
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1073/pnas.1715115115

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Randall, T. S., Yip, Y. Y., Wallock-Richards, D. J., Pfisterer, K., Sanger, A., Ficek, W., Steiner, R. A., Beavil, A.
J., Parsons, M., & Dodding, M. P. (2017). A small-molecule activator of kinesin-1 drives remodeling of the
microtubule network. Proceedings of the National Academy of Sciences of the United States of America,
114(52), 13738-13743. https://doi.org/10.1073/pnas.1715115115

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1073/pnas.1715115115
https://kclpure.kcl.ac.uk/portal/en/publications/695c4eed-d0d8-43dd-8353-981208ec3815
https://doi.org/10.1073/pnas.1715115115


A small molecule activator of kinesin-1 drives  

remodeling of the microtubule network 

 

Thomas S. Randall1, Yan Y. Yip1, Daynea Wallock-Richards1, Karin Pfisterer1, Anneri Sanger1, 

Weronika Ficek1, Roberto A. Steiner1, Andrew J. Beavil1, Maddy Parsons1                                               

and Mark P. Dodding1,2*  

 

1 Randall Centre for Cell for Molecular Biophysics, King’s College London, London, SE1 1UL, 

United Kingdom 

2 School of Biochemistry, University of Bristol, BS9 1TD, United Kingdom 

 

*Correspondence to:  mark.dodding@bristol.ac.uk 

 
  



 2 

Abstract 

The microtubule motor kinesin-1 interacts via its cargo-binding domain with both microtubules 

and organelles, and hence plays an important role in controlling organelle transport and 

microtubule dynamics. In the absence of cargo, kinesin-1 is found in an autoinhibited 

conformation. The molecular basis of how cargo engagement affects the balance between 

kinesin-1’s active and inactive conformations and roles in microtubule dynamics and organelle 

transport is not well understood. Here we describe the discovery of kinesore, a small molecule 

that in vitro, inhibits kinesin-1 interactions with short linear peptide motifs found in organelle 

specific cargo adaptors, yet activates kinesin-1’s function of controlling microtubule dynamics in 

cells, demonstrating that these functions are mechanistically coupled. We establish a proof-of-

concept that a microtubule motor-cargo interface and associated autoregulatory mechanism can 

be manipulated using a small molecule, and define a new target for the modulation of 

microtubule dynamics. 

 

Significance 

Here we identify kinesore, as a cell permeable small molecule modulator of the kinesin-1 

microtubule motor. Kinesore acts through the cargo binding domain of the motor to activate its 

function in controlling microtubule dynamics. Our chemical biology approach to understanding 

microtubule motor protein function provides new mechanistic insight into how this poorly 

understood activity of the motor is regulated and establishes a proof-of-concept that a 

microtubule motor-cargo interface and associated autoregulatory mechanism can be manipulated 

using a small molecule. In doing so, we define a new target for the modulation of microtubule 

dynamics. We suggest that this offers a new conceptual approach to consider for the chemical 

manipulation of the cytoskeleton and its motor proteins.  
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\body 

Introduction 
The heterotetrameric kinesin-1 microtubule motor plays a crucial role in spatial organization of many 

subcellular components by virtue of its capacity to transport diverse protein and ribonuclear protein 

complexes, vesicles and organelles on microtubules (1-4).  Kinesin-1 also regulates the organization of 

the microtubule network itself, through its ability to mediate microtubule-microtubule interactions that 

result in their bundling and sliding (5-9). This activity is important for cytoplasmic streaming in 

drosophila oocytes, formation of microtubule based cellular processes and axonal regeneration (5, 10).  

These diverse functions rely on a capacity to translocate with high processivity towards the plus(+)end of 

microtubules imparted by the microtubule binding amino terminal ATPase motor domains of the dimeric 

kinesin heavy chains (KHCs) and a multivalent cargo binding domain comprised of the C-terminal 

domains of the KHCs and the kinesin light chains (KLCs), which contain binding sites for both organelle-

specific cargo adaptors and microtubules  (9, 11-15). 

In the absence of cargo, kinesin-1 is in an autoinhibited, folded conformation that is stabilized by 

the interaction of a single C-terminal KHC tail with the motor domain dimer interface, thereby 

crosslinking the two motor domains and preventing futile cycles of ATP hydrolysis (16-22). We have 

recently shown that the KLCs, which regulate kinesin-1 activity (23, 24), also engage, in cis, in a second 

autoinhibitory intramolecular interaction between their tetratricopeptide repeat domain (KLCTPR) and a 

negatively charged unstructured linker region immediately preceding it carrying a leucine-phenylalanine-

proline (LFP) motif (25). Binding of organelle-specific cargo adaptors containing ‘W-acidic’ short-linear-

peptide motifs to KLCTPR, which can initiate kinesin-1 activation (11, 26, 27), displaces this 

intramolecular interaction causing a conformational change within the KLCs (25).  We proposed that this 

cargo dependent conformational change acts a molecular switch to control the activity of the holoenzyme 

(25). We also recently provided evidence to suggest that one consequence of W-acidic motif engagement 

of KLCTPR is to make a cargo binding site in the KHC tail, that is inaccessible in the autoinhibited 

conformation, available to bind cargo (28). The predominantly basic series of amino acids comprising this 

site can interact with closely related cargo adaptors sequences to stabilize the kinesin-1-cargo interaction 

and interestingly, is also known to interact with microtubules in an ATP-independent manner (9, 14, 15, 

19).  Collectively, these data suggest a stepwise model for kinesin-1 activation, in which engagement of 

KLCTPR and resulting light chain conformational change, is the key upstream signal to activate kinesin-1, 

and, in a context dependent manner, results in either organelle transport, if KHC interacts with an 

organelle cargo adaptor(28), or microtubule bundling and sliding, if KHC interacts with microtubules. In 

support of such a proposition, the KLCs have been demonstrated to modulate the affinity of the KHC-tail 

for microtubules in a manner dependent on the KLC LFP-acidic linker region (24), and the W-acidic 
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motif containing kinesin-1 adaptor calsyntenin-1 was recently shown to play a role in regulating 

microtubule organization in dendritic arbor development (29).  One prediction of such a model is that if 

kinesin-1 were to be activated under conditions where its capacity to interact with organelles was limited, 

its role in microtubule sliding and bundling would be promoted.  

We employed a chemical biology based approach to test this hypothesis, seeking to identify small 

molecules that could induce KLCTPR dependent kinesin-1 activation in the absence of organelle cargo 

adaptor engagement. This resulted in the identification of a compound that we have named kinesore, 

which in vitro, inhibits the interaction of KLCTPR with the W-acidic lysosomal cargo adaptor SKIP. We 

show that in cells, kinesore induces the light chain conformational switch in a similar manner to 

activating cargo and causes the large-scale kinesin-1 dependent remodeling of the microtubule network. 

