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ABSTRACT 

Many chemical carcinogens require metabolic activation via xenobiotic-metabolising 

enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilising 

reconstituted systems, microsomal fractions and cultured cells, implicate cytochrome P450 enzymes 

as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. 

With the development of targeted gene disruption methodologies, knockout mouse models have been 

generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of 

carcinogens. This review covers studies in which five procarcinogens representing different chemical 

classes, benzo[a]pyrene (BaP), 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP), 2-amino-9H-pyrido[2,3-b]indole (AaC) and 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanone (NNK), have been administered to different P450 knockout mouse models. Paradoxically, 

while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have 

been widely used to determine the pathways of activation of carcinogens, there is evidence from the 

in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in 

carcinogen detoxification, rather than activation. 

 

 

summary: Cytochrome P450 enzyme systems have been widely used in vitro to determine the 

pathways of activation of procarcinogens, but paradoxically these same enzymes can play a more 

predominant role in carcinogen detoxification in vivo 
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Introduction 

Mammalian cytochrome P450 (CYP) enzymes are a superfamily of haemoproteins. They 

have many roles including cholesterol metabolism and steroidogenesis; however one particularly 

important role is in the metabolism of xenobiotics, with P450 enzymes accounting for 70-80% of 

oxidation metabolising enzymes (1). They make up part of the mixed-function oxidase system along 

with other enzymes including NADPH:cytochrome P450 reductase (POR), NADH:cytochrome b5 

reductase (Cyb5R) and the haemoprotein cytochrome b5 (Cyb5) (2,3). Although the majority of P450 

reactions involve the introduction of polar groups to parent compounds to enable detoxification and 

excretion from the body, they have also been implicated in the bioactivation of carcinogens. Many 

carcinogens are considered procarcinogens that require metabolic activation to exert their genotoxic 

effects (4). Oxidative activation of carcinogens by P450 enzymes leads to the formation of 

electrophilic reactive intermediates that can bind to DNA, giving rise to DNA adducts that potentially 

cause mutations (5). In-vitro systems have played a central role in investigating carcinogen activation 

and have included microsomal fractions, cell culture and reconstituted systems (6-8). More recently 

the development of targeted gene disruption methodologies (9,10) has given rise to mice that do not 

express a particular CYP isoenzyme (11-13). Studies with these mice can provide mechanistic 

insights into the contribution of P450 enzymes to the activation and detoxification in vivo of 

xenobiotics in general and of carcinogens in particular (14). However, findings from such in-vivo 

studies of carcinogen activation are at odds with what might be expected from the evidence obtained 

from in-vitro studies. In what follows, we describe these paradoxical findings for five well-known and 

widely studied carcinogens, representing different chemical classes. 

Benzo[a]pyrene (BaP) 

On the basis of numerous in vitro studies, BaP is considered a procarcinogen activated via 

P450-dependent monooxygenases, with CYP1A1 and CYP1B1 playing major roles in the 

bioactivation pathway (15-17). The two enzymes catalyse the initial oxidation of BaP to form BaP-

7,8-epoxide, which is then converted to BaP-7,8-dihydrodiol by epoxide hydrolase. BaP-7,8-

dihydrodiol then undergoes further bioactivation by CYP1A1 and CYP1B1 to form the ultimately 

reactive species, BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) (18,19) (Figure 1). BPDE is able to react 

with DNA, preferentially at guanine residues, to form primarily the pre-mutagenic adduct 10-

(deoxyguanosin-N
2
-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (dG-N

2
-BPDE) (20-23). The 

necessity for P450 activity for BaP activation in vitro has been confirmed in many studies where P450 

activity in cells correlates with cytotoxicity, where inhibition of P450s reduces toxicity, and in test 

systems where metabolism, macromolecular binding and mutagenicity are all dependent on the 

presence of P450 activity, e.g. in the Ames Salmonella mutation assay (24-27).   

Downloaded from https://academic.oup.com/carcin/advance-article-abstract/doi/10.1093/carcin/bgy058/4991961
by King's College London user
on 10 May 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

 

 

Indications of the complexity of BaP metabolism in in-vivo studies have emerged with the use 

of P450 knockout models. For example, using the Cre-lox system Cyp1a1(‒/‒) knockout mice on a 

C57BL/6J and 129/J background were developed through the deletion of the Cyp1a1 gene (28). These 

mice are described as being viable and show no obvious phenotype compared to wild-type littermates. 

