 
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CoCl2 causing no transcriptional effect. Increases in VEGFA and EGLN mRNA by DMOG 

were shown through the use of Acriflavine, to be mediated by HIF-1α interacting with 

HIF-1β in the HIF transcriptional complex. As with observations in the previous 

chapter, a limitation in this study may be the relatively low number of HIF-target 

genes selected to denote activation of HIF-mediated transcription. PHD2 and FIH 

inhibition stimulates differential HIF-mediated gene expression programs, with these 

hydroxylases inhibited by CoCl2, DFX and DMOG to different extents [453]. This 

therefore suggests that expression of alternative HIF target genes than those shown 

here may be induced by CoCl2 and DFX which may have validate their potency as 

inducers of HIF activity. 

The differences in HIF-mediated transcription induced by Acriflavine in the presence 

of DMOG were larger than the effect of Acriflavine in the presence of DFX. This 

suggests the transcriptional changes induced by DMOG compared to that stimulated 

by DFX were dependent to a greater extent on the participation on HIF-1α. 

Interestingly DMOG’s potent transcriptional effects relative to both the untreated 

control and DFX were not a result of increased HIF-1α protein induced by the 2-OG 

analogue. This is demonstrated by the lack of observed differences in the total levels 

and nuclear localisation of HIF-1α between that induced by DFX and DMOG. One 

limitation of this study is the lack of analysis of HIF-1α protein throughout 

chondrogenesis induced by these compounds after day 1. This would have enabled 

correlation or a lack thereof between HIF-1α protein, transcription of HIF targets and 

chondrocyte differentiation. Furthermore, as opposed to HIF-1α semi-quantification, 

it may be required to quantify absolute levels of HIF-1α both in the whole cell and 
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nuclear compartments using ELISAs or DNA-binding ELISAs. This may enable the 

discerning of any subtle changes in HIF-1α stabilization between CoCl2, DFX and 

DMOG treated cultures. 

These differences in expression of HIF targets due to these HIF-stimulating 

compounds may therefore highlight distinct mechanisms by which the different 

hydroxylase inhibitors function, and by which HIF-1α is regulated in hBM-MSCs. Tian 

et al examined the ability of each of the presently used compounds to inhibit the 

activity of PHD2 and the HIF asparagine hydroxylase, FIH. In a renal carcinoma cell 

line, Tian et al utilised identical concentrations of CoCl2, DFX and DMOG identical to 

that used in the present study. They observed a complete reduction in FIH activity 

due to DMOG as evidence by abolishment of HIF-1α asparagine hydroxylation. This 

was accompanied by a decrease in proline hydroxylation which is indicative of PHD2 

inhibition. Due to DFX, the decrease in asparagine hydroxylation did not occur as 

robustly as with DMOG and a lack of change in this was observed in response to 

treatment with 100μM CoCl2 compared to the untreated control. However both DFX 

and CoCl2 induced similar decreases in proline hydroxylation as observed due to 

DMOG in this study. Overall the observations made by Tian et al suggest the role of 

FIH and PHD2 inhibition in mediating DMOG’s effect on HIF target gene expression 

compared to that stimulated by DFX and CoCl2 which may primarily function solely 

via PHD2 inhibition. This corresponds to the lack of effect of CoCl2 in the present 

study. CoCl2 here may be unable to sufficiently inhibit FIH, which would result in high 

HIF-1α asparagine hydroxylation and a lack of HIF enrichment at the promoters of 

VEGFA, PGK1 and EGLN. Alternatively, at odds with that induced by DMOG and DFX, 
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a lack of FIH inhibition by CoCl2 may induce a different subset of HIF targets [451] 

which were not investigated here and which may validate CoCl2 as a potent HIF-

stimulator during chondrogenesis.  

Further supporting a role for FIH in the observations made here in response to DMOG 

treatment, FIH compared to PHD2 has an increased Km value for 2-OG [499]. This 

translates into a requirement of FIH for greater levels of 2-OG than required by PHD2 

for these two enzymes reach the same activity level. DMOG treatment also increased 

HIF-mediated transcription compared to that observed in the presence of a PHD2-

selective inhibitor [44]. Together these studies suggest that FIH is more sensitive than 

PHD2 to DMOG and this enhances HIF-mediated transcription relative to PHD2-only 

inhibition. Furthermore, Palomaki et al suggested the greater dependence on 

inhibition of FIH rather than PHD2 for HIF-mediated transcription specifically in BM-

MSCs. This is due to the observation in this study of increased HIF-1α mRNA levels 

observed in this cell type [432]. This increased transcription and corresponding 

protein levels of HIF-1α was hypothesised to compensate for any decrease in HIF-1α 

stability due to PHD2-mediated hydroxylation.  

The studies described above, may rationalise the potent effect of DMOG in the 

present study and suggests this compound as potent FIH inhibitor compared to DFX 

or CoCl2. In mouse myoblasts, FIH knockdown was shown to induce significant higher 

levels of HIF-mediated transcription compared to PHD2 knockdown which 

demonstrates the potential for a FIH-selective mechanism that is stimulated by 

DMOG here [481]. These rationalisations of the contrasting effects of CoCl2 and 

DMOG on HIF-target gene expression observed and the contribution of FIH and PHD2 
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inhibition to these observations are of course, only speculative. Aside from the use 

of Acriflavine which inhibits HIF-1α-HIF-1β heterodimerisation and is therefore 

downstream of FIH and PHD2 activity, no manipulation of the PHD2/FIH/HIF 

signalling pathways was conducted during CoCl2/DFX/DMOG-treated 

chondrogenesis.  

If DMOG does indeed induce its transcriptional effects via inhibition of PHD2 and FIH, 

as opposed to PHD2 inhibition alone as induced by DFX and CoCl2 this would correlate 

with our observations of DMOG’s effect on inducing a chondrogenic gene expression 

profile. Chan et al compared the effects of PHD2-specific inhibitor, IOX2 and FIH-

specific inhibitor, N-Oxalyl-(d)-Phenylalanine (NOFD) with that of DMOG on 

transcription of HIF targets in MCF-7, Hep3B, and U2OS cell lines [500]. These authors 

observed an increase in SOX9 expression due to DMOG but not due to IOX2 or NOFD. 

This implies that SOX9 is a genetic locus that is regulated by HIF in a manner 

dependent on inhibition of both PHD2 and FIH by DMOG as opposed to inhibition of 

either hydroxylases alone.  

In the present study, DMOG-mediated upregulation of HIF-target gene expression 

appeared to correlate with the generation of a chondrocyte expression profile, 

including an induction of SOX9 expression. As with expression of HIF targets 

described above, the role of dual FIH and PHD inhibition in mediating the effect of 

DMOG on SOX9 expression here is only theoretical. Confirmation of such a 

mechanism would require genetic or inhibitor-based manipulation of PHD2 and FIH 

during DMOG-mediated chondrogenesis. Also observed was an upregulation of SOX9 

mRNA over that of RUNX2 which suggests a bias towards chondrogenic 
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differentiation over that of an osteoblast/hypertrophic chondrocyte. This would 

confer advantages to any CTE strategy. For example, Ma et al created a doxycyline-

inducible SOX9 transgene within C3H10T1/2 cells which when seeded 

subcutaneously into a mouse model resulted upregulation of cartilage ECM 

formation upon Doxycycline treatment [501]. 

 Despite only DMOG inducing significant SOX9 expression, all three compounds 

appeared to induce expression of its target gene- COL2A1 at day 14. Provot et al 

deleted HIF1A in the limb bud mesenchyme. Despite observing an abolishment in 

COL2A1 mRNA at the onset of chondrogenesis, SOX9 mRNA was largely unaffected 

both at the same developmental time point, and at the earlier stage of mesenchymal 

condensation [262]. This implicates a SOX9-independent induction of COL2A1 during 

HIF-1α-mediated cartilage development or at least an uncoupling of SOX9 

transcription with that of COL2A1 in response to HIF-1α stimulation. A similar 

mechanism may be induced by CoCl2 and DFX due to observations of an absence of 

SOX9 expression accompanying the increase in COL2A1 by these compounds.  As 

shown previously [272] HIF-1α may upregulate SOX5/6 which would increase COL2A1 

expression by facilitating SOX9-mediated transcription of this genetic locus [502]. 

This would therefore require no increase in SOX9 expression to achieve increased 

COL2A1 expression. Again, the correlative observations of SOX9 and COL2A1 

transcription here enable only a suggestion of the mechanisms which dictate the 

levels of their mRNA in respect of each other. For any such mechanism to be 

validated, genetic manipulation of SOX9 in addition to SOX5 and SOX6 would be a 

requirement. In addition, without utilising more frequent time points between days 



  

220 
 

1 and 7 or between days 7 and 14, it is not possible to rule out an increase in SOX9 

transcription prior to the increase in COL2A1 mRNA at day 14. 

Unlike COL2A1 transcription which is upregulated by all three compounds, COL10A1 

involved in chondrocyte hypertrophy appeared to be selectively downregulated by 

DMOG only. This also resulted in a corresponding upregulation of the ratio of 

COL2A1:COL10A1 mRNA. This pattern appears to manifest in the protein levels of 

Collagen Type X which were also reduced by DMOG treatment. This and increased 

SOX9 expression, therefore suggests DMOG compared to CoCl2 or DFX as the 

chemical agent which offers advantages regarding hBM-MSC-based CTE. However, a 

significant limitation of this study is represented by the difference of 2D culture on 

TCP with 3D culture of hBM-MSCs in a biomaterial scaffold. In a 3D 

microenvironment created by a scaffold, a multitude of regulatory cues exist 

compared to 2D culture. This is summarised by Sart et al who gathered evidence of 

studies in which cartilage induction of MSCs was regulated differentially by 2D and 

3D aggregate culture [503]. Therefore before the role of DMOG may be suggested 

for CTE applications, it is a requirement to assess its effect on BM-MSC 

chondrogenesis in a 3D, biomaterial scaffold environment. Chondrocyte hypertrophy 

is a significant problem in CTE so therefore a small molecule which is able to reduce 

hypertrophic signalling within scaffold-seeded mesenchymal progenitors would be 

highly advantageous.  

Regarding the design of continuous scaffolds for full osteochondral tissue repair, 

spatial control of hypertrophic expression (in addition to that of SOX9) would also 

enable corresponding organisation of articular cartilage and endochondral bone. As 
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described by Sun and Beier [504], strategies in which hypertrophy is able to be 

spatially controlled would be advantageous due to the opposing requirements of 

hypertrophy during cartilage and bone formation. Such a strategy would also enable 

formation of the hypertrophic ‘tidemark’ present between native articular cartilage 

and subchondral bone. This region plays an important structural role in 

osteochondral tissue by facilitating communication between the cartilage and bone 

layers. This is required for complete joint function and to enable communication 

between tissues with such contrasting structural, mechanical and biochemical 

properties. Da et al observed an enhanced tensile and shear strength of an interface-

containing scaffold compared to that containing none They also observed increased 

in vivo regeneration of osteochondral tissue following implantation into a rabbit 

defect model [505]. Clinical trials of a collagen type I-hydroxyapatite multiphasic 

scaffold inclusive of an interface region were implanted into osteochondral defects 

of the femoral condyle. Patients were reported as having experienced good clinical 

outcome following 2 years post-operative observations [506]. 

Interestingly, despite COL10A1 being downregulated by DMOG, MMP13 was not 

inhibited by this compound. DMOG also did not downregulate RUNX2 mRNA 

compared to the non-treated control throughout chondrogenesis. This perhaps 

suggests that DMOG-induced HIF activity did not reduce COL10A1 expression by 

reducing RUNX2-mediated transactivation of the COL10A1 promoter. 

Correspondingly, expression of MMP13 was also not altered by DMOG treatment at 

the same time as the observed COL10A1 downregulation. MMP13 is thought to be 

regulated are part of a RUNX2-mediated transcriptional program which 

simultaneously regulates COL10A1 transcription [507, 508]. An increase in only 
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COL10A1 mRNA here suggests that DMOG is not inhibiting the entire regulatory 

network conducive for hypertrophy but instead is targeting COL10A1 expression 

specifically. Of course, expression of both RUNX2 and MMP13 may be regulated by 

DMOG at time points other than those observed here. Regardless of time points 

chosen however, the role of RUNX2-mediated COL10A1 and MMP13 regulation in 

the present study is speculative without genetic manipulation of RUNX2 during 

DMOG-treated chondrogenesis. 

As opposed to regulating RUNX2, upregulation of SOX9 by DMOG may indicate the 

potential role of SOX9-mediated repression of COL10A1 transcription. This has been 

shown to occur via co-binding of SOX9 target sites by the Gli transcription factors 

which causes a decrease in COL10A1 transcription by SOX9 [53]. In the present study, 

we can also negate a role for HIF-2α in the mechanism of action of DMOG. HIF-2α 

has repeatedly been shown to induce a hypertrophic and osteoarthritic 

transcriptional profile within in vivo murine models [509]. The lack of upregulation of 

both MMP13 and COL10A1 suggests upregulation of HIF-1α due to DMOG as 

opposed to HIF-2α. This also corresponds to previous reports which indicate a bias 

for HIF-1α over HIF-2α stabilisation upon PHD2 and FIH inhibition [396]. Again, if the 

role of factors such as SOX9 or HIF-2α are to be investigated during DMOG-mediated 

chondrogenesis, their genetic manipulation would need to be undertaken. 

Despite a lack of effect on expression of SOX9 or hypertrophic markers due to CoCl2 

and DFX, these compounds both stimulated changes in mRNA encoding the articular 

chondrocyte markers, Gremlin1 and DKK1. Throughout chondrogenesis, DFX 

appeared to increase DKK1 mRNA with an increase at day 21 observed due to DMOG. 
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A trend was also observed towards increased expression of BMP antagonist- GREM1 

from day 7 onwards due to CoCl2 or DMOG treatment. This demonstrates again that 

during hBM-MSC chondrogenesis, the effect of HIF-1α activation on target gene 

expression is not an ‘all or nothing’ response and that different mechanisms of HIF-

1α upregulation may result in different subsets of HIF-targeted genes being 

transcribed. Iron chelation by DFX appears to generate an anti-Wnt signalling milieu 

within the cell whereas competitive inhibition of PHD2 by CoCl2 or DMOG appears to 

upregulate the BMP antagonist. However, these observations on the differential 

transcription of DKK1 and GREM1 do not robustly validate a conserved mechanism 

by which HIF controls expression of these genes. This instead would be demonstrated 

by the use of other iron-chelators and competitive PHD2 inhibitors. This would 

determine if the effects on DKK1 and GREM1 expression is a specific effect of the 

compounds used here or not. 