Thus, we demonstrate that the organelle transport and microtubule sliding/bundling functions of the 

motor are coupled through a shared activation mechanism. Moreover, we establish a proof-of-concept that 

a microtubule motor-cargo interface and associated autoregulatory mechanism can be manipulated using a 

small molecule, and offer an unexpected new target for the modulation of microtubule dynamics. 

 

Results 
 
Identification of kinesore as a small molecule inhibitor of the KLC2 - SKIP interaction 
To identify small molecules that could induce KLCTPR dependent kinesin-1 activation in the absence of 

organelle cargo adaptor engagement, we focused on the interaction between autoinhibited aiKLC2TPR 

(KLC2 161-480, previously designated KLC2extTPR) and a W-acidic motif peptide from the lysosomal 

cargo adaptor SKIP (SKIPWD) (25). Inclusion of the autoinhibitory N-terminal sequence on KLC2TPR 

results in an approximate 8-fold reduction in binding affinity (KD increases to ≈8 μM from ≈1 μM). To bind 

KLC2TPR , SKIPWD displaces this autoinhibitory interaction (25). Thus, one possible mechanism for the 

small molecule mediated inhibition of the SKIP-aiKLC2TPR interaction would be for a compound to act in 

a similar fashion to SKIP by displacing the intramolecular interaction to occupy the SKIP binding site, 

thus potentially mimicking SKIP induced activation whilst simultaneously inhibiting SKIP binding. This 

formed the rationale for a high-throughput small molecule screen. 

  We developed a primary in vitro time-resolved (TR) FRET assay (Figure 1A, top) coupled to a 

secondary fluorescence polarization (FP) based assay (Figure 1A, middle) to identify compounds that had 

the capacity to inhibit the interaction between aiKLC2TPR
 and SKIPWD  and screened the 2908 compound 

Chemogenomic Library provided by Pfizer (see materials and methods for details). A tertiary FP screen 

of compounds from the Hit-2-Lead library (Chembridge), informed by this dataset, resulted in the 
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identification of 3,5-dibromo-N'-{[2,5-dimethyl-1-(3-nitrophenyl)-1H-pyrrol-3-yl]methylene}-4-

hydroxybenzohydrazide, hereafter named kinesore (Figure 1A, bottom). 
Consistent with its ability to target the kinesin-1-cargo interface, in pull down assays, kinesore inhibited 

the interaction between purified recombinant GST-SKIP(1-310) and full length haemaglutinin(HA)-

KLC2 with a 50% reduction in binding at 12.5μM and elimination of any detectable binding at a 25μM 

kinesore (Figure 1B). In FP assays, kinesore inhibited the interaction of TAMRA-SKIPWD with 

aiKLC2TPR in a concentration dependent manner (Figure 1C) (30). Based upon this activity profile, and 

penetrant cellular phenotype described below, we decided to pursue it further. To the best of our knowledge, 

this compound has not been characterised before in any other context. 

 

Kinesore remodels the microtubule network 
To examine the effect of kinesore in cells, HeLa cells were treated with 50μM kinesore for one hour. As 

SKIP mediates the kinesin-1 dependent transport of late endosomes(LE)/lysosomes on microtubules (31), 

cells were immunostained for β-tubulin and LAMP1 (LE/lysosomes). In control conditions, as expected, 

lysosomes were distributed throughout the cytoplasm, with some peripheral and perinuclear clusters, in 

association with the characteristic radial microtubule array typically observed in this cell type (Figure 2A, 

top). Remarkably, in kinesore-treated cells, the microtubule network was entirely reorganized into a series 

of loops and bundles (Figure 2A, bottom). In addition, the lysosomal compartment accumulated in a 

juxta-nuclear position where there were relatively few microtubules. At 50μM kinesore, this phenotype 

was highly penetrant with 95±2.4% (n=3, total of 200 cells) of cells exhibiting a reorganized non-radial 

microtubule network. This phenotype emerged progressively with prominent loops and bundles in most 

cells becoming apparent after 30-35 minutes of treatment (Figure S1). In titration experiments, in cells 

treated for one hour, this phenotype became apparent at a concentration of 25μM kinesore, with relatively 

little effect at or below concentrations of 12.5μM (Figure S2A). The effect was reversible because a two 

hour washout of kinesore from cells treated for one hour led to the reestablishment of the radial 

microtubule array (Figure S2B), suggesting that this effect was not due to acute toxicity of the compound. 

 To examine the dynamic behavior of the reorganized microtubule network, HeLa cells stably 

expressing GFP-α-tubulin were treated with kinesore for one hour and imaged live. This revealed that the 

loops/bundles of microtubules, particularly in the cell periphery, were highly dynamic and engaged in 

complex microtubule-microtubule interactions (Figure 2B,C, supplementary movie 1). This phenotype is 

highly reminiscent of cells that overexpress the microtubule sliding Drosophila kinesin-14 family motor, 

Ncd, and so we considered this to be consistent with our hypothesis (32). Occasionally, cells also 

extended microtubule-based projections (Figure 2D, supplementary movie 1). Treatment of cells stably 

expressing the +end binding protein EB3 fused to red fluorescent protein (RFP) showed that whilst 
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microtubules +ends remained highly dynamic, the spatial organization and directionality of EB3 comets 

appeared disordered compared to control cells (Figure 2E, supplementary movies 2-4). Treatment of cells 

with 10μM nocodazole disrupted kinesore induced loops and bundles (Figure S3).  

 This kinesore-induced reorganization of the microtubule network was observed in a panel of 

mammalian normal and cancer cell lines, and thus was not restricted to HeLa cells (Figure S4). To our 

knowledge, this cellular phenotype does not closely resemble that of any known microtubule targeting 

agents that act directly upon tubulin, and consistent with this, kinesore did not significantly affect the 

kinetics of microtubule assembly in in vitro polymerization reactions and microtubules polymerized in the 

presence of kinesore were equally susceptible to cold induced destabilization.  (Figure S5). 