In an initial study Cyp1a1(+/‒) and Cyp1a1(‒/‒) mice were treated with a single i.p. dose of 500 

mg/kg body weight (bw) BaP in order to explore the role of CYP1A1 in BaP-mediated toxicity (29). 

It was hypothesised that Cyp1a1(‒/‒) mice would have greater protection than their Cyp1a1(+/‒) 

heterozygous littermates against liver damage and hepatic BaP-DNA adduct formation. However, the 

formation of hepatic BaP-DNA adducts in Cyp1a1(‒/‒) mice was 4-fold higher compared to the 

Cyp1a1(+/‒) mice. In order to assess whether other inducible enzymes were able to contribute to BaP 

activation, mice were pretreated with tetrachlorodibenzo-p-dioxin (TCDD). These TCDD-pretreated 

mice were shown to have decreased levels of hepatic BaP-DNA adducts and enhanced clearance of 

BaP from the blood, indicating that the accumulation of BaP-DNA adducts in Cyp1a1(‒/‒) mice could 

be due to the lack of Cyp1a1-mediated detoxification (29). One suggested explanation for the results 

was the potential involvement of cyclooxygenase-2 (PTGS2), a BaP inducible enzyme, that has been 

implicated in the activation of BaP to reactive intermediates (30,31). Another suggestion was that 

CYP1A1 is actually more important for the detoxification of BaP, metabolising BaP to BaP phenols, 

quinones, and oxides that can be conjugated enzymatically to form readily excretable products (32). 

Cyp1a1(+/‒) mice in this study were shown to be protected against BaP-DNA adduct formation by 

the induction of CYP1A1 and the more rapid clearance of BaP (29). In order to investigate this 

paradoxical result, further studies were carried out, this time using Cyp1a1(+/+) wild-type mice as a 

comparison instead of the heterozygous Cyp1a1(+/‒) mouse (33). DNA adduct formation correlated 

with the results of the previous study as the BaP-treated Cyp1a1(‒/‒) mice formed significantly higher 

levels of BaP-DNA adducts in the livers, spleen and marrow compared to wild-type mice when 

treated with three oral doses of 12.5 or 125 mg/kg bw for 18 days. Pharmacokinetic studies showed 

that the clearance rate of BaP was 4 times slower in Cyp1a1(‒/‒) mice compared to wild-type mice. 

Pre-treatment with TCDD before BaP administration decreased the half-life of BaP by half in wild-

type mice whereas the half-life in the TCDD pre-treated Cyp1a1(‒/‒) mice was unaffected, 

demonstrating that the clearance of BaP appears to be dependent on Cyp1a1. A comparison of 

survival rates between Cyp1a1(‒/‒) and  wild-type mice gave further evidence of the protective role 

of Cyp1a1; an oral dose of 125 mg/kg bw BaP was lethal to Cyp1a1(‒/‒)  mice by 30 days (33).  

The mechanism for this enhanced sensitivity was further investigated with Cyp1a1(‒/‒), 

Cyp1a2(‒/‒) and Cyp1b1(‒/‒) single knockout mice and with Cyp1a1/1b1(‒/‒) and Cyp1a2/1b1(‒/‒) 

double knockout mice compared to Cyp1a(+/+) mice (34). Oral treatment with 12.5 mg/kg bw BaP 

resulted in significantly higher BaP-DNA adduct formation in the liver, spleen, and bone marrow of 
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Cyp1a1(‒/‒) mice and 125 mg/kg bw BaP resulted in significantly higher BaP-DNA adduct formation 

in the small intestine, spleen, and bone marrow. Cyp1a1/1b1(‒/‒) mice had fewer adducts in the small 

intestine for both doses of BaP compared to wild-type and although BaP-DNA adduct formation was 

higher in the liver, spleen and bone marrow at the lower dose, administration of the higher dose 

resulted in fewer DNA adducts in these organs compared to wild-type. The pharmacokinetic studies 

were repeated as before and, regardless of TCDD pretreatment, Cyp1a1 was the primary determinant 

of BaP clearance. Cyp1b1, however, appeared to be responsible for metabolic activation of BaP in the 

spleen and bone marrow, resulting in immune damage in the absence of Cyp1a1. The presence of 

significantly higher levels of BaP-DNA adduct formation in the Cyp1a1/1b1(‒/‒) mice compared to 

wild-type mice could mean either that other P450 isoenzymes are involved in BaP activation or that 

there is a P450-independent activation mechanism for BaP (34,35). 