Studies suggest a requirement for β-catenin-mediated transcription during 

chondrocyte hypertrophy. There exists therefore a requirement to inhibit canonical 

Wnt signalling during the latter stages of BM-MSC chondrogenesis to suppress 

hypertrophy. This therefore may correspond to the expression patterns here of the 

Wnt antagonist- DKK1 which was induced by DFX throughout chondrogenesis and by 

DMOG at day 1. An observation which was not made here and one in which would 

determine the necessity of Wnt inhibition during chondrogenesis, is that of β-catenin 

activity. This would allow a greater or lesser significance to be drawn of DFX/DMOG-

mediated DKK1 transcription, dependent on the relative activity levels of the 

canonical Wnt pathway, as denoted by β-catenin levels. 
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Despite changes in expression of the Wnt antagonist; DKK1, there was a lack of 

corresponding decrease in expression of AXIN2, a gene which is designated as a 

conserved canonical Wnt signalling target [510]. There was also a lack of decrease in 

expression of LEF1 which is another transcriptional target of β-Catenin whose 

product is part of the TCF-LEF complex active at Wnt target genes [511]. As described, 

this lack of correlation in AXIN2 and LEF1 mRNA may be due to the relatively few time 

points utilised as a proportion of the total differentiating period. Regulation of AXIN2 

and LEF1 may occur by DMOG after day 14 of chondrogenesis, following DKK1 

upregulation at this time point. Despite observing no changes in AXIN2 and LEF1 

mRNA due to DFX, we did observed a trend towards an increase in LEF1 mRNA at day 

1 due to DMOG. This may be suggestive of a DMOG-mediated mechanism for 

increasing Wnt signalling at this early time point in chondrogenesis at which point it 

is required for early chondrocyte specification. DMOG may stimulate the role of LEF1 

as the co-factor required for expression of Wnt target genes. To confirm this role of 

DMOG, it would be required to genetically downregulate components of the Wnt 

pathway such as β-Catenin. If DMOG does indeed increase Wnt signalling during its 

during early chondro-induction, robust knckdown of β-Catenin may reduce the 

potent effects of DMOG on the chondrogenic gene expression observed. 

In terms of Indian Hedgehog signalling, we also observed a trend for increase at day 

1 due to DMOG, which would also correspond to a role for this compound in 

inhibiting hypertrophy. This is due to the role of IHH ligand in suppressing progression 

of hypertrophy in pre-hypertrophic chondrocytes via increased PTHRP expression 

[93]. However, we observed no changes in expression of PTHRP at this same time 

point. This may be due to a requirement of the paracrine action of IHH which is a 
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required process during spatial regulation of hypertrophy and normal bone 

development. This is as opposed to an autocrine mechanism of action which may be 

observed here, in which the entire cell population increases expression of IHH. As 

with regulation of Wnt signalling by DMOG, it may be required to examine time 

points other than those utilised here to enable suggestion that Indian Hedgehog 

signalling is stimulated in response to DMOG treatment.  

Despite its strong transcriptional induction of chondrogenic genes, DMOG had a 

negative effect on cartilage-like ECM production. This was shown to be partly 

mediated via HIF-1α, but a large decrease in Collagen Type II due to DMOG was 

observed still in the presence of Acriflavine. DMOG has been shown to reduce the 

activity of CP4HA1 which is required for processing of collagen fibrils [278]. 

Correspondingly, both FIH and CP4HA1 have similar affinities for 2-OG which is 

represented by a similar Km value of these enzymes for this co-factor [512]. This 

would manifest in an equal sensitivity of FIH and CP4HA1 to DMOG. This suggests the 

strong induction of HIF target genes due to DMOG via FIH inhibition would be 

accompanied by a similarly potent inhibition of Collagen processing and 

incorporation into the ECM. It is also worth noting that the suggested inhibition of 

CP4HA1 by DMOG would also negate the positive effect of the increases observed in 

CP4HA1 and LOX mRNA due to DMOG. The lack complete folding and formation of 

collagen triple helices due to CP4HA1 inhibition, would make further mRNA 

expression of CP4HA1 and LOX, redundant in terms of an effect on Collagen Type II 

in the ECM. It is also important to note that current observations here are merely 

suggestive of this mechanism of DMOG-mediated inhibition of CP4HA1. As proposed 
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above in which suggestions were made to examine the role of PHD2 and FIH in the 

effects observed due to DMOG, the role of CP4HA1 may be investigated by its genetic 

overexpression. Via examination of Collagen Type II protein in response to this 

overexpression, the role of CP4HA1 in the detrimental ECM changes induced by 

DMOG would be validated.  

Timed exposure of the hBM-MSCs to DMOG may help alleviate the negative effect 

on Collagen Type II incorporation into the ECM. Treatment with DMOG for the final 

7 days of induction did at least in part restore the poor levels of type II collagen 

secretion that resulted from continuous treatment. This could have been mediated 

by a lack of continuous inhibition of the CP4HA1. In addition we observed enhanced 

expression of HIF targets VEGFA and EGLN and chondrogenic marker SOX9, to similar 

levels as observed with continuous DMOG treatment. This suggests a role of late 

DMOG treatment in CTE strategies as opposed to continuous treatment. However, 

late DMOG treatment was not able to stably induce expression of SOX9 target, 

COL2A1. This suggests that HIF activity is required throughout the early and late 

phases of differentiation in order to induce expression of SOX9 targets, including 

COL2A1. This may be predicted due to the constitutive role of SOX9 throughout 

chondrogenic induction [94].   
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5. The role of hypoxia in regulation of mechanosensing during chondrogenesis. 

 

5.1. Introduction 

As already pertained to, the low oxygen state which persists throughout cartilage 

development and adult cartilage, plays essential roles in generating and maintaining 

the articular chondrogenic phenotype. The relative permanence of hypoxia and its 

downstream transcription factor- HIF, suggest this stimulus is one of the fundamental 

factors residing in the limb bud and chondrocyte cell niche. This is demonstrated by 

the loss of the cartilage growth plate/articular cartilage upon HIF-1α conditional 

deletion at various stages throughout limb development [259, 262]. 

As described in this introduction, another set of omnipresent cell signals during 

cartilage development are those which activate intracellular pathways in response to 

mechanical changes in the cell microenvironment. Evidence exists for a role of these 

pathways from the mesenchymal limb bud stage through to the resting articular 

cartilage, as observed with hypoxia-stimulated pathways. Condensation of the limb 

bud mesenchyme is required to initiate chondrogenesis in formation of the growth 

plate [178]. The role of mechanical signals in pre-condensation mesenchymal 

progenitors was demonstrated by Carrion et al. These authors observed the effect of 

soft PEG hydrogels on the induction of condensation and chondrogenesis of 

encapsulated mesenchymal progenitor line, ATDC5 [513]. Hydrogels with a shear 

modulus of 7.5KPa exhibited more compact arrangement of cells compared to those 

in gel of 25KPa and induced greater levels of chondrogenesis as assessed by COL2A1 

mRNA, Collagen Type II and Aggrecan protein. The condensed limb bud mesenchyme 
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was shown to exhibit differential tension as assessed by atomic force microscopy, 

between its centre and flanking regions [514]. The increase in tension due to FGF8 

treatment of the flanking regions was reduced by an inhibitor of Actin 

polymerisation. This suggests that the specific mechanical properties of the limb bud 

are maintained by a cytoskeletal-mediated mechanism.  

Takahashi et al demonstrated the mechanosensing ability of mouse embryonic limb 

bud cells for their chondrogenesis. Static compressive loading was observed to 

increase SOX9 mRNA and both Aggrecan and Collagen Type II protein secretion from 

limb bud cells cultures in Collagen Type I scaffolds [515]. A dose-dependent 

relationship between the magnitude of static compression and COL2A1 expression 

was also demonstrated. One of the mechanisms behind this response to mechanical 

compression is suggested to be the secretion of autocrine factors by the limb bud 

mesenchyme. This was demonstrated by Elder who observed an increase in GAG 

production and proliferation of chick limb bud cells during chondrogenesis carried 

out in media conditioned by mechanically-compressed limb bud cells [516].  

The sensitivity of growth plate chondrocytes to mechanical cues for their lineage 

commitment was first suggested by Wolpert et al. They observed the generation of 

tension upon proliferation of growth plate chondrocytes of the developing limb, 

which was imposed by the surrounding perichondrium. This tension prevented cell 

growth, hypertrophy and endochondral ossification along the transverse axis and 

instead induces a longitudinal growth of the developing bone [517]. Foolen et al 

utilised a model in which developing chick tibia were stripped of their perichondrium, 

cultured on substrates of varying stiffness and compared with culturs in which the 
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perichondrium was left intact [518]. Explant cultures with their perchondrium intact 

exhibited no change in cartilage growth length in response to changes in ECM 

stiffness whereas the 3KPa surface induced cartilage growth relative to the 80KPa 

substrate in explants in which the perichondrium was removed. This growth 

advantage on the soft substrate was abolished by treatment of explants with an 

inhibitor of myosin contraction. This again was compared to cultures in which the 

perichondrium was left intact and in which the inhibition of myosin contraction had 

no effect on either substrate. Overall this study suggests a role of the perichondrium 

in regulating the mechanosensing ability of growth plate chondrocytes and that the 

proliferation of the growth plate and cartilage growth is in part, dependent on a 

cytoskeletal tension-mediated response to changes in ECM stiffness.  

The mechanical properties of adult articular cartilage are products of the collagen-

proteoglycan network and the osmotic pressure created by water-retention of the 

tissue. These together function to maintain the articular chondrocyte phenotype 

[519]. Darling et al identified the specific elastic modulus of both the pericellular 

matrix surrounding the articular chondrocytes as well as that of the ECM more 

distally–located from these cells [520]. These authors identified a softer ECM in the 

immediate area around the chondrocytes compared to that of the remaining ECM. 

Accordingly, adult articular cartilage is dependent on a specific, relatively low 

mechanical stiffness for maintenance of an articular chondrocyte phenotype. This 

was demonstrated by Kim et al who observed an increase in articular chondrocyte 

markers and decrease in hypertrophic markers on soft substrates compared to stiffer 

surfaces [352]. This was shown to be dependent on myosin-mediated cytoskeletal 

contraction due to observation that the articular chondrocyte phenotype on the soft 
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substrates were lost due to inhibitors of ROCK and myosin contraction. In addition 

these authors observed the requirement of ROCK-mediated cytoskeletal tension in 

protection from OA following surgical destabilisation of the medial meniscus.  

Together the studies described above demonstrate a requirement of 

mechanosignalling throughout chondrogenic development. This is demonstrated by 

the mechanosensing ability of mesenchymal progenitors, immature chondrocytes 

and articular chondrocytes in order to generate stable articular cartilage. Another 

key set of observations which indicates the role of constitutive mechanosignalling 

throughout cartilage development is that of the ligand which stimulates these 

pathways. Unlike growth factor ligand bio-availability which is temporally-controlled 

during cartilage development, mechanical stimulation of the cell is not transient. This 

is due to the constitutive remodelling and perturbation of the ECM during sequential 

formation of the limb bud, growth plate and adult osteochondral tissue.  

At the start of limb bud formation, the ECM is composed of Hyaluronic Acid. Maleski 

and Knudson demonstrated the function of HA in cell-cell adhesion at the limb bud 

stage by observation of a decrease in cell-cell binding upon treatment of chick limb 

bud cultures with the HA-digesting enzyme, hyaluronidase [178]. HA is then 

downregulated following onset of condensation and chondrogenesis, and this 

specific temporal regulation of HA was shown by Li et al to be a pre-requisite for 

cartilage development [177]. In the centre of the developing limb bud at the very 

start of mesenchyme condensation, both Collagen Type I and Fibronectin were 

shown to be expressed by Dessau et al [521].  
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Fibronectin has since been shown to also be required for mesenchymal condensation 

as demonstrated by Singh and Schwarzbauer who observed a decrease in MSC 

condensation in vitro in response to siRNA knockdown of fibronectin [522]. These 

authors also demonstrated the expression of Fibronectin-coding mRNA prior to 

condensation which increases following induction of cell compaction. Protein 

expression of collagen type I, fibronectin are then reduced following the initial 

induction of chondrogenesis and are eventually replaced by a matrix rich in Collagen 

Type II. [521].  

Many studies are suggestive of the role of this changing ECM milieu of developing 

cartilage in stimulating mechanosensing pathways of the cells involved in 

chondrogenesis. Somaiah et al observed a change in actin organisation and RhoA 

activation of MSCs which was dependent on their culture on Collagen or Fibronectin-

coated surfaces [523]. Varying the HA concentration within cell-laden hydrogels was 

also shown to induce changes in the mechanical properties of the construct and 

downstream changes in cell morphology and spreading [524]. Oberhauser et al 

demonstrated that the elasticity of fibronectin is significantly altered in response to 

mechanical loading of this protein due to conformation changes and unfolding of its 

tertiary structure. This therefore indicates the elasticity of Fibronectin-containing 

ECMs as being highly subject to change by mechanical forces which would have a 

knock-on effect on the stimulation of mechanosensing pathways in mesenchymal 

progenitors. Indeed, fibronectin-containing extracellular matrices have also been 

shown to upregulate specific integrin receptors and resulting in induction of 

RhoA/ROCK-mediated cytoskeletal tension [315]. Additionally, Kubow et al observed 
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in Collagen Type I-Fibronectin mixed ECM, that Collagen digestion reduces the 

mechanical strain of fibronectin [525].  

The roles HA, fibronectin and Collagen Type I in regulating the mechanical properties 

of the ECM in which they reside, are suggestive of their stimulation of mechano-

signalling pathways in limb bud cells and chondrocytes during cartilage development. 

The perturbations from the constantly remodelled ECM during articular cartilage 

development are sensed by integrin receptors [526]. The pathway which is 

downstream of integrin receptors is also key in maintaining the constitutive response 

of cells to the changing ECM as they transition from mesenchymal progenitor to 

resting articular chondrocyte. For example, the cytoskeleton is omnipresent within 

cells due the essential roles it plays during development and tissue homeostasis 

[527].The dependence of cells on this sub-cellular structure is also represented by 

the vast multitude of organelles to which it is connected [528]. The constitutive 

presence of the cytoskeleton is required for continued sensitivity to mechanical 

stimuli due to its role as a mediator of mechanical signal transduction from the cell 

surface to the nuclei where it induces transcriptional changes [529].  

