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i. Abstract 

Lewy body dementia (LBD) is characterised by the deposition of a-synuclein containing Lewy 

bodies throughout cortical brain regions. Pathology is confounded by the co-occurrence of 

pathological Ab and tau deposition. LBD comprises dementia with Lewy bodies (DLB) and 

Parkinson’s disease dementia (PDD), distinguished by the timing of onset of classical symptoms: 

cognitive impairment occurs at least one year prior to motor impairment in DLB and vice versa in 

PDD. Currently, there are no disease modifying therapeutic agents for LBD. 

 

Heterozygous mutations in GBA1 have become established as the most common genetic risk 

factor for Parkinson’s disease and dementia with Lewy bodies. GBA1 encodes the lysosomal 

enzyme glucocerebrosidase. Deficient glucocerebrosidase activity causes accumulation of a-

synuclein. Homozygous GBA1 mutation causes the lysosomal storage disorder Gaucher’s 

disease. In this thesis, a possible mechanism underlying the link between GBA1 mutation and 

LBD is investigated - the unfolded protein response (UPR). We hypothesise that the UPR is 

activated in response to mutant GBA1 but is unable to serve a protective function under 

increasing levels of stress. We also characterise the impact of heterozygous GBA1 mutation 

(D427V) on mice to establish whether a cognitive impairment phenotype is displayed which may 

be translational for the study of LBD. 

 

The results presented in this thesis support the activation of both IRE1a and PERK mediated 

UPR responses since we show increased expression of spliced XBP1 and CHOP in a L444P 

mutant GBA1 SH-SY5Y cell model. We also demonstrate spliced XBP1 ceases to be expressed 

under increasing cellular stress whilst CHOP expression continues. Since CHOP is associated 

with detrimental cell outcomes, predominantly initiation of apoptosis, we suggest that the 

imbalance of UPR responses towards CHOP mediated effects may potentially underlie 

pathological consequences associated with GBA1 mutation. Results presented in this thesis also 

reveal a previously unreported progressive cognitive decline in D427V/WT GBA1 mice. 

 

In conclusion, preventing the withdrawal of protective spliced XBP1 mediated effects and 

continued expression CHOP may be a therapeutic avenue for further investigation in D427V/WT 

GBA1 mice which show promising signs of being a translational model for LBD. 
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1. General Introduction 

1.1. Lewy body dementia 

Dementia is defined as a progressive cognitive decline of sufficient magnitude to interfere with 

normal social or occupational functions, or with usual daily activities (Costa et al., 2017). 

Worldwide, according to the World Health Organisation, more than 47 million people have 

dementia with approximately 9.9 million new cases being diagnosed annually 

http://www.who.int/mediacentre/factsheets/fs362/en/ . The total number of people with dementia 

is projected to triple by 2050 to 132 million http://www.who.int/mediacentre/factsheets/fs362/en/ . 

These startling figures have led the World Health Organisation to designate dementia as a public 

health priority.  

 

Lewy body dementia (LBD) is a term used to collectively describe a subset of dementias 

characterised by proteinaceous deposition of a-synuclein containing Lewy bodies throughout the 

brain (Galasko, 2017). LBD includes Parkinson’s disease dementia (PDD) and dementia with 

Lewy bodies (DLB) (Galasko, 2017). Despite being the second most common progressive 

dementia in people over the age of 65 behind Alzheimer’s disease (AD), LBD is chronically 

misdiagnosed and under researched predominantly due to clinically heterogeneous overlapping 

symptoms and neuropathology with Alzheimer’s and Parkinson’s disease (Walker et al., 2015). 

Alzheimer’s disease is characterised predominantly by the proteinaceous deposition of Ab 

containing plaques and neurofibrillary tangles comprised of tau. 

 

Lewy bodies were first described in Parkinson’s disease (PD) brain by Friederich H. Lewy in 1912 

as abnormal inclusions in nerve cell bodies (Goedert et al., 2013). Classically, Lewy bodies are 

eosinophilic cytoplasmic inclusions within neurons consisting of a dense core surrounded by a 

halo of 10nm wide radiating fibrils (Goedert et al., 2013). It was not until 1997, when a rare 

missense mutation in SNCA (A53T) was shown to cause a dominantly inherited form of PD that 

α-synuclein was established as the predominant component of Lewy bodies based upon the 

subsequent identification of α-synuclein immunoreactivity in the brain of sporadic PD cases 

(Spillantini et al., 1997). a-synuclein is a 140 residue natively unfolded protein encoded by SNCA 

gene which exists in a dynamic equilibrium between a soluble and membrane bound state, with 

its secondary structure dependent upon the environment (Jakes et al., 1994; Spillantini and 
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Goedert, 2017). Whilst ubiquitously expressed throughout the brain, a-synuclein is primarily 

localised to neuronal presynaptic membranes and is thought to have a role in neurotransmitter 

release (Burre, 2015). Electron microscopy shows that Lewy bodies are composed of unbranched 

α-synuclein filaments with classical cross β sheet amyloid structure (Spillantini et al., 1998). 

Hyperphosphorylation of serine129 residue is a classical hallmark of aggregated α-synuclein and 

α-synuclein filaments become ubiquitinated after assembly (Fujiwara et al., 2002; Goedert et al., 

2013). 

 

Lewy body pathology follows a predictable pattern of development throughout the brain which is 

thought to correspond to the severity of parkinsonism symptoms described by six stages of Lewy 

body deposition (Braak et al., 2003). The first LB structures in the brain usually occur in the 

olfactory bulb and/or dorsal motor nucleus of the glossopharyngeal and vagal nerves (stage 1) 

(Braak et al., 2003). In stage 2, LB pathology proceeds in a caudorostal pattern to the medulla 

oblongata and the pontine tegmentum before reaching the amygdala and substantia nigra 

resulting in the characteristic motor symptoms of PD by stage 3 (Braak et al., 2003). As pathology 

worsens, LBs reach the temporal cortex (stage 4) before inclusions appear in the neocortex 

during stages 5 and 6 accounting for cognitive impairments associated with advanced PD (Braak 

et al., 2003). 

 

Previously considered an anomaly, the identification of cortical Lewy bodies outside the brainstem 

and midbrain was first described in 1976 and associated with pre-senile dementia (Kosaka et al., 

1976). The progression of LB pathology to cortical regions continues the caudorostal progression 

of Lewy pathology and underlies the development of PDD (Braak et al., 2003). It was not until 

1996 however that a consensus was reached whereby DLB, pathologically characterised by 

widespread LB distribution throughout cortical regions, was considered a distinct and separate 

condition to PDD based primarily upon symptom progression (McKeith et al., 1996; Kosaka, 

2014{McKeith, 2017 #317; McKeith et al., 2017).  

 

DLB and PDD have many clinical and pathological similarities. Diagnostically, the two syndromes 

are arbitrarily differentiated based upon the timing of cognitive decline relative to motor symptoms 

– ‘The one year rule’ (McKeith et al., 2005{McKeith, 2017 #317; McKeith et al., 2017). PDD 

diagnosis depends on the occurrence of a dementia syndrome of insidious onset and slow 
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progression, that develops in the context of established PD i.e. cognitive decline at least one year 

after diagnosis of PD (Meissner et al., 2011). Conversely, DLB is diagnosed with dementia as the 

central feature, emerging at least 1 year before any parkinsonism symptoms are observed 

(McKeith et al., 2005). However, accurate diagnosis of DLB can be difficult due to initial similarities 

with Alzheimer’s disease (AD) and the heterogeneity of symptoms, discussed below.  
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1.1.1. Clinical symptoms  

Clinically, DLB and PDD are mostly indistinguishable other than the predominant presenting 

clinical feature – cognitive impairment in DLB and parkinsonism in PDD as per the ‘one year rule’ 

discussed above (McKeith et al., 2005). Despite the vast heterogeneity of symptoms, there are 

some features such as fluctuations in consciousness and alertness particularly in DLB which can 

aid accurate diagnosis (McKeith et al., 2005). The clinical symptoms of both DLB and PDD are 

described below. 

 

1.1.1.1. Dementia with Lewy bodies 

Typically, DLB patients present with cognitive impairment which develops into dementia 

(Aarsland, 2016). Although short term memory loss may have been the presenting symptom for 

diagnosis, cognitive domains other than memory are frequently involved, including attention, 

executive function and visual-spatial skill (Takemoto et al., 2016). While reminiscent of 

hippocampal-dependent memory encoding seen in AD, impairment of short term memory in DLB 

generally reflects a problem of retrieval of stored information which can be improved with cues 

(Walker et al., 2015). These errors of memory encoding and retrieval can be differentiated by 

detailed cognitive testing (Walker et al., 2015). 

 

Neuropsychiatric symptoms are a strong feature of DLB (Brodaty et al., 2015). Recurrent, 

complex visual hallucinations are a key symptom distinguishing DLB from AD (Mosimann et al., 

2004; Brodaty et al., 2015). The hallucinations are usually well formed and animate featuring 

people, children or animals (Walker et al., 2015). Hallucinations are predominantly unimodal, 

without involvement of sound, smell or touch (Walker et al., 2015). Delusions can also arise, 

typically later in the disease course and usually have a paranoid quality e.g. delusions of infidelity, 

house intruders and theft are common (Walker et al., 2015). As cognition continues to deteriorate, 

patients may believe that their spouse or caregiver has been replaced by an imposter, a 

phenomenon known as Capgras syndrome (Thaipisuttikul et al., 2013). DLB patients are also 

significantly more likely to present with symptoms of anxiety early in the disease course compared 

with AD, increasing the rate of development of more severe neuropsychiatric conditions such as 

hallucinations and delusion (Shea et al., 2015). Attention and alertness may also fluctuate leading 

to episodes of staring and perturbed flow of ideas or frequent daytime drowsiness (Gomperts, 
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2016). DLB fluctuations are typically delirium-like, occurring as spontaneous alterations in 

cognition, attention and arousal. (Gomperts, 2016).  

 

Spontaneous parkinsonian features are common in DLB, eventually occurring in over 85% of 

patients (Postuma et al., 2015). Parkinsonism usually presents bilaterally in DLB with more axial 

rigidity, whereas in PD it typically presents unilaterally and asymmetrically (Gomperts, 2016). 

Resting tremor is not as common in DLB compared with PD (Takemoto et al., 2016) but 

bradykinesia and gait impairment are commonly reported (Burn et al., 2006). However, 

presentation of parkinsonism symptoms varies considerably between individuals (Gomperts, 

2016). Furthermore, in contrast to patients with PD, DLB patients have a limited response to 

medications such as carbidopa/levodopa (Goldman et al., 2014).   

 

REM sleep behaviour disorder is a parasomnia in which the normal paralysis of REM sleep is 

impaired (Bassetti and Bargiotas, 2018). REM sleep behaviour disorder is experienced as 

individuals acting out their dreams with behaviours such kicking, punching and yelling (Bassetti 

and Bargiotas, 2018). REM sleep behaviour disturbance is a known characteristic of 

synucleinopathies, particularly DLB (Hogl et al., 2018). Symptoms typically begin prior to cognitive 

impairment, parkinsonism, or autonomic dysfunction (Hogl et al., 2018). The interval between 

REM sleep behaviour disturbance and the onset of cognitive impairment can typically be around 

10 years or even longer making REM sleep behaviour disturbance an important prodromal 

symptom for DLB diagnosis (Boeve et al., 2013; Hogl et al., 2018). 

 

Autonomic impairment is frequently reported in the prodromal stages of DLB (Gomperts, 2016). 

However, the severity of autonomic symptoms are not comparable to the synucleinopathy 

multiple system atrophy (Gomperts, 2016). Constipation is common and problematic as is 

orthostatic hypotension (Blanc and Verny, 2017). Furthermore, some patients experience 

neurogenic urinary frequency or incontinence (Gomperts, 2016; Blanc and Verny, 2017). 

 

1.1.1.2. Parkinson’s disease dementia 

PDD patients first present with the characteristic motor symptoms of PD: resting tremor, rigidity 

and bradykinesia (Postuma et al., 2015). A diagnosis of PD is a pre-requisite for the development 

of PDD (Emre et al., 2007).  
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Executive function represents the most common cognitive domain affected in PDD particularly in 

the early stages of the dementia syndrome reflecting dopaminergic dysfunction in frontostriatal 

networks (Goldman et al., 2014). However, impairments in attention which may fluctuate, explicit 

memory and visuospatial function are also seen in early PDD (Goldman et al., 2014). 

 

The cognitive profile in PDD and DLB overlaps significantly making diagnosis by cognitive clinical 

symptoms difficult. Visual hallucinations also occur frequently in PDD which like DLB are usually 

animate and unimodal (Gomperts, 2016). Delusions are less common but can arise. Both 

hallucinations and delusions can be exacerbated by dopamine replacement medications, 

particularly dopamine agonists, used to treat the motor symptoms (Gomperts, 2016). 

 

Interestingly, the motor phenotype of PDD differs from PD (Emre et al., 2007; Gomperts, 2016). 

PDD patients are more likely to have a postural instability gait disorder phenotype compared with 

PD, which constitutes a risk factor for dementia (Burn et al., 2006). Furthermore, PDD patients 

have a more rapid motor decline and falls are more frequent (Emre et al., 2007). Levodopa 

responsiveness and related dyskinesias may also differ in PDD patients, but the evidence is 

inconclusive as is the relative frequency of autonomic symptoms (Emre et al., 2007). 
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1.1.2. Diagnosis 

1.1.2.1. DLB 

Accurate clinical diagnosis of DLB is challenging due to the considerable heterogeneity of 

symptoms and pathology (McKeith et al., 2017). Detection rates in clinical practice are suboptimal 

with many cases misdiagnosed, usually as Alzheimer’s disease (Vann Jones and O'Brien, 2014). 

The DLB consortium have composed a set of guidelines to help improve accurate diagnosis and 

better describe DLB clinically based upon evaluation of research and clinical experience. These 

guidelines are revised and updated to reflect breakthroughs in the field, with the most recent 

consensus report of the DLB consortium being published in July 2017 (McKeith et al., 1996; 

McKeith et al., 2005; McKeith et al., 2017).  

 

Dementia is an essential requirement for DLB diagnosis, dementia defined as a progressive 

cognitive decline of sufficient magnitude to interfere with normal social or occupational functions 

or with usual daily activities (McKeith et al., 2017). DLB should be diagnosed when dementia 

occurs before or concurrently with parkinsonism (McKeith et al., 2005). While there is no DLB 

specific assessment battery of tests available, composite risk score tools have been developed 

which consider different aspects of DLB associated dementia, helping to distinguish DLB from 

AD (Walker et al., 2015). Mini mental state examination (MMSE) and Montreal Cognitive 

assessment (MoCA) are useful tests to identify global cognitive impairment but cannot distinguish 

between DLB and AD (Shea et al., 2015). Measures of attention and executive function e.g. 

Stroop tasks and trail making tasks, can be very useful to differentiate DLB from AD (McKeith et 

al., 2017). Furthermore, spatial and perceptual difficulties occur earlier in DLB as identified 

through tasks of figure copying e.g. intersecting pentagons. Also, memory and object naming, 

assessed through story recall and verbal list learning is less affected in DLB compared with AD 

(McKeith et al., 2005; McKeith et al., 2017).   

 

The core clinical features of DLB include: fluctuation, visual hallucinations, parkinsonism and 

REM sleep behaviour disorder (McKeith et al., 2017) (Table 1). Fluctuating cognition, attention 

or arousal can be difficult to ascertain from direct questioning of the individual but the level of 

daytime drowsiness is a good indicator (Ferman et al., 2004) . At least one measure of fluctuation 

should be documented to meet DLB diagnostic criteria particularly when presenting early in the 

disease course since early presence of fluctuations are a reliable differentiating symptom from 
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Alzheimer’s disease (Ferman et al., 2004). Complex recurrent visual hallucinations occur in up to 

80% of DLB patients and are a frequent, reliable signpost to diagnosis (Fujishiro et al., 2008; 

Urwyler et al., 2016). Typically, patients and caregivers are able to report the episodes of 

hallucination in order to aid diagnosis, but assessment scales are available for characterising and 

quantifying visual hallucinations (Mosimann et al., 2004). Parkinsonism is typically defined as 

bradykinesia in combination with resting tremor, rigidity or both (Postuma et al., 2015). Most 

patients with DLB will not have parkinsonism to the extent seen in Parkinson’s disease and so 

documentation of only one of the defining triad of Parkinson’s symptoms is required as a core 

clinical feature for diagnosis of DLB (McKeith et al., 2017). REM sleep behaviour disorder has 

been reassigned as a core clinical feature for diagnosis of DLB due to evidence suggesting the 

frequency may be as high as 76% (Ferman et al., 2011). REM sleep behaviour disorder is 

screened for by scales allowing for bed partner or patient reports. Confirmation can be sought 

from specialist sleep clinics or polysomnography (PSG) (McKeith et al., 2017).  

 

A probable diagnosis of DLB can be made if two or more of the core clinical features described 

above are present (McKeith et al., 2017). However, a probable diagnosis of DLB can also be 

made if only one of the core clinical features is present but one or more indicative biomarkers are 

confirmed: reduced dopamine transporter (DAT) uptake in the basal ganglia demonstrated by 

single-photon emission computed tomography (SPECT) or positron emission tomography  (PET) 

imaging; reduced uptake on metaiodobenzylguanidine (MIBG) myocardial scintigraphy and 

confirmation of REM sleep without atonia by PSG (McKeith et al., 2017) (Table 1). Importantly, 

guidance suggests that a probable diagnosis of DLB in the absence of any core clinical features 

should not made from indicative biomarkers alone (McKeith et al., 2017). DAT plays a key role in 

determining the extracellular concentration of dopamine through facilitating reuptake of dopamine 

into dopaminergic nerve terminals (Nutt et al., 2004). Expression of DAT is significantly reduced 

in PD (Nutt et al., 2004). Reduced pre-synaptic DAT uptake in the basal ganglia of DLB brain 

compared with AD using the specific DAT ligand [123I]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-

iodophenyl) nortropane with SPECT consistently differentiates DLB from AD with over 80% 

sensitivity and specificity (Brigo et al., 2015; Shimizu et al., 2016; Abbasi et al., 2017). 

Furthermore, the presence of parkinsonism symptoms is significantly higher in DLB patients who 

display significantly reduced striatal DAT uptake (Shimizu et al., 2016). MIBG enters the 

sympathetic synaptic cleft and is taken into presynaptic neurons, accumulating in a similar 
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manner to norepinephrine (Yoshita et al., 2006). Labelled 131I or 123I MIBG myocardial scintigraphy 

denotes cardiac sympathetic innervations (Yoshita et al., 2006). Reuptake of MIBG in 

sympathetic neurons of the heart is defective in PD (Yoshita et al., 2006). The reduced heart to 

mediastinum (H/M) ratio of MIBG, reflecting reduced sympathetic reuptake of MIBG on 

myocardial scintigraphy, has approximately 90% sensitivity and specificity for differentiating DLB 

from AD using either 131I or 123I radioisotopes (Shimizu et al., 2016; Abbasi et al., 2017). DLB 

patients who demonstrate reduced uptake on MIBG myocardial scintigraphy also demonstrate a 

significantly higher frequency of REM sleep behaviour disturbance (Shimizu et al., 2016). The 

confirmation of REM sleep without atonia by PSG is reported in over 80% of DLB patients (Pao 

et al., 2013). Conversely, Boeve et al report 98% of patients with PSG confirmed REM sleep 

without atonia have an underlying synucleinopathy, illustrating the power and utility of PSG in 

aiding the accurate diagnosis of DLB (Boeve et al., 2013) . 

 

 

 

  

Table 1- 2017 DLB consensus criteria for probable diagnosis of DLB. Probable diagnosis of DLB can 
be made if dementia in addition to 2 or more clinical features are present. Probable diagnosis of DLB can 
also be made if dementia in addition to 1 core clinical feature and at least 1 indicative biomarker is present. 
Figure compiled from (McKeith et al., 2017) 



 
 

26 

1.1.2.2. PDD 

Diagnosis of PDD is comparatively straightforward since the disease course of PD and 

development of dementia is relatively consistent amongst patients (Emre et al., 2007). Consensus 

diagnostic criteria for PDD were developed in 2007 (Emre et al., 2007). Diagnosis of PDD requires 

both the diagnosis of PD and presence of a dementia syndrome with insidious onset and slow 

progression developing in the context of PD (Emre et al., 2007). Associated features for diagnosis 

of PDD include the presence of a profile of cognitive deficits including impairment in at least 2 of 

the 4 cognitive domains: attention, executive functions, visuospatial and free recall memory (Emre 

et al., 2007). While not considered critical for diagnosis, hallucinations, delusions, apathy and 

mood changes are frequently associated behavioural features of PDD (Emre et al., 2007). 

 

As mentioned previously, the clinical and neuropsychological features of DLB and PDD can be 

similar and difficult to distinguish between the conditions. Therefore, the relative timing of 

dementia onset relative to presentation of parkinsonism symptoms defines the clinical distinction 

between PDD and DLB. PDD is clinically diagnosed when dementia occurs in the context of well-

established PD, where the onset of dementia occurs at least one year following the diagnosis of 

PD (McKeith et al., 2005; McKeith et al., 2017). 
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1.1.3. Epidemiology 

PDD and DLB are age related diseases although onset before the age of 65 is not uncommon 

(Walker et al., 2015). Both conditions are more common in men than in women (Walker et al., 

2015).  

 

The point prevalence of dementia is approximately 30% in patients with PD (Aarsland et al., 

2005a). PDD accounts for 3-4% of patients with dementia in the general population while the 

prevalence of PDD in the general population aged 65 and over is 0.3-0.5% (Aarsland et al., 

2005a; Aarsland and Kurz, 2010). According to community based longitudinal studies, 10% of the 

PD population will develop dementia per year (Aarsland and Kurz, 2010). However, since the risk 

for developing dementia depends on disease duration, this rises to 30% when monitoring PD 

patients from the onset diagnosis (Williams-Gray et al., 2007). Since mortality is higher in 

demented compared to non-demented PD patients (Hely et al., 2008), point prevalence is an 

underestimate of the true frequency of dementia in PD. Cumulative prevalence studies indicate 

that 83% of PD patients will develop dementia within 20 years of diagnosis (Hely et al., 2008), but 

when adjusting for mortality, 78% will develop dementia within 8 years of diagnosis (Aarsland et 

al., 2003). Adjusting for mortality when looking at cumulative prevalence of PDD is important since 

once dementia occurs, it indicates a short time to death, irrespective of age or disease duration 

(Kempster et al., 2010).  

 

There are far fewer epidemiological data relating to DLB, presumably due to the difficulty in 

diagnosis. Systematic reviews have placed the incidence of DLB between 0.5 and 1.6 cases/1000 

person-years in the general population (Zaccai et al., 2005; Hogan et al., 2016). The incidence of 

DLB in cases of newly diagnosed dementia is between 3.2% and 7.1% and is more common in 

those aged over 65 years (Zaccai et al., 2005; Hogan et al., 2016). Prevalence of DLB in the 

general population aged over the age of 65 ranges between 0% and 5% (van Weely et al., 1993; 

Zaccai et al., 2005; Vann Jones and O'Brien, 2014; Hogan et al., 2016). The prevalence of DLB 

ranged from 0 to 30% amongst diagnosed cases of dementia (Zaccai et al., 2005; Vann Jones 

and O'Brien, 2014; Hogan et al., 2016) although when diagnosis involved neurological 

assessment, the prevalence rises to a consistent 16-24% (Vann Jones and O'Brien, 2014).   
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1.1.4. Genetics  

Genetic factors have been implicated in the development of PDD and DLB. Unsurprisingly, SNCA 

the strongest genetic risk factor for PD, is also strongly associated with both PDD and DLB (Bras 

et al., 2014). Interestingly however, the haplotype conferring risk is different: PD having an 

association 3’ to the gene and DLB association occurring 5’ of the gene (Bras et al., 2014). Some 

heritable forms of PD involving SNCA, most notably triplication of SNCA, demonstrate an early 

onset dementia phenotype (Poulopoulos et al., 2012). 

 

However, not all PD associated genes confer risk for developing PDD or DLB (Irwin et al., 2013). 

LRRK2 mutations causes autosomal dominant PD without cognitive impairment and dementia is 

rare in PARK2, PARK6 and PARK7 forms of hereditary PD (Poulopoulos et al., 2012). 

