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Behavioral and Cognitive Neuroscience Reviews, 1(3):219–28, 2002.

Cortical region interactions and the functional role of apical dendrites

M. W. Spratling
Centre for Brain and Cognitive Development, Birkbeck College, London. UK.

Abstract

The basal and distal apical dendrites of pyramidal cells occupy distinct cortical layers and are targeted by
axons originating in different cortical regions. Hence, apical and basal dendrites receive information from dis-
tinct sources. Physiological evidence suggests that this anatomically observed segregation of input sources may
have functional significance. This possibility has been explored in various connectionist models that employ
neurons with functionally distinct apical and basal compartments. A neuron in which separate sets of inputs can
be integrated independently has the potential to operate in a variety of ways which are not possible for the con-
ventional model of a neuron in which all inputs are treated equally. This article thus considers how functionally
distinct apical and basal dendrites can contribute to the information processing capacities of single neurons and,
in particular, how information from different cortical regions could have disparate affects on neural activity and
learning.

Keywords: Cerebral cortex, Pyramidal cells, Dendrites, Neural Networks, Attention, Learning, Memory, Per-
ception.

1 Introduction

The cerebral neocortex has a laminar structure which is conventionally classified into six layers. Distinct areas or
regions of the cortical sheet can also be identified on the basis of anatomical and functional differences. Pyramidal
cell bodies are found in all regions and in layers II, III, V, and VI. This class of neuron has a distinctive morphology,
as illustrated in Figure1, that is characterized by two separate dendritic arbors: the basal dendrites which occupy
the same layer as the cell body, and the apical dendrites which ascend into more superficial layers. For pyramidal
cells in layer VI the apical dendrite extends to layer IV (Miller , 1996), for pyramidal cells in all other layers the
apical dendrite extends to layer I (Figure2). The pyramidal cell is the most abundant type of cortical neuron
(Mountcastle, 1998). In addition, it is the only class of neuron to project outside the cortex (Crick and Asanuma,
1986) and is the primary source of connections between different cortical areas (Braitenberg, 1978). This class of
cell is thus likely to have a major role in cortical information processing.

Apical
Dendrites

Axon

Basal
Dendrites

Figure 1: A pyramidal cell. Pyramidal cells are the predominant class of excitatory neuron in the cerebral
cortex. The detailed dendritic morphology of pyramidal cells is highly variable, however, one relatively
consistent feature is the segregation into two distinct dendritic projections: the apical dendrite which
extends towards more superficial cortical layers, and the basal dendrites which extend laterally within the
same layer as the cell body. Adapted from (Paŕe et al., 1998).

The axons of pyramidal cells can form long-range projections to other cortical regions (and to sub-cortical
structures) (Mountcastle, 1998; Ebdon, 1996; Crick and Asanuma, 1986). In general, cortical regions are recip-
rocally connected (Felleman and Van Essen, 1991; Crick and Asanuma, 1986; Mountcastle, 1998; Kastner and
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Figure 2: Cortical layers and regions. A schematic showing pyramidal cells within the six layers of the
cortical sheet. Pyramidal cell bodies are shown as filled triangles, dendrites as solid lines and axons as
dashed lines. All other cell types have been omitted, as has the intra-regional connectivity. The cortical
sheet is shown divided into two regions at different levels in an information processing hierarchy. Axon
projections connecting these two regions are illustrated.

Ungerleider, 2000; Lamme et al., 1998). The layer of origin and of termination of these associative connections
allows them to be classified as ascending (feedforward) or descending (feedback), as shown in Figure2 (Felleman
and Van Essen, 1991; Crick and Koch, 1998; Mountcastle, 1998; Budd, 1998; Ebdon, 1996; Mumford, 1992;
Lamme et al., 1998; Johnson and Burkhalter, 1997; Barbas and Rempel-Clower, 1997). The feedforward con-
nections are provided by axon projections from pyramidal cells in layers II and III. These projections terminate
predominantly in layer IV of the higher region (as do inputs from the thalamus). The main target for feedforward
projections are spiny-stellate cells which, in turn, target the basal dendrites of pyramidal cells in layers II and III.
Feedback connections are provided by the axon projections from pyramidal cells in layers V and VI and terminate
mainly in layers I and VI of the lower region (or are sent to sub-cortical structures). The main targets of feedback
projections terminating in layer I are the apical dendrites of pyramidal cells with somata in layers II, III and V
(Cauller, 1995; Rockland, 1998; Budd, 1998; Rolls and Treves, 1998).