The nucleoskeleton which plays key roles in facilitating the transmission of force from 

the cytoplasm [340] is also constitutively present. This is due to the essential roles it 

plays during the maintenance of nuclear integrity [347] and regulation of chromatin 

epigenetics [530]. Other components of the mechanotransducive pathway have also 

been shown to be either primed constitutively for activation or are readily de-

repressed following their initial stimulation. For example, the mature focal adhesions 

formed upon integrin activation are pre-meditated by the presence of nascent 
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complexes composed of α-actinin [531]. These structures couple myosin contraction 

with integrins even prior to the stimulation of these receptors, and have been shown 

to be integral in maturation of focal adhesion complexes through Talin and Kindlin2 

[532]. In order to remain sensitive to mechanical signals, the mechanosensing 

pathway must ‘reset’ itself for repeated stimulation. Actin-myosin contraction which 

is stimulated by ROCK-mediated phosphorylation of myosin light chain 2, is subject 

to de-phosphorylation by myosin light chain phosphatase [533]. This results in a 

relaxation of the actin-myosin network, dissolution of stress fibres and a 

susceptibility of the cell to integrin-mediated tension once more.  

In terms of the specific effect on chondrogenic lineage commitment of mesenchymal 

progenitors, the literature suggests an advantage of mechanical environments which 

promotes a round, less spread cytoskeletal arrangement and cortical actin fibres - 

e.g. substrates of a relative low stiffness. [354, 355]. Promotion of a cortical actin 

organisation and around cell shape is also conducive for maintenance of the articular 

chondrocyte phenotype as opposed to conditions which promote stress fibre 

formation and cell spreading [350, 352]. This has been investigated extensively as a 

strategy to improve protocols for MSC chondrogenesis. Bian et al observed an 

increase in ACAN expression and a decrease in MMP13 and COL10A1 mRNA upon 

encapsulation and differentiation in HA hydrogels of lower elastic modulus compared 

to relatively stiffer hydrogels [534]. Sun et al also observed a similar trend with 

increases in SOX9, COL2A1 and ACAN expression observed in MSCs seeded on Poly 

Lactic Acid-PEG scaffolds of a lower compressive modulus compared to those of a 

greater compressive modulus [535].  
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Despite these improvements of CTE strategies, evidence in the literature is 

suggestive of unique mechano-regulatory mechanisms during chondrogenesis which 

could be exploited for de novo cartilage formation. Unlike other cell fates which are 

also promoted due to a lower relative substrate stiffness and reduced, round cell 

area, ROCK-mediated cytoskeletal tension appears to remain and play a role in 

chondrocyte specification. Adipogenesis is one of the classic examples used to 

describe the polar effects of cell stiffness and cytoskeletal tension on cell fate. 

McBeath et al observed that a round MSC morphology is conducive for an adipocyte 

cell fate, with treatment of a constitutively active RhoA inhibiting this effect and 

hyper-active ROCK treatment inducing osteogenesis instead [307]. Increased myosin 

contraction and cytoskeletal tension has also been shown to be inhibitory to other 

cell fates which constitute ‘soft’ tissues. This includes neuronal cells, the 

differentiation of which is the preferred cell fate on softer substrates where stress 

fibre formation and cell area is reduced [304] and in conditions in which myosin 

contraction is abolished [536].  

In contrast to neurogenesis or adipogenesis, chondrogenesis appears to be an 

anomaly amongst those cell fates preferred on softer substrates. Studies such as that 

Allen et al by have demonstrated the preservation during chondrocyte 

differentiation, of RhoA/ROCK-mediated cytoskeletal tension, despite induction of a 

cortical actin arrangement and a rounder cell shape. This ROCK activity was 

subsequently shown to be required for full chondrogenic induction of ATDC5 cells on 

soft substrates. This was demonstrated by ROCK inhibition reducing chondrogenic 

mRNA and protein expression [355]. This was in contrast to that observed in cells on 

a relatively stiff substrate on which ROCK inhibition resulted in an increase in SOX9, 
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COL2A1 and ACAN expression. These observations are supported by Park et al who 

observed an increase in COL2A1 expression in hMSCs in response to transfection of 

constitutively active RhoA on soft substrates compared to hMSCs expressing wild 

type RhoA [537]. 

Overall, the literature is suggestive of a role for ROCK activity and cytoskeletal tension 

during chondrogenesis on soft substrates. This is unlike other cell fate changes which 

are also favoured on softer substrates in which ROCK-mediated cytoskeletal tension 

is an inhibitory factor. This indicates that during cartilage development, factors which 

maintain ROCK-mediated actin-myosin tension in the round mesenchymal 

progenitors of the limb bud [353] may be essential for chondrogenesis. Hypoxia is a 

factor which mediates a plethora of pro-chondrogenic effects and akin to signalling 

in response to mechanical stimuli, is constitutively active during cartilage 

development. The evidence which describes hypoxia-mediated regulation of 

mechanotransducive pathways, indicates its potential in mediating the transduction 

of mechanical signals during chondrogenesis of the limb bud.  

Hypoxia and HIF have been shown to influence activity of both RhoA and ROCK [372, 

379] which induces corresponding changes on cytoskeletal arrangement via action-

myosin contraction [375]. Reduced oxygen concentration has also been shown to 

induce F-Actin polymerisation [375]. No such studies exist which examine the 

crosstalk between hypoxic/HIF and mechanosensory pathways during MSC 

chondrogenesis. Answering such a question may provide further insight into the 

regulation of chondrocyte formation in the limb bud progenitor cell niche in addition 
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to aiding CTE efforts which may benefit from combinatorial modulation of the HIF 

and mechanotransducive pathways. 

 

 Aim: To determine the existence of an effect of hypoxia on the 

mechanosensing ability of chondrogenically-induced progenitor cells. 

 

 Hypothesis: Hypoxia upregulates ROCK-mediated cytoskeletal tension in 

MSCs with round morphologies on mechanically-soft substrates and in doing 

so, enhances downstream chondrogenesis. 

 

 Objectives:  

o To identify an effect of hypoxia on the cytoskeletal arrangement of hBM-

MSCs on 2D mechanically soft and stiff substrates 

o To identify an effect of hypoxia on pathways involved in, and downstream 

of, cytoskeletal tension in hBM-MSCs on 2D mechanically stiff and soft 

substrates. 

o To identify if hypoxia has a differential effect on hBM-MSC 

chondrogenesis on 2D mechanically stiff and soft substrates 
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5.2. Results 

 

5.2.1. Validation of 40/0.5KPa polyacrylamide substrates for manipulation of 

cytoskeleton arrangement 

Hypoxia has been shown to indue chondrogenesis of BM-MSCs both in the previous 

chapters here and previous studies. This is often described as occurring via direct 

mechanisms- HIF binding to chondrogenic target genes under low-oxygen conditions. 

However, hypoxia has also been shown to regulate a set of pathways which 

themselves have great impact on chondrocyte differentiation, maturation and 

cartilage ECM formation. These are the mechanosensory pathways which enable 

chondrogenically-induced cells to respond to substrates of varying stiffness, and 

which have been shown to dictate the chondrogenic differentiation program. The 

potential ‘crosstalk’ during chondrogenesis, between the hypoxia pathways and 

those which respond to mechanical stiffness, have largely been unexplored. Such a 

study may provide insights which are useful for the development of CTE strategies in 

which hypoxic culture of BM-MSCs is combined with biomaterial scaffolds of a 

defined stiffness. 

 PA gels have been established as a tool for assessing the effect of mechanical stimuli 

on cell behaviour. In the present study, these substrates were used to expose the 

cells to opposite extremes of stiffness with the purpose of inducing differential 

arrangement of the actin cytoskeleton via contraction of the associated myosin. 

0.5KPa and 40KPa were selected as the low and high stiffness values due to the use 

of these ranges of stiffness in the study by Engler et al who initially indentified the 
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control of BM-MSC lineage commitment by substrate stiffness [304]. These stiffness 

values were utlised by Engler et al, and subsequently in the present study to induce 

completely polarising effects on the mechanotransducive pathways. Cell parameters 

such as substrate adhesion [538], actin-myosin contraction and cell morphology 

[304]  are affected differentially by stiffness values in the 0.5-1 and 25-40KPa range. 

Critically, differential regulation of these cell characteristics by the magnitude 

induced by the 0.5-40KPa stiffness range has been shown to be key in differentially 

regulating BM-MSC fate decisions [304].  

To confirm the function of fibronectin-coated PA gels, initial experiments were 

conducted to compare the cell response to stiff (40KPa) and soft (0.5KPa) gels. An 

established method for detecting cell response to mechanical stiffness is through 

visualisation of cytoskeleton rearrangement. This occurs due to the differential 

contraction of MLC2 on each substrates. Immunodetection of the actin cytoskeletal 

network was therefore performed, by binding to Phalloidin conjugated with a 

fluorophore . BM-MSCs on the 40Kpa surface exhibited a spread cytoskeleton with 

visible actin stress fibres (Fig. 5.1A) and cells on the 0.5KPa substrate forming a much 

round cell shape (Fig. 5.1B).  

To provide a quantifier of actin rearrangement in response to 0.5 and 40KPa 

substrate, binary equivalents were created of each image in which the actin 

cytoskeleton was immunofluorescently labelled with Phalloidin.  The cell area and 

circularity of each BM-MSC in each binary images was then quantified in ImageJ . The 

degree of spreading and circularity of the cells has been shown to be a key indicator 

of differential activation of mechanosensing pathways on stiff and soft substrates. 
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The qualitative observation of actin rearrangement on the 40 and 0.5KPa substrates 

were confirmed by this quantification analysis. The area of single BM-MSCs 40KPa 

were significantly larger (p=<0.05) than those on 0.5KPa surface (Fig. 5.1C). 

Quantification of the circularity of single BM-MSCs enabled the observation that cells 

on the 0.5KPa substrate were significantly more circular in morphology than those 

on the 40KPa substrate (Fig. 5.1D).  

Regulation of cytoskeletal arrangement are normally thought to occur largely due to 

change in RhoA/ROCK activity rather than transcription or translation of their 

genes/mRNA. However studies such as that by Mih et al demonstrated the effect of 

ROCK1+2 siRNA in abolishing responses of lung fibroblasts to substrates of varying 

stiffness [305]. This indicates a role for ROCK1 and 2 at the mRNA level to play a role 

in mechanosensing. Figure 5.2 illustrates the suitability of RHOA, ROCK1, ROCK2, 

CTGF and ANKRD1-specific primers for amplification of these genes. Each standard 

curve demonstrates a linear relationship between input [cDNA] and cycle number in 

addition to theoretical reaction efficiencies between 90-100%. When BM-MSCs were 

cultures for 24 hours on each substrates, no significant changes were induced due to 

0.5KPa compared to 40KPa. However, ROCK2 and RHOA expression demonstrated a 

trend towards increase (Fig. 5.1E).  

YAP/TAZ localisation and their downstream function as binding partners for the TEAD 

family of transcription factors are markers of increased cytoskeletal tension on stiff 

substrates [330]. This therefore prompted investigation into their localisation on the 

substrates used here. Figures 5.2F-5.2H demonstrate the specificity of the anti-YAP 

antibody used in immunostaining here and that signal detected was due to this 
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primary antibody and not the fluorophore-conjugated secondary antibody. At 40KPa, 

YAP/TAZ were restricted to the nucleus of BM-MSCs (Figs. 5.1F+5.1G) and they 

showed a more dispersed pattern around the cell on the 0.5KPa substrate (Figs. 

1H+1I). This difference between YAP/TAZ nuclear localisation on 40 and 0.5KPa 

substrates was confirmed by quantification of the percentage of each nuclei occupied 

by this protein pair. Cells on 40KPa induced a significantly greater nuclear YAP/TAZ 

localisation than on the 0.5KPa substrate (Fig. 1J). Finally, mRNA expression of TEAD 

targets were examined to validate our observation on YAP/TAZ nuclear localisation 

and neither CTGF nor ANKRD1 expression were altered due to culture on the 0.5KPa 

substrate compared to that on 40KPa (Fig. 5.1K).  

Overall, the PA gels of 40KPa and 0.5KPa stiffness are transduced by the seeded BM-

MSCs to result in cell phenotypes which are typical of cells on stiff and soft substrates 

and which induce differential activation of the mechanosensory pathways. This 

therefore suggests the suitability of these substrates for investigation of the effect of 

hypoxia on the mechanosensory pathways which govern chondrogenesis of BM-

MSCs. 
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Figure 5.1. 40 and 0.5KPa induce differential cytoskeletal arrangement, cell shape 
and YAP/TAZ nuclear localisation in hBM-MSCs cultured in chondrogenic 
differentiating media. (A+B) Actin immunodetection by Phalloidin with DAPI 
counterstain at after 24 hours of culture on 40KPa (A) and 05KPa (B) substrates. 
Representative images of 4 independent repeats shown. Brightness and contrast 
were adjusted for all channels to an equal degree between all conditions. (C+D) 
Quantification of cell area (C) and circularity based on phalloidin staining. Values 
plotted represent the area/circularity of a single cell, with values from 4 independent 
repeats plotted and the mean values represented by the red line. (E+K) mRNA 
expression of ROCK1, ROCK2, RHOA¸ SOX9, COL2A1 (E), CTGF and ANKRD1 (K) 
following 24 hours of culture. Values plotted represent expression on the 0.5KPa 
substrate from 4 independent experiments, and are fold change compared to 
expression on the 40KPa substrate represented by the horizontal dotted line.  The 
solid grey lines represent the mean expression value for each gene. (F-I) YAP/TAZ 
immunodetection with DAPI counterstain after 24 hours of culture on 40KPa (F+G) 
and 05KPa (H+I) substrates. Representative images of 3 independent repeats shown. 
Brightness and contrast were adjusted for all channels to an equal degree between 
all conditions. (J) Quantification of nuclear YAP/TAZ on each stiffness. Each value 
plotted represents the percentage of a single DAPI-marked nucleus that is occupied 
by YAP/TAZ. Values are from 3 independent repeats with the red horizontal lines 
representing the mean. Statistical analysis: *p=<0.05. 