Because the cytochrome P450 family is large, with many of its members having overlapping 

substrate specificity, determining the in-vivo role of individual P450 enzymes is difficult (36). In 

order for P450 enzymes to catalyse reactions they must receive electrons from electron donors, the 

predominant one being POR (4). Systemic knockout of POR in mice utilising the Cre/loxP system 

results in embryonic lethality due to the requirement for P450 expression during development (37). 

However, Hepatic Cytochrome P450 Reductase Null (HRN) mice, in which POR is deleted 

specifically in hepatocytes, are viable and exhibit no overt phenotypical differences from wild-type 

mice other than having steatotic livers as a consequence of non-functioning P450-housekeeping 

activity involved in cholesterol metabolism (12). In a study investigating BaP activation, HRN mice 

were compared with wild-type mice homologous for the loxP sites at the Por locus (Por
lox/lox

) (20). 

Microsomal fractions isolated from the livers of BaP-treated and untreated HRN and wild-type mice 

were used to assess BaP activation in in-vitro incubations with calf thymus DNA and the enzymatic 

cofactor NADPH. DNA adduct formation was 4-fold higher in incubations with hepatic microsomal 

fractions from BaP-pretreated wild-type mice and 7-fold higher in the microsomal fractions from 

untreated wild-type mice relative to those from HRN mice. Microsomal incubations were also carried 

out in the presence of inhibitors of POR (α-lipoic acid), Cyp1a1/1a2 (α-naphthoflavone) and Cyp1a1 

(ellipticine) and showed that DNA binding was reduced overall by 70-90%, suggesting that activation 

of BaP in vitro is mostly attributable to Cyp1a enzyme activity in both mouse strains. However, this 

did not correlate with the in-vivo findings, where exposure to a single i.p. dose of 125 mg/kg bw BaP 

resulted in ~13-fold higher level of BaP-DNA adducts in the livers of HRN mice relative to wild-type 

mice, as well as significantly higher levels of DNA adducts in extra-hepatic tissues such as lung, 

forestomach, glandular stomach, kidney, spleen and colon. These findings mirror those of the Cyp-

knockout mice studies mentioned above (29,33,34) except that here no statistically significant 

difference in the clearance of BaP from blood was found between HRN and wild-type mice (20).  
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During these studies it was observed that HRN mice expressed significantly higher levels of 

the protein cytochrome b5 (Cyb5), another electron donor to P450 enzymes. The Hepatic Cytochrome 

b5/P450 Reductase Null (HBRN) mouse, which lacks both hepatic Cyb5 and POR, was used 

alongside the HRN mouse to assess whether the induction of Cyb5 was responsible for the increased 

levels of adducts in the HRN mice (38). Microsomal fractions isolated from wild-type, HRN and 

HBRN mice showed that the activation of BaP in vitro was reduced as electron donors were lost, 

suggesting a role for Cyb5 in the activation of BaP in vitro. In-vivo data however showed that levels 

of hepatic BaP-DNA adduct formation were again higher (~7-fold) in HRN mice, and whilst levels in 

HBRN mice were significantly lower than in HRN mice, they were not significantly different to those 

in wild-type mice . 

In order to investigate the role of extra-hepatic organs and alternative routes of 

administration, another study was carried out to study the effects of the first-pass elimination, utilising 

both oral and i.p. administration of BaP (39). BaP-DNA adduct formation in HRN mice was dose-

dependent by both routes. Intraperitoneal administration at 12.5 and 125 mg/kg bw resulted in a 8-10-

fold increase in DNA adduct formation in the livers of HRN mice relative to wild type, correlating 

with the previous study (20). DNA adduct formation after oral treatment was lower than by i.p. 

treatment at both doses, but hepatic BaP-DNA adduct formation was still higher (~2-fold) in HRN 

mice than in wild-type. The fold increase in both cases was lower overall than with i.p. 

administration, indicating that after oral administration the first-pass metabolism of BaP occurs in the 

gastrointestinal tract. As POR is deleted only in the hepatocytes of HRN mice, immunohistochemical 

staining was used to determine whether non-hepatocytes were contributing to the elevated levels of 

DNA adducts (i.e. dG-N
2
-BPDE) in liver; no differences in BaP-DNA adduct formation were 

observed between POR-deficient hepatocytes and POR-proficient non-hepatocytes, showing that 

hepatocytes possessed ample capacity for the formation of BaP-derived DNA adducts (39).  