It is thus the case that the apical and basal dendrites of pyramidal cells are targeted by axons originating in
different cortical areas. Hence, the apical and basal dendrites receive information from different sources. For ex-
ample, the pyramidal cells in layers II and III receive feedforward information at the basal dendrites and feedback
information at the apical dendrites. This article attempts to explore why the cortical anatomy is arranged in this
way. It reviews both theoretical and experimental data which, taken together, suggest that the segregation of input
sources targeting apical and basal dendrites has important functional implications for the information processing
capacities of cortical pyramidal cells and specifically for the interactions between cortical regions. The focus of
this article is thus the high-level, computational, implications of the neuro-physiological data concerning dendritic
integration. Hence, rather than review the low-level, biophysical, properties and mechanisms of dendritic inte-
gration this article concentrates on the abstract, functional, principles that can be derived from this data. These
computational properties are illustrated by several connectionist models which are reviewed.

2 Physiology

It is an implicit assumption for nearly all connectionist models that dendritic morphology is irrelevant to neuronal
function (Mel, 1999). Hence, all inputs to a model neuron are treated equally and a single integration function,
such as the sum of pre-synaptic activities weighted by the synaptic strengths, operates over all inputs. Such
models, at most, acknowledge that dendrites have a structural role, such as increasing the receptive surface area
of the neuron, but do not accept that dendrites play any role in information processing (Mel, 1999). However, in
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biological neurons, dendritic morphology and the locations of synapses within the dendritic arbor, are not only
related to connectivity but are likely to have functional importance (Spruston et al., 1994; Fiala and Harris, 1999).
Non-linear operations are performed by multiple, functionally distinct, dendritic subunits before integration at
the soma (Koch and Segev, 2000; Segev and Rall, 1998; Segev, 1995; Häusser et al., 2000; Häusser, 2001; Mel,
1994, 1999). It is thus not unreasonable to assume that at a larger scale the distal (i.e., apical) and proximal
(mainly basal) dendrites of pyramidal cells act as separate dendritic compartments (Yuste et al., 1994). Indeed,
direct physiological evidence does suggest that the apical dendrite acts as a separate compartment since activation
applied to the apical dendrites (of pyramidal cells in layer V) is integrated prior to transmission to the soma
(Larkum et al., 1999; Körding and K̈onig, 2000b, 2001b).

The anatomically observed segregation of input sources, between apical and basal dendrites, may thus have
functional significance. The axon initial segment acts as the final site of integration as it is here that action potential
initialization occurs (Stuart et al., 1997b). However, inputs to different dendritic regions may contribute to this
output in different ways (Larkum et al., 2001). Inputs at the apical dendrite cause smaller, but more protracted,
excitatory post-synaptic potentials (EPSPs) at the soma than do inputs applied to the basal dendrites (Rockland,
1998; Budd, 1998). Hence, apical inputs have weaker effects on output activity than basal inputs. Such findings
are consistent with the suggestion that feedback acts to modulate responses that are primarily driven by afferent
inputs (Koch and Segev, 2000; Crick and Koch, 1998; Friston and B̈uchel, 2000). Hence, in contrast to most
connectionist models, physiological evidence suggests that inputs to the different dendritic arbors of pyramidal
cells are not treated homogeneously.