  



  

242 
 

 

 

 

 

y = -1.408ln(x) + 24.267
R² = 1

0

5

10

15

20

25

30

0.1 1 10 100

y = -1.355ln(x) + 27.566
R² = 0.9998

0

5

10

15

20

25

30

35

0.1 1 10 100

y = -1.328ln(x) + 27.096
R² = 1

0

5

10

15

20

25

30

35

0.1 1 10 100

y = -1.403ln(x) + 21.414
R² = 0.999

0

5

10

15

20

25

30

0.1 1 10 100

y = -1.39ln(x) + 24.277
R² = 0.9981

0

5

10

15

20

25

30

0.1 1 10 100

A B 

C D 

E 

F G H 

I J K 



  

243 
 

Figure 5.2. Standard curves which demonstrate a linear relationship between input 

cDNA concentration and cycle (Ct) number when amplified using RHOA- (A), ROCK1- 

(B), ROCK2- (C)  CTGF- (D) and ANKRD1-specific (E) primers (y axis = Ct, x axis = [cDNA] 

(%). (F-K) Immunostaining of YAP (F-H) and pMLC2 [230] in BM-MSC cultures 

incubated at 20%O2, with (F+I) and without (G, H, J, K) ROCK inhibitor- Y-27632 for 

24 hours. Images F, G, I and J demonstrate immunofluorescent signal following an 

immunostaining protocol in which the primary antibody was included. Images H and 

K were taken following an immunostaining protocol in which the primary antibody 

was omitted. Scale bar = 200μm. 
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5.2.2.  ROCK governs cytoskeletal arrangement of hBM-MSCs on soft and stiff 

substrates 

RhoA/ROCK activity has been established as the key mediator of cytoskeletal 

organisation in response to varying substrate stiffness, ligand availability and integrin 

engagement [307]. Therefore in order to confirm the role of ROCK in governing cell 

morphology of BM-MSCs cultured on 40 and 0.5KPa substrates, cultures here were 

incubated with and without the ROCK inhibitor- Y-27632. This compound acts to bind 

the ATP-binding pocket at the catalytic site of both ROCK1 and ROCK2, inhibiting 

myosin light chain phosphorylation and reducing stress fibre formation [539].  

Following optimization of pMLC2 immunostaining as detailed in Figure 5.2F-5.2H, 

Immuno-detection of phosphorylated MLC2 was performed on BM-MSC cultures on 

substrates of both stiffness following a 24-hour treatment with Y-27632. BM-MSCs 

treated with the ROCK inhibitor (Figs 5.3C+5.3D) displayed abolished pMLC detection 

compared to the untreated control (Figs 5.3A+5.3B). In terms of actin organisation, 

Y-27632 appeared to reduce the formation of stress fibres in hBM-MSCs compared 

to that observed in the untreated control on the 40KPa substrate (Figs 5.3E+5.3G). 

Y-27632 also increased formation of protrusions from the cell body. On the 0.5KPa 

substrate compared to the control, Y-27632 treatment increases the cell area of 

hBM-MSCs and reduces the round morphology of these cells (Figs 5.3F+5.3H). These 

observed changed in cell area were confirmed by quantification of the phalloidin-

stained images with a significant increase on the soft surface due to Y-27632 and no 

change on 40KPa substrates (Figs 5.3I+5.3J). The ROCK inhibitor also significantly 

reduced the circularity of BM-MSCs cultured on either substrate (Figs 5.3K+5.3L). 
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Overall, the characterisitic cell morphologies observed on the 0.5 and 40KPa 

substrates are govered by ROCK activity.  
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Figure 5.3. The ROCK inhibitor, Y-27632 reduces myosin light chain 2 
phosphorylation and induces differential effects on the cytoskeletal arrangement 
and cell shape of hBM-MSCs cultured on 40 and 0.5KPa substrates. (A-D) pMLC2 
immunodetection with DAPI counterstain after 24 hours of culture without Y-27632 
on 40KPa (A) and 05KPa (B) substrates and with Y-27632 (C+D). Representative 
images of 3 independent repeats shown. Brightness and contrast were adjusted for 
all channels to an equal degree between all conditions. [375] Actin immunodetection 
by Phalloidin with DAPI counterstain after 24 hours of culture without Y-27632 on 
40KPa (E) and 05KPa (F) substrates and with Y-27632 (G+H). Brightness and contrast 
were adjusted for all channels to an equal degree between all conditions. (I+J) 
Quantification of single cell area based on phalloidin staining in E-H on 40KPa (I) and 
0.5KPa (J) with and without Y-27632. (K+L) Quantification of single cell circularity 
based on phalloidin staining in E-H on 40KPa (K) and 0.5KPa (L) with and without Y-
27632. Statistical analysis: *p=<0.05. 
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5.2.3. Hypoxia partially inhibits small, round hBM-MSC morphology on 0.5KPa 

substrates and increases cell condensation on both surfaces. 

As pertained to, hypoxia may regulate the mechanotransducive ability of BM-MSCs 

in response to culture on substrates of varying stiffness. As such pathways have 

themselves been shown to regulate chondrocyte differentiation, it is rational to 

hypothesize that hypoxia may regulate chondrogenesis through RhoA/ROCK-

mediated mechantransducive signaling in BM-MSCs. This is demonstrated by studies 

in which the abrogation of stiffness-mediated cell proliferation and differentiation 

were observed in response to inhibition of actin polymerisation [540]. This may have 

significant implications for CTE strategies which aim to direct BM-MSCs down a 

chondrogenic cell fate by a combination of hypoxic culture and 3D biomaterial 

scaffolds of a defined stiffness.  

Due to the relatively poor understanding of the crosstalk betweek the hypoxia and 

mechanotransducive pathways, the ability of hypoxia to induce changes in 

cytoskeletal organisation of hBM-MSCs on soft and stiff substrates was investigated 

here.   Of the two hypoxic oxgen concentrations used thus far in chapters 3 and 4, 

2%O2 was selected for two reasons. The first of these is that oxygen levels below 5% 

are utilised by the majority of studies which investigate hypoxia’s effect on 

mechanotransducive pathways [372, 541]. In addition, as seen in chapter 3, 2%O2 

raised expression of HIF targets- VEGFA, PGK1 and EGLN  by significant levels at both 

days 1 and 14 of chondrogenesis, whereas expression of these were raised 

significantly by 5%O2 at day 1 only. This sustained expression of VEGFA, PGK1 and 

EGLN by 2%O2 indicates that this oxygen concentration may stably raise expression 
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of other HRE-containing genes whose products are involved in 

mechanotransduction, if indeed there exists crosstalk between these pathways 

during chondrogenesis. 2%O2 was disregarded  in chapter 4 due to the requirement 

of hypoxia in that chapter to inhibit hypertrophy in long-term differentiation 

experiments, which in chapter 3 was shown to occur due to 5%O only. This culture 

system also included TGF-β3-containing chondrogenic media to mimic standard 

differentiating conditions.  

On the 40KPa substrate, hypoxia did not induce changes on cytoskeletal organisation 

of hBM-MSCs compared to that at 20%O2 (Figs. 5.4D+5.4E). Accordingly, no changes 

in cell area or circularity were observed, as confirmed by quantification of these cell 

parameters (Figs 5.4A-5.4C). On the 0.5KPa substrate, hypoxia increased the area of 

single cells (Fig 5.4J) and colonies (Fig 5.4K) in addition to reducing their circularity 

(Fig 5.4L). Hypoxia also appeared to increase the number of thin projection or 

protrusions extending from the centre of hBM-MSCs on the soft substrate. The 

changes in cell area and circularity on the 0.5KPa substrate were confirmed as 

significant by quantification of these parameters (Figs 5.4G-5.4I).  

As a precursor to chondrogenic induction, the limb bud mesenchyme forms a 

condensation which initiates the transcriptional program required for 

chondrogenesis [178]. The mesenchyme at this stage of limb development is hypoxic 

as a result and this low-oxygen states plays keys role during chondrogenic induction 

at this stage of limb development [262]. This therefore prompted investigation of the 

effect of hypoxia on cell condensation and colony formation. On both the 40 and 

0.5KPa substrates, hypoxia compared to normoxia induced an increasing trend of 
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cells present in colonies as a percentage of the total cell count. This was coupled with 

a trend towards a decrease observed in the proportion of single, isolated cells as a 

percentage of the total cell count (Fig. 5.4M). Hypoxia increased the ratio of colonies 

to single cells on substrates of both stiffness (Fig. 5.4N), whilst inducing no changes 

in the total cell count (Fig. 5.4O) and number of cells present per colony (Fig. 5.4P).  

Overall hypoxia appears to affect cytoskeletal re-organisation on the soft substrate 

only. Addiotnally, whilst hypoxia increases condensation on both the 0.5kPa and 

40KPa substrates, the condensations on the soft surface are more compact and 

therefore closely mimics the mesenchymal condensations of the limb bud. 
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Figure 5.4. Hypoxic incubation induces changes in hBM-MSC morphology on 0.5KPa 
substrates and increases cell condensation on substrates of 40 and 0.5KPa. (A-C+J-L) 
Quantification of single cell (A+J) and colony (B+K) area and single cell circularity (C+L) 
based on phalloidin staining in images D-I on 40KPa (A-C) and 0.5KPa (J-L) at 20% and 
2%O2. Values plotted represent the area/circularity of single cells/colonies from 4 
independent repeats with the mean values represented by the black lines. (D-I) Actin 
immunodetection by Phalloidin with DAPI counterstain after 24 hours of culture on 
40KPa (D-F) and 0.5KPa (G-I) at 20%O2 (D+G) and 2%O2 (E, F, H, I). Representative images 
of 4 independent repeats shown. Brightness and contrast were adjusted for all channels 
to an equal degree between all conditions. (M) Number of single or colony-forming cells 
on 40KPa and 0.5KPa at 20% and 2%O2 as a percentage of the total cell count within each 
condition. Values plotted are the means from 4 independent repeats, with error bars 
representing the standard error of the mean. [419] Quantification of colonies normalised 
to single cell count (N), total cell number (O) and number of cells per colony (P) in 
response to 2%O2 on 40KPa and 0.5KPa. Values plotted are from 4 independent repeats 
and are fold change compared to that at 20%O2 on the respective substrate, represented 
by the horizontal dotted line, with grey/red lines representing the mean values. 
Statistical analysis: *p=<0.05 
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5.2.4. Hypoxic incubation increases phosphorylation of myosin light chain 2 on 

0.5KPa substrates 

The ability of hypoxia to induce ROCK activity during its regulation of 

mechanotransductive pathways has been documented in a variety of cell types such 

breast cancer cells [372] and pulmonary artery smooth muscle cells [542]. In addition, 

regulation of ROCK activity represents the most plausible mechanism by which 

hypoxia induces the cytoskeletal re-arrangement observed on the 0.5KPa substrate. 

The effect of hypoxia on MLC2 phosphorylation was therefore investigated due to 

pMLC2 levels being indicative of ROCK activity [543]. Hypoxia did not induce any 

change in pMLC2 in hBM-MSCs on the 40KPa substrate compared to 20%O2 (Figs. 

5.5A+5.5B). However reduced oxygen levels did increase pMLC2 in cells cultured on 

0.5KPa surfaces (Figs. 5.5C+5.5D). This significant increase due to hypoxia on only the 

soft substrate, was confirmed by quantification of pMLC2 immunostaining following 

normalisation to cell number and average area (Figs. 5.5E).  

RHOA, ROCK1 and ROCK2  have been shown to contain HREs in their promoter 

regions in addition to their expression being induced by hypoxia [544]. Therefore, 

investigation of this phenomenon was carried out in the present study, but no 

significant changes were induced by hypoxia in the expression of RHOA (Fig. 5.5F), 

ROCK1 (Fig. 5.5G) or ROCK2 (Fig. 5.5H) mRNA on either substrate. However, a trend 

towards increase was observed in the mRNA of all three genes due to hypoxia on the 

40KPa surface and that of ROCK1 on the 0.5KPa substrate. Taken together, these 

results indicate that 2%O2 induced changes in ROCK activity only in BM-MSCs on the 

0.5KPa substrate and this effect appeared to be post-transcriptional.  
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. 
Figure 5.5. Hypoxic incubation increases phosphorylation of myosin light chain 2 on 
0.5KPa substrates. (A-D) pMLC2 immunodetection with DAPI counterstain after 24 
hours of culture at 20%O2 (A+C) and 2%O2 (B+D) on 40KPa (A+B) and 05KPa (C+D) 
substrates. Representative images of 4 independent repeats shown. Brightness and 
contrast were adjusted for all channels to an equal degree between all conditions. 
(E) Quantification of pMLC2 immunofluorescence in response to 2%O2 on 40KPa and 
0.5KPa substrates, normalised to DAPI-stained cell number and mean area of cells in 
each condition, calculated from Phalloidin images in figure 2D-I. (F-H) mRNA 
expression of RHOA (F), ROCK1 (G) and ROCK2 (H) following 24 hours of culture at 
2%O2 on 40KPa and 0.5KPa substrates. Values plotted in E-H are from 4 independent 
experiments, and are fold change compared to pMLC2 immunofluorescence/mRNA 
expression at 20%O2 which is represented by the horizontal dotted line. Mean values 
are represented by grey/red lines. Statistical analysis: *p=<0.05. 
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5.2.5. Hypoxia reduces the presence of YAP/TAZ in the nuclei of hBM-MSCs on the 

40KPa substrate. 

Reducing the oxygen concentration appears to reduce YAP protein expression, 

nuclear localisation and its downstream activity as a transcriptional co-factor [383]. 

The central role that YAP appears to play in the transduction of mechanical stimuli 

into transcriptional changes [545], prompted the investigation into YAP function in 

the present study.  

Hypoxia appeared to reduce the overall presence of YAP/TAZ protein in hBM-MSCs 

cultured on the 40KPa substrate (Fig. 5.6A-5.6D) which  resulted in a decrease in the 

nuclear localisation of this protein (Fig. 5.6I). This effect on the stiff substrate was 

not accompanied by a change in cytoplasmic localisation of YAP/TAZ. As observed 

previously, YAP/TAZ localisation on the 0.5KPa substrate at normoxia appeared to be 

more dispersed around the cell compared to that on the stiff substrate on which 

localisation was restricted to the nucleus of hBM-MSCs (Fig. 5.6E-5.6H). 

Quantification of YAP/TAZ localisation demonstrated a much more varied spread of 

YAP nuclear localisation on the soft substrate (Fig. 5.6J) compared to that due to 

40KPa, which were polarised to the 50% level and above (Fig. 5.6I). However, no 

change in total or nuclear YAP/TAZ levels appeared to be induced by hypoxia on the 

0.5KPa substrate.  

