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ABSTRACT 

 
Background: In the UK, administrative data resources continue to expand across publically 

funded youth-orientated health, education and social services. Despite attempts to capture these 

data in structured formats, which are more accessible for analysis, most health information is 

stored as free text entry in electronic records.  Big data techniques which combine large scale 

data linkage and automatic information extraction from free text, using Natural Language 

Processing (NLP), have considerable potential for enhancing the depth of information available 

from routinely collected public service data.  There are a very limited number of published 

studies which have applied these big data techniques to answer questions relevant to child and 

adolescent psychiatry.  

Methods: This thesis examined original and clinically relevant research questions using data 

from routinely collected electronic health records, enriched by NLP and linkages to external 

data sources. Five related studies were performed all using data obtained from the SLaM BRC 

Case Record Information Search (CRIS) extracted using a NLP approaches, with two studies 

using external linkages with routinely collected national electronic datasets (NHS Hospital 

Episode Statistics and DfE National Pupil Database, NPD).  

Results: Using these data resources, I provide empirical support for the hypothesis that 

neurodevelopmental comorbidities increase children and adolescents’ risk for potentially more 

harmful treatments, greater treatment complexity and worse clinical outcomes. The NLP 

methods employed overcame limitations of structured data extraction, providing better 

assessment of a diverse range of symptom types, severity and related impairments, including 

suicidal risk, negative symptoms, antipsychotic treatment failure, and self-harm. External data 

linkages with the NPD enabled population level analyses by nesting clinical samples within 

their source population. NPD linkage also permitted the inclusion of education performance 

data, which were not routinely available within electronic health records.  

Conclusion: The thesis illustrates how the legal, governance and technical challenges were 

surmountable to enable linkage between NHS and Department for Education public service 

data. Also, it demonstrated that NLP and data linkages of electronic health records, have a clear 

role in clinical epidemiological studies of child and adolescent mental health. These tools, 

combined with the continued digitisation of public service activity, can unlock huge and 

detailed data resources for population-based analyses. However, current approaches have 

deficiencies, including limitations in accuracy, construct validity, and restrictions in the data 

available, providing challenges for future research. 
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CHAPTER 1. INTRODUCTION 
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R, Ford T, Hotopf M, Das-Munshi J, eds. Practical Psychiatric Epidemiology, Second Edition 

UK. Oxford University Press (in press). 
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*Aschan L,*Downs J, Hotopf M. The Mental Health Landscape in England. NHS England. 
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1.1  WHAT ARE BIG DATA?  
 

Modern health and public services now collect huge amounts of electronic data. In 2011, the 

storage requirement for holding health and social care records for 9 million people, equivalent 

to the population of a very large city, was over 40 petabytes (40 x 107 gigabytes). By 2020, the 

annual rate of health data generation will be 40 times greater than it was in 2009.1,2 There is no 

rigorous definition for Big Data, but at its simplest, Big Data refers to any electronic data that 

cannot be feasibly stored or processed by standard desktop computers or fit into a standard 

relational database.3 The main features are high volume, variety and velocity: the ‘3 V’s’.2 

Volume refers to the size of the data, where it is not uncommon for terabytes or petabytes to 

be available for analyses. Variety refers to the different types of data format (structured fields, 

free text, images, video, etc.) and multiple contributing sources, for example, health-related 

data could be derived from both social media and clinical notes. Velocity indicates the dynamic 

nature of data, where the volume and types of the data held are changing or evolving – for 

example, in a database derived from electronic medical records that updates in real time. 

‘Veracity’ has been proposed as a fourth ‘V’, particularly in relation to social media data,4 to 

underline the challenges in ascertaining the truthfulness of information recorded in these large-

volume sources. 

 

The term Big Data also concerns the tools used to interpret these complex structures. Over the 

years these have been referred to as data mining, analytics and, more recently, data science.5 

These terms describe the development and application of analytical techniques that can 

integrate and extract meaning from massive datasets. A common feature of these technologies 

is the capability to interrogate data using automated procedures, or algorithms, replacing the 

need for resource-intensive manual extraction or interpretation. Two promising Big Data 

approaches for healthcare research, and a focus of this thesis, are data linkage and Natural 

language processing (NLP). Data linkage provides the capacity to expand the types of variables 

beyond those usually collected by health systems, and analyse vast numbers of individual 

records held on separate clinical/non-clinical databases. NLP provides the capacity to detect a 

greater detail of clinical information, such as symptoms, medications and response to treatment 

from the free text, which can then be used in risk factors-outcome analyses.6  
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1.2 CURRENT CHALLENGES FOR CHILD & ADOLESCENT 

MENTAL HEALTH EPIDEMIOLOGY 
 

Improving the prevention and treatment of mental disorders is one the greatest health 

challenges of the 21st century. In England, more than 850,000 children and 7 million adults 

have a mental disorder.7,8 Mental disorders are the leading cause of disability in the UK, they 

represent 23% of the disease burden, and cost the UK £60 billion each year.9  Most mental 

disorders are treatable.10  England, as with many high income countries, offers a range of highly 

effective interventions, but access is often restricted and unequal across the population.11,12 As 

it stands, up to 43% of children and 60% of adults with a psychiatric disorder will remain 

undiagnosed and untreated.7,8  

 

Mental disorders are not a single entity, but represent a broad range of different symptoms and 

diagnoses, all on a spectrum of severity, from mildly impairing to life-threatening.  Over half 

of adults with mental disorders first experienced signs and symptoms by the age of 14.13 

Childhood and adolescent mental disorders, if not properly addressed, can lead to significant 

adversity throughout adulthood.14 Mental illness profoundly impacts children’s access to 

learning and education - 17% of children with anxiety and depression are absent for a 

significant amount of school compared to 5% of children without mental disorders.7 Each child 

with a mental disorder costs families and local services between £11,030 and £59,130 

annually.15 Nearly a third of young people with a severe mental disorder, and 22% of those 

with a moderate mental disorder, leave full-time education before the age of 15. This compares 

to 13% for those without a mental disorder.16 The five percent of children in England with early 

and severe behavioural problems are 20 times more likely to end up in prison, 6 times more 

likely to die before 30.17,18  

 

1.2.1 Issues with conventional epidemiological study approaches: randomised control trials 
 

Providing evidence to refine existing treatments and identify potentially modifiable risk factors 

for mental health disorders are complex tasks. Single cause mechanisms in childhood mental 

disorder are very rare. The “one bug–one drug” model used so effectively in infectious disease 

treatment and preventative programmes using vaccines, cannot be transposed on mental 

illnesses.19 Experimental methods such as randomised trial designs for identifying causal 
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factors or effective interventions in children are also problematic. In many cases it is impossible 

to randomise the exposure or intervention under scrutiny – you cannot randomise a child to 

having autism. Experimental trials require huge resources if they are aiming to detect effects 

on rare outcomes, such as childhood suicide attempts, or outcomes that occur several years 

after the intervention.20 Relative to adults studies, experimental trials in children operate under 

greater ethical scrutiny and heightened risk concerns from parents, 21 which can lead to rarefied 

populations being recruited with subsequent limitations on generalisability.22 The political 

sensitivities around childhood vulnerability and service inequality can also hinder the 

applicability of experimental research designs too; a recent example of this involved the UK 

government being unwilling to adopt scientific recommendations to initially randomise the 

provision of sure start child care resources. 23  

 

1.2.2 Issues with conventional epidemiological study approaches: cross-sectional surveys  
 

With limits on the applicability of experimental designs, researchers also rely on well-designed 

observational 24 or quasi-experiments 25 methods to discern true causes and confounders. From 

the 1960s,  epidemiological approaches have been applied to child psychopathology, and now 

encompass large-scale cross-sectional surveys and prospective cohorts which integrate 

biological measures and multi-informant behavioural assessments to unravel aetiological 

mechanisms.26 However, these too have their limitations. Nationally representative cross-

sectional surveys for child and adolescent mental health disorders are expensive to conduct and 

occur infrequently – taking the UK as an example,  the gap between the previous and current 

national survey will be 14 years.7,27 Cross-sectional data also quickly become out of date. 

Environmental factors, including neighbourhood deprivation, technological advances, schools, 

and social policy, can change rapidly and swiftly effect patterns of need and detection of child 

and adolescent psychopathology.28–30 Furthermore,  in  isolation these surveys may provide an 

unreliable picture of the diversity of mental illness prevalence, both through selection bias 

against mentally unwell populations,31 and the effects of averaging data, which are 

representative of the nation, rather than the local or vulnerable populations;32 children locally 

resident in Lambeth have very different lives to those in North Norfolk, as do children under 

the care of the local authority compared to children who reside with their families.  

 

There are also growing concerns that responders to surveys are becoming an increasingly 

unusual group – response rates are falling across all major surveys especially in younger 

populations.33 For example the ONS Labour Force Survey has seen response rates fallen from 
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73% in 1999 to 43% in 2015, with the youngest age groups (aged 19-25) now significantly 

underrepresented.34,35 This may be due to young people leading increasingly busy lives but 

possibly because of survey fatigue. This is unlikely to improve as more commercial and public 

sector organisations attempt to gather information from individuals by survey methods.36  A 

crucial limitation of  cross-sectional surveys, are that they can only be used to describe the 

relationships between variables at the time of measurement, therefore cannot determine the 

temporal relationship needed to understand cause and effect. For example, cross-sectional data 

cannot be used to determine the direction of any causal relationship between childhood 

depression and obesity.   

 

 

1.2.3 Issues with conventional epidemiological study approaches: prospective cohorts 
 

Prospective cohort studies have made an extensive contribution to science and the public 

health, but they too also have several important limitations.  They are very expensive to set-up 

and run. In the United States, a National Institutes of Health (NIH) flagship cohort study, the 

National Children’s Study, started with the remit to garner a nationally representative child 

cohort over 105 sites.  The recruitment and measurement expenses, over the 4-year preliminary 

phase, amounted to $250,000 per child. By November 2014, the study was stopped due to 

concerns over the study’s feasibility and costs.37  

 

The relevance of prospective cohort studies to future generations of young people can be 

limited. Children born today enter an increasingly digitized world, with greater population 

movement, economic volatility and greater income disparities.28,38 The narrow window of 

childhood development and its susceptibility to changing environmental exposures and 

demographic shifts, means that new cohort studies need to be commissioned regularly to keep 

up with socio-cultural contexts of the area they represent.  Another issue, particular with 

paediatric populations, is that once the developmental window has ended, advancement in 

exposure and outcome measurement 39 and evolved understanding of pre-existing disease risks 
40 cannot be retrospectively applied. This makes it harder for research programmes, which use 

older cohorts to look back at the time of childhood, to produce findings which are applicable 

to the present.  

 

When childhood mental health outcomes or exposures are relatively rare (<5%) such as 

exposure to antipsychotic treatment in mid childhood 41,42 or development of an early onset 
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psychotic disorder,43 population-based cohort samples are unlikely to include many affected 

individuals, reducing their power to discern clinically important risk factors and outcomes. 

Cohort studies can be particularly affected by nonparticipation at given time points, or even 

complete loss to follow-up. This may be particularly pertinent to psychiatric epidemiology, as 

nonparticipation is associated with many factors related to child and adolescent mental 

disorders including non-white ethnicity,  socioeconomic adversity, male sex, physical health, 

cognitive, emotional, and behavioural problems.44,45 Furthermore, recent work from the 

ALSPAC birth cohort has shown the genetic predisposition for severe psychiatric disorders (in 

this case, the polygenic risk score for schizophrenia) is strongly associated with cohort study 

drop out by age 7.46  These results suggest that individuals with a genetic predisposition to 

these schizophrenia and genetically related psychiatric phenotypes, such as other 

neurodevelopmental disorders 47 will be underrepresented in longitudinal population cohorts 

analyses. It also implies that longitudinal population cohort studies are likely to be 

underpowered when examining risks for certain psychiatric disorders. Furthermore, it indicates 

that some analyses generated from these data may be biased because risk factors and diagnostic 

outcomes may be not randomly missing. 

1.3 WHY DO WE NEED ‘BIG DATA’ FOR CHILD AND ADOLESCENT 

MENTAL HEALTH RESEARCH? 
 

In light of the issues described above, conventional survey and cohort based approaches may 

not provide sufficiently comprehensive approaches to estimate the population need for youth 

mental health services, the extent to which these needs are being met, and the risk factors 

contributing to these needs. Again, using England as an example, there are a very limited 

number of research systems than can provide contemporaneous data on the nature and 

distribution of child and adolescent mental health (CAMH) disorders in the community. Recent 

reports by the Children and Young People’s Mental Health Coalition and UK Health Select 

Committee concluded that data used to assess the mental health need of the child and adolescent 

population across England and the aetiological mechanisms behind these needs, were 

inadequate.48,49  

 

Every school age child living in England, as with many other high-income countries, has a 

comprehensive digital record, which captures nearly every encounter they have with health, 

social and education services. These data include individual longitudinal records of birth 
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details, school performance, physical growth, primary and secondary health care use, 

psychiatric inpatient use, social and youth justice services contact, employment and training.  

 

These data are rich, characterising the diverse interactions healthcare staff, social workers, 

police and teachers have with young people living in their community. In the devolved nations 

it appears feasible to identify, link and de-identify data to provide an anonymised multi-agency 

dataset covering youth focused public service activity within existing UK legal and data 

governance frameworks.50,51 If replicated across England, or within several large regions, these 

data could allow researchers to study the risks factors and patterns of disease across very large 

populations, and provide precise estimates on the outcomes for healthcare interventions. Figure 

1.1 provides an example of national and regional databases within England, which have the 

potential to permit routine analysis of the impact of interventions on key childhood mental 

health risk factors and outcomes.52–54 However, these data are complex, representing medical 

information held in structured, free text, images and video formats, which have not been 

primarily collected for research. Also, datasets created from the routine administrative outputs 

of public services are likely to contain more variations in recording and missing information 

than those completed by small teams working to a clear research protocol. Despite this, such 

data could afford distinct opportunities that would be difficult to achieve through individually 

funded research studies – particularly in scale (sample size) and generalisability.  Arguably 

child and adolescent mental health research, an area disproportionately under resourced relative 

to the individual and societal impact of childhood mental health disorders,55 may have more to 

gain from the expansion of these Big Data resources than other areas of healthcare.  

 

1.4 PSYCHIATRIC EPIDEMIOLOGY AND BIG DATA  
 

1.4.1 Data linkage of clinical and social care data 
 

The advent of ‘Big data’ through the digitisation of mental health and social care information 

across the world, presents a potentially powerful resource for researchers who wish to study 

clinical issues “in vivo”.56 However, psychiatric epidemiologists may contend that Big Data 

approaches are not novel. For decades, Scandinavian countries have led the way in the 

development of whole population data repositories all linked via a common identification 

number, acquired at birth or migration to these countries. These repositories can index on an 

individual level an array of clinical and social information including birth details, school 

performance, secondary health care use, social and criminal justice involvement.57  
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Figure 1.1 An example timeline of a young person’s mental health needs, interventions and outcomes captured in separate large scale longitudinal 
data sources amenable to data linkage. 

*Yet to be linked with routinely collected NHS data 
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Some countries have developed their use of administrative records to the point where these are 

now routinely substituted for the more traditional ways of generating data resources for health, 

social and economic research.  In Finland, instead of primary data collection via a census 

survey delivered to households,  thirty different registers and administrative files are linked to 

provide census data.58 Outside of Scandinavia, very few other countries are able to do this; the 

equivalent individual level data exists, but they are contained in separate repositories with no 

common unique identification number to facilitate linkage between them.  

 

To overcome the lack of a common unique identifier within and across public service systems,  

two main data linkage methodologies have been developed to create a match for the same 

individual across separate sets of records.59 The first is a deterministic linkage approach, 

where a set of predetermined rules are used to classify pairs of records as matched or non-

matched. These tend to require an exact or partial agreement on a set of personal identifiers – 

for example a successful match on the first name or surname, and match on both the date of 

birth and postcode. Strict deterministic methods are straightforward to use and commonly 

employed in government departments, however they can create high levels of missed matches 

between records.60 As a consequence, this undermines the confidence that all the relevant 

records for an individual have been accurately combined across the different data sources.  

 

A second approach to data linkage is probabilistic linkage, first proposed by Newcombe in 

the 1950’s,61 which uses specified identifiers common to each record in both datasets (e.g. 

surname, post code and date of birth) and, by comparing each set of identifiers in one record 

against all other records provided, generates a probability estimate of the match being true. So, 

gender is not particularly informative, as the risk of being matched by chance is 50%, however 

the chance of 11-digit telephone number being matched by chance on two datasets is very low, 

hence the probability of a true match on this identifier is high.  

 

To illustrate this with an example: a health researcher needs to link 50,000 patients who have 

two sets of records A and B held on different data sources. Both A and B hold several personal 

identifier fields in common such as telephone number, post code, surname and date of birth. 

An agreement weight can be calculated for each identifier field in record A, depending on the 

probability (usually an Odds Ratio) of variable matching by chance for the corresponding 

identifier field in record B. This weight relates to the relative frequency of the identifier in 

record A and B - in a UK database, the common surname identifier Brown will have a lower 

agreement weight than Berrycloth. A total agreement weight can then be calculated for each A 
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and B pairing across all the identifiers for each patient. These AB pairings are then ranked in 

probability and a cut off determined, often through manual review, to select the lowest 

probability score taken to represent a positive match for a record pair. This process is 

computationally intensive: for 50,000 patients there are 1.25 billion unique A + B record 

pairings. Hence, efficient probabilistic linkages across very large health and social care datasets 

have only become feasible in the last decade.54 

 

1.4.2 Natural language processing and the Electronic Health Records  
 

Linking data across very large scale administrative databases can provide a very powerful 

resource for epidemiological studies. However, research designs based on these linked 

databases have limitations which are important to consider. As described in the first paragraph 

of this chapter, a major strength of these administrative data is their comprehensive inclusion 

of the whole population of interest, and therefore providing highly generalisable results. This 

is counterbalanced, however, by the ‘Veracity’ or quality of these data, which can be 

problematic.57 This was illustrated by a recent critique of the UK Department of Health’s 

Hospital Episode Statistics (HES), the vast database which contains details of every NHS 

hospital inpatient admission, emergency department and outpatient contact in England. In an 

analysis of HES data, the authors revealed some impossible events. In a one year period (2009-

2010) there were over 17 000 male inpatient  admissions to obstetric services, over  8000 to 

gynaecology outpatients with nearly 20 000  midwife episodes.62 Admittedly the proportion of 

these errors were small relative to the scale of the HES record system, which adds 125 million 

admitted patient, outpatient and accident and emergency records each year to its database.  

 

Concerns around the veracity of administrative data reduces confidence in the validity of the 

findings generated from the data. There are ways of managing this. Researchers using 

administrative data have determined the extent of misclassification and whether it is systematic, 

by undertaking a validation exercise with a subset of patients. This may involve cross checking 

the same clinical variables using linked patient level data in HES and other independently 

administered case registers.63 Although these ‘impossible scenarios’ or internal errors are 

readily detectable within the database itself, some key clinical data (e.g. presenting complaints, 

diagnoses, treatments received) cannot be cross-checked within the administrative database 

alone to test their validity.64 This limitation also reveals that researchers only have access to 

variables which have operational value (i.e. pertinent to clinical or administrative practice) 

rather than those which are most relevant to the risk factor or health outcome under 
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investigation, and highlights the potential for a superficial characterisation of individuals 

within administrative health databases. 

 

Some authors conclude the advantage of very high sample populations in administrative mental 

health, will always be counteracted by low data validity and reliability.57 But, as Robert Stewart 

in a recent editorial argues, this doesn’t have to be the case. He describes an approach which 

goes behind the structured data held within administrative health to the source health data itself, 

and allows exploration of the unstructured text within electronic mental health records.65 As he 

describes, this method can bring the benefits of statistical power and generalisability of large 

scale administrative data but also reduce the limitations of the low data validity and data 

reliability; essentially, switching the coding processes of administrative health data from expert 

coders back to clinicians.66    

 

Clinical notes reviews have a considerable history in mental health research, from the studies 

of asylum records in the Victorian era 67 through to the growth of the ‘case register’ in the mid- 

to late twentieth century.68 Clinical notes often provide a detailed account of the patient’s 

symptoms, treatments and outcomes, avoiding the recall bias and patient burden often 

associated with information gathering from standard primary data collection survey 

approaches.  However, clinical notes within psychiatry are often extensive, and it takes time 

for those with suitable expertise to manually screen, annotate and extract research data. As 

such, research using clinical note reviews have remained limited by small sample sizes and the 

potential for high inter-observer variability.69  

 

In the last 2 decades, a number of technical advances have facilitated the use of clinical notes 

for research. The advent of computerised or electronic health records means that clinical notes 

were able to be transferred and manipulated by digital systems.70 This process was initially 

welcomed by health workers as method to finally operationalise and structure clinical notes. 

There was an expectation that electronic records would provide  large clinical samples to 

exploit for use in research.70 In mental health,  research systems were adapted by researchers, 

such as the OPCRIT system which aimed to improve the objectivity of diagnosis in NHS 

clinical settings, and  provide a mechanism for the routine collection of a core clinical, research 

and audit data.71,72  

 

Despite electronic records becoming nearly ubiquitous across NHS mental health services73, 

their potential remains to be fully realised.  Public concern over the ethical use of secondary 
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use of health care records 74 and the complexities of the records themselves means they are 

currently not delivering their potential for research. The data complexities remain, as despite 

the considerable effort to operationalise structured note keeping into mental health records,72 

it has failed to be adopted into routine practice. Clinicians tend to shun structured templates or 

drop-down options for the majority when keeping a record of the daily practice.  An overview 

on why the free-text note persists as the predominant method of recording clinical information 

suggests:75 free text is viewed by clinicians as a convenient method of expressing clinical 

concepts and events, such as diagnosis, symptoms, and interventions;76  prose can be more 

accurate, reliable, and understandable;77 free text is tolerant of ambiguity, which supports the 

complexity of clinical practice;78 medical notes are nuanced and makes heavy use of negation 

(e.g. “she denied any current suicidal ideation”) temporal expressions (“symptoms resolved a 

few months ago”), and hedging phrases (“the treatment was somewhat successful”). All of 

these important elements are difficult to represent as categorical options within a structured 

form.  
 

1.4.3 Applying Natural Language Processing to Electronic Health Records  
 

Computational linguistics or Natural Language Processing (NLP)  is an area of research and 

application which explores how to make computer systems understand and manipulate natural 

language expressed in text to perform desired tasks.79  NLP techniques have now evolved 

sufficiently to rapidly process and interpret  the wealth of contextual, unstructured health data 

held within electronic records.80 Two powerful applications of NLP have been deployed in 

health research: one includes de-identifying electronic health records, essentially scrubbing 

personal identifiers within the free-text of a patient record;81 another has been its use in 

information extraction.  

 

 NLP can be used to discern the meaning or semantic content of text, and using pre-specified 

algorithms, can encode this text to provide structured output for analysis. This provides 

considerable advantages compared to performing key word searches in health data. For 

example, key word searches on the term suicide will provide every mention of the term in the 

health record and not discriminate whether it references a patient’s history, describes a current 

mental state or was just part of clinician screening. This approach is difficult to use for any 

large scale analysis, as they require manual review to add context.  
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Two different NLP approaches are generally used in health data extraction, rule-based and 

machine learning, sometimes separately or in combination to identify a desired phenotype or 

event in clinical text. Rules-based NLP relies on human or expert consensus to arrive at a  

protocol of how a combination of text based terms (clinical or otherwise) may be combined 

with logic rules (via AND, OR, and NOT) in order for a particular phenotype or event to be 

positively or negatively identified. This set of rules are then translated into an NLP algorithm 

and used to detect cases, exposures or outcomes of interest over the health record.  This type 

of approach is currently being implemented by eMERGE, a very large US national network, 

across 9 regions, with two clinical sites specifically for paediatric populations which combines 

DNA biorepositories with electronic medical record (EMR) systems for large scale, high-

throughput genetic research.82 Machine learning NLP approaches use pattern recognition via 

statistical or machine learning methods to identify a phenotype or exposure of interest within 

the free text records. Confidence parameters around accuracy can be stipulated, allowing 

uncertainty on whether an event or phenotype is a true positive, which can be accounted in later 

analysis. Investigators have largely adopted this approach in i2b2 (Informatics for Integrating 

Biology and the Bedside), a US consortium, based at Harvard/MIT Health Science division 

and Partners HealthCare System in Boston, Massachusetts.83  

 

Testing whether a NLP tool accurately identifies clinical text for later analysis, is very similar 

to evaluating the accuracy of a new diagnostic or screening procedure. The NLP tool output is 

compared to a gold standard output (see figure 1.2) often created by a manual review of the 

same text. NLP accuracy is measured in terms of its precision (positive predictive value) and 

recall (sensitivity). Precision is simply the terminology used within the NLP field for Positive 

Predictive Value (PPV), which refers to the proportion of true positive terms or sentences 

classified by the NLP application out of the total number classified as positive by the NLP 

application. Recall (a NLP term which can used interchangeably with Sensitivity) refers to the 

proportion of true positive sentences classified by the NLP application out of the total number 

of true positives. Thus, an application with a high degree of precision is necessary to reduce 

the frequency of false positive classifications and a high degree of recall is necessary to reduce 

the frequency of false negative classifications. As with screening tests there is often a trade-off 

between recall and precision, and clinical researchers often need to make a decision whether 

their requirements should lean towards having high precision at the cost of not capturing all 

diagnostic instances, or high recall where all potentially relevant terms will be captured but 

many more will false positives. A commonly used measure within NLP which conveys the 
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NLP overall performance or accuracy is the F1 score, which is calculated as a weighted average 

of the precision and recall, with the most accurate value at 1 and lowest at 0.   

 

Figure 1.2: Framework for evaluating the accuracy of a NLP application to clinical notes 
 

 
 

In adult samples, NLP has been deployed within the electronic health records, to support a 

number of clinical epidemiological studies, including the examination of factors associated 

with adverse drug responses,84 surgical complications 85 and treatment resistant depression.86 

Both rule-based and machine learning approaches require clinical raters to produce gold-

standard data sets, which depending on the complexity of the task, can take considerable 

resources to produce. The main advantage of the statistical or machine learning approach over 

rule-based approaches are that identification/ categorisation of the target features (i.e. the event 

or phenotype of interest within the notes) are purely data driven, with no expert consensus 

required on how rules are constructed. The main disadvantage is the lack of transparency of 

the data driven process - machine learning does not provide an accessible flow of logic 

procedures, which makes it difficult to trouble shoot when accuracy is below satisfactory, or it 

requires adaptations for use in other databases.  Figure 1.3 below provides a hypothetical 

example of how an NLP approach may be applied to a clinical epidemiological study. 
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Figure 1.3 A hypothetical example of how NLP may be applied to epidemiological research 
 

 

 

A research team wished to establish the number of primary and secondary psychiatric diagnoses for patients 

after admission to a psychiatric inpatient unit. They had a list of 40,000 patients with electronic records 

which covered 10 years post hospital discharge. They decided it was not practical for these to be manually 

reviewed on a large scale, so they employed a rule-based approach to build a NLP application. A coding 

framework was devised to capture unique diagnostic psychiatric categories, with variations of classification 

subtypes, abbreviations spellings and misspellings accorded to each category. This framework was created 

from a consensus of experts who were familiar with the recording of diagnostic information in the health 

record.  Clinical raters then applied this framework to batch of clinical notes which were randomly extracted 

from a random subsample of study patients. They used NLP software to annotate and categorise diagnostic 

terms from the health record, which manually imposed structured data on the free text. This produced a 

‘gold standard’ of manually ascertained diagnostic annotations. The gold standard batch was then split into 

a ‘training’ set and a ‘test’ set. Meanwhile, researchers using NLP software created a set of rules/algorithms 

which automated the clinical coding framework, to take advantage of previously published diagnostic 

classifications and clinical ontologies.   

 

After the first test where the NLP tool diagnosis output was compared against the gold standard training set, 

the NLP performance was application underwent a number of iterations. The clinicians previously decided 

that precision and recall above an arbitrarily set value of 0.8 would suffice So, the clinical reviewers 

examined the diagnostic classification errors by examining False positive or False Negative sentences or 

documents. They noticed particular patterns in the misclassification – diagnostic terms omitted from the 

ontology, terms used to negate the presence of a diagnosis -  which they corrected by making changes to the 

ontology, and creating some additional linguistic rules to reclassify terms within the text. They then ran this 

new iteration against the training set and evaluated its performance. This process was repeated until the 

performance metrics were satisfactory. The NLP tool was then compared against the gold standard test set 

and performed well, and so extended to extract diagnostic information from the whole sample. 

 

The research team were also interested to see whether a NLP machine learning approach performed as well 

as the rules based NLP tool to detect the diagnostic construct of “psychosis”. They applied a statistical 

approach called a support vector machine (SVM) to ‘learn’ the position of “psychosis” related key words in 

the gold standard training set of documents. The SVM approach used all the words, spaces, punctuations 

within each training document as multidimensional data points to build statistical models which predicted 

the probability of a “psychosis” key word being a clinical confirmation of a psychosis diagnoses.  After the 

learning phase was complete, the SVM models derived from the training data, were applied to the test data. 

The research team were then able to compare the performance metrics of the rule based and machine learning 

NLP applications. The eventual outputs from both NLP applications, were run over a large corpus of patient 

notes, to produce tractable, time stamped diagnostic information for each document, with all text occurrences 

of diagnoses in the text annotated by the NLP software. 
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1.4.4 Natural language processing and its application in child and adolescent psychiatric 
epidemiology 
 

To understand how natural language applications have been applied to big data resources in 

child and adolescent mental health research, I conducted a literature search of the MEDLINE, 

EMBASE and Psychinfo  databases using OVID Gateway.87  

 

As outlined in figure 1.4, the search strategy used a recent comprehensive review to build a list 

of articles published over the last 10 years ( up to 20 June 2017)  from  85 ‘big data’ health 

resources.56 Using filtering terms, I restricted these ‘Big Data’ articles to those using NLP 

applications to investigate risk and outcomes relevant to child and adolescent populations with 

mental health disorders. NLP search terms were identified from a recent systematic review on 

text mining.88 

 

Initial searches revealed a number of studies were using combined health administrative data, 

for example health insurance and prescribing registers, or structured fields within primary care 

records to conduct psychopharmaco-epidemiological studies within child and adolescent 

populations.  However, after imposing the natural language search terms and excluding articles 

generated from this thesis (see figure 1.5) 329 published articles remained. After an abstract 

and title review, and a full text article assessment, only 9 articles, from 4 research groups in 

North America (tables 1.1 and 1.2) and one from France (table 1.3), revealed any studies 

published within the last 10 years related to child and adolescent mental health, and using NLP 

applications within the Big Data resources described in figure 1.4.  
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Figure 1.4 Search terms used to identify studies of NLP applications within Big Data 
resources in child and adolescent mental health 
 

 

Big Database resources search terms 56 

 

Israel's psychiatric case register or Clalit Health Services or Hong Kong Hospital Authority or (Seoul 
National University and Mental health) or Taiwan National Health Insurance Database or (Mental 
Health National Outcomes and Casemix) or Western Australian data linkage system or Asturias 
Cumulative Psychiatric Case Register or Gmunder ErsatzKasse or German Research Network on 
Depression or (Health Search Database and Italy) or French National Health Insurance Fund or 
DGPPN-BADO or South Verona Community-Based Mental Health Service or (Zurich and Psychiatric 
case register) or ((Clinical Practice Research Data link or CPRD or GPRD) and General Practice 
Research Database) or Clinical Record Interactive Search or Generation Scotland or (Galatean risk and 
safety) or mental health minimum dataset or QResearch or The Health Improvement Network or UK 
Biobank or Secure Anonymised Information Linkage or PsyCymru or Danish Psychiatric Central 
Research Register or deCODE Iceland or Dutch National Survey in General Practice or Finnish 
Hospital Discharge Register or (Netherlands and Psychiatric Care Register) or Norwegian Patient 
Register or Odense University Pharmaco-epidemiologic Database or (Odense University and Database 
and pharmacology) or Hungarian National Health Insurance Fund or European Observatory on Health 
Systems or European Autism Interventions or (prescription database and Norway) or PROTECT-EU 
or eDESDE-LTC or Canadian Chronic Disease Surveillance System or Canadian Primary Care 
Sentinel Surveillance Network or OntarioMD or Ontario Mental Health Reporting System or 
Saskatchewan Health Databases or 23andMe or (Healthcare Cost and Utilisation Project) or Data 
QUEST or (Electronic medical records and genomics network) or Group Health Research Institute or 
(Health Plan Employer Data and Information Set) or (Informatics for integrating biology and the 
bedside) or (Centers for Disease Control and Prevention) or  (KP Research Program on Genes, 
Environment and Health) or (Kaiser Permanente and mental health) or (Mayo Clinic and mental 
health) or MarketScan Research Database or (mental health and medicare) or Health Care Systems 
Research Network or National Prescription Audit or (National Disease and Therapeutic Index) or New 
York Presbyterian or Palo Alto Medical Foundation or SHRINE or Scalable Partnering Network for 
Comparative Effectiveness Research or Stanford Translational Research Integrated Database 
Environment or Texas Department of Criminal Justice or University of Michigan Health System or 
Vanderbilt University Biorepository or Veterans Affairs Database or Asian Pharmacoepidemiology 
Network or Psychiatric Genomic Consortium or IMS Prescribing Insights database or WHO Global 
Health Observatory Data Repository) 

 

Natural Language Processing search terms 88 

 

text mining or literature mining or machine learning or machine-learning or automation or semi-
automation or semi-automated or automated or automating or text classification or text classifier or 
text categorization or text categorizer or classify text or category text or support vector machine or 
SVM or Natural Language Processing or active learning or text clusters or text clustering or 
clustering tool or text analysis or textual analysis or data mining or term recognition or word 
frequency analysis 
 

Child and adolescent search terms  

 

 children or child or paediatric or adolescence or adolescent  

 

Mental Health search terms  

mental health or psychiatry 
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Figure 1.5 Flowchart of study inclusion criteria 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Records identified through a combined 
search of big data resources, child and 
adolescent, and Mental health search 
terms in MEDLINE, EMBASE and 

Psychinfo 
 

(n=22119) 

Full text review excluded due to:  
• reliance on structured data 

(n=5) 
• sample all over 17 (n=1)  
• machine learning applied to 

biomarkers (n=2) 
  

Excluded as no NLP related search 
terms (n=16763) 

Records excluded: duplicates, non-
english, not published last 10 years 

(June 2007-2017) or without 
abstracts (n=5027) 

Records excluded based on titles and 
abstracts (n=312) 

Title and abstracts reviewed 
(n=329) 

Full text articles assessed for eligibility 
(n=17) 

Studies included in qualitative 
synthesis (n=9) 
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Table 1.1 Summary of included studies using Big Data resources and NLP applications for child and adolescent mental health research: 
Harvard  
 

First author, 
year, Institution Aim and design of 

study Data Source Types Sample Age range NLP approachesa Results 

Clements et 
al. 2015 89 

Harvard/MIT 
Health 
Science 

division and 
Partners 

HealthCare 
System in 
Boston, 

Massachusetts 

Nested case-control 
within a retrospective 

cohort linking maternal 
records via matching 

child’s date of birth and 
surname, insurance 

identifiers, and hospital 
encounter date.   

 
Examine risk of 

neurodevelopmental 
associated with 

perinatal exposure of 
antidepressants 

 ICD-9 coded related 
to ASD and ADHD, 

RxNorm 
Prescription codes, 
disorders derived 

from structured and 
free text within the 

clinical notes 

1,377 children with 
ASD matched to 

4,022 healthy control 
children and 2,243 

with ADHD (but no 
ASD diagnosis) 

matched to 5,631 

children age 
2–19 

Rule Based NLP 
Algorithm: example 
terminologies include 

International Classification 
of Diseases (ICD), 

National Drug Code 
(NDC), and Logical 

Observation Identifiers 
Names and Codes 

(LOINC). 

ASD, sensitivity is 1.00, 
specificity 0.91; for ADHD, 
sensitivity is 0.84, specificity 
0.90) antidepressant exposure 
prior to and during pregnancy 
was associated with ASD risk, 

but risk associated with exposure 
during pregnancy was no longer 
significant after controlling for 
maternal major depression [O.R 

1.10 (0.70–1.70)]. 
Antidepressant exposure during 

associated with ADHD risk, 
even after adjustment for 

maternal depression  

Castro et al., 
2016 90 

Harvard/MIT 
Health 
Science 

division and 
Partners 

HealthCare 
System in 
Boston, 

Massachusetts 

Replication study: 
Nested case-control 

within a retrospective 
cohort linking maternal 

records via matching 
child’s date of birth and 

surname, insurance 
identifiers, and hospital 

encounter date 
 

Examine risk of 
neurodevelopmental 

associated with 
perinatal exposure of 

antidepressants 

 ICD-9 coded related 
to ASD and ADHD, 

RxNorm 
Prescription codes, 
disorders derived 

from structured and 
free text within the 

clinical notes 

1245 ASD cases 
matched to 3,735 

healthy controls and 
1701 ADHD cases 
matched to 5103  

children age 
2–19 

Rule Based NLP 
Algorithm: example 
terminologies include 

International Classification 
of Diseases (ICD), 

National Drug Code 
(NDC), and Logical 

Observation Identifiers 
Names and Codes 

(LOINC). 

No significant increased risk for 
ASD and ADHD associated with 
prenatal antidepressant exposure.  

Risk associated with pre-
pregnancy antidepressant 

exposure, and with prenatal 
maternal psychotherapy.  

Supporting confounding by 
indication as possibility.  

 
a References the mapping exercises where text is categorised according to standardized nomenclatures -  clinical terms (e.g. UMLS, ICD-9 SNOMED-CT) medications (e.g. RxNORM, 
National Drug Code) laboratory observations (e.g. Logical Observation Identifiers Names and Codes)  
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First author, 
year,  Institution Aim and design of study Data Source Types Sample Age range NLP approaches a Results 

Doshi-Velez 
et al., 2014 91 

Harvard/MIT 
Health 
Science 

division and 
Partners 

HealthCare 
System in 
Boston, 

Massachusetts 

Cross sectional analysis 
of retrospective records.   

 
Patterns of co-

occurrence 
of medical comorbidities 

in ASDs 

 ICD-9 coded related 
to ASD and other 
clinical disorders 

derived from 
structured and free 

text within the 
clinical notes 

4934 individuals with 
ASD, a tertiary-care 
paediatric hospital 

(mean follow-up 11 
years, SD 4.8 years), 

Samples at 
least over 15, 

paediatric 
history 

examined 

Rule Based Algorithm: example 
terminologies include 

International Classification of 
Diseases (ICD), National Drug 

Code (NDC), and Logical 
Observation Identifiers Names 

and Codes (LOINC). 

Clustering analyses 
revealed 3 high-

morbidity subgroups: 1 
characterized by 

seizures, 1 characterized 
by psychiatric disorders, 
and 1 characterized by 

more complex 
multisystem 
disorders. 

Kohane et al., 
2012 92 

Harvard/MIT 
Health 
Science 

division and 
Partners 

HealthCare 
System in 
Boston, 

Massachusetts 

A retrospective 
prevalence study across 
three general hospitals 

and one paediatric 
hospital.  

 
Examine patterns of co-
occurrence of medical 
comorbidities in ASDs 

 ICD-9 coded related 
to ASD and other 
clinical disorders 

derived from 
structured and free 

text within the 
clinical notes 

14,381 individuals 
with ASD under age 35 

Rule Based NLP Algorithm: 
example terminologies include 
International Classification of 
Diseases (ICD), National Drug 

Code (NDC), and Logical 
Observation Identifiers Names 

and Codes (LOINC). 

Burden of co-morbidity 
is substantial and 

present across multiple 
health care systems with 

over 10 percent of 
patients with ASD 

having bowel disorders, 
or epilepsy, over 5% 
with CNS or cranial 

anomalies, and over 2% 
with schizophrenia. 
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Table 1.2 Summary of included studies using Big Data resources and NLP applications for child and adolescent mental health research: Other 
US 
 

First author, 
year,  Institution Aim and design of 

study Data Source Types Sample Age range NLP approaches a Results 

Lyalina et al., 
2013 93 

Center for 
Biomedical 
Informatics, 

Stanford 
University, 

USA 

 Cross sectional 
analysis of 

retrospective records.  
 

Elucidate the 
phenotypic boundaries 

of autism, bipolar 
disorder, and 

schizophrenia. 
Examine individual-

level phenotypic 
variation within each 

disorder, as well as the 
degree of overlap 
among disorders. 

Hospital/Community 
EHR systems, incl. 

ICD-9 codes, 
RxNorm 

Prescription codes, 
Procedure codes, 
pathology reports, 
radiology reports, 
and transcription 

reports.  

7000 patients at two 
facilities with ASD, 

Schizophrenia or 
Bipolar diagnoses 

Aged 15 + 

Rule Based NLP 
Algorithm:  Clinical 

ontologies used to build 
Concept Unique Identifiers 

(CUIs) from the Unified 
Medical Language System 
(UMLS) Metathesaurus, 
ICD-9 codes, treatment 
codes; additional filters 

remove ambiguous terms, 
flag negated terms and 

terms attributed to family 
history.  LASSO Logistic 
regression models trained 

to predict diagnosis of 
depression, response to 
treatment and severity.   

Principal component analysis 
isolated autism as a separate 

disorder, while revealing 
significant overlap between 
schizophrenia and bipolar 

disorder. 

Huang et al., 
2014 82 

Center for 
Biomedical 
Informatics, 

Stanford 
University, 

USA 

Retrospective cohort 
design.  

 
Develop and evaluate 
computational models 

that use electronic 
health record (EHR) 

data for predicting the 
diagnosis and severity 

of depression, and 
response to treatment.  

Hospital/Community 
EHR systems, incl. 

ICD-9 codes, 
Prescription codes, 
Procedure codes, 
pathology reports, 
radiology reports, 
and transcription 

reports.  

35 000 patients (5000 
depressed) from the 
Palo Alto Medical 

Foundation and 5651 
patients treated for 
depression from the 

Group Health 
Research Institute 

not 
specified, 
likely to 
include 
children 

Rule Based NLP 
Algorithm:  Clinical 

ontologies used to build 
Concept Unique Identifiers 

(CUIs) from the Unified 
Medical Language System 
(UMLS) Metathesaurus, 
ICD-9 codes,  RxNORM, 

treatment codes; additional 
filters remove ambiguous 
terms, flag negated terms 

and terms attributed to 
family history.  

Area under curve  for diagnosis: 
0.8 (95% CI 0.784-0.815) at 
90% specificity, sensitivity is 

50% at time of diagnosis.   
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Anderson et 
al.,2015 94 

Department 
of Clinical 
Pharmacy, 

University of 
Colorado, 

USA 

Retrospective analyses 
of de-identified 

EHR data of primary 
care organizations to 

estimate the frequency 
of using diagnostic 

codes to record suicidal 
ideation and attempts.  

ICD-9 Codes, 
clinician notes, 
suicidal ideation 

items; and 
diagnostic codes 
from the EHR. 

61,464 patients with a 
new episode of 

depression 
Aged 15 + 

Rule Based NLP 
Algorithm: ICD-9 coded 

diagnoses, free text 
positive mention or 
negation of suicidal 
ideation in history 

presenting illness (HPI) 
fields, and PHQ-9) 

HPI data (n = 15,761), 1,025 had 
a free-text indication of suicidal 
ideation recorded in their HPI. 

3% (n = 30) had a corresponding 
ICD-9 code indicating suicidal 

ideation 

Lingren et al.,  
2016 82 

Cincinnati 
Children's 
Hospital 
Medical 
Center, 

Division of 
Biomedical 
Informatics, 
Cincinnati, 
Ohio, USA: 
eMERGE 
Network 

Cross sectional analysis 
of retrospective 

records.   
 
 

Developing an 
automated algorithm 
and comparing rule 
based vs machine 

learning applications 
for extracting cohorts, 
and examining the co-
occurrence patterns of 

comorbidities 
associated with patients 

with ASD 

 ICD-9 codes and 
ASD concepts 

derived from the 
free text within 
clinical notes 

14,758 and 4,229 
patients with ASD, 

from the Boston 
Children’s Hospital 

(BCH) and Cincinnati 
Children’s Hospital 

Medical Center 
(CCHMC) EHR 

databases respectively 

Age not 
specified 

Rule Based NLP 
Algorithm:  UMLS using 

the Apache cTAKES 
natural language 

processing system. The 
default cTAKES 

dictionary (UMLS 
SNOMED-CT and 

RxNORM pruned by 
semantic types for 

Diseases/Disorders, 
Signs/Symptoms, 
Anatomical Sites, 
Medications and 

Procedures) enriched with 
the ASD terms. Machine 
learning (Support vector 
machine) using the EHR 

inputs also applied.  

The rule-based better on BCH 
data (BCH, 0.885 PPV; 

CCHMC, 0.840 PPV), Machine 
learning algorithm performed 
similarly at both sites (BCH, 
0.780 PPV; CCHMC, 0.799 

PPV).  3 high-morbidity 
subgroups: 1) psychiatric 

problems 2) developmental 
disorders including dyslexia, 

lack of coordination, and various 
disorders of the ear, skin and 

other bodily systems; 3) epilepsy 
and recurrent seizure.  

 
a References the mapping exercises where text is categorised according to standardized nomenclatures -  clinical terms (e.g. UMLS, ICD-9 SNOMED-CT) medications (e.g. RxNORM, 
National Drug Code) laboratory observations (e.g. Logical Observation Identifiers Names and Codes)  
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Table 1.3 Summary of included studies using Big Data resources and NLP applications for child and adolescent mental health research : Rest of 
the world 
 

 

 

 

First author, 
year,  Institution Aim and design of 

study Data Source Types Sample Age range NLP approaches a Results 

Metzger et 
al., 201795 

Paris-
Sorbonne 

University, 
Hôpital de la 

Croix-Rousse, 
Lyon 

Nested case control 
study in one hospital 

EHR.  
 