3 Computation

A neuron in which different sets of inputs can be integrated separately has the potential to operate in a variety of
ways which are not possible for the conventional model of a neuron in which all inputs are treated equally. Each
compartment might implement a different integration function or a different learning rule. Furthermore, each
compartment may have a different effect on the activity of the node, or on learning. This section explores these
computational implications by reviewing several connectionist models that have employed neurons with separate
apical and basal compartments. Consideration is also made of other models which require distinct sources of
information to be treated differently and which could thus be directly implemented using neurons with separate
apical and basal compartments.

Most models simulate perceptual tasks and consequently could be interpreted as models of pyramidal cells in
the superficial layers of sensory regions. For such neurons sensory-driven, feedforward, information is applied
to the basal dendrite while top-down, feedback, information arrives at the apical dendrites. Therefore, where
appropriate, “feedforward” and “feedback” will be used as shorthand for basal and apical inputs respectively.

3.1 Learning

3.1.1 Correlated-Activity-Driven Learning

Feedback to the apical dendrite might be used to modify learning in the basal dendrite so as to refine the receptive
fields of nodes (Rolls and Treves, 1998). Apical inputs could thus act to coordinate learning between regions.
Even when learning is unsupervised, the apical inputs to a particular region can be interpreted as providing su-
pervision, reinforcement, or bias for learning appropriate representations at the basal synapses. Several models
have used this approach (Spratling, 1999; Körding and K̈onig, 2000b,c,d, 2001a; Ryder and Favorov, 2001). In
these models, the principal aim is for feedback information to influence learning (and hence the future response
properties of the node) rather than the current neural activity. Hence, the node output is generally determined by
the activation received by the basal dendrite only (Körding and K̈onig, 2000b,c,d; Spratling, 1999) and the apical
input is correlated with the required response to the current sensory stimulus. Strong apical input should thus mod-
ify learning so as to bias the node towards representing the current basal inputs. There are many possible learning
rules that can achieve this aim. One straightforward approach is to allow only the node with the highest apical
input to adjust its basal weights (Körding and K̈onig, 2001a) or to allow learning in all those nodes for which
the apical input exceeds a threshold (Körding and K̈onig, 2000d) or for which the total activation in the apical
and basal dendrites exceeds a threshold (Körding and K̈onig, 2000b), as illustrated in Figure3(a). These models
have been used to demonstrate that by using a variety of activation functions and learning rules a neural network,
in which nodes have two functionally distinct dendrites, can successfully learn a variety of tasks (Körding and
König, 2001a, 2000b). These tasks require nodes to learn correlations between separate information streams. The
utility of such learning has been noted previously, and many other connectionist algorithms have been applied to
similar tasks (de Sa and Ballard, 1998; de Sa, 1994; Becker and Hinton, 1992; Becker, 1996; Phillips et al., 1995;
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Figure 3: Illustrations of three possible ways in which the stimulation (‘a’ or ‘b’) received by each
dendrite could affect learning of synaptic weights (‘w’). The functions ‘f’, ‘g’ and ‘h’ could potentially
take numerous alternative forms. Various functions (both linear and nonlinear) have been employed in
different models. Weight changes are also likely to depend on the pre-synaptic activity at each individual
synapse. Note that a different learning rule could be used to adjust the synaptic weights of each dendrite.

Der and Smyth, 1998; Kay and Phillips, 1997; Phillips and Singer, 1997; Balkenius, 1995; Eglen et al., 1997).
However, in such algorithms nodes are required to have access to non-locally available information, or to have
separate sets of connections from each information stream. Such models can thus be implemented naturally using
a network in which nodes have two dendritic processes (Körding and K̈onig, 2001a).

In the models described above, the strength of the activation received by the apical dendrite serves to gate
learning. Rather than using the apical input to turn learning on or off, the strength of the apical activation can be
used to directly scale the magnitude of the synaptic weight changes (Spratling, 1999), as illustrated in Figure3(b).
Activity-dependent learning is then a tripartite function of pre-synaptic activity and the post-synaptic activity of
both dendrites. In this case, the stronger the apical input, the more the basal weights are modified. Furthermore,
weak apical input can change the sign of learning and cause the node to move its receptive field away from the
current stimulus. The same learning rule is used to adjust synaptic weights on the apical dendrite, so that learning
at the apical synapses is modulated by the strength of activation at the basal dendrites (Spratling, 1999). Apical
and basal synapses learn strong weights to input patterns which are correlated across the two input streams. This
algorithm has been used for simple perceptual learning tasks in which classification of stimuli applied to the basal
dendrite is guided by contextual or supervisory signals applied to the apical dendrite. Apical input has also been
used as a source of reinforcement for learning a simple behavioral task (Spratling, 1999).