Expression of TEAD targets were assessed to validate the observations of YAP/TAZ 

nuclear localisation. Hypoxia appeared to induce a trend towards increased 

expression of CTGF (Fig. 5.6K) and ANKRD1 (Fig. 5.6L) on the 40KPa substrate, with a 

significant increase observed in ANKRD1 mRNA on the 0.5KPa substrate (Fig. 5.6L). 
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Together, these results indicated that YAP localization and expression of its 

transcriptional targets are not subject to regulation by mechanotransducive 

pathways in response to hypoxia culture. 
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Figure 5.6. Hypoxia reduces the presence of YAP/TAZ in the nuclei of hBM-MSCs on 
the 40KPa substrate but does not induce corresponding changes in YAP-TEAD 
target genes. (A-H) YAP/TAZ immunodetection with DAPI counterstain after 24 hours 
of culture on 40KPa (A+D) and 0.5KPa (E+H) substrates at 20%O2 (A, B, E, F) and 2%O2 
(C, D, G, H). Representative images of 3 independent repeats are shown. Brightness 
and contrast were adjusted for all channels to an equal degree between all 
conditions. (I+J) Quantification of nuclear YAP/TAZ on at 40KPa (I) and 0.5KPa (J) at 
20%O2 and 2%O2. Each value plotted represents the percentage of a single DAPI-
marked nucleus that is occupied by YAP/TAZ. Values are from 3 independent repeats 
with the red horizontal lines representing the mean. (K+L) mRNA expression of CTGF 
(K) and ANKRD1 (L) following 24 hours of culture at 2%O2 on 40KPa and 0.5KPa 
substrates. Values plotted are from 4 independent experiments, and are fold change 
compared to expression at 20%O2 represented by the horizontal dotted line. Mean 
values are represented by grey/red lines. Statistical analysis: *p=<0.05. 
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5.2.6.   Hypoxia induces transcription of genes conducive for early chondro-

induction on 0.5KPa substrates and increases cartilage ECM production on 

either substrate. 

The cytoskeletal re-organisation, ROCK induction and increase in cell condensation 

observed due to hypoxia, motivated the decision to analyse expression of mRNA 

which denote mesenchymal limb bud progenitors specified down a chondrogenic cell 

fate. Hypoxia appeared to increase expression of the master chondrogenic factor, 

SOX9 on the soft substrate only. The SOX9 target, COL2A1 was induced on the 40KPa 

with a trend towards increase being induced on the 0.5KPa substrate (Fig. 5.7A).  

In addition to those ‘classic’ markers of chondrogenesis, transcription of genes which 

are expressed in condensed limb bud mesenchymal cells prior to chondrocyte 

differentiation were investigated. MSX1 is expressed within and surrounding the AER 

of the limb bud [546]. Msx1 plays an important function together with the Distal-less 

Homeobox 5/6 (Dlx5/6) set of transcription factors, in growth plate formation. This 

was shown by Vieux-Rochas et al who observed a further loss of Alcian Blue staining 

in the developing limb (E12.5) due to a combined MSX1 and Dlx5/6 deletion 

compared to loss of Dlx5/6 only [546].  Msx1 has been shown to be a key mediator 

of BMP4 signalling required for maturation of the AER [547] and in the present study, 

hypoxia inhibited MSX1 expression on the 40KPa substrate whilst not inducing any 

changes in expression on the softer surface (Fig. 5.7A).  

PRX1 encodes another transcription factors whose expression also delineates pre-

chondrogenic cells of the condensed limb bud mesenchyme. Genetic deletion 

targeted to PRX1-expressing cells is an established model for investigation into 
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cartilage development at the pre-chondrogenic stage, prior to cell fate commitment 

[94]. This transcription factor plays important roles during limb bud chondrogenesis 

such as the regulation of Tenascin-C which is an ECM protein required for limb bud 

progenitor condensation [49]. In this study, no significant changes in its expression 

were observed due to hypoxia on either the 40 or 0.5KPa substrates (Fig. 5.7A).  

Other markers of the pre-chondrogenic limb bud mesenchyme include genes which 

encode cell-cell adhesion proteins, shown to be required for downstream 

chondrogenesis. Expression of NCAM was induced on only the 0.5KPa substrate due 

to hypoxia (Fig. 5.7B). To validate the induction of HIF in response to hypoxia in hBM-

MSCs on either substrate, the upregulation of VEGFA and EGLN were assessed. 

Hypoxia upregulated both of these genes in hBM-MSCs cultured on either substrate 

(Fig. 5.7C).  

Long-term chondrogenesis was investigated following a 21 day period. Collagen Type 

II in the ECM appeared to be upregulated due to hypoxia on both substrates. In 

addition, hBM-MSCs on the 40KPa appearing to induce higher levels of Collagen Type 

II at both 20% and 2%O2 than observed on the soft substrate (Fig. 5.7D-5.7G). Gene 

expression at this time point was also analysed. At normoxia expression of SOX9 and 

COL2A1 mRNA were higher on the 0.5KPa substrate than on the 40KPa surface (Fig. 

5.7H). Hypoxia did not have to effect on SOX9 expression in hBM-MSCs on either 

substrate but on the 40KPa substrate, there was an increasing trend of COL2A1, 

VEGFA and EGLN expression due to hypoxia. This increase in VEGFA and EGLN 

expression due to hypoxia was not observed on the 0.5KPa substrate and a trend 

towards a decrease in COL2A1 expression was observed due to 2%O2 on the soft 
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substrate. No change occurred in RUNX2 expression either in response to varying 

substrate stiffness or oxygen concentration. The involvement of ROCK in hypoxic 

induction of these gene was also analysed on TCP. The increases observed in SOX9 at 

day 1 (Fig. 5.7I), COL2A1 at day 21 (Fig. 5.7J) and HIF targets (Fig. 5.7K+5.7L) 

throughout the differentiation due to hypoxia, appeared to be reduced by ROCK 

inhibition. 

Overall, hypoxia induced early transcriptional changes that are conducive for 

chondrocyte specification, in BM-MSCs on the soft substrate only. However at day 

21, hypoxia appeared to increase chondrogenic at the mRNA level in BM-MSCs 

cultured on the stiff substrate. 
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Figure 5.7. Hypoxia induces transcription of genes conducive for early chondro-

induction on 0.5KPa substrates but it increases Collagen Type II in the ECM 

following 21-day chondrogenic induction on either stiffness. (A-C) mRNA expression 

of SOX9, COL2A1, MSX1, PRX1 (A), NCAM, NCAD (B), VEGFA and EGLN (C) following 

24 hours of culture at 2%O2 on 40KPa and 0.5KPa substrates. Values plotted are from 

4 independent experiments, and are fold change compared to expression at 20%O2 

represented by the horizontal dotted line. Mean values are represented by grey/red 

lines. (D-G) Collagen Type II immunodetection with DAPI counterstain after 21 days 

of chondrogenic induction 40KPa (D+E) and 0.5KPa (F+G) at 20%O2 (D+F) and 2%O2 

(E+G). Brightness and contrast were adjusted for all channels to an equal degree 

between all conditions. (H) mRNA expression of SOX9, COL2A1, VEGFA and EGLN 

after 21 days of chondrogenic induction at 2%O2 on 40KPa and 0.5KPa substrates. 

Values plotted are fold change compared to expression at 20%O2 represented by the 

horizontal dotted line. [548] mRNA expression of SOX9 (I), COL2A1 (J), VEGFA (K) and 

EGLN (L) at days 1, 14 and 21 of chondrogenic induction at 20%O2, 2%O2 and 2%O2+Y-

27632 on TCP. Values plotted are fold change compared to expression at day 1, 

20%O2. Statistical analysis: *indicates significant difference compared to that at 

normoxia, where p=<0.05. 
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5.3. Discussion 

The regulation of pathways induced in response to mechanical stimuli during 

cartilage development, may provide new potential strategies for CTE in the repair of 

acute chondral defects. The control of these pathways by the physical parameters of 

the ECM such as substrate elasticity however, may also be subject to regulation by 

other signalling pathways. Growth factor signalling for example, has also been shown 

to play keys role in regulating the activity of mechano-signalling pathways. TGF-β1 

has been observed to induce RHOA expression and actin re-organisation via a 

SMAD2/3-dependant mechanism [549]. This study is example of that which provides 

evidence that the mechanically-stimulated pathways (specifically RhoA/ROCK-

mediated cytoskeletal tension) are themselves regulated by pathways not primarily 

associated with mechanotransducive signalling. Included in such pathways are those 

stimulated by physiological hypoxia. The plethora of pro-chondrogenic effects of 

hypoxia during MSC differentiation and evidence of its role in regulating RhoA and 

ROCK activity, suggests a role for hypoxia in regulating the mechano-transducive 

pathways involved during chondrogenesis. This therefore prompted the present 

study.  

 In summary the results in this chapter demonstrate that during BM-MSC 

chondrogenesis, hypoxic culture relative to that that observed at normoxia, induces 

cytoskeletal rearrangement, MLC phosphorylation and cell condensation. These 

hypoxia-induced changes occur on the 0.5KPa substrate however and not on the 

stiffer, 40KPa surface. These changes on the soft substrate, appear to correlate with 

a transcriptional profile that is conducive for early chondrogenic specification. This is 
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likened to that observed in limb bud progenitors prior to their differentiation into 

chondrocytes which constitute the growth plate prior during limb development. In 

contrast however, latent mRNA expression occurs of chondrogenic markers due to 

hypoxia on the 40KPa substrate. This indicates that the stiff substrate is more 

conducive for hypoxia mediated-chondrogenesis following intial chondro-

specification of multipotent cells. 

The established ROCK-mediated control of cytoskeleton dynamics on soft and stiff 

substrates was observed here. Actin stress fibre formation on the 40KPa substrates 

were reduced due to ROCK inhibition which also increased formation of filopodia-like 

projections from the cell body. Inhibition of ROCK has been shown to reduce 

cytoskeletal tension [305] concomitant with the result observed here and has also 

been shown to increase formation of projections from the cell body [330].  Such a 

fillopodia-rich morphology has been suggestive to be conducive for neural 

differentiation which corresponds to studies in which reduced cytoskeletal tension 

pre-disposes multipotent progenitors down a neural lineage [304].  

In contrast to that on the stiff substrate, hBM-MSCs cultured on the 0.5KPa substrate 

adopted a small, round morphology as described previously [550]. The response of 

hBM-MSCs to ROCK inhibition on the soft substrate was also as previously described 

in which the cell area was increased in response to treatment. As described by Mih 

et al, the cytoskeletal tension of cells on a soft matrix significantly outweighs the 

strength of ECM-integrin interactions. This induces a net contraction of the 

cytoskeleton towards the centre of the cell which results in formation of an actin 

network that is condensed and concentrically-arranged around the nucleus [305]. 
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Therefore when ROCK and cytoskeletal tension are inhibited in cells which adopt this 

actin arrangement on compliant ECM, the cytoskeletal tension directed towards the 

centre of the cell is ablated. This decrease in intracellular tension combined with a 

lack of interactions between the integrins and that of the surrounding ECM, induces 

a relax response in which the cell body flows freely outwards.  

The majority evidence in the literature for the effect of hypoxia and HIF on actin-

myosin dynamics, point to their role as inducers of cytoskeletal tension. For example 

in breast cancer cells, incubation at 1%O2 induces actin stress fibre formation via 

RhoA and ROCK and was required for migration and metastasis of thesecells [372]. 

Inhibition of PHD2 in fibroblasts, which reduces HIF-1α hydroxylation, ubiquitination 

and degradation, enhanced Cofilin phosphorylation [406] which is required for F-

Actin formation and cytoskeletal tension[375]. In addition, treatment of endothelial 

cells with the PHD2 inhibitor, DMOG also induced F-Actin stress fibre formation 

which again is suggestive of a role for hypoxia and HIF in inducing cytoskeletal 

reorganisation and tension [551]. Observations here suggest that hypoxia also 

increases cytoskeletal tension in hBM-MSCs. Increased phosphorylated myosin was 

observed due to hypoxia on the soft substrate, in addition to the rearrangement of 

actin on this substrate. A limitation of this system is the lack of quantification of the 

absolute levels of cytoskeletal tension of BM-MSCs in different conditions. Methods 

utilised here, including actin stress fibre immune-detection, cell morphology and 

semi-quantification of phosphorylated MLC2 are only suggestive of increased actin-

myosin contraction. Techniques instead such as Traction Force Microscopy (TFM) 

would enable quantification of this parametre [305]. 
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The effect of hypoxia on the soft substrate contrasts with the apparent lack of effect 

on the actin arrangement or pMLC2 in BM-MSCs on the stiff substrate. At normoxia, 

MSCs on a stiff substrate have been shown to exhibit higher cytoskeletal tension than 

that on a softer surface [305]. Therefore, it may be expected to observe a lack of 

change at 40KPa with regards to cytoskeletal tension due to this being at a maximal 

level on this substrate [304]. Again, it is important to note the limitations of this 

experiment in which the observations provide only correlative evidence of the 

regulation of cytoskeletal tension. As described above, direct quantification of 

cytoskeletal tension is most appropriate as opposed to indirect methods. In addition, 

semi-quantification of pMLC2 by Western Blotting may be required. This, and 

techniques such as TFM to quantify cytoskeletal tension, would enable 

determination of the magnitude by which hypoxia regulates actin-myosin 

contraction. TFM may also enable subtle changes to be detected in cytoskeletal 

tension on the stiff substrate due to hypoxia, which were not detected here.  

Treatment of the carcinoma cell line- SCC-61 with Calyculin A on soft PA gels by Jerrell 

et al, resulted in an increase in cell protrusions required for ECM remodelling [552]. 

Calyculin A is a pan-phosphatase inhibitor and is used to increase MLC2 

phosphorylation and contraction [553]. In the present study therefore, the increase 

in cell protrusions and decrease in circularity on the 0.5KPa substrates due to 

hypoxia, in view of the findings by Jerrel et al, are suggestive of hypoxia-mediated 

actin-myosin contraction.  Once again, techniques such as TFM would be required to 

provide robust evidence of increased cytoskeletal tension induced by hypoxia. Based 

on observations here, it is possible to only suggest that hypoxia increases actin-

myosin contraction of hBM-MSCs on a soft substrate. 
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The differences in the effect of hypoxia observed between the soft and stiff 

substrates may be due to an alterations in cell attachment sites. Hypoxia has been 

established as an inducer of ECM formation both in experiments conducted here and 

in the literature. Increased expression of ECM components such as fibronectin and 

collagens are induced by hypoxia for example during hESC proliferation and 

migration [541] and during hMSC chondrogenesis [272]. An increase in mRNA 

expression of genes encoding ECM-modifying enzymes has also been demonstrated 

by fibroblasts and chondrocytes cultured under hypoxic conditions [554]. Cell 

secreted ECM components have been demonstrated to increase cell attachment and 

spreading and proliferation of hMSCs [555].  In addition, fibronectin-coated surfaces 

which were observed to provide attachment sites for other ECM proteins in addition 

to a greater number of binding sites for seeded cells [556]. The use of fibronectin-

coated surfaces here may suggest that hypoxic culture increases the number of cell 

attachment sites. This may rationalise the observation of increased cell and colony 

spreading on the 0.5KPa substrates which may not occur on the 40KPa substrate due 

to the maximal spreading already observed at normoxia on this surface.  