 

Conversely, genes other than those associated with hereditary forms of PD are implicated in 

PDD. The APOe4 genotype, a well-known and studied AD risk allele, is considered an important 

predictor of cognitive decline in PD (Mata et al., 2014). Furthermore, the APOe4 allele is predictive 

of PDD independent from AD or Lewy body related pathology in post mortem studies (Irwin et al., 

2012). The APOe4 allele is also associated with DLB, present in approximately 30% of DLB 

patients compared with 14% of controls free from neurodegenerative and neuropsychiatric 

disease (Vergouw et al., 2017). Furthermore, APOe4 allele confers a 6-fold increased risk of 

developing a dementia with Lewy pathology in carriers compared with controls which increases 

to a 12-fold increased risk of developing dementia with mixed AD and Lewy pathology, 

characteristic of DLB as discussed in chapter 1.1.5 (Vergouw et al., 2017). The APOE locus has 

also been identified as the strongest genetic risk factor for DLB in the largest genetic association 

study in DLB published to date (Bras et al., 2014).  

 

The gene that encodes tau, MAPT is also implicated in the development of dementia (Irwin et al., 

2013). MAPT contains two major haplotypes in humans: H1 and H2 (Irwin et al., 2013). 

Traditionally associated with AD, presence of the H1/H1 haplotype in PD has been suggested as 

an independent predictor of PDD (Goris et al., 2007). Furthermore, H1 haplotype may influence 

the degree of AD pathology in PD, consistent with the mixed pathology of PDD discussed in 

chapter 1.1.5 (Goris et al., 2007). The H1 haplotype is also associated with a higher risk of 
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developing DLB in a conclusive study comparing both clinically and pathologically diagnosed 

cases of DLB with non-demented controls (Labbe et al., 2016). Furthermore, the H1 haplotype is 

associated with enhanced a-synuclein deposition in DLB brain, particularly in the brainstem 

(Colom-Cadena et al., 2013).  

 

More recently, the largest gene association study in DLB to date has been performed in which 

three loci were unequivocally associated with DLB: APOE, SNCA and SCARB2 (Bras et al., 

2014). The identification of APOE and SNCA as risk loci for DLB confirm previous findings 

discussed above. SCARB2 represents a novel and intriguing risk gene since SCARB2 encodes 

the glucocerebrosidase specific receptor for lysosomal transport, LIMP 2 (Bras et al., 2014). 
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1.1.5. Pathology 

The pathology associated with LBDs displays considerable overlap with some debate as to 

whether PDD and DLB are in fact a continuum of the same disorder (Aarsland et al., 2004). LBDs 

are neuropathologically characterised primarily by the presence of aggregated α-synuclein in 

Lewy bodies (LBs) and Lewy neurites (LNs) in the brain (Halliday et al., 2014). However, it is now 

understood that common pathologies such as those associated with Alzheimer’s disease: 

neurofibrillary tangles (NFTs) composed of tau and neuritic plaques composed of Ab, are also 

frequently found in the brains of these patients (Irwin et al., 2013; Halliday et al., 2014; Howlett et 

al., 2015; Colom-Cadena et al., 2017). Furthermore, extensive cholinergic deficits occur relatively 

early in the disease course of DLB and have become established as a differentiating factor from 

AD (Jellinger, 2017). More severe neuronal loss in the nucleus basalis of Meynert and widespread 

cholinergic cortical losses, predominantly due to loss of choline acetyltransferase (ChAT) activity 

are not seen in classical AD (Jellinger, 2017).  

 

1.1.5.1. Dementia with Lewy bodies 

The 1996 consortium of the DLB international workshop subdivided the neuropathological 

features of DLB into 3 categories: brainstem predominant, limbic, and diffuse neocortical based 

upon the progressive propagation of a-synuclein pathology along the caudo-striatal axis 

according to Braak staging of PD (McKeith et al., 1996; Braak et al., 2003). Braak et al describe 

a progressive spread of LBs originating in the caudal brainstem, typically involving the dorsal 

motor nucleus and also the olfactory bulb (Braak et al., 2003). LB pathology continues to spread 

through the midbrain involving the basal ganglia, most prominently the substantia nigra pars 

compacta before culminating in widespread cortical pathology at advanced stages of the disease 

(Braak et al., 2003). 

 

Morphologically DLB involves the co-occurrence of Lewy/α-synuclein pathology predominantly 

involving cortical and limbic areas consistent with Braak LB stages 3-5 and AD related pathologies 

(Jellinger, 2017). High cortical LB load in the temporal and parietal regions is a distinguishing 

feature of DLB accounting for a shorter latency to dementia (Jellinger, 2017). Attentional 

dysfunction and visual hallucination in DLB can be attributed to neuronal impairment of 

orbitofrontal and anterior cingulate cortices (Jellinger, 2017). Most DLB cases with cortical LBs 
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show some degree of AD pathology with concurrent AD pathological findings more common in 

DLB than PDD (Jellinger, 2017). Furthermore, deposition of extracellular Ab into plaques is 

present in over 85% of DLB cases (Gomperts, 2014; Adamowicz et al., 2017) and the presence 

of amyloid plaques in the striatum has been reported to differentiate DLB from PDD (Kalaitzakis 

et al., 2011).  

 

There is some debate as to whether high neocortical and limbic LB burden is an independent 

predictor of dementia in DLB (Schneider et al., 2012) or whether AD pathology is more important 

(Deramecourt et al., 2006). According to Braak staging, it is assumed that all patients with 

widespread diffuse a-synuclein pathology, such as those with DLB, will be demented and exhibit 

extrapyramidal symptoms of PD (Braak et al., 2003). However, this is not case and conversely 

some individuals with severe a-synuclein pathology at autopsy show no clinical symptoms of DLB 

(Parkkinen et al., 2008). However, the ability of clinicians to accurately diagnose DLB is positively 

correlated to the extent of LB pathology and negatively related to the severity of Alzheimer neuritic 

pathology, while Ab load has no effect (Tiraboschi et al., 2015). 

 

Large cohort studies of post mortem brain tissue suggest a strong correlation between both 

cortical Lewy pathology and AD-type pathologies (Compta et al., 2011; Irwin et al., 2012). Indeed, 

it has suggested that aggregated semi-quantitative scores of Ab plaques, NFTs and Lewy 

pathology particularly in the prefrontal and temporal cortex give the best correlate to cognitive 

decline in DLB (Howlett et al., 2015). It has been suggested that phosphorylated α-synuclein 

promotes the phosphorylation of tau (Guo et al., 2013). The bidirectional synergistic relationship 

between AD pathology and α-synuclein by which each protein promotes the synthesis of the other 

is confirmed in animal models of PDD/DLB (Jellinger, 2017). Transgenic mice overexpressing 

both Ab and α-synuclein have higher levels of Lewy body pathology and greater memory deficits 

compared with α-synuclein transgenic mice alone (Masliah et al., 2001). 

 

Unlike AD pathology, the presence of LBs or LNs in the neocortex is not obviously associated 

with neuron loss or atrophy; DLB is characterised by preserved whole brain temporal lobe 

volumes (Nedelska et al., 2015). However, DLB patients with mixed AD pathology show greater 

atrophy in the whole brain, temporal-parietal cortices, hippocampus and amygdala similar to what 
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is seen in AD correlating with cognitive decline and progression of motor symptoms (Burton et 

al., 2004; Nedelska et al., 2015). This finding further implicates AD pathology as an important 

contributing factor to the severity of clinical symptoms of DLB (Nedelska et al., 2015). 

 

Studies suggest early development of significant Lewy pathology in the hippocampus and 

surrounding cortical regions, particularly the entorhinal cortex, are crucial for memory 

impairments seen in DLB (Armstrong and Cairns, 2015). The CA1 subfield of the hippocampus 

is an important area for memory function and is preferentially affected by amyloid plaque and 

tangle pathology in AD (Armstrong and Cairns, 2015). Lewy pathology is also found in both CA1 

and the entorhinal cortex in DLB often co-existing with AD pathology. (Armstrong and Cairns, 

2015). Axon terminals in the CA2 sub-region of the hippocampus and cell bodies of the entorhinal 

cortex have significantly higher Lewy pathology than any other hippocampal region in either 

neocortical or limbic subtypes of DLB (Armstrong and Cairns, 2015). 

 

Despite levels of LB pathology being highest in the hippocampal CA2 region and entorhinal 

cortex, correlation with memory performance is strongest with CA1 Lewy pathology burden, even 

after accounting for tangles (Adamowicz et al., 2017). This suggests that CA2 pathology is a 

prerequisite for CA1 pathology since the effects of Lewy pathology on learning and memory are 

most apparent at a later stage; a critical Lewy pathology burden must be reached across 

hippocampal circuitry to contribute to memory dysfunction beyond that relating to co-existing AD 

pathology (Adamowicz et al., 2017). 

 

Accumulation of LBs in the dorsal raphe nucleus, the major serotonergic nucleus projecting to the 

neocortex has been associated with lowered serotonin levels in the striatum and neocortical areas 

of DLB brain (Ballard et al., 2013). Increased expression of the serotonin receptor is seen in the 

parietal cortex of DLB patients while the converse is seen in AD (Ballard et al., 2013). 
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1.1.5.2. Parkinson’s disease dementia 

As discussed earlier in this chapter, neuropathological substrates for PDD appear to be 

heterogeneous including both Lewy/α-synuclein related pathology in cortical, limbic and 

subcortical brainstem structures and AD-related pathologies (Ab deposition, diffuse and neuritic 

plaques and NFTs).  

 

Cognitive impairment in PDD is often correlated with the density of LNs and neuritic degeneration 

in the hippocampus and periamygdaloid cortex (Mattila et al., 1999). Density of both limbic LBs 

and neuritic plaques also correlate with dementia severity (Harding and Halliday, 2001). However, 

increased cognitive decline with increasing pathological LB staging has not universally been 

confirmed (Weisman et al., 2007; Jellinger, 2008). Autopsy studies demonstrate a picture of 

mixed pathology in PDD brain with approximately 50% of cases demonstrating diffuse LB 

deposition in addition to severe AD type pathology (Irwin et al., 2013; Jellinger, 2017). Generally, 

it is assumed that these pathological substrates co-occur and act synergistically although others 

suggest a positive relationship between cortical Ab and NFT deposition respectively and cognitive 

impairment (Hurtig et al., 2000; Petrou et al., 2015; Biundo et al., 2016). Indeed, AD pathology 

does appear to be a more specific correlate of dementia in PD than cortical α-synuclein pathology 

(Compta et al., 2011; Irwin et al., 2012).  

 

Clinicopatholgical study has identified 3 subgroups of PDD based upon mixed pathology: (1) 

predominant synucleinopathy Braak LB stage 5-6 (38%), (2) synucleinopathy with Ab deposition 

but minimal or no tau pathology (59%), (3) synucleinopathy with considerable neocortical tau 

pathology (3%) (Kotzbauer et al., 2012). Patients in group 2 show significantly reduced survival 

(Kotzbauer et al., 2012). The additive effect of α-synuclein and AD pathology may influence the 

clinical features of PDD, such as a shorter duration with more malignant course (Compta et al., 

2011; Halliday et al., 2014; Irwin et al., 2017). Regression analysis points towards a combined 

pathology (Ab plaques + phosphorylated tau + LB/LN) particularly in the prefrontal cortex and the 

temporal lobe neocortex as a major determining factor in the development of dementia (Howlett 

et al., 2015). 
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Alterations to neurotransmission due to the involvement of subcortical nuclei are also associated 

with PDD (Jellinger, 2017). Substantial loss of limbic and cortically projecting dopaminergic 

neurons of the mesocortical limbic system and loss of neurons in the nucleus basalis of Meynert 

leading to cortical cholinergic denervation contribute to clinical symptoms of PDD (Jellinger, 

2017). 

 

Ballard et al describe a correlation between longer duration of parkinsonism prior to dementia and 

more pronounced cortical deficits, implying that extensive cholinergic deficits may be a feature of 

PDD (Ballard et al., 2006). Cholinergic deficits are compounded in PDD by significantly reduced 

neuronal cholinesterase activity when compared with DLB (Klein et al., 2010). Furthermore, 

pedunculopontine (PPN) cholinergic cell loss occurs in hallucinating PDD but not DLB (Hepp et 

al., 2013). PPN neurons project and receive inputs from the basal ganglia, with the exception of 

the substantia nigra pars compacta to which it projects to but does not receive from and the 

substantia nigra pars reticulata which it receives inputs from but does not project to (Jellinger, 

2017). Neuronal loss in the substantia nigra is more severe in PDD compared with DLB potentially 

underlying changes to PPN cholinergic transmission and the development of attentional deficits 

and REM sleep disorders (Tsuboi and Dickson, 2005). 

 

 

 

  

Table 2 - Pathological overlap and differences between DLB and PDD. Compiled from (Jellinger, 2017)  
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1.1.6. Current therapeutic options 

Currently, there are no disease modifying therapies for either DLB nor PDD (Galasko, 2017). 

Clinical management is based upon symptomatic treatment of the cognitive, psychiatric, motor 

and non-motor symptoms that represent the core features of the disease (Galasko, 2017). 

1.1.6.1. DLB 

Meta analyses support the use of the cholinesterase inhibitors rivastigmine and donepezil in DLB 

for improving cognition, hallucinations, delusions and activities of daily living without worsening 

motor symptoms of parkinsonism (Wang et al., 2015). The effectiveness of cholinesterase 

inhibitors is based upon cholinergic deficits associated with DLB as discussed in chapter 1.1.5. 

Rivastigmine is associated with greater risk of adverse events compared with donepezil (Stinton 

et al., 2015; Wang et al., 2015). Since anxiety and hallucinations are sometimes driven by 

psychosis the cholinesterase inhibitors may have secondary benefits for these symptoms (Wang 

et al., 2015). Evidence suggests the use of antipsychotics such as olanzapine and quetiapine for 

the acute treatment of behaviour disturbance, delusions or visual hallucinations should be limited 

due to high levels of adverse events, in particular the increased risk of mortality specifically in 

DLB (Ballard et al., 1998; Aarsland et al., 2005b; McKeith et al., 2017). However, this does not 

preclude their use since quetiapine may be beneficial for the psychiatric symptoms of some 

patients with DLB but not PDD (Stinton et al., 2015). Evidence is weak or lacking to support the 

use of the PD therapeutics levodopa, amantadine or selegiline in managing the parkinsonism 

symptoms of DLB (Stinton et al., 2015). Parkinsonism is often less responsive to dopaminergic 

agents in DLB than in PD and their use may be associated with an increased risk of psychosis 

(Galasko, 2017). However, individual patient and disease characteristics may significantly impact 

the efficacy of treatment. Younger patients with DLB appear to respond better to levodopa for the 

treatment of parkinsonism symptoms whilst patients with hallucinations show a greater benefit 

from rivastigmine for global cognition and attention (Stinton et al., 2015).  

1.1.6.2. PDD 

A Cochrane review of the use of cholinesterase inhibitors in PDD demonstrated a good evidence 

base with positive impacts on global assessment, cognitive function, behavioural disturbance and 

activities of daily living scales (Rolinski et al., 2012). To date rivastigmine is the only 

cholinesterase inhibitor that is licenced for the treatment of PDD in the UK (Rolinski et al., 2012). 

Parkinsonism symptoms and tremor are reported more frequently in patients taking 
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cholinesterase inhibitors but they do not impact PD severity rating scales (Rolinski et al., 2012). 

Further support for cholinesterase inhibitors in PDD has been seen in a more recent meta-

analysis where cholinesterase inhibitors significantly attenuate decline in MMSE scores, an 

indicator of global cognitive ability, without increasing the risk of falls (Pagano et al., 2015). 

Cholinesterase inhibitors have also shown evidence of improving global psychiatric symptoms in 

PDD but not in DLB (Pagano et al., 2015). Responsiveness to levodopa is more efficacious for 

cognitive symptoms in PDD compared with DLB but also when compared with PD (Emre et al., 

2014; Stinton et al., 2015). As with DLB, there have been few well designed clinical trials in PDD 

cohorts with the appropriate control groups to study pharmacological treatments for the wide 

range of symptoms these patients can experience. Therefore, evidence for several compounds 

is lacking, limiting therapeutic options in these patients (Stinton et al., 2015).  

 

However, pimavanserin, a selective serotonin 5-HT2A inverse agonist, is a promising new drug 

showing positive results for the treatment of psychosis in PDD without affecting motor symptoms 

in successful phase 3 clinical trials (Cummings et al., 2014; Velayudhan et al., 2017). The strategy 

behind the use of pimavanserin is based upon the reduced amount of 5-HT1A receptor binding 

in the cortex of PDD patients (Francis and Perry, 2007). Ambroxol is another new compound in 

clinical trial for the treatment of cognitive impairment and dementia in PD which has been shown 

to reduce the levels of a-synuclein in both the brainstem and striatum in vivo (Migdalska-Richards 

et al., 2016). Ambroxol functions to enhance activity of the lysosomal enzyme glucocerebrosidase 

(Migdalska-Richards et al., 2017), the focus of this thesis which will be discussed in further detail 

herein. 
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1.2. Glucocerebrosidase 

1.2.1. GBA1 

GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase) (Ginns et al., 1985). GBA1 

was localised to the genetic loci 1q21 in 1985 (Ginns et al., 1985), a particularly gene rich region 

of chromosome 1 considered a recombination hotspot (Gregory et al., 2006).  GBA1 spans 7.6kb 

of genomic DNA divided into 11 exons (Horowitz et al., 1989). A highly homologously transcribed 

but non-functional pseudogene, GBAP, is located 16kb downstream from GBA1, containing the 

same organisation of exons (Sorge et al., 1990). Due to the combination of 96% exonic sequence 

homology and proximity, recombination events are facilitated contributing to the creation of 

mutant alleles (Hruska et al., 2008). Currently, the number of mutations reported in GBA1 has 

exceeded 300 including: missense, nonsense, frame-shift and splice mutations (Hruska et al., 

2008).  

 

1.2.2. GBA1 mRNA 

GBA1 has at least 2 mRNA species of 2.2kB and 2.6kB arising from alterative polyadenylation 

(Horowitz et al., 1989). GBA1 mRNA has two in frame methionine start codons located in exons 

1 and 2 respectively (Horowitz et al., 1989). Both methionine codons are translated to produce 

the functional protein (Horowitz et al., 1989). GCase translated from start codon 1 contains a 39-

amino acid long signal peptide whereas the signal peptide for GCase from exon 2 is 19-amino 

acids long (Sorge et al., 1985; Sorge et al., 1987). Both mRNA strands are ultimately translated 

and processed into 496 amino acid long mature GCase after removal of signal peptides, a 

common occurrence for secreted peptides (Horowitz et al., 1989).  

 

1.2.3. Glucocerebrosidase enzyme 

GCase is a membrane associated lysosomal hydrolase enzyme, the mature form of which is 

comprised of 496 amino acids and has molecular weight of approximately 60kDa depending upon 

glycosylation (Horowitz et al., 1989). It is ubiquitously expressed in all types of tissues (Migdalska-

Richards and Schapira, 2016). Structurally, GCase is comprised of three non-continuous domains 

with domains I and II designated as non-catalytic (Kacher et al., 2008). Domain I is comprised of 

a triple stranded anti-parallel β-sheet containing two disulphide bridges which are likely involved 

in GCase folding (Kacher et al., 2008). Domain II consists of two b-sheets forming an 
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immunoglobulin-like domain (Kacher et al., 2008). Although these domains are non-catalytic and 

the functions are not fully understood, the location of several mutations throughout these domains 

suggest an important regulatory role. Domain III contains the (β/α)8 (TIM) barrel catalytic site 

(Kacher et al., 2008). Residue Glu235 serves as the acid/base and Glu340 as the nucleophile in 

the catalytic cycle (Kacher et al., 2008). Human GCase is glycosylated at 4 out of 5 available 

asparagine residues and glycosylation is required for catalytic function (Migdalska-Richards and 

Schapira, 2016).  

 

GCase is translated in endoplasmic reticulum (ER) bound polyribosomes into a 56kDa 

polypeptide, from where it translocated through the ER (Erickson et al., 1985). Passage through 

the ER is accompanied by cleavage of a leader sequence and N-linked glycosylation of 4 

asparagine resides (Erickson et al., 1985). High mannose sugars are modified as GCase moves 

through the Golgi apparatus (Erickson et al., 1985). GCase is further modified via sugar residues 

in the Golgi before being trafficked to the lysosome as a mature protein by a mannose 6 

phosphate receptor independent pathway utilising the GCase specific receptor, LIMP 2 (Reczek 

et al., 2007). LIMP 2 a highly abundant type 3 transmembrane protein essential for GCase 

function since it is crucial for targeting GCase to the lysosome (Reczek et al., 2007). GCase binds 

to a coiled-coil domain in the luminal domain of LIMP 2 in the neutral pH of the ER, where the 

complex persists through the Golgi apparatus and endosomes (Reczek et al., 2007). When the 

LIMP 2-GCase complex reaches the lysosome, dissociation occurs in a pH dependent manner 

(Reczek et al., 2007; Gruschus et al., 2015) (Figure 1). LIMP 2 deficient mice and humans have 

significantly reduced GCase enzyme activity and associated elevation of serum GCase since 

GCase does not reach the lysosome, accompanied by accumulation of a-synuclein (Reczek et 

al., 2007; Rothaug et al., 2014). SCARB2, the gene encoding LIMP 2 has been genetically linked 

to PD and DLB supporting the hypothesis that LIMP 2 is central to a-synuclein homeostasis within 

the lysosome (Do et al., 2011; Michelakakis et al., 2012; Hopfner et al., 2013; Bras et al., 2014). 

 

Saposin C (SapC) is a requisite enzyme activator molecule for optimal GCase enzymatic activity 

(Grabowski et al., 1990). Saposins are a set of small glycoproteins generated in the endosome 

via proteolysis of a 73kDa precursor protein, prosaposin, encoded by PSAP1 (Tamargo et al., 

2012). Each saposin is approximately 80 amino acids with 6 similarly located cysteine residues 
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that confer heat stability and a characteristic tertiary structure through the formation of three 

conserved disulphide bridges (Tamargo et al., 2012). Mature saposins A-D assist lysosomal 

hydrolases in the degradation of sphingolipids (Tamargo et al., 2012). SapC is the specific 

activator of GCase enzyme (Tamargo et al., 2012). The mechanisms by which SapC promotes 

lysosomal hydrolysis are unknown but Forster resonance energy transfer studies suggest SapC 

interacts with both GCase and the phospholipid membrane, bringing them together so GCase 

can hydrolyse endogenous GluCer (Alattia et al., 2007). Sap C may also help extract and 

solubilise the lipid substrate from the membrane to facilitate GCase access for GluCer hydrolysis 

(Alattia et al., 2007). Additionally, SapC is also able to protect GCase from proteolytic 

degradation, a protective effect not observed with other saposins (Sun et al., 2003).  

 

Evidence suggests that a-synuclein and SapC compete for binding to GluCer and that SapC 

binding can induce the release of a-synuclein from GCase alleviating an inhibitory effect of a-

synuclein on GCase enzyme activity (Yap et al., 2013b). Mutations in SapC result in significantly 

reduced GCase enzyme activity and accumulation of lipids causing a rare form of the lysosomal 

storage disorder Gaucher’s disease (Vaccaro et al., 2010). 

 

  
Figure 1 - Trafficking of GCase to the lysosome. Compiled and adapted from (Westbroek et al., 2011) 
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1.2.4. Glycosphingolipid metabolism 

GCase cleaves the glycosidic bond in the glycosphingolipid glucosylceramide (GluCer) to form 

the constituent parts glucose and ceramide (Brady et al., 1965). Glycosphingolipids (GSLs) are 

ceramides with linked oligosaccharides of variable composition predominantly found in the 

plasma membrane of almost all cell types (Kolter and Sandhoff, 2010). The brain has the highest 

content of complex GSLs with particular abundance in neurons (Massimo et al., 2016). Located 

asymmetrically in the extracellular leaflet of the plasma membrane specifically within 

microdomains known as lipid rafts, GSLs have important roles in regulating membrane fluidity 

(Morad and Cabot, 2013). Additionally, GSLs are bioactive effectors in cellular functions such as 

apoptosis and proliferation (Morad and Cabot, 2013; Massimo et al., 2016). 

 

GluCer represents a key juncture in glycosphingolipid metabolism (Astudillo et al., 2016). Over 

90% of all mammalian glycosphingolipids including complex gangliosides and sulfatides essential 

for mammalian function are derived from GluCer through a ceramide glucosylation reaction in the 

lumen of the late Golgi (Astudillo et al., 2016). Unsurprisingly therefore, GluCer is absolutely 

essential for mammalian development with homozygous mutation within Ugcg, the gene encoding 

GluCer synthase, being embryonically lethal (Astudillo et al., 2016). 