 To compare NLP 
methods and the 

national surveillance 
system for suicide 

attempt rate detection 
in France with 

Emergency Department 
records 

ICD-10 (structured) 
principal and 

associated diagnoses 
free text EHR notes 

from the ED 
 

307 cases: 614 
controls Aged 15 + 

Machine learning 
approach: UrgIndex, 

servlet identifies free-text 
medical terms to a 

French-language medical 
multi-terminology 
indexer (ECMT), 

additional filters remove 
ambiguous terms, flag 

negated terms. All 
medical terms are then 

mapped onto the UMLS 
meta-thesaurus. Range of 
Machine learning (SVM, 
neural network, decision 
trees) approaches used to 
identify suicide related 

EHR inputs  

Gold standard suicide prevalence 
4.8%. National surveillance 

network 0.74% Depending on 
machine learning approach 

prevalence was 4.6 to 11.4% (F-
measures 70.4 to 95.3) according 

to machine learning approach. 
Best NLP approach significantly 

more accurate than national 
surveillance rates  
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Almost all these studies used NLP to discern variations in ASD phenotypes and their respective 

clinical correlates from electronic health records. For example, both groups at Harvard Medical 

School and Stanford University applied NLP extraction processes across local secondary care 

health record systems. The Harvard group examined the physical and mental health 

comorbidities of 14,000 children and adults with ASD over a 15-year period. From this work 

they suggested that ASD associated co-morbid symptoms and disorders could all be clustered 

as related to neuronal and synaptic function, including increased seizure frequency, sleep 

disorders, bowel disorders and schizophrenia.91,92 Stanford University used NLP approaches in 

7000 adult and child patients to identify discrete and overlapping phenotypic ‘signatures’ for 

ASD, Schizophrenia and Bipolar disorders within the health record. They concluded that this 

technique should enable researchers to build research cohorts of patients who meet similar 

phenotypic criteria for a particular disease.93 These studies were looking to produce novel 

perspectives on how physical and mental disorders cluster.  However, many were limited by 

only examining diagnostic terms, rather than symptoms or the severity of the particular 

conditions. Furthermore, the accuracy of the extraction methods used (i.e. performance metrics 

against a gold standard) was not always available. In addition, service level variation in data 

quality was not examined, therefore spurious associations between conditions could have 

occurred because one particularly service in a hospital was good at documenting comorbidity 

relative to another. The only non-US study using NLP in large scale clinical data, examined 

the accuracy of a machine learning approach to identify presentations of suicide attempts to an 

Emergency Department at a major hospital in Lyon, France. The authors found Bayesian 

approaches provided the greatest accuracy with prevalence rates of 4.9%, very similar to the 

manually rated gold standard detection, which estimated the suicide rate at 4.8%. They 

concluded that NLP approaches could supplement current national surveillance methods (this 

approach provided a prevalence rate of 0.8%) which provided an estimate 6 times lower that 

the true prevalence. However, these findings were derived from a single site, using French 

vocabulary in a small sample, potentially limiting its generalisability.  This NLP approach will 

require replication and testing in other hospitals before it can be more widely adopted for 

national surveillance, and will need significant adaptation if applied to non-French language 

healthcare systems. 
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1.4.5 Examples of other Big data methodologies 
 

In respect to other Big Data methodologies beyond data-linkage and Natural Language 

Processing, a recent narrative review revealed a number of novel approaches are being tested 

to see whether they can provide novel, time efficient methods of measuring psychiatric 

symptom prevalence, trends and treatment outcomes.96 To give a few examples: The Durkheim 

Project is attempting to measure the prevalence of suicidal feelings in army veterans from text 

mining within clinical notes and social media.97 Online resources, such as PatientsLikeMe 98 

and myhealthlocker 99 are assessing the safety and effectiveness of treatments related to a 

number of psychiatric disorders using patient-reported outcome data. Mobile phones are being 

used for continuous monitoring, via their internal accelerometers, to detect abnormal 

movement patterns in patients with Attention Deficit Hyperactivity Disorder 100 and 

Parkinson’s disease.101 Big Data technologies are also being used to conduct ‘agnostic’ 

analyses, where statistical algorithms process huge volumes of data in order to detect 

previously unrecognised relationships or hidden signals between exposures and disease 

outcomes. In this process, analyses are looking to generate new hypothesis or predictive 

models, rather than test existing theories of causal relations between exposure and outcome 

variables. These ‘hypothesis free’ analyses are now an integral part of the post-marketing safety 

evaluation performed by pharmaceutical regulators, who scan huge volumes of surveillance 

data to detect correlations between drugs and adverse events.102 The hope for these projects, 

and many similar, is that Big Data methodologies may eventually be integrated into clinical 

records to enhance the evaluation of clinical interventions and service provision.  

 

1.5 AIMS AND STRUCTURE OF THIS THESIS.  
 

As described in the literature review, there has been a very limited number application of big 

data techniques which combine large scale data linkage and NLP approaches to clinical 

epidemiological studies of child mental health. As it is likely, at least within the foreseeable 

future, that administrative data resources will continue to grow, and the reliance of free text in 

electronic records will continue as the principle tool to communicate across youth orientated 

services, there is a need to examine how health care records can be exploited by novel big data 

techniques including data linkage and NLP methods to extend conventional epidemiological 

approaches in children and adolescents mental health. Furthermore, there is a need to 

understand what are the methodological and governance processes that may facilitate or 
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impinge on such use. Encompassed within this theme, the thesis contains a collection of self-

contained chapters, which all aim to test distinct hypotheses, summarised as follows: 

 

Chapter 2  

Children with autism spectrum disorders (ASD) are more likely to receive antipsychotic 

medication than any other psycho-pharmacological treatment. Prior work has established that 

a number of co-morbid conditions were associated with antipsychotic use in ASD, but a number 

of methodological issues limit the conclusions regarding which symptoms clinicians target 

when they prescribe antipsychotics to ASD children. In this study, I used electronic health 

records and NLP data extraction techniques to determine variables of interest to better exploit 

the information held in both structured and unstructured text.  I undertook a retrospective cohort 

study to examine which psychiatric co-morbidities were associated with antipsychotic use, 

after adjusting for a number of other potential confounders including aggression and self-

injury, which are the main symptomatic indicators for antipsychotic treatment.103  

 

Chapter 3  

During the analysis for study described in chapter 2, I became aware that many of the structured 

risk assessments within the clinical record were inadequate in distinguishing risk of suicide/ 

self-harming behaviours from the self-injurious behaviour associated with functional 

impairment and stereotypical behaviour in ASD.104 This prompted the study in this chapter, to 

investigate whether a recently constructed NLP tool for detecting suicidal related references in 

the free-text, could be adapted and validated within the ASD sample described in chapter 2.  

 

 Chapter 4  

This chapter builds on the methodology in chapter 2, but this time describes a study examining 

the effect of ASD as a co-morbidity on anti-psychotic treatment profiles in young people (i.e. 

age under 18) with early onset psychosis. In this longitudinal study, I aimed to investigate 

whether co-morbid ASD was associated with a pragmatic measure of poor antipsychotic 

treatment response in a large historical clinical cohort of children and adolescents with first-

episode psychosis. Previous studies had demonstrated that pre-morbid adjustment disorders 

within clinical samples were associated with poor prognostic factors in early onset psychosis. 

This suggested that the effect of specific neurodevelopmental conditions, such as ASD which, 

by definition, represents extreme manifestations of poor premorbid difficulties, may be 

associated with poor response to antipsychotics.  In this study, I tested the hypothesis that 
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young people with co-morbid ASD would be more likely to experience antipsychotic treatment 

failure. 

 

Chapter 5  

This chapter describes how I adapted and tested a recently validated NLP approach to extract 

negative symptoms of psychosis from the free text records of the early-onset psychosis cohort 

first introduced in chapter 4. Negative symptoms (NS) are an important prognostic risk factor 

established in adult-onset samples but rarely examined in early onset samples. To explore NS 

as potential prognostic indicator early onset psychosis, I examined whether NS at first episode 

predicted antipsychotic treatment failure. Work in adult-onset samples, suggests that NS 

characterizes psychotic disorders with non-dopaminergic pathophysiology, and lower 

responsiveness to current antipsychotics which block Dopamine receptors. Therefore, I 

predicted that children and adolescents with NS at presentation would be more likely to 

experience antipsychotic treatment failure. I also expected that this association would remain 

after taking account of potential confounders, including type of psychotic disorder, co-morbid 

depression, and additional markers of premorbid neurodevelopmental difficulties such as co-

occurring autism spectrum disorders, hyperkinetic disorder and intellectual disability. 

 

 

 Chapter 6  

One of the main limitations of only using secondary healthcare clinical health records to 

conduct epidemiological research, is the lack of a control population to reference (i.e. non-

cases). Without accurate population denominators, it is difficult to estimate diagnostic 

prevalence and incidence rates. Also, without a control group, it is difficult to estimate the 

effect of population based risk factors for psychiatric disorders, and the effect of psychiatric 

disorders on non-health related outcomes.  In this chapter I provide an overview of the work I 

undertook to overcome this by establishing the first linkage in England of routinely collected 

data between a large local regions child and adolescent health, education and social care 

services. In this chapter, I describe how the Clinical Record Interactive Search (CRIS) 

programme was used to join up data from health, education and social services for children 

living in four local authorities in South London to create two datasets: one linking acute general 

hospital data (NHS Digital Hospital Episode Statistics, HES) to children's mental health 

services and the second linking mental health data to education data (Department for Education 

National Pupil Database). I describe these resources, give examples of how they can be used 
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to improve services, and discuss what is needed to implement this approach more widely across 

the UK. 

 

 

Chapter 7  

Using the CRIS linkage to the National Pupil Database (NPD) as a case example, this chapter 

provides a comprehensive account of the ethical, legal and technical challenges of accurately 

linking routinely collected public service data to examine associations between childhood 

mental health disorders and school performance. I provide more detail on the samples of both 

CRIS and NPD datasets, the governance paths undertaken to establish the ethical and legal 

framework for establishing the linkage, the technical issues related to reducing linkage error, 

and statistical processes to reduce the potential effects of linkage error on risk factor-outcome 

associations.  

 

 

Chapter 8  

Using all the linked resources described in chapter 6, I illustrate how these data can be used to 

identify population risk factors for psycho-social outcomes. I demonstrate how multiple 

sources of health data can be used to better characterise variables that are captured measured 

in several routinely collected datasets (in this case self-harm), and how they can address some 

of the limitations regarding identification of self-injurious behaviours, revealed during the 

study conducted in chapter 2. I use linked HES-CRIS and linked NPD-CRIS to build a cohort 

of all secondary school age individuals resident in the four south London boroughs, I use 

longitudinal analyses to examine the incidence of adolescent self-harm presentations to 

accident and emergency, and examine whether ASD is a potential risk factor for self-harm.  
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CHAPTER 2. CLINICAL PREDICTORS OF 
ANTIPSYCHOTIC USE IN CHILDREN AND 
ADOLESCENTS WITH AUTISM SPECTRUM 
DISORDERS: A HISTORICAL OPEN COHORT 
STUDY USING ELECTRONIC HEALTH 
RECORDS 
 

The contents of this chapter have contributed to the following: 

 

Publication in a peer-reviewed journal  

 

Downs J, Hotopf M, Ford T, Simonoff E, Stewart R, Shetty H, Jackson R, Hayes RD. Clinical 

predictors of antipsychotic use in children and adolescents with autism spectrum disorders: a 

historical open cohort study using electronic health records. European Child and Adolescent 

Psychiatry 2016; 25: 649-658 
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2.1 SUMMARY  
 

Background: Children with autism spectrum disorders (ASD) are more likely to receive 

antipsychotics than any other psychopharmacological medication, yet the psychiatric disorders 

and symptoms associated with treatment are unclear. I aimed to determine the predictors of 

antipsychotic use in children with ASD receiving psychiatric care. 

 

Methods:  The sample consisted of 3482 children aged 3 to 17 with an ICD-10 diagnosis of 

ASD referred to mental health services between 2008 and 2013. Antipsychotic use outcome, 

comorbid diagnoses, and other clinical covariates, including challenging behaviours were 

extracted from anonymised patient records.  

 

Results: Of the 3482 children (79% male) with ASD, 348 (10%) received antipsychotic 

medication. The fully adjusted model indicated that comorbid diagnoses including hyperkinetic 

(OR 1.44, 95%CI 1.01-2.06), psychotic (5.71, 3.3-10.6), depressive (2.36, 1.37-4.09), 

obsessive compulsive (2.31, 1.16-4.61) and tic disorders (2.76, 1.09-6.95) were associated with 

antipsychotic use. In addition, clinician-rated levels of aggression, self-injurious behaviours, 

reduced adaptive function, and overall parental concern for their child’s presenting symptoms 

were significant risk factors for later antipsychotic use. 

 

Conclusions: In ASD, a number of comorbid psychiatric disorders are independent predictors 

for antipsychotic treatment, even after adjustment for familial, socio-demographic and 

individual factors.  As current trial evidence excludes children with comorbidity, more 

pragmatic randomised controlled trials with long term drug monitoring are needed.  
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2.2 INTRODUCTION  

  
Antipsychotics are the most common psychotropic medication prescribed to children with 

autism spectrum disorders (ASD).105 US based studies suggest between 20%-34% of children 

with ASD receive antipsychotics.106,107 Rates are lower in Europe, between 7-11%,108,109 but 

appear to be increasing.41 Two atypical antipsychotics in particular are most commonly used, 

risperidone and aripiprazole, which have been demonstrated to be effective in reducing 

“irritability” in children with ASD, but show limited impact on the core features of ASD.110     

 

Clinicians and families face a difficult task when deciding whether antipsychotic treatment is 

indicated. Evidence from antipsychotic trials in childhood ASD are derived from samples that 

bear little resemblance to children typically seen in clinical practice, as they exclude children 

with formally diagnosed psychiatric comorbidity.111 Another problem is the almost exclusive 

focus of trials on irritability as a target symptom in ASD. Irritability is a highly prevalent 

symptom in clinical settings, it has no standard taxonomy, and is associated with most 

childhood mental health problems.112  Therefore, based on trial evidence, the type and severity 

of childhood ASD related irritability symptoms, which warrant antipsychotic treatment, are 

unclear. Furthermore, antipsychotic medication does not have UK marketing authorisation for 

use in childhood ASD, although risperidone is licenced for use in the short-term management 

of aggression in children with conduct disorder.113 Balancing antipsychotic risk benefit profiles 

are further complicated by little safety evidence being available for children with ASD.114,115 

Antipsychotic use for children in general is associated with a number of adverse health 

outcomes, most commonly extrapyramidal side effects, obesity and hyperprolactinaemia.116 

Given the limited evidence base, NICE guidelines advocate cautious antipsychotic prescribing 

in children with ASD and only to treat severe challenging behaviours (also known as 

‘behaviours that challenge’) such as aggression, self-injury and impulsive/ dangerous 

behaviours.103   

 

It remains unclear how current evidence, licensing and guidance for antipsychotic use in 

children with ASD are applied clinically.117 There are very few UK based naturalistic studies 

of prescribing in children with ASD, and, as yet, no examinations of the diagnostic predictors 

of antipsychotic use.108 Comorbid psychiatric disorders are common (and frequently multiple) 

in children with autism spectrum disorders and may be targets for intervention.118 Current 
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knowledge is largely based on parent reports in US surveys which indicate that antipsychotics 

are used predominantly to treat comorbid diagnoses (e.g. depression, bipolar, anxiety, conduct 

disorder and attention deficit hyperactivity disorders) in children with ASD.106,107 However, 

these findings may not generalize to non-US clinical populations as US antipsychotic 

marketing,119 prescribing policy 120,121 and practice differ markedly to the other Western 

Countries.105,122 Given that the majority of the aforementioned studies report cross-sectional 

findings from retrospective parental accounts of both comorbidity and past medication use, the 

direction of effect is unclear, and recall bias may obscure true prescribing patterns. 

Furthermore, these studies do not account for important confounding factors, such as psychosis, 

adaptive function, and intellectual disability which may lead to an overestimate of the 

association between certain comorbidities and antipsychotic use.  

 

To clarify how antipsychotics are used use in childhood ASD, I explored the clinical factors 

that predicted antipsychotic prescribing. I conducted a historical cohort study using the 

anonymised electronic health records of children with ASD treated by UK child and adolescent 

mental health services (CAMHS). As challenging behaviours (or ‘behaviours that challenge’) 

are symptoms that cut across most childhood psychopathology, I hypothesized that the 

common psychopathologies comorbid with ASD including hyperkinetic, oppositional and 

conduct, depression and anxiety disorders, would all show longitudinal associations with 

antipsychotic use. I also examined whether associations between comorbidity and 

antipsychotics were attenuated after I controlled for challenging behaviours, given that these 

are the most common non-psychotic symptoms formally recognized as targets for antipsychotic 

treatment by current national ASD management guidelines.103  

 

2.3 METHODS  
2.3.1 Study Setting 
 

This study used data extracted from the anonymised, electronic clinical records of children 

referred to South London and Maudsley NHS Foundation Trust (SLaM) between 1st January 

2008 and 31st December 2013. Over this period, the SLaM provided all aspects of specialist 

mental healthcare to a catchment population of approximately 280,000 children resident within 

four London boroughs (Lambeth, Southwark, Lewisham, Croydon).  In addition to the district 

services, SLaM provided specialist inpatient and outpatient ASD assessment and treatment 

services for young people from across the UK. Each borough had a dedicated multidisciplinary 

service for children, which accepted referrals for school age children (4 to 18 years; 
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exceptionally cases are accepted below this age) with suspected or previously confirmed ASD, 

displaying emotional or behavioural difficulties. Children were referred from primary care, 

child health, and educational and social care services, and typically underwent a 

multidisciplinary assessment by CAMHS clinicians. Primary and secondary psychiatric 

disorders were diagnosed by CAMHS using the ICD-10 multi-axial classification system.123 

Semi-structured validated assessments, for example the Autism Diagnostic Observation 

Schedule (ADOS)124 were used if an ASD diagnosis was unclear after initial assessment. 

Compared with expert consensus, there is a high specificity for ASD diagnoses by clinicians 

working at a district level.125 Socio-demographic characteristics and clinical information were 

recorded using computerised assessment pro-forma, which included the Strengths and 

Difficulties Questionnaire (SDQ).126  

 

The Clinical Record Interactive Search (CRIS) system 

The CRIS system was used to provide an anonymised, electronic mental health records 

database to search on structured data and free text fields on over 35,000 child and adolescent 

cases referred to SLaM services. The CRIS system derives its data from the SLaM Patient 

Journey System (ePJS), a locally developed electronic health record (EHR) system designed to 

capture all clinical activity conducted by SLaM staff.  Since 2007, all clinical information 

relating to CAMHS services have been held within ePJS. This has included risk and clinical 

assessment proforma, medication, clinical correspondence, progress notes, admission, 

discharge and outpatient appointment dates – both in structured fields , where data entry options 

are limited to a fixed selection of categories, and unstructured fields where data are entered as 

freely written text, such as a clinic letter.127 

 

 In 2008, the CRIS system was developed, which de-identified ePJS records by masking patient 

identifiers with a string of text, ZZZZZ for patients, and QQQQQ for carer identifiers. 

Although, this method did not completely anonymise the records – an evaluation found around 

1 in 500 documents did reveal some personal identifiers 128 – it was granted NHS research 

ethics committee approval to conduct analyses on the de-identified data for the purposes of 

mental health research and audit.129 The CRIS system was designed with robust governance 

structures, including a patient led oversight committee to review and minimise the risk of 

statistical disclosure of proposed research projects, regular patient and public facing 

engagement events, robust auditing, and requiring NHS research passports for researchers 

wishing to use the de-identified data.  
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The data in CRIS mirrors the information recorded in ePJS. CRIS stores these data in a 

relational database in different data tables. For example, there are dedicated tables for 

medication data, patient referral data, and progress note data. CRIS enables, patient attributes 

of interest (a risk or outcome variable) to be provided as a file for retrospective cohort or cross-

sectional analyses. For researchers wanting to access the data, two interfaces are made 

available. One a web‐based search engine powered by the Microsoft FAST system which 

allows researchers to perform google-like key word searches over the entire patient record. For 

example, a key word search of “Autism” would provide every document, nested at a patient 

level, that contained the term “Autism”. This interface is built to enable researchers to validate 

data extracts, for example by reading the document from which a patient variable/ attribute has 

been derived. The second interface is a SQL Server Management Studio interface, which 

allowed users, commonly supported by CRIS informaticians, to write more complex data 

queries using SQL code, and extract relevant data.  

 

In this study, Generalised Architecture for Text Engineering (GATE), a natural language 

processing architecture was also applied to extract data from the free text tables containing 

progress notes and correspondence, and combine it with structured data held within the SQL 

database. GATE has been comprehensively described elsewhere.130,131 Briefly, it is a 

technically complex and powerful NLP tool, which allows for a variety of NLP approaches to 

be combined to enable key words within a document to be identified and categorised. The 

GATE application used in this study was designed to extract antipsychotic prescription 

information data from free-text, such as drug name, the status of the prescription (start date) 

and the date and the relative nature of the prescription (current, in the past, or planned for the 

future).129 

 

 

2.3.2 Study sample 
Cases were part of an open clinical cohort (entering and leaving the study at different time-

points) and included children aged 3-17 years with a diagnosis of ASD (International 

Classification of Diseases, 10th Revision (ICD-10) F84.0, F84.1, F84.5, F84.9)123 recorded 

between 1st January 2008 and 31st December 2013. Children were excluded if any past course 

of antipsychotic treatment was noted in the clinical record in the year prior to the observation 

period. 
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2.3.3 Measurements 
 

Outcome: antipsychotic use 

Antipsychotic use outcome data were extracted from free text fields held in the SLaM Case 

Register, the SLaM pharmacy dispensing database and structured medications fields in the 

electronic health record. Drug names listed in table 2.1, including common misspellings and 

abbreviations were identified using validated rules based Natural Language Processing (NLP) 

approaches via GATE software extraction.132 Antipsychotic use was measured during the 

observation period (01/01/2008-31/12/2013).  

 

Table 2.1 British National Formulary names used to categorise antipsychotic 
medication with the electronic record  
 

Generic drug name Trade name 

Amisulpride Solian 

Aripiprazole Abilify 

Asenapine Sycrest 

Benperidol Anquil/Benquil 

Chlorpromazine Largactil 

Clozapine Clozaril/Denzapine/Zaponex 

Flupentixol/Flupenthixol Depixol / Fluanxol 

Fluphenazine Modecate 

Haloperidol Dozic/Haldol/Serenace/Haldol 

Levomepromazine Nozinan 

Olanzapine Zyprexa / ZymAdhera 

Paliperidone Invega / Xeplion 

Pericyazine/Periciazine Neulactil 

Perphenazine Fentazin 

Pimozide Orap 

Pipotiazine Palmitate 

Prochlorperazine (Buccastem/Stemetil) 

Promazine Promazine 

Quetiapine Seroquel 

Risperidone Risperdal 

Sulpiride Dolmatil/Sulpor/Sulpitil/Sulparex 

Trifluoperazine Stelazine 

Zuclopenthixol Clopixol/Acuphase 

 

Recorded antipsychotic use was categorised as a binary present/absent outcome. The NLP 

application used to extract data on antipsychotic use were validated against manual review of 
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300 randomly selected records resulting in precision (positive predictive value) and recall 

(sensitivity) statistics of 0.98 and 0.97 respectively for current use. The SLAM CAHMS 

decision date to prescribe antipsychotics was accurate in 89.3% to a month error margin, 95.4% 

within three months. 

 

Exposure: psychiatric comorbidity & intellectual disability 

The main exposure was ICD -10 recorded comorbid psychiatric diagnoses, which were 

extracted from free text and structured fields. ICD-10 Axis one comorbid diagnoses were 

categorized into: psychotic (F1x.5, F20–F29, F31, F32.3, F33.3), depressive disorders (F32), 

anxiety, stress and emotional (F40-41, F43-F48, F93), obsessive-compulsive (F42), 

hyperkinetic (F90), oppositional defiant and conduct (F91-F92) and tic (F95). Low frequency 

psychiatric diagnoses were collapsed into a single category labelled “Other”. In addition, 

children were categorised according to presence of an ICD-10 Axis three diagnosis of 

intellectual disability (F70-F79).  

 

Prescribing decisions were recorded contemporaneously, but there was often a short 

administrative lag before diagnostic reports appeared in the electronic medical record. These 

reports contained detailed clinical assessments conducted during the pre-medicated period. To 

permit inclusion of these longitudinally collected clinical data, but also ensure comorbidity 

exposures occurred prior to antipsychotic use, co-morbid diagnoses were only coded as present 

if they were recorded before, or up to 30 days after, recording of antipsychotic medication.  

 

Covariates: 

All covariates were extracted from the medical record during the initial CAMHS assessment 

period, and prior to antipsychotic use. Measures of challenging behaviours were taken from 

the SLaM risk assessment proforma. I chose assessment items with high face validity for 

challenging behaviours, as described by expert consensus in national guidance,103including 

physical aggression against self (self-injury), violence and aggression to others or property 

(aggression), harm through loss of self-care such as not drinking or eating (self-neglect), 

impulsive and dangerous acts (high-risk behaviours), and habitual behaviours related to 

intellectual disability such as rocking or skin picking that can cause injury (ID related harm). 

Clinicians rated severity along a 4-point categorical scale: ‘None’, ‘Low’, ‘Moderate’, or 

‘High’. For ease of clinical interpretation and to ensure adequate numbers in each category, 

this scale was converted into a binary variable for each behaviour domain (Moderate or High 

rating categorised as High risk=1; None or Low ratings, low risk=0). Children’s adaptive 
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functioning was rated using Children's Global Assessment Scale (CGAS) 133, except for those 

children with significant ID, where the Developmental Disabilities-CGAS was used in some 

cases.134 Higher scores (range 0-100) are associated with better functioning.  

 

Demographic and family covariates consisted of gender, ethnicity, history of parental mental 

illness, and clinician-rated levels of parental concern for their child’s symptoms at their initial 

presentation to CAMHS, which were retrieved using CRIS from structured fields in the source 

dataset. Age at CAMHS assessment was calculated at the date of the first recorded diagnosis 

of autism spectrum disorder within the clinical record. UK Census data provided small area 

(average 400 households) level deprivation scores.135 

 

Emotional, hyperactive and conduct problem domains were assessed via the caregiver versions 

of the 25-item Strengths and Difficulties Questionnaire which has sound psychometric 

properties in clinical samples.136 These were available in the clinical record for a third of the 

sample (n=1234, 35%).  

 

2.3.4 Analysis 
 

To authenticate clinically-recorded common comorbid conditions (depression and anxiety, 

hyperkinetic and conduct disorders) I used a sub-group of the cohort with completed SDQs 

(n=1234). Independent sample t-tests were used to test for statistical differences in parental 

reported SDQ psychopathology subscale scores (emotional, hyperactivity, conduct problem 

subscales) for children with and without these common comorbid conditions.  

 

Logistic regression was used to examine whether antipsychotic use was predicted by 

demographic characteristics, psychiatric comorbidities, intellectual disability, adaptive 

function, behaviours that challenge, parental characteristics and neighbourhood deprivation. 

Multivariable analyses were then conducted to examine the effect of each of these variables on 

antipsychotic use after adjusting all other individual and contextual covariates (listed in table 

2.2). The following sensitivity analyses were carried out: i) using non-aggregated challenging 

behaviours categories (4 levels) as the binary variable may have introduced residual 

confounding; ii) excluding those who came from outside the local catchment (these individuals 

may have had substantial contact with non-SLaM services not represented in the CRIS source 

dataset); iii) selecting those with only one comorbid disorder and modelling the effect of a 



 58 

single comorbidity on antipsychotic use (without adjusting for the full set of covariates). All 

analyses were conducted using Stata version 12. 

 

 

2.4 RESULTS 
 

2.4.1 Demographic and clinical characteristics of the sample 
 

Over the six-year observation period, I identified 3482 children aged below 18 years (2686 

male and 796 female) with a diagnosis of ASD. The mean (SD) exposure to child mental health 

services, defined as the time between the date of recorded ASD diagnosis and the end of the 

observation period or date of 18th Birthday (whichever sooner) was 968 (597) days. Three 

hundred and forty-eight children were prescribed antipsychotics, mainly risperidone (55%, 

n=191) and aripiprazole (32%, n=112). All were receiving adjunctive psycho-social 

interventions. Table 2.2 shows the characteristics of the total sample and those prescribed 

antipsychotics. Nearly 75% of children prescribed antipsychotics were in the adolescent age 

range (age: 13-18 years), representing a 6-fold risk (OR 6.29, 95% C.I 3.40-12.1) relative to 

early childhood (age: 3-6 years).  

 

ICD -10 recorded comorbid psychiatric diagnoses were present in 54% of the sample, a quarter 

diagnosed with a hyperkinetic disorder, and 20% diagnosed with intellectual disability. Table 

2.3 provides further details of comorbid psychiatric diagnoses by antipsychotic use.  

Antipsychotics were prescribed to approximately half of children with ASD and psychotic 

disorder, and over a quarter of children diagnosed with obsessive compulsive disorder, or tic 

disorders.  
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Table 2.2 Individual and contextual characteristics of 3482 children with autism 
spectrum disorders and antipsychotic use referred to local and specialist Child and 
Adolescent Mental Health Services. 
 

 Total sample (n=3482) 
Sample receiving antipsychotics 

(n=348) 
 

Male 2686 (77.1%) 249 (71.6%) 
Female 796 (22.9%) 99 (28.4%) 
 

Child age category At CAMHS assessment At antipsychotic use 
 n (%) mean (s.d) n (%) mean (s.d) 
   Early(3-6yrs) 362 (10.4%) 4.9 (0.77) 3 (0.9%) 5.7 (0.3) 

   Mid (6-12 yrs) 1664 (47.8%) 9.0 (1.69) 89 (25.6%) 9.6 (1.4) 

   Late (13-17 yrs) 1456 (41.8%) 14.8 (1.66) 256 (73.5%) 15.1 (1.6) 
 

Ethnicity 
   White British  

 
1683 (48.3%) 

 
208 (59.8%) 

   White Other 170 (4.9%) 11(3.2%) 
   East Asian 68 (2.0%) 9 (2.6%) 
   British/ Black African 651 (18.7%) 57 (16.4%) 
   British/ Black Caribbean 130 (3.7%) 5 (1.4%) 
   Mixed Heritage 386 (11.1%) 37 (10.6%) 
   South Asian 84 (2.4%) 11 (3.2%) 
   Not Stated 310 (8.9%) 10 (2.8%) 
 

Adaptive function: Children’s Global Assessment Scale (CGAS)a  
   0-25 (most impaired) 174 (5.7%) 50 (15.0%) 

   25-50 1346 (43.8%) 219 (65.6%) 
   50-75 1465 (47.7%) 62 (18.5%) 
   75-100 89 (2.90%) 3 (0.9%) 
 

Challenging Behaviours 
   Self injuryb 

474 (16.7%) 129 (43.0%) 

   ID related harmc                 1097 (40.7%) 150 (51.4%) 
   Aggressiond   1165 (40.3%) 210 (67.7%) 
   Self neglecte                     300 (10.5%) 77 (25.0%) 
   High risk behavioursf      654 (23.1%) 140 (46.5%) 
 

Family Characteristics   

   Caregiver mental illnessg             685 (22.9%) 73 (22.8%) 
   Caregiver Substance Misuse g    201 (6.7%) 16 (5.0%) 
   Parental Concernh                   2033 (69.9%) 278 (89.4%) 
 

Neighbourhood Characteristicsi   
   Level of Deprivation (Tertiles)   
   1st (least deprived) 1064 (32.8%) 142 (44.4%) 
   2nd 1093 (33.7%) 95 (29.7%) 
   3rd (Most Deprived)  1089 (33.6%) 83 (25.9%) 
* Missing cases =   a408 b640   c785  d593  e 620  f653  g488 h 573 i236 
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Table 2.3 Prevalence of comorbid psychiatric disorder and antipsychotic treatment in 
3482 children with autism spectrum disorders 
 

ICD-10 Disorder Total sample (n=3482) 
Sample receiving 

antipsychotics (n=348) 

Any comorbid disorder 1897 (54.5%) 285 (81.9%) 

Hyperkinetic 862 (24.8%) 121 (34.8%) 

Oppositional and Conduct 256 (7.3%) 51 (14.7%) 

Depression 154 (4.4%) 36 (10.3%) 

Anxiety, Emotional and Stress 279 (8.0%) 45 (12.9%) 

Obsessive Compulsive 97 (2.8%) 26 (7.5%) 

Tic 51 (1.5%) 13 (3.7%) 

Psychosis 116 (3.3%) 54 (15.5%) 

Intellectual Disability 656 (18.8%) 114 (32.8%) 

Other ** 129 (3.7%) 18 (5.2%) 

** remaining, rarely occurring diagnoses, were collapsed into a single category labelled Other (includes ICD-

10 F50 eating disorders, F04-09 organic disorders, F1x.1-4 substance misuse, F94.1-2 attachment disorders) 

 

2.4.2 Authentication of co-morbid diagnoses against the SDQ  
 

In the authentication analyses, I found that ASD children diagnosed with comorbid emotional 

(depression and anxiety), hyperkinetic or conduct disorders had significantly higher SDQ 

subscales scores within their respective SDQ domains (emotional, hyperactive, conduct) 

compared with children without the respective comorbid diagnosis (see table 2.4). This sub-

sample (n=1234) were broadly representative with the remaining cohort.  Male gender (77.9% 

vs 76.8%) mean age at recorded ASD diagnosis (10.5 vs 11.2 years), White British (43.5% vs 

46.3%) SDQ relevant clinical diagnoses: Emotional disorder (15.1% vs 12.8%) and 

Hyperkinetic (23.2% vs 27.2%), Conduct (6.4% vs 7.9%); and antipsychotic use (9.4% vs 

10.3%). 
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Table 2.4 Comorbid disorders diagnosed by clinicians and validated against parental 
Strength and Difficulties Questionnaire subscale score in sub-sample of children with 
ASD (n=1234) 
 

 
 
Clinical Diagnoses 

SDQ subscale, n=1234 
(mean, SD) 

Emotional Conduct Hyperactivity 
Depressive and Emotional Disorders 
 
       Depressive disorders (F32), Anxiety,     
        stress and emotional (F40-41, F43- 
        F48, F93), Obsessive-compulsive  
        (F42) 

Present (n=171) 6.5(2.8)a 3.72(2.5) 6.35(2.8) 

Absent(n=1063) 4.6(2.5)a 4.25(2.5) 7.36(2.5) 

 
Externalizing Disorders 
 
     Oppositional / Conduct Disorders 
     (F91-F92) 

 
 
 

Present (n=81) 

 
 
 

5.27(2.7) 

 
 
 

6.0(2.5)b 

 
 
 

7.61(2.3) 

Absent(n=1153) 4.85(2.8) 4.14(2.5)b 7.19(2.6) 

     

ADHD (Hyperkinetic, F90) 

Present (n=345) 4.52(2.8) 5.24(2.5) 8.44(1.9)c 

Absent(n=889) 5.02(2.8) 3.88(2.4) 6.74(2.7)c 

 

a t =8.57, p<0.001     b t = 6.5, p<0.001   c t =10.8, P<0.001       

 
 
2.4.3 Socio-demographic and clinical factors and their associations with antipsychotic 
treatment 
 

In the adjusted model, positive associations with antipsychotic use remained significant for age 

at the time of assessment, clinician-rated aggression, self-injurious behaviour, and high 

parental concern for their child’s symptoms at initial presentation (see table 2.5). In addition, 

adaptive function and the presence of caregiver substance misuse showed strong inverse 

associations with antipsychotic use. Associations with ethnicity, caregiver mental illness and 

neighbourhood deprivation were non-significant.  
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Table 2.5 Multivariable model of antipsychotic use in children with ASD by socio-
demographic characteristics and other covariates 
 

  
*aO.R, adjusted Odds Ratio, adjusting for socio-demographic and parental and neighbourhood characteristics,  

challenging behaviours, adaptive function and co-existing ICD-10 Mental and behavioural disorder groupings : 

hyperkinetic (F90), depressive disorders (F32), psychosis (F1x.5, F20–F29, F31, F32.3, F33.3), Oppositional and 

Conduct (F91-F92), anxiety, stress and emotional (F40-41, F43-F48, F93), Obsessive-compulsive (OCD, F42), 

Tic (F95), Intellectual Disability (ID, F70-F79) and Other psychiatric diagnosis.  

 

 

Patient characteristics 
O.R (95% CI) 

(n=3482) 
P  

 

aO.R (95% CI)* 

 

P 

      

Female sex (vs male) 1.39 (1.09-1.79) 0.009  1.02(0.71-1.46) 0.89 

Age at CAMHS assessment 1.18 (1.15-1.23) <0.0001  1.11(1.05-1.16) <0.001 

Ethnicity 

    White British 

 

reference 
    

    White Other 0.49(0.26-0.92) 0.026  0.62(0.24-1.55) 0.31 

    East Asian 1.08(0.52-2.21) 0.83  0.91(0.35-2.31) 0.84 

    British/ Black African 0.68(0.50-0.92) 0.014  1.14(0.73-1.78) 0.55 

    British/ Black Caribbean 0.28(0.11-0.70) 0.006  0.56(0.21-1.54) 0.26 

    Mixed Heritage 0.75(0.52-1.09) 0.13  0.78(0.46-1.32) 0.36 

    South Asian 1.06(0.56-2.05) 0.84  1.26(0.47-3.32) 0.70 

   Not stated 0.24(0.12-0.45) <0.001  0.27(0.09-0.80) 0.02 

Adaptive function: Children’s 

Global Assessment Score 

(CGAS) 

0.95(0.94-0.95) <0.0001  0.96(0.95-0.97) <0.0001 

Challenging Behaviours      

      Self-injury                                        4.80(3.72-6.20) <0.0001  1.85(1.30-2.63) <0.0001 

     ID related harm                  1.63(1.27-2.07) <0.0001  0.72(0.49-1.06) 0.10 

     Aggression                                      3.57(2.77-4.59) <0.0001  2.14(1.50-2.06) <0.0001 

     Self-neglect  3.48(2.61-4.67) <0.0001  1.20(0.78-1.80) 0.35 

     High risk behaviours  3.40(2.66-4.35) <0.0001  1.22(0.86-1.73) 0.27 

Family Characteristics      

   Caregiver mental illness 1.0(0.75-1.31) 0.98  0.87(0.60-1.26) 0.47 

   Caregiver Substance Misuse 0.71(0.42-1.20) 0.20  0.57(0.30-1.08) 0.09 

   High Parental Concern                    4.05(2.79-5.85) <0.0001  2.02 (1.27-3.22) 0.003 

Neighbourhood Characteristicsi     

    1st (least deprived) reference     

    2nd 0.62(0.47-0.81) 0.001  0.82(0.56-1.19) 0.31 

    3rd (Most Deprived)  0.54(0.40-0.71) <0.0001  0.91(0.62-1.35) 0.65 
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Table 2.6 shows that a number of comorbid ICD-10 mental disorders, even after adjustment 

for all other covariates and comorbidities, remained significantly associated with antipsychotic 

use including hyperkinetic (OR 1.44, 95%CI 1.01-2·06), psychotic (OR 5.71, 3.3-10.6), 

depressive (2.36, 1.37-4.09), obsessive compulsive (2.31, 1.16-4.61) and tic disorders (2.76, 

1.09-6.95). These associations remained when antipsychotic use was compared between ASD 

children with no-comorbidity with those who only had the specific comorbidity alone, rather 

than multiple comorbidities (for example, only comorbid hyperkinetic disorder, see table 2.7).   

 

Table 2.6 Multivariable model of antipsychotic use in a cohort of children with ASD by 
psychiatric comorbidity (n=3482) 
 

ICD-10 Disorder O.R (95% CI) P aO.R* (95% CI) P 

Any comorbid 

disorder 
4.27(3.22-5.66) <0.0001 -   

Hyperkinetic 1.73(1.36-2.18) <0.0001 1.44(1.01-2.06) 0.042 

Oppositional and 

Conduct 
2.47(1.77-3.43) <0.0001 1.55(0.96-2.51) 0.073 

Depression 2.95(1.99-4.36) <0.0001 2.36(1.37-4.09) 0.002 

Anxiety, 

Emotional and 

Stress 

1.84 (1.31-2.59) <0.0001 1.20(0.72-1.98) 0.484 

Obsessive 

Compulsive 
3.48(2.19-5.53) <0.0001 2.31(1.16-4.61) 0.017 

Tic 3.16(1.67-5.99) <0.0001 2.76(1.09-6.95) 0.032 

Psychosis 9.1 (6.19-13.4) <0.0001  5.71(3.28-10.6) <0.0001 

Intellectual 

Disability 
2.33(1.82-2.97) <0.0001 1.68(1.11-2.53) 0.015 

Other ** 1.49 (0.89-2.48) 0.13 1.62(0.83-3.16) 0.157 

 

*aO.R, adjusted Odds Ratio, adjusting for socio-demographic and parental and neighbourhood 

characteristics,  challenging behaviours, adaptive function and co-existing ICD-10 Mental and 

behavioural disorder groupings : hyperkinetic (F90), depressive disorders (F32), psychosis (F1x.5, 

F20–F29, F31, F32.3, F33.3), Oppositional and Conduct (F91-F92), anxiety, stress and emotional 

(F40-41, F43-F48, F93), Obsessive-compulsive (OCD, F42), Tic (F95), Intellectual Disability 

(ID, F70-F79) and Other psychiatric diagnosis.  

** remaining, rarely occurring diagnoses, were collapsed into a single category labelled Other 

(includes ICD-10 F50 eating disorders, F04-09 organic disorders, F1x.1-4 substance misuse, 

F94.1-2 attachment disorders) 
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2.4.4 Sensitivity analysis  
 

Specified sensitivity analyses that used non-aggregated behaviour categories produced little 

change to the overall pattern of results in the fully adjusted models, with the direction and 

magnitude of effect being consistent across the comorbidities. Similarly, removing the children 

resident outside the local catchment area from the sample (n=1170, 33%) produced little 

change, with the exception that oppositional defiant and conduct disorder, produced imprecise 

estimates related to the very low number of children prescribed antipsychotics.  

 

Table 2.7 A comparison of antipsychotic treatment between children with no 
comorbidity and singleton comorbid disorder only in Autism Spectrum Disorders.  
 

ICD-10 Disorder 

No 

antipsychotics 

n (%) 

Received 

antipsychotics  

n (%) 

O.R (95% C.I.) P 

ASD (no comorbid disorder) 1522 (96.0)          63(4.0)  reference  

Singleton comorbid  

disorder 
            

     Hyperkinetic 454 (91.4) 43 (8.7) 2.29 (1.53-3.41) <0.0001 

Oppositional and Conduct 73 (93.6) 5 (6.4) 1.65 (0.64-4.23) 0.29 

     Depression 59 (81.9) 13 (18.1) 5.32 (2.77-10.2) <0.0001 

     Anxiety, Emotional and     
     Stress 

136 (95.1) 7 (4.9) 1.23 (0.55-2.77) 0.59 

     Obsessive Compulsive 51 (82.3) 11 (17.7) 5.21 (2.59-10.5) <0.0001 

     Tic 20 (86.9) 3 (13.0) 3.61 (1.04-12.5) 0.03 

     Psychosis 17 (42.5) 23 (57.5) 32.7 (16.6-64.2) <0.0001 

     Intellectual Disability 329 (85.7) 55 (14.3) 4.04 (2.75-5.91) <0.0001 

     Other ** 43 (95.6) 2 (4.4) 1.12 (0.27-4.74) 0.87 

 

*aOR, adjusted Odds Ratio, adjusting for socio-demographic and parental and neighbourhood characteristics,  

challenging behaviours, adaptive function and co-existing ICD-10 Mental and behavioural disorder groupings 

: hyperkinetic (F90), depressive disorders (F32), psychosis (F1x.5, F20–F29, F31, F32.3, F33.3), Oppositional 

and Conduct (F91-F92), anxiety, stress and emotional (F40-41, F43-F48, F93), Obsessive-compulsive (OCD, 

F42), Tic (F95), Intellectual Disability (ID, F70-F79) and Other psychiatric diagnosis. 

** remaining, rarely occurring diagnoses, were collapsed into a single category labelled Other (includes ICD-

10 F50 eating disorders, F04-09 organic disorders, F1x.1-4 substance misuse, F94.1-2 attachment disorders) 
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2.5 DISCUSSION 
 

In the largest study to date using non-administrative, clinical mental health records in ASD, I 

found antipsychotic prescribing for children with ASD was strongly associated with 

comorbidity. Intellectual disability and psychiatric comorbidities, including hyperkinetic, 

depression, psychotic, obsessive compulsive and tic disorders, were all associated with 

antipsychotic treatment, even after controlling for clinician-rated challenging behaviour 

symptoms at initial assessment. I also found increasing age, aggression, self-injurious 

behaviour, level of adaptive function, and parental concern were all significant predictors of 

antipsychotic use.   

 

The observed association between antipsychotic use and age is consistent with previous ASD 

studies.106,137 Over two-thirds of children treated with antipsychotics were adolescents. This 

highlights the need for more trials that include this age group but also suggests that treatment 

acceptability, and hence trial recruitment, will be more feasible than in younger children. Social 

factors also appeared to play a role; clinicians who perceived greater parental concern for 

children’s presenting symptoms were more likely to prescribe antipsychotic treatment. I was 

not aware of any prior studies that measure parental influences on antipsychotic use in ASD, 

however the study finding is consistent with previous work that show a positive association 

between parental strain and medication treatment for childhood disruptive disorders.138 

Consistent with several other investigations in clinical samples,139,140 the unadjusted analyses 

suggests that there may be discrepancies between ethnic groups regarding prescribing 

antipsychotic medication to children. However, in keeping with a more recent study on 

psychotropic use in children, I found that after adjustment for markers of clinical severity, 

ethnicity was no longer significantly associated with antipsychotic use.141 

 

Using a historical cohort design in a clinical sample of children with ASD, this is the first 

longitudinal study of challenging behaviours and psychiatric comorbidity profiles as predictors 

of antipsychotic use. The results suggest that clinicians are using antipsychotics where they are 

known to be efficacious;110  to target aggression and self-injurious behaviours. Many studies 

so far have been hindered by parental report of comorbidities and medication use, retrospective 

or cross sectional design, or the confounding effect of unmeasured psychiatric symptoms and 

disorder severity not being accounted for.106,107,142 In addressing these limitations I found that, 

unlike a number of US studies, antipsychotics were not significantly associated with comorbid 

emotional disorders.106,107,142 
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2.5.1 Strengths 
 

This study has a number of strengths: I used longitudinally collected clinician recorded data in 

an unselected population of children and adolescents with ASD referred to CAMHS to study 

off-label antipsychotic use. This avoids the non-response or recall bias issues that may arise in 

surveys of parents. The sample included the entire psychiatric population of four south London 

boroughs for school age children (4 to 18 years) with suspected or previously confirmed ASD 

and displaying emotional or behavioural difficulties, in addition to children from other areas 

of the UK referred to National & Specialist services. However, because I studied a cohort 

enriched by national referrals, the prevalence of psychiatric comorbidity and antipsychotic 

treatment should not be taken as representative of the children with ASD in the general 

population.  