Despite evidence of hypoxia inducing ECM formation and hBM-MSC spreading on the 

soft substrate, this theory of increased attachment sites remains speculative. ECM 

quantification on the soft substrate would need to be conducted in combination with 

quantification of cell attachment sites in response to hypoxic incubation. The latter 

suggestion may be conducted via semi-quantification of mature focal adhesions 

following their immunodetection. To robustly validate this theory, treatment of 

integrin-blocking antibodies/inhibitors would be required at the onset of 

chondrogenensis in normoxic and hypoxic conditions. If indeed, hypoxia-induced 
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increases in cell adhesions are mediating MSC spreading, then these cell shape 

changes would be abolished in the presence of an integrin blocker. 

The increase in phosphorylated MLC2 observed in the present study on the 0.5KPa 

substrate, suggests an induction of RhoA/ROCK due to hypoxia. However unlike that 

previously demonstrated [372], an increase in RHOA/ROCK1/ROCK2 mRNA was not 

observed, with a trend towards an increase in ROCK1 transcription observed only. 

This suggests that hypoxia may induce its effect on MLC2 phosphorylation indirectly 

by regulating components upstream of RhoA/ROCK1/ROCK2. Indeed, reduced 

oxygen concentration has been shown to increase expression of specific integrins 

which would indirectly regulate RhoA/ROCK activity and MLC2 phosphorylation. Lee 

et al observed an increase in total expression of Integrin-β1 in human ESCs due to 

hypoxic incubation. An Integrin-β1-blocking antibody was subsequently shown to 

reduce hypoxia-mediated increases in cell attachment to cell-secreted fibronectin 

[541]. Indeed, with the use of integrin blocking molecules here, this theory can be 

investigated. Alternatively as suggested above, the upregulation of phosphorylated 

MLC2 may be due to increases in cell attachment sites which arise as a result of 

hypoxia-increased ECM. Increases in ECM ligand availability would induce integrin 

engagement and clustering followed by focal adhesion maturation and RhoA/ROCK 

activation [557].  

In addition to the differences observed in hBM-MSC area between stiff and soft 

substrates at normoxia, the increased nuclear YAP localisation observed in cells on 

the 40KPa substrate contrasts with that observed on the 0.5KPa substrate in which a 

diffuse distribution of YAP/TAZ is exhibited. This suggests the suitability of this system 
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as inducing differential activation of integrin-mediated cytoskeletal tension due to 

demonstration that YAP/TAZ nuclear localisation is controlled by this pathway [330].  

The increase in cell area and ROCK activity observed due to hypoxia on the 0.5Kpa 

substrate, prompted investigation of the oxygen-dependant regulation of YAP/TAZ. 

Interestingly, a decrease in nuclear YAP localisation occurred due to hypoxia on the 

40KPa substrate, despite no changes observed in cell shape or ROCK activity due to 

this condition. Additionally, unlike that previously described of the mechano-

regulation of YAP/TAZ, this decrease was not accompanied by an increase in cytosolic 

YAP/TAZ localisation. Rather, a decrease in global YAP/TAZ was observed due to 

hypoxia. This indicates that YAP/TAZ are not mechanosensitive in this context. This is 

also supported by lack of YAP/TAZ regulation on the soft substrate due to hypoxia, 

despite this oxygen state inducing changes in actin organization and ROCK activity on 

the soft surface. That observed may therefore be due to proteosomal degradation of 

YAP/TAZ under hypoxic conditions, which is induced by the Hippo pathway and YAP 

phosphorylation [558]. As conducted by Dupont et al, the involvement of the Hippo 

pathway may be assessed by siRNA of the Lats kinases which are responsible for 

phosphorylating YAP and targeting it for proteasomal degradation.  

Hypoxia appeared to increase the number of colonies in relation to the number of 

single cells on both the 40 and 0.5KPa substrate. The total cell number on each 

substrate demonstrated a trend towards increase, but these changes were 

insignificant and to a lesser magnitude than the increases observed of colony 

number. Together with the lack of increase in cell number per colony, this suggest 

that the greater colony formation is not due to increased proliferation of single cells, 
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but rather a migration together or condensation of cultures. This is also supported 

by our observation of a hypoxia-induced increase in the proportion in cells that are 

present within colonies compared to single cells, as a percentage of the total cell 

number. However, a limitation of this study is a lack direct quantification of cell 

proliferation. This may be achieved via immune-detection of cell cycle markers which 

are indicative of cell division, for example the nuclear antigen Ki67. Alternatively 

incorporation and immuno-detection of 5-bromo-2’-deoxyuridine in newly 

synthesized DNA would delineate actively-dividing cells. 

Provot et al observed that the limb bud condensations prior to chondrogenesis are 

hypoxic but that deletion of HIF-1α which was induced by this hypoxic state, did not 

inhibit formation of this condensation [262]. The observation that hypoxia induces 

HIF targets, VEGFA and EGLN in our study indicates that HIF-1α may be mediating the 

observed effects on the hBM-MSCs. This therefore, places discrepancy between that 

observed of the condensations due to hypoxia here and in the study by Provot et al. 

Therefore, we cannot rule out a HIF-1α-independent function of hypoxia during 

condensation, and the conditional knockdown of this transcription factor in the study 

by Provot et al does not take in account such mechanisms. Vogler et al observed that 

the increases in vinculin-containing focal adhesions, Integrin-β1 immunodetection 

and cell spreading due to hypoxic culture of L292 fibroblasts which were not 

abolished upon HIF-1α knockdown [559]. The involvement or not of HIF-1α in 

hypoxia-induced condensation however, is purely speculative without genetic 

manipulation or chemical inhibition of HIF-1α during this process. Such an 

experiment could be conducted by the use of Acriflavine as in the chapter 4, or via 

siRNA knockdown of HIF-1α. 
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Despite hypoxia inducing cell-cell contact on both 40 and 0.5KPa substrates, there 

was a noticeable difference between the colonies formed on each substrate. As with 

single cells, hBM-MSC condensations on the 0.5KPa substrate exhibited a more 

compact shape than those on the stiff material with an almost ten-fold difference in 

colony area observed. As described by many studies, the compact colonies formed 

on the soft substrate may be more conducive for downstream chondrogenesis. One 

of the pioneering studies investigating this phenomenon was that by Tacchetti et al 

who observed a decrease in the chondrogenesis of chick limb bud mesenchymal 

progenitors upon their separation into single cell cultures [560].  

The condensation of hBM-MSCs here on the 0.5KPa substrate due to hypoxia and the 

more compact nature of these compared to that of the stiff surface, corresponds to 

the increase in NCAM mRNA expression. This protein is essential for cell-cell adhesion 

and subsequent chondrogenesis. Widelitz et al observed a significant reduction in 

the aggregate size of chick limb bud micromass cultures upon incubation with an anti-

NCAM antibody with a dose-dependent reduction in chondrogenesis also exhibited 

[561]. These authors also demonstrated an increase in aggregate formation due to 

NCAM overexpression, with an accompanying increase in Collagen Type II expression.  

Studies investigating the expression pattern of cell-adhesion molecules during limb 

bud chondrogenesis such as that by Tavella et al, have observed a peak in expression 

of N-Cadherin which preceded that of NCAM [562]. These authors suggested the 

requirement of N-Cadherin in initiation of limb bud condensation with NCAM 

functioning to strengthen and maintain cell-cell adhesions. The lack of increase in N-

Cadherin mRNA in the present study corresponding to NCAM induction by hypoxia, 



  

269 
 

suggests that reduced oxygen concentrations in this context does not initiate 

condensation, but acts to maintain it. A limitation of the study however, which would 

enable validation of this theory, is the lack of NCAM gene expression at time points 

following 24 hours. Latent expression of this gene would suggest the constitutive role 

of NCAM in hypoxia-induced condensations. In addition, the roles of N-Cadherin and 

NCAM, are not directly implicated in the hypoxia-induced condensations observed 

here of BM-MSCs. Blocking or genetic manipulation of these adhesion proteins would 

be required in order to confirm their role or lack thereof in these observations. 

The rationale behind examining crosstalk between the hypoxic pathways and those 

stimulated in response to changes in the mechanical microenvironment, is for 

informing interaction of these pathways during chondrogenesis. Such a study would 

contribute to the knowledge of cartilage development from the mesenchymal limb 

bud. It would also aid cartilage tissue engineering strategies which aim to combine 

the effects of an appropriate mechanical environment with an oxygen gradient which 

mimics that of physiological levels in the limb bud and growth plate. Unlike other cell 

fates in which a round cell and low basal ROCK-mediated cytoskeletal tension is 

required for their differentiation [304, 307], chondrogenesis appears to be an 

anomaly. Strong evidence exists for the requirement of higher levels of ROCK activity 

and cytoskeletal tension during chondrogenesis of stem cells in which the actin 

cytoskeleton is in a cortical configuration. For example, ROCK inhibition or ablation 

of myosin light chain contraction appears to reduce chondrogenesis of ATDC5 cells 

on a relatively soft substrate in which actin fibres adopt a cortical arrangement [355]. 

This is also supported in the investigation carried out by Ray et al, who demonstrated 

the requirement for cytoskeletal tension in the round organisation of mesenchymal 
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progenitors of the limb bud and for subsequent mRNA expression of SOX9 and 

COL2A1 [353].   

In the present study, hypoxic incubation of hBM-MSCs on the 0.5KPa substrate, 

appeared to express increased levels of mRNA conducive for induction. This includes 

that of SOX9, and a trend towards an increase of COL2A1, PRX1 and MSX1. Despite 

inducing COL2A1 expression, which may be also be stimulated by cell condensation 

as opposed to part of a specific differentiation program, hypoxia does not appear to 

induce expression of other early chondrogenic markers on the 40KPa substrate. 

Indeed, MSX1 expression appears to be inhibited on this stiffness by hypoxia. A 

limitation of this study is represented by the relatively few genes chosen to represent 

early chondrogenic induction, and the even fewer genes whose expression were 

significantly altered due to hypoxia. As with any cellular process, expression of SOX9 

is not enough to robustly denote chondrogenesis and requires other early markers 

to confirm commitment down a chondrogenic lineage. For example expression of 

SOX5 and SOX6 may represent other suitable candidate genes, in addition to 

osteoblastic/hypertrophic markers such as RUNX2 or COL10A1. Examination of these 

genes would enable confirmation or not of the single and specific lineage 

commitment of the BM-MSCs in hypoxic conditions. 

The trend towards a chondrogenic expression due to hypoxia on the soft substrate 

only, appears to correlate with observations in which cell area increased and cell 

circularity decreased compared to no such effect on the stiff substrate. Together with 

the upregulation of MLC2 phosphorylation on the soft substrate only, this indicates 

that hypoxia may provide the signal for ROCK-mediated cytoskeletal tension that is 
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required for chondrogenesis in cells with a cortical actin arrangement. However it is 

important to note that this role of hypoxia is based only on correlative observations 

of cytoskeletal tension with changes in chondrogenic gene expression at the same 

time point. Therefore in order to robustly demonstrate the ability of hypoxia to 

induce chondrogenesis via increased ROCK-mediated cytoskeletal tension, it would 

be required to use chemical inhibitors of actin-myosin contraction during this 

process. Such experiments may be achieved through the use of inhibitors of both 

ROCK and myosin contraction (Y-27632 [305]) and Blebbistatin respectively during 

hBM-MSC chondrogenesis induced by hypoxia. Observation of differential 

chondrogenic mRNA when compared with that in which ROCK and myosin 

contraction are not inhibited, would enable a role to be determined of ROCK-

mediated cytoskeletal tension. 

The increase in number of compact condensations due to hypoxia on the 0.5KPa 

substrate and transcription of NCAM, suggests a mechanism behind the observed 

hypoxic-induction of SOX9. However as with suggested experiments which would 

directly implicate N-Cadherin and NCAM in hypoxia-induced condensations, it would 

be required to chemically or genetically manipulate these adhesion proteins to 

determine their role during downstream chondrogenesis. Furthermore, to enable 

demonstration of a direct relationship between cell condensation and cartilage 

differentiation, it may be required to analyse expression of early chondrogenic 

markers at time points following condensation at day 1. This may enable observation 

of a downstream, latent effect of cell condensation on chondrogenesis. This 

requirement for later time point analysis may also apply in order for a relationship to 
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be determined between chondrogenesis and actin re-arrangement/ROCK activity 

induction on the soft substrate due to hypoxia.   

Results here which investigated the formation of more mature cartilage tissue 

demonstrate day 21 increases in SOX9 and COL2A1 mRNA on the 0.5KPa substrate 

compared to that on 40KPa as previously described [355, 358]. However, despite the 

greater effect of hBM-MSC chondrogenesis on the soft substrate at day 1, 21-day 

cultures exhibit greater chondrogenesis due to hypoxia on the stiff substrate. 

Hypoxia appeared to increase COL2A1 transcription on the stiff substrate whilst 

inducing a reduction of this transcript on the soft surface. This also correlated with 

that of Collagen Type II protein levels which indicates that this effect of hypoxia is 

stable enough to induce changes in cartilage ECM composition. An important caveat 

to this observation is the lack of quantification of collagen type II which would clearly 

demonstrate this suggested advantage of the stiff substrate in response to hypoxic 

incubation. Additional observations which were not taken in this study would also 

more robustly demonstrate the synergistic role of hypoxia and mechanosignalling 

during chondrogenesis. One such example would be an increase in time points prior 

to day 21 at which articular chondrogenic gene expression is analysed. This would 

enable a more detailed examination of gene expression during chondrogenic lineage 

commitment in response to the combination of soft/stiff substrates with hypoxia. In 

addition, quantification of collagen type X protein would demonstrate the advantage 

of this combination for chondrogenesis over methods which do not utilise hypoxia or 

HIF induction for CTE. 
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Interestingly, hypoxia only raised levels of VEFGA and EGLN in cells on the 40KPa 

substrate only at day 21. This suggests that the signalling pathways stimulated in 

response to a stiff substrate are conducive for expression of genes which contain a 

HRE. This contrasts with that on the 0.5KPa surface at day 21 on which transcription 

of these genes by hypoxia appears to be suppressed. This is also at odds with day 1, 

at which hypoxia induced increases in VEGFA and EGLN expression on both 

substrates. This therefore suggests a change in the crosstalk between the HIF and 

mechanotransducive pathways from day 1 to day 21 of chondrogenesis which results 

in differential induction of HIF-mediated transcription and chondrogenesis. An 

improvement in the experiment design and one which would enable investigation of 

this phenomenon is the analysis of VEGFA and EGLN expression between days 1 and 

21 of chondrogenesis. This would enable determination of the point at which the soft 

substrate becomes inhibitory to hypoxia-mediated expression of HRE-containing 

genes. 