 

Kinesore induced remodeling of the microtubule network is dependent on kinesin-1 
Next, we examined the effect of kinesore on cells overexpressing kinesin-1. In control cells transfected 

with Citruline (mCit)-tagged KHC (Kif5C) and HA-tagged KLC (KLC2), which form a complex when 

overexpressed(28), kinesin-1 displayed a predominantly diffuse localization and the microtubule network 

appeared substantially normal (Figure 3A, left). Consistent with an activation-like effect upon kinesin-1, 

in kinesore treated cells, KHC and KLC accumulated at the cell periphery (Figure 3A, right). In addition, 

the morphology of the kinesore-remodeled microtubule network was altered. Intracellular loops were less 

prominent, but instead cells showed large numbers of microtubule-rich projections emanating from the 

cell periphery. Structured illumination microscopy (SIM) imaging confirmed that kinesin-1 (KHC and 

KLC) associated with tubulin at the cell periphery in kinesore-treated cells (Figure 3B). We also noted 

their accumulation at the tip of a subset of microtubule rich projections (Figure 3B).  Collectively, these 

data suggest that, as kinesore alters the localization of kinesin-1, and high expression of kinesin-1 

modifies the kinesore-microtubule phenotype, kinesore likely acts upon kinesin-1. Consistent with this, 

fluorescent protein-labeled kinesin-1 subunits expressed under control of their endogenous promoter in 

HeLa-Kyoto cells (33), which display a predominantly diffuse localization under control conditions, 

associated with kinesore-induced microtubule loops and bundles (Figure S6). Similarly, when these cells 

(GFP-Kif5B) were lysed in a microtubule stabilizing buffer, kinesore increased the amount of KHC 

associated with a microtubule containing pellet fraction following sedimentation (Figure S7), without 

affecting the amount of tubulin in the pellet.  

 Formally testing the kinesin-1 dependence of kinesore induced remodeling of microtubules is 

complicated by the multiple genes that can encode KHC (Kif5A, Kif5B, Kif5C) and KLC (KLC1, KLC2, 

KLC3, KLC4) which have distinct cell and tissue expression profiles and which have the potential to 

undergo compensatory changes in expression following loss of a specific isotype (34). To address this, we 

used the commercially available KHC (KIF5B) CRISPR knockout, chronic myeloid leukemia (CML) 
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derived HAP1 cell line, and matched wild type control. In wild type HAP1 cells, transcriptomic data 

suggest that Kif5B is the predominant isotype at 61 transcripts per million (TPM). Kif5C is present at 21 

TPM whilst Kif5A is not expressed (35).  Consistent with this, Kif5B was detected in wild type cell 

extracts using a Kif5B-specific polyclonal antibody, but was absent in Kif5B KO cells. In contrast, pan-

KHC antibody revealed a substantial but not complete reduction in total KHC expression, suggesting the 

presence of lower levels of another isotype (Figure 3C). In wild type cells, 50μM kinesore induced the 

remodeling of the microtubule network and the formation of extensive microtubule-rich projections. This 

phenotype was strongly suppressed in Kif5B knockout cells, confirming that microtubule remodeling 

induced by kinesore is dependent upon the presence of kinesin-1. 

 

Kinesore induces the light chain conformational switch 
These data suggest that kinesore, by engaging the KLCTPR in a manner that inhibits interactions of 

kinesin-1 with activating cargo adaptors, may act in a ‘cargo-mimetic’ manner to promote kinesin-1 

activation. To test this hypothesis, we employed our previously validated KLC conformation biosensor 

(Figure 4A) (25). In the absence of exogenous cargo, this biosensor reports a high FRET state consistent 

with a compact KLC conformation (FRET efficiency 15.77±0.76%). FRET is reduced by co-expression 

of the cytoplasmic domain of the W-acidic cargo adaptor CSTN1 (5.82±1.02%) (Figure 4B) (25), 

consistent with the notion that cargo binding by KLCTPR results in conformational change in KLC. 

Treatment of cells with 50μM kinesore caused a comparable reduction in FRET (4.04±0.49%), suggesting 

that kinesore induces the light chain conformational switch in a manner similar to activating cargoes.  

 

Discussion 
Kinesin family proteins play key roles in both cargo transport on microtubules and in controlling 

microtubule dynamics to support a wide range of cellular processes (3, 36). Some, such as the kinesin-4 

family member Kif21B possess both of these capacities which are fine tuned for its function (37). Is has 

been appreciated for many years that kinesin-1 also possesses both of these abilities (6). However, the 

molecular mechanisms that underpin and regulate the balance between these two activities and their 

relationship to kinesin-1 autoinhibition remain largely unknown.  Here we have employed a chemical 

biology driven approach to test the hypothesis that these functions are linked though a common regulatory 

mechanism. Our identification of kinesore as a small molecule that inhibits the SKIP-KLC2 interaction in 

vitro yet promotes kinesin-1 function in controlling the organization of the microtubule network in cells 

strongly supports our hypothesis. Moreover, the data provides proof-of-concept that a microtubule motor-

cargo interface and associated autoregulatory mechanism can be manipulated using a small molecule, and 

defines a potential new target for the modulation of microtubule dynamics. 
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Collectively, our data suggest a model in which kinesore engages the KLCs of kinesin-1 in cargo-

like fashion to initiate crucial events in cargo-dependent activation, the net result of which is to promote 

the function of the motor in regulating microtubule bundling and sliding, leading to the remodeling of the 

microtubule network 

 Our favored model builds upon our recent studies (11, 25, 28) and of others (24, 26) and proposes 

that in the absence of cargo, kinesin-1 is in its ‘double autoinhibited’ conformations mediated by an 

intramolecular motor domain–KHC-tail interaction and the KLCTPR–LFP-acidic linker interaction. 

Kinesin-1 activation is initiated by cargo binding to KLCTPR resulting in displacement of the LFP-acidic 

linker region and light chain conformational change, which in turn leads to destabilization of KHC 

autoinhibition through a mechanism involving both steric and electrostatic factors (24, 25). One 

consequence of this is to make accessible a binding site in KHC-tail adjacent to the autoinhibitory IAK 

sequence. This site is capable of interacting with either organelle cargo adaptors (28) or microtubules (9, 

14, 15, 19). Thus, the KLCs gate access to this crucial KHC-tail site. We suggest that kinesore initiates 

this process whilst simultaneously inhibiting KLCTPR association with organelle cargo adaptors, forcing 

kinesin-1 to perform its role in promoting bundling and sliding, resulting in the formation of loops and 

bundles that bear a notable resemblance to those previously observed following over-expression of an 

active microtubule sliding kinesin-14 family member (32). Bundling of parallel microtubules and sliding 

of antiparallel microtubules (6) in the background of continuing + end dynamics progressively leads to 

the emergence of the complex phenotypes observed.  