In order for synaptic weight changes in one dendrite to be effected by the activation received at a second den-
drite it is necessary for there to be a mechanism by which the second dendrite can communicate information about
its activity to the other dendrite. Dendritically generated calcium spikes can be initiated by strong synchronous
synaptic activation of the apical dendrite (Häusser et al., 2000). These calcium spikes propagate towards the
soma (Häusser et al., 2000) and have been proposed as triggers for learning events (Körding and K̈onig, 2000b,d,
2001a). However, calcium spikes also have an affect on the activity of the cell, typically causing bursts of action
potentials (Stuart et al., 1997a; Larkum et al., 1999). The output activity of the cell is an alternative mechanism
through which each dendrite could influence learning in the other dendrite.Ryder and Favorov(2001) present
such a model. The activity in both dendrites contributes equally to the final output of the node and the magnitude
of this output is used by each dendrite (along with its own activity level) to determine the strength of learning.
For any form of activity-dependent learning, it is necessary for the synapses to receive information about the post-
synaptic activity of the cell (Stuart and Ḧausser, 2001; Magee and Johnston, 1997). Action potentials initiated at
the axon initial segment not only travel outwards, along the axon, but also propagate back into the soma and den-
drites (Häusser et al., 2000; Koch and Segev, 2000). The propagation of axonally initiated action potentials back
into the dendritic tree is likely to provide information about the post-synaptic activity level of the cell which can
influence synaptic plasticity (Stuart and Ḧausser, 2001; Häusser et al., 2000; Stuart et al., 1997b; Magee and John-
ston, 1997). Furthermore, the coincidence of back-propagating post-synaptic action potentials and synaptically
generated EPSPs is correlated with the induction of long-term potentiation or long-term depression depending on
the relative timing (Körding and K̈onig, 2000a; Sánchez-Montãnés et al., 2000; Häusser et al., 2000; Markram
et al., 1997).
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3.1.2 Error-Driven Learning

In the above discussion, apical inputs have been described as providing ‘supervision’ for learning at the basal
dendrites. Supervised learning is more commonly associated with error-driven learning, in which weight mod-
ifications depend on the difference between the actual output of a node and its required output. Such learning
thus depends on the node not only receiving information about the current stimulus but also receiving either error
information, or information about the desired activity of the node from which the error can be calculated locally
(O’Reilly, 1996, 1998). Such an algorithm can thus be implemented naturally using neurons with two function-
ally distinct dendrites (Körding and K̈onig, 2001b,a; Ryder and Favorov, 2001), as illustrated in Figure3(c). In
contrast, a mechanism to enable conventional, one-dendrite, neurons to perform error-driven learning (O’Reilly,
1998) relies on a complicated mechanisms in which different information is transmitted to the node at different
times. A similar mechanism of interleaving information, in order to allow a conventional neuron to segregate
data from different sources, has also been found necessary in other learning algorithms (Dayan and Hinton, 1996;
Hinton et al., 1995; Hinton and Ghahramani, 1997).