The involvement of the mechano-sensing pathways in HIF-mediated transcription 

was suggested by observations here of Y-27632 inhibiting hypoxia-mediated 

increases in COL2A1, VEGFA and EGLN mRNA in hBM-MSCs differentiated on TCP. 

This suggests that ROCK-mediated cytoskeletal tension on the stiff substrate is 

required for hypoxia-induced chondrogenic gene expression. The caveat to this 

observation is that TCP is magnitudes greater in stiffness than the 40KPa substrate 

and does not include the fibronectin-coated surface. It is therefore unable to fully 

represent the mechanically stiff substrate of 40KPa in terms of its effects on hBM-

MSC chondrogenesis.  
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Taken together, the evidence in this chapter points to the ability of hypoxia to 

specifically regulate cell morphology, actin dynamics, cell condensation and 

downstream chondrogenic gene expression in hBM-MSCs. Interestingly, this effect 

of hypoxia appeared to be dependent on the mechano-sensing pathways stimulated 

by specific ECM stiffness values. The early induction of a milieu conducive for 

chondrogenesis on the soft substrate only, appeared to be via a unidirectional 

mechanism in which hypoxic pathways regulate those involved in sensing of 

mechanical signals, and not vice-versa. At day 21 however, there was a trend which 

indicated the dampening of hypoxic signalling in cells cultured on the soft substrate, 

with increases in hypoxia-mediated chondrogenesis observed on the stiff biomaterial 

only. This indicates that the pathways induced by hypoxia and those by mechanical 

stimuli are tightly intertwined with each regulating the activity of the other at 

different time points throughout chondrogenesis.  

The differential effect of hypoxia on soft and stiff substrates throughout 

chondrogenesis suggests the requirement of a biomaterial system of dynamic 

stiffness is to be utilised in order to realise the potential of hypoxic signalling in CTE. 

Guvendiren and Burdick investigated the effect of hydrogels which are able to stiffen 

over a 14-day time period on the mechanosensing and lineage commitment of 

hMSCs [303]. In this study, hMSCs exhibited the characteristic features of cells on 

relative soft substrates with cortical actin arrangement, low cytoskeletal tension and 

adipogenic cell fate favoured prior to gel stiffening. This contrasted with stress fibre 

formation, increased cytoskeletal tension and osteogenesis of hMSCs following 

hydrogel stiffening via increased crosslinking of the free HA methacrylated arms. In 

addition, Caliari et al demonstrated the ability of UV-mediated stiffening of 
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methacrylated HA hydrogels to induce a cell response indicative of their culture on a 

stiff substrate compared to that exhibited on a soft material [563]. Biomaterial 

systems such as these which are able to stiffen in situ may be highly conducive for 

hypoxia-mediated chondrogenesis throughout the entire chondrogenic period. Such 

scaffolds would demonstrate the potential for hypoxia and mechano-signalling 

combinatorial strategies and may provide a proof of concept for their use in cartilage 

regeneration. 
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6. Discussion 

Taken together, the results outlines in chapters 3, 4 and 5 demonstrate the 

complexity of regulatory mechanisms which govern hypoxia/HIF signalling and the 

activity of these pathways during hBM-MSC chondrogenesis. The requirement for 

lower oxygen concentrations than 5% is suggested due to the inability of this hypoxic 

level to induce expression of HIF target genes at day 14 of chondrogenesis compared 

to 2%O2 which did so at day 1 and day 14 of culture. The literature is suggestive of 

the effect of differing oxygen concentrations on inducing differential HIF-1α 

upregulation only at a threshold hypoxic state [396]. This could be hypothesized to 

be due to a negative feedback loop in which HIF stimulation by milder hypoxic states 

is overcome by EGLN transcription and PHD2-mediated degradation of HIF-1α [411]. 

This may be investigated by utilising a hBM-MSC line in which HREs are deleted from 

the promoter of the EGLN locus [411]. The hypothesis for such a study would be that 

stimulation of HIF-mediated gene expression by 5%O2 would not be subject to 

dampening by PHD2-mediated negative feedback in these transgenic HRE-deleted 

cell line compared to that conducted with wild type hBM-MSCs.  

The mild induction of HIF by 5%O2 could be due to factors present uniquely during 

chondrogenic differentiation. For example, Ascorbate as an essential co-factor for 

PHD2 which has been shown to reduce HIF-1α compared to basal conditions [430]. 

This may therefore result in an abolishment of any mild HIF induction by 5%O2 

whereas 2%O2 is able to overcome this Ascorbate-mediated upregulation of PHD2 

activity. TGF-β signalling has been shown to also raise HIF-1α levels in normoxic 

conditions. Inclusion of TGF-β may therefore raise basal levels of HIF-1α which may 
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be unable to be induced further by mild hypoxic states at later time points when 

subject to negative feedback loops.  

The effects of both Ascorbate and TGF-β on hypoxic signalling may be investigated 

by the effects of their supplementation on HIF-1α upregulation and HIF activity in the 

presence of 5%O2 and 2%O2 at later time points in chondrogenesis. The hypothesis 

in such a study would be: Ascorbate treatment downregulates HIF-1α induction by 

5%O2 and downstream HIF activity, whereas 2%O2 is able to overcome this. In terms 

of the effect of TGF-β signalling, treatment with this growth factor would be 

hypothesized to induce HIF-1α at normoxia and therefore this would be unable to be 

further induced by 5%O2 but possible by 2%O2. Together, the results here combined 

with that previously described, suggests that hypoxic signalling during BM-MSC 

chondrogenesis is not able to be easily induced by a mild lack of oxygen. Instead, 

lower oxygen levels beyond a specific threshold may be required for stimulation of 

HIF in chondrogenically-induced BM-MSCs. 

The experiments conducted in the second chapter of this thesis investigated the 

effects of varying the bio-availability of a single PHD2/FIH substrate- oxygen, on 

downstream HIF activity. However, results in the second chapter instead 

demonstrate the effect of reducing the bio-availability of different PHD2/FIH co-

factors on HIF-mediated gene expression, namely 2-OG and Fe2+. DMOG, a 2-OG 

analogue has a greater effect on HIF target gene expression than that induced by 

either chelating or competing with Fe2+ using DFX or CoCl2 respectively. These results 

therefore suggest that HIF regulation during BM-MSC chondrogenesis is subject to 
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mechanisms which are dependent more on 2-OG than those controlled by 

intracellular Fe2+ levels.  

The relative roles of 2-OG and Fe2+ in HIF regulation could be investigated by 

examining the effect of 2-OG and Fe2+ supplementation on HIF-1α upregulation and 

HIF-mediated transcription during chondrogenesis. The hypothesis for such an 

investigation would be as follows: 2-OG supplementation more potently inhibits 

hypoxic induction of HIF compared to that induced by Fe2+ during BM-MSC 

chondrogenesis. Alternatively, inhibitors other than DMOG, DFX or CoCl2 which 

either reduce 2-OG or Fe2+ bioavailability may be utilised. Such compounds include 

N-Oxaloylglycine (NOG), another 2-OG derivative and Ciclopirox Olamine (CPX), an 

iron chelator [564]. Observations of the effect of NOG and CPX on HIF-mediated 

transcription may enable confirmation or rejection of the hypothesis that the effects 

of DMOG, DFX and CoCl2 in this study are not specific to these compounds but rather 

are representative of the effect of reducing 2-OG or Fe2+ availability. Results from 

such a study would uncover key regulatory elements of HIF during chondrogenesis. 

The mechanisms of these 2-OG-dependant processes which regulate HIF are 

suggested by the literature. For example, DMOG has been shown to inhibit both FIH 

and PHD2-mediated hydroxylation of HIF-1α compared to inhibition of PHD2 alone 

due to DFX or CoCl2 treatment [453]. This mechanism of action of DMOG may 

mediate its potent HIF-stimulation observed in the present study and is suggested 

due to observation that siRNA knockdown of FIH and PHD2 compared to PHD2 only, 

enhances HIF-mediated transcription [451]. Therefore it is a necessity to build on 

observations here to investigate if indeed, FIH and PHD2 inhibition mediates the 
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effect of DMOG in stimulating HIF-dependent transcription during cartilage 

development compared to that induced by DFX or CoCl2. Such studies would be key 

in elucidating regulatory mechanisms of a pathway which are essential for 

chondrogenesis.  It would also provide information of the specific chemical inhibition 

required for constitutive HIF stimulation throughout chondrogenic induction of hBM-

MSCs. An initial requirement for such a study would be to identify if DMOG, 

compared to the effect of DFX or CoCl2, inhibits both FIH and PHD2 and their 

respective hydroxylating functions of asparagine and proline residues of HIF-1α. It is 

possible to identify such post-translational modifications by the use of antibodies 

which are specific for hydroxylated asparagine and proline residues [453].  

Following confirmation that DMOG inhibits both these hydroxylases compared to 

that due to DFX or CoCl2, it would be required to investigate if this mechanism is 

responsible for the potent pro-chondrogenic effect of DMOG. This may be achieved 

by PHD and FIH overexpression [565, 566] in chondrogenically-induced BM-MSCs. 

The hypothesis for such a study would be as follows: Overexpression of both PHD2 

and FIH reduces DMOG-induced HIF activity and BM-MSC chondrogenesis compared 

to that in which either hydroxylase alone, or neither, is overexpressed. 

Chapters 3 and 4 suggest the differential effects of varying hypoxic states and 

bioavailability of different PHD2/FIH substrates on HIF signalling. In addition, hypoxic 

signalling that is conducive for chondrogenesis may also be subject to regulation by 

pathways which are stimulated in response to changes in ECM stiffness. In the 

present study, at an early stage of chondrogenesis, hypoxia induced expression of 

genes required for early chondrogenic induction including SOX9 and NCAM in hBM-
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MSCs cultured on mechanically soft substrates. This is in comparison to a lack of 

effect of hypoxia on stiffer substrates. These observations suggest that pathways 

stimulated in response to a relative low ECM mechanical stiffness, are conducive for 

hypoxia-induced chondrogenic gene expression. This is in contrast to that which 

occurs of hBM-MSCS on a stiff substrate in which hypoxia-mediated induction of 

chondrogenic gene expression is suppressed. As described previously, cells in which 

a cortical actin arrangement is exhibited, express higher levels of chondrogenic 

markers compared to cells in which a spread actin network and long stress fibres are 

observed [354]. Previous evidence in the literature suggests that ROCK-mediated 

responses to changes in ECM stiffness are required for this chondrogenic bias in cells 

of a rounded morphology [355]. This suggests the significance of findings in the 

present study, specifically the correlation on the soft substrate, between 

chondrogenic gene expression, ROCK activity and cytoskeletal rearrangement in 

hypoxic conditions.  

The observations on the soft substrate in hypoxic conditions, prompt further 

experiments to investigate the role of ROCK-mediated actin re-arrangement during 

hypoxia-induced chondrogenesis. This aim may be addressed through the use of 

inhibitors of both ROCK and myosin contraction (Y-27632 and Blebbistatin 

respectively). Observation of changes in hypoxia-induced cartilage mRNA and protein 

due to Y-27632 and Blebbistatin, would enable a role to be determined of ROCK-

mediated cytoskeletal tension during chondrogenesis in low-oxygen conditions. The 

findings of such experiments would be relevant for studies of cartilage development 

and tissue morphogenesis in which mechanotransduction and hypoxic pathways play 

key roles throughout. Functions of these pathways have been demonstrated from 
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the early mesenchymal limb bud stage, through to adult articular cartilage 

homeostasis [259, 262].  

Observation that hypoxia induces formation of compact colonies and mRNA 

expression of NCAM is suggestive of another mechanism by which this oxygen state 

is conducive for chondrogenesis. NCAM plays a role in maintaining cell-cell adhesion 

in the mesenchyme of the limb bud following initiation of these adhesions by N-

Cadherin [61]. Therefore, experiments which enable investigation of the role of 

hypoxia-induced NCAM expression during chondrogenesis of hBM-MSCs, would be 

informative of similar mechanisms which occur in the limb bud during cartilage 

development [567]. Such an experiment may involve siRNA knockdown of NCAM in 

hBM-MSCs which would enable observation of the role of NCAM in both 

condensation of these cultures and downstream chondrogenesis when compared to 

cells in which NCAM expression is not abolished [568]. 

Perhaps most importantly, this study informs strategies for cartilage tissue 

engineering and are suggestive of advantageous technologies for repair of acute 

chondral defects. The results from chapter 3 are suggestive of a role for either severe 

or mild hypoxia in inducing HIF-stabilisation and changes in Collagen Type II and X 

production during BM-MSC chondrogenesis. However, the potential disadvantages 

of physiological hypoxia include the induction of UPR and global inhibition of 

translation, both of which are inhibitory to stem cell differentiation. In addition, 

logistical issues may accompany incorporation of sub-atmospheric oxygen levels into 

biomaterial scaffolds for delivery into the patient injury site. Therefore, compounds 

which mimic hypoxia in terms of HIF stimulation may offer advantages compared to 
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CTE strategies in which only growth factors are used to promote chondrogenesis and 

which often result in hypertrophy and mineralisation of de novo tissue.  

Results in chapter 4 indicate the ability of DMOG for stable HIF stimulation and hBM-

MSC chondrogenesis. This demonstrates the potential for competitive 2-OG 

inhibitors in CTE. Incorporation of DMOG into a scaffold was demonstrated by Min 

et al for the purpose of increased angiogenesis in bone critical defects in a rat model 

[569]. These authors observed the sustained release of DMOG from 3D-printed 

polymer scaffolds over a 28-day period and demonstrated the ability of DMOG 

release in this manner to induce transcription of HIF target genes both at day 1 and 

14 of hBM-MSC culture.  

The potent HIF-mediated chondrogenic gene expression that was induced by DMOG 

however, was offset with the detrimental effect on Collagen Type II in the ECM of 

differentiated BM-MSCs. This was alleviated with treated of DMOG for the final third 

of the differentiating period, which also maintained expression of genes conducive 

for chondrogenesis. In order to address the requirement for late DMOG treatment in 

CTE, delayed-release scaffolds such as demonstrated by Jaklenec et al may be 

employed. These authors demonstrated the release of IGF-1 from PLGA scaffolds 

only between days 7 and 14, with no IGF-1 released prior to this time point [570]. As 

an alternative to DMOG, completion of suggested further experiments which 

examine the mechanism of action of this 2-OG analogue during chondrogenesis (e.g. 