It is worth stating explicitly that we make no claim regarding the specificity of kinesore outside of this 

limited functional space. Given that the compound must be used at relatively high concentrations in cells 

(25 - 50μM) it is highly likely that other cellular targets exist, although it is unlikely that these make a 

significant contribution to the microtubule phenotype described. We have not observed any direct effects 

in vitro on tubulin polymerization suggesting that this not likely a major component of the cellular 

activity of kinesore, however, we cannot rule out the possibility of a synergistic direct or indirect activity 

that combines with the compound’s effect on kinesin-1, that is not captured in these assays.  

Nonetheless, it is worth reflecting on the proof-of-concept established here. To our knowledge this is the 

first time that the cargo-binding interface and associated autoregulatory mechanism of a cytoskeletal 

motor has been targeted using a small molecule. We suggest that this offers several exciting possibilities 

for the future. Most small molecules that modulate cytoskeletal motor protein function target the ATPase 

activity or motility mechanisms associated with motor domains that are relatively well conserved within 

the kinesin, myosin and dynein families, thus hindering the development of specific functional 

modulators. In contrast, although autoregulation coupled to cargo recognition represent common themes, 

the mechanisms by which this is achieved are quite divergent (3, 38-41). For example, kinesin-1 is the 
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only kinesin family member that employs a TPR domain–short linear motif cargo recognition mechanism 

(11) which is coupled to its autoregulatory mechanism (25). Indeed, this makes it very unlikely that 

kinesore has activity against any other kinesin family member. Thus, targeting of these mechanisms may 

represent a novel approach to achieving small molecule control of motor protein function for use as both 

research tools and for potential therapeutic purposes where motor proteins are dysregulated. Importantly, 

this approach offers the prospect of not only inhibiting, but also enhancing specific motor protein 

activities. Developments over recent years establishing the structural basis for cargo recognition and 

autoregulation are an essential prerequisite for this approach: myosin V, MCAK, cytoplasmic dynein and 

dynein-2 all represent potential candidates where structural and biophysical analysis allows one to 

consider similar in vitro screening based approaches to target core cargo recognition and autoregulatory 

mechanisms (38, 39, 42-44).  Other candidates and mechanisms in all three families will surely emerge as 

studies continue to define the molecular underpinnings of these processes. 

Finally, it is worth considering the potential of the kinesin-1-cargo interface itself as a drug target. 

Microtubule targeting agents (stabilizers and destabilizers) represent an important class of 

chemotherapeutics, but are limited by issues of both toxicity and resistance. Molecules that offer a 

mechanistically distinct approach to the modulation of microtubule dynamics are actively sought (45). It 

is conceivable that a molecule that bound the kinesin-1 cargo interface with both high affinity and 

selectivity, and elicited similar effects to kinesore, could represent such a drug. One might also consider 

whether manipulation of kinesin-1 activity could be advantageous in neurological conditions where 

axonal transport is impaired (46). Clearly therefore a structural understanding of the kinesore mechanism 

is imperative as this would facilitate rational design and phenotypic screening approaches.  

 

Materials and Methods 
 

Expression, purification and Terbium labelling of aiKLC2TPR 

His-KLC2 161-480 (aiKLC2TPR) protein was expressed in BL21 E.coli, isolated by nickel 

affinity chromatography and further purified by size-exclusion chromatography in 500mM NaCl 

as previously described (25). 10ml of 100 μM (1 μmole) purified protein was dialysed overnight 

at 4°C into a labelling buffer comprising 100mM Na2CO3 and 150mM NaCl at pH 9.3.  The 

protein was labelled with 100 μg (95 nmoles) of amine-reactive Terbium chelate  (Lanthascreen, 

Thermofisher Scentific, PV3582) for 3 hours at room temperature on a rolling platform, giving a 

theoretical maximum labelling of approximately 1 Tb per 10 aiKLC2TPR. The product of this 

reaction was subsequently centrifuged at 16,000 x g for 20 minutes and passed through 0.22 
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micron filter and further purified, removing any free label using a second round of size-exclusion 

chromatography on a 16∕60 HiLoad Superdex 75 column (GE Healthcare), pooling all protein 

containing fractions (labelled and unlabelled). The presence of Tb with the characteristic 4 peak 

emission profile in the final pool was confirmed using a fluorimeter following excitation at 

340nm.  This mix of labelled and non-labelled aiKLC2 was then dialysed overnight at 4°C into 

25mM HEPES (pH 7.5), 150mM NaCl, 5 mM β-ME buffer in preparation for use in the TR-

FRET screen.  

See SI materials and methods for additional materials and methods 

 

Acknowledgments: 

This work was funded by a Wellcome Trust R.C.D.F. to M.P.D (097316/Z/11/Z); Y.Y.Y is supported by 

a BBSRC project grant (BB/L006774/1, M.P.D. and R.A.S); K.P and M.P by UK 

MRC (MR/K015664/1); A.J.B by Asthma UK (09/029). We are grateful to Professor A. Hyman (Max-

Planck Institute for Cell Biology and Genetics) for the gift HeLa-Kyoto cell lines, Dr. Rachel Gurrell 

(Pfizer Ltd, Cambridge, UK) for facilitating access to the Chemogenomics small molecule library, and Dr 

Simon Brayford (KCL) and the KCL Nikon Imaging Centre for assistance with microscopy. Professor 

Vladimir Gelfand (Northwestern University), Professor Ulrike Eggert (KCL) and Dr Anthony Roberts 

(Birkbeck) provided helpful discussions on the project and we thank Professor Anne Ridley (KCL) for 

critical reading of the manuscript. 

  



 11 

References 
 

1. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112(4):467–480. 

2. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved 
in microtubule-based motility. Cell 42(1):39–50. 

3. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nature Reviews Molecular 
Cell Biology 10(11):765–777. 

4. Fu M-M, Holzbaur ELF (2014) Integrated regulation of motor-driven organelle transport by scaffolding 
proteins. Trends Cell Biol 24(10):564–574. 

5. Jolly AL, et al. (2010) Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. 
Proceedings of the National Academy of Sciences 107(27):12151–12156. 

6. Lu W, Gelfand VI (2017) Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends Cell Biol. 
doi:10.1016/j.tcb.2017.02.005. 

7. Urrutia R, McNiven MA, Albanesi JP, Murphy DB, Kachar B (1991) Purified kinesin promotes vesicle 
motility and induces active sliding between microtubules in vitro. Proceedings of the National Academy of 
Sciences 88(15):6701–6705. 

8. Andrews SB, Gallant PE, Leapman RD, Schnapp BJ, Reese TS (1993) Single kinesin molecules crossbridge 
microtubules in vitro. Proceedings of the National Academy of Sciences 90(14):6503–6507. 