The Reductase Conditional Null (RCN) mouse is a variant on the HRN mouse line 

(Por
lox/lox

/Cre
CYP1A1

) whereby POR can be deleted conditionally in the liver and gastrointestinal tract 

using the rat CYP1A1 promoter to drive Cre recombinase expression (13). Administration of the 

CYP1A1 inducers TCDD or β-naphthoflavone results in deletion of both hepatic and gastrointestinal 

POR, whereas administration of 3-methylcholanthrene (3MC) results in the loss only of hepatic POR 

expression (13,40). RCN mice were treated with 40 mg/kg bw 3MC i.p. 2 weeks prior to BaP 

treatment with 125 mg/kg bw, with control mice receiving no 3MC (39). The conditional nature of the 

RCN mouse means it is able to act as its own control. There was, again, higher BaP-DNA adduct 

formation (~6-fold) in the livers of RCN+3MC mice than in controls (RCN-3MC mice). Analysis also 

showed significantly higher levels of BaP-DNA adduct formation (~2-fold) in the lungs, glandular 

stomach, kidney, spleen and colon of RCN+3MC mice than of RCN-3MC mice. Investigations were 
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then carried out in vitro to elucidate the participation of the electron donors in the activation pathway. 

Although POR is the predominant electron donor to P450 enzymes, Cyb5 can also act as an electron 

donor to P450 enzymes in vivo in conjunction with the enzyme Cyb5R (41). It was observed that 

Cyb5 protein expression was marginally, but detectably, higher (1.3-fold) in the hepatic microsomal 

fractions of HRN mice compared to wild type after BaP treatment once daily for 5 days (39). Thus, 

the increased BaP-DNA adduct formation in the livers of HRN mice could arise from Cyb5 

compensating for the loss of POR and maintaining a certain level of hepatic P450 activity. In-vitro 

studies using reconstituted systems containing CYP1A1 and different ratios of POR and Cyb5 have 

shown that Cyb5 can stimulate CYP1A1-mediated BaP-DNA adduct formation, indicating that Cyb5 

can participate in the electron transfer from NADPH to CYP1A1 required for enzyme activity (42), 

and that the NADH/Cyb5R/Cyb5 system can act as sole electron donor to catalyse CYP1A1-mediated 

BaP bioactivation (43). All these findings indicate that even low POR expression in the livers of HRN 

mice with the induction of Cyp1a1 and Cyb5 by BaP, might be sufficient for efficient BaP 

bioactivation in vivo (42). They also suggest that NADH-dependent Cyb5R can replace NADPH-

dependent POR in the CYP1A1-catalysed activation of BaP (43), which correlates with the 

observation that hepatic microsomal incubations carried out in the presence of NADH instead of 

NADPH still resulted in BaP-DNA adduct formation (20). Whether or not this is sufficient to explain 

the formation of higher levels of BaP-DNA adducts in HRN and RCN mice than in wild-type mice is 

not clear. One other study utilised a variant of the HRN mouse, the HRN-gpt mouse (44-46), a cross 

between HRN and gpt delta mice that enabled the use of a gene mutation assay in the investigation of 

hepatic P450-catalysed bioactivation in order to assess the mutagenicity of BaP in the absence of 

hepatic P450 activity (47). HRN-gpt and wild-type mice were treated i.p. with 50 mg/kg bw BaP once 

a day for four consecutive days and sacrificed 2 weeks after the last treatment. The gpt gene mutation 

assay showed that BaP induced a higher mutation frequency in both the liver and extra-hepatic tissues 

of HRN-gpt mice compared to wild-type mice. In order to investigate these results further S9 fractions 

were isolated and used to screen activity of other potential enzymes. Although the results suggested 

that P450s were the predominant activating enzymes present, inhibitors of aldo-keto reductase, 

COX1/2 and 5-LOX all significantly reduced the level of BPDE-DNA adduct formation using HRN-

gpt S9 in vitro, further supporting evidence for P450-independent BaP activation (47). Although the 

use of in vitro systems provides mechanistic insights, full extrapolation to microsomes or even in-vivo 

situations may not be straightforward.  