 

2.5.2 Limitations 
 

This study has limitations. First, an ASD diagnosis may ‘overshadow’ other psychiatric 

diagnoses and reduce the likelihood of clinicians recording additional psychiatric diagnoses. 

For example, ICD-10 criteria preclude the diagnosis of hyperkinetic disorder being given once 

ASD is established, which may lead to an underestimate of the association between 

hyperkinetic comorbidity and antipsychotic use. That said, many clinicians override this 

instruction based on recent evidence from clinical and treatment studies. Second, the type of 

assessment and treatments offered to families may vary by clinician. In the analysis, I lacked 

detailed information about the assessing and prescribing clinician and could not account for 

variation in practice. Third, I did not include physical comorbidities (e.g. epilepsy, obesity), 

other pharmacological treatments or duration of psycho-social interventions which may act as 

potential confounders to antipsychotic use. Fourth, I did not apply a research scale to measure 

challenging behaviours,143 and the items I used lacked key contextual information, for example 

the timing, frequency or intentionality of the challenging behaviour – when was the self-injury 

conducted, was there wilful intent to self-harm, was it conducted with suicidal intention? 

Instead, I used risk assessment items commonly mandated for use in clinical mental health 

services,144 which could likely aid study replication in other UK settings.  Fifth, I coded 

comorbid disorders preceding and up to 30 days post antipsychotic use, which prevented the 

exclusion of pre-medication diagnostic reports. Theoretically, this could introduce an observer 

bias, as the intensity of observation by the CAMHS service post antipsychotic treatment may 

increase a child’s risk of having a clinically recorded comorbid disorder. However, iatrogenic 

comorbid psychiatric conditions are very unlikely to develop or be recorded within this short 
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timeframe. Last, due to limitations in the free text coding and extraction process, I cannot 

exclude residual confounding as an influence on the findings, especially within the broad 

diagnostic categories of psychotic disorder or intellectual disability. I was unable to accurately 

categorise the degree of intellectual disability, nor characterise the severity or duration of 

psychotic disorder from the electronic health records. However, I did address potential 

confounding due to severity of psychotic disorders and intellectual disability to some extent by 

the inclusion of Children’s Global Assessment Score as a covariate in the final multivariable 

models. Residual confounding may remain nonetheless.  

 

The findings reflect the complexity of assessing and treating comorbid psychiatric disorders in 

ASD. For example, ASD and psychotic disorders pose a common diagnostic challenge to 

clinicians given their overlapping characteristics and high potential for co-occurrence.145,146  I 

found only 47% of children with ASD and psychosis received antipsychotics. This low 

treatment rate may be due diagnostic uncertainty.  Children with ASD may be more likely to 

have their diagnosis of psychosis withdrawn after further clinical assessment, and before the 

initiation of antipsychotic treatment. A second reason may relate to clinicians, children and 

their families deciding that some psychotic symptoms in ASD do not warrant antipsychotic 

treatment. Evidence that may dissuade those from starting antipsychotic treatment include 

findings from longitudinal studies, which show fluctuating psychotic symptoms in children 

with features of autism can have a relatively benign course.147,148   

 
2.5.3 Conclusions 
 

The study findings provide a detailed account of current antipsychotic prescribing practices in 

a clinical population of children with ASD, which show that aggression and self-injurious 

behaviours are significantly associated with antipsychotic use. Irritability may be an underlying 

treatment target driving the association between these behaviours and antipsychotic treatment.  

It may also underlie the associations I found between antipsychotic use and hyperkinetic, 

depressive and obsessive-compulsive disorders. Alternatively, disorder specific symptoms may 

be targeted. For example trial data has shown risperidone and aripiprazole both significantly 

reduce hyperactivity and obsessional compulsive symptoms in ASD.143,149 The study findings 

highlight the need for further research in childhood ASD to determine which psychotic 

phenomena warrant antipsychotic medication. This would help clinicians reduce the harms 

associated with both antipsychotic underuse (i.e. prolonging the duration of untreated 

psychosis) and overuse. Future research might valuably include children without ASD as 

comparison groups and employ more intricate text extraction methodologies to assess symptom 
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specific severity and impairment. This would reduce the residual confounding effects that may 

occur when using broad diagnostic categories, and determine whether comorbid psychiatric 

diagnoses in clinical practice are approached differently in children with ASD.   

  

The findings highlight a mismatch between current clinical trials and the evidence needed to 

support clinical practice in ASD. Antipsychotic use was much greater in adolescents and for 

those with comorbid diagnoses. However, most published trials exclude children with 

comorbidity and rarely recruit adolescents.110,111,114 Importantly, I show social factors play a 

significant part in antipsychotic use. This provides an impetus to examine the association of 

antipsychotic treatment against contextual, as well clinical factors. Controversy between the 

potential harm of both over- and under-use of antipsychotics in children with ASD continues, 

and underlies considerable public concern.117 Large scale cohort studies in real world settings, 

such as ours, eventually leading to pragmatic trials using electronic patient records, will help 

this debate become better informed.  
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CHAPTER 3. DETECTION OF SUICIDALITY IN 
ADOLESCENTS WITH AUTISM SPECTRUM 
DISORDERS: DEVELOPING A NATURAL 
LANGUAGE PROCESSING APPROACH FOR 
USE IN ELECTRONIC HEALTH RECORDS 
 
 

Publication in a peer-reviewed journal  

Downs J, Velupillai S, Gkotsis G, Holden R, Kikoler M, Dean H, Fernandes A, Dutta R. 

Detection of Suicidality in Adolescents with ASD: Developing a Natural Language Processing 

Approach for Use in Electronic Health Records. Proceedings of the American Medical 

Informatics Association. (in press) 
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3.1 SUMMARY  
 

Background: It is estimated that 15% of young people with ASD will contemplate or attempt 

suicide during adolescence, making them 30 times more at risk than typically developing 

children. However, there are very few epidemiological investigations of suicidality in young 

people with ASD, and current studies are based on small samples and subject to a number of 

methodological weaknesses. Electronic health records (EHRs) can be used to create 

retrospective clinical cohort data for large samples of children with ASD. However, systems to 

accurately extract suicidality-related concepts need to be developed so that putative models of 

suicide risk in ASD can be explored.  

 

Methods: I present a systematic approach to 1) adapt Natural Language Processing (NLP) 

solutions to screen with high sensitivity for reference to suicidal constructs in a large clinical 

ASD EHR corpus (230,465 documents), and 2) evaluate within a screened subset of 500 

patients, the performance of an NLP classification tool for positive and negated suicidal 

mentions within clinical text. 

 

Results: When evaluated, the NLP classification tool showed high system performance for 

positive suicidality with precision, recall, and F1 scores all > 0.85 at a document and patient 

level.  

 

Conclusions: The application provides accurate output for epidemiological research into the 

factors contributing to the onset and recurrence of suicidality, and potential utility within 

clinical settings as an automated surveillance tool.  
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3.2 INTRODUCTION 
 

Recent studies report that over 1 in 6 young people with ASD will contemplate or attempt 

suicide during childhood, making them 30 times more at risk than typically developing 

children.150,151 Why children with ASD have higher rates of suicidal behaviours is unclear. It 

is possible that risk factors for childhood suicidal behaviour found in typically developing 

children, such as depression or being bullied, are more prevalent or potentially have a greater 

negative impact in children with ASD.150 However, very little work has been conducted in ASD 

cohorts, and findings derived from non-ASD samples cannot be assumed to generalise to 

children with ASD.152 A growing number of studies have shown that putative risk factors (both 

environmental and genetic) for psychiatric outcomes can have different effects in children with 

neurodevelopmental disorders.118,153  Therefore individuals with ASD may express and 

manifest suicidal tendencies and behaviours in ways that differ from those observed in typical 

development.154 
 

Given the widespread adoption of Electronic Health Records (EHRs) in primary and hospital 

care systems and the rapid growth of health informatics capabilities, longitudinal data from 

large samples of children with ASD can be used to develop and test new models of suicide risk 

behaviour.  There is considerable potential to adapt EHR research methodologies used in recent 

epidemiological and risk factor studies155 and apply these approaches to address the evidence 

gap in ASD and other vulnerable adolescent groups.156 Although to capitalise on these 

developments for suicide research, accurate EHR data extraction systems need to be developed 

to capture data on those young people with ASD who present to public health services with 

suicidal thoughts or behaviours.  

 

Information about suicidality in clinical documents is predominantly written in free-text. 

Haerian et al. showed that using only ICD-9 E-codes to detect patient-level suicide and suicide 

ideation from clinical text had the lowest positive predictive value (PPV): 0.55, while a 

combination of codes and Natural Language Processing (NLP) had the highest: 0.97, when 

applied on EHRs from the New York Presbyterian Hospital/Columbia University Medical 

Center.157 They used MedLEE (Medical Language Extraction and Encoding System)158 to 

generate Concept Unique Identifiers (CUIs) related to suicidality, and to filter out negated 
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mentions as well as mentions not related to the patient. Anderson et al. applied a rule-based 

NLP approach to identify positive or negated mentions related to suicidality in the History of 

Present Illness (HPI) section of EHRs from a distributed health network of primary care 

organizations in the US, and found that suicidality information was predominantly recorded in 

free-text.94  

 

Because suicidality is routinely assessed in mental health care, the absence or negation of 

suicidal behaviour is also documented in EHRs. An NLP tool developed specifically for 

detecting negated mentions of suicide in mental health records using syntactic tree information 

was developed for use in mental health records with high accuracy (91.9%) when evaluated on 

6,000 sentences from mental health EHRs. This tool has been extensively described 

elsewhere.159 In brief, the tool worked by first organising the terms within each free sentence, 

which contained the suicid* target word (the * indicates a wildcard permitting different suffixes 

on suicid), into a data structure, called a constituency-based parse tree structure. The tool 

labelled the components of the sentence to fit a root-branch-leaf organisation. This method of 

organising language is derived from linguistic theory of Latin and Greek grammars, so that 

every sentence (the root) is branched into subject (noun phrase, NP) and predicate (verb 

phrase, VP), and then branched further into other syntactic categories. After parsing, the NLP 

tool classified each target mention in the text (e.g. suicid*) as negated or positive using a set of 

15 negation terms and pruning rules applied to the structured sentence.  Figure 3.1, taken from 

Gkotsis et al.,159 gives an example of how a sentence containing the word suicid* may be parsed 

into a tree structure, with the appropriate fragments selected for affirmation or negation of 

patient suicidality.  

 

The aim of this study was to extend, further develop and robustly evaluate a NLP approach 

which could accurately identify suicidality in ASD-patients’ clinical records, with the future 

goal that it may provide data to enable improved risk prediction for related major adverse 

events, such as suicide attempts. 

  

https://en.wikipedia.org/wiki/Subject_(grammar)
https://en.wikipedia.org/wiki/Noun_phrase
https://en.wikipedia.org/wiki/Predicate_(grammar)
https://en.wikipedia.org/wiki/Verb_phrase
https://en.wikipedia.org/wiki/Verb_phrase
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Figure 3.1 The data structure of a sentence with a target suicide term. The constituency-
based parse tree and negation rules prune fragments of the sentenced to permit accurate 
classification (taken from Gkotsis et al.159) 

 
Note: Parts of speech are tagged as Noun Phrase (NP), Proper Noun Plural Form (NNPS), subordinate clause 

(SBAR), Sentence (S) Verb Phrase (VP), Verb (VBZ), Adverb (RB), Adjective (ADJP) Determiner (DT), NN 

(noun), Preposition (IN), Fragment (FRAG) 

 

Using EHR documents, such as progress notes, risk assessments and medical correspondence, 

I examined whether negation detection methods could be used to accurately identify references 

to suicidality in the EHRs of adolescents with ASD presenting to clinical mental health 

services. I defined suicidality as either the reporting of the intention to engage in a potentially 

lethal act towards oneself, or undertaking such acts themselves. To achieve the study aim, I 

developed coding rules using expert consensus, to define explicit suicidality-related mentions 

for adolescents with ASD seen in specialist mental health clinics (inpatient and ambulatory).  

Based on these rules I extended the NLP tool to 1) identify documents containing suicide-

related (SR) information (i.e. NLP tool to screen documents) and 2) identify positive and 

negated references of suicidality on a document and patient level [i.e. NLP to classify SR 

documents and patients as positive, (SR-Pos), or negative, (SR-Neg)] across a large number of 



 

 74 

EHRs. I then compared the performance of the NLP tool against expert human-rater case note 

reviews.  

 

3.3 MATERIALS AND METHODS  
 
3.3.1 Data resources 
 

This study used data extracted from the anonymised, electronic clinical records of a sample of 

adolescents with ASD referred to SLaM. This sample and clinical setting has been described 

previously in chapter 2,160 but in brief SLaM provides specialist inpatient and outpatient ASD 

assessment and treatment services for young people from across the UK. Children and 

adolescents in this study were referred from primary care, child health, and educational and 

social care services, and typically underwent a multidisciplinary assessment by Child and 

Adolescent Mental Health Service (CAMHS) clinicians. Primary and secondary psychiatric 

disorders were diagnosed by CAMHS using the International Classification of Diseases, 10th 

Revision (ICD-10) multi-axial classification system.  

 

The CRIS system129 (see chapter 2 for more details) was used to produce an anonymised EHR 

dataset to search on structured data and free text fields for all ASD patients. The patients were 

part of an open clinical cohort (entering and leaving the study at different time points) and 

included children aged 3–17 years with a diagnosis of ASD (ICD-10 F84.0, F84.1, F84.5, 

F84.9) recorded between 1 January 2008 and 31 December 2013. Free text entries, 

correspondence and reports were available for this sample from their initial assessment until 

June 2016. The resulting cohort contained 3,642 unique patients (complete age range). For the 

purposes of this study, I selected from an adolescent sub-sample who had at least one contact 

with CAMHS (i.e. one free text document in CRIS) between the ages 14 and 18 years, totalling 

1,906 patients.  
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3.3.2 Overall workflow 
 

Figure 3.2 outlines the overall workflow of the study. There were three main phases. The first 

phase related to the definition of classification rules to identify suicidality-related information 

in EHR documents for adolescents with ASD (step 1 below). These rules were then applied in 

the second phase where a manual review of documents (step 2) was used to inform the 

development and evaluation of the NLP approach to screen for SR mentions in documents and 

filtering out documents with no mentions related to suicidality (NSR) – step 3 below. The NLP 

approach was then used to extract SR documents for the third phase (step 4). In the third phase, 

a manual review of documents was performed to annotate mentions of suicidality in SR 

documents as positive (SR-Pos), negative (SR-Neg) or uncertain (SR-U), step 5. Finally, the 

NLP approach was evaluated for its ability to correctly classify SR-Pos or SR-Neg in these 

documents and patients, step 6. 

 

Step 1: Development of a set of classification rules to identify suicidality in adolescents with 

ASD. 

As part of a group of senior clinicians with expertise in the clinical management of 

neurodevelopmental disorders and suicidality assessment, I developed a set of rules to classify 

explicit mentions of suicidality in every document as either positive, negated or unknown. 

Positive mentions included text that referred to previous attempts, the presence of current or 

past plans of suicidal acts, command hallucinations related to carrying out a suicide attempt, a 

desire to be dead, researching suicide methods, having ideas or describing plans of how to end 

their life or, a clinical opinion of the young person being at an elevated risk of attempting 

suicide. Negated terms included clinical opinions of the young person not being at elevated 

risk of suicide, and recorded denial of suicidality by the young person (either directly or via 

third person report). Mentions were classified as uncertain, when aspects of suicidality were 

referred to, but did not appear to relate to, risk of the young person being suicidal, for example 

references to dreams of being dead, or joking about death, or when references to suicidality 

were about other people (e.g. family members or friends). 
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Figure 3.2 Overall workflow of the study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Manual review of suicidality-related (SR) information and NLP screening tool 
development. 
 

A randomly extracted subset of 100 patients and their corresponding documents were allocated 

to a training corpus, and another random selection of 100 patients was allocated to the test 

corpus. To generate a subset of patients with a reasonable amount of documentation for manual 

review, the random sample was extracted based on documentation prevalence: each included 

patients who had at least 7 documents (1st quartile) and at most 50 (3rd quartile), yielding a 

total of 2,445 (training set) and 2,433 (test set) documents in total. All SR expressions, and 

labelled each SR-expression as either positive, negated or uncertain were then annotated, 

according to the rules developed in step 1. However, for this phase, only annotations for SR 

information (regardless of polarity) were used for analysis. 

 

Step 3: Extension and provisional assessment of the NLP approach for SR screening. 

 

Results from the manual review were used to extend the NLP approach with the addition of 

new explicit SR expressions. Given the low frequency of the positive or negated SR mentions 

within the training set, I used the test set to assess precision, recall and F1-score of the tool 
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detecting any SR content (regardless of polarity). Because the end goal was to address overall 

suicidality risk behaviour, the approach was evaluated on a document and patient level rather 

than on the mention level.  

 
Step 4: NLP tool deployed to screen for SR documents 

 

The NLP tool was then deployed to filter out documents without any SR mentions (positive or 

negative) from the original cohort (excluding the already annotated 200 patients). From 1706 

patients (225,577 documents), 890 (52.2%) patients had at least one SR document, resulting in 

a total of 10,749 documents.  

 

Step 5: Manual review of SR subset for identification of positive (SR-Pos) and negative (SR-

Neg) suicidality mentions 

 

Two mental health clinicians under my supervision were randomly assigned 250 (56.2%) 

patients each from the SR subset. Each clinical annotator was given, for each patient, all 

documents identified by the NLP tool as containing a SR mention. The annotators were not 

given the NLP system output, but instead were asked to annotate explicit mentions of 

suicidality (according the classification rules above) and label these as SR-Pos, SR-Neg or SR-

U. The documents were given to the annotators on a per-patient basis, and each patient was 

reviewed by one annotator. A subset (n=100) of randomly extracted documents was also used 

to calculate inter-rater agreement [measured with Cohen's kappa (κ) and F1-score] on a 

document-level.    

 

A majority rule was applied when evaluating document-level agreement: all mention-level 

annotations in each document were first counted, then, if the number of annotations labelled as 

positive for suicidality outnumbered or equalled the number of annotations labelled as negated, 

the document-level label was assigned SR-Pos, otherwise it was designated SR-Neg. To 

evaluate patient-level performance, priority was given to document-level outcomes: if the 

patient had at least one document labelled as SR-Pos using the majority rule, the patient-level 

label was assigned SR-Pos, irrespective of the number of previous or subsequent documents 

labelled as SR-Neg, i.e. each patient only required a single document to be labelled SR-Pos.  
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Step 6: Final, comprehensive evaluation: NLP SR-Pos/SR-Neg classification 

 

As a final step, the NLP approach was evaluated with precision, recall and F1-score against the 

manual annotations of the larger, filtered set of documents/patients with SR-Pos and SR-Neg 

labels, using the same heuristics for document- and patient-level classification assignments as 

above. Note that the evaluation is only performed on these two labels, i.e. SR-U annotations 

are not mapped to SR-Pos or SR-Neg. Thus, a false positive or false negative from the NLP 

approach could be due to an annotation marked as SR-U. A manual error analysis on cases of 

disagreements between the NLP tool and human annotation labels was also performed to gain 

a deeper understanding of the results. 

 

3.3 RESULTS 
3.3.1 Distribution of SR annotation within the random selection of test and training set 
documents 
 

Table 3.1 shows the distribution of SR and NSR documentation and the individual level 

prevalence amongst the 100 adolescent patients with ASD in the final training set and the 100 

patients in the test set.  Manual review of both training and test documents revealed that only 

a small proportion of the corpus contained any SR information: <3% at the document level and 

around 22% at the patient level, with a similar distribution in the training and test set. Precision, 

recall, and F1 scores showed high system performance (> 0.8) for both SR and NSR in the test 

set (table 3.1).  

 

3.3.2 Adaptions to the NLP tool following test and training  

 

The lexical markers of suicidality that were added to the NLP tool included kill 

himself/herself/themselves/myself, end his/her/their life, take his/her/their own life, want to die, 

were dead. Note that the NLP tool relies on lemmatised forms in both target expressions and 

the document surface forms (i.e. how meaning is expressed by text in the records) in order to 

achieve a more robust matching. For example, the verb to want may appear as wanted, wanting, 

wants. The base form, 'want' is the lemma for the word. Lemmatisation attempts to select the 

correct lemma depending on the context, so the word "wanting" can be either the base form of 

a noun or a form of a verb (to want) depending on the context; e.g., “he felt elements of his 
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suicide crisis plan were found wanting” or “He admitted to wanting to end his life.” In this 

application, lemmatisation enabled wanting in the latter sentence to be contextualised as a verb, 

hence improve the likelihood of a true positive result.  

 

3.3.3 Performance NLP tool on SR test and training set documents 
 

 Table 3.2 shows the distribution of negated and positive suicidality-related information (SR-

Pos/SR-Neg) using the majority rule criteria in 4,911 pre-screened documents derived from 

500 patients. Evaluation of the NLP tool (table 3.2) showed high system performance for SR-

Pos with precision, recall, and F1 scores all > 0.83 at a document and patient level. SR-Neg 

performance measures were lower, especially in recall (0.75 on document level, 0.62 on patient 

level), but overall good levels of classification were produced (F1 = 0.79 on document level, 

0.72 on patient level). 

 

 

Table 3.1 Confusion matrix: Screening for suicidality (SR) or non-suicidality (NSR), 
NLP tool compared to human annotation (A).  
 

  NLP (Training)  NLP (Test) 

   Documents                 Patients  Documents                 Patients 

   NSR SR ∑ NSR SR ∑  NSR SR ∑ NSR SR ∑ 

 

Human 

Annotation 

NSR 2374 10 2384 75 2 77  2356 13 2384 73 5 78 

SR 5 56 61 0 23 23  8 56 64 1 21 22 

∑ 2379 66 2445 75 25 100  2365 69 2443 74 26 100 

  Precision 0.99 0.85  0.99 0.92   0.99 0.81  0.99 0.81  

  Recall 0.99 0.91  0.97 0.99   0.99 0.88  0.94 0.95  

  F1 0.99 0.88  0.99 0.96   0.99 0.84  0.96 0.88  

   Note: NLP; Natural Language Processing 
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3.3.4 Manual review of NLP and gold-standard discrepancies 
 

A manual error analysis on a random sample of ten documents where the NLP tool classified 

a document as SR-Pos but the human annotator as SR-Neg was performed to gain a deeper 

understanding of the reasons behind the lower recall results. The main themes involved:  

 

1) Classification of documents with only one suicide-related mention (annotator SR-Neg 

count = 1, NLP SR-Pos count = 1) due to missing negation term, e.g. ‘Nil suicidal’ or 

error in syntactic parsing due to e.g. badly formatted sentences. 

 

2) Cases where the majority heuristic is problematic and the NLP classification of a double 

negative is erroneous, e.g. one document annotated with SR-Neg = 2, while the NLP 

output was: SR-Neg = 1, SR-Pos = 3 contained the following: ‘XXX denied any recent 

sleep difficulties, excessive fatigue or guilt, changes in appetite or morbid or suicidal 

ideation’, ‘The risk of suicide is low, XXX denies suicidal ideation.’ 

 

3) Co-reference in combination with majority heuristics (annotator SR-Neg = 3, SR-Pos = 

2, NLP SR-Neg = 1, SR-Pos = 2): ‘XXX reported that XXX has had suicidal thoughts in 

the past but has no current plans on acting on themco-reference’ (sentence repeated twice 

in document), ‘[clinician reporting] further stated that no evidence of psychosis, self-

harming behaviour, suicidal thoughts, sleep or appetite …’ 

 

4) Clinically challenging cases and complex information given in the document. Two 

examples are:  

 

(i) Sentences with information reported by external authorities such as the health 

care team and the school, references to the past, and includes a conclusive 

statement towards the end of the document: Annotator: SR-U = 2, SR-Neg = 

1, NLP tool output: SR-Neg = 2, SR-Pos = 3 ‘we could not assessnegated suicidal 

ideation as XXX left the room’, ‘unable to assessnegated suicidal ideation’, 

‘historicallypast has threatened self harm and disclosed suicidal ideation…’, 
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‘concerns from school about suicidal ideation’, ‘no suicidal ideation 

expressed’.  

 

(ii) No clear opinion expressed by the patient or the clinicians : Annotator: SR-U 

= 2, SR-Neg = 1, NLP tool output: SR-Pos = 2: ‘I tried to assess XXX’s 

suicidal risk - XXX does not know if XXX wants to kill XXXself’, ‘XXX does 

not have any specific plan’ 

 

 

Table 3.2 Classification of positive and negative suicidality, document- and patient level 
assessments.  
  NLP (Test) 

                                                Documents                                              Patients 

  SR-Neg SR-Pos ∑ SR-Neg SR-Pos ∑ 

Annotator 

SR-Neg 1379 463 1842 81 50 131 

SR-Pos 273 2796 3069 14 355 369 

∑ 1652 3259 4911 95 405 500 

 Precision 0.83 0.86  0.85 0.87  

 Recall 0.75 0.91  0.62 0.96  

 F1 0.79 0.88  0.72 0.92  

Note: SR-Neg; Suicidality-related mention is negated. SR-Pos; Suicidality-related mention is 
positive. 

 

In total, 100 random documents were double annotated (table 3.3). A document-level 

assessment using the majority rule yielded an average Cohen's κ of 0.83, F1-scores for SR-Neg 

and SR-Pos document-level assessment were 0.89 and 0.94 respectively, indicating high 

agreement. 
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Table 3.3. Confusion Matrix: Inter-Rater Agreement on document level. SR-Neg = 
Suicidality-related (SR) mention is negated (Neg), SR-Pos = Suicidality-related mention 
is positive (Pos). 
 

  Annotator 1  

  SR-Neg SR-Pos ∑ 

 

Annotator 2 

SR-Neg 32 2 34 

SR-Pos 6 60 66 

 ∑ 38 62 100 
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3.4 DISCUSSION  
 

This is the first study to demonstrate that an NLP tool can be used to accurately capture a 

clinical construct as complex as suicidality within health records of young people with ASD.  

The NLP tool identified suicidality-related (SR) mentions with high degrees of precision (0.81) 

and recall (0.84) from clinical free text documents held within EHRs. This NLP application 

provides powerful opportunities for surveillance work in adolescent ASD and in other clinical 

samples, with the potential to improve risk prediction for major adverse events, such as suicide 

attempts.   

 

The development of this high-performance NLP tool was achieved in several steps. First, owing 

to the potentially distinctive characteristics of the ASD clinical population, and their specialist 

mental health service provision, I began by building a suicidality terminology from a detailed 

note review of over 2000 random sets of clinical entries in 100 children with ASD, combined 

with expert clinical consensus. Because of the limited literature on suicidal terminology in 

ASD, I used a randomly extracted training and test set from all potential ASD EHR source 

data, rather than an enriched set filtered by restricted terms (e.g. “suicid*” 159 or ICD coding 

classifications).161 The rationale for this was to reduce selection bias and loss of sensitivity 

through the use of training and test data derived using restricted terms or coding classifications. 

Random selection from the whole potential corpus also provided me with a better 

understanding of the overall distribution of suicidality-related information in documents, and 

allowed us to refine and advise on additional terminology. During the training phases, it 

became clear that there was a low frequency of SR terms (less than 3% of all documents).  A 

much larger corpus was then required to conduct an adequate test of the NLP tool’s 

classification performance in discerning positive and negated SR mentions within the 

documents.  

 

The abstraction of mention-level annotations and NLP system predictions to document- and 

patient-level assessments using simple heuristics (majority rule for document level and SR-Pos 

priority on patient level) showed that promising results can be obtained even though the NLP 

tool relies only on a relatively small number of suicidality-related and negation terms. This 
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finding also shows that even though suicidal behaviours are documented with a variety of 

expressions (e.g. ‘took an excessive amount of pills’, ‘threw him/herself in front of a train’), 

indicative terms (mainly suicide in different forms) are typically also used at some point in the 

documentation, and will thus be eventually detected automatically.  

 

3.4.1 Strengths 
 

A strength of this study is that I have not assumed that clinical terms used in more typically 

developing children or adults generalize to ASD populations. In practice, assessing suicidality 

in adolescents with ASD often requires a different approach to other patient groups, which in 

my clinical experience was likely to be reflected in the clinical notes. Young people with ASD 

presenting to mental health services commonly have severe difficulties with interpersonal 

interactions, making for a more complex clinical assessment.162 Clinicians are likely to 

deliberate within the clinical notes on whether potential behaviours are driven by suicidal 

ideation, potentially creating more false positive results.  They may have a greater reliance on 

third person report – i.e. caregivers voicing concerns regarding the young person’s suicidality 

rather than direct accounts from the young person. Also, where a first-person account is 

provided, clinicians will often write verbatim statements (e.g. He told me “I just want to end 

it”, and he “went to the car park to get it done”), providing more atypical clinical terminology 

for describing suicidality, and increasing the chance of NLP misclassification.  

 

In addition, young people with ASD may not present with suicidality as a principle complaint, 

but through a behavioural change such as school refusal, with suicidal behaviour emerging 

through later clinician screening. This may change the emphasis and position within the 

patient’s clinical record relative to other populations where suicidal behaviour is the principle 

trigger during the first presentation to services. Testing these clinical assumptions empirically 

using a non-ASD control sample was beyond the scope of the current study, however future 

work is underway to examine the variability of the NLP tool’s accuracy across non-ASD child 

populations seen in mental health services. NLP applications are commonly validated using 

randomly extracted documents from EHRs covering a broad range of clinical contexts, seldom 

rarer clinical populations, such as young people with ASD. As mental health assessment and 

management needs to be tailored to the developmental needs of the young people in clinic, so 

should the validation of NLP data extraction tools.  
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3.4.2 Limitations 
 

The motivation for applying a majority rule on document level assessments was based on the 

finding that the main source for false positive errors in the negation detection approach 

stemmed from cases of question forms (e.g. ‘I asked him if he feels suicidal’), references to the 

past, etc. Applying this rule was a way of smoothing this error rate. However, the error analysis 

showed that this approach might be a limitation. In future studies, I aim to compare results with 

NLP approaches such as ConText163 where variables relating to the past (‘historicity’) and 

subject (‘experiencer’) are encoded with target terms. I also aim to experiment with other 

abstraction heuristics, e.g. instead of majority rule, applying a priority hierarchy. In keeping 

with prior work, another alternative could be to define the annotation task on a document 

level.157 Longer term, I aim to compare the predictive validity of different heuristics within the 

NLP tool, and across other NLP approaches, for later adverse outcomes (i.e. significant suicide 

attempts or death by suicide), and seek external validity through replication in other EHR 

systems. Without these further steps, it is difficult to assess the potential clinical impact of 

differences in precision or recall across NLP tools.  

 

The clinical annotators I supervised expressed that it was sometimes challenging to assess 

suicidality risk based on one document at a time; single documents did not provide sufficient 

context in all cases. At the same time, given the rare prevalence of suicide-related content in 

all patient documents, defining a patient-level annotation task using this type of abundant 

clinical documentation would be very time-consuming. I plan to explore different ways of 

addressing this issue, one being a nested case-control study design similar to the one presented 

in Metzger et al.95   

 

3.4.3 Conclusion 
 

The suicidality outcome data provided by this NLP extraction tool permits analyses of the 

complex interplay of ASD-specific traits on factors contributing to the onset and recurrence of 

suicidality. ASD specific mental health services are becoming increasingly available for child 

and adolescent populations in high-income countries. Although there is more work to be done 

before clinical application, we believe the NLP tool described provides a step forward in 

enhancing suicidality surveillance, risk prediction and treatment selection for children with 

ASD.   
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CHAPTER 4. THE ASSOCIATION BETWEEN 
CO-MORBID AUTISM SPECTRUM DISORDERS 
AND ANTIPSYCHOTIC TREATMENT FAILURE 
IN EARLY-ONSET PSYCHOSIS: A HISTORICAL 
COHORT STUDY USING ELECTRONIC 
HEALTH RECORDS.  
 

 

The contents of this chapter have contributed to the following: 

 

Publication in a peer-reviewed journal  

 

Downs J, Lechler S, Dean H, Sears N, Patel R, Shetty H, Simonoff E, Hotopf M, Ford T, Diaz-

Caneja MD, Arango C, McCabe JH, Hayes RD, Pina-Camacho L. The association between co-

morbid autism spectrum disorders and antipsychotic treatment failure in early-onset psychosis: 

a historical cohort study using electronic health records. Journal of Clinical Psychiatry (in 

press) 
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4.1 SUMMARY 
 

Background: In a sample of children and adolescents with first-episode psychosis, I 

investigated whether multiple treatment failure (MTF, defined as the initiation of a third trial 

of novel antipsychotic due to non-adherence, adverse effects or insufficient response) was 

associated with co-morbid autism spectrum disorders. 

 

Methods: Data were from the electronic health records of 638 children (51% male) with first-

episode psychosis, aged between 10 and 17, referred to mental health services in South London, 

UK, using the CRIS system. The effect of autism spectrum disorder comorbidity on the 

development of MTF over a 5-year period was modelled using Cox regression. 

 

Results: There were 124 cases of MTF prior to the age of 18 (19.3% of the sample). Co-morbid 

autism spectrum disorders were significantly associated with MTF (adjusted hazard ratio aH.R 

1.99, 95% CI 1.19–3.31; p=0.008) after controlling for a range of potential confounders. Other 

factors significantly associated with MTF included older age at first presentation, Black 

ethnicity, and frequency of clinical contact. No significant association between other co-

morbid neurodevelopmental disorders (hyperkinetic disorder or intellectual disability) and 

MTF was found.  

 

Conclusions: Among children with first-episode psychosis, those with co-morbid autism 

spectrum disorders at first presentation are less likely to have a beneficial response to 

antipsychotics.  
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4.2 INTRODUCTION 
 

Nearly a fifth of individuals diagnosed with a psychotic disorder experience their first episode 

under 18 years of age.164 Relative to adults with first-episode psychosis, children appear to 

have a significantly worse symptomatic and functional recovery,165 hence early-onset 

psychosis (EOP) may represent a more severe form of the disorder. Comparisons between first-

episode psychosis in adult and child cohorts show children have poorer premorbid functioning 

or adjustment,164,166 greater cognitive deficits,167 more primary negative symptoms at first 

presentation165 and - albeit less consistently replicated - longer durations of untreated 

psychosis.168 It is these factors that appear to be most consistent predictors of poor clinical and 

functional improvement in EOP samples at follow-up.169  

 

Premorbid difficulty is a broad construct, often retrospectively ascertained, which encompasses 

childhood history of developmental milestone delays, poor sociability, poor peer relationships, 

limited scholastic performance, problems with adaptation to school, and socio-sexual 

development.170,171 Specific neurodevelopmental conditions, such as autism spectrum disorders 

(ASD), which, by definition, represent the extreme manifestations of poor premorbid 

difficulties,172 elevate the risk of developing psychosis.173–175 Whilst premorbid difficulties 

have been associated with poor outcomes in both early-onset 176,177 and adult-onset 

psychosis,178,179 the mechanism of how it affects psychosis prognosis is unclear. One possibility 

is that premorbid function is associated with lower responsiveness to antipsychotic treatment, 

with recent evidence showing poorer premorbid function is a predictor of adult treatment 

resistant schizophrenia.180  

 

 

The effect of autism spectrum disorder on treatment effectiveness has not been examined in 

early onset psychosis samples. This represents an important gap in the evidence, as work in 

non-psychotic conditions suggests that psycho-pharmacological effectiveness is lower in 

populations with co-existing ASD.181  Furthermore children and adolescents with mixed ASD-

psychotic profiles are not uncommon in clinical practice.175 Recent studies show that ASD may 

be present in 30-50% of children diagnosed with severe psychotic disorders.182  

 

I conducted a longitudinal study which aimed to investigate whether co-morbid ASD was 

associated with a pragmatic measure of poor antipsychotic treatment response in a large 
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historical clinical cohort of children and adolescents with first-episode psychosis.  I predicted 

that patients with co-morbid ASD would be more likely to experience treatment failure. I also 

expected that this association would remain after taking account of potential confounders, 

including psychotic disorder category, and additional markers of premorbid 

neurodevelopmental difficulties such as co-occurring hyperkinetic disorder and intellectual 

disability. 

 

4.3 METHODS 
 
4.3.1 Study Setting 
 

This study used data extracted from the electronic mental health records of an open cohort of 

children and adolescents referred to SLaM CAMHS, with a first episode of any psychotic 

disorder between 1st January 2008 and 1st November 2014. CAMHS comprised of inpatient, 

outpatients and early intervention for psychosis services. Over this period, SLaM provided all 

aspects of specialist mental healthcare to a catchment population of approximately 250,000 

children resident within four London boroughs (Lambeth, Southwark, Lewisham, Croydon). 

In addition to the district services, SLaM provided specialist inpatient and outpatient mental 

health assessment and treatment services for young people from outside the local district. Each 

borough had a dedicated multidisciplinary service for children, which accepted referrals for 

school age children (4–18 years; exceptionally cases are accepted below this age) with 

suspected or previously confirmed neurodevelopmental disorders, displaying emotional or 

behavioural difficulties. Children were referred from primary care, child health, and 

educational and social care services, and typically underwent a multidisciplinary assessment 

by CAMHS clinicians.  
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Figure 4.1 Flow chart of study inclusion and analysis  
 

 
4.3.2 Study sample 
 

The sample data were extracted using the CRIS system, which provided access to a de-

identified record database containing the electronic mental health records over 35,000 child 

and adolescent cases (see chapter 2 for more details).129  

  

Figure 4.1 shows the flowchart for inclusion in the study. All cases who had presented to SLaM 

services aged between 10-17 years, were screened for ICD-10 diagnoses within clinician-

 
 
 
 

 
Figure 1: Flowchart of study selection and analysis 

 
 
 
 
 
 
 
 

 

 

 

1033 cases < 18 years old identified 
with at least one psychotic disorder 

reference in the electronic health 
record 

Filter applied for ‘clinically relevant’ 
psychotic disorder between 10-17 years 

Included cases 
N= 638  

(61% from structured 
diagnostic fields) 

375 children and adolescents 
excluded as psychoses described as 
non-primary differential diagnosis, 
or with sub-threshold / incidental 
symptoms  

Cases reaching MTF threshold within 60 
days of entering the study (n=20) 
 

All MTF case notes hand 
searched and reasons coded.  
0.99 sensitivity, 0.74 positive 
predictive value for MTF  
 

Natural language extraction of ‘possible’ 
MTF outcome 

43 cases re-recoded as non 
MTF within 5 years or before 
18 years old, whichever came 
first 
 

638 cases 
19.7% (n=124) with 
MTF within 5 years 

638 cases, 26.2% (n=167) initially 
identified with MTF 

MTF 
validation 

Survival 
Analysis 
(n=618) 

Sensitivity analyses 1- 4 

Sensitivity analyses restricted to samples: 
 

1) ASD first recorded prior to the first 
episode of psychosis.  

2) Resident within the local catchment 
area. 

3) Baseline adaptive function measures 
fully completed. 

4) Lost to follow-up: No clinical contact 
with SLaM services  60 days prior to 
study end-point. 
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recorded structured or unstructured free text fields. Those with structured data recorded were 

included if they had at least one psychosis diagnosis (ICD-10 codes F20-F29, F30-31, F32.3, 

F33.3, F1x.5). Missing structured diagnostic data was supplemented by GATE (Generalized 

Architecture for Text Engineering), a natural language processing tool which codes ‘free text’ 

diagnostic data.130 GATE extracted all CAMHS records with any free text diagnosis of 

“schizophrenia, schizoaffective disorder, bipolar disorder, depression with psychosis 

symptoms, acute and transient psychosis, delusional disorder, induced delusional disorder, 

drug-induced psychosis and psychoses not otherwise specified (NOS).” These were filtered for 

any clinician-recorded mention of antipsychotic treatment after the psychosis diagnosis. This 

process reduced the inclusion of children with non-psychotic indications for antipsychotic use, 

psychoses as differential diagnoses, and sub-threshold/incidental psychotic symptoms. Out of 

the 1033 cases identified with at least one psychotic disorder recorded, only 638 individuals 

with a ‘clinically relevant psychotic disorder’ were included (see figure 4.1). The earliest 

recorded psychosis diagnosis was coded as the first diagnosis. A hand-searched review of a 

random sample of 100 records revealed this identification process provided a 0.98 positive 

predictive value (PPV) for psychotic disorder diagnosis.  

 

For each participant, the study entry date was the accepted referral date to CAMHS for their 

first-episode psychosis. Baseline exposure data (i.e. clinical and socio-demographic data) were 

drawn from all notes entered within 60 days of study entry. The follow-up period ran from 60 

days after their accepted referral date to the date of their 18th birthday, date of death, or the 

end of the 5-year observation period (whichever came first). Frequency of clinical contact 

during the follow-up period was determined through the days each person had received face-

to-face contact as recorded in structured fields. Multiple events on a single day were counted 

as one day of clinical contact, whilst clinical contact with outpatient services during an inpatient 

admission was not counted. 
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4.3.3 Measurements 
 

Outcome: multiple antipsychotic treatment failure 

 

In contrast to standard definitions in adults for treatment response,  no established minimum 

antipsychotic therapeutic dose thresholds or treatment periods existed for children and 

adolescents with psychosis,183 similarly no standard criteria for poor antipsychotic response or 

refractory disorder 184 appeared suitable to a retrospective cohort study of EOP using electronic 

health records.185,186 Therefore I created a proxy, based on the antipsychotic effectiveness 

literature,187–189 which I termed ‘multiple treatment failure’ (MTF). I defined MTF as the 

initiation of a third trial of a novel antipsychotic due to insufficient response, intolerable 

adverse effects or non-adherence to prior antipsychotic treatment. A previously validated 

GATE application was used to identify novel regular antipsychotic prescription trials as a 

replacement or adjunctive treatment to the previous trial, this excluded antipsychotic 

medication prescribed on an ‘as required basis’ 132,160 or switching preparations – e.g. oral to 

depot administration. The date of MTF was determined when a third novel antipsychotic 

medication was started within a 5-year follow-up period.  

 

I performed further validation alongside other clinical raters under my supervision. The raters, 

blinded to MTF status, hand-searched 100 cases from the sample each, which included all 167 

individuals (55-56 per rater) where MTF was initially identified, and a random selection of 

non-MTF individuals (44-45 per rater). The GATE identification process provided >0.99 

sensitivity for MTF (i.e. no false negatives) and 0.74 PPV. False positives largely occurred 

where antipsychotic medications were used for non-psychotic indications. These cases (n=43 

subjects, 6.7% of the total sample) were subsequently recoded as non-MTF. Raters also 

manually coded the reasons for treatment failure for each novel antipsychotic trial in the MTF 

group, and coded the predominant reason. Consistent with previous literature,190 reasons were 

defined as insufficient response, intolerable adverse effects, non-adherence, ‘other’ and 

‘reasons not identified’. For 15 randomly selected cases, first and second treatment failure 

reasons were coded by two raters independently.  Percentage agreement ranged from 0.67 to 

0.87. Kappa coefficients indicated agreement from moderate, for adverse effects at first 

treatment failure (κ = 0.33), to substantial for insufficient response at second treatment failure 

(κ = 0.71). Within the MTF group, those cases identified as having the same reason for 

antipsychotic discontinuation/switch at first and second trials were grouped into four MTF 
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‘persistent reason’ groups. A ‘variability in reasons’ subgroup (i.e. when reasons were different 

at each antipsychotic trial) was also created.   

  

Extraction of ASD comorbidity data 

Clinician recorded ASD comorbidity (ICD-10 F84.0, F84.1, F84.5-9) was extracted from the 

clinical record at any time point during the observation period, using free text and structured 

fields.160 Compared with expert consensus, prior work has established a high specificity for 

ASD diagnoses by clinicians working at a district level.125 Patients were included in the ASD 

group if they fulfilled ICD-10 criteria for Pervasive Developmental Disorder after direct 

clinical observation and taking a full psychiatric and developmental history from at least one 

informant, typically the mother. The Autism Diagnostic Observation Schedule (ADOS)191 was 

administered by experienced ADOS  trained clinicians when the diagnosis was not clear (52 

cases). The final diagnosis was based on best clinical judgment considering all the available 

information,192 by NHS clinicians certified to administer the Autism Diagnostic Interview193 

and research-certified to administer the ADOS.  Additional validation of ASD diagnosis data 

extraction was carried out by a hand search of the 100 randomly selected cases. The data 

extraction methodology was found to have a high sensitivity (0.82) and PPV (0.86).  

 

Extraction of Covariates: clinical and other demographic data 

A number of demographic and clinical variables were extracted at baseline (i.e. within 60 days 

of study entry). Demographic variables included gender, age at referral for first-episode 

psychosis, ethnicity (categories defined by the UK Office for National Statistics), and index of 

neighbourhood deprivation for the main caregiver residence.194  

 

The first clinically recorded ICD-10 psychosis diagnoses were grouped into schizophrenia, 

schizoaffective disorder, bipolar disorder, depression with psychosis symptoms specified, 

drug-induced psychosis, and other psychoses. Other neurodevelopmental disorder 

comorbidities extracted included hyperkinetic disorders (ICD-10 F90) and intellectual 

disability (ICD-10 F70-9). Inpatient admission status and adaptive function - ascertained using 

the Children’s Global Assessment Scale (CGAS)133  within 60 days of study entry - were also 

extracted.  
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4.3.4 Analysis 
 

To compare demographic, clinical characteristics of individuals and MTF outcomes, with and 

without co-morbid ASD, crude analyses were conducted using chi squared for categorical 

variables, and Student’s independent t-test for continuous variables.  To examine the 

prospective association between baseline demographic, clinical exposures and MTF outcome, 

I excluded children who had MTF within the 60-day baseline period (n=20). After checking 

proportional hazards assumptions, I used a Cox regression to model the association between 

ASD comorbidity and MTF. The first model examined the crude effect of ASD alone on MTF. 

Subsequent models were constructed adding potential socio-demographic and clinical 

confounders. Fully-adjusted survival hazards and separate survival curves were plotted to 

compare the risk of MTF between children with and without ASD comorbidity. 