3.2 Activation

In addition to modifying the response properties of neurons in the long-term, through learning, apical inputs are
also likely to affect on-going information processing in the short-term by directly influencing neural activity.
Apical inputs could thus act to coordinate activity between regions, and hence enable collaborative or interactive
information processing. There are many ways in which information arriving from two different sources could be
combined to determine the output of a neuron. Existing models generally fall into three classes (Robert, 1999):

Reconstruction. In these models, feedforward and feedback activations have similar effects on node output:
both can independently cause a node to become active (e.g., McClelland and Rumelhart, 1981). Top-down
information can then serve to reconstruct data currently unavailable in the sensory input. Since both top-
down and bottom-up activity have equivalent functionality these inputs can be treated in the same way
and there is no need for segregation onto distinct dendrites. Hence, most models of this type have been
implemented using conventional neurons in which all inputs are treated in the same way. However, a few
models (reviewed below) have required functionally distinct apical and basal dendrites and thus take the
form shown in Figure4(a).

Modulation. In these models, top-down expectation can modulate the activity generated by bottom-up processes
(e.g., Phillips and Singer, 1997; Grossberg and Raizada, 2000; Fukushima, 1987; Olshausen et al., 1993).
Modulation may serve to enhance activity which matches with the top-down expectation and/or to sup-
press activity which does not match. In either case, this mechanism facilitates the propagation and further
processing of selected information. Most models of this type have been implemented using conventional,
one-dendrite, neurons. However, this mechanism could be implemented using neurons with functionally
distinct apical and basal dendrites as shown in Figure4(b).

Suppression. In these models, the activity generated by top-down expectation is subtracted from the activity
generated by the actual stimulus (e.g., Mumford, 1994; Barlow, 1994; Rao, 1999; Rao and Ballard, 1997,
1999; Koerner et al., 1997). This can enable only unpredicted information to be propagated and hence allow
neural resources to be concentrated on unexpected or novel events. Alternatively, the difference between
predicted and actual data can be used to provide error information for refining the top-down hypothesis.
This type of interaction could be implemented using neurons with functionally distinct apical and basal
dendrites as shown in Figure4(c).

3.2.1 Memory

A Hebbian cell assembly is a group of mutually interconnected neurons such that cells within the assembly have
stronger excitatory connections to each other than they do to neurons outside the assembly (Hebb, 1949; Miller ,
1996; Hetherington and Shapiro, 1993). Due to sensory inputs received by the nodes, an assembly may become
active in response to an external stimulus and it thus acts as a representation of that stimulus. In addition, the cell
assembly is capable of self-sustaining excitatory activity and can thus act to maintain a memory of the stimulus.
A cell assembly is formed when a set of neurons is frequently co-active and learning strengthens the connections
between those nodes.

Many associative memory models have been based on similar principles (Willshaw et al., 1969; Hopfield,
1982; Kohonen, 1972; McClelland and Rumelhart, 1981). However, cell assembly models are unusual in sug-
gesting that apical and basal dendrites serve separate functions (Braitenberg, 1978; Wickelgren, 1992). One role
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Figure 4: Illustrations of three possible ways in which the stimulation (‘a’ or ‘b’) received by each
dendrite could affect the activation (‘y’) of the neuron. The functions ‘f’, ‘g’ and ‘h’ could potentially
take numerous alternative forms. Various functions (both linear and nonlinear) have been employed in
different models.

that has been suggested is for the basal dendrite to receive inputs from the local region while the apical dendrite
receives associative inputs from other cortical areas (Levy et al., 1999). In order that memories can be encoded
across an arbitrary number of areas, the activity received by the apical dendrite is thresholded, so that the strength
of associative input is independent of the number of areas involved in the cell assembly (Levy et al., 1999). A
similar approach suggests that nodes should be sensitive to conjunctions of sensory inputs but to disjunctions of
inputs from other cells within the assembly (Möller and Groß, 1995, 1994). Such nodes will thus be selective to a
particular pattern of input values but can take part in many different cell assemblies. This model is unusual in iden-
tifying the apical dendrites as the receptive surface for sensory inputs while the basal dendrites receive internally
generated hypotheses or predictions. Each dendrite employs a different learning rule in order to learn conjunctions
or disjunctions across their respective inputs (Möller and Groß, 1995, 1994). Hetherington and Shapiro(1993)
also found it necessary to use different learning rules for sensory inputs and for the interconnections between cells
in the assembly. To ensure that activity within the cell assembly did not spread to other nodes it was necessary
to use a learning rule that reduced synaptic weights when there was post-synaptic activity in the absence of pre-
synaptic activity. However, since the cell assembly can be active in the absence of the sensory stimulus, such a
learning rule could not be used for modifying the connections from the sensory inputs since this could lead to
those connections being severed (Hetherington and Shapiro, 1993).