The aryl hydrocarbon receptor (AHR) is important in the metabolic activation of BaP as the 

binding of BaP to the receptor results in an induction of metabolising enzymes, including CYP1A1 

and 1B1. This led to an investigation in Ahr-knockout mice, developed using homologous 

recombination in embryonic stem cells (48) with the hypothesis that Ahr(‒/‒) mice would be less 
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susceptible to the genotoxic effects of BaP (49). Exposure to 100 µmol/kg bw BaP i.p. induced 

Cyp1a1/1a2 in hepatic microsomes isolated from wild-type mice with an increase in both protein 

expression and enzyme activity but not in those isolated from Ahr(‒/‒) mice, where enzyme activity 

was markedly lower due to Ahr-dependent mechanisms of Cyp1a1/1a2 induction. Despite the absence 

of the Ahr, a number of hepatic BaP-derived DNA adducts were formed in the Ahr(‒/‒) mice. There 

are other P450 enzymes, e.g. CYP2C, and non-P450 enzymes, e.g. PTGS-2, which are regulated by 

Ahr-independent mechanisms that could be contributing to the activation of BaP (49). In order to 

investigate these findings further an Ahr(+/‒) mouse model was employed alongside the Ahr(+/+) and 

Ahr(‒/‒) mice used previously (50). After exposure to 100 mg/kg bw BaP by oral gavage, DNA 

adducts, protein adducts, metabolites, conjugates and unmetabolised BaP were measured and all were 

found to be at higher levels in the Ahr(‒/‒) mice than in both the Ahr(+/‒) and Ahr(+/+) mice. The 

levels of unmetabolised BaP were highest in the distal organs like the lungs and spleen and lowest in 

the liver. The lower metabolic clearance of BaP in the Ahr(‒/‒) mice could be attributed to reduced 

metabolism in the liver as Ahr-dependent Cyp1a1/1a2 induction is absent and therefore pre-systemic 

elimination through the gut is reduced. BaP metabolism could be due to the constitutive expression of 

Cyp1b1 or to an Ahr-independent mechanism (50). To address this issue further, a time-course 

experiment was carried out with Ahr(+/+) and Ahr(‒/‒) mice (51). The mice were exposed to a single 

oral dose of 100 mg/kg bw BaP, after which Ahr(‒/‒) mice exhibited higher levels of pulmonary BaP-

DNA adducts and protein adducts in the liver, lung, spleen, heart and kidney over time; however, the 

rate of biotransformation was again slower with higher levels of unmetabolised BaP in all major 

tissues correlating with the previous time-course experiment (50). Collectively, these studies 

demonstrate that the lack of functional Ahr results in slower clearance of BaP (50,51), which 

correlates with the findings with Cyp1a1(‒/‒) mice (33), but not those with HRN mice (20).  

Thus, the increases in hepatic BaP-DNA adduct formation in Cyp1a1(‒/‒),  HRN, RCN and 

Ahr(‒/‒) mice (20,29,33,34,39,49-51) all provide an anomaly: in-vitro use of hepatic enzyme systems 

show that BaP is metabolically activated by cytochrome P450s and yet in vivo hepatic P450 enzymes 

appear to play a more pivotal role in BaP detoxification rather than its activation, with the potential 

for a P450/Ahr-independent mechanism for the activation of BaP.  

4-Aminobiphenyl (4-ABP) 

4-ABP is an environmental carcinogen that is metabolised primarily in the liver to N-

hydroxy-4-ABP, the precursor to 4-ABP-derived DNA adduct formation (52) (Figure 2). The primary 

step in the activation pathway is N-hydroxylation catalysed by CYP1A2, as has been demonstrated in 

vitro by numerous methods including microsomes and purified P450 enzymes from human and rat 

livers (52-57). Metabolic activation of N-hydroxy-4-ABP is by esterification mediated by conjugation 
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enzymes such sulfotransferases (SULTs) or N-acetyltransferases (NATs) (53,58). An in-vitro study 

utilising Hepa1c1c7 cells transfected with mouse Cyp1a2 and Cyp2e1 expression plasmids 

demonstrated the ability of recombinant mouse Cyp1a2 and Cyp2e1 to N-hydroxylate 4-ABP in living 

cells to produce increased levels of N-hydroxy-4-ABP compared to wild-type cells (59). Enzyme 

kinetic studies carried out with liver microsomes from Cyp1a2(‒/‒) and Cyp2e1(‒/‒) mice showed a 

significant contribution from Cyp2e1 toward 4-ABP N-hydroxylation in male mouse microsomes and 

a contribution from both Cyp2e1 and Cyp1a2 in female mouse microsomes (59).  