  

To account for the potential effect of diagnostic re-classification of psychosis to ASD 

explaining any association between ASD and MTF, I conducted a sensitivity analyses by 

removing the sample of children with ASD first recorded 30 days after the first psychosis 

diagnosis date (n=48). Three additional sensitivity analyses were conducted: i) to restrict the 

analyses to children with complete adaptive function measures (CGAS) at first presentation 

(n=394), see figure 4.1, as this could be a potential confounder for any ASD-MTF association; 

ii) to test whether being resident within the local catchment area (as opposed to children 

referred from outside the 4 local districts) had an effect on the association between ASD and 

MTF, as families residing outside the local catchment area can receive additional non-SLAM 

mental health service not captured within SLaM health record system; iii) to test whether being 

potentially lost to follow-up by SLaM services (n=295, defined as no clinical contact within 60 

days of the study end point) had an effect on the association between ASD and MTF.   

4.4 RESULTS 
4.4.1 Demographics and clinical characteristics of the sample 
 

I identified 638 young people (329 male) aged between 10 and 17 years with a clinically 

relevant psychosis diagnosis (figure 4.1). The average follow-up period was 1.79 years (SD 

1.4, range 0.1-5). Out of those, 124 (19.4%) developed MTF during the follow-up period, at a 

mean age of 16.3 years (SD 1.4). Table 4.1 provides further information on the socio-

demographic and clinical characteristics of the total sample and the subsample eventually 

developing MTF.  
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Table 4.1 Demographic and clinical characteristics of young people with first-episode 
psychosis (n=638) 
 

Sample characteristics Total Sample (n=638, %) MTF (n=124, %) 

Gender, n (%) 
  

  Male 329 (51.1) 59 (47.2) 
  Female 309 (49.9) 65 (53.8) 
Mean age at referral (SD) 15.6 (1.9) 15.4 (1.6) 
Mean age of reaching MTF (SD)  --- 16.3 (1.4) 
Mean years of follow-up (SD) 1.79 (1.4) 2.1 (1.2) 
Mean clinical contact days (SD) 93 (112) 205 (147) 

Ethnicity, n (%) 
  

      White British 260 (40.8) 44 (35.5) 
      White Other 37 (5.8) 7 (5.6) 
      Black 209 (32.8) 51 (41.1) 
      Asian 39 (6.1) 7 (5.6) 
      Mixed 74 (11.6) 15 (12.2) 
      Not Stated 19 (2.9) 0% 

Neighbourhood Characteristics, n (%) a 
  

     1st (Least Deprived) 165 (26.6) 39 (32.5) 
     2nd 152 (24.6) 28 (23.3) 
     3rd 151 (24.4) 25 (20.8) 
    4th (Most Deprived) 151 (24.4) 28 (23.4) 

First ICD-10 psychosis diagnosis, n (%) 
  

   Schizophrenia 365 (57.1) 63 (50.8) 
   Bipolar Disorder 42 (6.6) 9 (7.3) 
   Schizoaffective 17 (2.7) 10 (8.1) 
   Psychotic Depression 69 (10.8) 14 (11.2) 
   Drug induced psychosis 39 (6.1) 6 (4.8) 

   Other Psychoses 106 (16.6) 22 (17.8) 

Co-morbid neurodevelopmental disorders, n (%) 
  

   Autism Spectrum Disorder 114 (17.9) 33 (26.6) 
   Hyperkinetic Disorder 40 (6.3) <5%  
   Intellectual Disability 65 (10.2) 15 (12.1) 

Baseline function 
  

   Admission at first presentation n (%) 260 (40.8) 72 (58.1) 
   Children’s Global Assessment mean score (SD)b 38.3 (15.9) 35.1(16.0) 

Note: Standard Deviation (SD); Missing cases = a 19, b 216  
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Table 4.2 Demographic and clinical characteristics of first-episode psychosis in young 
people with and without co-morbid autism spectrum disorder (n=638) 
 

Sample characteristics 
Autism Spectrum Disorder  

No (n=524) Yes (n=114) P Value* 

Multiple treatment failure (MTF), n (%) 91 (17.4) 33 (29.0) 0.005 

Mean age at referral (SD) 15.8 (1.7) 14.5 (1.8) <0.001 

Mean age of reaching MTF (SD) 16.4 (1.3) 15.9 (1.4) 0.04 

Mean years of follow-up years (SD) 1.61 (1.3) 2.6 (1.4) <0.001 

Mean clinical contact days (MTF) 90 (108) 109 (128) 0.04 

Male gender, n (%) 254 (48.5) 75 (65.9) 0.001 

Ethnicity, n (%)    

     White British 209 (39.8) 51 (44.7) 

0.34 

     White Other 34 (6.5) 3 (2.6) 

     Black 174 (33.2) 35 (30.7) 

     Asian 32 (6.1) 7 (6.1) 

     Mixed 62(11.8) 12 (10.5) 

     Not Stated 13 (2.5) 6 (5.3) 

Neighbourhood Characteristics, n (%) a   

     1st (Least Deprived) 130 (25.6) 35 (31.5) 

0.55 
     2nd 124 (24.4) 28 (25.2) 

     3rd 129 (25.4) 22 (19.8) 

     4th (Most Deprived) 125 (24.6) 26 (23.4) 

First ICD-10 psychosis diagnosis, n (%) 
  

     Schizophrenia 316 (60.3) 49 (43) 

<0.001 

     Bipolar Disorder 34 (6.5) 8 (7.0) 

     Schizoaffective 14 (2.7) 3 (2.6) 

     Psychotic Depression 55 (10.5) 14 (12.3) 

     Drug induced psychosis 38 (7.3) 1 (0.9) 

     Other Psychoses 67 (12.8) 39 (34.2) 

Baseline function    

     Admission at first presentation, n (%) 228 (43.4) 32 (28.1) 0.002 

     Children’s Global Assessment Scale  

     (CGAS)b mean (SD) 
38.4 (16.1) 37.4 (15.0) 0.32 

Other neurodevelopmental disorders, n (%)   

Hyperkinetic Disorder 22 (4.2) 18 (15.8) <0.001 

Intellectual Disability 35 (6.9) 30 (26.3) <0.001 
*F2 tests for categorical variables and Student’s independent t-test for continuous variables;  Missing 

cases = a 19, b 216 
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4.4.2 Characteristics of the sample by ASD status 
 

Characteristics of co-morbid ASD (n=114) vs non-ASD (n=524) subsamples are provided in 

table 4.2 Twenty-nine percent of the sample with co-morbid ASD developed MTF compared 

to the 17% of the non-ASD sample (p <0.01), and reached MTF at an earlier age (p<0.05). 

Details on the antipsychotic treatment pathways for the 124 children who developed MTF are 

provided in table 4.3 and in table 4.4. The largest proportion (47%) switched their first 

antipsychotic due to intolerable side effects, whilst 21% showed insufficient response. After 

the second antipsychotic trial, nearly one third of MTF children had an insufficient response 

(table 4.3).  

 

Table 4.3 Reasons for switching at first and second trial of antipsychotic treatment in 
young people with first-episode psychosis who develop multiple treatment failure (MTF, 
n=124). 
 

Reasons for changing antipsychotic treatment 
Individuals with Multiple Treatment Failure 

1st to 2nd antipsychotic 

treatment 

2nd to 3rd antipsychotic 

treatment 

Insufficient response n (%) 26 (21.1) 39 (31.7) 

Intolerable adverse effects n (%) 55 (44.7) 39 (31.7) 

Non-adherence n (%) 18 (14.6) 19 (15.5) 

Other reason / No reason ascertained n (%) 25 (20.2) 27 (21.8) 

 

Median duration in days (25-75th centile) before 

change to novel antipsychotic treatment 

 

76 (20-272) 121 (41-314) 

 

4.4.3 Pathways to antipsychotic treatment failure 
 

Table 4.4 provides information regarding treatment failure pathways. The three main patterns 

of discontinuation were the combination of insufficient response and adverse events over time 

(n=28, 32.6%) persistent adverse effect (n=18, 21%) and persistent insufficient response (n=13, 

15.1%) trajectories, with significant differences in the reasons for MTF between ASD and non-

ASD groups (p =0.05). Children with ASD showed higher rates of the ‘persistent insufficient 

response’ or the ‘insufficient response-adverse effect’ trajectory but lower adherence-related 

reasons relative to those without ASD (table 4.4). 
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Table 4.4 Reasons for multiple treatment failure (MTF) in young people with first-
episode psychosis, with and without co-morbid autism spectrum disorder  
 

 n (%) of individuals b 

Reasons for MTFa 

No Autism Spectrum 

Disorder 

(n=65) 

Autism Spectrum Disorder 

(n=21) 

Persistent insufficient response 7 (10.8) 6 (28.6) 

Persistent adverse effects 15 (23.1) 4 (19.1) 

Persistent non-adherence 5 (7.7) 0 (0) 

Variability in reasons   

• Insufficient response and 
adverse effects 18 (27.7) 10 (47.6) 

• Insufficient response and 
adherence 6 (9.2) 0 (0) 

• Adverse effects and 
adherence 14 (21.5) 1 (4.8) 

a Comparison in reasons for MTF between No Autism Spectrum Disorder (no ASD) and ASD groups; 

F2 =11.1, df =5, p=0.05 
 

b In all cells, % refers to percentages (within columns) of individuals for whom information on main 

reason of discontinuation was available.  Excluded due to no reason ' or 'other reason' ascertained were: 

No ASD group n=26 (28%); ASD group n=12 (36%) 
 

4.4.4 ASD and the association with MTF 
 

Cox regression models are displayed in table 4.5, and graphically represented in figure 4.2. 

Comorbid ASD was associated with an increased risk of reaching MTF over the follow-up 

period (adjusted hazard ratio, (aH.R) 1.99, 95% CI 1.19–3.31; p=0.008). This was after 

adjusting for potential confounders including socio-demographic factors, co-morbid 

hyperkinetic disorder or intellectual disability and, as a marker of psychosis severity, admission 

status at presentation and clinical contact over the follow-up. Age at first referral, Black 

ethnicity, and frequency of clinical contact over the follow-up period were also positively 

associated with MTF (see table 4.5).  
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4.4.5 Sensitivity Analysis 
 

From the sensitivity analyses conducted, I found no change in the direction of the effect of 

ASD on MTF,  although the restriction in sample size meant loss of statistical power : i) the 

subsample of children with ASD diagnosis recorded prior to their psychosis diagnosis 

(excluding 48 children with co-morbid ASD) aH.R 1.48, 95% CI 0.81–2.73; p=0.2; ii) children 

with complete CGAS information (n=394) aH.R 1.98, 95% CI 1.06–3.67; p=0.03; iii) children 

resident exclusively within the local catchment area (n=329) aH.R 1.51, 95% CI 0.69–

3.28; p=0.30; iv) children with no clinical contact recorded within 60 days of the study end 

date (n=295) aH.R 2.71, 95% CI 1.14–6.39; p=0.02. 

 

 

Figure 4.2: Probability of treatment effectiveness (non-multiple treatment failure) after 
first-episode psychosis, comparing children with and without autism spectrum disorder 
(adjusted for all table 4.5 variables) 
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Table 4.5. Multivariable cox regression analysis of the association between autism 
spectrum disorder and multiple treatment failure in children and adolescents with first-
episode psychosis (n=618) 
 

Multiple 
Treatment 
Failure  

Crude 

H.R. (95% CI) 
P 

Adjusted for Socio-
demographic factors 

H.R. (95% CI) 

P Fully adjusted Model 
H.R. (95% CI) 

P 

Autism 

Spectrum 

Disorder 

1.24 (0.80 – 1.90) 0.33 1.52 (0.95 – 2.42) 0.08 1.99 (1.19 – 3.31) 0.008 

Female (vs male)  1.18 (0.78 – 1.77) 0.43 1.26 (0.82 – 1.92) 0.29 

Age at referral    1.31 (1.31 – 1.52) <0.001 1.39 (1.19-1.64) 0.001 

Ethnicity       

    White British   Reference  Reference  

    White Other   0.67 (0.21 – 2.11) 0.52 0.92 (0.28 – 3.09) 0.90 

    Black   2.03 (1.28 – 3.22 0.003 1.73 (1.04 – 2.86) 0.03 

    Asian    1.20 (0.50 – 2.86) 0.68 1.24 (0.51 – 3.07) 0.63 

    Mixed    1.50 (0.79 – 2.83) 0.22 1.54 (0.79 – 3.03) 0.20 

    Not Stated a   n/a  n/a  

Neighbourhood Characteristics      

    1st (Least Deprived)  Reference  Reference  

    2nd   0.64 (0.37 – 1.09) 0.11 0.67 (0.37 – 1.19) 0.18 

    3rd   0.56 (0.32 – 0.98) 0.04 0.70 (0.38 – 1.28) 0.25 

   4th (Most Deprived)  0.57(0.32 – 0.99) 0.05 0.72 (0.39 – 1.32) 0.30 

First ICD-10 psychosis diagnosis      

   Schizophrenia     Reference  

   Bipolar Disorder    1.29 (0.61 – 2.73) 0.50 

   Schizoaffective    1.57 (0.56 – 4.35) 0.38 

   Psychotic Depression           1.27 (0.67 – 2.39) 0.46 

   Drug induced psychosis    1.34 (0.47 – 3.81) 0.99 

   Other Psychoses    0.85 (0.49 – 1.47) 0.55 

Other neurodevelopmental 

disorders  

(hyperkinetic disorder and/ or 

intellectual disability) 

 

  0.70 (0.38 – 1.27) 0.24 

Admitted at first presentation    1.18 (0.78 – 1.81) 0.45 

Mean clinical contact days    1.006 (1.004 – 1.07) <0.001 

a Variable dropped due to 0 values in cell   
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4.5 DISCUSSION 
 

This is the first longitudinal study to examine the association between co-morbid ASD and 

poor antipsychotic treatment outcomes in children with first-episode psychosis. Using 

electronic health record data from community and inpatient CAMH services, I found that 19% 

of children developed MTF before the age of 18. I found that ASD co-morbidity was associated 

with a 2-fold increased risk of MTF, after adjustment for potential sociodemographic and 

clinical confounders including gender, ethnicity, age at first referral, psychosis subcategory, 

and illness severity. Among children with MTF, most cases did not show a consistent 

mechanism of discontinuation over time but, of note, 28% of those with co-morbid ASD 

compared to 11% of non-ASD children, had a persistently insufficient response to 

antipsychotics. These findings suggest that the effect of developmental delays and poor 

premorbid adjustment on antipsychotic treatment failure found in adult studies of first-episode 

psychosis,195,196 are applicable to children with early-onset psychosis.  

 

The study findings may be explained by specific neurobiological profiles related to psychosis-

ASD comorbidity. Certainly, pharmacological treatments for non-psychotic disorders in ASD 

appear to have reduced effectiveness.181 For example, children with ASD tend to respond less 

favourably to methylphenidate or to antidepressants, and experience adverse effects to these 

agents more often, and with greater severity, than their peers without ASD.181,197 ASD-

psychosis subgroups may have a reduced dopamine synthesis capacity and diminished 

response to dopamine receptor blocking antipsychotics.198,199 These theoretical mechanisms 

cannot be explored within the data available in this study, but the findings support further 

investigation into interventions that target alternative non-dopaminergic pathways in children 

with ASD-psychosis co-morbidity.  

 

I found other predictive factors that were significantly associated with MTF including Black 

ethnicity, older age at referral (a proxy for age at first episode), and frequency of clinical 

contact. Children of Black ethnicity were twice as likely as white British, to develop MTF, 

which is consistent with a number of studies in adults.200,201 Clinical contact with services was 

positively associated with a risk for MTF. This is in keeping with other research, in early-onset 

psychosis samples, which indicates symptom severity and increased service use are associated 

with a more complicated illness course.169 Male gender was not associated with an increased 

risk of MTF, which suggests that it is not a prognostic marker for treatment effectiveness, 
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although it is a risk factor for psychosis in adolescence. These results accord with a number of 

studies examining demographic predictors for poor social functioning and treatment resistance, 

in early-onset186,202 and adult cohorts.203The study findings suggest that most young people 

with early-onset psychosis do not develop treatment failure via a consistent mechanism of 

discontinuation. Nearly 60% of the MTF group had different reasons for the discontinuation of 

each trial of novel antipsychotic. In cross-section, I found similar patterns of discontinuation 

to other early-onset studies. The Treatment of Early-Onset Schizophrenia Spectrum Study 

(TEOSS) found 39.2% of the discontinuers experienced an insufficient response, and 36% 

reported adverse effects.204 Similarly, I found nearly 32% of children with MTF had switched 

from the first antipsychotic trial due to intolerable adverse effects, and 32% showed insufficient 

response.  

 

4.5.1 Strengths 
 

This study has a number of strengths. I studied one of the largest child and adolescent samples 

presenting with their first-episode psychosis, which permitted us sufficient power and precision 

to estimate the strength of the association between ASD and MTF, whilst taking account of a 

number of potential confounders. It was a first-episode sample, hence participants shared a 

common starting point in their illness course, which reduced the confounding effects of illness 

duration and unknown treatment exposures typically found in other early- and adult-onset onset 

schizophrenia cohort studies. Importantly, the findings can be readily generalized to clinical 

practice. The sample included the whole clinical population of four south London boroughs 

that were accessing ‘real world’ inpatient and outpatient CAMH services.  

 

4.5.2 Limitations 
 

Some limitations should be considered when interpreting the results of this study. As with all 

health record databases, there is some risk that not all clinical details are available for 

participants throughout the study duration. However, I would expect the data to be 

representative of children with psychoses living in urban and suburban areas since SLaM is a 

near-monopoly provider of specialist mental healthcare for its geographic catchment. I drew 

on complete electronic clinical records for over 600 cases, providing the statistical power to 

control for a range of potential confounders. The findings were also robust to a series of 

sensitivity analyses. An additional limitation that may affect the findings include diagnostic 

overshadowing, where a diagnosis of psychosis may decrease the likelihood of giving 

additional psychiatric diagnoses. Hence, the association between ASD and MTF may be an 
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underestimate. Another possible explanation for the observed association between ASD and 

increased risk of MTF could be that of misdiagnosis, where the association found between 

ASD and MTF could be explained by a subgroup within comorbid ASD that better fit a 

‘multidimensional impairment’ phenotype, which I was unable to ascertain from the clinical 

record. Multidimensionally impaired children, first described by Kumra et al. 1998,147 present 

with early transient autistic features, post-psychotic cognitive decline, and psychotic symptoms 

which are less likely to be amenable to antipsychotic treatment.147,205 Another potential 

limitation is that individual reasons for each discontinuation of treatment were likely to be 

multi-factorial. By rating treatment failure to one of four potential categories at each point of 

discontinuation/failure, I may have underestimated the contribution of other underlying 

reasons. Nonetheless, inclusion of this additional information is likely to further support the 

study findings of the heterogeneity that underlies recurrent treatment discontinuation.  

 

The study results are consistent with the evidence that shows psychotic illness experienced by 

children and adults with ASD may be different from non-ASD samples,173,175 as I found 

diagnostic profiles in children with ASD comorbidity had lower rates of ICD-10 schizophrenia 

and higher rates of psychosis-NOS. Although there are risks of diagnostic misclassification 

between psychotic illness and ASD within the clinical sample, I believe the availability of 

detailed professional observations of children’s behaviour within the free text records, has 

provided a greater clarity in the diagnostic validation of these complex symptoms, which are 

not always feasible using structured assessments.146  

 

4.5.3 Conclusion 
 

The findings provide evidence, at arguably the most sensitive point in psychosis development, 

that may help guide early detection of those children and adolescents at risk of not responding 

to first line antipsychotic medications. These findings may help delineate a subgroup of first-

episode patients with EOP – i.e. those with co-morbid ASD - who have nearly double the risk 

for eventual development of MTF.  This may explain why some children with premorbid 

difficulties and EOP are at increased risk for adverse social, educational, and occupational 

functioning.169,206 Furthermore, given the size of the sample, the longitudinal nature of the 

analyses and the comprehensive review of psychotic symptoms within clinical text, I believe 

the findings provide further support for the atypical diagnostic distribution for psychotic illness 

in ASD previously described in both adult and child populations.173,175 Further work could 

focus on identifying reliable predictors of response to non-dopaminergic treatments and 

adjunctive non-pharmacological interventions. This would enable stratified or individualised 
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treatment in specific patient subgroups, such as those children with psychosis and comorbid 

ASD. This could help direct finite resources to improve outcomes for those most in need, and 

reduce the current heterogeneity of therapeutic response. 207 
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CHAPTER 5. NEGATIVE SYMPTOMS IN 
EARLY-ONSET PSYCHOSIS AND THEIR 
ASSOCIATION WITH ANTIPSYCHOTIC 
TREATMENT FAILURE 
 

 

The contents of this chapter have contributed to the following: 

 

Downs J, Dean H, Lechler S, Sears N, Patel R, Shetty H, Hotopf M, Ford T, Diaz-Caneja MD, 

Arango C, McCabe JH, Hayes RD, Pina-Camacho L. Negative symptoms in early-onset 

psychosis and their association with antipsychotic treatment failure (Schizophrenia Bulletin, 

under revision) 
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5.1 SUMMARY 
  

Background: The prevalence of negative symptoms (NS) and their effect on prognosis for 

adolescents with a first episode of psychosis is unclear. In a sample of 638 adolescents with 

EOP (aged 10-17 years, 51% male), I examined the prevalence of NS at first presentation to 

mental health services, and whether NS predicted eventual development of antipsychotic 

multiple treatment failure (MTF) prior to the age of 18. (as defined in chapter 4: by initiation 

of a third trial of novel antipsychotic due to prior insufficient response, intolerable adverse-

effects or non-adherence). 

 

 Methods: Data were extracted from the electronic health records held by child inpatient and 

community-based services in South London via CRIS. Natural language processing tools were 

used to measure the presence of Marder Factor NS and antipsychotic use. The association 

between presenting with ≥2 NS and the development of MTF over a 5-year period was 

modelled using Cox regression.  

 

Results: Out of the 638 children, 37.5% showed ≥2 NS at first presentation, and 124 (19.3%) 

developed MTF prior to the age of 18. The presence of NS at first episode was significantly 

associated with MTF (adjusted hazard ratio 1.73, 95% CI 1.15–2.58; p=.008) after controlling 

for a number of potential confounders including psychosis diagnostic classification. Other 

factors associated with MTF included co-morbid autism spectrum disorder, older age at first 

presentation, and Black ethnicity.  

 

Conclusions: In EOP, NS at first episode are prevalent and may help identify a subset of 

children at higher risk of responding poorly to antipsychotics.  
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5.2 INTRODUCTION  
 

Early-onset psychosis (EOP), defined as onset before age 18 years, is a severely debilitating 

condition associated with long-term psycho-social impairment.169 As a diagnostic term, EOP 

covers a broad range of psychiatric illness including schizophrenia spectrum, affective and 

other non-affective psychotic disorders.123 Children with EOP often show significant levels of 

both positive and negative symptoms and disorganized behaviour. Relative to adult-onset 

psychosis, children and adolescents are more likely to have a background of longer durations 

of untreated psychosis, poor pre-morbid adjustment, and greater number of co-existing 

conditions, such as neurodevelopmental and substance abuse disorders.164,168  

 

Compared to work examining the pathogenesis of adult and early-onset psychosis, studies 

which examine prognostic indicators in the years following treatment initiation are relative 

scarce.169 From the research conducted, findings suggest that both a longer duration of 

untreated psychosis and poorer premorbid adjustment are associated with poorer recovery in 

EOP.169 Despite previous evidence from adult-onset samples supporting the influence of 

negative symptoms (NS) on functional outcomes and recovery, the effect of NS on the 

prognosis of EOP remains relatively unexplored. NS symptoms include lack of motivation, 

problems with social interaction or diminished emotional range, and involve a loss or deficit in 

normal functioning.208,209  They can be enduring and inherent to the core disease process (i.e. 

primary NS), or caused by other factors such as medication side-effects, positive symptoms, 

concurrent depression or limited social stimulation (i.e. secondary NS).208,209  

 

At present it is difficult to assess the prognostic implications of NS at a young’s person’s first 

presentation with psychosis.169 In adult-onset cases, NS are reportedly present at first-episode 

psychosis in about 30-50% of patients.210,211 They are difficult to treat and are one of the main 

contributors to the functional disability observed in psychotic illness.212–218  In EOP cases, NS 

are also reportedly stable over time, but little is known about the prevalence of these symptoms 

at first-episode.219 Most studies so far have focused on early-onset schizophrenia,176,220,221 

which may not generalise to the heterogeneous population of young people that first present to 

child and adolescent mental health services. In addition, prior research findings have been 

limited by small sample sizes, convenience recruitment of more severe cases, or inclusion of 

those more amenable to taking part in a research study.168,169  

 

In a large naturalistic sample of children and adolescents first presenting to services with EOP, 

I examined the prevalence of NS at initial contact with mental health services.  To explore NS 
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as potential prognostic indicator, I examined whether NS at first episode predicted 

antipsychotic treatment failure. I measured treatment failure using a pragmatic measure, as 

defined by initiation of a third trial of novel antipsychotic (due to prior insufficient response, 

intolerable adverse-effects or non-adherence), which I called multiple treatment failure 

(MTF).222  Previous work in adult-onset samples, suggests that NS characterize psychotic 

disorders with non-hyperdopaminergic pathophysiology,199,223 which is supported by clinical 

evidence that NS in the first-episode are associated with poorer response to antidopaminergic 

effects of current antipsychotic treatment.199,224 Therefore, I predicted that EOP patients with 

NS at presentation would be more likely to experience MTF. I also expected that this 

association would remain after taking account of potential confounders, including type of 

psychotic disorder, co-morbid depression, and additional markers of premorbid 

neurodevelopmental difficulties such as co-occurring autism spectrum disorders (ASD), 

hyperkinetic disorder and intellectual disability. 

 

5.3 METHODS 
5.3.1 Study design and study sample 
 

A complete description of the study design and sample selection is provided in chapter 4.  In 

brief, the sample consisted of a clinical cohort of all those individuals with a first episode of 

any psychotic disorder who were referred to SLaM CAMHS – including inpatient, outpatient 

and early intervention for psychosis services - between January 1st 2008 to December 31st 2014. 

Over this time, SLAM delivered all aspects of inpatient and community based child mental 

healthcare to approximately 280,000 children residing in four London boroughs, and specialist 

provision to children resident outside the boroughs where local area services (such as inpatient 

facilities) were unavailable. Most children experiencing a psychotic disorder within the SLaM 

catchment area of South London were likely to present to SLaM services and included in this 

study: the private sector has very limited involvement in child mental health within the area, 

and children with psychosis, relative to adults, usually come to the attention of services 

relatively early.225  

 

As described in chapter 4, the included sample data were extracted using the CRIS application. 

Figure 5.1 shows the flowchart for inclusion in the study. 
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Figure 5.1 Flowchart for study inclusion and analysis 
 

  

 
*Three independent raters, hand searched 100 cases each, including 167 cases where MTF was identified, and a 

random selection of non-MTF cases (44-45 per rater). 

Note: MTF: multiple treatment failure
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 Extraction of antipsychotic use data and definition of MTF 

 

As described in chapter 4, 222 I used a previously validated GATE application to identify regular 

antipsychotic prescription trials from the structured medication fields and unstructured fields 

in the EHR.132,160 Since no standard criteria for poor antipsychotic response or refractory 

disorder appeared suitable for EOP samples,185,186 a proxy was created, based on the 

antipsychotic effectiveness literature,187–189 which I termed MTF; defined as the initiation of a 

third trial of a novel antipsychotic due to insufficient response, intolerable adverse effects, non-

adherence, or other miscellaneous reasons over a 5-year follow-up period from first 

presentation, or before the age of 18 years, whichever came first. Chapter 4 provided details 

around the validation of the MTF outcome and reasons for discontinuation.222  

 

Extraction of NS data 

A previously validated Natural Language Processing method 211 was used to find statements in 

the unstructured free-text fields of patients’ EHR (i.e. progress notes, mental state assessments, 

discharge summaries, outpatient correspondence) which related to the presence of NS at 

baseline (i.e. within 60 days of accepted referral). The method was based on a NLP tool called 

TextHunter which has been described in detail elsewhere.6 In brief, TextHunter is a custom-

built NLP software tool which interfaces with CRIS. It facilitates each of the steps involved in 

developing a NLP application (previously described in the introductory chapter) from 

identifying appropriate ontologies and supporting manual annotation, to applying and testing 

sophisticated text based pattern recognition (including support vector machine learning 

approaches) derived from annotated training datasets.  

 

A randomised sample of 100 cases was hand-searched by clinical raters, whilst blinded to MTF 

status. The PPV for NS subtypes ranged from 0.80 (poverty of speech) to 0.99 (mutism) and 

sensitivity ranged from 0.62 (poor motivation) to 0.97 (apathy). For the purposes of this study, 

Marder negative factor items226,227 from the Positive and Negative Syndrome Scale (PANSS)228 

were used as a framework for characterising NS (see Table 5.1 for details). The extracted item 

‘social isolation’ was considered descriptive of either passive apathetic social withdrawal 

(Marder N4) or active social avoidance (Marder G16). Having mutism, poverty of speech or 

both items recorded on the EHR was counted as a single NS, equivalent to lack of spontaneity 

/ flow of conversation (Marder N6). The item psychomotor retardation (equivalent to Marder 

G7) was dropped as an NS due to its low PPV (0.55) and sensitivity (0.65). Furthermore, the 

hand search of the selected 100 cases revealed that this item had a low prevalence (~5% of the 
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sample) and always appeared acknowledged as an antipsychotic-related adverse effect (hence 

a secondary NS).  

 

Table 5.1 Selection of negative symptoms from electronic health records and their 
equivalence to the Marder Negative Factor items within the PANSS 
 
Items extracted from electronic health 

record 

 Marder Negative Factor items within the PANSS 

Blunted affect  N1. Blunted affect 

Emotional withdrawal  N2. Emotional withdrawal 

Poor rapport  N3. Poor rapport 

Social isolation   N4. Passive apathetic social withdrawal 

G16. Active social avoidance 

Poverty of speech and/or Mutism  N6. Lack of spontaneity and conversation flow 

Psychomotor retardation (dropped a)  G7. Motor retardation  
a Dropped from the study due to low PPV (0.55) and sensitivity (0.65) of the ´free text’ extraction tool, and due to 

its being recorded mainly as secondary negative symptom. 

Note: PANSS: Positive and Negative Syndrome Scale; PPV: positive predictive value 

 

 

A composite ordinal variable, ‘number of NS’ (range 0 – 5) was created by summing the total 

count of the extracted NS. A score of at least two NS was applied a priori to determine the 

presence or absence of NS for analysis, and used to categorise individuals into having a positive 

NS profile (i.e ≥2 NS score) or non-NS profile. This approach was consistent with previous 

work that used the two-symptom cut-off to describe deficit syndromes in schizophrenia (i.e. 

primary, enduring NS).211,216   

 

Extraction of other clinical and demographic data 

A number of demographic variables and clinical data within 60 days of study entry (i.e. after 

accepted referral) were also extracted from the health record. Age at referral for first-episode 

psychosis, gender, ethnicity (according to categories defined by the UK Office for National 

Statistics), and index of neighbourhood deprivation for the main caregiver residence were 

extracted.194 Data on illness severity and functioning around first presentation were extracted 

by means of the inpatient status and the Children’s Global Assessment Scores (CGAS),133 

respectively. Data on ICD-10 co-morbid neuropsychiatric disorders which can be subsumed 

under the DSM-5 category of ASD (F84.0, F84.1, F84.5, F84.9), hyperkinetic disorder (F90.0, 

F90.1, F90.2, F90.8, F90.9), major depressive disorder (F32-33), and intellectual disability 
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(F70-79), were also extracted from free text and structured fields as previously described 

(chapters 2 and 4).160,222   

 
5.3.2 Analyses 
 

All analyses were conducted using STATA (Version 13). The prevalence of individuals 

meeting ≥2 threshold NS, and the total number of NS items was calculated. Logistic regression 

was used to examine whether NS profile was associated with demographic and baseline clinical 

characteristics.  

 

To examine the prospective association between baseline demographic, clinical exposures and 

MTF outcome, I excluded children who had MTF within the 60-day baseline period (n=20). 

Kaplan–Meier curves were used to illustrate survival over time (probability of non-

development of MTF), comparing those who were and were not presenting with ≥2 NS at 

baseline. After checking proportional hazards assumptions, I used a Cox regression to model 

the association between this baseline NS profile and MTF over a 5-year follow-up period from 

first presentation, or before the age of 18 years, whichever came first. The first model examined 

the crude effect of NS alone on MTF. Subsequent models were constructed adding potential 

socio-demographic and clinical confounders. As sampling bias towards more severe cases 

could affect the external validity of the findings, several sensitivity analyses were conducted 

to restrict the aforementioned models to (i) those children with complete adaptive function 

(CGAS) measures at first presentation (ii) inpatient children only; and (iii) those only resident 

within the local catchment area. 

 

5.4 RESULTS   
 
5.4.1 Demographic and clinical characteristics of the sample 
Demographic and clinical characteristics of the 638 patients included (124 [19.3%] of whom 

developed MTF over time) and of the NS subgroup are presented in Table 5.2.   
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Table 5.2 Comparison between young people with early-onset psychosis at first 
presentation with and without ≥ two negative symptoms documented  
 

Sample characteristics 
Non-NS group 

(n = 399) 

NS group 

(n = 239) 
O.R (95% C.I) 

MTF status, n (%) 59 (14.8) 65 (27.2) 2.15 (1.45-3.20)** 

Female, n (%) 192 (48.1) 117 (48.9) 1.03 (0.75-1.42) 

Age at referral (mean, SD) 15.4 (1.9) 15.9 (1.9) 1.17 (1.06-1.28)** 

Age of reaching MTF (mean, SD)  16.5 (1.3) 16.0 (0.19) 0.79 (0.61-1.04) 

Duration of follow-up (days), mean (SD) 721.4 (529.9) 590.5 (458.0) 0.995 (0.991-0.998)** 

Ethnicity, n (%)    

      White 204 (51.1) 93 (38.9) Reference 

      Black 113 (28.3) 96 (40.2) 1.86 (1.29-2.67) 

      Asian 18 (4.5) 21 (8.8) 2.56 (1.30-5.03) 

      Mixed 47(11.8) 27(11.3) 1.26 (0.74-2.15) 

      Not Stated 17 (4.3) 2 (0.8) 0.25 (0.06-1.14) 

Neighbourhood Characteristics, n (%) a    

     1st (Least Deprived) 104 (27.1) 61 (25.9) Reference 

     2nd 90 (23.4) 62 (26.4) 1.17 (0.75-1.42) 

     3rd 94 (24.5) 57 (24.3) 1.03 (0.66-1.63) 

     4th (Most Deprived) 96 (25.0) 55 (23.4) 0.98 (0.62-1.54) 

First ICD-10 psychosis diagnosis, n (%)    

   Other Psychoses 63 (15.8) 43 (17.9) Reference 

   Bipolar Disorder 31 (7.8) 11 (4.7) 0.57 (0.24-1.15) 

   Drug-induced psychosis 29 (7.3) 10 (4.2) 0.51 (0.22-1.14) 

   Schizophrenia 222 (55.6) 143 (59.8) 0.94 (0.61-1.46) 

   Schizoaffective 11 (2.8) 6 (2.5) 0.80 (0.27-2.32) 

   Psychotic Depression 43 (10.8) 26 (10.9) 0.89 (0.47-1.65) 

Co-morbid neuropsychiatric disorders, n (%)    

   Autism Spectrum Disorder 75 (18.8) 39 (16.3) 0.84 (0.55-1.29) 

   Hyperkinetic Disorder 33 (8.27) 7 (2.9) 0.33 (0.15-0.77)** 

   Intellectual Disability 43 (10.8) 22 (9.2) 0.84 (0.49-1.44) 

   Major Depressive Disorder 108 (27.1) 66 (27.6) 1.03 (0.72-1.48) 

Illness severity/ Functioning    

   Admission at presentation, n (%) 90 (22.6) 170 (71.1) 8.5 (5.9-12.2)*** 

   CGAS score (mean, SD)b 42.1 (15.3) 33.7 (15.4) 0.97 (0.95-0.98)*** 
*p< .05; **p < .01; a Variable dropped due to 0 values in cell. Note: O.R: Odds ratio; MTF: multiple treatment 
failure; NS: negative symptoms 
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5.4.2 Negative symptom prevalence 
 

Table 5.3 shows the prevalence of each NS item using the manually-validated GATE extraction 

tool, in the total sample, and specifically for the MTF subgroup. Of note, 52.4% of the MTF 

subgroup presented with a positive NS profile. The most prevalent NS in the MTF subgroup 

was emotional withdrawal (43.6%). The prevalence of positive NS profile across diagnostic 

categories were as follows: schizophrenia- 39.2%, schizoaffective disorder- 35.3%, bipolar 

disorder- 26.1%, psychotic depression- 37.7%, drug-induced psychosis- 25.6% and other 

psychoses- 40.6%. 

 
Table 5.3 Prevalence of negative symptoms at first presentation to services in early-
onset psychosis subjects 
 

NS items extracted from EHR 
Total sample (n= 638)  MTF (n=124) 

n (%)  n (%) 

Blunted affect 130 (20.3)  29 (23.4) 

Emotional withdrawal 214 (33.5)  54 (43.6) 

Poor rapport 62 (9.7)  18 (14.5) 

Social isolation 51 (8.0)  14 (11.3) 

Poverty of speech 32 (5.0)  8 (6.5) 

Mutism 66 (10.3)  25 (20.2) 

≥ 2 NS 239 (37.5)  65 (52.4) 

Note: EHR: electronic health record; MTF: multiple treatment failure; NS: negative symptoms 
 
 

5.4.3 Reasons for antipsychotic discontinuation  

Details on the antipsychotic treatment pathways for the 124 children who developed MTF are 

shown in table 5.4. Cases identified as having the same reason for antipsychotic discontinuation 

at first and second antipsychotic trials were grouped into three MTF ‘persistent reason’ groups 

(persistent insufficient response, adverse events or non-adherence). A ‘variability in reasons’ 

subgroup (i.e. when reasons were different at each antipsychotic trial) was also created. The 

main patterns of discontinuation in the MTF group were the combination of insufficient 

response and adverse events (n=32, 35.2%), and persistent adverse events (n=19, 20.9%) over 

time. Children with NS profile showed higher rates of the ‘insufficient response-and-adverse 
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effect’ trajectory and lower rates of adherence-related trajectories relative to those with non-

NS profile (table 5.4). 

Table 5.4 Reasons for multiple treatment failure in young people with early-onset 
psychosis, with and without negative symptoms(NS) at first presentation 
 

Reasons for MTF a 

N (%) of individuals b 

Non - NS 

(n = 41) 

NS 

(n = 50) 

Persistent insufficient response 6 (14.6) 7 (14.0) 

Persistent adverse effects 9 (21.9) 10 (20.0) 

Persistent non-adherence 2 (4.9) 3 (6.0) 

Variability in reasons   

• Insufficient response and adverse effects 11 (26.9) 21 (42.0) 

• Insufficient response and non-adherence 3 (7.3) 
4 (8.0) 

 

• Adverse effects and non-adherence 10 (24.4) 5 (10.0) 

a Comparison in reasons for MTF between Non-NS and NS groups; F2 =4.39, df=5, p=0.49 
 

b In all cells, % refers to percentages (within columns) of individuals for whom information on main 

reason of discontinuation was available (n=91). Excluded due to no reason ' or 'other reason' 

ascertained were: Non-NS n= 18 (31%); NS group n=15 (23%) 

Note: MTF: multiple treatment failure; NS: negative symptoms 

 
 

 

5.4.4 Negative Symptoms and their associations with MTF  

Kaplan-Meier curves displaying the survival status (probability of treatment effectiveness or 

non-MTF) over time of children with or without baseline NS profiles are presented as Figure 

5.2. Those with non-NS profile at first presentation to services displayed significantly higher 

survival rate (p <.001). An adjusted Cox regression model (Table 5.5) revealed that NS profile 

was associated with increased risk of MTF over the follow-up period (adjusted hazard ratio 

[aH.R] 1.73, 95% CI 1.15–2.58; p= .008). Black ethnicity (aH.R 1.93, 95% CI: 1.17–3.03; p= 

.006), older age at first presentation (aH.R 1.29, 95% CI: 1.11–1.49; p= .001), and a comorbid 

diagnosis of ASD (aH.R 1.73, 95% CI: 1.05–2.83; p= .03) were also significantly associated 

with MTF.   
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Figure 5.2 Kaplan-Meier curves displaying the survival status (probability of treatment 
effectiveness or non-MTF) over time of children with or without negative symptom (NS) 
profiles at first presentation to services. 

 
5.4.5 Sensitivity Analyses 
 

A sensitivity analysis in all those with complete CGAS information (n=394), found NS profile 

was associated with increased risk of MTF (aH.R= 2.03; 95% CI= 1.18–3.48; p=.008). The 

analyses including only those individuals who were inpatients (n=260, 40.8%) at first 

presentation (within 60 days of accepted referral) or resident exclusively within the local 

catchment area (n=329), found little change in the direction and magnitude of the association 

between NS and MTF (aH.R= 1.68; 95% CI = 0.86–3.29; p= .13), and (aH.R= 1.67; 95% CI= 

0.94–2.97; p=.08), respectively, although the reduced sample affected the power of the study 

to detect a significant association.  
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Table 5.5 Cox regression models for the association between negative symptom profile at 
first presentation and multiple treatment failure over time in early-onset psychosis (n=618) 

 

Multiple Treatment Failure 
Crude 

H.R. (95% CI) 

Adjusted for 

socio-demographic factors 

H.R. (95% CI) 

Fully-adjusted model 

H.R. (95% CI) 

    

≥2 baseline NS 1.98 (1.35-2.91)** 1.66 (1.12-2.47)** 1.73 (1.15-2.58)** 

    

Female (vs male) gender  1.08 (0.73-1.61) 1.19 (0.78-1.79) 

Age at referral   1.25 (1.09-1.46)** 1.29 (1.11-1.49)** 

Ethnicity    

    White   Reference Reference 

    Black  1.95 (1.23-3.00)** 1.89 (1.21-3.09)** 

    Asian   1.16 (0.48-2.77) 1.14 (0.47-2.76) 

    Mixed  1.51 (0.80-2.86) 1.12 (0.46 -2.72) 

    Not Stated  ------a ------a 

    

Neighbourhood Characteristics    

    1st (Least Deprived)  Reference Reference 

    2nd  0.60 (0.35-1.04) 0.69 (0.40-1.21) 

    3rd  0.55 (0.31-0.96)* 0.64 (0.35-1.09) 

    4th (Most Deprived)  0.55 (0.31-0.97)* 0.63 (0.35-1.10) 

 

ICD-10 psychosis diagnosis 
   

    Other psychoses   Reference 

    Bipolar disorder   1.65 (0.73-3.72) 

    Drug induced psychosis   0.95 (0.31-2.88) 

    Schizophrenia   1.17 (0.50-1.45) 

    Schizoaffective   2.57 (0.92-7.13) 

    Psychotic depression  1.32 (0.59-2.94) 

    

Co-morbid major depressive disorder  0.64 (0.38-1.11) 

Co-morbid autism spectrum disorder  1.73 (1.05-2.83)* 

Other co-morbid neurodevelopmental disorder (hyperkinetic disorder 

/ intellectual disability) 
 

0.69 (0.38-1.25) 

 *p< .05; **p < .01; a Variable dropped due to 0 values in cell. Note: H.R.: hazard ratio; MTF: multiple treatment failure; 

NS: negative symptoms 
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5.5 DISCUSSION 
 

This study shows that children and adolescents with psychosis commonly present with NS, 

with more than one third of the sample displaying NS at first presentation to services. The 

results also show that an NS profile at first stages is a prognostic marker for antipsychotic 

treatment failure in children with EOP: approximately 30% of the sample with NS at baseline 

went on to develop MTF, representing a two-fold increased risk from those without NS. The 

treatment pathway to MTF for young people with NS profiles appears to be driven by a 

combination of limited treatment response and emergence of intolerable adverse effects. Older 

age at first episode, Black ethnicity and a comorbid diagnosis of ASD are also significant 

predictors of MTF in this sample. 

 

This is, to my knowledge, the largest naturalistic study of its kind to examine the prevalence 

of NS in EOP at first presentation to child mental health services. The study used an innovative 

text mining technique, adapted from an application in adult mental health records,8 to extract 

negative symptom profiles. More than one third of the EOP population had two or more NS at 

baseline, rates that are consistent with those reported in both child and adult-onset psychosis 

literature (around 30-50%).211,229   

 

This is also the first study to assess the association of NS and antipsychotic treatment failure 

in first-episode EOP patients. These results, combined with findings that NS can manifest in 

the psychosis prodrome,230 suggests that NS profiles could represent a distinct phenotypic 

trajectory in young people with psychotic disorders. NS are possibly a marker for a distinct 

deviant neurodevelopmental trajectory which may be harder to treat with conventional 

antipsychotics and therefore result in a more impaired illness course. Although no previous 

work has examined treatment failure as an outcome in EOP, the findings are consistent with 

evidence that NS are associated with poor clinical outcomes in adult and child samples, many 

of those using validated gold-standard instruments to measure negative symptoms (e.g. the 

PANSS).169,231 This work using text mining approaches for NS identification in large scale 

naturalistic samples of EOP using EHRs serves to complement the more traditional approaches 

using selective cohorts and intensive structured assessments, to inform prognostic indicators in 

clinical practice.  

 

Several alternative psychopathological processes may be driving the study findings. Higher 

levels of primary NS may represent a clinical phenotype for greater levels of ‘non-

hyperdopaminergic’ processes behind psychosis development.199,223,232 Hence NS may help 
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identify a subgroup of patients with positive symptoms which do not respond well to 

antipsychotics, and at higher risk of developing MTF. Alternatively, NS may have an 

independent pathophysiology to positive psychotic symptoms, but may be moderating the 

association between positive symptom reduction and the protective factors required for a 

sustained remission. 

 

The findings support the notion that NS are intrinsic to early-onset psychosis (across different 

psychosis diagnostic categories) and are already present during the first psychotic break. In 

regard to the prevalence across the different psychosis disorder classifications in this sample, 

NS were present in about one third of all EOP diagnostic subgroups, with slightly higher rates 

in those with non-affective psychosis. This suggests that in EOP, differences between 

psychosis diagnostic categories (especially between schizophrenia and affective psychoses) are 

quantitative rather than qualitative in nature, and all diagnoses are associated with presence of 

impairing symptoms (as reflected by similar rates of NS). Further studies using transdiagnostic 

approaches, as used in this study, are needed to advance the understanding of the 

physiopathology and predictive value of NS across disorders. 