 

Generation of GluCer is dependent upon the transfer of constituent molecules to the cis-Golgi 

followed by transportation to the late Golgi (Gault et al., 2010). Ceramide can be galactosylated 

in the ER, to produce galactosylceramide (GalCer) or it can be transported to the Golgi complex, 

reaching the cis-Golgi through vesicular transport to be glucosylated producing GluCer (Gault et 

al., 2010). The glucosylation of ceramide is catalysed by the enzyme GluCer synthase (D'Angelo 

et al., 2013). GluCer is produced on the cytosolic leaflet of the early Golgi membranes and is 

translocated to the luminal membrane leaflet of the Golgi via vesicular trafficking for further 

glycosylation (D'Angelo et al., 2013). Alternatively, GluCer can be picked up from the cis-Golgi 

membranes by the lipid transfer protein FAPP2 for delivery to the trans Golgi network, where it is 

translocated to the luminal membrane leaflet of the Golgi and trans Golgi network (D'Angelo et 

al., 2013). 

 

Once in the trans Golgi network, GluCer is galactosylated to produce lactosylceramide (LacCer) 

which once produced cannot be translocated back to the cytosolic leaflet of Golgi membranes 
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(D'Angelo et al., 2013). LacCer functions as the branching point for the formation of the different 

classes of complex GSLs including GA2, GM3, Gb3 and Lc3 which form the precursors for 

synthesis of GSLs belonging to the asialo, ganglio, globo and laco series respectively (D'Angelo 

et al., 2013). From the trans Golgi network, GSLs are transported to the plasma membrane in 

membrane bound transport carriers (D'Angelo et al., 2013). At the plasma membrane, GSLs can 

undergo partial remodelling through the action of specific glycosidases or can be transported 

along endocytic routes from the plasma membrane to lysosomes for degradation by specific 

glycosidases e.g. GCase (Kolter and Sandhoff, 2010). GSLs undergo stepwise dismantling of 

glycan moieties until ceramide is remaining (Kolter and Sandhoff, 2010). Ceramide in lysosomes 

is catabolized by acid ceramidase to produce a fatty acid and sphingosine, which can be 

transported to the ER and used for the synthesis of GSLs – the salvage pathway of ceramide 

production (Kolter and Sandhoff, 2010) (Figure 2). 

 

  

Figure 2 - Summary of glycosphingolipid metabolism. Compiled and adapted from (Kleene and 
Schachner, 2004) 
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1.2.5. Non-lysosomal glucocerebrosidase – GBA2 and GBA3 

GluCer accumulation characteristic of the lysosomal storage disorder Gaucher’s disease (GD) is 

predominantly seen in tissue macrophages (Stirnemann et al., 2017). Since GluCer is 

ubiquitously expressed, it raises the question whether another enzyme present in specific tissues 

could be compensating for GCase enzyme deficiency present in other cells. 

 

GBA2 was first characterised in 1993 where the fundamental properties of the enzyme were 

described as: strongly membrane bound; not located in lysosomes and not deficient in GD (van 

Weely et al., 1993). While the GCase enzymes transcribed by GBA1 and GBA2 can hydrolyse 

the same substrate, GluCer, there is no sequence homology and the proteins are encoded by 

different genes (van Weely et al., 1993). GBA2 is found on chromosome 9, mapping position 19.3 

(Massimo et al., 2016). GBA2 mRNA is particularly abundant in brain, heart, skeletal muscle and 

kidney (Massimo et al., 2016). Genetic mutations in GBA2 can result in hereditary spastic 

paraplegia and cerebellar ataxia (Massimo et al., 2016). 

 

There is some suggestion that GBA2 may have a compensatory role in GBA1 deficient states 

and could possibly be upregulated to limit substrate accumulation (Aureli et al., 2011). GBA2 

knock out mice demonstrate accumulation of GluCer in several tissues that treatment with 

recombinant GBA2 protein is able to reverse (Yildiz et al., 2006). GBA2 enzyme activity is 

significantly increased in GCase deficient mice compared with wild type (Burke et al., 2013). 

However, a recent paper suggests that a negative feedback loop exists between GBA1 and GBA2 

whereby sphingosine build up due to GBA1 enzyme deficiency causes inhibition of GBA2 enzyme 

through the direct binding between GBA2 enzyme and sphingosine (Schonauer et al., 2017). 

Consequently, further accumulation of sphingosine leads to cytotoxicity (Schonauer et al., 2017). 

Additionally, GBA2 hydrolyses glucosylsphingosine, an alternative product of GluCer metabolism 

through the action of acid ceramidase enzyme, producing sphingosine (Ferraz et al., 2016a) 

 

GBA3 has also been identified. GBA3 enzyme is cytosolic in cells of the kidney, liver, spleen, 

intestines and lymphocytes (Dekker et al., 2011a). While the function of GBA3 is unclear, it is 

known that GBA3 does not modify GD (Dekker et al., 2011a). Despite this, relatively high GCase 

enzyme activity attributable to neither GBA1 nor GBA2 has been reported in normal and GCase 

deficient fibroblasts (Dekker et al., 2011a). 
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1.3. Gaucher’s Disease 

First described in 1882 by Phillipe Gaucher, Gaucher’s disease (GD) is a rare autosomal 

recessive genetic disorder occurring with an incidence of 1 in 40-60,000 live births, increasing to 

1 in 800 within the Ashkenazi Jewish population (Grabowski, 2008). The most common of the 

sphingolipidosis classification, GD is caused by homozygous mutation in GBA1, and very rarely, 

mutation in PSAP; the gene encoding the GCase activator protein Saposin C (Vaccaro et al., 

2010; Kang et al., 2018).  

 

1.3.1. Gaucher cells and glucosylceramide 

As a consequence of homozygous GBA1 mutation, residual GCase enzyme deficiency within the 

lysosome is reduced to between 5 and 20% of normal levels (Aerts et al., 2008). GluCer, the 

natural substrate of GCase enzyme, accumulates 5-10-fold, principally in tissue macrophages 

giving rise to characteristic ‘Gaucher cells’ - swollen macrophages of 20-100µM diameter (Parkin 

and Brunning, 1982). As seen by light microscopy Gaucher cells have distinctive features: 

enlargement; eccentric nuclei; condensed chromatin and a cytoplasm with heterogeneous 

appearance, all related to the presence of GluCer aggregates within the cell (Parkin and Brunning, 

1982). Cells of monocyte / macrophage lineage are preferentially affected in GD due to their 

function in eliminating erythrocytes and leukocytes which contain large amounts of 

glycosphingolipids (Parkin and Brunning, 1982). Gaucher cells subsequently go on to infiltrate 

various tissues most commonly the spleen, liver, bone marrow and rarely the lungs (Boven et al., 

2004). Massive infiltration of Gaucher cells alone does not explain the multifaceted characteristics 

of GD (Boven et al., 2004). Gaucher cells can cause secondary activation of macrophages, 

including activation of the inflammatory cascade and release of lysosomal proteins (Boven et al., 

2004). Once such protein, the enzyme chitotriosidase, an enzyme selectively activated in tissue 

macrophages, is produced in Gaucher cells and is raised up to a 1000-fold compared with healthy 

individuals, serving as a diagnostic marker for GD (Aerts et al., 2008; Sheth et al., 2010). 

 

1.3.2. Glucosylsphingosine 

Glycosphingolipid metabolism is complex. GluCer is a substrate for an alternative pathway in 

which acid ceramidase can de-acylate GluCer into glucosylsphingosine (GluSph) (Ferraz et al., 

2016a) (Figure 3). Although GluCer is the primary lipid which accumulates in GD, GluSph is also 
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significantly elevated, over 100-fold, due to increased availability of GluCer substrate (Nilsson 

and Svennerholm, 1982; Ferraz et al., 2014; Murugesan et al., 2016). GluSph has reduced 

hydrophobicity and is able to diffuse out of the lysosome into fluids and tissues, notably the brain, 

where it is able to affect wide spread consequences implicated in the heterogeneous symptoms 

of GD (Ferraz et al., 2016a).  

 

 

 

In the cytoplasm, GluSph is hydrolysed by an alternative GCase enzyme derived from GBA2 that 

is active at neutral pH, producing sphingosine and then sphingosine-1-phosphate which are 

considered to be toxic metabolites (Dekker et al., 2011b; Mistry et al., 2014; Ferraz et al., 2016b). 

GluSph is considered to play a key role in neuronal injury accompanying types 2 and 3 GD 

(Dekker et al., 2011b). Since GluCer turnover in neurons in low, accumulation of GluCer is only 

significant and available for metabolism by acid ceramidase when residual GCase activity is 

drastically reduced as seen with types 2 and 3 GD (Orvisky et al., 2002). Accordingly, GluSph is 

not normally present in the brain, but is present in the brain of GD patients with neurological 

involvement even in the absence of stereotypical Gaucher cells (Nilsson and Svennerholm, 1982; 

Stirnemann et al., 2017). 

Figure 3 - Production of glucosylsphingosine and metabolites. Compiled and adapted from (Mistry et 
al., 2014)  
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1.3.3. Symptoms 

GD varies hugely in clinical presentation with multi organ involvement illustrated by the continuum 

of phenotypes. There are three distinguishable major phenotypic presentations of GD: type 1 

(non-neuronopathic); type 2 (acute neuronopathic); and type 3 (sub-acute neuronopathic). 

 

1.3.3.1. Type 1 

Type 1 is by far the most common presentation of GD, accounting for 90-95% of patients in 

Europe and north America (Stirnemann et al., 2017). It is distinguishable from types 2 and 3 

through the absence of neurological involvement and is essentially a macrophage disorder 

(Stirnemann et al., 2012). Clinical presentation is extremely variable and can even be 

asymptomatic throughout life (Stirnemann et al., 2012). The characteristic feature of type 1 GD is 

splenomegaly, which is seen in over 90% of patients, followed by hepatomegaly in 60-80% 

(Stirnemann et al., 2017). These patients also have a 5 times increased incidence of gallstones 

and may also suffer from blood disorders, pulmonary involvement and characteristic bone 

disorders especially in the pelvis and lower limbs (Stirnemann et al., 2017).  

1.3.3.2. Type 2 

Type 2 GD is the most severe form of GD and accounts for less than 5% of diagnosed cases 

(Tylki-Szymanska et al., 2010). It is characterised by early and severe neurological involvement 

first seen in infants between the age of 3-6 months following characteristic hepatosplenomegaly 

(Tylki-Szymanska et al., 2010). Type 3 GD is usually diagnosed by the presence of a highly 

suggestive triad of neurological symptoms: rigidity of the neck and trunk (opisthotonos), bulbar 

signs (severe swallowing disorders) and oculomotor paralysis (bilateral fixed strabismus). 

Following these suggestive symptoms, trismus and hypertonia can be seen and associated with 

pyramidal rigidity (Tylki-Szymanska et al., 2010). Apnoea, altered psychomotor development and 

myoclonic epilepsy can follow (Tylki-Szymanska et al., 2010). 

1.3.3.3. Type 3  

Type 3 GD accounts for approximately 5% of all diagnosed cases and comprises of the visceral 

symptoms of type 1 GD combined with neurological involvement (Grabowski et al., 2015). 

Neurological involvement is far less severe compared to that seen in type 2 and is usually 

diagnosed before the age of 20 (Grabowski et al., 2015). Type 3 GD is considered a slowly 

progressing form of neuronopathic GD, in which patients can live in to their 60s (Tylki-Szymanska 

et al., 2010). As with the other forms of GD, symptoms are highly heterogeneous particularly the 
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neurological symptoms which can range from mild such as horizontal opthalmoplegia, to more 

severe including: myoclonus epilepsy, cerebellar ataxia, spasticity and dementia (Grabowski et 

al., 2015). The type 3 associated D409H mutation is specifically associated with cardiac 

involvement (Grabowski et al., 2015). 

 

1.3.4. Mutation dosage effect 

The wide variability of symptoms amongst individuals with the same genotype and vice versa, 

including between twins, has made it increasingly difficult to categorise GBA1 mutations into the 

3 classic types of GD (Hruska et al., 2008). Compounding the difficulty with the classification 

approach is the fact that the majority of mutations identified are not found solely in the 

homozygous form therefore the combination of different mutations on both alleles is the 

determining factor of phenotype (Grabowski, 2008). It may be more accurate to consider the 

associated phenotypes as a continuum with the major distinction being the presence or degree 

of neurological involvement (Sidransky, 2004). However, there are some established genotype-

phenotype correlations. 

 

N370S is encountered only in patients with type 1 GD (Huang et al., 2015). However, some 

individuals homozygous for N370S mutation are asymptomatic. While the homozygous N370S 

genotype is associated with type 1 GD, the presence of one N370S mutant allele prevents the 

development of neurological manifestations even in combination with mutations considered 

severe (Huang et al., 2015). Accordingly, N370S is considered a mild mutation in GBA1. 

 

GD patients with neurological involvement, typically those with type 3, predominantly carry: 

L444P, R463C, N188S, G377S or V394L mutant alleles (Hruska et al., 2008) (Table 3). 

Accordingly, these mutations are classified as severe. However, the presence of one of these 

alleles in combination with a null allele is more likely to invoke a more severe type 2 phenotype, 

highlighting the importance of the combination of mutant alleles, presumably on residual GCase 

enzyme activity (Hruska et al., 2008). However, even residual GCase enzyme activity does not 

appear to be associated with patient phenotype, implying genetic or environmental modifiers are 

critical (Hruska et al., 2008).  
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Genotype-phenotype correlations have been examined in the limited number of cases with pure 

homozygous genotypes uncovering a clear gene dosage effect with some alleles. Homozygous 

mutation for K79N, N188S or G377S clearly results in type 1 GD, whilst compound heterozygosity 

with a null allele leads to type 3 phenotype (Hruska et al., 2008). Similarly, homozygosity for F213I 

or L444P usually leads to a type 3 phenotype, whilst compound heterozygosity with a null allele 

leads to a type 2 phenotype (Hruska et al., 2008) (Table 3) 

 

 

  

Table 3- Classification of mutant GBA1 alleles based upon genotype-phenotype correlations. 
Compiled from (Sidransky, 2004; Hruska et al., 2008; Huang et al., 2015) 
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1.3.5. Pharmacological treatment 

1.3.5.1. Enzyme replacement therapy (ERT) 

The principle behind ERT is simple - to replace deficient GCase enzyme in cells, particularly 

Gaucher cells, with functioning GCase to reduce accumulation of GluCer substrate thereby 

improving symptoms (Barton et al., 1991). 26 years following the description of GCase enzyme 

deficiency characteristic of GD, macrophage targeted GCase, alglucerase, was FDA approved 

for non-neurological forms of GD (Barton et al., 1991). 

 

The original ERT therapeutic alglucerase was extracted from human placenta and 

deglycosylated, exposing mannose sugars required for uptake by macrophage receptors and 

subsequent transport to lysosomes (Bembi et al., 1994). As technology has developed, ERT now 

uses Chinese hamster ovary cell derived recombinant GCase enzyme (CerezymeÒ) (Serratrice 

et al., 2016). CerezymeÒ is the current treatment standard for type 1 GD (Serratrice et al., 2016). 

Treatment results in a striking and rapid reversal of many aspects of type 1 GD (Serratrice et al., 

2016). It is highly effective at reversing characteristic symptoms such as hepatosplenomegaly, 

cytopenia and osteopenia (Serratrice et al., 2016). CerezymeÒ also enhances quality of life and 

reverses growth retardation (Serratrice et al., 2016). CerezymeÒ does not modify neurological 

manifestations of GD, and so is ineffective for type 2 GD (Bembi et al., 1994). This is partially 

explained by the inability of the recombinant enzyme to cross the blood brain barrier (Altarescu 

et al., 2001). However, delivery of recombinant GCase directly infused into the cerebral spinal 

fluid or directly into the brainstem of infants with type 2 GD does not attenuate neurological 

symptoms either (Bembi et al., 1994; Lonser et al., 2007). The introduction of ERT has drastically 

reduced the number of GD patients requiring splenectomy (Mistry et al., 2017). Since treatment 

generally begins before irreversible complications occur severe manifestations of type 1 GD are 

now rarely seen in the clinic (Mistry et al., 2017).  

 

1.3.5.2. Substrate reduction therapy (SRT) 

Glycosphingolipids are synthesised in the Golgi apparatus by addition of monosaccharides to 

ceramide through the sequential action of glycotransferase enzymes as discussed in section 

1.2.4. SRT is based upon inhibition of one of these enzymes – glucosylceramide synthase (GCS) 

– responsible for generating GluCer, the natural substrate of GCase enzyme (Coutinho et al., 
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2016). The principle behind GCS inhibition is to reduce the amount of GluCer produced that needs 

metabolising in the lysosome since GCase enzyme activity in GD is deficient (Aerts et al., 2006; 

Coutinho et al., 2016). Rebalancing the synthesis and catabolism of GluCer may therefore 

address characteristic symptoms caused by the accumulation of GluCer in macrophages 

(Coutinho et al., 2016).  

 

NB-DNJ, later known as miglustat, was the first SRT compound targeting GCS (Aerts et al., 2006). 

It was authorised by the European Medicines Agency in 2002 for the treatment of mild to 

moderate type 1 GD where ERT is not suitable (Aerts et al., 2006). Structurally, a N-alkylated 

imino sugar, miglustat is a structural mimic of monosaccharides other than the replacement of 

the ring oxygen for a nitrogen atom (Butters et al., 2005). Miglustat was a known compound, 

tested previously in HIV patients having acted as an inhibitor of HIV replication in vitro but was 

unsuccessful in clinical trials (Butters et al., 2005). This profile of miglustat aided the repurposing 

of the drug for use in the Gaucher’s clinic. Miglustat is able to demonstrate effective reduction in 

the size of the liver and spleen, key outcome measures for type 1 GD therapeutics (Aerts et al., 

2006). Furthermore, miglustat reduces the expression of the surrogate GD biomarker 

chitotriosidase significantly compared with placebo (Aerts et al., 2006; Shemesh et al., 2015; 

Stirnemann et al., 2017). However, efficacy on haematological parameters is limited and despite 

being able to cross the blood brain barrier, miglustat is unable to attenuate neurological defects 

(Van Rossum and Holsopple, 2016). Additionally, miglustat is reported to be an inhibitor of non-

lysosomal GCase produced by GBA2 and also exhibits some functionality as a chaperone 

molecule, facilitating transport of mutant GCase to the lysosome (Butters et al., 2005; Ridley et 

al., 2013).  

 

A second ERT, eliglustat, achieved market authorisation in 2015 (Sechi et al., 2016). Eliglustat, 

an analogue of ceramide, is a more specific and potent inhibitor of GCS (Sechi et al., 2016). It 

has significantly greater efficacy compared to placebo and non-inferiority to CerezymeÒ when 

tested over 2 years (Cox et al., 2015; Sechi et al., 2016). These factors combined mean eliglustat 

can be considered as a first line treatment for type 1 GD, an oral daily treatment as an alternative 

to i.v. injection fortnightly with CerezymeÒ  (Cox et al., 2015). However, eliglustat requires patient 

specific evaluation of variables (Sechi et al., 2016). Patients also need to be genotyped for 
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CYP2D6 metabolism status and eliglustat is contraindicated in patients with certain heart 

conditions (Sechi et al., 2016; Van Rossum and Holsopple, 2016).  
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1.4. Genetic association between GD and synucleinopathies 

Heterozygous mutations in GBA1 have become established as the most common genetic risk 

factor for PD (Sidransky et al., 2009a). Furthermore, GBA1 insufficiency has been strongly linked 

with an enhanced cognitive impairment phenotype in PD (Neumann et al., 2009). Heterozygous 

GBA1 mutation has subsequently been associated with both Parkinson’s disease dementia and 

dementia with Lewy bodies (Sidransky et al., 2009b; Nalls et al., 2013).  

 

1.4.1. Clinic based observations 

Unlike the standard methods used to identify risk genes using genome wide associations studies 

(GWAS) and more recently next generation genome sequencing, GBA1 heterozygosity was first 

identified as a genetic risk factor for PD though clinical observations of GD patients and their first-

degree relatives (Neudorfer et al., 1996).  

 

The link between mutations in GBA1 and PD was first postulated in the 1990s following the 

publication of several striking case studies of GD patients displaying parkinsonism symptoms 

(Neudorfer et al., 1996). Neudorfer et al described six patients with classical type 1 GD who by 

the mean age of 49 had developed parkinsonism symptoms and similar reports of L-DOPA 

refractory parkinsonism manifestations including tremor, bradykinesia, rigidity and often cognitive 

decline soon followed (Neudorfer et al., 1996; Bembi et al., 2003; Tayebi, 2003; Goker-Alpan et 

al., 2004). Intriguingly, it was also noted that up to 25% of first degree relatives of GD patients 

also developed parkinsonism symptoms (Goker-Alpan et al., 2004; Halperin et al., 2006). 

Collectively, these clinical observations prompted a plethora of genetic association studies in an 

attempt to establish the mutation frequency of GBA1 in sporadic PD and the degree to which 

mutations in GBA1 increase susceptibility to PD.  

 

1.4.2. Genetic studies 

1.4.2.1. PD 

The first genetic study looking at the frequency of GBA1 mutations in PD was reported in 2004 

(Aharon-Peretz et al., 2004). Aharon-Peretz et al studied the occurrence of 6 of the most common 

GBA1 mutations in idiopathic PD, AD and healthy Ashkenazi Jewish populations (Aharon-Peretz 

et al., 2004). Mutations in GBA1 were found in a startling 31.3% of PD patients, compared with 
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4% of AD patients and 6.2% of healthy controls (Aharon-Peretz et al., 2004). In the same year, 

Lwin et al sequenced all exons in a small cohort of sporadic PD patients (n=57) and controls 

(n=44) excluding those of Ashkenazi Jewish heritage (Lwin et al., 2004). GBA1 mutation 

frequency was reported at 21% in PD and 0% in the non-demented control cohort (Lwin et al., 

2004). Several genetic studies of GBA1 mutation frequency in PD followed which differed in the 

ethnicity of cohorts and sequencing of the gene, making comparison and interpretation difficult. 

GBA1 mutation frequencies in all studies excluding Ashkenazi Jewish populations are 

summarised in Table 4. When categorised by ethnicity, the mutation frequency in European PD 

patients was between 2.3% and 10.24% (Toft et al., 2006; Moraitou et al., 2011), 1.8% and 8.7% 

in Asian PD patients ((Hu et al., 2010; Yu et al., 2015) and between 2.9% and 12% in north and 

south American PD patients (Eblan et al., 2005; Mata et al., 2008).  

 

Owing to the variations in study methods and cohorts, a large multicentre meta-analysis was 

performed to give a definitive GBA1 mutation frequency in PD (Sidransky et al., 2009b). 5491 

patients with sporadic PD and 4898 controls were included across the 16 participating centres 

(Sidransky et al., 2009b). When the whole gene was sequenced in non-Ashkenazi Jewish PD 

patients, GBA1 mutation frequency was 6.9% compared with less than 1% in controls (Sidransky 

et al., 2009b). When genotyping specifically for N370S and L444P, mutation frequency was 3% 

in PD patients compared with less than 1% in controls (Sidransky et al., 2009b). The presence of 

any GBA1 mutation was associated with an odds ratio of 5.43 across all centres: PD subjects are 

5.43 times more likely to harbour a GBA1 mutation than controls (Sidransky et al., 2009b).  

 

Studies of relative risk have found that GBA1 homozygotes have a 20-fold increased risk for 

developing PD in their lifetime (Bultron et al., 2010), while GBA1 heterozygotes are at 30-fold 

increased risk of developing PD (McNeill et al., 2012). Not all carriers of GBA1 mutations go on 

to develop PD. The penetrance (age specific cumulative PD risk) of PD in GBA1 mutation carriers 

has been reported at 29.7%, 15% and 10.9% respectively by the age of 80 (Anheim et al., 2012; 

McNeill et al., 2012; Rana et al., 2013). Confirmation of GBA1 as a strong risk loci for PD has 

come from a meta-analysis of GWAS studies in PD (Nalls et al., 2014). Having examined 13,708 

sporadic PD cases and 95,282 controls, GBA1 was one of 4 risk loci following conditional 

analyses to contain a secondary independent risk variant (Nalls et al., 2013). While the effect of 
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the individual GBA1 loci may be small, risk profiles show a substantial cumulative risk (Nalls et 

al., 2014). 

 

1.4.2.2. DLB 

Far fewer genetic association studies looking at GBA1 mutation frequency and relative risk in 

DLB have been carried out, predominantly due to the difficulties surrounding accurate diagnosis 

of DLB in the clinic, limiting most studies to pathologically confirmed cases of DLB as discussed 

in section 1.1.2.  