Investigation of 4-ABP metabolism in vivo in both Cyp1a2(‒/‒) and Ahr(‒/‒) mice showed 

that treatment of mice with 600 or 1200 nmol in 2 doses at 8 and 15 days of age 4-ABP induced 

hepatocellular adenoma and liver foci, however there were no differences found in incidence between 

Cyp1a2(‒/‒), Ahr(‒/‒) and wild-type mice, irrespective of the dose (60). Hepatic microsomal fractions 

isolated from Cyp1a2(‒/‒) and Ahr(‒/‒) mice exhibited half the microsomal arylamine N-

hydroxylation activity of that seen with wild-type hepatic microsomal fractions during incubations 

with 4-ABP, indicating that only half of the enzymatic activity attributed to 4-ABP activation was due 

to Cyp1a2 (60).  

Another study using Cyp1a2(‒/‒) mice involved topical applications of 100 µmol/kg bw 4-

ABP, with or without TCDD pretreatment, and measurement of methaemoglobin levels as a 

biomarker of 4-ABP exposure (61). It was expected that 4-ABP-induced methaemoglobin formation 

would be higher in mice pretreated with TCDD due to the induction of Cyp1a2. It was found, 

however, that the presence of Cyp1a2 actually decreased methaemoglobin formation and in fact 

TCDD pretreatment lowered it further (61).  

A third in-vivo study using Cyp1a2(‒/‒) mice was carried out with topical applications of 10 

mg/kg bw 4-ABP with or without TCDD pretreatment, this time focusing on DNA adduct formation 

(62). The same expectation was held, that mice possessing Cyp1a2, particularly those having been 

pretreated with TCDD would form higher levels of 4-ABP-DNA adducts than mice lacking Cyp1a2. 

However, the opposite effect was again observed. Cyp1a2(‒/‒) mice formed similar or higher levels 

4-APB-DNA adducts than wild-type mice in both liver and bladder. When mice were pre-treated with 

TCDD, hepatic DNA adduct levels were either lower or similar to the corresponding group of mice 

that did not receive TCDD, adding further weight to the argument that Cyp1a2 is more important for 

clearance of 4-ABP than for its activation (62). 

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)  

PhIP is one of the most abundantly formed carcinogenic heterocyclic aromatic amines in 

cooked meat and it is also present in tobacco smoke (63). Evidence primarily from in vitro studies has 
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demonstrated that P450 enzymes are the most important enzymes involved in the initial oxidation of 

PhIP to form the intermediate N-OH-PhIP with CYP1A2 as the predominant P450 enzyme in the 

activation of PhIP followed by CYP1A1 and 1B1 (64,65) (Figure 3). Initial studies of PhIP activation 

in Cyp1a2(‒/‒) mice showed that three hours after exposure to 150 mg/kg bw PhIP administered 

orally, DNA adduct formation was significantly lower in Cyp1a2(‒/‒) mice compared to wild-type 

mice in the mammary gland and colon, and was not detectable in the liver and kidney of Cyp1a2(‒/‒) 

mice. These findings indicated the importance of the role of CYP1A2 in the activation of PhIP in vivo 

(66).  

In a later study, ~11 or ~22 mg/kg bw PhIP was administered i.p. to Cyp1a2(‒/‒) mice on 8 

and 15 days of age, respectively, and 19-21 months later the hepatic microsomal fractions were 

isolated (67). The carcinogenic metabolite, N-OH-PhIP, was formed by both Cyp1a2(‒/‒) and wild-

type hepatic microsomal fractions although N-hydroxylation of PhIP was ~8-fold higher in 

microsomal fractions from wild-type mice than in those from Cyp1a2(‒/‒) mice; this attributes the 

metabolic activation of PhIP in vitro to CYP1A2. However, Cyp1a2(‒/‒) mice administered PhIP had 

a higher incidence of tumours than wild-type mice (67). The long time interval between carcinogen 

administration and measurement of microsomal activity should be noted, as this complicates the 

interpretation of these data.  

P450-dependent activation of PhIP was also investigated in the RCN mouse model (40). 

Hepatic microsomal fractions were isolated from mice exposed to 50 mg/kg bw PhIP orally daily for 