 

5.5.1 Strengths 
 
The main strengths of this study include the use of a large sample of first-episode EOP, which 

provides a ‘real world’ sample of young people accessing inpatient and outpatient first episode 

psychosis CAMH services. Selecting an early-onset sample at first episode, reduces the 

potential bias incurred through unknown treatment exposures. The large sample size, and 

relative long duration of assessment provides sufficient power to estimate the association 

between NS and MTF even after adjustment for a number of potential clinical confounders, 

including psychotic disorder classification, neurodevelopmental and depressive disorder 

comorbidity. Using a clinical rater review of the whole electronic health record for sub-sets of 

patients allowed us to compute performance estimates of the different text extraction tools used 

in the study and select the most accurate ones, and enabled correction of misclassification 

errors.  

 
5.5.2 Limitations 
 

Results derived from this study should also be interpreted in the context of several limitations. 

Within the EOP sample, it was difficult to ascertain whether extracted NS were primary or 

secondary in nature, I assume that as NS were rated early (i.e. within 60 days of presentation 

to services and potentially prior or at the point of starting initial antipsychotic treatment), and 
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excluding the presence of psychomotor retardation from the total NS counting, the NS I detect, 

are mainly (but not only) primary in character.  

 

In regard to the MTF definition, I was unable to obtain relevant antipsychotic data such as 

maximum daily antipsychotic dose, antipsychotic serum levels, or structured assessments of 

tolerability, which may have provided more objective assessments of treatment failure.  

Besides, by rating treatment failure to one of four potential categories at each point of 

discontinuation/treatment failure, I may have underestimated the contribution of other 

underlying reasons to treatment failure. As with all observational studies, the study findings 

may be limited by residual confounding, for example I was unable to adjust for the potential 

effects of substance misuse on MTF, and duration of untreated psychosis – both of which could 

be explanatory factors for older age being associated with MTF. Finally, there is a chance that 

not all children and adolescents experiencing a first-episode psychosis within the catchment 

area who access clinical services would have presented to SLaM CAMHs.  Also given potential 

changes in residence away from SLaM services, it is possible that not all young peoples’ 

psychiatric care was captured by the health record system over the course of follow-up. Given 

the mean duration of follow-up was lower in the NS group, I suspect that this may have led to 

an underestimation of the NS-MTF effect I report.  Furthermore, the impact of potential loss to 

follow-up, and of non-actual first presentation to services, are likely to be limited, as I 

conducted a sensitivity analyses of children resident within the local catchment throughout the 

duration of their care, which showed little difference from whole sample findings.    

 

5.5.3 Conclusion 
 

In summary, this study demonstrated that there is a high prevalence of negative symptoms in 

early-onset psychosis around patients’ first presentation to services and across psychosis 

diagnosis classifications, and supports the hypothesis that presence of these symptoms around 

the first stages of the illness identifies a subset of children who may be at higher risk of 

responding poorly to antipsychotics, both through refractory symptoms and high sensitivity to 

side-effects. Optimisation of current pharmacological and non-pharmacological strategies for 

these patients, and further research involving agents that better target negative symptoms are 

warranted. 

 

 

. 
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CHAPTER 6. LINKING HEALTH AND 
EDUCATION DATA TO PLAN AND EVALUATE 
SERVICES FOR CHILDREN. 
 

The contents of this chapter have contributed to the following: 

 

Publication in a peer-reviewed journal  

 

Downs J, Gilbert R, Hayes RD, Hotopf M, Ford T. Linking up data to plan and improve mental 

health services for children in England. Archives of Diseases in Childhood 2017;102: 599-602 
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6.1 SUMMARY 

 
In this chapter, I provide an overview on the first area-based linkage in England which I 

conducted between mental health, hospital and school data, covering a total population of 1.25 

million. I give an overview of this resource, give examples of how it is being used to improve 

public services for children, and discuss what is needed to implement this approach more 

widely across the UK. 

 

  



 

 
123 

 

6.2 INTRODUCTION 
 

Linkage of routinely collected data from public services has the potential to improve how local 

health, education, and social care are delivered to children. All mental health services, hospital-

based child health services, schools and child protection services which serve the same local 

area, could be more efficient if the design, monitoring, targeting and integration of services 

were based on data. Health services need evidence from the populations that they serve to plan 

care and know whether they are meeting children’s needs, duplicating effort, or allowing some 

children to fall through the net.  In this chapter, I describe why I have joined up data from 

health, education and social services for children living in four local authorities in South 

London to create two datasets. One linking hospital to children’s mental health services and 

the second linking mental health data to education data. I describe these resources, give 

examples of how they could be used to improve services, and discuss what is needed to 

implement this approach more widely across the UK.  

 

6.2.1 What data are available? 
 

Across England, all NHS health and state education services for children routinely generate 

administrative data, but few areas have managed to join these data systematically to evaluate 

how services could better serve their populations.  Details of every NHS hospital inpatient 

admission, emergency department and outpatient contact are centrally collated by NHS 

Digital.233 Demographic and socio-economic data on every child in state education are 

submitted by all state maintained schools to the Department of Education, along with 

information on school attendance, attainment, exclusion, child protection involvement, and 

special needs.234 Centrally collected child mental health data has yet to become available, but 

nearly all local services collect these data within their electronic health record systems.73 A big 

challenge is meeting the technical and governance requirements that safeguards sensitive child 

data, but also permits the linkage across public service data resources. This challenge has been 

addressed by the NIHR biomedical research centre at the Maudsley and there is the potential 

to extend our approach to other sites. 
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Figure 6.1 Linked data resources to provide an anonymised multiagency dataset covering 
child and adolescent mental health services, hospital attendances, education services and 
social service activity in South London.  
 

 

 

As described in chapter 2, ten years ago, the Maudsley NIHR biomedical research centre set 

up the CRIS. CRIS has linked mental health data to education and hospital data. It took 3 years, 

from first application, to obtain permissions to do this from the Health Research Authority, 

NHS Digital and the Department for Education. I describe the legal, governance and technical 

challenges of this process in greater depth within chapter 7. In brief, the linkage process itself 

involved CRIS sending patient identifiers (names, and dates of birth, postcodes), without any 

mental health information to NHS Digital and to the Department for Education, where the 

identifiers were linked, and data from education and hospitals were de-identified and returned 

to CRIS. The CRIS secure environment now holds two linked datasets, education data linked 

to mental health data, and a second dataset containing mental health and hospital data. These 

datasets are kept separately, with all identifiers (names and NHS or pupil ID numbers) 

removed. 

The CRIS system covers all NHS mental health services for four local authorities, which 

service a population of 1.25 million people. Patients using mental health services are made 

aware of how their data are used through notices in clinics, websites and regular public 
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engagement events. Although patients are not asked for consent to use their data for service 

evaluation or research, they are able to opt out. Only three individuals have asked to opt out of 

CRIS in six years. In 2014, the CRIS system was extended to four more mental health trusts 

(in 16 local authorities) and could be extended beyond mental health to other services.96 

 

6.2.2 Using linked data from schools and mental health services  
 

The population 

 

The linked schools and mental health dataset captures data for approximately 160,000-190,000 

children each year from 2007-13. To be included, children need to be aged between 4 and 16 

years (see figure 6.1 for population numbers) and be resident in Southwark, Lambeth, 

Lewisham or Croydon.  These areas are culturally and economically diverse, representing both 

outer and inner London regions. The catchment population has substantially higher proportions 

of families from black minority ethnic groups and/or born outside UK compared with rest of 

London and England. Highest and lowest socioeconomic groups are overly represented 

compared with England; with higher rates of unemployment, but also higher levels of 

education.235 Linkage with the national pupil dataset means that information on education is 

still captured for those attending state school outside the local catchment area, and for those 

who move in or out of the area. Some of the population are not routinely captured.  Children 

attending independent (meaning private) primary schools are not represented (~ 5% of the 

population aged under 12).236 Children attending independent secondary schools are included 

when they sit any national examinations (e.g. GCSE or A level).    

 

What can be measured? 

 

Alongside socio-demographic characteristics, the national pupil dataset provides rich 

information on childhood development.234 It tracks indicators of cognitive ability via routine 

teacher based assessment of language and numerical ability as children start school, and then 

via standardized academic assessments in mid and late childhood. It captures indicators of 

special educational needs such as physical problems, including deafness and visual 

impairment; emotional and behavioural problems, and autism spectrum disorder and learning 

disability. The dataset also captures episodes of children being excluded from school and 

indicators of absenteeism.  Children’s social care data has also been linked, which includes 

social service referrals and investigations, including details of children who are placed into out 

of home care.  
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As described in chapters 2-5, the CRIS system enables researchers to access electronic mental 

health record data for approved studies.127,129  Data available for research includes structured 

information (e.g. data entered by clinicians from drop down lists) such as past and present ICD-

10 psychiatric diagnoses, appointments attended, and routine outcome measures (e.g. Strength 

and Difficulties Questionnaires)126, and risk assessment details including risk of self-harm, 

self-injury, aggression to others.160 Natural language processing software is used to enhance 

this data by extracting information predominately found in clinical progress notes and 

correspondence that might include more detail about family mental health problems, substance 

misuse, pharmacotherapy, and symptoms.129 

 

 

How can school and mental health data be used to improve services? 

 

The linked school and mental health data has many potential applications. It can provide 

detailed information on patient pathways and the extent of inequalities to services. This 

information can be used to flag gaps in existing healthcare provision and direct where new 

services are needed.   National and local surveys have provided consistent evidence that timely 

access to services varies by social status and area of residence.237 Data suggest that young 

people at high risk for mental health problems, looked after children and care leavers, those at 

risk of social exclusion or who have experienced abuse, or with long term physical health 

conditions, are the ‘hardest to reach’ and more likely to receive insufficient or fragmented 

care.238 Because, local areas have considerable flexibility in how they commission child mental 

health services, there is a risk that ‘hard to reach’ groups are least likely to receive services. 

Mental health-school linked data can help understand which children receive support amongst 

socially vulnerable groups in each local area. Using data in this way to map service provision 

is particularly pertinent for integrated child health programmes which aim to tackle the 

potential inefficiencies and inequalities of current condition-specific pathways.239 At present, 

local areas have very limited information on how mental health resources are accessed by 

vulnerable children, which include looked after children, those with a history of social services 

contact, prolonged absences from school240 , permanent exclusions,241 and with complex 

education needs.242 Using these linked data, it is possible to gain a clearer picture of how well 

education and mental services overlap to address emotional and behavioural difficulties, and 

the shared awareness of special educational needs across both services.   
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Linkage of schools’ data to mental health services also offers opportunities for targeting school 

based prevention strategies.  For example, the funnel plot in figure 6.2 shows variation between 

mainstream schools in referrals to child and adolescent mental health services in the four local 

areas for children aged less than 8 years. Outliers on the funnel plots are of particular interest 

and warrant further exploration:  very high rates could reflect high levels of population need 

and/or school-wide difficulties in managing emotional and behavioural problems, or 

conversely, very low referrals to mental health services may reflect excellent in-school support 

and provide a model of good practice. Using similar techniques, the data can be used to examine 

whether potentially more ‘contagious’ adolescent mental health problems like eating disorders, 

self-harm or suicidal behaviours cluster within schools.  Findings can then be used to prioritise 

schools for preventive strategies. There is also a need for research to examine associations 

between educational achievement, self-harm presenting to mental health services, and the 

potential impact of school based interventions, as almost no research has been conducted on 

this topic in the UK.243 

 

 
Figure 6.2 Plot showing referral rates to Child and Adolescent Mental Health Services for 
each school by Key Stage 1 (infant school)  

 
Note: Funnel plot displaying referral rates as a function of the pupils enrolled between 2008 and 2013 within the 

school. The average referral rate is 4.3% (shown as a horizontal line). Control limits are also plotted above and 

below this mean. 
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6.2.3 Using linked hospital-mental health service data to inform services 

There are a number of policy-relevant research areas that can benefit from using linked mental 

health and hospital administrative data. One example is the evaluation of policy initiatives to 

improve the quality of crisis care for young people.244 There are approximately 200,000 

episodes of self-harm that present to emergency services each year in the UK, with the highest 

rates amongst adolescents and young adults.245,246 Between 25–50% of adolescents presenting 

to emergency care with self-harm do not attend any follow-up mental health support.247–249 

Emergency departments have an important influence on future engagement with treatment.250 

By adapting an approach developed in adult populations,251 we can track temporal shifts in 

rates of emergency department attendances for self-harm or suicidal behaviour for the 40,752 

children and adolescents seen each year from the four local authorities served by CRIS.  We 

can assess whether practice changes in emergency departments result in reduced rates of 

attendance for self-harm in the long term.  

Another example is the use of linked hospital-mental health data to follow up children 

hospitalised with long term conditions to investigate their use of mental health services and 

psychiatric co-morbidity. We can evaluate the types of patients who receive mental health care, 

when, and which factors are associated with treatment gaps and/or reliance on emergency care 

and unplanned admissions. These studies can provide information on whether systems of care 

need to change to ensure particular populations with chronic health problems, such as ethnic 

minorities or socially disadvantaged children, receive equitable access to mental health 

services.  

6.2.4 CRIS: a sustainable resource for evaluating child health policy and service improvement 
 

The CRIS system offers a sustainable resource for population-based analyses of linked patient 

level data to inform child mental health and acute hospital services and education services.  

Because CRIS uses data extracted from electronic record systems it provides a powerful 

platform for continuous evaluation of local child health policy initiatives.252 The CRIS system 

provides an efficient, area-based resource for research,  service planning and evaluation with 

patients followed up across the country. CRIS is being reproduced in other areas, potentially 

leading to a number of local areas having fine-grained information to better target local 

resources. However, there is still considerable work to be done. Health commissioners and 

other decision makers at local and national levels will need to develop sustainable means of 

implementing the knowledge which resources such as CRIS can deliver.   This is essential if 



 

 
129 

we wish to complete the Learning Health System cycle (please see 

http://www.learninghealthcareproject.org), and use our informatics resources to drive 

healthcare improvement and innovation.28 Alongside this, public engagement, understanding 

and support is vital.  If we want to adopt these systems further families, child health advocates, 

academics, clinicians and policy makers will need to decide together how local linked resources 

are best safeguarded and used in commissioning services.   

 

I hope in time that others will be encouraged to extend the CRIS model to link data for children 

across public services.  By doing so I hope we will reduce the unmet need among vulnerable 

children and to move the discussions on from ‘not knowing’29,30 to accurate and responsive 

information on which to base public health strategies for children and young people.  
 

 
 

 

  

http://www.learninghealthcareproject.org/
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CHAPTER 7. LINKING ADMINISTRATIVE 
DATA ON CHILDREN’S MENTAL HEALTH 
AND EDUCATION: GOVERNANCE, LEGAL 
AND TECHNICAL CHALLENGES  
 

 

The contents of this chapter have contributed to the following: 
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explore service utilisation and outcomes.  UCL Child Policy Research Unit Report. Department 
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A, Stewart R. (2016) Cohort profile of the South London and Maudsley NHS Foundation Trust 

Biomedical Research Centre (SLaM BRC) Case Register: current status and recent 

enhancement of an Electronic Mental Health Record derived data resource BMJ Open 6: 1-22 

e008721 
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7.1 SUMMARY 
 

Background:  There are strong interconnections between public services which deliver health, 

education and social care for children. Improvement or withdrawal of any one of these services 

can help or harm delivery of the others. Because of their complementary nature, policy makers 

and service providers advocate that evaluations should involve linked routinely collected health 

and education data. Research using linked health, social and education data have been in place 

in Scotland and Wales for several years, but as of yet, no comparable linkage has been achieved 

in England. In this chapter, I present the governance, legal and technical challenges I 

encountered in achieving this link for four local authorities in South London, and review 

implications for future analyses by researchers and policy makers.  

 

Methods: Approvals were sought from multiple government and ethical committees to link 

SLAM child and adolescent mental health service data to Department for Education (DfE) 

educational data held within the National Pupil Database. Under robust governance protocols 

delivered by the Maudsley BRC Clinical Records Interactive Search, and via an NHS trusted 

third party, I extracted the personal identifiers from the electronic health records of young 

people of a clinical cohort of all individuals aged between 4 and 18 years referred to NHS 

mental health care in England between 1st September 2007 and 31st August 2013. The DfE 

used combined fuzzy and deterministic approaches to match personal identifiers (names, date 

of birth, and post code) with NHS personal identifiers, and returned individually-matched 

educational performance records. The potential linkage biases using this process were 

evaluated by comparing socio-demographic and clinical characteristics between linked and 

unlinked SLaM cases. Methods to mitigate these biases and their impact on an important 

clinical factor-educational association (ICD-10 Axis One mental disorder and school 

attendance) were explored using linkage probability weighting and adjustment.  

 

Results: Governance challenges included developing a research protocol for data linkage 

which met the legislative requirements for both section 251 of the NHS Act 2006 and 

The Education (Individual Pupil Information) (Prescribed Persons) (England) Regulations 

2009(2). From a total 35,509 individuals referred to SLaM, 29,278 were matched to NPD 

school attendance records representing a linkage rate of 82.5%. There were significant 
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differences in sociodemographic, clinical and administrative characteristics between groups 

linked and not linked to school data. For example, children with a recorded ICD-10 mental 

disorder were more likely to have linked records compared those without ICD-10 disorder 

[adjusted Odds Ratio (aO.R) 1.11, 95% C.I 1.04-1.18]. Groups with a reduced likelihood of 

linkage included those first presenting to services in late adolescence (aO.R 0.67, 95% C.I 0.59-

0.75) or having NHS address data recorded outside school census timeframes (aO.R 0.15, 95% 

C.I 0.14-0.17). No significant differences were found in linkage rates between children in the 

lowest and highest quartiles of deprivation (aO.R 1.03(0.92-1.15). ICD-10 mental disorder 

remained significantly associated with persistent school absence (aO.R 1.13, 95% C.I 1.07-

1.22) after adjustments for linkage error.   

 

Conclusions: It is feasible to link routinely collected education and health for most school aged 

children and adolescences at an individual level. However current linkage methods can 

introduce biases, with older groups who present to clinical services being less likely to be 

captured. Possible biases due to linkage error can effect risk factor-outcome associations and 

need to be addressed when analysing and interpreting results.  
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7.2 INTRODUCTION 
 

As described in Chapter 1, large scale longitudinal cohort studies and clinical databases are 

essential tools for understanding the aetiology and outcomes of childhood mental and physical 

disorders, including rare or late adverse effects of treatments. However, maintaining the 

methodological quality of these studies is costly. For example, in the early 1990’s the cost of 

setting up and sustaining the 15,000 families recruited to Avon Longitudinal Study of Parents 

and Children birth cohort study was around £1 million per year.253 Furthermore longitudinal 

studies are rarely sufficiently resourced to sustain representation of their target population.254 

Sample attrition during follow up can introduce significant methodological biases and 

undermine generalisability.44 

 

These challenges have led epidemiological researchers to consider alternatives to traditional 

data collection approaches, and use routinely collected information by public services. Taking 

the UK as an example, every school-age child now has a comprehensive digital record, which 

captures their contact with health, social and education services (see table 1.1, chapter 1). These 

include individual records of birth details,233 school performance,255 physical growth,256 

primary and secondary health care service use,129,233,257,258 social and youth justice services 

contact,255,259 employment and training.260 Research initiatives in Wales and Scotland, have 

now created linked datasets derived from these data resources, and are using them to help direct 

local and national public health strategy.261  

 

As described in the introductory chapter and chapter 6, the advantages of linking routinely 

collected child health and non-health data are potentially high. The process can extend the 

investigative range of longitudinal studies at relatively little cost, with no additional burden to 

study participants. However, these approaches also have limitations.  Sample representation 

can still be lost in the record linkage process, especially when individual consent is required to 

link to additional data sources.262  Attrition through non-response/consent to medical record 

linkage requests can lead to systematic differences between linked and non-linked samples. A 

number of studies linking health data, show ethnic minorities,  lower socio-economic groups, 

and those with limited use or access to health service, are often underrepresented in studies 

using consent based approaches.262 Crucially, data linkage studies, which have excluded 

samples based on non-response to linkage requests, risk losing the participants who matter the 

most to health researchers – the vulnerable groups where exposures and adverse outcomes are 
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most likely to aggregate.263 Arguably, the opportunity costs are higher for children, as children 

have traditionally been underserved in research for a variety of reasons, including difficulties 

in recruiting adequate samples to investigate rare outcomes and their potential risk factors.263 

 

There are other options available for child health researchers who wish to limit non-

response/consent bias. A number of jurisdictions provide exemptions for the need to gain 

consent to link health records to other data resources. It has been suggested that these 

exemption routes, using alternative legal and governance frameworks may significantly limit 

bias normally incurred in consent based longitudinal studies.44 These processes have their 

challenges. Certainly in England, the ethical and legal processes, as well as the technical 

security requirements, to gain exemption from individual consent for health data are 

stringent.264 In England, large scale data-linkages using routinely collected health data via non-

consent routes, have largely remained within the domain of NHS Digital. This is a national 

body, also known as Health and Social Care Information Centre (HSCIC), established in April 

2013 by the Health and Social Care Act 2012, who are responsible for centrally collecting, 

analysing and disseminating health and social care data submitted by NHS Trusts.  
 

As yet, the potential gains from these ‘big data’ systems to drive local population-based 

analyses for child public mental health and educational services improvement remains 

unrealised. This chapter shows that it is possible for an individual NHS trust (South London 

and Maudsley NHS Foundation Trust) to create linkage environments that conform to NHS 

safeguards within England, and develop sustainable research systems that link and anonymise 

individual children’s records from healthcare, social and educational systems. Expanding on 

the overview provided in chapter 6, I show how a linked resource between CRIS and the NPD 
255 was created to provide whole-region population longitudinal dataset of childhood mental 

health disorders and educational outcomes. I describe the data preparation process and 

methodological approach taken to overcome the lack of a shared identifier number between 

health and education, in order to best link partial identifiers held on both datasets. 

 

In the first part of the results section, I describe the challenges of gaining approval for a research 

protocol which needs to meet the legislative requirements for both section 251 of the NHS Act 

2006, via recommendation from NHS Health Research Authority Confidentiality Advisory 

Groups, and The Education (Individual Pupil Information) (Prescribed Persons) (England) 

Regulations 2009(2).  
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In the second part of the results section, I provide an evaluation of the socio-demographic and 

diagnostic factors associated with the risk of non-matched health and educational records in 

the sample. As even when consent is not required for linkage, data matching processes can add 

non-linkage bias - a type of sampling bias that occurs when subjects are excluded because their 

linking variables do not adequately match between data sets -  generating differences between 

those who are linked and non-linked. Errors in linkage may occur where there is no unique 

identifier across different data sets.265 Of the few studies conducted which have examined 

linkage error between large scale datasets without shared identifier codes, their findings 

suggested that such biases derived from these linkage processes can be substantial,266 and 

crucially, incomplete data linkages can result in systematic bias in reported clinical 

outcomes.267 Fortunately there are a number of statistical approaches commonly used for 

reducing the potential selection bias incurred through non-linkage, such as inverse probability 

weighting and match probability adjustment.268,269 

 

Linkage error may be particularly prominent in the DfE and SLaM health records as both use 

different identifier codes (a DfE pupil ID, and NHS number respectively) so linkage is based 

on matching on personal information such as name, sex, date of birth and postcode.  The SLaM-

DfE linked database was built for the purpose of conducting a number of observational studies 

which test hypothesised risk factor and outcome associations between mental disorders and 

school performance. However, the potential findings may be severely limited if linkage biases 

are not accounted for.   An aim of the work described in this chapter was to use the linked data 

resource, and conduct several exploratory analyses to examine how potential linkage biases 

may impact potential associations between child health factors and school outcomes, in this 

case, school absence.  

 

School absence was chosen as the outcome to assess linkage error because is it challenging to 

assess the impact of the error for a particular outcome, when there is not an expected one-to-

one relationship between one variable and another. For example, when linking patient records 

to a death registry to determine a patient's survival status, it is difficult to know which matches 

have been missed – the death registry will only contain patients who have died, and so a non-

match could be due to patient being alive or being a missed match.262 Applying this to school 

data, there is a need to select a clinically relevant school performance outcome which should 

be available for all pupils. School attendance should be recorded for all pupils, and is clinically 

relevant, hence it is useful as outcome for evaluating the impact of linkage error.  
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Using the linked data, a cross-sectional study was conducted to examine the association 

between child mental health disorder and persistent school absence, with adjustment for 

potential linkage bias.268,269 Changes in the main effect estimates of mental disorder on school 

absence were examined before and after adjustment for non-linkage bias, to determine the 

potential influence of linkage error on these associations.  

 

7.3 METHODS  
7.3.1 The data resources 
 

NHS Child and Adolescent Mental Health Service Data 

 

As described in previous chapters (2-6) SLaM provides comprehensive CAMHS to a 

geographic catchment of over 260,000 children in four south London boroughs— Croydon, 

Lambeth, Lewisham and Southwark— as well as some specialist services which also accept 

referrals from outside the four-borough catchment area.  Figure 7.1 illustrates the number of 

children, by age and gender first accepted into SLAM CAMHS over a 5-year period. SLAM 

has dedicated multidisciplinary services for children, which assess and treat school age children 

with suspected or previously confirmed psychiatric disorders. The majority of children referred 

to CAMHS will be assessed under diagnostic criteria using the ICD-10 multi-axial 

classification system (See table 7.1).   

 

Children seen by CAMHS in the SLaM catchment are referred from primary care, child health, 

and educational and social care services, and typically undergo a multidisciplinary assessment 

by CAMHS clinicians. As shown in Figure 7.2, the majority of young people accepted into 

CAMHS receive short discreet periods of care, however some will receive multiple episodes 

of CAMHS support throughout their childhood. Clinical records have been fully electronic 

(i.e., paperless) across SLaM services since 2007.  
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Figure 7.1 Number of accepted first referrals for all children (aged 4 -16) seen by SLaM 
CAMHS services (Sept 2007 – August 2013)  
 

  

 
 

CRIS extracts information from the records generated by CAMH services. CRIS has been 

described in detail in chapter 2-6, and elsewhere.127,129,160,270,271 Because of the inclusion of 

both structured and unstructured (open-text) data in anonymised form, CRIS is unique in the 

depth of information that can be utilised in comparison to other case registries across the 

world.65  
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Figure 7.2 Duration between first and last contact with mental health professionals for 
children (aged 4 -16) accepted to SLAM CAMHS between Sept 2007 – August 2013.    
 

 

 
 
Department for Education National Pupil Database 

 

As described in chapter 6, the NPD is a pupil level longitudinal database which matches pupil 

and school characteristic data to pupil level attainment.255 The key datasets within the NPD are 

the pupil census and pupil attainment datasets, which holds data for all assessments that pupils 

complete during primary and secondary school state education. The census is a snapshot of 

pupils attending maintained schools in England, which is submitted on a specific day by a 

school for all pupils in that school. It has been comprehensively collected across English 

schools since January 2002. It contains characteristics such as names, age, ethnicity, addresses, 

school details, special educational needs status and free school meals status. It also collects 

additional information including primary language spoken at home, termly school attendance 

and exclusions, social care involvement. These data have been submitted to the DfE via the 

schools’ Management Information System. Pupils held within the NPD are typically aged 

between 3-19 years, but some from special schools may be up to age 24.  
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The pupil attainment dataset holds pupil-level longitudinal Key Stage attainment records. The 

first attainment assessments completed are for Early Years Foundation Stage profile when 

pupils are in reception aged between 4 and 5. They then complete Key Stage 1, Key Stage 2 

and Key Stage 3 assessments when aged 7, 11 and 14 respectively. Key Stage 4 (GCSE) and 

Key Stage 5 (A-Level) assessments are typically taken when aged 16, 17 and 18. Key Stage 2 

data has been collected since 1997, Key Stage 4 and 5 since 2002, and Key Stage 1 since 1998. 

As with the census, pupil attainment data are tracked across schools and charted throughout 

their school careers. The NPD also provides characteristics of the school.  There is scope for 

linking the data from other related datasets such as national higher education databases 

(HESA), or teacher surveys.255 The data collected has evolved over time, especially in relation 

to education attainment. This reflects the dynamic nature of DfE policy in relation to the timing 

and measurement of children’s educational progress throughout their school career.  



 

 

Table 7.1 Diagnostic breakdown of all children (aged 4 -17) referred to SLaM CAMHS services between Sept 2007 and August 2013.  
 

ICD-10 Psychiatric Diagnostic Classification 

Local Catchment Area* National Catchment Area* 

Male (n=15204) Female (n=11469) Male (n=4522) Female (n=4314) 

n (%) n (%) n (%) n (%) 

 Any ICD-10 Diagnosis 9315 (61.3) 6587 (57.4) 2592 (57.3) 2545 (59) 

Axis One 

Pervasive Developmental Disorders (F84) 2116 (13.9) 519 (4.5) 749 (16.5) 248 (5.9) 

Hyperkinetic Disorders (F90) 2345 (15.4) 435 (3.8) 801 (17.7) 210 (4.9) 

Conduct Disorders (F91) 2160 (14.2) 983 (8.6) 392 (8.7) 169 (3.9) 

Disorders due to psychoactive substance use (F10–F19) 253 (1.7) 180 (1.6) 112 (2.5) 53 (1.2) 

Psychotic Disorders (F20-F29, F30-F31, F32.3) 437 (2.9) 438 (3.8) 239 (5.3) 239 (5.5) 

Depression and other (affective) disorders (F32–F39) 733 (4.8) 1497 (13.1) 197 (4.4) 511 (11.8) 

Emotional and stress related disorders (F40-F48, F93, F94, F98) 2442 (16.1) 2930 (25.5) 522 (11.5) 879 (26.4) 

Post-Traumatic Stress Disorder (F43) 269 (1.8) 330 (2.9) 64 (1.4) 105 (2.7) 

Obsessive Compulsive Disorder (F42) 201 (1.3) 220 (1.9) 269(5.9) 164 (3.9) 

No recorded Axis One Diagnosis 5889 (38.7) 4882 (42.6) 1929 (42.7) 1770 (41.0) 

Axis Two Disorders of Scholastic Development (F80-F89) 1048 (6.9) 337 (2.9) 195 (4.3) 89 (3.1) 

Axis Three Intellectual Disorders (F70-F79) 870 (5.7) 357 (3.1) 443 (9.7) 195 (3.8) 

*Note: The sample are split by residence, either within 4 London Boroughs served by local SLaM services (Local Catchment area), or from rest of England served by 

SLaM National and Specialist services (National Catchment Area). 



 

 

7.3.2 The technical resources 
 

To link CRIS data with other external clinical and non-clinical sources, SLaM has developed a 

research governance model for linking data which satisfies NHS requirements as described in 

Department of Health Information Governance Review, or Caldicott 2, report.272 In accordance 

with these guidelines, SLaM set-up the Confidential Data Linkage Service (CDLS),129 which 

acts as Trusted Third Party or Safe Haven to ensure that confidential patient information can be 

linked in a way that guarantees the legal and ethical rights of patients. For the purpose of this 

linkage, a similar provision was available in DfE Data Services Provision, which had a linkage 

service, governed under HMG Security Policy Framework v10 2013 (SPF),273 with experience 

of regularly undertaking external linkages with large scale research cohorts including the 

Millennium Cohort Study and ALSPAC.  

 
7.3.3 Linkage  
 

Preparing the CRIS CAMHS identifiers for matching.  

 

We selected a cohort of young people aged between 4 and 18 years, who were referred to SLaM 

mental health care between 1st September 2007 and 31st December 2013. As described 

previously, in the UK, unique identifiers, such as national health identifiers, are not shared 

between health and education databases, so records require matching on personal identifiers 

common to both data resources (i.e. names, dates of birth, and residence post code).  

 

Personal identifiers were standardised using the following definitions:  

 

1. Dob: format (dd-mm-yyyy) 

2. forename_1:  The first word present in the forename field registered for the individual 

record. (i.e. all text left of the first white space character in the free text field) 

3. forename_2: The second word present, if >1 forename present (i.e. second of 2+ names 

separated by one space or punctuation except "-") (i.e. right of white space) 

4. surname_1: The first word present in the surname field registered for the individual 

record. (i.e. all text left of the first white space character) 

5. surname_2: The second word present, if >1 Surname present (i.e. second word of 2+ 

names if separated by one space or punctuation except"-")  

6. surname_3: The whole string in the surname field 
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Within the longitudinal health record, there were often several different addresses held for each 

individual. Similarly, there were multiple addresses held for most pupils in the education 

database. Pupil address data are routinely updated on the 16th January every year. So, I 

developed a hierarchical system to extract the postcode from health record most likely to match 

with education database. Figure 7.3 shows how this postcode hierarchy might be applied to one 

individual child, where the blue blocks represent episodes of care provided by CAMHS, and 

the green time line represents the period of time in school.  Taking these considerations into 

account I produced a hierarchy of postcodes with 1 to 5 levels for each individual seen in 

CAMHS using logic rules (see figure 7.3 legend). 

 

Figure 7.3 Creating a hierarchy of matching postcodes* to improve the link between CRIS 
CAMHS Data to DfE National Pupil Database   
 

 

 

 

 

 

 

 

 

 

Legend 
1 Address most likely to coincide with the school census that we have recorded before the child is 16. 

2 Address most likely to coincide with the census that we have recorded before the child is 18. 

3 Address held for the longest duration by the child that we have recorded before the child is 16. 

4 Address held for the longest duration by the child that we have recorded before the child is 18. 

5 Any available postcode where 1-4 not available 

 

*Note: the numbers within the blue block and the corresponding legend in figure 7.3 represent the respective 

postcode hierarchy category 

 

A SQL based query was used to extract the identifier data according to these rules. This 

produced a sample of 36,760 individuals with distinct individual records. Post extraction I then 

ran data cleaning and logic checks which included removal of all those with numbers in name 

string fields (4 case removed), all those with only one letter in their first or surname (1 case 

removed), all those with incomplete / atypical English postcodes (214 records hand searched, 
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77 valid English postcodes were cleaned and retained). We excluded all children whose first 

referral date was less than 4 years (1095 days) after their Date of birth, unless they had 

confirmed follow up contact details recorded within the window (i.e. 2007-2013) at least one 

year later than the earliest referral date.  This was because clinicians can erroneously record the 

date of referral or time seen at initial appointment in the date of birth field. This mainly occurs 

in individuals with only single episodes of contact with services. To fit in with the academic 

calendar and UK school age, children were then selected if they had their 4th birthday prior to 

the 1st September 2012. This provided a complete sample of 35,509 ready for matching with 

the NPD.  

 

All the data prepared for matching had personal identifier fields populated with the exception 

of the secondary surnames and forenames (i.e. there were no missing values). Dates of Birth 

ranged from 06/01/1989 – 31/08/2008 which meant that all of these pupils could potentially be 

found in either current or historic NPD census data. Personal identifiers were standardised to 

maintain a consistent format with NPD identifiers: SLaM identifiers were prepared to fit with 

DfE first name, surname and date of birth formats, which included standardising string length, 

capitalizations, use of spaces, and hyphens. 

 

Only identifiers (names, postcode and date of birth), accompanied by their unique CRIS ID 

pseudonym, were then sent via secure file transfer to the DfE Data and Statistics Department.  

 

As represented in figure 7.4, the DfE matched these against NPD personal identifiers 

(approximately 15 million records), generating a pupil-specific, non-identifiable NPD ID 

variable across the whole data set, and adding the CRIS ID to this table for cases only, stripping 

the resultant table of all identifiers other than the anonymised NPD ID and the pseudonymised 

CRIS ID, and transferring the data set back to SLaM CDLS using a secure file transfer. 
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Figure 7.4 Data flow process linking CRIS CAMHS Data to the National Pupil Database  

 
 

The supplied data items by the CDLS were matched to the NPD data by DfE informaticians in 

the stages described below. Initial matching or stage 1 was based on exact matches for the 

supplied data items. For those cases who did not match at stage 1, stage 2, ‘fuzzy’ matching 

processes were conducted, and so on, down to stage 4.  

 

• Stage 1: Full match on names (all supplied values including alias), dates of birth and 

postcode (all supplied) were conducted against all years/terms of the School census data, 

Pupil Referral Data, Alternative Provision Data, Early Years Census data. School census 

data contained preferred and former surnames, which were also searched. Forenames 

were checked against forename/middle name combinations. 

 

• Stage 2: Full match on Date of Birth, Postcode and Fuzzy matching on names. To ensure 

confidence in these matches, results were checked manually. Fuzzy matching was 

conducted on first two characters of names. 

 

• Stage 3: Full match on names and dates of birth, postcode inward code (the first 2-4 

characters) plus first character of the outward code (the latter characters after the space). 

To ensure confidence in these matches, results were checked manually. 
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• Stage 4: Full match on names and Postcode with manual check of dates of birth, looking 

for ‘near’ dates of birth – where the record may be possibly one year out, one month 

out, one day out, and transposed month/day. 

 

7.3.4 Analysis of linkage bias  

Overall linkage rate was calculated as the percentage of CAMHS individuals linked to any NPD 

school record on any of the stages 1-4. Potential sources of linkage biases were estimated by 

comparing linked and unlinked data. For the CAMHS sample described in table 7.1, I 

categorised an individual match to NPD school absence data (a subset of the NPD school record) 

as a binary outcome: match =1, non-match=0.  I used the ICD-10 multi-axial classification 

system, to categorise the presence of any recorded mental health diagnosis (i.e. diagnoses status 

prior to 18th birthday) available between 2007 and 2013. 

 Using logistic regression, I explored the associations between a number of risk variables 

including demographic (e.g. gender, ethnicity, neighbourhood deprivation), clinical (age at first 

presentation to CAMHS, diagnosis of any ICD-10 disorder) and administrative factors (e.g. 

postcode hierarchy) with linkage to the school attendance database as the binary outcome. We 

used this logistic regression to generate a probability of matching estimate as a function of the 

risk variables.  

 

7.3.5 Analysis of linkage error using school attendance outcomes 
 

 

For each matched CAMHS-NPD pupil, I created a binary outcome marker of poor attendance 

for the latest academic year they attended school available between 2007/08 and 2012/13. I 

categorised pupils as poor attenders if they had recorded less than 80% school attendance for 

the total number of possible school sessions available since their enrolment for that academic 

year (one session is equal to half a school day). 

 

 Using the probability of matching estimate from the linkage bias analysis, I created a weight 

that was inversely proportional to the probability of being linked to national pupil database 

school attendance data, which I assigned to each individual with linked CAMHS-school 

absence data. This followed standard methodology for managing non-response bias in 

conventional cohort and survey designs.268 I then ran a multivariable logistic regression using 
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the same predictor variables to examine their association with persistent school absence, 

initially without weights, and then with inverse probability weights. To examine another  

approach to adjust for potential selection bias from non-linkage,269 I examined whether the main 

effects of interest also persisted after the probability of matching estimate was entered as a 

covariate in the multivariable logistic regression model.  

 

 

7.4 RESULTS 1 
7.4.1 Outcomes from linking the health and educational data resource: achieving the ethical, 
governance and legal approvals  
 

The proposal to link the NPD and CRIS CAMHS data, underwent a robust and lengthy ethical, 

legal, governance and technical review, conducted by a number of local and national 

committees within NHS and DfE. Figure 7.5 provides the timeline and milestones achieved to 

reach the completion of the linked DfE-SLAM CAMHS dataset.   

 

Gaining the permissions to link the NPD and CRIS CAMHS data was complex. There was no 

precedent in England for such a linkage between routinely collected mental health and school 

data, and there had been no successful completion of linked NHS and non-NHS non health data 

without individual consent.274 I approached the Department for Education directly who held 

nationally collected education data via termly school submissions to the National Pupil 

Database.255 I planned a linkage with national data, as opposed to regional data sources held by 

the local education authorities, to prevent clinical sample attrition. I expected a considerable 

proportion of children receiving SLaM treatment would reside outside the SLaM Catchment 

area or potentially move outside the catchment after treatment.  In addition, the Department for 

Education had relatively transparent systems, and a dedicated office, for managing requests for 

educational data extracts, through their National Pupil Database Team. Once Research 

Governance approval was granted by the SLaM Caldicott Guardian Committee and the DfE's 

Data Management Advisory Panel, I submitted an application to the  Health Research Authority 

Confidentiality Advisory Group (HRA CAG).264 The HRA CAG have the authority to provide 

recommendations on behalf of the Secretary of State for Health, to permit the linkage of NHS 

data, without individual patient consent, for the purposes of research, if it meets the criteria 

within section 251 of the NHS Act 2006. 
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The HRA CAG rejected my first application, as the research activity proposed did not 

demonstrate sufficient medical purpose and public benefit to meet the s251 requirements. It was 

highlighted by the HRA CAG that support under current regulations could only be provided 

where potential public benefit were sufficiently defined (see HRA CAG guidelines for a general 

discussion on what research constitutes being for ‘public benefit’275). In particular, it was noted 

that in order to satisfy one of the conditions in schedule 3 of the Data Protection Act 276 (required 

to process sensitive personal data including data relating to an individual’s physical or mental 

health) a medical purpose would also need to be specified. A second issue, was the lack of 

consideration of a practicable alternative to the use of confidential patient information without 

consent. 

 

The HRA CAG also queried whether I had considered if the Health and Social Care Information 

Centre (HSCIC, now NHS Digital277) could carry out the linkages on the applicant’s behalf 

using their Trusted Data Linkage Service. The CAG advised that this route would negate the 

requirement for SLAM to disclose confidential patient information to the DfE, and minimise 

the disclosure of patient information. A final major issue related to the governance arrangements 

in place around the processing of patient data by the DfE. I hadn’t provided sufficient 

information around retention periods, access arrangements and the extent of identifiable data 

requested. 

7.4.2 Defining ‘medical purpose’ and public benefit when seeking s251 support 

To prepare for resubmission, I examined the issues identified by the HRA CAG. My initial 

application took a broad interpretation of ‘medical purpose.’ Given my experiences as CAMHS 

clinician, and the time CAMHS devoted to improving children’s function in school, I had 

presumed that educational outcomes for children with psychiatric diagnosis were salient to ‘a 

medical purpose.’ As a result, I had underestimated the need to demonstrate to the CAG that 

educational performance (attainment, attendances and exclusions) were viewed by researchers, 

and NHS clinicians working with children with mental disorders, as key medical outcomes. 

Also, I had not made a clear enough case for using the linked educational data to examine the 

aetiological factors for child onset psychiatric disorders.  These issues were addressed in the 

revised scientific proposal, largely by describing research that would examine the bi-directional 

associations between educational performance and mental health disorders. 
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Figure 7.5 A timeline of the ethical, legal and technical milestones for reaching a data 
linkage between DfE and SLaM 
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In terms of gathering evidence for support of the public benefit to use patient identifiable data 

via CRIS to link to the national pupil database without patient or caregiver consent, I consulted 

several clinical, patient and caregiver groups. I gave presentations and recorded responses from 

the SLaM child and adolescent psychiatry executive group, the Service User Research 

Enterprise group (SURE), the service user led CRIS Oversight Committee, and SLaM-involved 

parents, through the BRC patient engagement programme. Because of the focus of one of the 

projects using the linked data was an investigation into the educational outcomes of children 

with Autism Spectrum Disorders, I also invited comments on the proposal from the National 

Autistic Society. I also gained ethical approval from NHS Research Ethics Committee. 

 

7.4.3 Identifying a trusted third party for managing health data linkages   

 

To address the second issue, I provided an overview to the CAG of the advantages and 

disadvantages of using NHS Digital as a trusted third party to conduct linkages between SLaM 

and NPD data. I acknowledged that using NHS Digital would not require SLaM to release 

patient identifiers of over 35,500 names and addresses to the DfE. However, I described this 

advantage as fairly limited. I argued that the method proposed would involve no release of 

clinical data to the DfE, and that mental health status data were already collected and available 

to informaticians working in DfE National Pupil Database Team under their Special Education 

Need fields. In addition, I explained that DfE informaticians were already contracted to work 

with highly sensitive information at an individual level (for example, child protection status, 

benefit status of parents etc.) under comparable data governance standards expected of NHS 

Digital informaticians, as detailed by HMG Security Policy Framework v10 2013 (SPF).273 I 

acknowledged that an additional potential benefit to using NHS Digital was that patient 

identifiers would be retained within a NHS environment. But after I invited Department of 

Health (DoH) and DfE to discuss Information Governance standards between their respective 

departments (in this case HSCIC and DfE Data Division) they advised, and the data controllers 

accepted, that there was little difference in data security policy. The DoH official responsible 

for NHS Digital Information Security and Risk Management Policy liaised with the DfE 

Departmental Security Unit Information Assurance Policy & Governance Team Leader, and 

reviewed the DfE Data and Statistics Division internal data processing, information handling 
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controls, and assurance regimes. DoH confirmed that the DfE were in line with government 

standards and meet equivalent to IG expectations for NHS care system organisations.278 

 

To provide further argument for not using NHS Digital as the trusted third party in this linkage, 

I described two alternatives routes, where NHS Digital performed the linkage and avoided 

transfer of NHS identifiers to the DfE. One route involved NHS Digital receiving all 15 million 

identifiers from the DfE, conducting the complex matching with the SLaM identifiers, 

completing the anonymisation process, and then providing a pseudo-anonymised dataset to 

SLaM.  The second route involved NHS Digital receiving 15 million identifiers from the DfE, 

conducting the matching process, sending SLaM the controls and cases table with matched 

SLAM & NPD pseudonyms, and then sending controls and cases with just NPD pseudonym 

(the DfE remain blinded to SLAM case status) back to the DfE. After this, the DfE would then 

have to match the education variables of interest on the NPD pseudonym to create a pseudo-

anonymised NPD variables table, and finally, send the pseudo-anonymised NPD variables to 

the CDLS for later matching with CRIS data. I explained that data controllers would likely be 

concerned with the number of identifiers that would be transferred in both these processes, and 

the need for sensitive educational variables to be conveyed twice between the parties (DfE to 

NHS Digital, NHS Digital to CDLS). In addition, and for both options, DfE would need to 

supply identifiers for 15 million individuals to NHS Digital, which may have contained a 

number of different addresses for each individual, and then separately convey over 500 

education variables per individual, linked by pseudonym to the identifiers. After consulting with 

the DfE and SLaM data controllers, both expressed concerned that the harm caused to 

individuals if a breach of data security occurred in either of these processes could be significant, 

especially given the scale and sensitivity of the educational data, and the very large number of 

individuals involved. Hence, I advised the HRA CAG that both data controllers preferred to 

pursue a simpler linkage method, using the DfE to undertake the linkage of identifiers, within 

their secure environment and with appropriate governance controls using the minimum number 

of identifiers required.  