 

GBA1 mutation frequency appears to be even higher in DLB compared with PD. Studies which 

sequenced the entire gene or coding sequences reported relatively consistent mutation 

frequencies of 8.50%, 12.61% and 8.80% respectively compared with less than 1% in controls 

(Tsuang et al., 2012; Gamez-Valero et al., 2016; Geiger et al., 2016). Variation between 13.8% 

and 3.50% was seen in cases which had exons 8 and 9 sequenced and the SNPs N370S and 

L444P genotyped, respectively (Mata et al., 2008; Asselta et al., 2014) (Table 5). 

 

Following the example of the large collaborative study of GBA1 mutations in PD (Sidransky et al., 

2009b), a large multicentre meta-analysis of GBA1 mutations in DLB was performed in 2013 

(Nalls et al., 2013). The study included 721 DLB cases and 1962 controls. Overall, GBA1 mutation 

frequency in DLB was 7.49% compared with less than 1% in controls (Nalls et al., 2013). When 

stratified by samples which had the entire gene sequence, GBA1 mutation frequency in DLB was 

7.57% compared with 1.48% in controls (Nalls et al., 2013). This robust finding supports 

independent studies reporting GBA1 mutation frequency in DLB at approximately 8% (Tsuang et 

al., 2012; Gamez-Valero et al., 2016). The presence of any GBA1 mutation was associated with 

an odds ratio of 8.28 across all centres: DLB subjects are 8.28 times more likely to harbour a 

GBA1 mutation than controls (Nalls et al., 2013). A genetic study including relative risk reported 

than GBA1 heterozygotes have a 20-fold increased risk of developing DLB in their lifetime 

(Asselta et al., 2014). Interestingly, while GBA1 was not a hit in a large scale GWAS, SCARB2 

was identified as the 3rd strongest risk factor for DLB (Bras et al., 2014). Since SCARB2 encodes 

LIMP 2, the specific GCase receptor necessary for lysosomal trafficking, accumulated evidence 

suggests that GCase is strongly implicated in DLB. Furthermore, heterozygous GBA1 mutations 
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appear to strongly associate with sex; 90% of GBA1 mutation carriers in a DLB cohort being male 

(Gamez-Valero et al., 2016). 

 

1.4.2.3. PDD 

Very few studies have investigated the genetic association between GBA1 mutations and PDD 

specifically. As with DLB, this is because of the difficulties in accurate diagnosis, coupled with the 

consideration of PDD as a continuum of PD. Despite these problems, a significant study involving 

151 PDD cases and 1962 controls found GBA1 mutation frequency overall to be 5.96% compared 

with less than 1% in controls (Nalls et al., 2013). When stratified by samples which underwent 

whole gene sequencing, mutation frequency in PDD was 8% and 1.48% in controls, almost 

identical to DLB (Nalls et al., 2013). The presence of any GBA1 mutation was associated with an 

odds ratio of 6.48 across all centres: PDD subjects are 6.48 times more likely to harbour a GBA1 

mutation compared to controls (Nalls et al., 2013). 
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Reference PD Cases Control Cases Method Ethnicity Mutation frequency PD Mutation frequency control Significant Odds 
Ratio 

(Torok et al., 2016) 124 122 N370S,L444P,R120W Hungarian 2.40% 0% yes   

(Asselta et al., 2014) 2350 1111 Exons 8 and 9  Italian 4.50% 0.63% yes   

(Wang et al., 2012) 208 298 N370S,L444P,R120W Chinese 3.40% 0% yes 10.2 

(Moraitou et al., 2011) 205 206 8 mutations Greek 10.24% 3.40% yes 3.24 

(Dos Santos et al., 2010) 110 155 5 mutations Brazilian 5.40% 0% yes   

(Hu et al., 2010) 328 300 N370S Han Chinese 1.80% 0.29% no   

(Sun et al., 2010) 402 413 4 mutations Chinese 2.74% 0% yes   

(Mao et al., 2010) 616 411 L444P Chinese 3.20% 0.20% yes 13.76 

(Mata et al., 2008) 721 554 N370S and L444P USA 2.90% 0.40% yes   

(De Marco et al., 2008) 395 483 N370S and L444P Italian 2.80% 0.20% yes 13.8 

(Spitz et al., 2008) 65 267 N370S, L444P, G377S Brazilian 3.00% 0% yes 21.06 

(Wu et al., 2007) 518 339 L444P, RecNcil, R120W Taiwanese 2.10% 1.20% no   

(Toft et al., 2006) 331 472 N370S and L444P Norwegian  2.30% 1.70% no   

(Han et al., 2016) 225 110 All exons Canadian 4.40% 0.90% yes   

(Pulkes et al., 2014; Yu et al., 
2015) 

184 130 All exons Chinese 8.70% 1.54% yes 6.09 

(Pulkes et al., 2014) 480 395 All exons Thai 4.98% 0.50% yes   

(Choi et al., 2012) 227 291 All exons Korean 3.20% 0% yes 20.6 

(Bras et al., 2009) 230 430 All exons Portuguese 6.10% 0.70% yes 9.2 

(Neumann et al., 2009) 790 257 All exons British 4.18% 1.17% yes 3.7 

(Clark et al., 2007) 278 179 All exons Mixed 13.70% 4.50% yes 3.4 

(Ziegler et al., 2007) 92 92 All exons Taiwanese 4.30% 1.10% yes   

(Lwin et al., 2004) 57 44 All exons Unknown 21% 0% yes 
 

(Sidransky et al., 2009b) 1682 1674 All exons Mixed 6.90% <1% yes 5.43 

Table 4 - GBA1 mutation frequency in PD 
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Reference DLB Cases Control Cases Method Ethnicity Mutation frequency DLB Mutation frequency control Significant Odds Ratio 

(Asselta et al., 2014) 29 1111 Exons 8 and 9 Italian 13.80% 0.63% yes   

(Mata et al., 2008) 57 554 N370S and L444P USA 3.50% 0.40% yes   

(Tsuang et al., 2012) 80 391 All exons Caucasian 8.80% 1% yes 7.6 

(Geiger et al., 2016) 111 222 All exons Caucasian USA 12.61% Not reported Not reported   

(Gamez-Valero et al., 2016) 47 131 All exons Spanish 8.50% 0% no   

(Nalls et al., 2013) 721 1962 All exons Mixed 7.49% 0.97% yes 8.28  

Table 5 - GBA1 mutation frequency in DLB 
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1.5. GBA1 associated synucleinopathy 

Owing to the strong association between GBA1 mutations and both PD and DLB, it may be 

expected that the presence of a mutant GBA1 allele may impact the clinical presentation and 

pathology of both conditions when compared with sporadic forms. The impact of GBA1 mutation 

on PD and DLB is summarised below. 

 

1.5.1. GBA-PD 

1.5.1.1. Clinical presentation 

Clinically, GBA-PD is indistinguishable from sporadic PD (sPD). Both forms of PD exhibit the 

classical triad of symptoms: bradykinesia, rigidity and tremor with asymmetric onset (Clark et al., 

2007; Goker-Alpan et al., 2008; Seto-Salvia et al., 2012). However, GBA1 variants affect the age 

of onset, disease progression and presentation of non-motor symptoms. 

 

1.5.1.2. Age of onset 

GBA-PD frequently presents at a significantly earlier age of onset compared with sPD (Goker-

Alpan et al., 2004; Clark et al., 2007; Tan et al., 2007; Gan-Or et al., 2008; Neumann et al., 2009; 

Nichols et al., 2009; Sidransky et al., 2009a; Brockmann et al., 2011; Chahine et al., 2013; Davis 

et al., 2016a; Jesus et al., 2016). Variation in the age of onset reported can be attributed to the 

different clinical tests used to diagnose PD, but on average the age of onset in GBA-PD is 

between 49 and 59 years old compared with between 56 and 64 years old in sPD (Neumann et 

al., 2009; Jesus et al., 2016). The proportion of patients presenting with symptoms before the age 

of 50 is significantly higher in GBA-PD (Neumann et al., 2009; Nichols et al., 2009). Linear 

regression models predict the age of onset in the presence of GBA1 variants is 6.04 years earlier 

than sPD (Nichols et al., 2009). 

 

1.5.1.3. Progression of motor symptoms 

Progression of parkinsonism motor symptoms is significantly greater in GBA-PD as measured by 

progression to Hoehn & Yahr scale (H&Y) level 3 and UPDRS III scoring (Winder-Rhodes et al., 

2013; Beavan et al., 2015; Davis et al., 2016b). While there is no difference in response to L-

DOPA (Neumann et al., 2009), dyskinesia is more common in GBA-PD which could be related to 

higher doses and longer duration of L-DOPA therapy in GBA-PD patients as a consequence of 
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progression to more severe PD (Clark et al., 2007; Davis et al., 2016b; Jesus et al., 2016). Motor 

fluctuations have also been reported in 80% of GBA-PD patients compared with 52% in sPD 

(Jesus et al., 2016). Although there is no difference in combined motor symptoms, one study 

indicates that GBA-PD patients are more likely to present with tremor as the first symptom (Clark 

et al., 2007) although Davis et al did not find any difference in the progression of tremor scores 

(Davis et al., 2016b). 

 

1.5.1.4. Cognitive impairment 

GBA-PD patients have repeatedly been reported to be significantly more likely to develop 

cognitive impairment and dementia compared with sPD (Goker-Alpan et al., 2008; Neumann et 

al., 2009; Sidransky et al., 2009a; Brockmann et al., 2011; McNeill et al., 2012; Seto-Salvia et al., 

2012; Chahine et al., 2013; Beavan et al., 2015; Jesus et al., 2016). On average, the proportion 

of GBA-PD patients who develop cognitive impairment is approximately 50% compared with 20-

30% of sPD. Cognitive impairment is also seen at an earlier age of onset in GBA-PD, with one 

study reporting 40% of GBA-PD patients under the age of 50 showing signs of cognitive 

impairment (Neumann et al., 2009). Unsurprisingly therefore, GBA1 mutation is also a significant 

predictor of progression of dementia (Neumann et al., 2009; Winder-Rhodes et al., 2013; Jesus 

et al., 2016). The risk of progression to dementia is increased five-fold when comparing GBA-PD 

to non-mutant PD patients (Winder-Rhodes et al., 2013). Combined, the clinical findings strongly 

implicate GBA1 mutations in the development and severity of PDD.  

 

1.5.1.5. Non-motor symptoms 

GBA-PD appears to be associated with a stronger non-motor phenotype of PD compared with 

sPD. Visual hallucinations occur more frequently in GBA-PD (Neumann et al., 2009; Jesus et al., 

2016) in addition to symptoms of depression including anxiety and apathy (Brockmann et al., 

2011; McNeill et al., 2012; Beavan et al., 2015). Other non-motor symptoms such as fatigue, 

unexplained pain and constipation also occur more frequently in GBA-PD (McNeill et al., 2012; 

Jesus et al., 2016). Furthermore, the severity of autonomic disturbances such as orthostatic 

symptoms, urinary function, sexual function and bowel function also appear to be more prominent 

in GBA-PD (Brockmann et al., 2011). Additionally, REM sleep disorders are reported in greater 

frequency in GBA-PD patients (McNeill et al., 2012; Jesus et al., 2016) with greater deterioration 

in scores over 2 years (Beavan et al., 2015). Olfactory dysfunction, an early symptom considered 
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a biomarker for PD, is also implicated in GBA-PD, being present in carriers of GBA1 mutation 

without PD symptoms and also deteriorating significantly over 2 years (McNeill et al., 2012; 

Beavan et al., 2015). GBA-PD patients also exhibit increased incidence of retinal thinning as 

determined by optical coherence tomography (McNeill et al., 2013).  

 

1.5.1.6. Imaging 

Transcranial sonography (TCS) shows a comparable degree of substantia nigra 

hyperechogenicity and similar size of the basal ganglia and ventricular system between GBA-PD 

and sPD (Brockmann et al., 2012; Barrett et al., 2013). However, almost 70% of GBA-PD patients 

demonstrate interrupted brainstem raphe nuclei compared with 21% of sPD patients 

demonstrated by reduced echogenicity as assessed by TCS (Brockmann et al., 2011). Disruption 

to the raphe nuclei may potentially explain the increased incidence of depression due to disruption 

of serotonergic transmission (Brockmann et al., 2011). Nigrostriatal imaging with fluorodopa 

positron emission spectroscopy or single photon emission spectroscopy with dopamine sensitive 

ligands demonstrates an asymmetric pattern of abnormality indistinguishable from sPD (Goker-

Alpan et al., 2012; Barrett et al., 2013). Fludeoxyglucose-PET imaging comparing GBA-PD 

patients with asymptomatic GBA1 mutation carriers shows comparable hypometabolism in the 

supplementary motor area (Kono et al., 2010). However, only GBA-PD patients show parietal-

occipital hypometabolism, consistent with greater incidence of cognitive impairment (Kono et al., 

2010; Barrett et al., 2013). Age adjusted analysis of perfusion SPECT shows a significant 

reduction in activity of the posterior parietal and occipital regions in GBA-PD patients compared 

with sPD which was more pronounced in association with the presence of severe mutations such 

as L444P (Cilia et al., 2016). White matter changes are also implicated in GBA-PD (Agosta et al., 

2013). As illustrated by MRI, sPD is not associated with any white matter changes whereas GBA-

PD shows a distributed pattern of white matter abnormalities involving the interhemispheric, 

frontal corticocortical and parahippocampal tracts (Agosta et al., 2013). These abnormalities may 

impact clinical changes, most notable cognitive impairment (Agosta et al., 2013). 

 

1.5.1.7. Neuropathology 

Neuropathologically examined cases of GBA-PD can be considered within the spectrum of 

classical sPD with characteristic nigral dopamine neuronal loss and the deposition of brain stem 

LBs and LNs (Westbroek et al., 2011). In addition to subcortical a-synuclein inclusions, cortical 
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areas corresponding to Braak stages 5 and 6 are routinely present in GBA-PD cases, consistent 

with increased incidence of cognitive impairment (Goker-Alpan et al., 2010). GCase is present in 

a-synuclein containing LB inclusions (Goker-Alpan et al., 2010). While there may not be a 

statistical difference in Braak staging between GBA-PD and sPD, approximately 75% of cases 

fulfil McKeith criteria for diffuse neocortical Lewy body pathology compared with 38% of sPD 

(Neumann et al., 2009). However, when compared by McKeith protocol to give an indication of 

cortical LB burden, there is no statistical difference (Neumann et al., 2009). Increased incidence 

of cortical LBs in GBA-PD has been reported by Clark et al: 82% in GBA-PD compared with 43% 

sPD (Clark et al., 2009). Application of logistic models to adjust for age, sex, APOE4 and clinical 

diagnosis of dementia does not affect the significant association between GBA1 mutation status 

and cortical LB burden (Neumann et al., 2009). However, a more recent study using the outcome 

measure of cortical density of LBs (count/mm2) did not find a statistical association between GBA1 

mutation status and total cortical LB load nor LB load in specific cortical areas (Parkkinen et al., 

2011). 

 

GBA-PD cases are statistically less likely to meet the NIA-RI pathological criteria for AD compared 

with sPD (38% v 63%) (Clark et al., 2009). When assessing cortical density of amyloid plaques 

as an outcome measure, there is no significant difference in total Ab nor Ab in any specific brain 

region (Parkkinen et al., 2011). 

 

Astrogliosis and neuronal cell loss specifically targeted to the hippocampal pyramidal cell layers 

of sub regions CA2-CA4 are seen in GD at post mortem (Wong et al., 2004). LBs are found in 

these same specific sub regions of the hippocampus in GD-PD (Tayebi, 2003). This is particularly 

interesting since these regions have especially high constitutive levels of GBA1 expression 

(Dopeso-Reyes et al., 2017). Furthermore, one of the few disorders that selectively targets the 

neuronal population of CA2-CA4 is DLB, suggesting the association between LBs in these regions 

and GD-PD more than a statistical coincidence (Tayebi, 2003; Wong et al., 2004). Investigation 

of CSF has found that levels of total tau, phosphorylated tau and amyloid beta 1-42 are similar 

between GBA-PD and healthy controls (Lerche et al., 2017). In contrast, lower levels of Ab 1-42 

and higher levels of total tau and phosphorylated tau are associated with worse cognitive 

impairment in sPD patients when compared with healthy controls (Lerche et al., 2017). 
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1.5.1.8. Gene dosage effect 

A gene dosage effect in PD and DLB depending upon the severity of GBA1 mutation (chapter 

1.3.4) has been demonstrated. GBA-PD patients carrying the null mutation 84GG have an odds 

ratio of 14 whilst carriers of the null mutation IVS2+1 have an odds ratio of 42 (Gan-Or et al., 

2008). This compares to an odds ratio of 2.2 associated with the mild mutation N370S implying 

carriers of more severe GBA1 mutations are at increased risk of developing synucleinopathies 

when compared to mild mutation carriers (Gan-Or et al., 2008). Furthermore, severe GBA1 

mutation carriers have a significantly earlier age of motor symptom onset in PD compared to mild 

mutation carriers (Gan-Or et al., 2008; Bultron et al., 2010). Individuals carrying a severe mutation 

in GBA1 are at significantly greater risk for developing dementia (Cilia et al., 2016). Multivariate 

analysis describes a 3-fold increased risk of developing dementia in severe mutation carriers 

(L444P) compared with mild mutation carriers (N370S) (Cilia et al., 2016). Whilst the difference 

in various non-motor and motor symptoms is not significantly different when comparing L444P 

and N370S GBA-PD patients, comparison with sPD patients reveals L444P GBA1 mutation 

results in significantly more severe motor symptoms off medication, more frequent psychotic 

symptoms, apathy and orthostatic hypotension (Cilia et al., 2016). There is no significant 

difference in mortality rate between L444P GBA-PD and N370S GBA-PD patients although 

severe mutation carriers do show a significantly increased mortality risk compared with sPD (Cilia 

et al., 2016). 
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1.5.2. GBA-DLB 

1.5.2.1. Clinical presentation 

There are very few studies evaluating the effect of GBA1 mutation on the clinical presentation of 

DLB. As with GBA-PD, gross presentation of GBA-DLB and non-mutant DLB is indistinguishable 

with the classical hallmarks of DLB also defining GBA-DLB. However, there are some features 

which indicate a more aggressive disease course reflected by an earlier age of onset, more 

frequent hallucinations and poorer performance in cognitive and motor tests, discussed below. 

 

1.5.2.2. Age of onset 

A significantly reduced age of onset associated with heterozygous GBA1 mutation in DLB has 

been reported by three independent studies involving both clinically diagnosed DLB patients and 

neuropathologically confirmed cases (Nalls et al., 2013; Gamez-Valero et al., 2016; Shiner et al., 

2016). Age of onset is consistent between studies, ranging from 63.5 years to 65.7 years in GBA1 

heterozygotes and 68.9 years to 72.1 years in non-mutant DLB controls. This approximate 6-year 

earlier onset of symptoms is consistent with findings in GBA-PD (Nalls et al., 2013; Gamez-Valero 

et al., 2016; Shiner et al., 2016). Interestingly, the non-GD causing E326K polymorphism has the 

opposite effect in PDD, increasing the age of onset to 69 years compared with 55 years in sPDD 

(Gamez-Valero et al., 2016). Heterozygous GBA1 mutations are also associated with an earlier 

age of death, although the age from diagnosis to death is similar (Nalls et al., 2013). 

 

1.5.2.3. Cognitive impairment, hallucinations and REM sleep behaviour 

disorder 

GBA-DLB is associated with a worsening of global cognitive function as assessed by MoCA 

(Shiner et al., 2016). Specifically, GBA-DLB patients perform worse than non-mutant DLB controls 

in phonemic verbal fluency tests and Hooper visual organisation tests (Shiner et al., 2016). This 

suggests poorer executive and visuospatial function implicating the dorsolateral prefrontal cortex 

and visual association areas respectively, both known areas implicated in the pathology of DLB 

(Shiner et al., 2016). Hallucinations are reported with increased frequency in GBA-DLB: 82% 

compared to 55% in non-mutant DLB (Nalls et al., 2013; Shiner et al., 2016). This finding is 

supported by the increased prescribing of antipsychotics in this cohort (Nalls et al., 2013). 

Additionally, REM sleep behaviour disorder has been reported with increased frequency in GBA-
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DLB cohorts (Shiner et al., 2016). Furthermore, REM sleep disorder symptoms are more severe 

as assessed by standard questionnaire-based tools (Shiner et al., 2016). 

 

1.5.2.4. Motor impairment 

GBA-DLB patients have significantly higher motor scores than non-mutant DLB patients 

assessed by both Hoehn and Yahr staging and UPDR stage III scoring, with marked 

extrapyramidal signs more prevalent (Nalls et al., 2013; Shiner et al., 2016). 

 

Across the synucleinopathy spectrum, heterozygous GBA1 mutations confer an earlier age of 

onset of symptoms with a more progressive and severe disease course. Most notably, there is a 

strong evidence base emerging for GBA1 mutations particularly being associated with the 

development of earlier and more severe cognitive impairment (Malec-Litwinowicz et al., 2014; 

Mata et al., 2016; Mata et al., 2017).While there is no overt difference in the neuropathology 

between GBA1 mutation carriers and non-carries, the differences in clinical presentation may be 

accounted for by alterations in and effected by mutant GCase biochemistry.  
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1.6. Mutant GCase biochemistry 

The biochemistry associated with GCase enzyme and mutations in GBA1 has been investigated 

since the role of the enzyme in GluCer metabolism and the subsequent consequences for 

Gaucher’s disease were first described by Dr Roscoe Brady in 1965 (Futerman and Platt, 2017). 

Accordingly, most studies have investigated biochemistry associated with homozygous mutations 

in GBA1 and Gaucher’s disease. Since the link between GD and PD was first described in 1996, 

the consequence of heterozygous GBA1 mutations have become increasingly relevant since 

explorations of mutant GCase biochemistry may hold some clues to common pathogenic 

mechanisms.  

 

1.6.1. GCase enzyme activity 

1.6.1.1. Human samples 

GCase enzyme activity is significantly reduced in GBA-PD human post mortem brain tissue 

compared with controls; the largest reductions are observed in the substantia nigra (58%) but 

significant reductions are also seen in the cerebellum (47%), amygdala (40%) and putamen (48%) 

(Gegg et al., 2012). GCase enzyme activity is also significantly reduced in the prefrontal cortex, 

primary motor cortex and cerebellum of human post mortem Lewy body disease tissue when 

comparing GBA1 mutant heterozygotes with non-carriers (Clark et al., 2015). The reduction in 

GCase enzyme activity is mutation dependent following the gene-dosage effect (described in 

section 1.5.1.8.) with a significant difference in the reduction of GCase enzyme activity between 

severe and mild mutation carriers when compared with non-demented controls (Clark et al., 

2015). Furthermore, GCase enzyme activity is significantly reduced in Lewy body disease cases 

with the diagnosis of dementia (Clark et al., 2015). The pattern of association between GBA1 

mutation status and GCase enzyme activity is comparable between cases indicating that the 

presence of dementia and diagnosis of Lewy body disease drive the association (Clark et al., 

2015). GBA1 heterozygote individuals have also shown significantly reduced GCase enzyme 

activity in the frontal cortex irrespective of disease state (Kurzawa-Akanbi et al., 2012). This 

reduction in GCase activity is modest, approximately 25% for both cases of PD and DLB 

compared with age-matched controls, suggesting a small decrease in GCase enzyme could 

impart a substantial effect (Kurzawa-Akanbi et al., 2012). The presence of reduced GCase 

enzyme activity in the frontal cortex of healthy controls is an unexpected and interesting finding 
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which requires further investigation (Kurzawa-Akanbi et al., 2012). It may be that this finding 

represents the gradual age-related decrease in GCase enzymatic activity (Rocha et al., 2015a), 

which in turn may underpin parkinsonian neurodegenerative diseases. This intriguing possibility 

is further discussed below.  

 

A key finding has been the significant reduction of GCase enzyme activity in sPD brain (Gegg et 

al., 2012; Murphy and Halliday, 2014; Rocha et al., 2015a). GCase activity is significantly reduced 

by 24% reduction in the cerebellum and 33% in the substantia nigra (Gegg et al., 2012). GCase 

activity is also significantly decreased in the hippocampus of sPD patients between the age of 70 

and 80 (Rocha et al., 2015a). Reduced GCase enzyme activity in the cerebellum indicates 

reduced GCase enzyme activity is not a direct consequence of neurodegeneration since this brain 

area is not affected in PD. This is further supported by the absence of any reduction in GCase 

enzyme activity in the amygdala of AD patients, an area associated with marked neuronal loss 

(Gegg et al., 2012; Rocha et al., 2015a). Furthermore, significant reduction in GCase enzyme 

activity is seen also seen in the anterior cingulate cortex in early stage sPD, but not in the occipital 

cortex, an area not usually associated with a-synuclein accumulation in sPD (Murphy et al., 2014). 