5 days and microsomal incubations with PhIP in vitro resulted in 8-fold greater DNA adduct 

formation with hepatic microsomal fractions from RCN mice without 3MC pretreatment (i.e. mice 

with active POR) compared to RCN mice with 3MC pretreatment (i.e. mice with inactive POR), 

implicating a P450-dependent activation mechanism. However these in-vitro results do not correlate 

with the in-vivo findings. DNA adduct formation in extrahepatic tissues was lower in POR-inactive 

mice than in POR-active mice and hepatic DNA adduct formation was not different between both 

mouse lines. These findings suggest that although Cyp1a2 plays a role in the bioactivation of PhIP in 

vitro, another P450-independent mechanism may also contribute to its activation in vivo (40). The in 

vivo findings also somewhat contradict the earlier study carried out with Cyp1a2(‒/‒) mice that found 

fewer PhIP-DNA adducts in the liver or kidney of Cyp1a2(‒/‒) mice whereas the levels of adducts in 

the colon and mammary gland showed little difference from levels in wild-type mice (66). This does 

offer evidence to the importance of P450-dependent activation mechanisms, however the exposure 

time is much shorter than in the later studies (40,67).  
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AaC is another carcinogenic heterocyclic amine present in cooked meat and tobacco smoke. 

The first step of AaC metabolism has been demonstrated in rodent and human liver microsomes to be 

the N-oxidation by P450s to form 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AaC) that then 

undergoes conjugation by SULTs or NATs  (68-70) (Figure 4). To investigate the roles of hepatic and 

intestinal P450s in the metabolic activation of AaC, two mouse models were employed (71). The first, 

the liver-specific P450 reductase (Cpr)-null (LCN) mouse model (72), has POR deleted in the liver 

whereas the second mouse model, the intestinal epithelium-specific Cpr-null (IECN) mouse, has POR 

deleted specifically in the intestinal epithelium (73). These two mouse models were compared with 

wild-type mice to elucidate the roles of hepatic and extrahepatic P450s in AaC metabolism. IECN 

mice exposed to 13.6 mg/kg bw AaC via gavage did not show any significant differences to wild-type 

mice in the pharmacokinetic parameters for AaC or its metabolites, demonstrating a lack of 

contribution by intestinal P450s to first-pass clearance of  AaC. The formation of DNA adducts in 

IECN mice was only significantly different from wild-type mice in the bladder where formation was 

1.5-fold higher. On the other hand hepatic microsomal fractions from LCN mice were unable to 

oxidise AaC in vitro, whereas DNA adduct formation in vivo was found to be not lower in liver than 

in wild-type mice and significantly higher in lung (4-fold), bladder (1.2-fold) and colon (4-fold) (71). 

These findings suggest that P450 enzymes do not contribute significantly to the activation of orally 

administered AaC but they may play a greater role in its detoxification (71).  

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)  

NNK is one of the most potent carcinogens present in tobacco smoke. Carcinogenesis occurs 

with P450-mediated α-hydroxylation producing reactive metabolites that induce the formation of 

pyridyloxobutyl- (POB-) and methyl-DNA adducts such as O
6
-methylguanine (O

6
-mG) (74-76) 

(Figure 5). This has been demonstrated in vivo with the use of P450 inhibitors (77,78) and in vitro 

with lung microsomes (74). Although activation of NNK is carried out in the lungs, hepatic 

microsomes have been shown to be at least as active as lung microsomes in activating NNK in vitro 

(79). To further elucidate the role of hepatic and pulmonary P450s two mouse models were used, a 

lung-Cpr-null mouse (i.e. POR null) generated by cross-breeding CCSP-rtTA/tetO-Cre mice and 

Cpr
lox/lox 

mice that allows doxycycline-inducible lung-specific Cpr deletion (80), and a liver-Cpr-null 

mouse generated by breeding pairs of hemizygous Alb-Cre transgenic mice, with Cre driven by the 

albumin promoter that lack POR expression in the liver (72). A single dose of 10 and 20 µmol/mouse 

NNK was administered i.p. to liver-Cpr-null and lung-Cpr-null mice, respectively, and mice were 

sacrificed 4 months later. The lung-Cpr-null mice had fewer lung tumours than wild-type mice, 

implicating the role of pulmonary P450 enzymes in the activation of NNK. The liver-Cpr-null mice, 

however, had higher levels of lung tumour multiplicity than wild-type mice (80).  