9. Straube A (2005) Conventional Kinesin Mediates Microtubule-Microtubule Interactions In Vivo. Mol Biol 
Cell 17(2):907–916. 

10. Lu W, Lakonishok M, Gelfand VI (2015) Kinesin-1-powered microtubule sliding initiates axonal 
regeneration in Drosophila cultured neurons. Mol Biol Cell 26(7):1296–1307. 

11. Pernigo S, Lamprecht A, Steiner RA, Dodding MP (2013) Structural Basis for Kinesin-1:Cargo 
Recognition. Science 340(6130):356–359. 

12. Verhey KJ, et al. (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling 
molecules. J Cell Biol 152(5):959–970. 

13. Blasius TL, Cai D, Jih GT, Toret CP, Verhey KJ (2007) Two binding partners cooperate to activate the 
molecular motor Kinesin-1. J Cell Biol 176(1):11–17. 

14. Navone F, et al. (1992) Cloning and expression of a human kinesin heavy chain gene: interaction of the 
COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J Cell Biol 117(6):1263–
1275. 

15. Seeger MA, Rice SE (2010) Microtubule-associated protein-like binding of the kinesin-1 tail to 
microtubules. J Biol Chem 285(11):8155–8162. 

16. Kaan HYK, Hackney DD, Kozielski F (2011) The Structure of the Kinesin-1 Motor-Tail Complex Reveals 
the Mechanism of Autoinhibition. Science 333(6044):883–885. 

17. Dietrich KA, et al. (2008) The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. 
Proc Natl Acad Sci USA 105(26):8938–8943. 



 12 

18. Hackney DD, Baek N, Snyder AC (2009) Half-Site Inhibition of Dimeric Kinesin Head Domains by 
Monomeric Tail Domains †. Biochemistry 48(15):3448–3456. 

19. Hackney DD, Stock MF (2000) Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP 
release. Nat Cell Biol 2(5):257–260. 

20. Friedman DS, Vale RD (1999) Single-molecule analysis of kinesin motility reveals regulation by the cargo-
binding tail domain. Nat Cell Biol 1(5):293–297. 

21. Stock MF, et al. (1999) Formation of the Compact Confomer of Kinesin Requires a COOH-terminal Heavy 
Chain Domain and Inhibits Microtubule-stimulated ATPase Activity. J Biol Chem 274(21):14617–14623. 

22. Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin's tail domain is an inhibitory regulator of 
the motor domain. Nat Cell Biol 1(5):288–292. 

23. Verhey KJ, et al. (1998) Light chain-dependent regulation of Kinesin's interaction with microtubules. J Cell 
Biol 143(4):1053–1066. 

24. Wong YL, Rice SE (2010) Kinesin's light chains inhibit the head- and microtubule-binding activity of its 
tail. Proc Natl Acad Sci USA 107(26):11781–11786. 

25. Yip YY, et al. (2016) The light chains of kinesin-1 are autoinhibited. Proc Natl Acad Sci USA 113(9):2418–
2423. 

26. Kawano T, et al. (2012) A small peptide sequence is sufficient for initiating kinesin-1 activation through part 
of TPR region of KLC1. Traffic 13(6):834–848. 

27. Dodding MP, Mitter R, Humphries AC, Way M (2011) A kinesin-1 binding motif in vaccinia virus that is 
widespread throughout the human genome. EMBO J 30(22):4523–4538. 

28. Sanger A, et al. (2017) SKIP controls lysosome positioning using a composite kinesin-1 heavy and light 
chain-binding domain. Journal of Cell Science 130(9):1637–1651. 

29. Lee TJ, Lee JW, Haynes EM, Eliceiri KW, Halloran MC (2017) The Kinesin Adaptor Calsyntenin-1 
Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development. Front 
Cell Neurosci 11:391. 

30. Nikolovska-Coleska Z, et al. (2004) Development and optimization of a binding assay for the XIAP BIR3 
domain using fluorescence polarization. Anal Biochem 332(2):261–273. 

31. Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 
21(6):1171–1178. 

32. Oladipo A, Cowan A, Rodionov V (2007) Microtubule motor Ncd induces sliding of microtubules in vivo. 
Mol Biol Cell 18(9):3601–3606. 

33. Maliga Z, et al. (2013) A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat Cell 
Biol 15(3):325–334. 

34. Tanaka Y, et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in 
abnormal perinuclear clustering of mitochondria. Cell 93(7):1147–1158. 

35. Essletzbichler P, et al. (2014) Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid 
human cell line. Genome Res 24(12):2059–2065. 



 13 

36. Cross RA, McAinsh A (2014) Prime movers: the mechanochemistry of mitotic kinesins. Nature Reviews 
Molecular Cell Biology 15(4):257–271. 

37. Ghiretti AE, et al. (2016) Activity-Dependent Regulation of Distinct Transport and Cytoskeletal 
Remodeling Functions of the Dendritic Kinesin KIF21B. Neuron 92(4):857–872. 

38. Li J, Lu Q, Zhang M (2016) Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular 
Trafficking. Traffic 17(8):822–838. 

39. Zhang K, et al. (2017) Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. 
Cell 169(7):1303–1314.e18. 

40. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD Activation of cytoplasmic dynein motility 
by dynactin-cargo adapter complexes. sciencemagorg. 

41. Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP (2014) In vitro reconstitution of a highly 
processive recombinant human dynein complex. EMBO J. doi:10.15252/embj.201488792. 

42. Wei Z, Liu X, Yu C, Zhang M (2013) Structural basis of cargo recognitions for class V myosins. Proc Natl 
Acad Sci USA 110(28):11314–11319. 

43. Toropova K, Mladenov M, Roberts AJ (2017) Intraflagellar transport dynein is autoinhibited by trapping of 
its mechanical and track-binding elements. - PubMed - NCBI. Nat Struct Mol Biol 24(5):461–468. 

44. Talapatra SK, Harker B, Welburn JPI (2015) The C-terminal region of the motor protein MCAK controls its 
structure and activity through a conformational switch. Elife 4. doi:10.7554/eLife.06421. 

45. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat 
Rev Drug Discov 9(10):790–803. 

46. Goldstein LSB (2012) Axonal transport and neurodegenerative disease: Can we see the elephant? Progress 
in Neurobiology 99(3):186–190. 