Correlation analysis indicates that increased a-synuclein deposition observed in early stage sPD 

corresponds to reduced GCase enzyme activity (Murphy et al., 2014). Taking into account 

neuronal death indirectly through measurement of NeuN levels, GCase enzyme activity continues 

to decrease in the anterior cingulate cortex of late stage sPD brain in the absence of further 

GCase protein decline (Murphy et al., 2014). Intriguingly, GCase enzyme activity has become 

implicated in normal aging, the biggest risk factor for dementia and all neurodegenerative 

diseases (Rocha et al., 2015a). GCase activity progressively declines in the substantia nigra of 

healthy control subjects, eventually becoming comparable to sPD patients by the seventh decade 

of life; when most individuals with sPD are diagnosed (Rocha et al., 2015a). Similarly, GCase 

activity also progressively declines in the putamen (Rocha et al., 2015a), an area of the brain 

inextricably linked with sPD. 

 

GCase enzyme activity measured from dried blood spots is also significantly reduced in 

heterozygous GBA1 mutation carriers compared with sPD and age-matched controls, although 

the ranges of activity do overlap (Alcalay et al., 2015). Interestingly, mutations considered as 
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‘mild’ had similar if not lower GCase activity than ‘severe’ mutations, opposed to the gene dosage 

effect described in GD. The GBA1 polymorphic variants E326K and T369M had the lowest GCase 

enzyme activity (Alcalay et al., 2015). Furthermore, sPD with higher GCase activity were 

associated with longer disease duration and worse performance on MoCA, suggestive of more 

advanced PD (Alcalay et al., 2015). This finding in dried blood is unexpected and opposes 

findings from post mortem tissue. It may be that longer disease duration in association with GBA1 

mutation enhanced GCase activity compared with controls is an indicator of a more benign form 

of PD, where those with the potentially protective effect of high GCase enzyme activity are more 

likely to survive and progress to dementia. Overall, lower enzyme activity was observed in 

samples from PD patients, even after adjustment for age, gender and GBA1 mutation status, 

indicating that reduced GCase enzyme activity is independently associated with PD corroborating 

observations from post-mortem human studies (Alcalay et al., 2015). Interestingly sPD G2019S 

mutation carriers on the PD related gene LRRK2 have higher levels of GCase enzyme activity as 

tested from dried blood spots when compared to non-carriers and controls without PD (Alcalay et 

al., 2015). This finding further implicates GBA1 and GCase enzyme activity in the pathogenesis 

of PD and other synucleinopathies.  

 

CSF from GBA-PD patients exhibit significantly reduced GCase enzyme activity in addition to 

reduced activity of GBA2 GCase enzyme activity and b-galactosidase (Schondorf et al., 2014). 

However, CSF from sPD patients in the same study did not exhibit any alterations in GCase 

enzyme activity (Schondorf et al., 2014). The study by Schondorf et al contradicts the earlier 

findings of 35% and 59% reduced GCase enzyme activity in the CSF of sPD patients and sDLB 

patients respectively when compared with healthy controls (Parnetti et al., 2009; Parnetti et al., 

2014). GCase enzyme activity is also significantly reduced in sPD compared with CSF from AD 

patients (Parnetti et al., 2009; Schondorf et al., 2014). A more recent and conclusive study has 

established a significant 25% decrease in GCase enzyme activity in CSF of a sporadic PD cohort, 

complementing earlier findings (Parnetti et al., 2017). Interestingly, reduced GCase activity in the 

CSF of these patients correlates with worse cognitive impairment as measured by MoCA and 

more advanced motor symptoms (Parnetti et al., 2017). GCase enzyme activity was found to be 

significantly lower in GBA-PD compared to sPD but the reduction in CSF GCase enzyme activity 

regardless of GBA1 mutation status suggests the reduction in enzyme activity is independent of 

GBA1 mutation and implicates other mechanisms (Parnetti et al., 2017). Taken together, these 



67 
 

studies strongly implicate a reduction in CSF GCase activity is specifically linked to 

synucleinopathies, rather than a marker of overt neurodegenerative diseases.  

 

1.6.1.2. In vitro 

Early in vitro experiments investigating the impact of GBA1 mutations used overexpression cell 

models (Cullen et al., 2011). Reduced GCase enzyme activity is not universally reported in 

association with GBA1 mutation in these models (Cullen et al., 2011). Transient expression of 

various GBA1 mutant plasmids in both MES23.6 and PC12 cells expressing human WT a-

synuclein did not change GCase enzyme activity despite accumulation of a-synuclein (Cullen et 

al., 2011). These data provide evidence to support a ‘gain of function’ hypothesis rather than loss 

of enzyme activity underlining pathogenic mechanisms relating the GBA1 mutation, although the 

impact of endogenous wild type GCase protein does need to be taken into consideration.  

 

More elegant cellular models do provide evidence for alterations in GCase enzyme activity 

(McNeill et al., 2014). Cultured fibroblasts from GBA1 heterozygote carriers demonstrate 

significantly reduced GCase enzyme activity both in those with and without PD (McNeill et al., 

2014). However, GCase enzyme activity is unaffected in fibroblasts generated from sPD patients 

(McNeill et al., 2014). Once again, these findings need to be considered in the context of the cell 

type tested. Fibroblasts only express SNCA at very low levels (Auburger et al., 2012) and so a-

synuclein, the key pathological protein of PD and DLB is not accurately represented and the likely 

impact of α-synuclein in conjunction with heterozygous GBA1 mutation can therefore not be 

represented accurately.  

 

A significant reduction in GCase enzyme activity in the presence of heterozygous GBA1 

mutations is further evidenced by studies using iPSC derived dopaminergic neurons (Schondorf 

et al., 2014; Fernandes et al., 2016). GCase enzyme activity is reduced by approximately 50% in 

cells generated from GBA1 heterozygous PD patients; activity of GCase generated from GBA2 

is also reduced (Schondorf et al., 2014; Fernandes et al., 2016). A similar degree of reduction in 

GCase activity has also been reported in cells generated from GBA1 heterozygous monozygotic 

twins discordant for PD (Woodard et al., 2014).  
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Looking at GCase enzyme activity using a cellular model of PD involving a-synuclein 

overexpression, a novel experimental set up involving transfection of rat primary cortical neurons 

with human a-synuclein demonstrated reduced GCase enzyme activity levels (Wang et al., 2016). 

The complex interplay between α-synuclein and GCase activity is described more fully in section 

1.6.6. Upon addition of plasma from sPD patients to these cultures, GCase enzyme activity is 

further reduced, and is significantly lower than GCase activity in cells treated with plasma from 

healthy controls (Wang et al., 2016). 

 

1.6.1.3. In vivo 

Heterozygous D409V GBA1 (D409V/WT) mice show an approximate 40% reduction in GCase 

enzyme activity compared with wild type mice (Sardi et al., 2011). This degree of enzyme activity 

loss is comparable to a heterozygous GBA1 knockout mouse (GBA1 +/-) (Sardi et al., 2011). 

L444P/WT mice also show a significant reduction in GCase enzyme activity corresponding to a 

32% reduction compared with age-matched wild type controls (Fishbein et al., 2014). 

 

Looking at GCase enzyme activity in models of PD, transgenic human A53T a-synuclein mice 

exhibit significantly lower lysosomal GCase enzyme activity compared to WT animals (Sardi et 

al., 2013). This effect was dependent upon the levels of a-synuclein since homozygous A53T a-

synuclein mice show greater reduction in GCase enzymatic activity compared to heterozygote 

mice (Sardi et al., 2013). Furthermore, the reduction in enzyme activity is GCase specific since 

the activities of hexosaminidase and b-galactosidase remain unaffected (Sardi et al., 2013). 

However, the same result was not observed in mice expressing human A53T a-synuclein or 

human wild type a-synuclein in a SNCA null background; GCase enzyme activity was similar to 

wild type animals (Fishbein et al., 2014). Interestingly, knock out of murine SNCA alone causes 

a significant 35% increase in GCase enzyme activity (Fishbein et al., 2014), implicating α-

synuclein as a repressor of endogenous GCase enzymatic activity.  

 

1.6.2. GCase protein levels 

An important factor when considering the impact of heterozygous mutations in GBA1 is the protein 

expression level of GCase enzyme since protein levels may indicate whether reduced GCase 

enzyme activity is solely due to a global reduction in the amount of GCase enzyme. Altered levels 
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of GCase protein expression may also implicate changes to degradation or 

transcription/translation of the enzyme which may in turn impede function. 

 

GCase protein levels were significantly reduced in the substantia nigra, putamen and cerebellum 

of GBA1 heterozygous PD brain (Gegg et al., 2012). Furthermore, GCase protein levels were 

significantly reduced in the cerebellum and substantia nigra of sporadic PD brain, following the 

same pattern as GCase enzyme activity (Gegg et al., 2012). SDS-soluble GCase was also 

selectively significantly reduced in the anterior cingulate cortex from subjects with early stage 

sPD (Murphy and Halliday, 2014). GCase protein levels were not reduced in the occipital cortex 

in early stage sPD, a brain region not associated with a-synuclein accumulation in PD (Murphy 

et al., 2014). GCase protein levels were also significantly reduced by approximately 20% in the 

frontal cortex of a combined cohort of GBA1 heterozygous PD and DLB cases as well as GBA1 

mutation carrier ‘healthy’ controls, irrespective of disease state (Kurzawa-Akanbi et al., 2012). 

This reduction was confirmed as not being a consequence of cell loss or gliosis by assessment 

of NeuN and GFAP levels (Kurzawa-Akanbi et al., 2012). Reduction of GCase protein in GBA1 

carrier ‘healthy’ controls suggests that reduction in GCase protein may need to reach a critical 

point before related pathogenic changes occur to cause symptoms to be detectable (Kurzawa-

Akanbi et al., 2012). Post-mortem studies therefore appear to suggest that the overall levels of 

GCase protein mirror the decline in GCase enzymatic activity, implicating the loss of GCase 

protein as the cause of deficient GCase enzyme activity.  

 

At the cellular level, GCase protein was also significantly reduced in cultured fibroblasts from 

heterozygous mutation carriers with and without PD (McNeill et al., 2014). iPSC derived midbrain 

dopaminergic neurons from GBA1 heterozygous PD patients also display a significant reduction 

in GCase protein, including cells derived from a set of monozygotic twins discordant for PD 

(Schondorf et al., 2014; Woodard et al., 2014). 

 

An interesting finding from GBA-PD iPSC derived dopaminergic neurons was the presence of an 

extra isoform of GCase at a higher molecular weight which is sensitive to the recombinant 

glycosidase enzyme, Endoglycosidase H (Endo H) (Fernandes et al., 2016). This Endo H 

sensitive isoform of GCase is significantly increased in GBA-PD dopaminergic neurons and 

represents 20% of the total GCase suggesting a significant proportion of ER retained GCase in 
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this population of susceptible cells (Fernandes et al., 2016). Retention of mutant GCase protein 

in the ER could therefore account for reduced enzymatic activity of GCase since it requires the 

acidic environment of the lysosome to function.  

 

1.6.2.1. GBA1 mRNA 

GBA1 mRNA was not altered in human brain regions showing reduced GCase enzyme activity 

and GCase protein levels in both GBA-PD and sPD at either at early or late stages of the disease 

(Gegg et al., 2012; Murphy et al., 2014). Consistent GBA1 mRNA levels imply the reduction and 

redistribution of GCase is not due to altered transcription and is therefore more likely associated 

with mechanisms relating to trafficking, degradation and possible interactions with a-synuclein. 

 

At the cellular level and in vivo, generally GBA1 mRNA levels also do not alter in association with 

GBA1 mutations (Xu et al., 2003; Garcia-Sanz et al., 2017). However, cultured fibroblasts from 

patients with GD or GBA-PD show a mixed picture of GBA1 transcript changes. Fibroblasts from 

GD patients show a significant reduction in GBA1 mRNA except in the case of N370S 

homozygosity (McNeill et al., 2014). Furthermore, PD patients with the severe mutations L444P 

or RecNcil also demonstrate an approximate 50% reduction in GBA1 mRNA (McNeill et al., 

2014).These findings suggest that a reduction in transcription underlies GCase deficiency in 

cases with severe mutations but not those with milder mutations. 

 

1.6.3. Lipid accumulation 

Lipid accumulation, specifically the GCase substrate GluCer is characteristic of cells associated 

with the symptoms of GD (Brady et al., 1965). Investigation of GluCer and other components of 

the glycosphingolipid pathway is important in the context of GBA1 heterozygosity as well as PD 

and DLB, since alterations in this critical pathway may provide some clues to potential 

pathological mechanisms underpinning these diseases. 

 

1.6.3.1. Human Tissue 

Lysates from human post mortem GBA-PD and sPD brain tissue do not appear to show GluCer 

accumulation as perhaps would be expected in association with GCase deficiency (Gegg et al., 

2015). When tested, neither the putamen or cerebellum, regions previously identified as having 

significant reductions in GCase enzyme activity show any GCase substrate accumulation, GluCer 
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or GluSph, compared with age-matched controls (Gegg et al., 2015). However, the ganglioside 

GM3 does show a strong increasing trend (Gegg et al., 2015). Lipidomic analysis from the primary 

motor cortex of post mortem sDLB cases follows the same trend: non-significant accumulation of 

GluCer and enrichment of GM3 (Clark et al., 2015).Lipidomic analyses of plasma derived from 

sPD patients has also identified a significant increase in the ganglioside GM3, supporting the 

function of altered glycosphingolipid metabolism in PD which is not necessarily identified by 

alterations in GluCer (Chan et al., 2017; Zhang et al., 2017). Increased levels of GM3 gangliosides 

may have direct pathogenic consequences. Vesicles composed from lipids characterised by 

relatively high solubility in water, such as GM3 gangliosides, are able to initiate amyloid formation 

(Galvagnion, 2017). Therefore, enhanced GM3 gangliosides may be able to initiate the 

aggregation of a-synuclein (Galvagnion, 2017). 

 

A significant increase of GluSph in the hippocampus of sPD patients between the age of 70 and 

80 years has been reported (Rocha et al., 2015a). Interestingly, brain samples from GD-PD 

patients do not show accumulation of GluSph compared with controls (Tayebi, 2003; Gegg et al., 

2015) contradicting the finding of increased GluSph in the brains of neuronopathic GD patients 

(Orvisky et al., 2002). Significantly enhanced glysphingosine (GalSph + GluSph) has also been 

demonstrated in plasma from GBA-PD patients when compared with sPD (Guedes et al., 2017). 

These findings imply that GluSph may prove useful as a biomarker for GBA1 mutations and 

reflects disrupted glycosphingolipid metabolism. Indeed, emerging evidence suggests that 

GluSph accumulates in the brain of GCase deficient mice at an earlier age, with the accumulation 

of GluCer occurring at a later stage (Dai et al., 2016; Taguchi et al., 2017). 

The anterior cingulate cortex, an area significantly affected by Lewy body pathology in PD and 

DLB, shows a significant 53% reduction in total ceramide and 42% reduction in sphingomyelin in 

sPD human brain compared with age-matched controls (Abbott et al., 2014). Ceramide levels do 

not appear to change in the occipital cortex, an area normally spared in PD (Abbott et al., 2014). 

The ceramide species in the anterior cingulate cortex of PD patients shifts towards shorter acyl 

chain compositions and ceramide synthase I mRNA increases (Abbott et al., 2014). A selective 

reduction in ceramide is also reported in the anterior cingulate cortex of sPD brain by Murphy et 

al, specifically in early PD (Murphy et al., 2014). There is no overall difference in ceramide levels 

between early and later stage sPD (Murphy et al., 2014). Reduction in several ceramide species 
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(d18:0/22:0, d18:0/26:0, d18:1/20:1, d18:1/22:1) are also demonstrated in lipidomic analysis of 

plasma from sPD patients (Zhang et al., 2017). It should be highlighted that reductions in total 

ceramide levels are not reported in GD which predominantly involves GluCer accumulation in 

tissue macrophages (Murphy et al., 2014). This suggests that neurons selectively rely on the 

salvage pathway of ceramide synthesis, rendering neurons exquisitely vulnerable to lysosomal 

perturbations (Murphy et al., 2014). However, alternative lipidomic analyses report increased 

ceramide species measured in peripheral blood plasma when comparing sPD with healthy 

controls and sPD with GBA-PD respectively (Mielke et al., 2013; Guedes et al., 2017). 

Additionally, higher ceramide plasma levels are associated with worse cognition (Mielke et al., 

2013).  

 

1.6.3.2. In Vitro 

A significant 4-fold accumulation of GluCer is seen in primary cortical neurons treated with siRNA 

against GBA1 to reduce the enzyme activity to approximately 50% in order to mirror GBA1 

heterozygosity (Mazzulli et al., 2011). No changes in ceramide or other sphingolipids are 

observed (Mazzulli et al., 2011). Lentiviral sh-RNA mediated knockdown of GBA1 to produce a 

60% reduction in GCase protein level in differentiated SH-SY5Y cells also causes accumulation 

of GluCer (Kong et al., 2013). 

 

Conversely, iPSC derived dopaminergic neurons from GBA-PD patients do not show GluCer 

accumulation (Fernandes et al., 2016). Nevertheless, a difference in the distribution of GluCer 

species is present. A 30% decrease in C20:0 and a 65% decrease in C16:0 and C24:0 is 

demonstrated (Fernandes et al., 2016). However, the converse is seen in iPSC derived 

dopaminergic neurons from GBA-PD patients by Schondorf et al who report a significant increase 

in GluCer in GBA-PD neurons (Schondorf et al., 2014). Fibroblasts and iPSCs from GBA-PD 

patients mainly contain GM3 gangliosides, with small amounts of other ganglioside types such as 

GM1, GM2 and GD3 (Schondorf et al., 2014). Differentiation into dopaminergic neurons and 

neuronal enrichment reduces the proportion of GM3 and GD3 in relation to total gangliosides 

(Schondorf et al., 2014). The ratios of GM1, GD1a, GD1b and GT1b in cultured neurons resemble 

normal human brain distribution (Schondorf et al., 2014). This apparent reduction in GM3 species 

opposes to what is seen in human post mortem brain tissue and patient plasma (Clark et al., 

2015). It may be that post mortem tissue is capturing the lipid profile at an advanced stage of 
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disease which does not correlate to the lipid profile seen in relatively ‘young’ cultured 

dopaminergic neurons. Alternatively, the difference in GM3 species distribution may reflect an 

artefact of using iPSCs to derive dopaminergic neurons. Regardless, careful consideration needs 

to be given to the species of fibroblasts and iPSC derived cells when interpreting 

glycosphingolipid distribution since the relative distribution of species changes between cell type 

and maturation status (Schondorf et al., 2014). 

Approaching glycosphingolipid metabolism from cellular models of PD and mirroring changes 

reported above in relation to GCase, ceramide levels are reduced in rat primary cortical cultures 

treated with extracellular a-synuclein (Wang et al., 2016). Upon addition of plasma from sPD 

patients to the culture, ceramide levels are further reduced, and are significantly lower than 

ceramide levels in cells treated with plasma from healthy controls (Wang et al., 2016). 

Furthermore, PP2A, the ceramide activated enzyme responsible for de-phosphorylation of the 

characteristic pathogenic ser129 phosphorylated species of a-synuclein is significantly reduced 

in primary cortical neurons treated with extracellular a-synuclein (Wang et al., 2016). PP2A 

enzyme is further reduced when plasma from PD patients is subsequently added to the culture 

media (Wang et al., 2016). 

 

1.6.3.3. In Vivo 

Interestingly, a homozygous D409V GBA1 mouse model exhibiting 25% GCase enzyme activity 

compared to WT animals did not show GluCer accumulation in the hippocampus, cerebral cortex 

or cerebellum but a significant progressive accumulation of GluSph starting at 2 months of age 

(Sardi et al., 2011). Neither D409V/WT or GBA1 +/- heterozygous mice exhibit GluSph 

accumulation suggesting one WT allele is sufficient to prevent build-up of toxic substrate (Sardi 

et al., 2011). Bilateral hippocampal administration of scAAV1-GBA1 to D409V GBA1 homozygous 

mice significantly reduces GluSph accumulation (Sardi et al., 2011). 
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Table 6 - Summary of glycosphingolipid related changes to lipid profiles in PD/DLB 
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1.6.4. LIMP 2 

LIMP 2 protein levels are unaffected in the substantia nigra of GBA-PD and sPD brain (Gegg et 

al., 2012). LIMP 2 protein levels also do not change between GD, GBA-PD, GBA-controls or 

healthy controls in cultured fibroblasts (McNeill et al., 2014) or in a SH-SH5Y cell model 

expressing high levels of exogenous a-synuclein (Gegg et al., 2012). Despite significant inter-

individual variability, iPSC derived dopaminergic neurons from GBA-PD patients demonstrate 

significantly enhanced LIMP 2 protein expression compared with controls (Fernandes et al., 

2016). Furthermore, significantly increased expression of LIMP 2 in the frontal cortex of a human 

post mortem age matched control cohort expressing heterozygous mutation in GBA1 has also 

been reported (Kurzawa-Akanbi et al., 2012). An increase was also seen in GBA-PD/DLB in the 

same study but the difference did not reach statistical significance (Kurzawa-Akanbi et al., 2012). 

 

Regardless of the expression levels of LIMP 2, the increase in a-synuclein associated with GCase 

deficiency does alter the binding between GCase and LIMP 2 in the ER (Gegg et al., 2012). 

Immunoprecipitation of GCase and LIMP 2 in a SH-SY5Y cell model overexpressing high levels 

of a-synuclein shows that GCase is not associated with LIMP 2 (Gegg et al., 2012). Additionally, 

LIMP 2 is not associated with a-synuclein (Gegg et al., 2012). This indicates that increased a-

synuclein does reduce the amount of GCase delivered to the lysosome by LIMP 2 but not through 

a direct interaction between LIMP 2 and a-synuclein (Gegg et al., 2012).  

 

LIMP 2 and GCase trafficking is further implicated in sporadic PD and DLB as two intronic 

SCARB2 polymorphisms have been associated with PD in Greek and North American/European 

cohorts (Maniwang et al., 2013). However, neither polymorphism affects the levels of LIMP 2 

protein nor RNA expression complementing the theory of altered binding between LIMP 2 and 

GCase (Maniwang et al., 2013). Furthermore, a comprehensive genetic association study 

identified the SCARB2 loci as one of three, the others being APOE and SNCA, as being strongly 

associated with DLB (Bras et al., 2014). 

 

1.6.5. Lysosomes 

Lysosomal number and integrity are critical factors when considering GBA1 heterozygosity since 

GCase is a lysosomal enzyme (Brady et al., 1965). Lysosomes are the major site of a-synuclein 
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degradation in the cell (Blanz and Saftig, 2016). Furthermore, it has previously been reported that 

GCase and a-synuclein interact within the lysosome (discussed in chapter 1.6.6). Therefore, 

lysosomes are an important factor for consideration in the pathogenesis of synucleinopathies  

 

Analysis of the anterior cingulate cortex of early and late stage sPD post mortem cases, taking 

into account neuronal loss, does not show any overt loss of lysosomes as seen through 

comparable expression of LAMP 1, LAMP 3 and LIMP 2 with age-matched controls (Murphy et 

al., 2014). This finding suggests that loss of lysosomes is not an underlying cause of reduced 

GCase enzyme activity (Murphy et al., 2014). Furthermore, Gegg et al report that reduced GCase 

protein expression is not associated with a decrease in lysosomal content since the lysosomal 

enzymes Cathepsin D and b-hexosaminidase activity are unaffected in GBA-PD and sPD (Gegg 

et al., 2012). Murphy et al similarly did not report any correlation between cathepsin A or D with 

GCase or a-synuclein levels despite increases in early stage sPD (Murphy et al., 2014). At a 

cellular level, no difference in lysosomal mass as measured by Lyso ID, LAMP 1 protein 

expression and b-galactosidase activity has been seen in fibroblasts generated from GD, GBA-

PD and GBA-‘healthy’ controls despite significant increases in Cathepsin D and b-

hexosaminidase activity associated with GBA1 mutation (McNeill et al., 2014). Despite these 

findings, there is a body of evidence to suggest a perturbation of lysosomal properties, particularly 

in cellular models contradicting finding in post mortem brain tissue. This could reflect the 

limitations of post-mortem tissue in documenting end stage disease or conversely limitations of 

cellular models not fully recapitulating all details of a complex biological system. 