2-Amino-9H-pyrido[2,3-b]indole (AaC) 
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These findings were confirmed in a later study using HRN-gpt delta mice (44). After 

exposure to a single i.p. dose of 100 mg/kg bw NNK, NNK-induced mutation frequency was 3 times 

higher in the lung of HRN-gpt delta mice than in control gpt delta mice.  Furthermore, 

pharmacokinetic studies showed significantly higher plasma levels of NNK and significantly lower 

rates of clearance in HRN-gpt delta mice compared to controls, suggesting that although pulmonary 

P450 enzymes play a role in NNK activation, hepatic P450 enzymes may in fact play a larger role in 

detoxification (44). However,  in-vitro studies using recombinant CYP2A5 demonstrated the ability of 

this CYP isoenzyme to efficiently activate NNK (75,81) and NNK-induced lung tumorigenesis in 

mice was found to be reduced when CYP2A enzymes were inhibited (82). When Cyp2a5-null mice 

were given a single i.p. dose of NNK at 20 or 100 mg/kg bw there was no change in the systemic 

clearance of NNK or its major circulating metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 

(NNAL). Levels of pulmonary O
6
-mG adducts were significantly lower, ~40% at 20 mg/kg and ~20% 

at 100 mg/kg, in Cyp2a5-null mice compared to wild-type mice. Levels of hepatic O
6
-mG adducts 

however showed no significant differences between Cyp2a5-null mice and wild-type mice at either 

dose despite previous studies showing that hepatic P450s were protective against NNK-induced lung 

tumorigenesis (80,83).  

The knockout was extended to Cyp2abfgs-null mice, in which all Cyp2a, 2b, 2g, 2f and 2s 

genes are deleted, with i.p. doses of 50 or 200 mg/kg bw NNK and sacrifice 16 weeks post exposure 

(84). Levels of pulmonary O
6
-mG adducts were substantially reduced compared to both wild-type and 

Cyp2a5-null mice 1 and 4 hours post exposure, with hepatic O
6
-mG adduct levels only showing a 

significant reduction 4 hours post exposure to 200 mg/kg bw NNK. The Cyp2abfgs-null mice also 

demonstrated resistance to NNK-induced lung tumorigenesis at both the low and high NNK doses, 

unlike the wild-type or Cyp2a5-null mice. In contrast to the POR knockout mice, these results suggest 

that there is in fact a contribution from mouse CYP2A/B/F/G/S enzymes toward the bioactivation of 

NNK in vivo (84).   

Conclusions 

The role of P450 enzymes in the metabolism of environmental carcinogens is complex. 

Whilst numerous in-vitro studies have demonstrated the role of P450s in the activation of carcinogens, 

the use of Cyp-knockout mice or Por-knockout mouse models lacking P450 enzyme activity have 

yielded paradoxical results demonstrating that P450 enzymes in vivo are in fact more important for 

detoxification. Although P450s are capable of activating carcinogens to their reactive intermediates, 

in an in vivo situation where myriad more biological factors are at play, this role appears to shift. 

These results are also not limited to a particular carcinogen or carcinogenic family, or to a particular 

knockout mouse model. Although the numerous mouse models utilised have been derived by a variety 
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of methods for disrupting P450 expression or activity (9,10), there is the possibility that by disrupting 

P450 expression or activity, the metabolic balance in tissues is disturbed and alternative contributing 

factors to activation or detoxification that may have been minor come to the fore. Many of the studies 

discussed have short exposure times (less than one month) and have focused on short-term markers, 

e.g. protein or DNA adduct and metabolite formation, which may not reflect the longer term 

carcinogenic consequences. Nevertheless two of the studies described here have investigated tumour 

formation with different carcinogens and have yielded the same overall paradoxical outcome as the 

short-term studies (67,80). Across the different target organs for the carcinogens there is no overlap in 

any single organ for all the carcinogens in experimental mice: (i) exposure to BaP results in malignant 

tumours in the lung, forestomach, liver, lymphoid tissue and skin (85); (ii) 4-ABP causes bladder 

carcinoma in male mice and hepatocellular carcinoma in female mice (86); (iii) PhIP causes tumours 

in the lungs and lymphatic systems (87); (iv) AaC leads to tumours in the livers (87,88); and (v) NNK 

and leads to tumours in the lung and forestomach of experimental mice (89,90).  

Whilst Por-knockout mouse models lacking P450 enzyme activity are powerful tools for 

investigations of xenobiotic metabolism, the paradoxical results they yield require further 

investigations to better understand mechanisms of activation. One possibility that arises from these 

studies is the potential for P450-independent activation pathways that are as yet unidentified. 
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Legends to Figures: 

 

Fig. 1 

P450-mediated bioactivation pathway of benzo[a]pyrene (BaP).  

Fig. 2 

P450-mediated bioactivation pathway of 4-aminobiphenyl (4-ABP). 

Fig. 3 

P450-mediated bioactivation pathway of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). 

Fig. 4 

P450-mediated bioactivation pathway of 2-amino-9H-pyrido[2,3-b]indole (AaC). 

Fig. 5 

P450-mediated bioactivation pathway of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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