 

7.4.4 Equivalence in data security requirements between health and education systems 

 

This third issue was largely addressed by demonstrating data security equivalence between the 

DfE and DoH standards in processing and storing the data. In the re-submission to the CAG I 

confirmed that all personal identifiers were destroyed immediately after linkage and validation 
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by the DfE, and that data was to be anonymised and only analysed within the same secure 

environment. The table linking NPD and CRIS pseudonyms, would be destroyed after 60 days 

of the CDLS receiving the data, to permit some additional data cleaning and validation checks. 

With these additional details, the application was re-submitted and approved (ref  CAG 9-

08(a)/2013 0048).274 

 

7.4.5 Completing the Memorandum of Understanding between Data Controllers  

 

It took some time to formalise a Memorandum of Understanding (MoU) between the DfE and 

SLaM. This was due to it being the first time an NHS trust in England had entered into a data 

sharing contract with the DfE, and the lawyers representing both parties took time to become 

familiar with the legal basis for sharing data in the proposed manner. After a year under legal 

review, a signed agreement was eventually completed. One of the areas of contention regarded 

cross-indemnity. Standard legal advice for commercial data sharing often stipulate that each 

party should indemnify, and keep indemnified the other party, against any claims brought 

against them despite the proper performance of the Data Activities as envisaged by the MoU. 

So, taking this linkage project as an example, if someone were to legally challenge SLaM for 

data that related to the DfE, which they held temporarily during the matching process, then 

SLaM would honour an agreement to respond the challenge, and vice versa with the DfE. 

However, if responsibility was shared between parties, it could have potentially created 

problems in terms of interpretation, especially in relation to data protection compliance, 

especially for tasks that are time sensitive such as responding to subject access requests. We 

eventually reached an agreement that the parties would self–indemnify. This decision was aided 

by the data flows which provided a clear demarcation between DfE and SLaM data systems and 

procedures, which we came to understand was important when undertaking data processes on 

behalf of the other data controller. As SLaM and DfE responsibilities for the project were well 

defined, both agreed that if one party failed in its obligations, it was most likely that enforcement 

action would be carried out against the party that was in breach of their agreed obligations at 

that point in the linkage process.  
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7.5 RESULTS 2 
7.5.1 Linkage rates, bias and the impact on education outcome analyses 
 

The overall matching process against any National Pupil Database attendance records provide 

29,278 CAMHS-NPD linked records representing a linkage rate of 82.5%. The proportions 

linked according to DfE matching stages described above: stage 1 - 60.4%; stage 2 - 4.4%; 

Stage 3 – 1.1% and Stage 4 – 20.7%.  

 

Table 7.2 provides the socio-demographic, clinical and administrative record characteristics of 

the linked and non-linked SLaM CAMHS sample to NPD data. An odds ratio greater than 1 

denotes greater chance of successful linkage compared to the reference.   In the adjusted model, 

we found significant differences in most socio-demographic, clinical and administrative factors. 

Compared to school age children aged under 7, I found children first referred to CAMHS in late 

adolescence were significantly less likely to be matched to the NPD absence data, whilst  

children aged between 7 and 12, were more likely to be successfully matched.  Relative to 

children of White ethnicity, I found other ethnic groups including Asian, Black African and 

Mixed groups were less likely to be matched. There were no significant differences in 

successful linkage between children in the lowest and highest quartiles of deprivation, but there 

was significantly reduced linkage success for children living in neighbourhoods in the 2nd and 

3rd quartiles.  Analyses of the administrative characteristics show that the post codes which were 

extracted from clinical episodes of care and that didn’t overlap with January census data (i.e. 

post codes 2,4 and 5) were less likely to link even after adjustment for other potential 

explanatory variables (see table 7.2). Postcodes which corresponded with a patient being 

referred to CAMHS after their 16th birthday were also less likely to link compared to those 

referred when aged under 16.  

 

Table 7.3 provides the socio-demographic, clinical and administrative record characteristics for 

children seen SLaM CAMHS and their persistent absence outcomes. The adjusted analyses 

show that presence of an ICD-10 mental health disorder, age at first referral to CAMHS and 

Mixed ethnic group (relative to white ethnic groups), were associated with an increased risk of 

persistent school absence, whilst Asian, Black African, Black Caribbean ethnicity, increased 

neighbourhood affluence was associated with a decreased risk of persistent absence. These 

effects persisted after both statistical techniques i) using inverse probability weighting, and ii) 

adjustment for matching probability were applied to reduce matching bias in the adjusted 

models.  



 

 

 

Table 7.2 Socio-demographic characteristics of the Child and Adolescent Mental Health 
sample linked and non-linked to the national pupil database absence data 

 

  Linked pairs 
(n=29,278) 

Non-linked 
residuals 
(n=6,231) 

O.R (95% C.I.) for 
+ve linkage aO.R (95% C.I.) 

Male 16,430 (56.1%) 3,296 (52.9) Reference Reference 
Female 12,848 (43.9%) 2,935 (47.1) 0.88 (0.83-0.93)** 1.04 (0.97-1.11) 

Age at first referral to mental health services    

     Infant (<7yrs) 3657 (12.5%) 535 (8.7%) Reference Reference 
     Primary (7-12 yrs) 10,980 (37.5%) 1,284 (20.3%) 1.25 (1.12-1.39)** 1.23 (1.10-1.38)** 
     Secondary (13-15 yrs)  7,048 (24.1%) 1,140 (18.4%) 0.90 (0.81-1.01) 0.98 (0.88-1.10) 
     College (16-18) 7570 (25.9%) 3228 (52.2) 0.34 (0.31-0.38)** 0.67 (0.59-0.75)** 

 
Ethnicity 

 
 
 

     White  / White-British 13,838 (47.3%) 2,786 (44.7) Reference Reference 
     Asian / Asian-British 984 (3.4%) 312 (5.0%) 0.63 (0.56-0.76)** 0.65 (0.56-0.75)** 
     Black British / African 5,667 (19.4%) 1,181(19.0%) 0.96 (0.89-1.04) 0.82 (0.76-0.89)** 
     Black British / Afro-Caribbean 1,474 (5.0%) 232 (3.7%) 1.28 (1.11-1.48)** 0.98 (0.84-1.14) 
     Mixed / Multiple ethnic 2,184 (7.5%) 315 (5.1%) 1.40 (1.23-1.58)** 1.12 (0.99-1.28) 
     Other ethnic group 1,109 (3.8%) 419 (6.7%) 0.53 (0.47-0.60)** 0.55 (0.48-0.63)** 
     Not stated 4,022 (13.7%) 986 (15.8%) 0.82 (0.76-0.89)** 0.93 (0.85-1.02) 

Resident within Local catchment area 22,481 (76.8%) 4,192 (67.2%) 1.61 (1.52-1.71)** 1.04 (0.97-1.12) 

National quartiles of Neighbourhood deprivation    

1st (Most deprived) 14,398 (49.2%) 2,822 (45.3%) Reference Reference 
2nd 9,796 (33.5%) 2,179 (34.9%) 0.88 (0.83-0.94)** 0.90 (0.83-0.96)** 
3rd 2,956 (10.1%) 762 (12.2%) 0.76 (0.69-0.83)** 0.81 (0.74-0.89)** 
4th (Least Deprived) 2,126 (7.3%) 468 (7.5%) 0.89 (0.79-0.99)* 1.03 (0.92-1.15) 

 
Address data available2     

Postcode 1 17,587 (60.1%) 1,987 (31.9%) Reference Reference 
Postcode 2 2,956 (10.1%) 990 (15.9%) 0.34 (0.31-0.37)** 0.50 (0.45-0.56)** 
Postcode 3 5,776 (19.7%) 1,187 (19.1%) 0.55 (0.51-0.59)** 0.63 (0.58-0.68)** 
Postcode 4 1,933 (6.6%) 1,010 (16.2%) 0.22 (0.20-0.23)** 0.35 (0.31-0.39)** 
Postcode 5 1,026 (3.5%) 1,057 (17.0%) 0.11 (0.09-0.12)** 0.15 (0.14-0.17)** 

     
Any ICD-10 Disorder 17,749 (60.6%) 3,290 (52.8%) 1.38 (1.30-1.45)** 1.11 (1.04-1.18)** 

 
*P < 0.05,** P <0.01 
1adjusted for all other co-variates listed in the table.  
2 Post code. For a large proportion of cases there are several addresses available for each case. Therefore, I extracted 

postcodes according to a hierarchy (Postcode 1 being the highest) which I believed to be most likely to have 
been the place of residence on the day of the 16th Jan 20XX (variable date) census.  [See Figure 7.3 legend]  



 

 

Table 7.3: Socio-demographic and odds ratios for persistent (>80%) school absence in 29, 278 children and adolescents referred to mental 
health services 

 
No persistence 

Absence 
(n=23,241) 

Persistent School 
Absence (n=5,635) O.R (95% C.I.) aO.R1 (95% C.I.) Weighted aOR2 Match probability 

adjusted aOR3 

Any ICD-10 Disorder 14,004 (60.2%) 3,594 (63.7%) 1.16 (1.09-1.23)** 1.13 (1.07-1.22)** 1.13 (1.07-1.22)** 1.10 (1.03-1.19)** 
Age at first referral to mental health services    

<7yrs) 3,031 (13.0%) 298 (5.3%) Reference Reference Reference Reference 
 7-12 yrs 9,405 (40.5%) 1,540 (27.3%) 1.67 (1.46-1.90)** 1.67 (1.46-1.90)** 1.67 (1.47-1.91)** 1.60 (1.49-1.84)** 
13-15 yrs 5,205 (22.4%) 1,830 (32.5%) 3.58 (3.14-4.07)** 3.65 (3.20-4.18)** 3.71 (3.24-4.23)** 3.66 (3.21-4.18)** 
16-18 years 5,600 (24.1%) 1,967 (34.9) 3.57 (3.13-4.06)** 4.20 (3.63-4.86)** 4.15 (3.57-4.81)** 4.70 (3.82-5.78)** 

Female 10,023 (43.1%) 2,695 (47.8%) 1.20 (1.14-1.28)** 0.97 (0.91-1.03) 0.97 (0.92-1.04) 0.96 (0.91-1.03) 

Ethnicity       
White / White-British 10,651(45.8%) 3,011(53.4%) Reference Reference Reference Reference 
Asian / Asian-British 815 (3.5%) 159 (2.8%) 0.69 (0.58-0.82)** 0.68 (0.57-0.81)** 0.69 (0.58-0.83)** 0.76 (0.60-0.96)* 
Black British / African 4,737 (20.4%) 849 (15.1%) 0.63 (0.58-0.69)** 0.68 (0.62-0.74)** 0.69 (0.63-0.75)** 0.71 (0.64-0.79)** 
Black British / Afro-Caribbean 1,213 (5.2%) 248 (4.4%) 0.72 (0.63-0.83)** 0.81 (0.70-0.94)** 0.81 (0.70-0.94)** 0.82 (0.70-0.94)** 
Mixed / Multiple ethnic 1,653 (7.1%) 483 (8.6%) 1.03 (0.93-1.15) 1.14 (1.02-1.28)* 1.15 (1.03-1.29)* 1.11 (0.99-1.26) 
Other ethnic group 905 (3.9%) 195 (3.5%) 0.76 (0.64-0.89)** 0.78 (0.66-0.92)** 0.80 (0.67-0.96)** 0.92 (0.69-1.22) 
Not stated 3,286 (14.1%) 694 (17.4%) 0.74 (0.68-0.82)** 0.78 (0.71-0.86)** 0.79 (0.72-0.87)** 0.79 (0.72-0.87)** 

Resident within Local catchment 
area 18,100 (77.8%) 4,064 (72.1%) 0.74 (0.69-0.76)** 0.88 (0.82-0.95)** 0.89 (0.83-0.96)** 0.87 (0.80-0.94)** 

National quartiles of Neighbourhood deprivation      
1st (Most deprived) 11,326 (79.7%) 2,884(51.1%) Reference Reference Reference Reference 
2nd 7,891 (33.9%) 1,785(31.7%) 0.89(0.83-0.94)** 0.83(0.76-0.89)** 0.82 (0.77-0.88)** 0.85 (0.79-0.92)** 
3rd 2,349(10.1%) 557(9.9%) 0.93(0.84-1.03) 0.74(0.69-0.83)** 0.74 (0.66-0.83)** 0.78 (0.69-0.89)** 
4th (Least Deprived) 1,692(7.3%) 413(7.3%) 0.96(0.85-1.07) 0.70(0.62-0.80)** 0.70 (0.62-0.80)** 0.69 (0.62-0.78)** 

Address data available4       
Postcode 1 14,119(60.7%) 3,170(56.2%) Reference Reference Reference Reference 
Postcode 2 2,287(9.8%) 669(11.9%) 1.30 (1.18-1.43)** 0.71(0.63-0.78)** 0.71 (0.64-0.81)** 0.85 (0.65-1.11) 
Postcode 3 4,618 (19.9%) 1,077(19.1%) 1.03(0.96-1.12)** 0.92(0.84-0.99)* 0.92 (0.85-1.00) 1.01 (0.87-1.19) 
Postcode 4 1,448(6.2%) 485(8.6%) 1.49(1.33-1.67)** 0.81(0.71-0.93)** 0.82 (0.72-0.95)** 1.14 (0.71-1.81) 
Postcode 5 788(3.4%) 238(4.2%) 1.34(1.16-1.56)** 0.93(0.79-1.10) 0.93 (0.78-1.09) 1.85 (0.74-4.66) 

 *P<0.05,**P<0.01,  1adjusted for all other co-variates listed in the table.  2 adjusted model with inverse probability weighting for matching included, 3adjusted model with addition of 

matching probability estimates entered as a co-variate, 4 See Figure 7.3 legend  
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7.6 DISCUSSION  

 

Using deterministic and fuzzy matching techniques provided by the DfE, a large-scale dataset 

was built between NHS child and mental health data and national school administrative data, 

providing a linkage for 29,278 patients (82.5% of the NHS cohort) to their educational records. 

Using these data, we found any child or adolescent with a ICD-10 mental disorder had 

approximately 10% greater likelihood of having persistent school absence, when compared to 

clinically referred children not meeting threshold for diagnosis. Although there were 

significant differences in the socio-demographic and clinical characteristics between linked 

and un-linked NHS samples, effects did not change significantly after matching probability 

adjustment. This suggests that these effects on were not driven by selection bias from matching 

errors.  
 

The results suggest, that the approach used in this study can potentially improve the inclusion 

of socially disadvantaged and vulnerable groups above conventional survey designs.44 For 

example, we found no significant differences in data linkages between children in the lowest 

and highest quartiles of deprivation.  This study demonstrates how routinely collected NHS 

data and non-NHS administrative sources can be linked without individual consent in England.  

 

Overall, I found that only 17.5% of the clinical population were not successfully matched. 

Whilst enrolment at a non-state maintained school or independent school may explain a 

proportion,270 a significant minority were not matched due to administrative factors, which 

may include missingness or inconsistencies of the matching identifiers, as demonstrated by the 

effect of post code variation in the analysis, or errors secondary to the matching process. There 

have been very few studies conducted which examine linkage errors in children, especially 

where the non-linked group are not subject to consent related bias. However, my study findings 

showing significant differences in sociodemographic factors and differential linkage rates , 

especially between white and ethnic minority groups,  have been found in a number of studies. 
262,266,279 I was unable to examine what clerical or patient factors may be driving these 

increased errors. However, previous studies have suggested that ethnic minorities are more 

likely to have misspelt names, inaccurately recorded dates of births, and higher levels of 

residential instability, which may be applicable to this sample.266,279 I found certain age 

groups, particularly the 7 to 12 year old category,   were associated with a greater likelihood 

of linkage. This may be due to the greater availability of accurate personal identifiers in the 
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record as this group, as their potential exposure to CAMHS services whilst at school will be 

longer than other age groups. Similarly, having a ICD-10 mental disorder, which also had an 

increased likelihood of linking with the school data, may be related to identifier accuracy, as 

their higher levels of psychopathology will be associated with greater clinical contact, and 

potentially higher clerical accuracy in recording personal identifiers. It also more probable that 

those higher levels of psychopathology will have longer durations of care that overlap with the 

school census date. 
 

 I found a U-shaped distribution in neighbourhood deprivation and likelihood of linkage. 

Compared to areas with the highest deprivation, areas within the 2nd and 3rd quartiles showed 

significantly reduced likelihood of linkage, but the most affluent areas showed minimal 

difference. This could relate to families from affluent areas being able to comply with the 

administrative process, and/or correct administrative errors, and families from the highest 

deprived areas having greater need and hence higher clinical contact with services. Both these 

factors may improve clerical accuracy and concordance with school data. Families from 2nd 

and 3rd quartiles may have less of both these characteristics, reduce their likelihood of linkage. 

The current data available in this study does not permit this hypothesis to be tested, but findings 

suggest that a more detailed extraction examining frequency of clinical contact with services 

and data linkage outcome is an area for future work.  
 

The findings show that potentially 17.5% of the clinical population were not matched. A 

considerable proportion may have been missed due to technical errors in the linkage 

approaches. This provides an argument for government departments to trial more modern 

approaches to data-linkage, for example using probabilistic methods (as described in chapter 

2).60 The largely deterministic matching process, although potentially providing high 

precision, is likely to have contributed to missed match rate (i.e. false negative non-matches). 

Child names of foreign origin (i.e. not commonly associated with the predominant ethnic group 

population) are more likely to be inaccurately entered into administrative systems.266 Hence, 

the deterministic process which offers little flexibility in matching misspelt names may be a 

reason why ethnic variation may contribute to false negatives.  
 

The study provides an example of how potential non-random loss between routinely collected 

health and non-health linked data can be adjusted by weighting techniques. Differential linkage 

error by ethnicity, social disadvantage and clinical factors can introduce significant selection 

bias, leading to inaccurate risk factor-outcome estimates, which in turn may have significant 
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impact on the validity of the research findings using the linked data. I was only able to 

determine that linkage error did not lead systematic biases, and provide misleading positive 

estimates between ICD-10 mental disorder and persistent school absence, because I had source 

information available data to examine missed linkages. Without this information, potential 

linkage error could be introduced, and I would not be aware of whether there was need for it 

to be accounted for in subsequent analyses.  

 

In this study, the demonstration of matching probability adjustment and inverse probability 

weighting was intended to illustrate how linkage bias may be reduced, not as a definitive 

analysis of these data. Future work examining on how improving linkage techniques, coupled 

with newer methods for handling uncertainty in analysis of linked data, should help improve 

the generalisability and quality of future population based linkage studies.   

 

 

7.6.1 Limitations of the matching methods and matching evaluation 
 

This study has a number of limitations. I was unable to assess false positive matching, nor able 

to assess risks for the lower confidence matching (DfE stages 2-4, described above), and the 

potential effects on school outcome analyses. No shared unique identifier exists between NHS 

and educational services, nor were their governance arrangements or sufficient resources in 

place to manually compile a NPD-NHS linked gold-standard data. Another limitation of the 

matching methodology is the limited number of address identifiers that could be used. For 

example, due to governance constraints I was unable to use first line of the address, which 

again limited the capacity to potentially check for coding errors in the postcode. Another 

contributing factor to linkage error was the age of the child. A substantial number of 

adolescents were seen in CAMHS aged 16 and 17 years, and would not have data on the NPD 

if they were no longer attending school. Similarly, I was unable to determine who was not 

eligible for matching due to complete private or home school educational provision which may 

be around 5% of the sample (see chapter 6).  
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7.6.2 Applying existing legal and ethical frameworks to data linkage between health and 

education data 

 

Before embarking on the linkage project between NPD and CRIS CAMHS data, I was aware 

that repurposing routinely collected individual level data for research, which involved child 

mental health and education service use, was potentially controversial, especially as I was not 

actively seeking consent. Also, the project development began at time when Care.Data looked 

close to being disbanded.280  In addition, significant changes to EU data protection law were 

being proposed, which if not amended, would have prevented the data linkage methods being 

applied.281  I was concerned therefore that the public could have significant concerns about the 

linkage process, especially in relation to vulnerable children, who may be particularly harmed 

by exposure to stigma and the loss of trust in care services following a breach of privacy.  I 

knew measures such as anonymisation did not solve all ethical, legal and technical problems.74 

Hence, I expected that higher thresholds for ensuring social benefit from data linkages may be 

imposed by data controllers and custodians in order to preserve public trust.  

 

7.6.3 Implementation challenges to the data linkage between health and education data 
 

Some lessons I learnt during study, may be of use to future health orientated linkage projects 

where individual level consent is not available or practicable to obtain.  The first element was 

what might be called establishing the social license 74 to use personal health and education data 

for data linkage and research. This activity included articulating a clear purpose for the linkage 

which was recognized as beneficial by the public or those potentially involved as data subjects, 

and that the potential risks to individuals or public institutions were tolerable in relation to 

these benefits. Without the evidence of the proposal being scrutinized and ultimately accepted 

by those potentially involved as data subjects, and the public institutions/services who act as 

controllers of the data, it would have been difficult to sustain a case for public benefit – in fact 

this was one of the reasons why my first application was not approved by the HRA CAG.  To 

prove I had social licence to conduct the linkage work, I gathered supportive evidence from a 

number of sources including service users, clinicians, academics, advocacy groups, 

governance leads; all, who I viewed, may have had stake in the process and outcomes of the 

data linkage project.   
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The second lesson related to fulfilling the professional mandate for properly conducting the 

linkage process and related research activity. This involved making sure the proposal complied 

with the known legal, technical and ethical frameworks that governed health data use, and any 

additional safeguards deemed important by the data controllers and custodians. The technical 

aspects were not just confined to data security, but also involved preparing the data to ensure 

the most accurate match, to reduce error and redundancy in later analysis. Fulfilling the 

mandate also involved the creation of formal contract between the parties involved in 

controlling, sharing, processing and using the data. This mandate committed us to conduct 

appropriate analysis and dissemination of the linkage related research, so that I could sustain 

the social license for future research activity. This may be especially pertinent in England as 

linkage driven research of routinely collected public service activity is in its infancy, and 

benefits are yet to be comprehensively established.  

 

Another element, which is difficult define,282 was the need to establish trusted relationships 

between all the parties during the process of steps 1 and 2.   These data linkage projects 

involved  public service organisations, and the government funded committee’s acting on 

behalf on the public, taking on additional risk in approving and conducting the linkage process. 

In the case of the DfE and SLaM data controllers and custodians, the potential risk of harms 

from the data linkage process were small, but nonetheless could be viewed as an unnecessary 

addition to the everyday operational risks they normally managed. For both data controllers, it 

was not a core part of their business to ensure these data linkages were conducted.  However, 

at the early stages of the project I was fortunate that several individuals representing both data 

controlling organisations were able to quickly establish and sustain a mutual interest in the data 

linkage’s purpose, a tolerance of the potential risks, and the capability and authority to help 

progress the project when it became stuck. Furthermore, these individuals have remained 

involved in the project from its inception in November 2011, linkage completion in August 

2015, up to the ongoing analysis and dissemination of findings. Over this period, they remained 

accessible to one another and keen to maintain an open dialog.  

 

Given the time and resources spent to set up this linked data resource, and the potential it holds, 

it is important that these resources are maintained, and remain accessible for re-use in the 

future. Without developing specific data sharing agreements between the parties, it can be 

difficult to establish a collaborative relationship with good governance structures between the 

controllers, linkers and analysts. Without these structures, there may be a tendency for data 

controllers to agree to link data only via a ‘create and destroy’ approach. When these 
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agreements are made, the linked data and any interim datasets are destroyed at the end of each 

project.283 I believe this maybe unethical in terms of waste and scientifically unsound as prior 

analyses cannot be re-examined. It also re-exposures data subjects to the potential risks of 

sharing personal identifiable information again across different agencies should the linkage 

need to be repeated in the future.  

 

The implications of a trusted and collaborative relationship between data controllers, data 

processors (i.e. data linkers) and analysts are key, not just to the successful completion and 

continuation of the project, but the quality of the research output derived from the data. Trust 

in the governance structures between these parties enables some flexibility with the ‘data 

separation principle.’ This principle describes a common practice for data linkage research, 

where identifiers (e.g. names or date of birth) are kept separate from attributes (in this case 

health or education data), to protect privacy and avoid disclosure during the linkage process.265 

While the separation principle might reduce the risk of identification, it can increase the risk 

of biased analyses.14 In order to reduce these biases, governance arrangement between linkers 

and analysts should permit information to be shared on which groups are disproportionately 

affected by linkage error. Doing this can then enable discussions on how linkage errors can be 

mitigated, either through changing the linkage process or modifying the analyses. Through 

demonstrating the potential bias incurred through non-linkage, the study in this chapter 

supports the argument that data providers who wish to build linked resources to analyse 

routinely collected data, need to provide linked and unlinked records in order to take account 

of biases. I hope in further linkage work between SLaM and DfE, I will acquire further detail 

on DfE’s linkage uncertainty (i.e. metric’s which quantify the probability of each linked record 

being a false-positive matches) which can also be included in later outcome analyses to 

mitigate potential errors incurred via the linkage process.284  

 

Finally, ensuring that sufficient resources were available to see the project through to 

completion was essential. This required a sustained commitment from a number of people and 

within SLaM BRC and the DfE. Both institutions have facilities, and teams within them, 

equipped to manage the hosting, secure access and development requirements to link complex 

clinical and social data resources. The CRIS CAMHS linkage to the NPD project was 

supported by the shared expertise of academics, project managers, service users, clinicians, 

health and education informaticians and NHS & DfE clinical governance leads and legal teams. 

Nonetheless, the CRIS CAMHS linkage to the NPD took over 3 years to complete. Although 

not exclusively devoted to the linkage project, both SLaM BRC and the DfE had three whole 
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time equivalent staff who provided managerial, administrative and analyses support to CRIS 

and NPD throughout the project. I believe these elements helped to develop and sustain trust 

over the long duration of establishing the approval to conduct this data linkage project.  

 

7.6.4 Conclusions  
 

In this chapter, I provide an example of how data linkage projects can be completed using 

routinely collected NHS and non-NHS resources. Data linkages methodologies hold 

significant opportunities for public services research and policy development including child 

mental health services research, and can be highly efficient relative to other epidemiological 

approaches. The regulatory and technical issues for data sharing between health and non-health 

services are challenging in England. Certainly, to develop and improve linked data resources, 

partnerships between academic and government institutions should continue to explore public 

opinion and develop guidance on building a social license for the sustained use of linked data.  

 

Record linkages are a valuable enhancement to child-based longitudinal studies and clinical 

registries, allowing evaluation of questions relevant to public health and social care policy. The 

study results suggest, that opt out consent approaches may improve representation of more 

socially disadvantaged populations.44  Nevertheless, whether using opt in and opt out consent 

process, possible biases due to linkage error can be important and need to be addressed when 

analysing and interpreting results.  

 

I hope this account may provide a useful guide for other health and educational services 

wishing to build information resources using linked administrative data. In time, I hope these 

resources will generate a wider network of fine-grained data and analytical expertise, which 

can be used for research to inform commissioning and service provision and better meet child 

mental health needs within the population.   
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CHAPTER 8. AUTISM SPECTRUM DISORDERS 
AND RISK OF SELF-HARM IN ADOLESCENCE: 
A RETROSPECTIVE COHORT STUDY OF 
113,545 YOUNG PEOPLE IN THE UK 
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8.1 SUMMARY 
Background: Presentation to emergency care with injuries related to self-harm is one of the 

strongest predictive factors for later suicide attempt, with 26% of future suicide attempts 

attributed to self-harm in adolescence and young adulthood. Recent findings show individuals 

with autism spectrum disorders (ASD) have a 2-3 fold increase risk of premature mortality 

compared to the general population, with suicide as the leading cause. The risk of self-harm 

severe enough to warrant emergency treatment has yet to be robustly evaluated in ASD. This 

study assessed whether individuals with ASD are at increased risk of self-harming in 

adolescence. 

 

Method:  I conducted a population based retrospective cohort study.  The source population 

were residents of four South London boroughs, aged 11-17, attending secondary school 

identified from the NPD.  Exposure data on ASD status were derived from the pupil database.  

Outcome (self-harm data) were derived by linking the education record with CAMHS records. 

 

Results: Among 113,543 adolescents attending secondary school, 186 boys (0.3%) and 834 

(1.4%) girls presented to accident and emergency with self-harm; less than 50% of whom were 

previously known to NHS mental health services. In the sample, 2463 adolescents were 

identified with ASD. For boys, there was a significantly increased risk of self-harm associated 

with ASD (aH.R 2.79, 95% confidence interval 1.47 to 5.09, P<0.01) after adjustment for 

potential confounding factors, including baseline behavioural & emotional problems, academic 

attainment, persistent school absence, exclusion, socio-economic status, being in local 

authority care, and hyperkinetic disorder diagnosis.  For girls, ASD was not associated with 

elevated risk, but a number of educational, social and clinical related factors were identified as 

significant predictors of self-harm, including persistent school absence (aH.R 2.84, C.I 2.70-

3.51, P<0.01), and being in higher quintiles of academic attainment (aH.R 1.35, C.I 1.04-1.77, 

P=0.03).  

 

Conclusions: This study provides robust evidence that ASD, and a number of other educational 

factors, are population level risk factor for self-harm. Risk is not equal across gender, with 

ASD associated a with greater susceptibility to self-harm only amongst boys. These finding are 

an important first step in developing early recognition and future prevention programmes 

within schools and other child orientated services.      
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8.2 INTRODUCTION 
 

Autism Spectrum Disorders (ASD) are childhood-onset neurodevelopmental conditions, 

characterised by a ‘spectrum’ of social and cognitive impairments. Over the last four decades, 

the recognition of childhood ASD in the population has increased exponentially.285 The 

widening of diagnostic criteria and increased detection has moved ASD from a rare 

neurodisability managed in specialist clinics, to becoming a public health concern affecting 

around 1% of the population.286,287 Two broad questions predominate ASD public health 

service research. The first relates to how early identification and support to families of children 

with ASD can improve childhood social development and function.288–290 The second question 

concerns how services can reduce the health and social disadvantages which affect individuals 

with ASD over the life course.  Individuals with ASD carry a 2 to 3 fold greater risk of 

premature mortality notwithstanding the developmental comorbidities which tend to co-occur 

with ASD.291,292 Over 50% of adolescents with ASD fail to complete higher education or find 

employment 293,294 and most will remain heavily dependent on their family throughout 

adulthood.295–297 Both questions need equal attention.  Whilst there is some evidence that quick 

detection and support in early childhood may enable important gains in social capabilities, it 

appears unlikely that it will mitigate all risks for later impairment, especially psychiatric 

morbidity which has a considerable impact on ASD function.298,299  

 

The psychiatric burden and related impairment carried by children with ASD is sizeable. Over 

70% of children and adolescents with ASD will develop a least one psychiatric 

disorder.118,286,300 Despite the high prevalence of psychiatric impairment, children and 

adolescents with ASD are likely to face greater difficulties in getting their psychiatric 

conditions recognised. Communication difficulties combined with our current methods of 

detecting psychiatric problems, make it harder for individuals with ASD with psychiatric 

morbidity to attract help, especially for the more internalising conditions such as anxiety and 

depressive disorders.118 This is further compounded by adolescents with ASD being at greater 

risk of being social marginalised 301 and having less access to effective treatment, even once 

their difficulties are recognised.302,303 These factors may accumulate in young people with 

ASD, placing them at greater risk of adverse consequences from their psychiatric disorders, 

including severe self-harm.  
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Self-harm presentations to hospital represent one of the strongest risk factors for future suicide 

attempt,304 increasing the risk approximately 10-fold compared to the general population.305 

Self-harm is defined by the National Institute for Health and Care Excellence (NICE) as, “any 

act of self-poisoning or self-injury carried out by an individual regardless of motivation.306 It 

is common among adolescents. A large scale systematic review reported 13% of adolescents 

have self-harmed at some point in their childhood.307 A recent meta-analysis showed that 

previous self-harm, or thoughts of self-harm, identified adolescents and young adults who are 

most vulnerable group for attempted suicide.308 A subsequent analyses found prior self-harm 

accounted for 26% of future suicide attempts in adolescents and young adults.309  Adolescent 

presentation to hospital occurs in only  one in eight self-harming episodes in the 

community,246,310,311 generally when injuries are too severe to be self-managed.312 Within the 

UK, a study of serious case reviews found 10–20% of young people who die by suicide, visit 

a hospital for self-harm in the year prior to their death.243,313  

 

Incidence of self-harm is concentrated in younger age groups: the majority of cases are in under 

35s and with peak age at presentation in women between 15 and 19 years, and in men between 

20 and 24.309,314 Population surveys of adolescents show self-harm prevalence is different 

between genders, with approximately 11% of girls reporting self-harm in the previous year 

compared to 3-6% of boys.315,316 Depression and anxiety, low self-esteem, impulsivity, 

attention and conduct difficulties are the most replicated risk factors for self-harm.246,316,317 

Marginalised young people including victims of maltreatment, those with lower socio-

economic status, school excluded or with prolonged absence from school are also potentially 

more at risk. 318–321  

 

Findings emerging from recent epidemiological studies on suicidal behaviour in adulthood 

certainly support the hypothesis that higher rates of self-harm could be expected in adolescents 

with ASD. A large-scale population study showed that suicide is a leading cause of premature 

death in adults with autism.291 A clinic based study found 66% adults newly diagnosed with 

ASD, reported that they had contemplated suicide (UK general population prevalence is 17%) 

and 35% had planned or attempted suicide.322 Croen et al.  found the risk of suicide attempts 

were fivefold higher in adults with ASD compared to non ASD controls. They also found adults 

with ASD were significantly less likely to be diagnosed with alcohol abuse/dependency and to 

self-report alcohol use, suggesting that substance misuse, a strong contributing factor in the 

general population, may not have the same attributable risk in ASD samples.323 
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As far as I am aware, there have been no prospective cohort studies which have examined the 

association between ASD and self-harm in adolescence.  

 

In the absence of epidemiological studies,  clinical opinions have suggested self-harm may 

occur less often among adolescents with ASD than in the general population.324  A potential 

issue with research that examines self-harm behaviour in ASD is the possible conflation with 

self-injurious behaviour. Self-injurious behaviours are diverse and often highly repetitive and 

rhythmic types of behaviours (for example head banging, hair pulling, arm biting, eye poking, 

and skin scratching), that occur without an apparent intent of wilful self-harm, and result in 

physical harm.325,326 In contrast to adolescent self-harm, self-injurious behaviours among 

young people with ASD are associated with lower chronological age,326  do not show any 

particular associations with gender, ethnic background or socio-economic status104,327 and 

require a different approach to management.286,328  

 

From the limited research conducted, findings show adolescents with ASD are at greater risk 

for reporting suicidal behaviours 151 - a broad term which captures thoughts, plans, and attempts 

to end one’s life - which in the general population are strongly associated with self-harm.329 

One clinical study found over 1 in 6 young people with autism spectrum disorders (ASD) will 

contemplate or attempt suicide during childhood, making them 30 times more at risk than 

typically developing children.150 However, the clinical implications of these studies are 

difficult to judge, as qualitatively diverse events have been aggregated into binary outcomes. 

For example, in one of these studies 151,  a child who was rated on one questionnaire item by a 

caregiver as sometimes talks about harming or killing themselves had an equivalent outcome 

status to another child who was rated often attempts suicide. This is problematic as clinical and 

policy implications would differ if ASD was not associated with increased risk of suicidal 

ideation, but a greater risk for suicidal attempt. Furthermore the methodological weaknesses, 

including the cross-sectional designs,  small and selective nature of the samples, and lack of 

adequate adjustment for possible confounding factors or comparable control 

groups,150,151,330,331 further limit the interpretation and generalisability of these findings.  
 

To address these issues, I conducted a historical cohort data linkage study using 

contemporaneous, routinely collected data from school census records matched to psychiatric 

liaison records. As described in chapter 6, this longitudinal data captures at an individual level, 

the whole adolescent population continuously resident within four large boroughs within South 
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London, and provides a very accurate population denominator. Using these data, I aimed to 

provide age and gender stratified incident rates, and to test whether adolescents with ASD had 

a greater risk of self-harm presentation compared to those without ASD.  

 

 

8.3 METHODS 
8.3.1 Sample 
 

I used anonymised NPD data comprised of children and adolescents enrolled in state 

maintained education, and resident within a local catchment of four South London Boroughs 

(Southwark, Lewisham, Lambeth and Croydon) linked to SLaM CAMHs electronic health 

records129,156 (as described in chapters 2, 6 and 7) via the CRIS system.  

 

 Using these longitudinal school census data, I identified a dynamic cohort of adolescents (aged 

11-17 inclusive) who had resided within the 4 boroughs between 1st January 2009 until their 

eighteenth birthday or 31st March 2013, whichever was sooner (please see cohort table in 

Appendix A which provide age, year of study entry and the duration of follow-up).    During 

this period SLaM provided 24-hour psychiatric liaison services within the local catchment’s 

four main acute NHS trust Emergency Departments (ED): St Thomas’ Hospital, King’s 

College Hospital, Croydon University Hospital and University Hospital Lewisham, which were 

all staffed by psychiatric liaison nurses and psychiatrists, and recorded self-harm attendances 

in the ED using the SLaM electronic health record system (ePJS). All four EDs have policies 

of referring all attendees with self-harm for a SLaM psychiatric assessment and of recording 

these referrals regardless of whether individuals wait to be seen.251 

 
8.3.2 Measures 
Outcome 

 

The primary outcome was first attendance to acute hospital services with self-harm behaviour. 

To  identify cases of self-harm, I used a similar methodology described by Polling et al., and 

defined self-harm according to the National Institute for Health and Care Excellence (NICE) 

definition; “ any act of self-poisoning or self-injury carried out by an individual regardless of 

motivation”.332 However to exclude self -injurious behaviour typically associated with non-

harming intention, I included the caveat that self-harm needed to be wilful.333  Presentations 

were excluded if the details of the self-harm episode were detected co-incidentally during 
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history taking and had occurred more than seven days prior to ED presentation. Any ingestion 

of non-recreational drugs above the prescribed dose identified as self-harm by the individual 

or ED staff was coded as self-poisoning. Use of recreational drugs was coded as self-poisoning 

where the patient reported intent to self-harm. Episodes were coded as self-injury where any 

intentionally self-inflicted injury, however superficial, had occurred but not where threats or 

gestures to self-harm had not resulted in injury. All attempted hanging, jumping from a height 

and immersion in water with intent to drown was coded as self-harm and categorised as 

“other” regardless of whether injuries were sustained. 

 

To ascertain the first self-harm event using the above definition, I used CRIS-HES linked data 

for both Admitted Patient Care and ED episodes of care (see figure 8.1, and chapter 6, figure 

6.1).156 HES data were available within CRIS for all adolescents who had any contact with 

SLaM services over the observation, and non-SLaM data for all those resident within the local 

catchment area at the time of their hospital use. Automated data extraction steps were 

developed to extract the first episode of self-harm, as follows  

 

• Step 1.  All HES ED or emergency admission from Admitted Patient Care (APC) 

records were retrieved within the observation window for children aged 

between 11 and 17 (at the time of the admission) with a home address within 

the four South London boroughs [ An admission was considered to be an 

emergency if the HES method of admission variable (‘admimeth’) was 21-24 

or 28].  
 

• Step 2.  All cases identified in step 1 were retrieved who had any linked CRIS record 

entered after 12 hours from time and date of ED admission OR any cases 

identified via emergency APC entry with ICD-10 self-harm diagnosis codes 

(see table 8.1). I considered any multiple admissions within 1 day of each other, 

or relating to a hospital transfer, to be the same admission. 

 

• Step 3.  Any free text records were retrieved with the self-harm key words entered in 

structured assessment forms, risk proforma, free text note or correspondence 

item in CRIS.  
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• Step 4. Documents identified from step 3 were rated by one of two clinical coders, and 

coded for presence of self-harm, type of self-harm. Previous research had 

shown this approach has high inter-rater reliability (presence of self-harm 

kappa 0.85, type of self-harm 0.87).251 

 
 
Figure 8.1 Data sources used to capture first self-harm event from HES administrative 
database linked via CRIS to SLaM Child and adolescent Mental Health Data  
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Exposure: Autism Spectrum Disorder 

 

I used the NPD special education needs (SEN) register to identify all ASD diagnoses. In the 

UK, schools can seek external advice and resources from the local educational support (LEA) 

services, the local Health Authority or from Social Services when unable to meet the learning 

needs of an enrolled child. This extra provision, called “school action plus”, may include advice 

from a Speech and Language Therapist, an Occupational Therapist or Specialist paediatric 

services. It may also include one-to-one support and the involvement of an Educational 

Psychologist. When these extra provisions are not sufficient, the school may request an LEA 

assessment under a statement of special education needs (SEN).  

 

Table 8.1 Definitions and International Classification of 
Diseases (ICD-10) diagnostic codes used to classify 
emergency admissions for self-injury 
 

 

Self-harm description ICD-10 code 

Intentional self-poisoning by and exposure 

to… 
 

…drugs X60-X63 

…other and unspecified drugs, 

medicaments and biological substances 
X64 

…alcohol X65 

…organic solvents and halogenated 

hydrocarbons and their vapours 
X66 

…other gases and vapours X67 

…pesticides X68 

…other and unspecified chemicals and 

noxious substances 
X69 

Intentional self-harm by…  

…hanging, strangulation and suffocation X70 

…drowning and submersion X71 

…firearm discharge X72-X74 

…explosive material X75 

…smoke, fire and flames, or steam, hot 

vapours and hot objects 
X76-X77 
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…sharp/blunt objects X78-X79 

...jumping from a high place X80 

…jumping or lying before a moving object, 

or crashing a motor vehicle 
X81-82 

…other specified means X83 

…unspecified means X84 

Personal history of self-harm Z91.5 

 

The SEN statement (now referred to as an education and health care plan) was a legal document 

issued by the LEA for children who need substantial additional support in school because of 

learning or behaviour problems. All children who are recognised as being school action plus 

or have provision under a statement of educational need (approximately 7-9% of children) had 

reasons registered under a specific category of need,334  which included the following:  

 

1. Specific Learning Difficulty 

2. Moderate Learning Difficulty 

3. Severe Learning Difficulty 

4. Profound & Multiple Learning Difficulty 

5. Behaviour, Emotional & Social Difficulties 

6. Speech, Language and Communication Needs 

7. Hearing Impairment 

8. Visual Impairment 

9. Multi-Sensory Impairment 

10. Physical Disability 

11. Autistic Spectrum Disorder (ASD) 

12. Other Difficulty/Disability 

 

The SEN register has been used in epidemiological studies to identify ASD populations, and 

has high diagnostic specificity.125,335 The NPD provides up to two different SEN codes 

(primary and secondary) for each child, to allow for multiple needs to be captured. For the 

study sample, I identified ASD from either of the primary or secondary SEN fields, and from 

any of the census periods available between academic years 2004/5 to 2012/13.  
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Confounders and Risk Factors: Socio-demographic factors 

NPD census data from the last available academic year was used to provide pupil characteristic 

details on gender, ethnicity and English as a second language. This last characteristic is 

identified by schools via parental report of English not being the primary language spoken 

within the child’s home. Where these socio-demographic data were missing in the NPD census 

data, I used linked health data to replace the missing values.   

 

For other baseline characteristics, other school factors were collected from the NPD census and 

other NPD registers, and extracted from the academic year prior to the date of entry into the 

study. These characteristics included free school meals eligibility (a proxy for low socio-

economic status), neighbourhood deprivation, and whether, owing to child protection concerns, 

the child was under care of the local authority (i.e. a looked after child). I categorised 

neighbourhood deprivation according to the Index of Multiple Deprivation scores based on 

residential postcode, with use of quintile cut-off values for England.135 

 

Other special education needs 

I used the SEN register to identify other special educational needs. For those categories which 

identified a developmental condition, I used either of the primary or secondary SEN fields, 

from any of the census periods available between academic years 2004/5 to 2012/13. These 

included all learning difficulties, hearing, vision or physical disabilities, or special, language 

or communication categories. To reduce the potential for reverse causality between self-harm 

and the behaviour, emotion and social problems SEN category (i.e. where self-harm leads to 

school recognition of this need), I only coded behaviour, emotion and social problems at 

baseline i.e. using all relevant codes in SEN register data until the academic year of entry into 

the study.  

 

Educational attainment 

I used educational attainment at KS2 examinations also known as Standardised Attainment Tests 

(SATs). These are taken in year 6 (children aged 10-11) at the end of Primary schools. SATs 

are taken in three core subjects: English, Maths and Science, and for each subject, a total test 

mark is generated. I calculated an average mark score from the available results, and created a 

ranked z-score. This ranked score was then divided in 5 quintiles. The KS2 test marks data will 

be missing if the KS2 level is “B” (pupils working below test levels); I therefore assigned 

anyone with a ‘B’ as within the lowest quintile.   
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Educational attendance and exclusion.  

I created a binary outcome marker of poor attendance for the academic year before they entered 

study. I categorised pupils as poor attenders if they had recorded less than 80% school 

attendance for the total number of possible school sessions available since their enrolment for 

that academic year (one session is equal to half a school day). A binary marker, using historical 

NPD exclusions data, was also calculated for any child that had a prior record of exclusion 

(fixed term or permanent) up to the point of study entry.  

 

Hyperkinetic Disorder co-morbidity 

Using the linked NPD-CAMHS data, and incorporating the methodology described in previous 

studies,129,160 I extracted any ICD-10 recorded comorbid psychiatric diagnoses of hyperkinetic 

(F90) disorder from CRIS.  

 

Prior attendance to CAMHS services and diagnostic data 

In the subset of adolescents who had attended ED with self-harm, I extracted from CRIS any 

record of previous contact with mental health services, and ICD-10 diagnosis data from any 

time point within the observation window up until their 18th birthday. ICD-10 Axis one 

diagnoses were categorised into: substance misuse disorders (F10-F19) psychotic (F20–F29, 

F31, F32.3, F33.3), depressive disorders (F32), anxiety, stress and emotional disorders (F40–

42, F43–F48), eating disorders (F50), childhood-onset emotional and behavioural disorders 

(F91-F98). Low frequency psychiatric diagnoses were collapsed into a single category 

labelled “Other”. Adolescents without a CRIS diagnosis, or only detected via HES APC 

codes were coded as “No diagnosis recorded” 

 

8.3.3 Analyses 
 

Previous work has established differential risks for self-harm according to gender, which 

appears to be particularly marked in adolescents and clinical samples.336 Hence all analyses 

were conducted separately for girls and boys. I used the statistical package Stata MP (version 

14). Statistical disclosure rules (a condition of using the NPD dataset) required us not to publish 

counts of less than five, I do not present exact numbers of self-harm for certain groups. 