 

shRNA mediated knockdown of GBA1 in primary cortical neurons resulting in 50% reduced 

GCase protein expression causes accumulation and enlargement of LAMP1 positive puncta 

(Mazzulli et al., 2011). SH-SY5Y cells harbouring a nonsense mutation in GBA1 due to zinc finger 

nuclease direction also have increased LysoTracker signal (Bae et al., 2015). iPSC derived 

dopaminergic neurons from GBA-PD patients show significantly increased expression of LAMP 

1 and LAMP 2 in addition to increased expression of cathepsin D (Fernandes et al., 2016). 

Furthermore, electron microscopy shows a 2-fold increase in the number of lysosomes and a 2.5-

fold increase in the area occupied by lysosomes specifically in dopaminergic tyrosine hydroxylase 

positive iPSC derived dopaminergic neurons (Schondorf et al., 2014; Fernandes et al., 2016). 
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Studies in the frontal cortex of a combined cohort of PD and DLB post mortem cases demonstrate 

a significant increase in LAMP 1 expression associated with GBA1 mutation (Kurzawa-Akanbi et 

al., 2012). LAMP 2 is also significantly increased by 10-15% in association with GBA1 mutation 

(Kurzawa-Akanbi et al., 2012). Cathepsin D expression is significantly reduced by 15% in GBA-

PD/DLB cases and 16% in PD/DLB cases without GBA1 mutations, implying that reduced 

Cathepsin D expression could be a PD/DLB effect (Kurzawa-Akanbi et al., 2012). Mice treated 

with conduritol-b-epoxide (CbE), a pharmacological inhibitor of GCase also demonstrate 

significantly enhanced expression of LAMP 2 in the substantia nigra, striatum and motor cortex 

(Rocha et al., 2015b) although there is no change in D409V GBA1 homozygous mice (Sardi et 

al., 2011). 
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1.6.6. a-synuclein 

The relationship between a-synuclein and GCase is central to understanding the role of GCase 

in LBD. Accordingly, a strong link has been established between GCase deficiency and the 

deposition of aggregated a-synuclein (Stojkovska et al., 2017). Whether this relationship is 

consequence of a loss or gain of function of GCase due to heterozygous GBA1 mutation remains 

a matter of debate.  

 

1.6.6.1. Direct interaction between GCase and a-synuclein 

There is strong evidence suggesting a direct interaction between GCase and a-synuclein. 

Strikingly, 75% of Lewy bodies and Lewy neurites in PD and DLB post mortem brain carrying 

heterozygous mutations in GBA1 are positive for GCase compared with 4% of age-matched non-

mutant disease controls by immunohistochemical analysis (Goker-Alpan et al., 2010). The 

distribution of GCase positive Lewy bodies correlates with neuropathological diagnosis (Goker-

Alpan et al., 2010). A physical non-covalent interaction between wild type GCase and the C-

terminal amino acids 118-137 of a-synuclein has been demonstrated using nuclear magnetic 

resonance spectroscopy and verified by both immunoprecipitation and immunofluorescence 

studies in human tissue and neuronal cultures (Yap et al., 2011). Interaction between a-synuclein 

and GCase is only seen under acidic (pH5.5) conditions, indicating the interaction takes place in 

the lysosome (Yap et al., 2011; Yap et al., 2013b). The presence of CbE or N370S mutant GCase 

reduces the affinity of GCase for a-synuclein with a Kd of 49 and 45µM respectively compared to 

a Kd of 22µM for wild type GCase (Yap et al., 2011). This may contribute to less effective 

lysosomal degradation of a-synuclein (Yap et al., 2011). In follow up studies, it was discovered 

that only vesicular membrane bound a-synuclein in the helical conformation is a potent inhibitor 

of GCase activity by way of shifting GCase away from the membrane thereby impeding substrate 

availability (Yap et al., 2015). a-synuclein acts as a mixed inhibitor of GCase, impeding substrate 

availability and steric hindrance as a consequence of binding near the active site of the enzyme 

(Yap et al., 2013a). Binding of GCase to a-synuclein could additionally cause structural 

perturbation of the membrane causing changes to local lipid organisation affecting enzyme 

activity and interfering with lysosomal degradation of a-synuclein (Yap et al., 2013a; Yap et al., 

2015). 
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1.6.6.2. Loss of function  

The direct effect of reduced GCase enzyme activity on a-synuclein and cellular processes can 

be directly assessed in cell and animal models treated with the GCase pharmacological inhibitor 

conduritol-b-epoxide (CbE). Manning-Bog et al reported accumulated a-synuclein in CbE treated 

differentiated SH-SY5Y cells and also a 20% increase in the monomeric form of a-synuclein in 

the ventral mesencephalon of CbE treated mice in the absence of any change in SNCA mRNA 

expression (Manning-Bog et al., 2009). These mice specifically demonstrate robust 

immunoreactivity in cell bodies within the substantia nigra pars compacta and A9 neurons 

(Manning-Bog et al., 2009). Striatal and substantia nigral a-synuclein accumulation is also seen 

in a sub chronic CbE mouse model where the inhibitor was administered at 100mg/Kg daily for 9 

consecutive days and also more robustly in a 28-day model (Ginns et al., 2014; Rocha et al., 

2015b). Reduced GCase enzyme activity may be able to augment a-synuclein toxicity. CbE 

treatment in a-synuclein overexpressing LUHMES cells, a human dopaminergic neuronal cell 

line, significantly enhances a-synuclein accumulation and toxicity (Noelker et al., 2015). Control 

iPSC derived dopaminergic neurons treated with CbE also show accumulated a-synuclein as do 

dopaminergic neurons derived from GBA-PD and GD patients (Schondorf et al., 2014). The 

degree of a-synuclein accumulation varies greatly between specific mutations with the greatest 

increase associated with L444P, mirroring the mutation dosage effect described previously with 

GCase enzyme activity (Schondorf et al., 2014). Furthermore, a-synuclein levels are significantly 

reduced in GBA-PD derived neurons which undergo gene correction compared with non-treated 

GBA-PD cells (Schondorf et al., 2014). 

 

Knock down of GBA1 using lentiviral administration of shRNA in differentiated SH-SY5Y cells 

results in a significant increase of a-synuclein protein corresponding to a 1.8-fold increase 

compared with controls (Kong et al., 2013). This protein increase is unaccompanied by any 

change in SNCA mRNA expression (Kong et al., 2013). shRNA mediated knockdown of GBA1 in 

primary neurons causing a 50% reduction of GCase protein also results in a 1.8-fold increase in 

steady state a-synuclein levels without any change in SNCA mRNA expression (Mazzulli et al., 

2011). SH-SY5Y cells harbouring a nonsense mutation in GBA1 due to zinc finger nuclease 

direction does not alter monomeric a-synuclein but does cause accumulation of insoluble a-

synuclein oligomers (Bae et al., 2015). Additionally, secretion of a-synuclein aggregates is also 
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significantly increased (Bae et al., 2015). Mixed midbrain primary cultures from GBA1-/- mice also 

have significantly increased oligomeric species of a-synuclein (Osellame et al., 2013).  

 

Reduced GCase enzyme activity may also be implicated in the increased neuronal cell-to-cell 

transmission of endogenous a-synuclein (Bae et al., 2014). Transplantation of WT and GBA1-/- 

cells into the hippocampus of transgenic mice expressing human a-synuclein shows increased 

a-synuclein transmission in grafted cells lacking GCase (Bae et al., 2014). Ectopic expression of 

WT GCase but not an activity deficient mutant GCase ameliorates propagation of a-synuclein 

aggregates (Bae et al., 2014) 

 

A novel in vivo GBA1 knock down model in Oryzias latipes shows abundant a-synuclein 

accumulation in the brains of these fish at 3 months of age with a-synuclein detected in axonal 

swellings containing autophagosomes (Uemura et al., 2015). However, knockdown of SNCA in 

GBA1 deficient O. latipes is insufficient to prolong life span or rescue dopaminergic and 

noradrenergic cell loss, suggesting that a-synuclein is not involved in the pathological 

characteristics of this in vivo model of GCase deficiency (Uemura et al., 2015). 

 

In vivo models of PD also demonstrate the impact of GCase enzyme activity on a-synuclein 

accumulation (Sardi et al., 2013). Heterozygous A53T human a-synuclein transgenic mice 

unilaterally injected with AAV-GBA1 into the striatum have significantly lower striatal levels of 

cytosolic a-synuclein and a modest but significant reduction in membrane associated a-synuclein 

(Sardi et al., 2013). However, the level of insoluble a-synuclein remains unchanged by striatal 

expression of GCase (Sardi et al., 2013). Similarly, levels of soluble a-synuclein in the spinal cord 

of A53T mice is significantly reduced by AAV-GBA1 injection into both cerebral lateral ventricles 

and the upper lumbar spinal cord (Sardi et al., 2013).  

 

Primary cortical neurons overexpressing either WT or A53T mutant SNCA alone causing synaptic 

a-synuclein enrichment does not cause overt toxicity (Mazzulli et al., 2011). Knockdown of GBA1 

alone in these cells also does not cause toxicity (Mazzulli et al., 2011). However, primary cortical 

neurons overexpressing WT SNCA which have also undergone GBA1 knockdown show a 25% 

decrease in viability as measured by neurofilament intensity and neuronal volume (Mazzulli et al., 
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2011). This raises the question whether a-synuclein accumulation and associated toxicity due to 

GCase depletion is due to lysosomal inhibition or alterations in GluCer metabolism.  

 

Mazzulli et al propose a bidirectional loop relationship between GCase deficiency and a-synuclein 

accumulation (Mazzulli et al., 2011). This relationship is based upon the loss of GCase enzyme 

activity and the interaction between increased GluCer and a-synuclein as seen in GBA1 

knockdown neurons and iPSC derived dopaminergic neurons from GD patients (Mazzulli et al., 

2011). GluCer is able to selectively stabilise the formation of soluble a-synuclein oligomer 

intermediates on the pathway towards the formation of amyloid fibrils (Mazzulli et al., 2011). 

Oligomeric a-synuclein is able to inhibit the lysosomal activity of wild type GCase enzyme in 

neurons and sPD brain (Mazzulli et al., 2011). This bidirectional effect forms a positive feedback 

loop leading to a self-propagating disease: reduced GCase enzyme activity causes accumulation 

of GluCer which stabilises the formation and accumulation of a-synuclein which in turn further 

reduces WT GCase enzyme activity (Mazzulli et al., 2011). Consolidating the bidirectional loop 

hypothesis, reversible conformational conversion of a-synuclein into toxic oligomeric species and 

fibrils in iPSC derived dopaminergic neurons has recently been demonstrated (Zunke et al., 

2017). More recently, GluSph and sphingosine have also been associated with accelerating the 

aggregation of oligomeric a-synuclein in vitro (Taguchi et al., 2017)  
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1.6.6.3. Gain of function 

Early in vitro experiments overexpressing mutant GCase in neural MES23.6 cells suggest a gain 

of function mechanism of a-synuclein accumulation, albeit it to varying degrees: 21% N370S, 

72% L444P and 148% D409H (Cullen et al., 2011). This increase in a-synuclein is associated 

with reduced GCase enzyme activity, a finding also confirmed in PC12 cells stably expressing 

WT a-synuclein (Cullen et al., 2011). An interesting study including iPSC derived dopaminergic 

neurons from a set of N370S/WT monozygotic twins discordant for PD found that a-synuclein 

accumulated in GBA1 mutation carriers compared with control neurons regardless of disease 

state in the absence of any change in SNCA mRNA expression (Woodard et al., 2014). 

 

Interestingly, pharmacological inhibition of GCase enzyme activity using CbE does not universally 

result in a-synuclein accumulation as described in section 1.6.6.2. Indeed, differentiated human 

cortical neural stem cells treated with CbE do not show any difference in monomeric a-synuclein 

protein expression or lysosomal proteins (Kurzawa-Akanbi et al., 2012). PC-12 cells expressing 

WT human a-synuclein also do not demonstrate accumulation of a-synuclein upon treatment with 

CbE neither do differentiated SH-SY5Y cells nor CbE treated rat primary cortical neurons (Cullen 

et al., 2011; Dermentzaki et al., 2013). In vivo, no evidence of increased a-synuclein accumulation 

is seen in a study of CbE treated wild type mice (Xu et al., 2011). This implies that the presence 

of mutant GCase protein is required for pathology and not solely reduced GCase enzyme activity, 

illustrated by a study in PSAP mice (Xu et al., 2011). PSAP hydromorphic mutant mice in which 

GCase enzyme activity is significantly reduced only show small amounts of a-synuclein staining 

in the cortex (Xu et al., 2011). However, the a-synuclein signal is much stronger in PSAP mice 

with either V394L/V394L or D409H/D409H mutations (Xu et al., 2011).  

 

The homozygous D409V/D409V GBA1 mutation in mice causes a progressive accumulation of 

ubiquitin positive a-synuclein aggregates predominantly in the hippocampus although positive a-

synuclein-ubiquitin immunoreactivity is also seen to a lesser extent in the cerebral cortex and 

cerebellum, recapitulating some pathological features of PD and DLB (Sardi et al., 2011). Bilateral 

hippocampal injection of scAAV-GBA1 significantly reduces a-synuclein and ubiquitin aggregates 

(Sardi et al., 2011). Interestingly, despite having similar GCase enzyme activity, D409V/WT but 

not GBA1 +/- mice exhibit a-synuclein/ubiquitin aggregates although the degree of a-synuclein 
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aggregation is approximately 50% less when compared with D409V GBA1 homozygotes (Sardi 

et al., 2011). This is further evidence suggesting that reduction in GCase enzyme activity alone 

is insufficient to cause a-synuclein accumulation and pathology, implicating a gain of function of 

mutant GCase enzyme. 

 

The glycosylation pattern of GCase protein is altered in response to increased a-synuclein 

expression (Stojkovska et al., 2017). A reduction of overexpressed a-synuclein significantly 

increases the proportion of post-ER mature GCase enzyme (Mazzulli et al., 2011). 

Overexpression of a-synuclein causes accumulation of endoglycosidase H sensitive immature 

GCase (Mazzulli et al., 2011; Mazzulli et al., 2016a). Retention of immature GCase in the ER 

reduces the amount of mature GCase reaching the lysosome which in turn causes a reduction of 

cellular GCase enzyme activity (Mazzulli et al., 2011; Chung et al., 2013; Mazzulli et al., 2016a). 

An interesting study using control human brain tissue with natural varying degrees of non-

symptomatic a-synuclein accumulation identified that while there was no change in the lysosomal 

GCase enzyme activity between ‘high’ and ‘low’ a-synuclein cases, those with ‘low” a-synuclein 

burden had less ER retained GCase enzyme (Mazzulli et al., 2011). This implies that even natural 

variation of a-synuclein protein levels, let alone accumulated a-synuclein associated with GCase 

deficiency, modulates lysosomal maturation and therefore lysosomal activity of GCase in vivo 

(Mazzulli et al., 2011).  

 

a-synuclein degradation is significantly impaired in L444P/WT background mice expressing 

human a-synuclein (Fishbein et al., 2014). The half-life of the human a-synuclein species 

increases by 77% in neuronal cultures (Fishbein et al., 2014). Neuronal cultures taken from 

heterozygous L444P mice demonstrate that the presence of L444P mutant GCase is able to 

exacerbate a-synuclein steady state protein levels by 57% compared with cultures expressing 

human WT a-synuclein alone (Fishbein et al., 2014). Despite there being no classical Lewy body 

pathology in the brain of these mice, hippocampal (mainly CA1) human phosphorylated serine 

129 (pSer129) a-synuclein, typical of pathologically aggregated a-synuclein, was observed in 

association in heterozygous mutation by 15 months of age (Fishbein et al., 2014). However, by 

19 months of age pSer129 staining was also evident in the hippocampus of A53T a-synuclein 

mice in the absence of L444P suggesting that the presence of L444P causes an earlier onset of 
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the pathological a-synuclein process and causes a 70% increase in hippocampal pSer129 a-

synuclein load (Fishbein et al., 2014). It is worth pointing out that L444P does not change the 

staining pattern of a-synuclein using alternative antibodies nor the absolute levels of a-synuclein 

as measured by western blot in brain homogenates (Fishbein et al., 2014). 

 

Biochemical investigations into the impact of GBA1 mutation in PD and DLB have thus far 

uncovered a strong relationship between GBA1 mutation and a-synuclein accumulation and 

aggregation. Whilst this goes some way towards explaining pathological processes underlying 

these conditions, there is still no clear consensus as to whether GBA1 mutations causes a gain 

or loss of function of mutant GCase enzyme. With this debate ongoing, the impact of mutant 

GCase enzyme itself should be considered in more detail to establish whether mutant GCase is 

able to activate or interact with cellular pathways which may explain the symptoms of PDD and 

DLB. Accordingly, this thesis will investigate whether mutant GCase enzyme is able to activate 

the specific cellular stress pathway, the unfolded protein response.  
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2. Aims and hypothesis 

 

The genetic link between heterozygous mutations in GBA1 and increased susceptibly for 

developing PD and DLB has become well established over the last 20 years (Sidransky et al., 

2009b; Nalls et al., 2013). Furthermore, the impact of GBA1 mutations on the presentation and 

development of PD is well understood: GBA1 mutations cause a more aggressive disease course 

particularly associated with earlier and more severe development of cognitive impairment 

(Neumann et al., 2009; Winder-Rhodes et al., 2013). Whilst it is known that reduced GCase 

enzyme activity, whether in sPD or GBA-PD, results in accumulation of a-synuclein aggregates 

(Mazzulli et al., 2011), the role of GCase in pathological mechanisms which underlie LBD are not 

understood. Furthermore, there is no consensus on whether GBA1 mutation causes a gain or 

loss of function effect on mutant GCase enzyme. LBDs are heterogeneous disorders involving 

diverse pathogenic substrates, exhibiting an array of different symptoms which are unlikely to be 

solely explained by reduced GCase enzyme activity causing accumulation of a-synuclein 

(discussed in detail in chapter 1.6.6). Proposed pathological mechanisms include mitochondrial 

dysfunction, autophagic impairment and ER stress (Migdalska-Richards and Schapira, 2016).  

 

Whilst reduced GCase activity and GBA1 mutations are associated with reductions in 

mitochondrial membrane potential and oxygen consumption (Cleeter et al., 2013; Osellame et al., 

2013; Xu et al., 2014), suggestions to explain how GCase is implicated are lacking. Similarly, 

autophagic dysfunction has been proposed as a potential pathogenic consequence of GBA1 

mutation due to the impact of accumulated glycosphingolipids on the reduction of autophagosome 

clearance (Migdalska-Richards and Schapira, 2016). This chain of events is likely only applicable 

to GD and not the heterozygous GBA1 mutations associated with PD, which are not necessarily 

associated with accumulation of glycosphingolipids in the brain (Gegg et al., 2015). Accordingly, 

we decided to investigate ER stress, specifically the unfolded protein response (UPR), based 

upon early positive associations reported in literature. Briefly, evidence suggests that mutant 

GCase protein and a-synuclein aggregates accumulate in the ER, causing ER stress (Ron and 

Horowitz, 2005; Bendikov-Bar et al., 2011; Bendikov-Bar and Horowitz, 2012). Furthermore, 

evidence from human post mortem brain tissue reveals ER stress induced activation of the UPR 
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in DLB and PD both with and without GBA1 mutations (Gegg et al., 2012; Baek et al., 2016). 

Perhaps not unsurprisingly, models involving CbE or GBA1 knock out models have not 

demonstrated activation of the UPR (Farfel-Becker et al., 2009). These models are not 

translatable to the biochemical environment associated with heterozygous GBA1 mutations. 

Accordingly, there is a need to better characterise UPR responses in more appropriate models. 

The unfolded protein response and the association with GBA1 mutations in both PD and DLB will 

be discussed in more detail in chapters 5 and 6.  

 

2.1. Overall aim 

The aim of this thesis is to investigate whether mutations in GBA1 confer a gain of function to 

mutant GCase enzyme which is demonstrated through activation of the cellular stress response, 

the unfolded protein response (UPR) in cells and human post mortem tissue. It is known that 

mutant GCase becomes trapped in the ER and subsequently can cause ER stress (Ron and 

Horowitz, 2005). We wish to establish whether mutant GCase is able to activate and trigger 

production of specific downstream effectors of the UPR which can initiate pathogenic 

consequences such as inflammation or cell death. These investigations could therefore implicate 

pathogenic pathways involved in the development of LBD other than the effect of reduced GCase 

enzyme activity on a-synuclein accumulation. A series of individual aims for each results chapter 

are described below.  

 

2.1.1. Individual results chapter aims 

2.1.1.1. Chapter 4 –Creation and evaluation of a stable SH-SY5Y cell line 

overexpressing wild type or L444P mutant GBA1 

The aim of this chapter was to create a reproducible and consistent SH-SY5Y cell overexpression 

model of a pathogenic GBA1 mutation (L444P) and evaluate the associated biochemical 

characteristics. The biochemical characteristics of the cell lines were investigated to determine if 

the cells accurately reflect the biochemical environment which is characterised by heterozygous 

GBA1 mutation carriers. Establishing the cell lines created as viable models of GBA1 mutation 

will facilitate their use in probing the molecular mechanisms linking GCase deficiency to LBD, 

namely the UPR. 
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2.1.1.2. Chapter 5 -Investigating the Unfolded Protein Response (UPR) in 

wild type and L444P GBA1 overexpressing SH-SY5Y cells – XBP1 

The aim of chapter 5 is to establish if L444P mutant GCase enzyme activates the UPR in the 

GBA1 SH-SH5Y cell lines created. Specifically, the ability of L444P mutant GCase to evoke a 

protective UPR response through activation of the IRE1a pathway and production of spliced 

XBP1 with be investigated. Furthermore, this chapter will try to ascertain the influence of 

accumulated a-synuclein on the production of spliced XBP1. 

 

2.1.1.3. Chapter 6 -Investigating the Unfolded Protein Response (UPR) in 

wild type and L444P GBA1 overexpressing SH-SY5Y cells – CHOP 

The aim of chapter 6 is to determine whether the PERK pathway of the UPR is activated in 

response to GBA1 mutation in the GBA1 SH-SY5Y cell lines created. Specifically, the ability of 

L444P mutant GCase to evoke a response detrimental to cell survival through the enhanced 

expression of CHOP will be assessed. The relative contribution of accumulated a-synuclein on 

the expression of CHOP will also be investigated in these cells. Furthermore, the aim of chapter 

6 is to also evaluate the expression of CHOP and linked effectors of the apoptotic cascade in 

human post mortem DLB tissue with and without GBA1 mutation.  

 

2.1.1.4. Chapter 7 – Behavioural characterisation of D427V/WT transgenic 

mice 

The aim of chapter 7 is to characterise the behavioural phenotype of D427V/WT GBA1 mice over 

a 12-month period to establish whether D427V/WT mice are a suitable translational model for the 

study of LBD. Previously, heterozygous mice had only been tested until the age of 6 months. 
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2.2. Hypothesis 

We hypothesise that mutant GCase protein activates the UPR. As the degree of ER stress 

increases over time, impacted by accumulating a-synuclein and other pathological proteins 

associated with LBD, production of protective downstream effectors such as spliced XBP1 will 

cease. At this point the predominant impact of the UPR response will be production of the 

apoptosis initiating protein, CHOP, with the consequence of decreased cell viability and 

development of the symptoms of LBD. We hypothesise that GBA1 mutation causes a gain of 

function effect which causes the imbalance of UPR responses in favour of detrimental cellular 

outcomes, contributing to the hitherto unknown pathological mechanisms linking GBA1 and LBD. 
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3. Materials and methods 

 

3.1. Creation of stable GBA1 SH-SY5Y cell lines 

3.1.1. Cell culture 

SH-SY5Y cells were grown in incubators maintained at 37°C in 5% CO2 in T75 flasks containing 

complete growth media consisting of: DMEM AQMediaTM (D0819, Sigma-Aldrich, USA), 10% 

foetal bovine serum (FBS)(Gibco, USA) and 1% penicillin (100IU/mL) / streptomycin 

(100µg/mL)(Gibco, USA). When at approximately 80-90% confluency, cells were sub-cultured. 

Media was removed, and cells washed twice with PBS. 1mL of trypsin/EDTA 0.25% (Gibco, USA) 

was added to the flask and cells returned to the incubator for 5 minutes. The flask was gently 

tapped to aid dissociation of the cells from the flask and 9mL of fresh growth media added. The 

cell suspension was transferred to a falcon tube and centrifuged at 1000 rpm for 5 minutes. 

Supernatant was aspirated, and the cell pellet re-suspended in 6mL of complete media. 1mL of 

the re-suspended cells were transferred to a fresh T75 flask containing 10mL of fresh complete 

growth media. This 1:6 split of SH-SY5Y cells was performed twice a week. All cells were kept 

and used below passage number 20. 