 

 
 

  



 14 

Figure Legends 
 
Fig.  1. Identification of kinesore as a small molecule inhibitor of KLC-cargo interaction. 
(A) Scheme showing three stage screening strategy for small molecule inhibitors of the aiKLC2TPR – 
SKIPWD (SEQ:STNLEWDDSAI) interaction and the chemical structure of kinesore. (B) Western blot of 
GST-pull-down experiment showing that the interaction between bacterially expressed GST-SKIP(1-310) 
and HA-KLC2 expressed in mammalian cell extracts is inhibited by kinesore. All pulldown lanes, 
including controls were performed in the presence of 0.1% DMSO. Graph shows quantification of 3 
independent experiments. Error ± SEM. (C) FP experiment titrating increasing concentrations of kinesore 
into a aiKLC2TPR:SKIPWD complex showing that kinesore inhibits the interaction. Data are derived from 3 
replicates and are representative of 3 independent experiments. Error ± SEM. 
 
 
Fig. 2. Kinesore induces the remodeling of the microtubule network. (A) Representative maximum 
intensity projection immunofluorescence images acquired using a Ziess 880 Airyscan microscope of 
HeLa cells treated with 50μM kinesore or vehicle control (0.1% DMSO) for 1 hour. Cells were 
immunostained for β-tubulin (green) and LAMP1 (magenta). (B,C,D) Stills derived from supplementary 
movie 1 showing representative dynamics of GFP-tubulin in live HeLa cells treated with 50μM kinesore 
for one hour. Numbering denotes time in seconds from start of the still sequence. (E) Pseudocoloured 
spinning disk confocal microscopy projection images from the first 5 frames (20sec) of supplementary 
movies 2 and 3, showing dynamics of EB3-RFP in control and kinesore treated HeLa cells (Scale bars: 10 
μm). 
 
 
Fig. 3. Kinesore induced remodeling of the microtubule network is dependent on kinesin-1  
(A) Representative maximum intensity projection confocal immunofluorescence images showing HeLa 
cells transfected with mCit-KHC (pseudocoloured red) and HA-KLC (pseudocoloured blue) treated with 
50μM kinesore (right) or vehicle control (left) (0.1% DMSO) for 1 hour. Note the change in localisation 
of kinesin-1 (KHC/KLC) and formation of microtubule rich projections in kinesore treated cells. Images 
are representative of 3 independent experiments (Scale bar: 10 μm.). (B) Structured illumination images 
of kinesore treated cells as in (A)  (Scale bar: 5 μm.). (C) Representative immunofluorescence images of 
HAP1 cells (wild type or Kif5B knockout) treated with 50μM kinesore or vehicle control (0.1% DMSO) 
for 1 hour and stained for β-tubulin (green) or DNA (Hoechst, blue). Microtubule rich projections induced 
by kinesore are strongly suppressed by knockout of Kif5B (Scale bar: 10 μm.). Western blot shows whole 
cell extracts of WT or Kif5B knockout HAP1 cells probed with either a Kif5B specific polyclonal 
antibody or a pan-KHC monoclonal antibody (SUK4). 
 
Fig. 4. Kinesore induces the cargo-driven KLC conformational switch. 
(A) Schematic showing KLC2 FRET biosensor with an N-terminal eGFP and a C-terminal HaloTag that 
allows covalent coupling of TMR. On the left, the autoinhibitory interaction mediated by the light chain 
LFP motif is indicated (25). Right shows a representation of the change in conformation to the low FRET 
state induced by the co-expression of the W-acidic cargo CSTN1. (B) Multiphoton fluorescent lifetime 
images of FRET between GFP and TMR-HaloTag in cells transfected with HA-KHC and GFP-KLC2-
Halo biosensor and either co-transfected with CSTN(879-971)(cargo) or treated with 50μM kinesore for 1 
hour.  “GFP int.” are multiphoton GFP intensity images, whereas lifetime image refers to the fluorescence 
lifetime of GFP (τ) and is represented by a pseudocolor scale. In these images, a reduction in lifetime 
(change in color from blue to red) indicates FRET and therefore close association of GFP and TMR-
HaloTag. Graphs show data from 12 cells from 2 independent experiments expressed as FRET efficiency 
(Scale bar: 10 μm.). FRET is significantly reduced by either cargo co-transfection or 1 hr kinesore 
treatment. Error bars are ± SEM. ***P < 0.001 determined using one-way ANOVA and comparing to 
control.   
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SI Materials and Methods 
 
TR-FRET assay for a the primary screen of the 2908 compound Pfizer Chemogenomics 

small molecule library 

The screen was carried out using non-binding coated 384-well plates with flat bottomed 

wells (Corning, 781900). 250nl of 2,908 compounds at 4mM in DMSO, or DMSO only 

controls, were supplied prealiquoted in duplicate wells on the same plate. A premade 

master reaction mix comprising 20μl of 8 μM Tb-aiKLC2TPR, 10μM Alexa647-SKIPWD 

(95% unlabeled peptide, 5% labeled, amino terminally conjugated, sequence 

STNLEWDDSAI, Biosynthesis Inc, Lewisville) in 25mM HEPES (pH 7.5), 150mM 

NaCl, 5mM β-ME, was added to each well (giving a final DMSO concentration of 1.25% 

v/v and compound concentration of 49.4μM).  Plates were incubated at room temperature 

for 30 minutes and subsequently analysed using a Artemis TR-FRET K-101 plate reader 

(Kyoritsu Radio Co., Ltd.) at an excitation wavelength of 340nm, measuring FRET as a 

ratio of 665 nm (acceptor) to 620nm (donor) emission intensity, with a time delay of 100 

μsec following excitation. TR-FRET ratio was normalised to in plate DMSO controls. 

Compounds that elicited a decrease in TR-FRET ratio that fell outside of a fitting of a 

normal distribution to the data (50 compounds) were selected for further analysis. 

Compounds with inconsistent duplicates were disregarded.  

 
FP assay for secondary and tertiary screens  

Fluorescence polarisation (FP) experiments for the purpose of secondary screening 

were performed in duplicate in black non-binding 96-well plates with flat bottomed wells 

(Corning, 655900). 50 compounds identified from the initial TR-FRET assay were 

supplied prealiquoted on plates in a 1μl volume at a concentrations of 0.25mM – 4mM, 

and tested in a 2 fold dilution series, giving final reaction concentrations ranging from 3.5 

– 57μM. 70μl of a master mix solution containing 8μM non-labelled aiKLC2TPR 

produced as described above, 150nM TAMRA conjugated SKIPWD peptide (11). 25mM 

HEPES (pH 7.5), 150mM NaCl, 5mM β-ME  were added to each well (giving a final 

DMSO concentration of 1.4%) per reaction and mixed by gentle pipetting. mP values for 
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control reactions were at approximately 60% of those obtained with a saturating amount 

of protein (25). Plates were incubated at room temperature for 30 minutes and 

subsequently analysed using a POLARstar Omega plate reader (BMG Labtech), using the 