 

 I first derived numbers and proportions of incident self-harm following entry into the study, 

by each year of age 11-17. The numerator were adolescents who first presented within the age 
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category with self-harm, the denominator was the population within that age band who were at 

risk. Confidence intervals for each age band were calculated using the Stata 14 ci command 

which provides exact (Clopper–Pearson) confidence intervals.337 Having checked proportional 

hazards assumptions, Cox regression procedures were used to calculate the unadjusted hazard 

ratios (and their 95% CIs) for a number of potential risk factors, justified on basis of previous 

research on their relationship with adolescent self-harm.246 I then present an adjusted analyses 

for the hazards of presenting with self-harm, which adjusted for all covariates examined.  

 

I conducted several sensitivity analyses, to aid interpretability and reduce potential biases. The 

first sensitivity analysis restricted the sample to pupils only attending mainstream secondary 

schools, excluding those attending special schools or pupil referral units, as the latter schools 

were likely to have populations with much greater psychiatric morbidity. The second sensitivity 

analyses restricted the cohort to those who entered at age 11, hence reducing the potential for 

variation in baseline effects to differ because variable age/maturity at study entry. The third 

analyses, used a multiple imputation approach to examine whether missing data related to non-

matching between the national pupil database and SLaM self-harm data caused substantial 

changes in direction of size of the effect between ASD and self-harm. Because complete 

outcome data was available and there were a considerable number of predictor variables related 

to non-linkage (see chapter 7), I assumed the data was missing at random.338 I created 10 

imputed datasets (m=10), as recent recommendations are to perform at least as many 

imputations as the proportion of missing cases in a study,339 and used the distributions from the 

complete case dataset to cross check against the imputed dataset. The cox analyses were then 

repeated in the imputed sample.   

 

8.4 RESULTS  
 

Figure 8.2 shows how the adolescent population sample and self-harm cases were ascertained 

from the National Pupil Database, HES and CAMHS databases. Overall, using residential 

census data from the National Pupil Database (NPD), 113,288 adolescents were eligible for 

entry into the study (i.e. aged between 11-17 years and resident within Southwark, Lambeth, 

Lewisham and Croydon throughout the follow-up period). 
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Figure 8.2 Sample and self-harm case ascertainment using National Pupil Database, HES 
and CAMHS databases.  
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Table 8.2 Cross-sectional characteristics of those adolescents presenting with self-harm 
by summarised measures of self-harm, and other clinical factors 
 

Characteristics  
Self-harm presentations (n, %) 

Male (n=186) Female (n=834) 

Mean age at first self-harm presentation (SD) 15.9 (1.9) 15.6 (1.4) 

Known to MH services prior to self-harm 83 (44.6) 407 (48.8) 

Ethnicity   

    White 88 (47.3) 357 (42.8) 

    Black 28 (15.0) 212 (25.4) 

    Asian 12 (6.5) 47 (5.7) 

    Mixed  16 (8.6) 102 (12.2) 

    Other 12 (6.5) 29 (3.5) 

    not disclosed / unknown 30 (16.1) 87 (10.4) 

National neighbourhood deprivation 

    Most deprived quintile 63 (33.9) 320 (38.4) 

    2nd  79 (42.5) 330 (39.5) 

   3rd 32 (17.2) 120 (14.4) 

   4th 8 (4.4) 44 (5.3) 

   Least deprived quintile 4 (2.2) 20 (2.4) 

Type of Self-Harm   

   Self-poisoning or overdose 95 (51.1) 617 (74.0) 

   Self-injury (cutting, stabbing, self-battery) 74 (39.8) 171 (20.5) 

   Both self-poisoning and self-injury 3 (1.6) 29 (3.5) 

   Other - e.g. hanging, jumping from a height, running in  

   front of transport 
14 (7.5) 17 (2.0) 

ICD-10 Axis 1 (pre or post first self-harm) No. and prevalence of disorders (%)* 

   Substance Misuse Disorders (F10-19) 10 (5.4) 13 (1.5) 

   Depressive disorder (F32) 53 (28.5) 277 (33.2) 

   Psychotic Disorders (F20-29,31,32.3, F33.3) 6 (3.3) 9 (1.1) 

   Anxiety Disorder (F40–42, F43–F48)  42 (22.5) 186 (22.3) 

   Eating Disorder ⩽5 (⩽2.5) 17 (2.0) 

   Autism Spectrum Disorders (F84) 18 (9.7) 21 (2.5) 

   Hyperkinetic disorder (F90) 19 (10.2) 15 (1.7) 

   Child-onset emotional and behavioural disorders(F91-F98)  33 (17.7) 127 (15.2) 

   No Diagnosis 41 (22.0) 249 (29.9) 

   Other  ⩽5 (⩽2.5) 21 (2.5) 

Axis 3 Intellectual Disability ⩽5 (⩽2.5) 6 (0.7) 

*Multiple morbidities were counted, %  
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8.4.1 Characteristics of self-harm presentation  
During follow-up, 1020 adolescents attended ED or were admitted to hospital with at least one 

episode of self-harm. Of these, 764 adolescents (~76%) were successfully matched to the 

National Pupil Database. Mean age of presentation was 15.9 years and 15.6 years for boys and 

girls respectively (see table 8.2). At the time of self-harm presentation, fewer than 50% had 

prior history of contact with CAMHS services. The most common reason for presentation was 

self-poisoning and overdose (50% of boys, 74% of girls), followed by cutting and self-battery.  

As shown in table 8.2, both boys and girls shared the same order and similar proportions of 

ICD-10 disorder prevalence, the most common being depressive disorders (Boy 29%, girl 33%) 

followed by anxiety (22% v 22%) and childhood onset emotional and behavioural disorders 

(such as oppositional and conduct disorders, 18% v 15% respectively). 

 

8.4.2 Incidence of self-harm by age and gender  
 

 Using individual-level NPD data to provide the regional population denominator, I assessed 

the incidence estimates of self-harm by gender. As described within the table nested in figure 

8.3, and illustrated graphically. Both genders show low rates at age 11, with a substantial 

increase in incidence of self-harm throughout later adolescence. Incidence rates for 14 year 

girls were 42 per 10,000 increasing nearly four-fold to 145 per 10,000 at age 17. Although less 

in terms of absolute numbers, there were a greater relative increase for boys over this age range 

with rates at 14 years ~ 7 per 10,000 increasing six-fold to 45 per 10,000 at age 17.  

 

8.4.3 Socio-demographic and education characteristics by gender and ASD status 
 

Table 8.3 and 8.4 provide a breakdown of socio-demographic, educational and clinical 

characteristics of the sample, by gender and ASD status, provided by NPD (this data omits 

non-matched self-harm data, n=257). There was considerable ethnic, socio-economic and 

cultural diversity within the sample, with non-white ethnic groups making up over two-thirds 

of the study population, and over 25% reporting English as their second language. The majority 

resided in neighbourhoods within the highest 40% for national deprivation, with over 25% of 

adolescents coming from families meeting eligibility criteria for benefits or other income 

support.340 
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Figure 8.3 Self-harm incidence rates of adolescents presenting to A&E according to age 
and gender, with 95% CIs  

 

 

Age (years) 
Male   Female 

n/pop at risk per 10,000 95% C.I.   n/pop at risk per 10,000 95% C.I.  

11 2/23219 0.86 (0.2-3.4)  3/22979 1.31 (0.4-4.0) 

12 4/23576 1.70 (0.6-4.5)  21/23229 9.04 (5.9-13.9) 

13 6/23597 2.54 (1.1-5.7)  61/23168 26.33 (20.5-33.8) 

14 17/23249 7.31 (4.5-11.8)  98/22995 42.62 (35.0-51.9) 

15 32/22854 14.00 (9.9-19.8)  172/22714 75.72 (65.2-87.9) 

16 36/21857 16.47 (11.9-22.8)  183/22038 83.04 (71.9-95.9) 

17 89/19862 44.81 (36.4-55.1)   296/20372 145.30 (129.8-162.7) 

 

  

girls 

boys  
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Table 8.3 Socio-demographic, characteristics of the sample, by gender and ASD status 
  

Socio-demographic 

characteristics** 

Male (n=56,578) 
  

Female (n=56,708) 
 

No ASD (n=54,552) ASD (n=2026) 
 

No ASD (n=56,271)  ASD (n=437) 

      
Mean age at baseline (SD) 12.8 (2.0) 12.3 (1.7)  12.8 (2.0) 12.2 (1.6) 

Mean duration of follow-up (SD) 2.74 (1.3) 2.73 (1.3)  2.72 (1.3) 2.80 (1.3) 

  
     

Ethnicity (n, %) (n, %)  (n, %) (n, %) 
 

    White 20,238 (37.1) 770 (38.0)  20,651 (36.7) 176 (40.3) 

    Black 20, 012 (36.7) 850 (42.0)  21,099 (37.5) 174 (39.8) 

    Asian 4,788 (8.8) 78 (3.9)  4,869 (8.7) 24 (5.5) 

    Mixed  6,013 (11.0) 237 (11.7)  6,275 (11.2) 45 (10.3) 

    Other 1,928 (3.5) 42 (2.1)  1,891 (3.4) 6 (1.4) 

    not disclosed / unknown 1,575 (2.9) 49 (2.4)  1,486 (2.6) 12 (2.8) 

 
         

National neighbourhood 

deprivation 
     

     
    Most deprived quintile 19,805 (36.3) 824 (40.8) 

 
20,222 (40.0) 173 (39.6) 

    2nd  22, 100 (40.5) 804 (39.8) 
 

22,794 (40.5) 179 (40.1) 

    3rd 7,759 (14.2) 251 (12.4) 
 

8,227 (14.6) 550 (12.6) 

    4th 3,283 (6.0) 99 (4.9) 
 

3,322 (5.9) 24 (5.5) 

    Least deprived quintile 1,579 (2.9) 42 (2.1) 
 

1,688 (3.0) 6 (1.4) 

 
          

** Missing = 257 non-matched self-harm cases 
    

 

 

There were 2,463 adolescents with an ASD registered special educational need, representing 

2.2% of the total population.  The  majority of adolescents with ASD  were being taught within 

mainstream schools (>75%), but 59-70% were in the lowest 20% for key stage 2 educational 

attainment (table 8.3), with 11-15% recognised as having severe or profound learning 

difficulties. For the ASD group,  mean age was 12 years  at study entry, with similar length of 

follow up (mean 2.7 years).  Around 12% of boys and 6% of girls with ASD had received at 

least one fixed term exclusion. Between 5-6% did not attend school for more than 80% of the 

available lessons in the preceeding year before study entry.   
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Approximately 7% of boys and 5% girls with ASD had co-morbid hyperkinetic disorder, 

detected within the CAMHS record. 11 boys (0.5%) and less than 6 girls presented with 

self-harm at a mean age of 15 [statistical disclosure rules prevent actual numbers being 

provided].    

 
Table 8.4 Educational and clinical characteristics of the sample, by gender and ASD 
status 

Educational and Clinical Characteristics 

Male (n=56,578) 
  

Female (n=56,708) 
 

No ASD 

(n=54,552) 

ASD 

(n=2026) 
 

No ASD 

(n=56,271) 

ASD 

(n=437) 

(n, %) (n, %)  (n, %) (n, %) 

Special Education Needs a      

    Learning Difficulties (specific/moderate) 8,898 (16.3) 548 (27.1)  6,085 (10.8) 133 (30.4) 

    Learning Difficulties (severe/ profound) 591 (1.1) 250 (12.3)  381 (0.7) 65 (14.9) 

    Behavioural, Emotional, Social problems 6, 726 (12.3) 548 (27.1)  3,548 (6.3) 89 (20.4) 

    Speech, language and communication 4,291 (7.9) 806 (39.8)  2,134 (3.8) 161 (36.8) 

    Hearing, vision or physical disability 795 (1.5) 69 (3.4)  735 (1.3) 16 (3.4) 

 First language a      

    English 39,920 (73.2) 1,661 (82.0)  40,815 (72.5) 344 (78.7) 

    Other 13,612 (25.0) 341 (16.8)  14, 541 (25.9) 89 (20.4) 

    Not disclosed 1,022 (1.9) 24 (1.2)  915 (1.6) ⩽5 (⩽1.0) 

School Type  
     

    Mainstream 53,868 (98.7) 1597 (78.8) 
 

56,024 (99.6) 333 (76.2) 

    Special School 579 (1.1) 418 (20.6) 
 

237 (0.4) 104 (23.8) 

    Pupil referral Units 107 (0.2) 11 (0.5) 
 

10 (0.02) ⩽5 (⩽1.0) 

Educational attainment (Key stage two) b 
  

   

    Lowest quintile 12, 220 (23.1) 1,146 (59.0)  10, 461 (19.2) 296 (69.7) 

    second 10,461 (19.8) 277 (14.3)  10,750 (19.7) 55 (12.9) 

    third 10,301(19.5) 224 (11.5)  11,141 (20.4) 29 (6.8) 

    fourth 10,283 (19.5) 168 (8.6)  10,078 (20.3) 22 (5.2) 

    highest quintile 9,577 (18.1) 128 (6.6)  11,172 (20.4) 23 (5.4) 

   Less than 80% attendance c  2,587 (4.9) 118 (6.0)  2,538 (4.7) 22 (5.2) 

   Fixed term exclusions a  5, 847 (10.7) 239 (11.8)  2,790 (5.0) 26 (6.0) 

Other social factors      

    Summer birth (May -Aug) 18,941 (34.7) 720 (35.5)  19,185 (34.1) 140 (32.0) 

    Free school meals a  13,105 (24.0) 696 (34.5)  13,391 (23.8) 167 (38.2) 

    Looked after Child status d 420 (0.8) 30 (1.5)  397 (0.7) 12 (2.8) 

 ICD-10 Hyperkinetic disorder 670 (1.2) 131 (6.5)   168 (0.3) 23 (5.3) 
 missing values a 257 b 3731 c 4049 d 4547 
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Table 8.5 An analysis of socio-demographic risks factors for emergency presentations with self-harm amongst 113, 543 adolescents 
residing in south London using crude and multivariable cox-regression analyses. 
 

Socio-demographic 

characteristics 

Male (n=56,648) 
  

Female (n=56,897) 
 

No self-harm 

(n=56,462) 

Self-harm 

(n=186) 

Unadjusted Hazard 

Ratio 

Adjusted Hazard 

Ratio 
 

No self-harm 

(n=56,063) 

Self-harm 

(n=834) 

Unadjusted Hazard 

Ratio 

Adjusted Hazard 

Ratio 

Mean age at baseline 

(SD) 
12.8 (2.1) 14.1 (1.8) 1.70 (1.55-1.86)** 1.38 (1.22-1.57)**  12.8 (2.0) 13.9 (1.8) 1.48 (1.42-1.54)** 1.28(1.21-1.35)** 

Mean duration of follow-

up (SD) 
2.73 (1.3) 1.89 (1.2) - -  2.70 (1.3) 1.86 (1.1) - - 

Ethnicity (n, %) (n, %) 
   (n, %) (n, %)   

     
    White 20,943 (37.1) 88 (47.3) reference reference  20,534 (36.6) 357(42.8) reference reference 

    Black 20, 842 (36.9) 28 (15.0) 0.32 (0.21-0.48)** 0.38 (0.23-0.65)**  21,106 (37.7) 212 (25.4) 0.57(0.48-0.68)** 0.58 (0.78-0.71)** 

    Asian 4,860 (8.6) 12 (6.5) 0.60 (0.33-1.10) 0.87 (0.35-2.14)  4,865 (8.7) 47 (5.7) 0.58 (0.43-0.78)** 0.61 (0.40-0.94)* 

    Mixed  6,234 (11.0) 176 (8.6) 0.62 (0.36-1.04) 0.69 (0.37-1.26)  6,218 (11.1) 102 (12.2) 0.97 (0.77-1.20) 1.12 (0.88-1.41) 

    Other 1,968 (3.5) 12 (6.5) 1.42 (0.78-2.60) 0.64 (0.14-2.69)  1,880 (3.3) 29 (3.5) 0.88 (0.60-1.28) 0.78 (0.46-1.31) 

    not disclosed 1,615 (2.9) 30 (16.1) 4.9 (3.3-7.5)** 0.74 (0.17-3.04)  1,460 (2.6) 87 (10.4) 4.0 (3.16-5.04)** 0.94 (0.54-1.61) 

National neighbourhood deprivation a 
        

    Most deprived quintile 20,586 (36.5) 63 (33.9) reference reference 
 

20,144 (35.9) 320 (38.4) reference reference 

    2nd  22, 855 (40.5) 78 (42.5) 1.14 (0.82-1.58) 0.98 (0.63-1.53) 
 

22,720 (40.6) 330 (39.5) 0.92 (0.79-1.08) 0.98 (0.81-1.17) 

    3rd 7,989 (14.2) 32 (17.2) 1.31 (0.86-2.20) 1.40 (0.81-2.42) 
 

8,193 (14.6) 120 (14.4) 0.95 (0.77-1.17) 0.88 (0.67-1.15) 

    4th 3,378 (6.0) 8 (4.4) 0.78 (0.38-1.64) 0.74 (0.28-1.88) 
 

3,311 (5.9) 44 (5.3) 0.85 (0.62-1.16) 0.80 (0.55-1.18) 

    Least deprived  1,620 (2.9) 5 (2.2) 0.81 (0.29-2.21) 0.27 (0.04-2.01) 
 

1,677 (3.0) 20 (2.4) 0.75 (0.48-1.18) 0.79 (0.46-1.3) 

* P⩽0.05 **P⩽0.01;  a missing values= 52;  b  Adjusted for all other factors listed in this table and table 8.5 
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Table 8.6 An analysis of educational and clinical risks factors for emergency presentations with self-harm amongst adolescents residing 
in south London using crude and multivariable cox-regression analyses 

Educational and Clinical characteristics 

Male (n=56,581) 
 

Female (n=56,709) 

No self-harm 

(n=56,460) 

Self-harm 

(n=120) 
Unadjusted Hazard 

Ratio 

Adjusted Hazard 

Ratio  

No self-harm 

(n=56,063) 

Self-harm 

(n=646) 
Unadjusted Hazard 

Ratio 

Adjusted Hazard 

Ratio 
(n, %) (n, %)  (n, %) (n, %) 

Special Education Needs a         
 

Autism Spectrum Disorders  2,015 (3.5) 11 (9.2) 2.73 (1.47-5.09)** 2.79 (1.40-5.57)**  434 (0.8) ⩽5 (⩽1.0) 0.57 (0.18-1.78) 0.52 (0.16-1.63) 

Learning Difficulties (specific/moderate) 9,418 (16.7) 28 (23.3) 1.44 (0.95-2.20) 1.07 (0.62-1.76)  6,113 (10.9) 105 (16.3) 1.50 (1.22-1.85)** 0.99 (0.77-.127) 

Learning Difficulties (severe/profound) 840 (1.5) ⩽5 (⩽5.0) 0.55 (0.08-3.92) 0.39 (0.05-2.98)  444 (0.8) ⩽5 (⩽1.0) 0.38 (0.09-1.52) 0.40 (0.10-1.67) 

Behavioural, Emotional, Social 7,235 (12.8) 39 (33.5) 3.14 (2.19-4.70)** 1.66 (1.02-2.73)*  3,494 (6.2) 143 (22.1) 4.20 (3.48-5.05)** 2.31 (1.84-2.88)** 

Speech, language and communication 5,086 (9.0) 11 (9.2) 1.06 (0.57-1.98) 0.99 (0.51-1.95)  2,269 (4.1) 26 (4.0) 1.01 (0.68-1.50) 1.13 (0.74-1.72) 

Hearing, vision or physical disability 860 (1.5) ⩽5 (⩽5.0) 2.17 (0.80-5.89) 2.13 (0.77-5.85)  746 (1.3) 5 (0.8) 0.56 (0.23-1.34) 0.59 (0.25-1.42) 

 First language  a         
 

     English 41,482 (73.5) 100 (83.3) reference reference  40,652 (72.5) 508 (78.6) reference reference 

     Other 13,942 (24.7) 11 (9.2) 0.33 (0.18-0.62)** 0.50 (0.25-0.98)*  14, 529 (25.9) 101 (15.6) 0.57 (0.46-0.70)** 0.77 (0.61-0.98)* 

     Not disclosed 1,038 (1.8) 9 (7.5) 4.14 (2.10-8.2)** n/a  882 (1.6) 37 (5.7) 3.82 (2.74-5.35)** 1.72 (0.91-3.02) 

Educational attainment (Key stage two) b 
 

      
 

     Lowest quintile 13,328 (24.4) 39 (33.0) reference reference  10,586 (19.5) 172 (27.0) reference reference 

     second 10,713 (19.6) 25 (21.2) 0.80 (0.40-1.32) 1.07 (0.60-1.90)  10,672 (19.6) 133 (20.9) 0.78 (0.62-0.97)* 1.01 (0.78-1.29) 

     third 10,501 (19.2) 24 (20.3) 0.82 (0.49-1.36) 1.56 (0.87-2.78)  11,046 (20.3) 124 (19.4) 0.73 (0.58-0.92)** 1.18 (0.90-1.52) 

     fourth 10,437 (19.1) 14 (11.9) 0.50 (0.27-0.92)* 1.01 (0.50-2.09)  10,974 (20.2) 126 (19.7) 0.77 (0.61-0.97)* 1.35 (1.04-1.77)* 

     highest quintile 9,9689 (17.7) 16 (13.6) 0.73 (0.41-1.31) 1.75 (0.85-3.55)  11,112 (20.4) 83 (13.0) 0.55 (0.44-0.75)** 1.15 (0.85-1.57) 

Less than 80% attendance c 2,676 (4.9) 29 (26.4) 6.50 (4.24-9.92)** 3.50 (2.16-5.70)**  2,430 (4.5) 130 (21.2) 5.42 (4.50-6.58)** 2.84 (2.70-3.51)** 

Fixed term exclusions a 6,054 (10.7) 32 (26.7) 2.88 (1.92-4.31)** 1.30 (0.78-2.15)  2696 (4.8) 120 (18.6) 4.41 (3.61-5.37)** 1.69 (1.32-2.15)** 

Other social factors         
 

    Summer birth (May-Aug) 19,615 (34.7) 47 (41.6) 1.21 (0.84-1.75) 1.23 (0.83-1.83)  19,104 (34.1) 222 (34.4) 1.02 (0.87-1.20) 1.02 (0.86-1.21) 

    Free school meals  a 13, 764 (24.4) 37 (30.8) 1.40 (0.95-2.05) 1.35 (0.87-2.10)  13,369 (22.1) 189 (29.3) 1.32 (1.11-1.56)** 1.22 (1.02-1.48)* 

    Looked after Child status  d 443 (0.8) 7 (6.3) 8.04 (3.75-17.3)** 3.18 (1.14-8.91)*  382 (0.7) 27 (4.3) 6.20 (4.22-9.12)** 3.16 (2.07-4.84)** 

 ICD-10 Hyperkinetic disorder 788 (1.4) 19 (10.2) 8.0 (5.0-12.8)** 4.36 (2.20-8.68)**  177 (0.3) 15 (1.8) 5.70 (3.42-9.50) 3.58 (2.03-6.29)** 

* P⩽0.05 **P⩽0.01; missing values a 257  b 3731  c 4049  d 4547   e Adjusted for all other factors listed in this table and table 8.5 
  



 

 183 

8.4.4 Population level socio-demographic and educational risks for self-harm by gender 
 

Cox regression models displayed in table 8.5 indicate, for both boys and girls, a strong inverse 

association between black ethnicity (relative to white ethnicity) and risk of presenting with self-

harm. This association remained significant, and the effect estimate consistent, even after 

adjustment for a range of potential confounders, including clinical and educational factors.  Asian 

ethnicity and English as a second language (i.e. English not the primary language spoken at home), 

were also associated with significantly reduced risks of self-harm presentation, but only amongst 

girls. Levels of neighbourhood deprivation were not significantly associated with risk of self-harm 

for either gender.  
 

 

Table 8.6 shows the educational and clinical risk factors associated with self-harm, stratified by 

gender.  ASD was associated with nearly a three-fold increase in risk self-harm in boys, showing 

little change after adjustment for a comprehensive range of clinical confounders (aH.R 2.79, 

P<0.01), however ASD was not an associated risk for girls ASD. Other significant predictors for 

self-harm in both genders included behavioural, emotional and social special educational needs, 

persistent attendance problems, being a looked after child, and hyperkinetic disorder.  For girls 

specifically, being from a family eligible for free school meals, having at least one fixed term 

exclusion from school, and being in the second from top highest achieving academic quintile were 

also significant predictive factors.  
 

 

8.4.5 Sensitivity analysis 
 

Previously specified sensitivity analyses made little difference to the main findings. Restricting 

the analyses to adolescents joining the study aged 11, showed that ASD in boys remained a 

significant risk factor (aH.R 3.43, 95% C.I. 1.05-11.3, p<0.04), restricting to those enrolled in 

mainstream school produced similar results (aH.R 3.28, 95% C.I. 1.64-6.6, p<0.01). The final 

analyses used an imputed dataset, which replaced missing NPD variables that were either not 

supplied to Department for Education, or missed matches between NPD and CRIS data. Table 8.7, 

shows the distribution of key variables before and after multiple imputation, which I checked to 

establish the validity of this imputed dataset. Observed values of complete cases with imputed 

values showed similar distributions, with the exception of a nearly 3-fold increase in the proportion 

of adolescent who did not disclose their language status. Table 8.8 shows fully adjusted effect 

estimates are similar to the complete case analyses in table 8.5 and 8.6, except with some gains in 

precision.  
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Table 8.7 The distribution of socio-demographic and educational variables before (original) and after multiple imputation.  
 

Socio-demographic and clinical 
characteristics   

Male (n=56,648)  Female (n=56, 709) 
Original %   Imputed % 

 

Original % 
  

Imputed % 

No self-harm   Self-harm    No self-harm   Self-harm   No self-harm   Self-
harm   

No self-harm   Self-harm   

National neighbourhood deprivation  
           

     Most deprived quintile  36.5 33.9  33.6 37.5  35.9 38.4  32.8 37.5 
     2nd   40.5 42.5  40.8 38.1  40.8 39.5  40.6 38.1 
     3rd  14.2 17.2  15.4 16.3  14.6 14.4  16.3 17.2 
     4th  6.0 4.4  7.0 7.2  5.9 5.3  7.2 5.4 
     Least deprived quintile  2.9 2.2  3.2 3.3  3.0 2.4  3.3 2.2 
Special Education Needs a             
    Autism Spectrum Disorders   3.5 9.2  3.5 5.1  0.8 0.5  0.7 0.8 
    Learning Difficulties (specific/moderate)  16.7 23.3  14.4 24.4  10.9 16.3  9.3 18.5 
    Learning Difficulties (severe/profound)  1.5 0.8  1.4 1.0  0.8 0.3  0.7 0.4 
    Behavioural, Emotional, Social problems  12.8 33.5  12.5 41.4  6.2 22.1  6.0 23.2 
    Speech, language and communication  9.0 9.2  7.5 8.3  4.1 4.0  3.4 3.9 
    Hearing, vision or physical disability  1.5 3.3  1.3 1.6  1.3 0.8   1.3 0.8 
 First language a             
    English  73.5 83.3  72.0 66.5  72.5 78.6  72.1 68.8 
    Other  24.7 9.2  23.0 11.3  25.9 15.6  25.6 13.8 
    Not disclosed  1.8 7.5  5.1 24.2  1.6 5.7   4.3 17.5 
Educational attainment (Key stage two) b  

     
 

     
    Lowest quintile  24.4 33.0  23.2 39.6  19.5 27.0  17.7 29.6 
    second  19.6 21.2  18.0 20.0  19.6 20.9  18.3 21.6 
    third  19.2 20.3  18.5 14.3  20.3 19.4  19.1 17.7 
    fourth  19.1 11.9  19.9 13.7  20.2 19.7  21.3 16.9 
    highest quintile  17.7 13.6  20.5 12.4  20.4 13.0  23.6 14.3 
   Less than 80% attendance c   4.9 26.4  5.5 31.3  4.5 21.2  5.0 25.7 
   Fixed term exclusions a   10.7 26.7  10.9 37.8  4.8 18.6  5.3 23.2 
Other social factors             
    Summer birth (May -Aug)  34.4 41.6  34.7 36.3  34.1 34.4  33.8 34.5 
    Free school meals a   24.4 30.8  21.9 32.5  22.1 29.3  20.1 30.2 



 

 

Table 8.8 An analysis of educational and clinical risks factors for emergency 
presentations with self-harm using multiple imputed data.  
 

  Imputed Sample 

Socio-demographic, educational and clinical 
characteristics 

Male   Female 

Adjusted Hazard Ratio 
 

Adjusted Hazard Ratio  

    
Mean age at baseline (SD) 1.63 (1.47-1.80)**  1.36 (1.31-1.42)** 

    
Ethnicity    
   White reference  reference 
   Black 0.38 (0.24-0.58)**  0.60 (0.50-0.72)** 
   Asian 1.23 (0.63-2.39)  0.87 (0.63-1.20) 
   Mixed  0.61 (0.35-1.04)  0.95 (0.76-1.18) 
   Other 2.60 (1.34-5.01)**  1.18 (0.79-1.77) 
   not disclosed / unknown 2.89 (0.17-3.04)**   2.21 (1.57-3.10) 
National neighbourhood deprivation a  

 
 

   Most deprived quintile reference  reference 
   2nd  1.17(0.85-1.62)  0.96 (0.82-1.12) 
   3rd 1.32 (0.85-2.06)  0.98 (0.79-1.23) 
   4th 0.76 (0.35-1.62)  0.83 (0.60-1.15) 
   Least deprived quintile 0.76 (0.27-2.07)  0.76 (0.48-1.21) 
Special Education Needs a   

 
    Autism Spectrum Disorders  2.32 (1.28-4.26**)  0.62 (0.16-1.63) 
    Learning Difficulties (specific/moderate) 1.16 (0.83-1.89)  1.11 (0.88-1.39) 
    Learning Difficulties (severe/profound) 0.41 (0.05-3.14)  0.44 (0.11-1.77) 
    Behavioural, Emotional, Social problems 2.02 (1.27-3.22)**  2.08 (1.67-2.58)** 
    Speech, language and communication 1.07 (0.53-2.15)  1.16 (0.77-1.74) 
    Hearing, vision or physical disability 1.58 (0.60-4.15)   0.57 (0.23-1.41) 
 First language    
    English reference  reference 
    Other 0.48 (0.25-0.85)**  0.70 (0.55-0.89)** 
    Not disclosed 0.98 (0.33-2.86)   1.37 (0.93-2.05) 
Educational attainment (Key stage two)    
    Lowest quintile reference  reference 
    second 1.09 (0.70-1.69)  1.05 (0.80-1.37) 
    third 1.33 (0.76-2.43)  1.18 (0.93-1.51) 
    fourth 1.11 (0.58-2.13)  1.32 (0.99-1.74) 
    highest quintile 1.76 (0.96-3.23)   1.17 (0.87-1.57) 
Less than 80% attendance c 3.03 (1.87-5.01)**  2.67 (2.18 -3.26)** 
Fixed term exclusions 1.25 (0.83-1.89)   1.60 (1.26-2.01)** 
Other social factors    
    Summer birth (May -Aug) 1.20 (0.83-1.72)  1.01 (0.86-1.19) 
    Free school meals a  1.30 (0.85-1.97)  1.27 (1.07-1.50)** 

    Looked after Child status d 3.71 (1.88-7.35)**   2.78 (1.94-3.97)** 
 ICD-10 Hyperkinetic disorder 3.96 (2.27-6.93)**   3.22 (1.91-5.43)** 
*P<0.05, **P<0.01    
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8.5 DISCUSSION  
 

To my knowledge, this is the first investigation to examine whether ASD is a population level 

risk factor for emergency department presentation of self-harm and in adolescence. Using 

electronic health record data from a comprehensive specialist child mental health care service, 

supplemented by accident and emergency attendance records, and linked to longitudinal school 

records of all pupils within a defined geographic catchment, I found evidence that ASD was 

associated with nearly 3-fold increased risk of self-harm among boys. This association persisted 

after controlling for a broad range of potential confounders246 including socio-economic and 

demographic and factors, learning difficulties, academic attainment,  educational markers of 

emotional and behavioural severity, school exclusion, reduced attendance, childhood 

maltreatment, hyperkinetic disorders. It was also robust to sensitively analyses to reduce the 

heterogeneity, and potential residual confounding factors within the cohort.  

 

Our findings are consistent with the limited research conducted that show adolescents with ASD 

are at greater risk for reporting suicidal behaviours.150,151 However, these studies have not 

provided evidence that ASD is a population level risk factor for suicidal behaviours. They were 

limited by reliance on clinical populations with ASD sampled from mental health services, who 

were more likely to present with greater levels of psychiatric need than those diagnosed and 

managed within community paediatric and specialist educational settings.341 I found ASD was a 

significant risk factor for adolescent boys only, however this should not be taken to imply that 

boys with ASD are at greater risk than girls with ASD. The rate of self-harm amongst girls with 

ASD were similar to boys (statistical disclosure rules do not permit publication of the actual 

figures), and as shown in figure 8.3 self-harm incidence rates were far higher amongst girls. 

 

 The gender discrepancy found in this study may be seen as inconsistent with recent findings 

from Hirvikoski et al, who found adult women with ASD were 13 times more likely to die from 

suicide, compared to the 6-fold risk found in males.291 There may be several potential 

explanations for this. While the natural course of self-harm shows that population rates decrease 

significantly in girls over early adulthood, rates of self-harm in adolescent ASD girls may not 

naturally decline, and go on to contribute to later risk of adult suicide. ASD is an under-

recognised condition among girls within paediatric and school settings, so another possibility is 

that, detection/diagnosis of ASD among adult women will largely be through self-presentation 

to  psychiatric services.291,322 Adult ASD presentations in this context will be strongly associated 
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with distress and psychiatric co-morbidity, particularly severe anxiety and depressive 

disorders,322  which in turn are strong predictors for suicide. One additional explanation is that a 

number of girls who self-harmed within this study also had undiagnosed ASD, and were included 

within general population rates, producing an underestimate of the true effect of ASD on self-

harm due to misclassification. 

 

Self-harm presentation could be perceived as a potential proxy for failing to respond and address 

adolescent psychopathology sufficiently. Particular issues with addressing this need among 

people with ASD may explain the elevated risk that I have identified. Emerging evidence shows 

risk factors and treatment targets for psychopathology established in neuro-typical populations 

may not translate onto those with ASD. For example, prevalence rates and causes of common 

non-neurodevelopmental psychiatric disorders, such as oppositional-defiance, depression or 

anxiety from non-ASD populations, differ when examined as co-morbidities within ASD.118,299 

Furthermore, ASD related characteristics such as difficulties with social reciprocity, social 

communication, flexibility, sensory processing and emotional recognition may only precipitate 

maladaptive responses and psychiatric co-morbidity when  new environmental challenges 

arise.342 Ecological shifts such as moving up to secondary school,343 or physiological changes 

such as entering puberty 344 may specifically interact with these social difficulties, overwhelming 

the functional capabilities of  adolescents with ASD and causing significant psychiatric 

impairment.  

 

It cannot be assumed that conventional approaches to detecting mental health problems are 

effective in ASD. Social communication is almost always impaired in ASD, making it difficult 

for family members, clinicians or the individual’s themselves to recognise changes in their 

emotional states and seek help. To add to this complexity, psychiatric symptoms such as anxiety, 

self-injury, hyperactivity or disruptive behaviours were once viewed as part of the social and 

behavioural characteristics of ASD.118,345–347 These factors have contributed to a legacy of under 

recognition and unmet psychiatric need among people with ASD, and so psychiatric assessments 

and therapeutic tools tailored to those who have ASD are novel and lack robust evaluation. If 

mental health needs are unmet for children and adolescents with the ASD, as with the general 

population, they may have broad, and enduring implications for immediate and later quality of 

life. 348,349 Recent priority setting exercises for ASD recognise this, and have designated as the 

highest priority research which aims to delineate which mental health problems arise, and how 

they are best treated.350 Given difficulties in identification, higher rates of psychopathology and 
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a limited understanding of the treatment targets for treating psychiatric co-morbidity, it could be 

expected that adverse consequences of psychiatric co-morbidity such as self-harm are greater in 

ASD populations relative to the general population. 

 

Other findings deserve comment. I found a robust longitudinal association in both boys and girls, 

showing persistent absence from school at baseline (in the year prior to study entry) was 

associated approximately with a 3-fold increase in self-harm. As far as I am aware this is first 

population-based longitudinal study describing such an effect. These findings alone do not show 

absenteeism directly causes mental health difficulties - I was unable to ascertain the reasons for  

persistent absence, such as truancy, school refusal, or health problems not captured by special 

education need categories.  That said, the findings certainly show persistent absence is a strong 

signal for vulnerability and later psychopathological disturbance, and, I believe, provides robust 

evidence to support routine screening for potential unmet mental health needs in young people 

with low attendance rates. Study findings of school exclusion, and behavioural, emotional and 

social special educational needs (BESN) predicting later self-harm were consistent with a small 

scale cross-sectional study showing significantly higher rates (22%) of self-harm amongst 

adolescents with a history of exclusion or BESN.351 In addition, I found ADHD, a condition not 

specified within any SEN category, was a strong predictor for self-harm.  The study showed 

ADHD is associated with approximately a four-fold risk for self-harm for both genders, and 

hence addressed a gap in the evidence base with very few prospective studies addressing the 

psychiatric consequences of ADHD, particularly in girls. 352 

 

  In the adjusted model, I found free-school meal eligibility (a proxy for low socio-economic 

status) was significantly associated with self-harm in girls. This finding was consistent with a 

number of studies examining social-economic factors in self-harm.353,354 I found both boys and 

girls, compared to children ineligible for free school meals, were at 30% greater risk for self-

harm, however the strength of the association for boys did not reach statistical significance, 

which may relate to lack of power given the very smaller number of boys who presented with 

self- harm. I found an interesting effect of primary school academic attainment on adolescent 

self-harm. In the non-adjusted analysis, educational attainment was inversely correlated with 

self-harm, however after comprehensive adjustment for a number of factors, including special 

education needs and a range of behavioural factors, I found being in the second highest 

attainment level was positively correlated with self-harm. This could be a chance finding or 



 

 189 

secondary to residual confounding possibly through failing to take account of internalising 

disorders, which are associated with self-harm in adolescence.355  

 

I found peak incidence rates for both genders occurred at age 17, with boys at 44 per 10,000 and 

girls at 145 per 10,000 population. I found self-harm incident rates increased significantly by 

age, over the adolescent period for both boys and girls. These findings are consistent with a 

number of studies using hospital data, which also show girls have higher rates of self-harm than 

boys, over 11-17 year age range.311,356,357 The findings suggest that self-poisoning alone was the 

most common form of self-harm in adolescence with 74% of girls and 51% of boys having this 

as an identified reason for presentation, followed by self-injury, girls (21%) and boys (40%). 

These results show a similar pattern and frequency to two large scale hospital based UK 

studies.356,357 Consistent with previous studies,246 I found very high rates of psychiatric morbidity 

in adolescents presenting with self-harm. Approximately 50% of adolescents who presented to 

ED had not received any specialist mental health support prior to self-harm presentation, again 

suggesting considerable unmet psychiatric need within this region of South London.  

 

Consistent with other hospital based studies, the rates presented are likely to represent a fraction 

of self-harm within the adolescent community. Many well conducted surveys have reported the 

annual prevalence of adolescent self-harm at around 8-12%.316,329,358 However, using serial 

school census data as a population as denominator for the region, combined with free text 

extraction, and case note review of the mental health record at the time self-harm presentation, I 

found far higher rates than the published figures derived from self-harm inpatient admission rates 

within national surveillance figures in HES. Annual self-harm rates between 2014-2015 for the 

region covered in this study, were 22.8 per 10,000 for adolescents aged between 10-24 years.359 

These findings are comparable to a recent French study, which also found free text extraction of 

self-harm from ED medical records produced significantly higher rates than public health 

surveillance systems.95 This discrepancy found in my study is also consistent with prior work 

comparing routinely collected admission data on self-harm to research data for the same regions, 

where routine admission data was found to underestimate self-harm presenting to emergency 

departments by up 60%.245  

 

Rates of admission related to self-harm are used as the indicator to represent mental health and 

well-being in Public Health England’s National Child and Maternal Health Intelligence 

Profiles.360 However, these statistics have limitations. They can only represent the proportion of 



 

 190 

self-harm that results in a hospital admission, and so miss presentations with self-harm that are 

seen and discharged from emergency departments without requiring admission. In the UK, 

National Institute for Health and Care Excellence guidelines currently recommend that a young 

person (aged under 18) who self-harms is admitted to a paediatric ward and that a professional 

skilled in assessing mental health problems in young people carries out a psychosocial 

assessment within 24 hours.332 However, from the limited evidence available, in clinical practice 

only 30% of older adolescents (aged 16+) and young adults (aged 18-25) are admitted to general 

hospital which is no more likely than older adults presenting with self-harm.361 Another UK 

based study found younger adolescents (aged 12-14) were more likely to be admitted to a 

paediatric unit, but again, even at this age, a general hospital inpatient stay was not inevitable.357 

This suggests that a significant proportion of adolescent self-harm presentations receiving 

emergency medical attention are not included in HES inpatient data.  

 
8.5.1 Strengths 
 

This study has a number of strengths. Using routinely collected data from schools, I was able to 

ascertain longitudinal follow-up data on a very large population based sample, with participation 

and retention of many individuals at risk who traditionally may be lost to follow-up.44 Samples 

were sufficient size and adequate statistical power to conduct robust analyses, allowing 

adjustment for a range of potential confounders which addressed the sample size and/or 

measurement limitations of previous studies. The main finding was robust to a number of 

sensitivity analyses, including potential differential selection caused by data linkage errors.     The 

data linkage and extraction strategies within clinical notes enabled self-harm outcomes to be 

collected as objective endpoints and hence less subject to information biases recall and observer 

bias. The NLP approaches provided detailed clinical information held with free-text notes, 

permitting validation work to be conducted, to ensure that the appropriate self-harm construct 

was ascertained. These data would not normally be available in an electronic case register derived 

purely from structured, administrative healthcare data. Also, the linked data with education, 

improved on the conventional health database studies of self-harm, which, in terms of detecting 

school based risk factors, have been limited in their scope as they not been able to capture school 

data, and therefore not included these key risks in analysis models.  Finally, the study has 

provided a novel, but replicable methodology to other UK regions, and gives an example of how 

large scale epidemiological approaches to examining self-harm patterns and risks in adolescence 

can be enhanced.  
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8.5.2 Limitations 
 

The findings need to be interpreted in the light of several limitations. First, is the lack of pupil 

level measures for internalising problems, which are known to co-occur with externalising 

disorders 362 to a greater extent in lower academic achievement groups.363 This analysis took 

account of the effects of more severe externalising problems, for example through adjusting for 

ADHD, behavioural and conduct problems SEN categories, and the school exclusion variables. 

If there was differential collinearity between externalising and internalising disorder according 

to academic attainment, the model may have provided greater adjustment of internalising 

psychopathology in lower academic groups – removing externalising problems and collinear 

internalising effects on self-harm - leaving internalising disorders as residual factor in the higher 

achieving groups. This may drive the association I found between a higher attainment group and 

self-harm. This explanation is tentative, as evidence for the longitudinal associations between 

academic attainment and internalising symptoms remain inconclusive.363,364 However, recent 

work by Patalay et al, showed in a UK primary school sample, the group with worsening 

internalising trajectory developed the greatest level of psychopathology by end of follow up, also 

had the highest mean scores in primary school education attainment. 365 

 

I was unable to completely capture exposure variables for the whole population at risk, and it is 

unlikely, given my prior work on data linkage studies, that data were not missing completely at 

random. This non-random response may have biased the complete case analyses. However, the 

complete case analyses and subsequent analyses using imputed data were consistent, suggesting 

that biases, which may have arisen in the complete case analyses, did not significantly affect the 

study findings.  

 

I only had 4 years of outcome data available for four boroughs, and because of the way I captured 

the baseline population via the NPD, I could not extend the analysis to include young adults, who 

are another high-risk population but do not have their area of residence collected annually by the 

educational database. The restricted catchment area meant that adolescent residents who 

presented to hospitals outside the catchment, and were not admitted, may have been missed.   The 

restricted time period also meant I had insufficient power to examine self-harm for girls with 

ASD, nor examine those who later progressed to severe suicide attempts. Furthermore, I was not 

able to distinguish those who had self-harmed with suicidal intent from those who had self-
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harmed without suicidal intent. However, building on my previous work using natural language 

methodologies (see chapter 3),366 I aim to capture suicidal intention within the free text records,  

alongside self-harm, and examine its combined predictive validity as a risk factor for suicide 

attempts. The study was limited to identifying risk factors for self-harm. Conversely, to better 

inform mental health interventions and preventive work, future work should also focus on which 

factors are associated with adolescents, with and without ASD, who stop self-harming, which I 

hope to address in subsequent follow-up of this cohort.  As with all observational studies, there 

is also the possibility of residual confounding, whereby associations may be accounted for by an 

additional unmeasured variable.  

 

8.5.3 Conclusion 
 

This study was dependent on using linked de-anonymised free-text electronic health record, 

education and hospital administrative data collected from schools, mental health and acute 

hospital trusts. I believe this is a first for UK based child and adolescent mental health research, 

and an important example of how data linkage work can be used to tackle important public health 

issues. If a similar research programme was developed to evaluate adverse outcomes associated 

with ASD, using more conventional cohort designs, it would have taken up significant time and 

resources to deliver a representative population and sufficiently powered analysis. Furthermore, 

given the dynamic nature of public services changes, demographic shifts in sample populations 
156, youth education 367 and mental health policies and practice, by the time data has been 

collected, analysed and published, the findings have the potential to become quickly outdated. 
244 Because the linkage and detection techniques for the data resources used in the study can be 

completely automated, the methodology described in this study could be extended to other areas 

of the UK to improve contemporaneous self-harm detection rates from routinely collected data, 

and provide better intelligence for future resource allocation.156 The continued debate and 

engagement with patients, researchers and the wide public on the use of routinely collected data 

held by public services helps support the research conducted in this chapter. I hope that this work, 

along with evidence from other groups using de-anonymised linked public service data, helps 

provide an example of how this data can be used to public benefit.    