3.2.2 Perception

Top-down effects have been demonstrated to play a crucial role in sensory information processing (Siegel et al.,
2000). During visual perception, information is transfered from more peripheral cortical areas to more central ar-
eas. In addition to this feedforward propagation of information through the visual hierarchy, feedback connections
simultaneously transmit information in the reverse direction and lateral connections integrate information across
the visual field (Lamme et al., 1998; Lamme and Roelfsema, 2000). Feedback connections are thus likely to play
a prominent role in perception.

Attention is a top-down process that operates via cortical feedback projections (Schroeder et al., 2001; Des-
imone and Duncan, 1995) targeting the apical dendrites in layer I (Cauller, 1995; Olson et al., 2001). By ma-
nipulating attention or expectation, it is possible to explore the affects of feedback on the response properties of
cortical pyramidal cells. Attention modulates the sensory-driven activation of cells (Kanwisher and Wojciulik,
2000; Luck et al., 1997; Kastner et al., 1999; McAdams and Maunsell, 2000), such that activity in response to an
attended stimulus is increased in amplitude and duration (Schroeder et al., 2001; Kastner and Ungerleider, 2000).
Such top-down modulation also affects the on-going competition between cells (Luck et al., 1997; Itti and Koch,
2001; Reynolds et al., 1999). Competition can be biased both by stimulus saliency and by attention (Kastner and
Ungerleider, 2000; De Weerd et al., 1999; Olson, 2001). Hence, increased attention has effects similar to increas-
ing the contrast or saliency of the stimulus (Kastner and Ungerleider, 2000; Olson, 2001; Itti and Koch, 2001;
Reynolds et al., 2000). Feedback thus serves “to amplify and focus activity” (Hupé et al., 1998). Similar effects of
feedback, or recurrent, activity can also be observed in the absence of attention (Lamme et al., 1998; Zipser et al.,
1996; Lamme and Roelfsema, 2000; Lee et al., 1998). In the absence of a stimulus, attention increases the rate
of spontaneous firing (Kastner et al., 1999; Kastner and Ungerleider, 2000; Kanwisher and Wojciulik, 2000; Luck
et al., 1997). Feedback causes weaker EPSPs than feedforward input (Shao and Burkhalter, 1996; Budd, 1998),
but can raise the potential of the cell nearer to threshold so that it responds more quickly, and more strongly, to
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feedforward input.
All connectionist models of perception investigate how feedforward, sensory-driven, information is processed

and represented. However, relatively few models have investigated the role of feedback. Even models of perceptual
processes, such as attention, in which feedback is known to play a prominent role often do not explicitly include
feedback connections (e.g., Koch and Ullman, 1985; Lee et al., 1999; Itti and Koch, 2001; Reynolds et al., 1999).
However, as outlined in the previous paragraph, there is a great deal of physiological data that could be used to
inform and constrain models which do incorporate feedback. One such model (Grossberg and Raizada, 2000) uses
a complex feedback mechanism, involving several cortical layers, to generate widespread inhibition together with
more focused excitation. At attended locations, top-down excitation is counterbalanced by top-down inhibition,
while at non-attended locations there is net inhibition. The result is that attention alone cannot cause activation
of neurons but it can cause relative enhancement of sensory-driven processing. Equivalent modulatory affects
could also be achieved by employing neurons that have two functionally distinct dendrites. In other models
(e.g., Olshausen et al., 1993), attention is used to multiplicatively modulate the synaptic strengths of intra-cortical
connections so that attended information can be selectively routed to higher cortical regions. Equivalent results
can be achieved by using attention to modulate the activity of neurons rather than weights of synapses (Salinas and
Thier, 2000; Salinas and Abbott, 1997). Such a model could be implemented in a biologically plausible manner
using nodes with two dendrites interacting as illustrated in Figure4(b).