Omega software at an excitation wavelength of 540nm and an emission wavelength of 

590nm. For each independent 96-well plate reading the gain of the parallel and 

perpendicular channel was adjusted according to a 150 nM SKIP-TAMRA peptide only 

control (25 mM HEPES [pH 7.5], 150 mM NaCl, 5 mM β-ME, 1.5 % v/v DMSO) to 

target 100mP. Compounds identified as causing a concentration dependent decrease in FP 

(8 compounds, 0.28% of initial library) were selected for further analysis by GST-pull 

down analysis and optimised FP conditions (as above with 100μl total volume). This data 

was used to inform a small-scale targeted screen of compounds selected from the 

Hit2Lead library from Chembridge, which were analysed in the same way. Kinesore was 

identified as 3,5-dibromo-N'-{[2,5-dimethyl-1-(3-nitrophenyl)-1H-pyrrol-3-

yl]methylene}-4-hydroxybenzohydrazide, compound number 6233307. The 

concentration-dependent decrease in FP signal due to the addition of compound was 

fitted using a four-parameter dose-response curve without constraints to derive IC50 and 

apparent Ki was determined as previously described by Nikolovska-Coleska et al. (32). 

Data was analysed using GraphPad Prism version 7.00 (GraphPad Software, La Jolla 

California, USA). 

 

Kinesore treatment of cells 

Kinesore stocks were prepared by solubilisation of dry powder at a concentration of 

50mM in 100% DMSO and stored at -20°C prior to use. All treatments were carried out 

in Ringer’s buffer (155mM Nacl, 5mM KCl, 2mM CaCl2, 1mM MgCl2, 2mM 

NaH2PO4, 10mM glucose, 10mM HEPES (pH 7.4)). Final concentration of DMSO in 

50μM treatment was therefore 0.1%. Vehicle control experiments refer to cells treated 

with 0.1% DMSO in Ringers buffer. For lower concentration treatments, stocks were first 

diluted in DMSO to yield a 1000X solution that was subsequently added to Ringers 

buffer. 

 

Plasmids, antibodies and cells 
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All bacterial and mammalian expression plasmids used in this study have been 

described previously (11,25). FRET biosensor plasmids are described in (25). The SUK4 

monoclonal antibody was supplied by the Developmental Studies Hybridoma Bank. Anti-

HA monoclonal antibody (HA-7) used for western blot, anti-HA polyclonal antibody 

(H6908) used for IF, and anti-β-tubulin (B-5-1-2) were supplied by Sigma-Aldrich. 

HAP1 cells were supplied by Horizon Discovery.  
 

GST-Pull down from cell extracts 

GST-SKIP(1-310) was expressed and purified from E.coli as described previously 

(28). HEK 293T cells expressing transiently transfected HA-KLC2 were harvested in 

1mL lysis buffer (25 mM HEPES pH 7.5, 150 mM NaCl, 0.1% NP-40, 0.1% Triton-X 

100 containing a protease inhibitor cocktail (Roche)). Lysates were incubated on ice for 

10 minutes prior to centrifugation at 13000g for 10 min at 4°C. The resulting supernatant 

was pre-incubated with the corresponding concentration of kinesore for 30 minutes in 

0.1% DMSO (from 1000X stocks, in 100% DMSO) or without kinesore with 0.1% 

DMSO (lane 5), and subsequently incubated for 1 ½ hours with the indicated GST-fusion 

protein (0.5μmol of protein per reaction, unless otherwise indicated) bound to 20μl 

glutathione sepharose beads. Beads were washed four times and boiled in 60μl SDS 

loading buffer. 20μl samples were separated on SDS-PAGE gels, transferred onto PVDF 

membrane, blocked in 5% milk in TBS-T (20mM Tris, 0.25M NaCl, 0.1% Tween-20, pH 

7.5 with HCl), and probed with the indicated primary antibodies followed by detection 

with HRP conjugated secondary antibodies. Blots were developed with an ECL kit 

(Biorad) and chemiluminescent signal detected and quantified using a Bio-Rad XR 

system and ImageLab software.  

 

Immunofluoresence and live-cell imaging 

2 x 105 cells were plated onto fibronectin coated coverslips in 6 well plates and 

transfected, where indicated the plasmid DNA 16 hours prior to analysis. Cells treated 

with kinesore as indicated, and fixed for 5 minutes with −20°C methanol before blocking 

and probing with primary and secondary antibodies (Alexa 488, 568 and 633 conjugated 

anti mouse or anti rabbit secondary antibodies, Thermoscientific). Confocal images were 
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collected using a Nikon A1 system with a 40x or 60x objective running NIS Elements 

and are presented as maximum intensity projections where indicated. Super resolution 

imaging was performed using an N SIM Super resolution system with a 100x objective 

lens and images presented are maximum intensity projections. For live‐ cell imaging, 1x 

105 the indicated cells were plated and transfected in fibronectin coated 35 mm Mattek 

dishes, and were imaged at a either using an inverted Nikon A1 confocal system with a 

100x objective lens (GFP-tubulin) or an inverted CSU‐ X1 Spinning Disk Confocal 

system (EB3-RFP) with an Andor Ixon3 EM‐ CCD camera and a 60x objective lens both 

equipped with temperature and CO2 control and running NIS Elements. Movies were 

processed using NIS elements and Image J. Figures were assembled using Image J in 

conjunction with Adobe Photoshop and Illustrator packages (Adobe, CA, USA).  

Spectrum projection images in figure 2E were generated using the Time-lapse colour 

coder Image J plugin. 

 

FRET/FLIM Sample Preparation and Data Acquisition. 

FRET biosensor studies were carried out as previously described, using a updated 

microscope set up (25). Briefly, 1 × 104 HeLa cells were seeded onto 13-mm fibronectin 

coated coverslips in 24-well plates. Cells were transfected with plasmids expressing GFP-

KLC2-HaloTag and HA-KHC, with or without myc-CSTN1 (869–971). After 6 h 

posttransfection, medium was replaced with fresh medium containing HaloTag 

TMRDirect ligand (Promega) at a 1:1,000 dilution according to manufacturer’s 

instructions. After an overnight incubation, cells were fixed in 4% paraformaldehyde and 

permeabilized in 0.2% (wt/vol) Triton X-100 in PBS. After quenching with 1 mg/mL 

sodium borohydride in PBS for 10 min at room temperature (RT), cells were washed in 

PBS and mounted in Mowiol containing 2.5% (wt/vol) Dabco (Sigma-Aldrich). Time 

domain FLIM was performed with a multiphoton microscope system (Ti Eclipse 

microscope; Nikon). Fluorescence lifetime imaging capability was provided by time-

correlated single-photon counting electronics (SPC-830) on DCC-100 control (both 

Becker & Hickl). A 40x objective was used throughout (Plan Fluor N.A. 1.3; DIC H, WD 

0.2; Nikon), and data were collected at 515 ± 20 nm through a bandpass filter. 