 

In summary, this study has identified ASD as a subgroup of adolescents who have a pronounced 

risk of self-harm, and provides an important step towards addressing which factors within ASD 

lead to high lethality suicide attempts, and premature mortality.  
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CHAPTER 9. DISCUSSION AND CONCLUSIONS  
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This thesis examined original and clinically relevant research questions using data from routinely 

collected clinical text, enriched by NLP and linkages to external data sources, and nested within 

a local population. The objective of this work was to examine how data linkage and NLP 

approaches could expand the comprehensiveness of information available in child and adolescent 

mental health records for analyses and hypothesis testing. Five related studies were performed 

(covered in chapters 2-8), all using data obtained from the SLaM BRC Clinical Records 

Interactive Search (CRIS) extracted using a NLP approaches, chapters 6-8 describing studies 

using external linkages with routinely collected national electronic datasets (HES and NPD). The 

programme of work set out in the thesis, similar to the technologies employed in the study 

methodologies, have developed iteratively. Each study has addressed some aspect of the 

methodological limitations identified within the study described in chapter 2. Individual 

discussions and conclusions were presented within each of the study chapters (2-8). The current 

chapter summarises the key findings from the studies and presents the overall strengths and 

limitations of the work, before outlining its potential implications and contributions and future 

directions for research.  

 

 

9.1 SUMMARY OF THESIS   
 

9.1.1 The impact of child and adolescent psychiatric co-morbidity on antipsychotic treatment and 
outcomes 
 

Pharmaco-epidemiological studies have demonstrated that psychiatric medication use in child 

and adolescent clinical populations has been increasing exponentially (see chapter 2). Of 

particular concern is the growing trend of antipsychotic medication use in ASD, especially over 

its use as an ‘off-label’ treatment for psychiatric conditions in ASD. Prescribing practices vary 

considerably across the world, and most evidence is derived from the United States, which has 

different licensing arrangements and practices for antipsychotic prescribing compared to the UK.  

The investigations contained in this thesis provide novel contributions to the evidence base, by 

highlighting the clinical factors, especially co-morbid psychiatric disorders, that are associated 

with the use of antipsychotics in ASD (chapter 2). This work provides much needed pharmaco-

surveillance on not just rates of prescribing, but also indications for their use. Prior to this work, 

no longitudinal studies had examined challenging behaviours and psychiatric comorbidity 
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profiles as predictors of antipsychotic use in ASD. Most studies were limited by relying on 

parental recall of past comorbidities and medication use, retrospective or cross-sectional design, 

or the confounding effects of unmeasured psychiatric symptoms and disorder severity not being 

accounted for.106,107,142  

 

Using a different clinical population, the thesis also contributed to the literature by examining 

the predictive factors for antipsychotic treatment failure, or MTF, in adolescents with early onset 

psychosis (chapter 4 and 5). These were the first studies in adolescent samples I am aware of, 

which examined the association of ASD and NS phenotypes as predictors for either antipsychotic 

treatment failure, or any related refractory treatment outcome like treatment resistance.368 The 

findings suggest that ASD and NS profiles could be phenotypic markers for adolescent psychotic 

disorders which are harder to treat with conventional antipsychotics, and therefore result in a 

more impaired illness course.  

 

The work in this thesis initially suggested that some psychiatric conditions, within the context of 

being co-morbid with ASD, may also lower the risk of antipsychotic treatment compared to non-

ASD children with the psychiatric condition (chapter 2). For example, I interpreted the finding 

that only 47% of children with ASD and co-morbid psychosis received antipsychotics, and 

suggested that this was a lower treatment rate than expected in non-ASD child population with 

psychotic disorder. I attributed this low rate to potential diagnostic uncertainty between ASD and 

psychotic symptoms (chapter 2), and that clinicians may decide that some psychotic symptoms 

within ASD do not warrant antipsychotic treatment.  However, as the thesis evolved, a potentially 

more complex picture developed, where I found ASD was a risk factor for multiple antipsychotic 

failure (chapter 4). My initial assumption may have been potentially incorrect due a floating 

numerator error, where I did not have an unexposed comparison group. 369 This highlighted the 

importance of using appropriate control groups (as illustrated in chapter 4 and 5), and was also 

taken up further in chapters 6 and 8.  

 

9.1.2 Enhancing observational study approaches in child and adolescent psychiatric 
epidemiology: using NLP tools in health records 
 

This thesis demonstrated how NLP procedures can be used with EHRs to better extract risk factor 

and outcome data for analysis, and address important research questions in child and adolescent 

mental health.  As highlighted (chapter 1), a key limitation of studies using purely administrative 

health record data are that the variables coding risk factors and outcome factors, are extracted 
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from structured fields, and lack further contextual information. These limitations were also 

highlighted in my work, when I just used the structured risk item for self-injurious behaviours 

(chapter 2), which provided no indication why a child was scored at high risk of injuring 

themselves.  

 

I show in this thesis how the limitations of structured data extraction, can be addressed by using 

more intricate text extraction methodologies to better assess symptom types, severity and related 

impairments, for example with suicidal risk (chapter 3), negative symptoms (chapter 5) and self-

harm (chapter 8). In the thesis, I developed and evaluated an NLP approach which could 

accurately identify suicidality (chapter 3) in young people with ASD, using the adolescent sample 

in chapter 2. This was the first study to demonstrate that a NLP tool can be used to accurately 

capture a clinical construct as complex as suicidality within health records of young people with 

ASD.  The NLP tool identified suicidality-related mentions with high degrees of precision and 

recall from clinical free text held within EHRs, and demonstrated that NLP applications can 

provides powerful opportunities for surveillance work of suicidality in adolescent ASD and in 

other clinical samples. However, an issue with the NLP tool I developed was that it lacked the 

ability to address temporality: target terms related to suicidality were not contextualised in terms 

of historicity.  So, the tool was able to describe the prevalence of suicidality in the ASD clinical 

sample but could not capture suicidality incidence, limiting its potential for providing clinical 

outcome data in longitudinal study designs. However, in the thesis I went on to demonstrate an 

approach for addressing the issues around temporality. Accurate event data within the structured 

fields, such as date of first presentation to services (chapters 4, 5 and 8), was used to define 

periods of time for NLP extraction of exposures (negative symptoms, chapter 5) and outcomes 

(self-harm, chapter 8).  

 

9.1.3 Enhancing observational study approaches in child and adolescent psychiatric 
epidemiology: Combining multiple sources of public service data. 
 
 

In this thesis, I made a clear case for local areas to link existing routinely collected data created 

by public services within their region, to enhance their ability to conduct population-based 

analyses on clinical outcomes (chapter 6). Similar to floating numerator error in epidemiology, 

caused by lack of an appropriate denominator, I argued that without reference to local area’s 

population, it was difficult to assess how well services are meeting the local needs if only using 

clinical data.   
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For example, a clinical service may appear to provide exemplary care to all children referred 

with ASD, but without a population perspective of ASD across the region, the service may only 

be serving a sub-group or a small proportion of those eligible; so its overall impact for the ASD 

population may be very limited.   

 

To provide a case example for how data linkage methods can inform local population-based 

analyses, I developed a linkage between NHS child mental health and education data, with the 

aim that the data acquired should be a valuable enhancement to child-based longitudinal studies 

and clinical registries (chapter 7, 8). The linked school and health data supplied appropriate 

denominators for population-based analyses at relatively low cost, allowing evaluation of 

questions relevant to public health and social care policy.  

 

My research has shown that combining NLP approaches to exploit EHRs data linked to public 

service data is a powerful approach for examining outcomes of rare exposures like ASD and rare 

outcome events, like self-harm, which are insufficiently captured by current NHS systems (see 

chapter 8). In this thesis, I conducted a population-based study using Department of Education 

data to provide a whole region sample of individuals attending school and their sample 

characteristics linked to NHS mental health data. Using these data, I determined that for boys, 

ASD was a population level risk factor for presenting to hospital with self-harm. I also reported 

a number of novel education-based risk factors for self-harm, which included persistent school 

absence and school exclusion.   

 

I demonstrated that the legal, governance and technical challenges are surmountable and 

described the first study in England to link NHS and Department for Education routinely 

collected school’s data together (see chapter 7). There are a number of lessons to be learned 

about how legal frameworks in England are applied when seeking to link routinely collected 

health information to other public service data without individual consent. For example, when 

attempting to gain section 251 approval (see chapter 7),  it may be challenging understanding 

the legal definitions of medical purpose, where the current interpretations of section 251 

legislation definitions are not necessarily intuitive to child psychiatry.264   

 

The work conducted demonstrated that a key justification for using a ‘opt out’ governance 

approach - not relying on individual level consent to link data -  was to study groups that 

traditionally were hard to reach and retain in observational studies ( see chapters 6 and 7).44 The 
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results indicated, the opt-out consent approach used may have improved representation of more 

socially disadvantaged populations. I found no difference in linkage rates between those from 

the highest and lowest quartiles of neighbourhood deprivation (see chapter 7).  Nevertheless, 

whether using opt in or opt out consent process, possible biases due to linkage error can be 

substantial and need to be examined when analysing and interpreting results. Differential linkage 

error by ethnicity, social disadvantage and clinical factors can introduce significant selection bias 

leading to inaccurate risk factor-outcome estimates, which in turn may have significant impact 

on the validity of the research findings using the linked data. However, the findings in chapter 7 

demonstrated that exposure-outcome associations between health and education factors, may be 

robust to linkage biases even with incomplete linkage between datasets and differential linkage 

success across socio-demographic groups.  

 

The thesis provided an example of how non-random loss between routinely collected health and 

non-health linked data can be adjusted by weighting techniques (chapter 7 and 8). It showed that 

this approach may be useful to determine whether the reported associations were effected by 

linkage error lead to systematic bias caused by the linkage techniques. My research indicated the 

importance of data sharing agreements and the relationship between linkers, data controllers and 

analysts being sufficiently developed to share information on linked and unlinked data from 

source files, in order to appropriately adjust for linkage error when it occurs (see chapter 7).  

 

 

9.2 STRENGTHS  
 

A strength of all the studies reported in this thesis was derived from the use of large scale child 

health data held within the SLaM electronic patient record. All the studies described in chapters 

2 to 8, involved distinct data collections on clinical samples ranging between 1000 and 35,500 

patients. NLP approaches enabled these large samples to be sufficiently characterised,  and used 

to address research questions which would have otherwise been unfeasible to investigate in 

observational studies involving direct patient recruitment. The samples were of sufficient size 

and adequate statistical power to conduct robust analyses, allowing adjustment for a range of 

potential confounders which helped address the sample size and/or measurement limitations of 

previous studies.  
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Another advantage of using the child health record data in SLaM, is that the data captured the 

total clinical population of interest. As described in chapter 6, SLaM holds a monopoly over 

CAMHS provision for its geographic catchment, hence the clinical record captures patients 

accessing both inpatients and community settings. Studies which are able to combine sources of 

data from both setting are rare, especially in pharmaco-epidemiological studies.55,368 

 

 Crucially, the studies in this thesis have used electronic records to capture key clinical outcomes 

which were very likely to come to the attention of local specialist mental health services, or, in 

terms of educational outcomes, be captured systematically in educational administrative systems.  

In addition, the linkage of CRIS and NPD systems are based on an ‘opt out’ rather than opt-in 

governance model and to date only three patients (no caregivers or young people) have asked for 

their records to be removed from the CRIS search system. So, with near 100% coverage of all 

young people receiving specialist child mental services and no discernible consent bias, the 

analyses in thesis should be less susceptible to risk of selection and loss to follow-up biases. 

Especially those biases that are associated with conventional recruitment and measurement 

approaches used in surveys, cohort studies and randomized controlled trials. Primary data 

collection often used in these studies can result in reducing clinically representative samples, 

because those clinically relevant characteristics, especially in mental health studies, are also 

associated with low participation and a reduced chance of being selected into research studies. 
370 That said, this is not always an advantage of large sample sizes and “big data” studies. Despite 

providing precise estimates on the effects of potential risk factors on clinical outcomes, these 

studies are of little value if the sample are not representative of the population, or missing key 

information on a non-random basis.371 This is a strength of studies described in chapters 7 and 8, 

where adjustments to reduce the impact of linkage error were made either through statistical 

adjustment / weighting (chapter 7) or through imputing exposure variables via multiple 

imputation (chapter 8). These efforts were made to reduce the potential selection bias of the big 

data approaches, and support the representativeness of the study findings.  

 

Another strength was that the data linkage and extraction strategies within clinical notes enabled 

outcomes to be collected as objective endpoints and hence less subject to information biases, 

including recall and observer biases. The outcomes included in this thesis were antipsychotic 

prescribing within child and adolescent samples with ASD, psychosis (chapters 2, and 4-5 

respectively) school absence (chapter 7) and emergency presentation with self-harm (chapter 8), 

all of which are documented as part of routine clinical or educational practice.   Because the 
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recorders (i.e. clinicians or school administrators) and participants were essentially blinded to 

group assignment (i.e the study hypotheses and analyses at the time of collection) the likelihood 

of the study findings being driven inadvertently by participants or observer biases were very 

small. This reduced the likelihood of non-random misclassification biases, which can lead to 

either overestimation of underestimation of exposure-outcome associations.  

 

The NLP approaches described in this thesis, unlocked detailed clinical information held with 

free-text notes, including the nature of presenting symptoms or adverse effects. It also permitted 

comprehensive validation work to be conducted, to ensure that the structured information 

ascertained for analyses accurately represented clinical reality, such as the diagnostic assessment 

or treatment change. These data would not normally be available in an electronic case register 

derived purely from structured, administrative healthcare data.65  

 

All the studies using data linkage approaches (chapters 6-8) were able to examine risk factors 

and outcomes, which are clinically relevant but not commonly documented within clinical 

environments, such as educational attainment or attendance. Data extracted from electronic 

health records are only as good as the information available within that individual system. 65 As 

described in chapter 8, this has been a limitation of self-harm outcome research using routinely 

collected clinical data. Whilst school factors are relevant determinants of self-harm risk in 

adolescents, very few health database studies have been able to capture school data, therefore it 

has not been included in analysis models. As illustrated within chapter 8, linkage studies can 

provide total local population samples within which clinical samples are imbedded. The study 

had follow-up data on very large samples, with participation and retention of many individuals 

at risk who traditionally may be lost to follow-up. Because the information available in the total 

population data (in this case the NPD or HES) was limited, the linkages to in-depth records held 

in CRIS, can reduce misclassification and provide better interpretation and analysis of the 

outcome of interest.372  

 

9.3 LIMITATIONS 
 

There are several limitations which need to be considered when drawing conclusions from the 

studies in this thesis. First, all of the clinical outcome and exposure data were derived from 

samples of people who have had contact with SLaM NHS health services or state-maintained 
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schools. Children who were not in primary or secondary state funded educational services, 

between Sept 2007 and 2013, for example in private school, or been taught at home, would have 

been excluded from the population sample, and not have educational data linked into the clinical 

data (chapters 6-8). In terms of clinical sampling, these data will not capture children and 

adolescents who met criteria for an ASD or Psychosis diagnosis but had no contact with SLaM 

clinical services over the data collection / extraction periods. This approach may have excluded 

children and adolescents who have been managed exclusively by the private or voluntary sector, 

or those resident within the SLaM catchment area, or received care through primary or non-

SLaM NHS services. However, there are a number of reasons why these limitations are unlikely 

to have significantly impacted the results on this thesis. Given the current clinical guidelines on 

the use of antipsychotics in children and adolescents with ASD or psychosis, it is very unlikely 

these conditions would be exclusively managed within primary care.103,183 In the absence of local 

or national health economic data,373 it is difficult to estimate the extent to which private or 

voluntary services would manage children with ASD or psychosis without some contact with 

specialist services that provide care for the local catchment. SLaM provides the most 

comprehensive CAMHS in England and Wales, and few clinical presentations cannot be met by 

the diverse range of specialist inpatient outpatient services within SLaM.  

 

The regional scope of the data could incur selection biases towards healthier samples. Children 

who move residence frequently are known to have higher rates of psychopathology,374 so only 

having access to regional clinical data, as opposed national data, may have lost more mobile 

populations, and introduced bias into the study. That said, a bias in the other direction may have 

occurred where SLaM provided care to more severely disabled populations external to its 

catchment area. This may have reduced the representativeness of the clinical sample to the local 

community, and created spurious associations between risk factors and outcomes due to selection 

procedures.375  When relevant to questions posed to the studies in this thesis, I attempted to 

reduce this bias by extracting samples either continuously resident within local catchment area 

(chapter 8) or used sensitivity analyses to examined the generalisability of the findings to the 

local sample (chapters 2, 4 and 5). Hence, it is unlikely that the samples in thesis are 

unrepresentative of the source population. 

  

A related limitation includes the restriction of age to the clinical samples, so that all clinical 

outcomes occurred prior to age 18. One of the reasons I imposed this was to reduce the 

heterogeneity in clinical practice often experienced by children with long term conditions, such 
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as ASD and psychosis, when they become adults and move from CAMHS to adult psychiatric 

services.376 I was concerned that this heterogeneity may have had considerable influence on the 

way clinical data is recorded, as well as the mental health treatments offered and outcomes 

obtained.377 For example, CAMHS clinicians may be more inclined/ disinclined undertake a 

clinical assessment, and negate or affirm the presence of certain symptoms, risk factors or 

treatments than colleagues in adult services.378  All the analyses using clinical data in this thesis, 

are limited by the assumption that the clinical constructs are recorded in the data (i.e. diagnoses, 

symptoms, risks of harm or types of event), are reliable, and have good construct validity.379 I 

have assumed that the constructs used are consistent across the study samples. It also assumes 

that variation in clinical data quality across services does not systematically bias the outcomes 

under investigation. By restricting the sample to under 18’s, I hoped to limit the variation in 

service provision, clinical expertise and experience, and as a consequence, reduce the variation 

in clinical note taking and treatment.   

 

Another issue with CRIS data, or any electronic health record data,  is that exposures and 

outcomes of interest are only recorded during an encounter with the health system. 371 The more 

information recorded, generally the greater likelihood of characterising the patient with the 

symptoms of interest. Restricting the duration of records available to collect variables of interest, 

can reduce this information bias, but it will not provide complete mitigation.  For example, seven 

days of an adolescent’s health record data which includes a 3000 word Mental Health Act 

Tribunal Report and inpatient observations entered every 6 hours, will contain a greater amount 

of clinical information than an individual who has, over the course of a week, had one phone call 

to rebook an appointment. In the case of the former, there is a much greater chance for exposure 

of interests, like negative symptoms, risk assessment or psychopathology scales to be recorded, 

hence there is a difference in risk of symptom detection. Also, in contrast to cohort studies, 

follow‐up measures extracted from CRIS are not typically achieved on a fixed interval. Limited 

clinical information over the course of treatment may relate to a good recovery with limited 

clinical contact after 6 months or limited engagement with treatment and poor recovery. It is 

difficult to judge how these biases affect the results in this thesis; they could lead to both an 

underestimate or overestimate of effects on the outcome. Where possible I have attempted to 

mitigate these biases by ensuring that the outcome of interest can only occur if there is 

engagement with health services (i.e. antipsychotic treatment) or when looking at school based 

outcomes it is collected on all pupils (i.e. school attendance). Also, I have looked to test 

hypotheses which aim to determine whether the exposures of interest are risk factors rather than 
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protective factors. Taking findings in chapter 5 as an example, where negative symptoms were 

associated with a significant increase risk of multiple treatment failure. Given that negatives 

symptoms were likely to misclassified as not present, due to the sensitivity of the NLP tool and 

lack of clinical documentation, the size of effects reported are likely to be an underestimate.  

 

Finally, as with all observational studies, residual confounding is a potential limitation. Any of 

the exposure – outcome associations reported may be potentially explained by unmeasured 

factors, and hence risk factors identified do not necessarily cause the outcomes reported.  

9.4 IMPLICATIONS 
 

The clinical, research and policy implications of this thesis can be derived, both from the study 

findings, and the methodologies employed. Regarding the former, the findings presented extend 

the knowledge base relating to neurodevelopmental comorbidity and clinical outcomes. In 

general, they provide empirical support for the hypothesis that neurodevelopmental 

comorbidities increase children and adolescents’ risk for potentially more harmful treatments, 

greater treatment complexity and worse clinical outcomes.  

 

These findings, I hope, will support the drive for intervention trials which include children with 

psychiatric co-morbidities, and discontinue the practice of stipulating psychiatric co-morbidity 

as exclusion criteria to maintain internal validity.111 As illustrated in chapter 2, over 80% of 

children with ASD treated by antipsychotics had at least one psychiatric comorbidity. Many 

published trials examining the efficacy of antipsychotic use for managing challenging behaviours 

in ASD have excluded comorbid groups.380 This demonstrates a profound mismatch between 

antipsychotic trial based samples and those patients who are most likely to receive the treatment 

in real world clinical settings. Related to this, the studies presented in chapter 4 and 5 which 

examine samples with early onset psychosis, highlight that it is possible to find markers for 

pharmacological treatment difficulties, at the early stages of pharmacological treatment. The 

findings demonstrate that recovery and response to antipsychotic treatment are especially 

problematic for a considerable proportion of young people. I found around one fifth of young 

people had tried three different antipsychotic treatments prior to turning 18, 30% of these had an 

insufficient response to their treatments. These studies show that identifying certain aspects of 

the clinical phenotype around first presentation, such as ASD and or negative symptoms, could 

help clinicians discern who is more vulnerable to a complex treatment path, and hence who may 
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benefit from early adjunctive therapeutic strategies. These data also reflect a need for robust 

evidence to be provided for CAMHS clinician’s to determine if clozapine treatment is effective 

in early onset psychosis.183 Without this evidence, a large proportion of proportion of children 

and adolescents will continue to be underserved by current therapeutic strategies in CAMHS.  

 

The final study in chapter 8, provides robust evidence that ASD and ADHD, and a number of 

other population level educational factors, predict potentially severe self-harm in adolescence. 

These findings have implications for parents and teachers, as well as clinicians and public health 

policy. This is the first time ASD has been recognised as population level risk factor for self-

harm; as far as I know, no studies that have looked at this association before. Increasing 

awareness that male children and adolescents with ASD are more likely to experience self-harm 

is an important first step in developing early recognition and future prevention programmes 

within schools and other child orientated services.  Because this study is the first to identify ASD 

as a risk factor for self-harm, there will be a greater need for education and training tools to be 

developed, so that professionals can recognise and manage self-harm proficiently within ASD 

populations. The majority of children in this study, who presented with self-harm to emergency 

departments, had no recorded clinical contact with specialist mental health services. This does 

not imply these children’s mental health needs were being neglected, but shows the high levels 

of morbidity which school services and families may have to manage without specialist NHS 

support.  The findings reinforce the educational sectors role in monitoring vulnerable pupils, and, 

where resources are limited, the potential for repurposing existing routinely collected educational 

data to identify vulnerable groups.   

 

The methodologies employed in the thesis have a number of implications too. The first relates to 

privacy. Information was collected with opt-out consent for health data, and, with no consent for 

education data. As explained in chapter 7, it is likely that gaining consent would scientifically 

invalidate the work through loss of representative samples, and, unless bolstered by significant 

resources, would not provide sufficient power to test the hypotheses proposed. The computing 

techniques and the governance methods used within this thesis, have enabled personal data to be 

collected and linked, with little risk of breeching confidentiality and privacy. Exposure to 

identifiable information has been further limited by the automated methods provided by the NLP 

approaches. This means that mainly computers, rather than human raters, are extracting 

information and securely storing information from personal health records.  
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 In this thesis, I describe how these processes can deliver clinically relevant research findings, 

and offer very high levels of protection relating confidentiality and privacy. Whilst it is known 

the public can appreciate the benefits of this developing technology, it is counterbalanced by a 

lack of trust that large organisations will always use individual data responsibly. Recurrent stories 

of data security breaches and potential for misuse, provoke concerns about the use of health data 

beyond direct clinical use.280 Personal health data are viewed as confidential, private and 

sensitive, and should not be shared outside secure, authorised bodies such as the NHS.381 This 

thesis provides evidence that sharing very limited amounts of identifiable data for linkage to 

organisations outside of the NHS for population level analysis, is beneficial. I hope that the 

evidence in this thesis can be used to strengthen public engagement campaigns designed to 

highlight the positive impact of health informatics research on public health.  

 

The opportunities and potential of NLP, as presented in this thesis, are extensive for health 

research. I show that NLP applied to records routinely collected by health service providers 

can accurately quantify an array of patient characteristics across emergency, community and 

inpatient settings. As extraction techniques improve and the data sources become more detailed, 

their potential for determining individual prognoses, treatment effectiveness and potential harms 

are all within greater reach, requiring far less resources than would be needed using primary data 

collection approaches studies. As shown in the thesis, NLP approaches enable psychiatric 

epidemiologists to improve risk factor and disease identification, and to build richer 

characterisations of child and adolescent clinical samples than can be achieved by the use of 

structured data alone.382  

 

The CRIS system offers a sustainable resource for population-based analyses of linked patient 

level data and provides a powerful platform for continuous evaluation of local child health policy 

initiatives.252 CRIS is being reproduced in other areas. Currently fourteen providers of mental 

healthcare in England, many of them covering child and adolescent mental health services,  have 

developed systems based on the CRIS model.383 The NLP and data linkage approaches employed 

in this thesis could be applied to these records in the other healthcare centres. However, local 

variations in clinician recording, and data storage and retrieval systems could be extensive, even 

across UK NHS Trusts. 384,385 Future work could involve testing the extent to which some of the 

NLP and linkage algorithms used in this thesis can be directly transposed on alternative health 

record systems.  
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9.5 FUTURE RESEARCH DIRECTIONS 
 

Looking ahead, there are clearly substantial opportunities to improve mental healthcare using 

NLP and data linkage methodologies. As described in chapter 6, these data and the methods used 

to acquire them, have considerable potential for population-level analyses which can support 

public health interventions and policy evaluation, but the question remains whether these 

approaches can yet be applied to direct clinical care.  For example, can NLP applications be used 

to analyse information from an individual’s record to help direct clinical decisions, such as an 

appropriate medication choice? 70 Or can data linkages be used to inform other public services 

of a health event, such as a pupil’s presentation to A&E with self-harm?  

 

Before these applications are employed into direct clinical care, I believe there are a number of 

questions that need to be examined in future research work. The first relates to accuracy.  As the 

work in chapter 3 demonstrates, the ability to detect accurate positive or negative affirmation of 

suicidality in health records is a complex task, even without introducing the concept of 

chronology, i.e. accurately detecting whether positive suicidal references are occurring presently 

or in the past. If clinicians want to use NLP to acquire a rapid and accurate synthesis of their 

patients’ records, NLP techniques will need to be developed and evaluated, which can accurately 

identify the temporal aspects of suicidality, other psychopathological states and their treatments. 

Again, in relation to accuracy, clinicians will need to know the comparative validity, reliability 

and cost effectiveness of these NLP tools against ‘clinician as usual’ practices. Research will  

need be conducted on NLP outputs regarding clinical acceptability, according to their 

application.  For example, if a clinician wants a complete medication history for one his patients 

with corresponding clinical response over time, would they be satisfied to make a clinical 

decision from a NLP-driven output? Does information, with 80% accuracy on drug type, timing 

and clinical improvement, which can be delivered within a minute, provide a clinician with 

sufficient confidence they will make an informed choice? Does it provide better performance 

relative to a thirty minute clinician note review? And if so, do these information systems improve 

efficiency and clinical outcomes to make them economically and ethically viable?  

 

Regarding using data linkages for direct care across different services, I demonstrate in this thesis 

that without a shared unique identification number, there is a significant risk of mis-matching 
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between health and education service data. Also, this risk is not equally shared across age and 

demographic groups. In epidemiological studies, statistical adjustments can remove some of 

these biases. However, they cannot be applied to an individual record, and a missed or falsely 

matched record could have profound implications for direct clinical care and public trust.386 

Trials are needed to evaluate the acceptability and outcomes of processes that automatically link 

and disclose sensitive information to other public services. The capability to share and link 

information across services will have benefits, but may also harm.387 Significant research and 

investment is needed to create and evaluate systems which provide the right mixture of automated 

and human rater decisions,388 to support real time, near perfect matching and analysis of cross 

sector records.  The computational power exists now to run linked public sector data systems. 

Embedding them into clinical care, if approached carefully, is an exciting prospect for enhancing 

individual and public health care.  

9.6 CONCLUSION 
 

The results of the investigations contained in this thesis demonstrate Big Data techniques, 

specifically NLP and data linkages of electronic health records, have a clear role in clinical 

epidemiological studies of child and adolescent mental health. These tools, combined with the 

continued digitisation of public service activity, can unlock huge and detailed data resources for 

population-based analysis. However, current approaches have deficiencies. Limitations in 

accuracy, construct validity, and restrictions in the data available, suggest these methods are 

unlikely to supplant primary data collection approaches in the near future. The work in this thesis 

represents some of the first studies to apply these Big Data techniques to questions related to 

child mental health, within a NHS environment. It provides a precedent for researchers, data 

scientists, clinicians and local decision makers who are looking to better understand what is 

happening to children within their own local community.  Big data methods are crucial areas for 

research and development, which should be embraced as a method to understand and enhance 

child and adolescent mental health – particularly as current policies drive the ubiquity of the 

electronic record in public services. As the thesis shows, this resource, combined with linked 

data and NLP approaches, can help capture the ‘hard to reach’ in research samples. Over time, I 

hope these techniques will continue to be developed, and become an essential tool in child and 

adolescence public mental health, enabling us to better highlight and address the inequities faced 

by children and adolescences with mental health disorders.   
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APPENDIX A: Cohort table of participants entering study  
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APPENDIX B 
 



A Research Ethics Committee established by the Health Research Authority 
 

 
NRES Committee South Central - Oxford C 

Bristol REC Centre  
Level 3, Block B  

Whitefriars Building 
Lewins Mead  

Bristol 
BS1 2NT 

 
Telephone: 01173421392 

21 May 2013 
 
 
 
 
 
 
Dear Prof. Stewart 
 
Title of the Database: South London and Maudsley Biomedical 

Research Centre Clinical Case Register 
REC reference: 08/H0606/71 
Amendment number: Substantial Amendment 2: Link data from CRIS to 

information contained within the NPD database. 
Amendment date: 09 April 2013 
IRAS project ID:  
 
The above amendment was reviewed on 13 May 2013 by the Sub-Committee in 
correspondence.  
 
Ethical opinion 
 
The members of the Committee taking part in the review gave a favourable ethical opinion 
of the amendment on the basis described in the notice of amendment form and supporting 
documentation. 
 
Approved documents 
 
The documents reviewed and approved at the meeting were: 
 
 Document  Version  Date  
Letter confirming Past Approval of System Level Security 
Policy by NIGB ECC  

  11 April 2011  

Section 251 Application to be Submitted      
Biomedica; Research Centre Data Linkage Service 
System Level Security Policy  

  21 February 2011  

Research Protocol to be Submitted to NIGB ECC    09 April 2013  
Notice of Substantial Amendment  Substantial 

Amendment 2:   
09 April 2013  

Covering Letter    09 April 2013  
Calidicott Guardian Letter of Approval    11 February 2013  
Protocol for Management of the Database    02 May 2013  
  



A Research Ethics Committee established by the Health Research Authority 
 

Membership of the Committee 
 
The members of the Ethics Committee who took part in the review are listed on the 
attached sheet. 
 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees and complies fully with the Standard Operating Procedures for 
Research Ethics Committees in the UK. 
 
We are pleased to welcome researchers and R & D staff at our NRES committee members’ 
training days – see details at http://www.hra.nhs.uk/hra-training/  
 
08/H0606/71 Please quote this number on all correspondence 

 
Yours sincerely 
 

 
 
 
Professor Nigel Wellman 
Chair 
 
E-mail: nrescommittee.southcentral-oxfordc@nhs.net 
 
 
Enclosures: 
 

List of names and professions of members who took part in the 
review 
 

  
 

http://www.hra.nhs.uk/hra-training/


A Research Ethics Committee established by the Health Research Authority 
 

NRES Committee South Central - Oxford C 
 

Attendance at Sub-Committee of the REC meeting on 13 May 2013 
 
  
Committee Members:  
 
Name   Profession   Present    Notes    
Dr Avinash Gupta  Clinical Research Fellow  Yes    
Professor Nigel Wellman  Professor of Health and 

Human Sciences  
Yes    

  
Also in attendance:  
 
Name   Position (or reason for attending)   
Miss Lidia  Gonzalez  Administration Assistant  

 
 
 



 
Confidentiality Advisory Group 

 
Skipton House 

80 London Road 
London 

SE1 6LH 
 

Tel: 020 797 22557 
Email: HRA.CAG@nhs.net  

 

10 March 2014 

 

Dear Professor Hotopf 
 
 
Study title:  SLAM CAMHS CRIS linkage with DfE National Pupil Database 
CAG reference:  CAG 9-08(a)/2014 
REC number:  08/H0606/71 
 
Thank you for your research application, submitted for approval under Regulation 5 of the 
Health Service (Control of Patient Information) Regulations 2002 to process patient identifiable 
information without consent. Approved applications enable the data controller to provide 
specified information to the applicant for the purposes of the relevant activity, without being in 
breach of the common law duty of confidentiality, although other relevant legislative provisions 
will still be applicable.  
 
The role of the Confidentiality Advisory Group (CAG) is to review applications submitted under 
these Regulations and to provide advice to the Health Research Authority on whether an 
application should be approved, and if so, any relevant conditions. This application was 
considered on 09 January 2014. 
 
 
Health Research Authority approval decision 
 
The Health Research Authority, having considered the advice from the Confidentiality 
Advisory Group as set out below, has determined the following: 
 

1. The application is approved, subject to compliance with the standard and specific 
conditions of approval. 

 
This letter should be read in conjunction with the outcome letter dated 23 January 2014. 
 
Context 
 
Purpose of application 
 
This application from Kings College London set out the purpose of linking and 
anonymising child and adolescent mental health (CAMHS) clinical data from the South 
London and Maudsley NHS Foundation Trust (SLAM) Biomedical Research Centre (BRC) 
Case Register Interactive Search (CRIS) system and educational performance data from 
Department of Education (DfE) National Pupil Database (NPD). 
 

Professor Matthew Hotopf 
Institute of Psychiatry 
Kings College London 
Weston Education Centre 
Cutcombe Road 
SE5 9RJ 



All children aged between 5 and 17 who were referred to CAMHS services between 
January 2008 and December 2013, (approx 35,000) would be included in order to aid 
health and education policy makers by providing information on the frequency and 
characteristics of children referred to CAMHS. 
 
A recommendation for class 1, 4, 5 and 6 support was requested to cover DfE access to 
demographic data only from CAMHS.  
 
Confidential patient information requested 
 
Access was requested to first name, last name, date of birth and address. 
 
Background 
 
This application had previously been considered by the CAG predecessor, the Ethics and 
Confidentiality Committee (ECC 8-04 (a)/2013) and it was advised at that time that the 
application could not be supported. The following issues were raised: 

 
1. The description of purpose section within the application form should be revised 
to ensure that this reflects both the medical purpose and public interest in the 
activity taking place. This should include examples of the medical research that will 
be undertaken using the data.  
 
2. Consideration should be given to whether the HSCIC’s TDLS could undertake 
linkages.  
 
3. The patient information leaflet should be revised to reflect the disclosure of 
identifiable data to other organisations.  
 
4. Further information in relation to the governance controls within DfE, including 
justification for the disclosure of NHS number, should be provided.  

 
Further information in relation to all points listed above was provided in the submission to 
the CAG meeting on the 9 January 2014. 
 
Confidentiality Advisory Group advice  
 
In line with the considerations above, the CAG agreed that the minimum criteria under the 
Regulations appeared to have been met, and therefore advised recommending provisional 
support to the Health Research Authority, subject to further information being submitted in line 
with the request for clarification and compliance with the specific and standard conditions of 
support as set out below.  
 
Further information was provided by the applicant on the 10 February 2014 in response to the 
request for clarification and is summarised below in bold. 
 
Request for clarification 
 
1. Please provide further information in relation to governance arrangements within DfE, 

including confirmation of retention period for CAMHS data and how access will be 
restricted within DfE. It was confirmed that the data will not be retained by the 
Department for more than 60 days. The DfE contractors directly involved in the 
matching of personal identifiers from SLaM (in total one DfE contracted staff), 
will not know the origins of the data nor have direct contact with SLaM CDLS 
staff. 
 

2. Please confirm what confidentiality agreements are in place to ensure that DfE staff 
remain aware of their responsibilities when processing personal data. A copy of DfE’s 



personal information charter was forwarded to the Confidentiality Advisory 
Group. 

 
Specific conditions of support 
 

1. Favourable opinion from Research Ethics Committee. Confirmed 25 February 
2014. 

 
2. Confirmation of suitable security arrangements via IG Toolkit submission. 

Arrangements at DfE confirmed as satisfactory on 13 November 2013. 
 
 
As the above conditions have been accepted and/or met, this letter provides confirmation of 
final approval. I will arrange for the register of approved applications on the HRA website to be 
updated with this information. 
 
Annual review 
 
Please note that your approval is subject to submission of an annual review report to show 
how you have met the conditions or report plans, and action towards meeting them. It is also 
your responsibility to submit this report on the anniversary of your final approval and to report 
any changes such as to the purpose or design of the proposed activity, or to security and 
confidentiality arrangements. We are also streamlining the process to facilitate the service we 
provide to applicants.  This means that annual reviews will be batched and reviewed on the 
last day of the preceding month before the date of approval.  An annual review should 
therefore be provided no later than 28 February 2015 and preferably 4 weeks before this date. 
 
 
Please do not hesitate to contact me if you have any queries following this letter.  I would be 
grateful if you could quote the above reference number in all future correspondence. 
 

 
Reviewed documents 
 
The documents reviewed at the meeting were: 
 
 
Document    Version    Date    
Covering Letter from Dr Johnny Downs   6/12/2013 
Research Ethics Committee favourable opinion letter   21/05/2013 
IRAS application form   06/12/2013 
Patient Information Leaflets   06/12/2013 
Research protocol substantial amendment  9/04/2013 
Case for Support  06/12/2013 
Caldicott Guardian support letter  11/02/2013 
BMC Medical Informatics and Decision Making article  11/07/2013 
Department for Education support letters  17/09/2013 and 

21/11/2013 
 



Membership of the Group 
 
The members of the Confidentiality Advisory Group who were present at the consideration 
of this item are listed below. 
 
Dr Murat Soncul declared a conflicting interest in the application as previously named 
within the application to ECC and an employee of SLAM. 
 
 
Feedback 
 
You are invited to give your view of the service provided by the Confidentiality Advice 
Team and the application procedure in general by completion of this survey 
https://www.surveymonkey.com/s/KPRFK5T.  We would be grateful if you could take some 
time to provide your feedback.   
 
 
 
With the Group’s best wishes for the success of this project. 
 
 
Yours sincerely 
 
 
Claire Edgeworth 
Deputy Confidentiality Advice Manager 
 
 
Email: HRA.CAG@nhs.net 
 
Copy to: nrescommittee.southcentral-oxfordc@nhs.net  
 
Enclosures: List of members who were present at the meeting 

and those who submitted written comments 
 

 Standard conditions of approval 
 
 
 

 

https://www.surveymonkey.com/s/KPRFK5T
mailto:HRA.CAG@nhs.net
mailto:nrescommittee.southcentral-oxfordc@nhs.net


 
  

 
 

Confidentiality Advisory Group 
Attendance at meeting on 18 April 2013 

 
 

Group members 
 
Name Capacity  

Dr Mark Taylor (Chair) Lay 
Dr Charlotte Augst  
Dr Kambiz Boomla  
Dr Tony Calland  
Dr Robert Carr  
Mr Paul Charlton Lay 
Ms Madeleine Colvin  
Professor Julia Hippisley-Cox  
Dr Patrick Coyle  
Dr Tricia Cresswell (vice-chair)  
Mr Anthony Kane Lay 
Professor Jennifer Kurinczuk  
Ms Clare Sanderson  
Mr C. Marc Taylor  
Ms Gillian Wells Lay 
Dr Christopher Wiltsher Lay 
Mr Terence Wiseman Lay 

 



  
Confidentiality Advisory Group 

Standard conditions of approval 
 
The approval provided by the Health Research Authority is subject to the following standard conditions. 
 
The applicant will ensure that: 
 

1. The specified patient identifiable information is only used for the purpose(s) set out in the 
application. 
 

2. Confidentiality is preserved and there are no disclosures of information in aggregate or patient 
level form that may inferentially identify a person, nor will any attempt be made to identify 
individuals, households or organisations in the data. 
 

3. Requirements of the Statistics and Registration Services Act 2007 are adhered to regarding 
publication when relevant. 

 
4. All staff with access to patient identifiable information have contractual obligations of 

confidentiality, enforceable through disciplinary procedures. 
 

5. All staff with access to patient identifiable information have received appropriate ongoing training 
to ensure they are aware of their responsibilities. 
 

6. Activities are consistent with the Data Protection Act 1998. 
 

7. Audit of data processing by a designated agent is facilitated and supported. 
 

8. The wishes of patients who have withheld or withdrawn their consent are respected. 
 

9. The Confidentiality Advice Team is notified of any significant changes (purpose, data flows, data 
items, security arrangements) prior to the change occurring. 
 

10. An annual report is provided no later than 12 months from the date of your final confirmation 
letter.  
 

11. Any breaches of confidentiality / security around this particular flow of data should be reported to 
CAG within 10 working days, along with remedial actions taken / to be taken. 

 

 



 
 

Skipton House 
80 London Road 

London 
SE1 6LH 

 
Tel: 020 797 22557 

Email: HRA.CAG@nhs.net  

 

10 August 2016 

           Dear Professor Stewart 
  

 
 

Study title:  SLAM IG Clinical Dataset Linking Service 
CAG reference:  ECC 3-04(f)/2011 
REC number:  08/H0606//71 
 
Thank you for your amendment request to the above research application, submitted for 
approval under Regulation 5 of the Health Service (Control of Patient Information) Regulations 
2002 to process patient identifiable information without consent. Approved applications enable 
the data controller to provide specified information to the applicant for the purposes of the 
relevant activity, without being in breach of the common law duty of confidentiality, although 
other relevant legislative provisions will still be applicable.  
 
The role of the Confidentiality Advisory Group (CAG) is to review applications submitted under 
these Regulations and to provide advice to the Health Research Authority on whether an 
application should be approved, and if so, any relevant conditions.  
 
Health Research Authority approval decision 
 
The Health Research Authority, having considered the advice from the Confidentiality 
Advisory Group as set out below, has determined the following: 
 

1. The amendment is approved, subject to compliance with the standard conditions of 
support. 
 

Context 
 
This research application from the South London & Maudsley NHS Foundation Trust set out 
the purpose of investigating the associations between specific mental disorders in secondary 
mental health care (schizophrenia, schizoaffective disorder, bipolar disorder and dementia) 
and physical illness. This would use a new linked dataset containing health records for 
patients with these disorders from the SLAM BRC Case Register Interactive Search (CRIS) 
and general hospital records from the English national Hospital Episode Statistics (HES) 
database.  Review of this application was sought so as to provide a legitimate basis for the 
processing of this patient identifiable information; to effectively test this ‘honest broker’ 
capability and to permit the linkage and subsequent anonymisation. This required access to 
name, date of birth, sex, address, postcode and NHS Number. 
 
Amendment request 
 

Professor Robert Stewart 
Professor of Psychiatric Epidemiology & Clinical Informatics 
Department of Psychological Medicine 
Institute of Psychiatry, King's College London 
De Crespigny Park  
London SE5 8AF 
United Kingdom 
 



This application is to use the HES data already linked to CRIS to investigate presentations to 
hospital due to suicidality and self-harm by young people. It extends the scope of the original 
application by requesting to use data relating to children under the age of 18 whereas the 
original application only covered adults. A previous amendment dated 28/11/2013 has extended 
permission to allow the use of under 18s data for a project looking at epilepsy outcomes in 
children with autistic spectrum disorder treated with psychotropic medication. 

 
The planned project would use HES A&E data for patients known to SLaM to ascertain A&E 
attendances, with linked clinical record data being used to get information about the reason for 
attendance. It would also use HES inpatient data to ascertain admissions coded as due to self-
harm, and physical health co-morbidities in those presenting with self-harm and suicidal 
behaviour. It would use HES data on all residents in the area covered by SLaM to provide a 
comparison population.  
 
 
Confidentiality Advisory Group advice  
 
The amendment requested was forwarded to the Chair, who determined that as the 
amendment involved both mental health data and the use of health care data relating to 
minors, it required review by Sub-Committee.  
 
The Sub-Committee noted that the amendment involved the use of a control group, who 
would not directly benefit from this use of their data. However, it was agreed that there 
was a strong public interest in this research, which the Confidentiality Advisory Group had 
already supported for a different (and potentially less relevant) group of patients.  
 
The Sub-Committee considered the patient information provided, which had been 
previously approved by the Confidentiality Advisory Group for children and young people. 
It was deemed adequate for this project.  
 
Confidentiality Advisory Group conclusion 
 
In line with the considerations above, the Chair agreed that the minimum criteria under the 
Regulations appeared to have been met for this amendment, and therefore advised 
recommending support to the Health Research Authority. 
 
Specific conditions of support  
 

1. Confirmation of suitable security arrangements via IG Toolkit submission.  
2. Confirmation of a favourable opinion from a Research Ethics Committee. 

 
Reviewed documents 
 
 
Document    Version    Date    
Cover letter  17 June 2016 
Amendment Request form  17 June 2016 
CRIS CAMHS leaflet  21 February 2014 
CRIS data linkages webpage   
Supplementary information (summary of study and previous 
amendments) 

  

 
 
Please do not hesitate to contact me if you have any queries following this letter.  I would 
be grateful if you could quote the above reference number in all future correspondence. 
 
 



Yours sincerely 

 
Confidentiality Advisor 
On behalf of the Health Research Authority 
 
 
Email: HRA.CAG@nhs.net 
 
Enclosures: 
 
 

 Standard conditions of approval 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Standard conditions of approval 

mailto:HRA.CAG@nhs.net


 
The approval provided by the Health Research Authority is subject to the following standard conditions. 
 
The applicant will ensure that: 
 

1. The specified patient identifiable information is only used for the purpose(s) set out in the 
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