 

3.1.2. Polymerase chain reaction (PCR) amplification of GBA1 open reading frame 

(ORF) 

GBA1 plasmid (NM_000157) was purchased from OriGene technologies (Rockville, USA) and 

primers designed to amplify the ORF: Forward primer 5’-

CTATAGGGCATGGAGTTTTCAAGTCCTTCCAGAG-3’ and reverse primer 5’-

GGCGACGCCACAGGTAGGTGTGA-3’ (Sigma-Aldrich, USA). Q5Ò High-Fidelity DNA 

polymerase (New England BiolabsÒ, USA) was used to ensure accurate replication of nucleotide 

sequence. The PCR reaction and thermal cycling conditions are outlined in Table 7. PCR products 

were separated by electrophoresis on a 1% agarose gel and visualised under UV light. Fragments 

corresponding to the right size, 1600 base pairs (bp), were excised and purified using WizardÒ 

SV Gel and PCR clean up kit (Promega,USA) according to manufacturer’s instructions. In 

preparation for TOPO TA cloning, the GBA1 ORF was subject to adenosine tailing following the 

New England BiolabsÒ protocol. This involved incubating the GBA1 fragment with 
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deoxyadenosine triphosphate (dATP) and Taq DNA polymerase in Taq DNA polymerase buffer 

(Sigma-Aldrich, USA) at 72°C for 20 minutes. 

 

 

 

 

Table 7 -PCR mastermix and thermal cycling conditions for amplification of GBA1 ORF 

 

3.1.3. TOPO TA cloning 

GFP fusion TOPOÒ TA expression kit (K4820-01) was purchased from InvitrogenÔ life 

technologies. According to manufacturer’s instructions, fresh GBA1 PCR product was added to 

1µL of salt solution and 1µL of TOPO-GFPÒ vector with ddH2O making the final volume to 5µL. 

The reaction mixture was incubated at room temperature for 5 minutes before being placed on 

ice. The GBA1-TOPO-GFPÒ cloning reaction mix was chemically transformed into One ShotÒ 

TOP10 chemically competent E.Coli (Life Technologies, USA) according to manufacturer’s 

instructions. DNA was extracted and purified from E.Coli colonies using PureYieldÔ Plasmid 

Miniprep kit (Promega, USA). Plasmid DNA was subject to diagnostic restriction enzyme digest 

using ApaI (New England BiolabsÒ, USA) to linearize and check the size of the GBA1-GFP 

plasmid – 7770bp. Plasmid DNA was sent for Sanger sequencing (Source BioScience, UK) to 

confirm correct integration and orientation of the GBA1 ORF into the TOPO-TA GFP vector.  

DNA Template 2µg 

5 X Reaction buffer 10µL 

10mM dNTPs 1µL 

10µM Forward Primer 2.5µL 

10µM Reverse Primer 2.5µL 

5X High GC Enhancer 10µL 

ddH2O Up to 50µL 

Q5Ò High-Fidelity DNA Polymerase 0.5µL 

Initial Denaturation 98°C 30 Seconds 

Amplification – 35 Cycles 98°C 

70°C 

72°C 

10 Seconds 

30 Seconds 

60 Seconds 

Final Extension 72°C 15 minutes 



91 
 

3.1.4. Site directed mutagenesis 

Site directed mutagenesis was performed using QuikChangeÒ II Site-Directed Mutagenesis Kit 

(Agilent, USA) according to manufacturer’s instructions. In summary, primers were designed 

complementary to the target sequence of GBA1 except for the single nucleotide change required 

to create the L444P mutation in the middle of each primer. The primers used were: forward 5’- 

TCAGAAGAACGACCCGGACGCAGTGG-3’ and reverse 5’-

GTGCCACTGCGTCCGGGTCGTTCTTCTGA-3’ (Sigma-Aldrich, USA). Two complimentary 

nucleotides containing the L444P mutation were synthesized by PCR using PfuUltra HF DNA 

polymerase against the GBA1-GFP plasmid DNA template. The PCR reaction and thermal cycling 

conditions are shown in Table 8. 

 

10 X Reaction Buffer 5µL 

DNA template 10ng 

Forward Primer 125ng 

Reverse Primer 125ng 

dNTPs 1µL 

ddH2O Up to 50µL 

PfuUltra HF DNA polymerase  1µL 

 

Initial Denaturation  95°C 30 Seconds 

Extension  

(12 Cycles) 

95°C 

55°C 

68°C 

30 Seconds 

60 Seconds 

8 Minutes 

 

Following thermal cycling, the reaction mix was placed on ice prior to digestion with DpnI 

restriction enzyme at 37°C for 1 hour to preferentially digest template hemi-methylated DNA. The 

resultant mutant plasmid was chemically transformed into XL1 blue supercompetent cells as per 

Manufacturer’s protocol. Colony growth was subject to a blue/white screen in order to identify 

bacteria which had successfully taken up the mutant plasmid and repaired the nicks. This was 

performed by adding 80µg/mL of X-Gal (Sigma-Aldrich, USA) and 20mM IPTG (Sigma-Aldrich, 

USA) to ampicillin (Sigma-Aldrich, USA) containing agar plates. DNA was extracted and purified 

 

Table 8 -PCR reaction mix and thermal cycling conditions for site directed mutagenesis of GBA1-

GFP plasmid. 
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from bacteria using the PureYieldÔ Plasmid Miniprep kit (Promega, Wisconsin, USA) before being 

sent for Sanger sequencing to confirm the single nucleotide base change (Source BioScience, 

UK). 

 

3.1.5. Nucleofection 

Amaxaâcell line nucleofectorä kit V (VCA-1003, AmaxaÒ, Germany) was purchased and the 

optimised SH-SY5Y protocol followed. SH-SY5Y cells were seeded at a density of 2x105cells per 

well in a 6 well plate and left to reach confluency of approximately 80%. Cells were harvested by 

addition of 0.25% trypsin/EDTA (Gibco, USA) and centrifugation at 1000 rpm to create a cell 

pellet. The cell pellet was re-suspended in 100µL of the nucleofector solution provided before 

addition of 2µg of either wild type GBA1-GFP or L444P GBA1-GFP plasmid DNA. The re-

suspended cells and plasmid DNA were transferred to a specialised cuvette provided and subject 

to electroporation by the NucleofectorÔ 2b device (Amaxaâ, Germany) using the designated SH-

SY5Y compatible programme G-004. Nucleofected cells were re-plated in fresh media in a 6 well 

plate and cultured as normal thereafter. GFP fluorescence was periodically visualised under an 

inverted fluorescent microscope.  

 

3.1.6. Fluorescence-activated cell sorting (FACS) 

Nucleofected cells were harvested and re-suspended in 1mL of FACS buffer consisting of: 2% 

FBS (GibcoÒ, USA), 1mM EDTA (Sigma-Aldrich, USA) and PBS (InvitrogenÔ life sciences, USA). 

FACS was performed at a specialised flow cytometry facility at KCL by a flow cytometry technician 

using the BD FACS AriaÔ II cell sorter. Cells were sorted into a 96 well plate, single cell per well 

in 100µL of complete growth media. Media was refreshed periodically and surviving cells allowed 

to grow until confluent enough to be transferred to a T25 flask.  
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3.2. Evaluation of GBA1 SH-SY5Y cell line biochemistry 

3.2.1. Immunocytochemistry 

Autoclaved coverslips were coated with poly-D-lysine (Sigma, USA) for 5 minutes at room 

temperature. Coverslips were washed 3 times with phosphate buffered saline (PBS) prior to being 

placed in the incubator for at least 2 hours to dry. Cells were seeded at 0.1x106 cells/mL in 12 

well plates and left 24 hours to adhere to the coverslips. Media was removed, and the coverslips 

washed 3 times in PBS. Cells were fixed by addition of 100% methanol, previously chilled to -

20°C, for 5 minutes at room temperature. Methanol was aspirated, and coverslips washed 3 times 

with PBS. Cells were permeabilized by incubation with PBS containing 0.1% Triton X-100 (Sigma, 

USA) for 10 minutes at room temperature followed by 3 PBS washes. Cells were incubated with 

blocking solution consisting of 1% bovine serum albumin (BSA) and 22.52mg/mL glycine in PBST 

(PBS + 0.1% TweenÒ 20) for 30 minutes at room temperature to block non-specific binding of 

antibodies. Primary antibodies were prepared at the correct dilution in 1% BSA (Sigma, USA) 

(Table 9) and added to the cells for incubation overnight at 4°C. Antibody solution was decanted, 

and cells washed 3 times in PBS for 5 minutes each time. Secondary antibody was prepared at 

the correct dilution in 1% BSA (Table 9) and added to the cells for incubation in the dark at room 

temperature for 1 hour. Following incubation, antibody solution was removed, and cells washed 

3 times in PBS for 5 minutes each time whilst keeping cells in the dark. Cells were counterstained 

with 4’,6’-Diamidine-2’-phenylindole dihydrochloride (DAPI)(Sigma, USA) for 1 minute at room 

temperature and rinsed with PBS before mounting the coverslip with a drop of VectaMountÔ AQ 

mounting medium (Vector Laboratories, California). Slides were stored in the fridge prior to 

imaging.  

Manufacturer Antibody Dilution 

Abcam Ab55080 Mouse monoclonal anti-GBA 10µg/mL 

Abcam Ab22595 Rabbit polyclonal anti-Calnexin 1:100 

Abcam Ab37152 Rabbit polyclonal anti-XBP1 10µg/mL 

Millipore ABC955 Rabbit polyclonal anti-CHOP 1:2500 

Thermo Fisher A-11008 Alexa FluorÒ goat anti rabbit 488 1:500 

Thermo Fisher A-11004 Alexa FluorÒ goat anti mouse 568 1:1000 

Table 9 -Antibodies and dilutions used in immunocytochemistry 
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3.2.2. Western Blot 

3.2.2.1. Cell lysis 

In preparation for western blot, cells were grown in T75 flasks until confluent. Media was 

aspirated, and cells washed 3 times in ice cold PBS. Cells were scraped on ice in 1mL of lysis 

buffer consisting of: 50mM TrisHCl pH8.0 (Sigma, USA), 150mM NaCl (Sigma, USA), 1% NP-40 

(Sigma, USA), 0.1% SDS (Thermo Fisher, USA), 0.5% sodium deoxycholate (Sigma, USA) and 

0.1mM EDTA (Sigma, USA). Lysates were kept on ice for 30 minutes with regular agitation. 

Lysates were centrifuged at 12,000 rpm for 20 minutes at 4°C before the supernatant containing 

the cellular contents was collected and transferred to a fresh tube and stored at -20°C.  

 

3.2.2.2. Protein quantification 

Total protein concentration in each lysate was determined using the Thermo ScientificÔ PierceÔ 

BCA assay kit according to manufacturer’s instructions. Firstly, a set of standards were prepared 

using BSA serially diluted in lysis buffer to give the following concentrations to generate a 

standard curve: 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125, 0.025mg/mL. Preliminary experiments indicated 

that lysates could be used without further dilution. 5µL of BSA standard or cell lysate was added 

per well of a 96 well plate (Nunc A/S, Denmark) in triplicate. BCA reagents A and B were prepared 

at a ratio of 50:1 and mixed thoroughly before pipetting 100µL per well. The plate was covered 

and incubated at 37°C for 30 minutes before the absorbance was measured at 562nm using a 

plate reader (Molecular Devices, Spectramax 340PC). The absorbance values from the 

predetermined standard concentrations were used to generate a standard curve from which linear 

regression was performed to determine the protein concentration of the unknown cell lysate 

samples based upon their given absorbance values.  

 

3.2.2.3. Western blotting 

Western blotting was carried out as previously described (Broadstock et al., 2012). Samples were 

normalised to the same protein concentration using ddH2O and boiled at 95°C for 5 minutes in 5x 

Laemmli sample buffer (GenScript, USA). Once cooled, the samples were stored at -20°C until 

required.  
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15-well 10% SDS-polyacrylamide gels were prepared to run samples. 10µg of sample protein 

was loaded per lane. 2.5µL of full-range molecular weight marker (Amersham, UK) was loaded 

in the first lane of every gel for reference. Gels were run at 100 volts until the samples has passed 

through the separating gel and subsequently at 140 volts until the molecular weight ladder and 

samples had reached the bottom of the gel. Proteins were subsequently transferred from the gel 

onto a nitrocellulose membrane (Amersham, UK) in a procedure involving sandwiching the gel 

between the nitrocellulose membrane, blotting paper and fibre pads and transferring at 60 volts 

for 90 minutes. Post transfer, nitrocellulose membranes were blocked with 5% powdered milk in 

PBST at room temperature for 1 hour to minimise non-specific antibody binding. Nitrocellulose 

membranes were then incubated with primary antibody diluted in 5% powdered milk in PBST 

overnight at 4°C (Table 10). Following primary antibody incubation, 3 x 5-minute washes with 

PBST were performed to remove excess antibody from the nitrocellulose membrane before 

secondary antibody prepared in 5% powdered milk in PBST (Table 10) was added and incubated 

at room temperature for 1 hour in the dark. 3 x 5-minute washes with PBST were performed to 

remove excess antibody and clean the membrane prior to imaging. 

 

Nitrocellulose membranes were imaged using the Odyssey infrared scanner (Li-cor, version 

3.0.16). Wavelength selection, size of scan and scan intensity were tailored to the antibodies 

used for the specific western blot. The integral of band density corresponding to the protein of 

interest was generated and expressed as a ratio to that of a housekeeping protein in the same 

sample, serving the purpose of a loading control.  

Manufacturer Antibody Dilution 

Abcam Ab55080 Mouse monoclonal anti-GBA 1:1000 

Abcam Ab6556 Rabbit polyclonal anti-GFP 1:1000 

Abcam Ab9485 Rabbit polyclonal anti-GAPDH loading 

control 

1:2500 

Abcam Ab21685 Rabbit polyclonal anti-BiP 1:2000 

Abcam Ab37152 Rabbit polyclonal anti-XBP1 1:500 

Abcam Ab7291 Mouse monoclonal anti-aTubulin 1:10,000 

Millipore ABC955 Rabbit polyclonal anti-CHOP 1:1:2500 
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3.2.3. Quantitative PCR (qPCR) 

qPCR was performed as previously described (Medhurst et al., 2000).RNA was extracted from 

cells grown in T75 flasks until confluent using the Qiagen RNeasyÒ kit (Qiagen, Germany) 

according to manufacturer’s instructions. RNA concentration and quality were measured using 

the NanodropÔ 1000 spectrophotometer (Thermo scientific, USA) prior to conversion to 

complementary DNA (cDNA). cDNA conversion was performed using Applied BiosystemsÔ high 

capacity RNA-to-cDNAÔ kit (Applied BiosystemsÔ, USA) as per manufacturer’s instructions. 

Pre-designed housekeeping and gene of interest primers and fluorescent probes in the form of 

TaqManÒ  Gene Expression Assays (Applied Biosystems, USA)(Table 11) were purchased and 

the qPCR mastermix prepared following the manufacturer’s instructions based upon 4 repeats of 

each sample: 5µL 20x TaqManÒ expression assay (Applied Biosystems, USA), 50µL TaqManÒ 

Universal Mastermix (Applied Biosystems, USA) and 41µL nuclease free H2O. 19µL of mastermix 

was pipetted per well in a 384 well plate (Roche, Switzerland) with 1µL of sample cDNA added 

per well. Pooled cDNA was serially diluted to create standard curves to monitor the efficiency of 

the primer sets in each assay. Thermal cycling conditions were set at 95°C for 10 minutes 

followed by 45 cycles of 95°C for 10 seconds and 60°C for 30 seconds before starting the PCR 

reaction (Roche LightCyclerÒ 480, Switzerland).  

 

Data, specifically the threshold values (Ct), were analysed by relative quantification to give an 

indication of the relative expression of the gene of interest compared to HPRT1 housekeeping 

Novus 

Biologicals 

NBP 2-34444 Mouse monoclonal anti-BCL-2 1:1000 

Millipore AB3623 Rabbit polyclonal anti-Caspase 3 

(cleaved,active) 

1:200 

Abcam Ab62484 Rabbit polyclonal anti-Caspase 12 1:1000 

Thermo Fisher A-21057 Alexa FluorÒ goat anti mouse 680 1:5000 

Thermo Fisher A-32735 Alexa FluorÒ goat anti rabbit 800 1:5000 

Table 10 - Antibodies and dilutions used in western blotting 
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mRNA (RocheÒLightCycler 480 Software Version 1.5) Ct values were compared using the 

published DDCT method to give a value of relative gene expression (Livak and Schmittgen, 2001). 

 

Assay ID Gene 

Hs00986836_g1 GBA1 

Hs02800695_m1 HPRT1 

Hs00231936_m1 XBP1 

Hs00358796_g1 CHOP 

 

 

3.2.4. Lysosomal enzyme activity assays 

Lysosomal enzyme activity assays, specifically GCase, b-galactosidase and b-hexosaminidase 

were optimised and validated in both leucocytes and SH-SY5Y cells by Dr Derek Burke who 

kindly shared his protocol for these experiments (Burke, 2017). 

  

3.2.4.1. GCase enzyme activity assay 

Cells were grown in T75 flasks until confluent prior to harvesting in 1mL of sterile ddH2O. Cells 

were lysed by sonication for 10 seconds and protein quantification performed by BCA assay as 

described in chapter 3.2.2.2. Cell lysates were normalised to 1mg/mL. 

 

GCase enzyme activity in sample lysates was determined as previously described (Burke et al., 

2013) by the hydrolysis of 5mM 4-methylumbelliferyl-b-D-glucopyranoside (4-MUP) (Sigma, USA) 

in McIlvaine buffer pH5.4 in the presence of 22mM sodium taurocholate (Sigma, USA) at 37°C 

for 1 hour. The same reaction mixture was prepared concurrently in the absence of sodium 

taurocholate to account for the potential contribution of GBA2 GCase (Peters et al., 1976). 

Furthermore, both reaction mixes were prepared in the absence of any test sample to constitute 

negative controls. Reactions were stopped by the addition of 0.25M glycine (Sigma, USA) pH10.4. 

1nmol 4-methylumbelliferone (4-MU) (Sigma, USA) standard, the product of 4-MUP hydrolysis by 

GCase enzyme, in 0.25M glycine pH10.4 was prepared as a positive control. 4-MU fluorescence 

was determined at excitation 365nm, emission 450nm (FlexStation II, Molecular Devices). GCase 

enzyme activity was calculated using the following equation: 

Table 11 - TaqManÒ gene expression assays 
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("#$%&' − )&#*+)
"-#*.#/. 	× 60

4*56)#-47*	-4$'	×
1000

%/7-'4*	57*5'*-/#-47*	 × 	97&6$' 	= *$7&/ℎ//$=	%/7-'4* 

 

3.2.4.2. b-Galactosidase enzyme activity assay 

b-galactosidase enzyme activity was calculated in cell lysates added to a solution of 0.4% human 

serum albumin (HSA) (Sigma, USA) and 0.4M sodium chloride (Sigma, USA) as previously 

described (Burke et al., 2013), A reaction was produced in parallel without cell lysate to act as a 

negative control. 1mM of enzyme substrate 4-methylumbelliferyl-b-D-galactopyranoside (4-MUG) 

(Sigma, USA) in McIlvaine buffer pH 4.1 was prepared and added to the reaction solution 

containing the cell lysates/blanks and incubated at 37°C for 15 minutes. The reaction was stopped 

by addition of 0.25M glycine pH10.4. A standard of 1nM 4-MU in 0.25M glycine pH 10.4 was 

prepared as a positive control. Fluorescence was measured at excitation 365nm, emission 450nm 

(FlexStation II, Molecular Devices). b-galactosidase enzyme activity was calculated using the 

same equation used for GCase enzyme activity. 

 

3.2.4.3. b-Hexosaminidase enzyme activity assay 

b-hexosaminidase enzyme activity was measured in cell lysates added to 0.2% HSA in McIlvaine 

buffer pH4.5 as previously described (Burke et al., 2013). 0.2% HSA in McIlvaine buffer pH5.4 

without any cell lysate was prepared as a negative control. 3mM of the enzyme substrate, 4-

methylumbelliferyl-2-acetoamido-2-deoxy-b-D-glucopyranoside (4-MAP) (Sigma, USA) in 

McIlvaine buffer pH4.5 was prepared and added to the cell lysates/blanks and incubated at 37°C 

for 10 minutes. The reaction was stopped by the addition of 0.25M glycine pH 10.4. A standard 

of 1nM 4-MU in 0.25M glycine pH 10.4 was prepared as a positive control. Fluorescence was 

measured at excitation 365nm, emission 450nm (FlexStation II, Molecular Devices). b-

hexosaminidase enzyme activity was calculated using the following equation: 

 

("#$%&' − )&#*+)
"-#*.#/. 	× 60

4*56)#-47*	-4$'	×
1000

%/7-'4*	57*5'*-/#-47*	 × 	97&6$'		×
1

1000 

= µ$7&/ℎ//$=	%/7-'4* 
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Figure 4 – Substrates and fluorescent product of lysosomal enzyme activity assays 
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3.2.5. Cell viability assays 

3.2.5.1. PrestoBlueÒ 

PrestoBlueÒ assay was performed as previously described (Puangmalai et al., 2015). PrestoBlue 

is a resazurin based solution which, when added to cells, is modified by the reducing environment 

of viable cells, turning red in colour and becoming highly fluorescent (Lall et al., 2013).  

 

Cells were plated in a 96 well plate at a density of 3x105 per well in 100µL of media. Once 

confluent, 10µL of PrestoBlueÒ reagent (ThermoFisher Scientific, USA) was added per well and 

the plate returned to the incubator for 1 hour. Wells were prepared containing media and 

PrestoBlueÒ reagent to calculate background. Cell viability was determined at excitation 550nm, 

emission 590nm (FlexStation II, Molecular Devices).  

 

3.2.5.2. MTT assay 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed as 

previously described (Mosmann, 1983). The assay is based upon the ability of cells to convert 

water soluble MTT to insoluble formazan. Formazan is subsequently solubilised and the 

concentration determined by optical density (Mosmann, 1983).  

 

Cells were plated in a 96 well plate at a density of 100 cells per well in 100µL of media. Once 

confluent, 12mM VybrantÒ MTT stock solution (ThermoFisher Scientific, USA) was prepared and 

10µl added per well. Wells containing media and MTT stock solution were also prepared to 

calculate background. The plate was returned to the incubator for 4 hours. 85µL of media was 

removed per well leaving cells in 25µL of media. Product was solubilised by adding 50µL of 

dimethyl sulfoxide (DMSO) per well and mixing thoroughly. The plate was returned to the 

incubator for a further 10 minutes before the solubilised product was mixed thoroughly. Cell 

proliferation was determined by reading absorbance at 540nm (FlexStation II, Molecular 

Devices).  

 

3.2.6. Transfection of a-synuclein  

SNCA-GFP plasmid (RG210606) was purchased from OriGene Technologies (Rockville, USA). 

Empty vector-GFP plasmid was a generous gift from Professor Diane Hanger. Plasmids were 
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transfected into SH-SY5Y cells using the NucleofectorÔ 2b device (Amaxaâ, Germany) as 

described in section 3.1.5. Successful transfection was confirmed and expression of SNCA-GFP 

or empty vector-GFP validated by visualisation of GFP fluorescence under an inverted fluorescent 

microscope. Unfortunately, the accompanying camera was unavailable and images were unable 

to be taken for presentation in this thesis. 
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Amaxaâcell line nucleofectorä kit V (VCA-1003, AmaxaÒ, Germany) was purchased and the 

optimised SH-SY5Y protocol followed. SH-SY5Y cells were seeded at a density of 2x105cells per 

well in a 6 well plate and left to reach confluency of approximately 80%. Cells were harvested by 

addition of 0.25% trypsin/EDTA (Gibco, USA) and centrifugation at 1000 rpm to create a cell 

pellet. The cell pellet was re-suspended in 100µL of the nucleofector solution provided before 

addition of 2µg of either wild type GBA1-GFP or L444P GBA1-GFP plasmid DNA. The re-

suspended cells and plasmid DNA were transferred to a specialised cuvette provided and subject 

to electroporation by the NucleofectorÔ 2b device (Amaxaâ, Germany) using the designated SH-

SY5Y compatible programme G-004. Nucleofected cells were re-plated in fresh media in a 6 well 

plate and cultured as normal thereafter. GFP fluorescence was periodically visualised under an 

inverted fluorescent microscope.  
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3.3. Human post mortem brain tissue 

3.3.1. Case details 

Post mortem brain tissue from N370S GBA1 heterozygous DLB, sporadic DLB and non-

demented control cases was obtained from South West Brain Bank University of Bristol and 

Queen Square brain bank, University College London. Diagnosis was made by the respective 

brain banks based upon standardised post mortem diagnostic criteria. A 500mg sample of frozen 

tissue was taken from the dorsolateral prefrontal cortex (BA9), temporal cortex (BA21) anterior 

cingulate gyrus (BA24) and parietal cortex (BA40). Due to the pathological overlap between PDD 

and DLB in addition to the variable of using two different brain banks, the decision was made to 

combine PDD and DLB cases to form a LBD cohort for comparison. Cases were matched for 

mean age at death and mean post mortem delay and confirmed using Levene’s test for equality 

of variances and independent t-test for equality of means using IBM SPSS statistical software 

programme version 22 (IBM, USA) (Table 12). There was a significantly higher number of male 

cases across all study cohorts which does need to be given consideration when interpreting 

results. pH data was not available for all the cases; a limitation of this study. Since pH, specifically 

more acidic environments, contributes to the degradation of proteins within the brain, ideally pH 

would be controlled for across study groups. The impact of post mortem delay on the 

representation of protein expression by western blot was considered. Post-mortem delay in non-

demented control cases did not correlate with expression of any protein of interest when tested 

by Pearson correlation.  