Acquisition times of the order of 250 s at a low 900-nm excitation laser power (MaiTai, 
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DeepSee; Spectra-Physics) were used to achieve sufficient photon statistics for fitting, 

while avoiding either pulse pile up or significant photobleaching. Corresponding 

widefield fluorescent images were acquired for donor (GFP) and acceptor (RFP) channels 

(DS-Qi1Mc camera; Nikon). Lifetime raw data were analysed with TRI2 software (Paul 

Barber) and histogram data are plotted as mean FRET efficiency from specified numbers 

of cells per sample over two experiments. Lifetime images of example cells are presented 

using a pseudocolor scale, whereby blue depicts normal GFP lifetime (no FRET) and red 

depicts lower GFP lifetime (areas of high FRET). 

 

Microtubule polymerisation assay 

In vitro microtubule polymerisation assay was carried out using the Tubulin 

Polymerization Assay Kit (Cytoskeleton, Inc.) according to the manufacturer’s protocol 

using a POLARstar Omega (BMG Labtech) plate reader, with kinesore at 10μM or a 

0.1% DMSO control. Data are presented as background subtracted from t=0 timepoint 

and are mean of 2 independent experiments. 

 

 

Cellular microtubule sedimentation assay 

This assay was adapted from the Cytoskeleton Inc Microtubule/Tubulin In Vivo 

Assay Biochem Kit and was previously described in (28). Briefly, 2×106 HeLa-Kyoto 

cells expressing GFP-Kif5B were plated onto a 10 cm dish. Cells were lysed at 24 h post 

plating, and 1 hour post kinesore treatment, in 3 ml of MT stabilization buffer [100mM 

PIPES pH 6.9, 5 mM MgCl2, 1 mM EGTA, 30% (v/v) glycerol, 0.1% (v/v) Nonidet P40, 

0.1% (v/v) Triton X-100, 0.1% (v/v) Tween-20, 0.1% (v/v) β-mercaptoethanol, 100 μM 

GTP] supplemented with protease inhibitors. 1ml of lysate was subjected to 

ultracentrifugation to pellet intact MTs (100,000 g for 30 min at 37°C). Supernatant 

containing the soluble tubulin fraction was removed into a microfuge tube with 5× SDS 

sample buffer; 50μM 1× sample buffer was added to the pellet fraction. 20 μl of each 

fraction were separated by SDS-PAGE electrophoresis, immunoblotted and analysed 

using Biorad Imagelab software.  
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Supplementary Figure Legends 

 
Fig. S1.  

Time course of kinesore induced microtubule reorganization in fixed HeLa cells.  Time of 

treatment of kinesore at 50μM (in minutes) is indicated in the bottom right of each panel. Nuclei 

are labeled with Hoescht (blue), microtubules (green) are immunostained. Images are 

representative of 3 independent experiments (Scale bars: 10 μm.). 

 
Fig. S2  
Concentration dependence and effect of washout on kinesore phenotype. (A) Concentration 

dependence of kinesore phenotype. HeLa cells were treated for one hour with the indicated 

concentration of compound, fixed and immunostained for tubulin (green) and LAMP1 (red). 

Nuclei are stained with Hoechst (blue) (B) Two hour washout experiment for cells treated for one 

hour with the indicated concentration of kinesore. The radial microtubule array is reestablished. 

(Scale bars: 10 μm.). 

 
Fig. S3  
Nocodazole disrupts kinesore induced loops and bundles. HeLa cells were treated with (left) 

DMSO control for 60 minutes, followed by 10 μM nocodazole, (middle) 50μM kinesore for 90 

mins, or (right) 50μM kinesore for 60 minutes followed by 10 μM nocodazole + 50μM kinesore 

for 30 minutes.  
 

Fig. S4 
Effect of kinesore on the microtubule network in a panel of normal and cancer cell lines. 

The indicated cells were treated with vehicle or kinesore for 1 hour, methanol fixed and 

immunostained for tubulin (green). Nuclei are labeled with Hoescht (blue) (Scale bars: 10 μm.) 
 
Fig. S5  
Effect of kinesore on the in vitro polymerization and depolymerization kinetics of tubulin. 
(A) In vitro tubulin polymerization assays performed with 10μM kinesore or vehicle control 

(0.1% DMSO) and extent of tubulin assembly was monitored by absorbance at 340nm. Data are 

derived from 2 independent experiments and error bars show ±SEM. A control curve from assays 

performed in the presence of 10μM taxol is shown for comparison. (B) Results from a separate 
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experiment where microtubules were polymerized in the presence of DMSO control or kinesore 

until maximum absorbance was reached. Plates were then incubated at 4°C for 2 minute intervals 

and absorbance measured. This was repeated until absorbance decreased to a plateau.  

Fig. S6 

Effect of kinesore on the localization of kinesin-1 subunits, fused to GFP, stably expressed 
under control of their endogenous promoter. The indicated cells were treated with vehicle or 

kinesore for 1 hour, methanol fixed and immunostained for tubulin (green). GFP (C-LAP/N-

FLAP) kinesin-1 subunits are shown in magenta. (Scale bars: 10 μm.). 

Fig. S7 

Effect of kinesore on association of GFP-KIf5B (N-FLAP) association with microtubules. 
Cells were lysed in a microtubule stabilizing buffer following 1 hour treatment with kinesore at 

50μM and lysates were subjected to centrifugation to pellet polymerised microtubules and 

associated proteins. Pellets and supernatant fractions were analysed by western blot for GFP 

(Kif5B/KHC) and tubulin. Graph shows quantification of protein in pellet fractions from 3 

independent experiments, following normalisation to control. Error bars show ±SEM. * indicates 

p<0.05 obtained using 2-tailed t-test. ns = not significant.  

 

Movie S1 
Confocal image sequence at 5 second intervals for 9 minutes of HeLa cells stably expressing 

GFP-tubulin and treated with 50μM kinesore for 1 hour. Image sequence begins after 1 hour of 

treatment.  

 

Movie S2 and S3 
Spinning disk confocal image sequences at 5 second intervals for 2 minutes of HeLa cells stably 

expressing EB3-RFP in control conditions (S1) or treated with 50μM kinesore for 1 hour (S2). 
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