Modulatory affects on neural activity have also been observed in parietal areas (Brotchie et al., 1995; Andersen
et al., 1985) and have been proposed as a common computational mechanism employed throughout the cortex
(Phillips and Singer, 1997; Salinas and Thier, 2000; Salinas and Sejnowski, 2001). This mechanism has been
modeled by allowing the activity generated by stimulation of the receptive field to be multiplicatively modulated
by the response to a separate set of inputs applied to the “gain field” (Salinas and Abbott, 1996; Salinas and Thier,
2000; Salinas and Sejnowski, 2001). An alternative algorithm uses a more complex formula to allow stimulation
of a “contextual field” to modulate activity generated at the receptive field (Phillips and Singer, 1997; Phillips
et al., 1995). As with models of attention these algorithms require inputs from different sources to have dissimilar
effects on activity. Hence, such models could also be naturally implemented using nodes with functionally distinct
apical and basal dendritic compartments.

4 Conclusions

Increasing attention is being paid to understanding how dendrites contribute to information processing in single
neurons (Häusser et al., 2000; Stuart et al., 1999). Rather than being passive receptive surfaces for synaptic con-
tacts, dendrites perform complex computational functions (Mel, 1994). Related synapses cluster together within
the dendritic tree so that local operations are performed by multiple, functionally distinct, dendritic subunits before
integration at the soma (Koch and Segev, 2000; Segev and Rall, 1998; Segev, 1995; Häusser et al., 2000; Häusser,
2001; Mel, 1993). The presence of multiple dendritic subunits significantly enhances the computational power of
an individual neuron (Mel, 1993, 1994, 1999; Shepherd and Brayton, 1987) and several artificial neural network
algorithms have been inspired by this insight (Rumelhart et al., 1986; Mel and Koch, 1990; Durbin and Rumelhart,
1989; Spratling and Hayes, 2000). However, in common with other conventional neural networks which assume
dendrites have passive, linear, properties, these models also treat all inputs homogeneously. This review has con-
sidered a different way in which dendrites may contribute to the computational properties of neurons: by enabling
different sets of synaptic inputs to have distinct functional roles. In such a neuron different sets of inputs can be
integrated separately, using the same or different integration functions. The resulting dendritic activities may have
differing effects on the activity of the neuron and on learning. Such properties give functional significance to the
anatomically observed segregation, between the apical and basal dendrites of pyramidal cells, of axon projections
originating in different cortical regions.

Compared with conventional neural networks, an implementation of a model in which neurons have function-
ally distinct apical and basal dendrites requires only a small increase in computational complexity. However, it
results in a model which has the potential to operate in a variety of ways which are not possible for conventional
neural networks. Hence, the incorporation of additional neuro-biological mechanisms into connectionist models
results in enhanced computational abilities. Furthermore, these models can implement a larger class of connection-
ist algorithms, and theoretical models, in a biologically plausible manner (Körding and K̈onig, 2001a,b). While
such flexibility is appealing from a computational stand-point it creates a challenge in finding those mechanisms
which are actually used in the cerebral cortex. A large volume of experimental data records the effects of feedfor-
ward and feedback activity on the responses of single-cells. Such data could provide strong constraints on models.
Feedback modulates activity generated by feedforward processing. Such modulation may play a role in tasks such
as recall, priming and attention (Rolls and Treves, 1998). In addition, by influencing activation each dendrite can
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affect learning in a biologically plausible manner. Neurons are likely to learn correlations between the separate
information streams targeting the apical and basal dendrites. Apical inputs can therefore influence learning at the
basal dendrite and may be considered a source of reinforcement or supervision. This interpretation is bolstered
by the fact that the apical dendrites in layer I not only receive projections from other cortical regions but are also
targeted by the limbic system; a widely projecting set of interconnected brain structures concerned with emotion
and memory.
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