FIH and PHD inhibition as opposed to PHD2 ablation alone), may highlight the 

usefulness of more specific inhibitors whose continuous treatment does not abolish 

collagen type II.  
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The results in chapter 5 suggest a crosstalk between the hypoxic pathways and those 

activated in response to changes in mechanical stiffness. Hypoxia-induced expression 

of chondrogenic markers, ROCK activation and cytoskeletal arrangement shown to 

be conducive for chondrogenesis were only stimulated in hBM-MSCs differentiated 

on a soft substrate. Therefore, it may be critical to ensure that DMOG/HIF stimulating 

compounds are incorporated into biomaterial scaffolds of a relatively low stiffness in 

which actin adopts a cortical arrangement. This combinatorial induction of hypoxic 

pathways and those activated in response to a soft microenvironment may offer 

greater levels of chondrogenesis compared to that in which either set of pathways 

are enhanced alone. 

In order for robust conclusions to be made based on observations here and the 

described interpretations, the major experimental limitations of this study must be 

identified and addressed. The specifics of these have already been described in the 

discussion sections of each chapter, but one of the aims of this chapter is to 

summarise the caveats of the study presented here. One limitation of this study and 

one which may have omitted observations of key hypoxia-induced effects on 

chondrogenesis, are the time points chosen for analysis of gene expression. Evidence 

here suggests correlation between expression of specific gene products, such as 

SOX9 with its target, COL2A1 or RUNX2 with that of COL10A1. However in order to 

validate these correlations, It would be a requirement to utilise more frequent time 

points throughout chondrogenesis. To confirm the role of a transcription factor in 

mediating the chondrogenic effect of hypoxia/a HIF-stimulating compound, genetic 

manipulation of these would need to be undertaken. 
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In addition to re-evaluation of time points at which samples are harvested during 

chondrogenesis, the number of genes chosen to denote a specific cellular process 

may need to be expanded. For example, HIF activity or early chondrogenic induction 

in this study have been delineated with expression of genes which represent only a 

subset of loci that are transcriptionally-active during these processes. By selecting a 

broader range of genes, the induction of these cellular processes will be more clearly 

demonstrated if they exist. This would also be enabled by quantification of specific 

proteins as oppose to a reliance placed solely on gene expression analysis. For 

example, quantification of HIF-1α or ECM proteins would enable the respective 

processes of HIF stabilisation and articular chondrocyte function to be more robustly 

assessed. 

Another limitation to this study is represented by the nature of BM-MSCs. The 

adherence in this study to the ISCT criteria for BM-MSC characterisation, may negate 

sub-populations of cells which are adherent and capable of adipogenic, chondrogenic 

and osteogenic lineage commitment. This is due to observation by others of BM-

MSC-like characteristics exhibited by cells sorted by markers such as Stro-1 and 

CD271 [170, 571] which were not used here. This lack of uniformity within the BM-

MSC field in terms of the markers which define BM-MSCs, may suggest that the 

observations here are not representative of a true BM-MSC population. Such a 

population which would be viable for CTE or study of mesenchymal development, 

may consist of subgroups of cells defined by different subsets of markers. This 

represents a limitation of this study as each of these subgroups may exhibit different 

responses to hypoxic incubation and subsequent chondrogenesis.  
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 Finally, the use of BM-MSCs from a single donor also represents a limitation of this 

study. This is due to the differential phenotype of BM-MSCs isolated from young/old 

patients, male/female or OA patients for example, and their potential differential 

response to hypoxia-mediated chondrogenic induction [572]. This is particularly 

important due to the requirement for harvesting autologous BM-MSCs for repair of 

chondral defects or for treatment of cartilage-related diseases. By discounting the 

effect of the experimental conditions used here on BM-MSCs derived from differing 

population groups such as age or sex, we may also omit key differences in their 

chondrogenic ability due to hypoxia. 
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7. Conclusions 

The purpose of the research presented here was to investigate the potential role of 

hypoxia and its downstream signalling factor, HIF in CTE strategies for repair of acute 

chondral defects. The data here demonstrates, in the broadest sense, the complexity 

with which HIF/hypoxic signalling is regulated during chondrogenesis. By 

understanding this complexity, it may be possible to develop technologies which 

enable greater levels of HIF stimulation and downstream chondrogenesis. For 

example, it is important to understand the type of chemical inhibition required to 

achieve maximal HIF-mediated transcription, in addition to the mechanical 

environment that is conducive for HIF-mediated signalling.  

Additionally, this study provides evidence for the multitude of effects of hypoxia 

which are beneficial for articular cartilage, be it chondrogenic induction of stem cells, 

collagen maturation, or inhibition of hypertrophy.  Such insights may not only 

improve stem cell chondrogenesis in CTE, but may also inform the development of 

other cartilage-related treatments. For example, stimulation of ECM formation by 

articular chondrocytes may improve ACI/MACI-based strategies. Alternatively, work 

such as that presented here provide insights into HIF-related therapies for treatment 

of diseases such as OA in which cartilage is remodeled and degenerated. Finally, by 

taking the studies here forward and dissecting the mechanisms behind HIF-mediated 

chondrogenesis, it may be possible to further refine therapeutic strategies for 

damaged cartilage. This may be via stimulation of specific HIF-mediated effects, as 

opposed to induction of the entire complement of HIF’s transcriptional targets.  
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8. Appendix 

Plate 
(#wells) 

Area/Well 
(cm2) 

[cell suspension] 
(cells/ml) 

Volume 
pipetted into 
each well (ml) 

Total 
number of 
cells/well  

Final seeding 
density 
(cells/cm2) 

96 0.34 5.1x104 0.2 1.02x104 3.0x104 

24 2 6.0x104 1.0 6.0x104 3.0x104 

12 3.8 5.7x104 2.0 1.146.0x105 3.0x104 

6 9 9.0x104 3.0 2.706.0x105 3.0x104 

 

Appendix figure 1. Concentrations of cell suspensions made from master stock prior 

to seeding into well of each size to achieve final cell densities of 3.0x104.  
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Appendix figure 2. Workflow detailing chondrogenic differentiation experiments. 

  



  

289 
 

0 5 1 0 1 5 2 0 2 5

0

5 0

1 0 0

1 5 0

 

 

Appendix figure 3. Cell number throughout chondrogenesis in control conditions, 

utilising the PicoGreen Assay. Values plotted represent the mean from 3 independent 

experiments and are a percentage of the cell number at day 0. Error bars show the 

standard error of the mean.    
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Appendix figure 4. Comparison of TGF-β1 and TGF-β3 for inducing presence of GAGs 

in ECM. Alcian Blue, Picosirius Red and Haemotoxylin staining of hBM-MSCs and 

Bovine Chondrocyte pellets in presence of TGF-β1/TGF-β3-containing chondrogenic 

media. A+B: hBM-MSCs at day 21 of culture in expansion conditions. C+D: hBM-MSCs 

at day 21 of chondrogenic induction in presence of TGF-β1 (C) and TGF-β3 (D). E+F: 

Bovine chondrocyte cultures at day 14 of culture in chondrogenic media consisting 

of TGF-β1 (E) and TGF-β3 (F). G+H: Bovine chondrocyte cultures at day 21 of culture in 

chondrogenic media consisting of TGF-β1 (G) and TGF-β3 (H). 
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Appendix figure 5. Histological processing of hBM-MSC and bovine chondrocyte 

pellets.  

  

Chemical processing of cell pellets for wax embedding 

Solution Treatment time 

  70% (v/v) IMS 15 minutes 

  90% (v/v) IMS 15 minutes 

100% (v/v) IMS            15 minutes 

100% (v/v) IMS            15 minutes 

100% (v/v) IMS            15 minutes 

100% (v/v) IMS            15 minutes 

Xylene 15 minutes 

Xylene 15 minutes 

Xylene 15 minutes 

Ultraplast Wax 15 minutes 

Ultraplast Wax 15 minutes 

Ultraplast Wax 15 minutes 
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Solution Treatment time 

Histoclear 2 x 10 minutes 

100% (v/v) IMS 2 minutes 

90% (v/v) IMS 2 minutes 

70% (v/v) IMS 2 minutes 

50% (v/v) IMS 2 minutes 

Deionised water 2 minutes 

Alcian Blue pH 1 10 minutes 

Drain and blot dry   

Deionised water Quick rinse 

Ehrlich’s Haematoxylin 2 minutes 

Running water 10 minutes 

Deionised water Quick rinse 

Phosphomolybdic acid (2.5% (v/v)) 10 minutes 

Deionised water Quick rinse 

Sirius Red F3B (0.5% (w/v) in saturated 
picric acid) 

1 hour 

Acetic acid 0.5% (v/v) 2x Quick rinse 

Drain and blot dry   

100% IMS 3 x 5 minutes 

Histoclear 2 x 5 minutes 

 

Appendix figure 6. Alcian Blue, Picosirius Red and Haemotoxylin staining protocol 

of hBM-MSC and bovine chondrocyte pellets 
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No. Cycles Cycle Duration Temperature 

1 3 mins 95○C 

39 5 secs 95○C 

10 secs 60○C 
 

 

Gene of 
Interest 

Forward Primer Sequence Reverse Primer Sequence Concentration 
(nM) 

VEGFA AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA 250 

PGK1 TGGACGTTAAAGGGAAGCGG GCTCATAAGGACTACCGACTTGG 250 

EGLN AGGCGATAAGATCACCTGGAT TTCGTCCGGCCATTGATTTTG 250 

SOX9 AGCGAACGCACATCAAGAC CTGTAGGCGATCTGTTGGGG 250 

COL2A1 CCAGATGACCTTCCTACGCC TTCAGGGCAGTGTACGTGAAC 500 

ACAN GTGCCTATCAGGACAAGGTCT GATGCCTTTCACCACGACTTC 500 

RUNX2 TGGTTACTGTCATGGCGGGTA TCTCAGATCGTTGAACCTTGCTA 250 

COL10A1 GGGGCTAAGGGTGAAAGGG GGTCCTCCAACTCCAGGATCA 250 

MMP13 ACTGAGAGGCTCCGAGAAATG GAACCCCGCATCTTGGCTT 500 

P4HA1 AGTACAGCGACAAAAGATCCAG CTCCAACTCACTCCACTCAGTA 250 

LOX CGGCGGAGGAAAACTGTCT TCGGCTGGGTAAGAAATCTGA 250 

DKK1 ATAGCACCTTGGATGGGTATTCC CTGATGACCGGAGACAAACAG 250 

GREM1 CGGAGCGCAAATACCTGAAG GGTTGATGATGGTGCGACTGT 250 

IHH AGACCGCGACCGCAATAAG GCCTTTGACTCGTAATACACCCA 250 

PTHRP AAGGTGGAGACGTACAAAGAGC CAGAGCGAGTTCGCCGTTT 250 

LEF1 TGCCAAATATGAATAACGACCCA GAGAAAAGTGCTCGTCACTGT 500 

AXIN2 AGCCAAAGCGATCTACAAAAGG AAGTCAAAAACATCTGGTAGGCA 500 

RHOA AGCCTGTGGAAAGACATGCTT TCAAACACTGTGGGCACATAC 500 

ROCK1 AACATGCTGCTGGATAAATCTGG TGTATCACATCGTACCATGCCT 250 

ROCK2 TCAGAGGTCTACAGATGAAGGC CCAGGGGCTATTGGCAAAGG 500 

CTGF AAAAGTGCATCCGTACTCCCA CCGTCGGTACATACTCCACAG 500 

ANKRD1 GCCTACGTTTCTGAAGGCTG GTGGATTCAAGCATATCACGGAA 250 

PRX1 TGATGCTTTTGTGCGAGAAGA AGGGAAGCGTTTTTATTGGCT 500 

MSX1 CTCCGCAAACACAAGACGAAC   CACATGGGCCGTGTAGAGTC 250 

NCAD TCAGGCGTCTGTAGAGGCTT ATGCACATCCTTCGATAAGACTG 250 

NCAM GGCATTTACAAGTGTGTGGTTAC TTGGCGCATTCTTGAACATGA 500 

RPL13A GCCATCGTGGCTAAACAGGTA GTTGGTGTTCATCCGCTTGC 250 

 

Appendix figure 7. qPCR reaction conditions and primer sequences. A: qPCR 

reaction conditions. B: Primer sequences used to amplify the respective genes of 

interest.  
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A 

Target Protein Antibody Species Dilution Detection 
Ab/Method 

HIF-1α h206 (Santa Cruz) Rabbit 1:100 ab150077 

Collagen Type II ab34712 (Abcam) Rabbit 1:200 ab150077 

Collagen Type X ab49945 (Abcam) Mouse 1:250 Strep/Biotin 

YAP sc101199 (Santa Cruz) Mouse 1:100 Strep/Biotin 

pMLC2 3671S [573] Rabbit 1:100 ab150077 
 

B 

1○ Antibody Target Culture substrate Dilution 

HIF-1α TCP 1:200 

Collagen Type II TCP 1:1000 

Collagen Type II PA Gels 1:500 

pMLC2 PA Gels 1:500 
 

Appendix figure 8. Primary and secondary antibody details. A: Primary antibodies. 

B: α-Rabbit secondary antibody (ab150077) dilutions for conjugation to each primary 

antibody for detection of hBM-MSC proteins cultured on either TCP or PA gels. 
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Appendix Figure 9. During BM-MSC chondrogenesis, CoCl2, DFX and DMOG induce 
changes in the mRNA of genes whose products are involved in the Bone 
Morphogenetic Protein, Wnt and Indian Hedgehog signalling pathways. mRNA 
expression of DKK1 (A), GREM1 (B), AXIN2 (C), LEF1 (D), IHH (E) and PTHRP (F) 
throughout chondrogenesis. Values plotted are from 4 independent experiments and 
are fold change compared to the untreated control which is represented by the 
horizontal dotted line. The solid coloured lines representing the mean for each 
condition.  
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Appendix figure 10. A:  Volume of reagents used for synthesis of PA gels. B: 

Classification of colonies and single cells on PA gels. Single cells are outlined in white 

and colonies outlined in yellow. 

  

Acrylamide (μl) Bis acrylamide 
(μl) 

PBS (μl) APS (μl) TEMED 
(μl) 

E (kPa) 

75 30 895 10 1 0.5 

200 240 560 10 1 40 

200μm 

A 

B 
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