 

 

 

 

Diagnosis n Male Female Mean age at death 

(years) 

Mean post 

mortem delay 

(hours) 

Non-demented control 11 9 2 86.09 (±3.081) 56.19 (±0.929) 

N370S GBA1 -DLB 4 4 0 77.75 (±8.221) 56.04 (±40.643) 

LBD 10 9 1 83.70 (±6.430) 44.75 (±27.315) 

Table 12 - Summary of post mortem cases included in the study 
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3.3.2. Preparation of human tissue for western blot 

Tissue was prepared following standard protocols developed in our lab (Whitfield et al., 2014). 

For each tissue sample, the cortical grey matter was dissected from the white matter and 

meninges on dry ice. Approximately 300mg of cortical grey matter was homogenised in 6mL of 

ice-cold homogenisation buffer at pH 7.4 using an Ultra-Turrax tissue homogeniser (KIA Werke, 

Germany) resulting in a crude homogenate. The homogenisation buffer contained: 50mM Tris-

HCl, 5mM EGTA, 10mM EDTA, RocheÒ ‘complete protease inhibitor cocktail tablets’ (Roche, 

Switzerland) and 2µg/mL pepstatin A (Sigma-Aldrich, USA). Crude homogenates were 

immediately frozen on dry ice and stored at -70 for protein assay and western blot.  

 

3.3.3. Protein quantification of human tissue homogenate 

The total protein concentration of the crude homogenate was determined using the Bradford 

protein assay method (Bradford, 1976) . Bovine serum albumin (BSA) (Thermo Scientific, USA) 

standards were prepared in homogenisation buffer resulting in the following concentrations: 0.2, 

0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 mg/mL. Serial dilutions of crude homogenate were 

prepared also using homogenisation buffer.  

 

5 µL of crude homogenate, diluted homogenate or standard were added per well of a 96 well 

plate (Nunc A/S, Denmark) in triplicate. Then, 250µL of Coomassie Reagent (Thermo Scientific, 

USA) was added per well and the plate incubated at room temperature for 10 minutes. After 

ensuring there were no bubbles which could interfere with absorbance, absorbance was read at 

595nm using Flexstation II (Molecular devices, USA). Samples were normalised to 1µg/mL of 

protein and boiled at 95°C for 5 minutes in 5x Laemmli sample buffer (GenScript, USA). Once 

cooled, the samples were stored at -20°C until required. Western blotting was performed as 

described earlier in chapter 3.2.2.3. 
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3.4. D427V/WT GBA1 mouse 

 

3.4.1. Animal husbandry and colony maintenance 

Homozygous GBA1 D427V/D427V mice were purchased from Jackson laboratories (Charles 

River, UK) and used for breeding with female wild-type C57BL/6 mice (Charles River, UK) to 

produce animals for breeding. Mixed gender mice were maintained in a 12-hour light dark cycle 

at ambient temperature and humidity with ad libitum access to water and food. After weaning, 

mice were ear clipped for identification purposes and for DNA extraction. DNA was extracted from 

ear clips using the Qiagen DNeasyÒ extraction kit (Qiagen, Germany) according to the 

manufactures instructions. Genotyping was performed using the following primers: Forward 5’-

CAG TTC ACA CAG TGT TGG AGC-3’ and reverse 5’-AGG TGA TCG TAT TTC AGT GGC-3’ 

(Sigma-Aldrich, USA) following the genotyping protocol and thermal cycling conditions from 

Jackson Laboratory (USA) 

https://www2.jax.org/protocolsdb/f?p=116:5:0::NO:5:P5_MASTER_PROTOCOL_ID,P5_JRS_C

ODE:9353,019106.  

 

3.4.2. Behavioural testing 

All behavioural testing was performed at the same time each day (beginning at 9:30am) and 

under the same light conditions. Furthermore, all testing was remotely reordered by video camera 

in a cordoned off area of the room where the mice were unable to see any researchers. This 

experimental set up reduced the potential for researchers becoming a cue and as such affecting 

the behavioural performance. Open field and Morris water maze videos were analysed using the 

behavioural software Ethovision XT version 11 (Nodlus, Netherlands) as discussed below, 

preventing researcher bias. Y-maze videos were manually scored for open arm entry since the 

software did not perform this function. 

3.4.2.1. Open field behavioural testing 

Open field testing was carried out according to previously described (Seibenhener and Wooten, 

2015). Mice were habituated to the testing room for 30 minutes prior to testing before being placed 

in a 45cm2 open field area for 20 minutes and allowed to explore. Lighting across the arena was 

even and the arena cleaned with ethanol between trials. Trials were recorded by video camera 

and the recording analysed using EthoVision XT version 11 software (Noldus, Netherlands). The 
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arena was calibrated using the EthoVision software to reflect the dimensions and additionally the 

presence of a 11.25cm2 square border. The following parameters were measured per mouse over 

the 20-minute trial: distance moved (cm); velocity (cm/s) and time spent in the 11.25cm2 border 

to the centre (s).  

 

3.4.2.2. Y-Maze behavioural testing 

Mice were placed in the centre of a Y-maze and allowed to explore the arms of the maze for 8 

minutes. The arms of the maze measured 35cm in length and 4cm in diameter. The maze was 

cleaned with ethanol between trials and lightning was even across the maze. The recording of 

each trial was manually scored for the number of spontaneous arm entries – the total number of 

correct triad arm entries attempted within 8 minutes. The % of spontaneous arm performance 

was calculated. The protocol for Y-maze testing and spontaneous arm performance was based 

upon the paradigms described by Deacon et al and Hughes et al (Hughes, 2004; Deacon and 

Rawlins, 2006) 

 

3.4.2.3. Morris water maze behavioural testing 

A circular water maze measuring 1 meter in diameter was filled with water and opacifier added 

the day prior to testing to allow the water to reach ambient temperature. A platform was placed in 

the centre of a designated quadrant for the entirety of testing for each age cohort, submerged 

2cm below the surface of the water. Large visual cues were placed at the north, south, east and 

west point of the arena. Mice were placed in the water maze at randomly generating starting 

points and given 90 seconds to find the submerged platform. If the mouse failed to find the 

platform, it was placed on the platform for 10 seconds before being returned to its cage. Each 

mouse underwent 4 trials per day from randomly generated starting points with a 30-minute 

interval between each trial. Average values were calculated using EthoVision measures for the 

time taken to find the platform (s), distance to platform (cm) and the velocity (cm/s). Mice 

underwent 5 consecutive days of trials to generate learning curves. On day 6 a probe trial was 

performed to validate the learning curve findings by extinguishing the learning curves. The 

platform was removed from the water maze and the time mice spent in the correct quadrant which 

previously contained the platform was measured over 60 seconds. The same protocol was 

employed for testing across different age groups. The protocol employed for Morris water maze 
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testing was based upon the widely adopted paradigm described by Vorhees et al (Vorhees and 

Williams, 2006) 
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3.5. Statistical Analyses 

All statistical analyses for cell line and in vivo studies were conducted using GraphPad Prism 7 

software, following the recommended tests suggested by the software. All statistical analyses 

pertaining human post mortem tissue were performed using SPSS version 24 software (IBM 

analytics). The statistical tests used are descried within figure legends. GraphPad Prism 7 

software was used to plot all graphs. All data are presented as mean ± SEM. 

 

3.5.1. Cell lines 

One-way ANOVA followed by Tukey’s HSD post hoc test was used for comparison between cell 

lines: SH-SY5Y, WT GBA1 SH-SY5Y, L444P GBA1 SH-SY5Y. Upon transfection of a-synuclein, 

two-way ANOVA followed by Bonferroni post hoc test was used for comparison between cell lines 

either expressing a-synuclein or empty vector. Prior to comparison of means, Levene’s test for 

equality of variances was performed on all data to check for normal distribution of data allowing 

for the application of parametric statistical tests. 

 

3.5.2. Human post mortem tissue 

Non-demented control cases were selected to match both DLB and N370S-DLB cases for age 

as described in chapter 3.3.1. All data from western blots was Log10 transformed to normalise 

distribution which was subsequently confirmed using Levene’s test. Outliers were identified in 

SPSS by generating boxplots and subsequently excluded. Excluded data points are highlighted 

in scatter graphs. One-way ANOVA followed by Tukey’s HSD post hoc test was used for 

comparison between non-demented controls, sporadic DLB and N370S GBA1 DLB cases. 

 

3.5.3. D427V/WT GBA1 mouse model 

Data was analysed between D427V/WT GBA1 and WT mice across 4 different age ranges using 

repeated measures ANOVA followed by Sidak’s post hoc test. Learning curves at individual age 

points for the Morris water maze were compared by two-way ANOVA followed by Bonferroni post-

hoc test. 
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4. Creation and evaluation of a stable SH-SY5Y cell line 

overexpressing wild type or L444P mutant GBA1 

 

4.1. Introduction 

Several cell models have been created for the study of GCase and GBA1 mutations to better 

understand the relationship between mutant GCase and mechanisms underlying GD and more 

recently synucleinopathies. Each model has their advantages and disadvantages pertaining their 

biochemical characteristics and ability to accurately reflect the biochemical environment 

associated with heterozygous GBA1 mutation carriers, the focus of this thesis. These factors 

need to be considered when interpreting findings.  

 

4.1.1. Cell models 

4.1.1.1. Conduritol beta epoxide (CbE)  

CbE is an irreversible pharmacological inhibitor of glucocerebrosidase (GCase) enzyme activity 

(Grabowski et al., 1986). Administration of CbE is a simple method of investigating the effect of 

reduced GCase enzyme and as such has been utilised by many studies both in cells and in mice 

(Enquist et al., 2007; Dermentzaki et al., 2013). However, the degree of GCase enzyme activity 

varies considerably in association with GBA1 mutations and the degree of GCase inhibition by 

CbE needs to be taken into account, especially if trying to recapitulate the effect of heterozygous 

mutations in GBA1 or the reduced GCase enzyme activity seen in sporadic PD brain (Gegg et 

al., 2012). 

 

CbE is also able to inhibit non-lysosomal GCase produced by GBA2 (Ridley et al., 2013). Whilst 

CbE inhibits GBA2 related GCase less efficiently than lysosomal GBA1 GCase, CbE still 

produces a non-specific effect on overall glycosphingolipid metabolism within cells. The 

contribution and significance of diminished GBA2 GCase enzyme activity should be factored into 

interpretations from these models. 

 

The appropriateness of cell types treated with CbE also needs to be taken into consideration. 

Since GCase is being investigated in the context of PD and DLB, cells should be ‘neuronal like’, 
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if not actual neurons, or cells which overexpress a-synuclein. Accordingly, many CbE studies 

have been performed in SH-SY5Y cells, an immortal human neuroblastoma cell line which can 

be differentiated using retinoic acid into dopaminergic ‘neuron like’ cells (Manning-Bog et al., 

2009; Dermentzaki et al., 2013). Whilst SH-SY5Y cells are ‘neuron like’, they are not neurons. 

Furthermore, SH-SY5Y cells only express low levels of a-synuclein whilst pre-synaptic a-

synuclein is abundant in neurons (Hunya et al., 2008). Appropriate representation of a-synuclein 

in any model used for GCase investigations is important since GCase and a-synuclein physically 

interact (Yap et al., 2011) and GCase deficiency is strongly associated with a-synuclein 

accumulation (Mazzulli et al., 2011)(chapter 1.6.6). These factors are strongly implicated in the 

pathogenic mechanisms of LBD and so the absence of a GCase/a-synuclein relationship may 

question the validity of experimental results. Taking these factors into consideration, SH-SY5Y 

cells are still widely used and are a valuable model due to their ease of culture compared with 

primary cultures. Primary neuronal cultures whether cortical or mesencephalic have the 

advantage of being actual neurons and so are directly translational. However, in order to prevent 

damage of the neuronal tissue during dissociation, primary rodent cultures are generated at 

embryonic days 11-17 for cortical neurons and embryonic day 13.5 for mesencephalic neurons 

(Pozzi et al., 2017). These neurons are not mature and certainly do not reflect the mature neurons 

of the aging brain. Furthermore, accuracy in dissection can also affect the phenotype of neuronal 

subpopulations present in the culture. However, both SH-SY5Y and primary neuronal cultures 

represent a pragmatic approach to the study of GBA1 mutations as long as the limitations are 

acknowledged. 

 

4.1.1.2. Overexpression of GBA1 

Simple models involving the overexpression of GBA1 plasmids are relatively easy and cheap to 

produce. This approach has been taken in MES 23.5 (rodent mesencephalic), PC12 (rat 

neuroendocrine tumour) and primary cortical neurons in a key paper implicating mutant GCase 

in a-synuclein accumulation (Cullen et al., 2011). In this case, mutations were generated by site-

directed mutagenesis of GBA1 plasmids with the resultant mutant plasmids transiently 

transfected into cells. Mutant plasmids generated include: N370S, D409H, L444P, E235A and 

E350A (Cullen et al., 2011). The key consideration of this approach is background endogenous 

expression of wild-type (WT) GCase protein. Since cells do not reflect the impact of mutant 
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GCase alone, the contribution of endogenous GCase must always be taken into account when 

interpreting results. One way of addressing this issue is to make comparison to cells transfected 

with WT GBA1, generating values of relative change to WT overexpressing cells. Furthermore, 

the cell type used as the basis for the model also needs to be evaluated for suitability as discussed 

earlier. 

 

4.1.1.3. GBA1 Knockdown 

An alternative approach to studying GCase in vitro is knockdown of GBA1. Knockdown of GBA1 

has been performed by lentiviral administration of shRNA to differentiated SH-SY5Y cells (Kong 

et al., 2013) and also primary neurons resulting in a 50% reduction in GCase protein (Mazzulli et 

al., 2011). The degree of knockdown and resultant GCase protein level and enzyme activity are 

critical factors when interpreting results and considering the translational impact for LBD. 

Although not strictly GBA1 knockdown, zinc finger nuclease direction has also been used to cause 

a knock-out of GCase enzyme activity to residual levels attributable only to GBA2 derived GCase 

(Bae et al., 2015). This was achieved by targeting a zinc finger directed frame shift causing 

translation of a termination stop signal in exon 3 (Bae et al., 2015). Since GCase enzyme activity 

is attributable to exons 5 through to 10 (Hruska et al., 2008), GBA1 translated GCase enzyme 

activity is knocked out. 

 

4.1.1.4. Fibroblasts 

Skin fibroblasts taken from living LBD patients represent a model of primary human cells, which 

comprise chronological and biological ageing according to individual polygenic predisposition and 

environmental factors (Alcalay et al., 2014). Skin fibroblasts are easily isolated from 2mm punch 

skin biopsies and the ensuing culture is initially a mix of fibroblasts and keratinocytes until a pure 

culture of fibroblasts is achieved through passage (Auburger et al., 2012). However, fibroblast 

cultures contain a mixture of mitotic and post-mitotic cells contributing to a heterogeneous cell 

population (Auburger et al., 2012). Furthermore, clonal selection and drift in culture are inherent 

features of fibroblasts and so appropriate matching to controls can be challenging (Auburger et 

al., 2012). Fibroblasts generated from PD and DLB patients both with and without GBA1 mutation 

as well as from patients with GD have proved a popular model for interrogation since the direct 

effect of either the disease or GBA1 mutation on the human cell can be examined (McNeill et al., 

2014). However, as a model system translational to LBD, human fibroblasts have a major flaw 
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since they only express SNCA at very low levels unlike neurons and so the interaction between 

a-synuclein and GCase is not accurately represented (Auburger et al., 2012).  

 

4.1.1.5. iPSC derived neurons  

Takahashi and Yamanka first demonstrated in 1996 that retroviral transduction of a cocktail of 

transcription factors highly enriched in embryonic stem cells can reprogram fibroblasts into 

embryonic stem cell like cells named induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka, 2016). These iPSCs can be differentiated into cells of interest, specifically 

dopaminergic neurons for the study of PD (Zhao et al., 2014). 

 

Human iPSCs are considered excellent models to study the molecular mechanisms underlying 

LBD in vitro because they are derived directly from patient somatic cells and so comprise the 

specific genetic predisposition and biochemical features of the individual (Zhao et al., 2014). 

Application of iPSC technology to study disease mechanisms has coined the phrase ‘disease in 

a dish’. The biochemical features of LBD neurons with or without GBA1 mutation can now be 

realistically reflected in vitro and as such iPSCs have become increasingly utilised (Schondorf et 

al., 2014; Woodard et al., 2014; Fernandes et al., 2016; Mazzulli et al., 2016b). 

 

The major limitation to this technology is the variability between iPSC lines (Zhao et al., 2014). 

This is addressed by robust quality control measures such as verification of transgene silencing 

and karyotype analysis (Zhao et al., 2014). Variability between lines may reduce the ability to 

perceive meaningful phenotypes, especially when a limited number of cell lines are used in a 

study (Zhao et al., 2014).  

 

When interpreting data from iPSCs used to study PD and DLB, the relative maturity of the derived 

dopaminergic neurons needs to be considered. Typically, these neurons are relatively immature 

and do not accurately reflect mature and aged neurons present in PD or DLB, conditions where 

age remains the biggest risk factor (Hindle, 2010). The maturity of neurons is an important factor 

since many biochemical pathways become less efficient with age (Hindle, 2010). The content and 

pattern of gangliosides markedly changes during brain development, a feature which is 

particularly relevant to GBA1 mutant iPSC studies (Svennerholm et al., 1989). The total brain 

ganglioside content is very low at embryonic and foetal stages before increasing several fold with 
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a shift from gangliosides of the Lac series: GM3 and GD3, to monosialo-species during 

development and polysialo-species in the adult brain (Svennerholm et al., 1989). The ganglioside 

pattern of fibroblasts is characterised by the presence of GM3 which remains the main ganglioside 

represented in iPSC cultures (Schondorf et al., 2014). However, differentiated dopaminergic 

neurons contain all the polysialogangliosides found in the CNS, even though high levels of GM3 

and GD3 are still present (Schondorf et al., 2014). iPSC derived dopaminergic neurons do 

recapitulate key glycosphingolipid pathways related to GCase enzyme activity although not 

completely (Schondorf et al., 2014). Nevertheless, dopaminergic neurons do not reflect the 

neuronal species most affected in LBD. Glutamatergic and cholinergic neurons are extensively 

implicated and therefore investigating the impact of GBA1 mutations on these cell types may 

prove to be more informative. 
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In vitro models for study of GBA1 

Knock down 
siRNA directed against GBA1 or 
zinc finger directed knock down in a variety of cell types 
ADVANTAGES 

• Easy and fast results 
• Good for mechanistic studies 

DISADVANTAGES 
• Knockdown tends to cause reduction in GCase enzyme activity not 

translational for PD/DLB 

Overexpression 
Overexpression of wild type or mutant GBA1 in a variety of cell types 
ADVANTAGES 

• Simple to perform 
• Expression of human mutant GBA1 mirroring patients 
• Good for pathway studies 

DISADVANTAGES 
• Need to consider impact of endogenous GCase 

Fibroblasts 
Derived from heterozygous GBA1 mutant or sporadic PD/DLB patients 
ADVANTAGES 

• Human cell model expressing mutant GBA1 to a translational extent 
• Good for drug testing 

DISADVANTAGES 
• Low expression of α-synuclein  
• Not neurons 

iPSC derived dopaminergic neurons 
Derived from heterozygous GBA1 mutant or sporadic PD/DLB patients 
ADVANTAGES 

• Neurons reflecting the GBA1 deficient environment 
• ‘Gold star’ translational model 

DISADVANTAGES 
• Time consuming, expensive and difficult to produce 
• Immature neurons 
• Variability between iPSC lines 

CβE 
Pharmacological inhibitor of GCase used in various cell types resulting in <10% GCase 
enzyme activity 
ADVANTAGES 

• Cheap and easy to administer 
• Gives neuronogenic GD phenotype in vivo 

DISADVANTAGES 
• Does not affect the structure of GCase. 
• GCase activity reduced to non-translational level for PD/DLB 

Table 13 – Summary of in vitro models studying GBA1 mutation 
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4.1.2. Biochemistry of GBA1 cell models 

As already discussed, the biochemical environment of any cell model used to study GBA1 

mutations and GCase activity in LBD should reflect as accurately as possible the biochemical 

conditions in living individuals, predominantly to make experimental findings using these models 

easily translatable into humans. The key biochemical parameter which needs to be assessed in 

any model of GBA1 mutation or LBD is the level of GCase enzyme activity which should be 

considered in the context GBA1 gene expression and GCase protein levels. 

 

4.1.2.1. GCase enzyme activity 

Immortal cell lines such as PC12 and MES23.5-SNCA have been engineered to overexpress 

GBA1 plasmids with varying common mutations in the gene as discussed in chapter 4.1.1.2 

(Cullen et al., 2011). Whilst overexpression of WT GBA1 into MES23.1-SNCA cells results in 

increased GCase enzyme activity to 167% compared with non-transfected cells, no significant 

reduction in GCase activity was seen when mutant GBA1 plasmids were overexpressed (Cullen 

et al., 2011). The same effect was seen in PC12 cells when either D409V or D409H GBA1 

plasmids were overexpressed (Cullen et al., 2011). Since it is known that GCase enzyme activity 

is significantly reduced in the cerebellum, substantia nigra, anterior cingulate gyrus and frontal 

cortex of sporadic PD and DLB patients (Gegg et al., 2012; Murphy and Halliday, 2014; Rocha et 

al., 2015a), cellular models which do not show comparable reductions in GCase enzyme activity 

may not be suitable for pathway interrogation. However, one immortal cell line used to model PD 

does show a reduction in GCase enzyme activity. Mouse neuroblastoma cells overexpressing 

human WT a-synuclein show a significant reduction in GCase enzyme activity of over 50% (Yang 

et al., 2016). 

 

The use of CbE in immortal cell lines or primary cultures pharmacologically inhibits GCase 

enzyme activity (Grabowski et al., 1986). The degree of reduced GCase enzyme activity 

conferred by CbE depends upon the concentration used. 50µM of CbE in SH-SY5Y cells reduces 

GCase activity to less than 5% of untreated cells (Cleeter et al., 2013; Dermentzaki et al., 2013). 

Higher concentrations, 200µM of CbE, are required to achieve a similar degree of impaired 

GCase enzyme activity in primary cortical neurons (Dermentzaki et al., 2013). The extent of 



116 
 

reduced GCase enzyme activity needs to be considered since these reductions are more 

comparable with severe forms of GD and not heterozygous mutations associated with LBD.  

Patient derived fibroblasts would be expected to give a representative picture of GCase enzyme 

activity and indeed GBA-PD and non-disease manifesting GBA1 heterozygotes show an 

approximate 50% reduction in GCase activity (McNeill et al., 2014). A lower magnitude of reduced 

GCase activity has been reported in alternative studies: 35% reduction in L444P-PD fibroblasts; 

32% reduction in N370S-PD fibroblasts (Sanchez-Martinez et al., 2016; Garcia-Sanz et al., 2017). 

Interestingly, fibroblasts from sporadic PD patients do not show a significant reduction in GCase 

enzyme activity (McNeill et al., 2014; Sanchez-Martinez et al., 2016; Garcia-Sanz et al., 2017).  

 

iPSC derived dopaminergic neurons from GBA-PD patients shows an approximate 50% reduction 

in GCase enzyme activity (Schondorf et al., 2014; Fernandes et al., 2016). A similar degree of 

GCase enzyme activity is seen in dopaminergic neurons generated from GBA1 heterozygous 

monozygotic twins discordant for PD (Woodard et al., 2014). iPSC derived dopaminergic neurons 

from healthy individuals infected with lentiviral particles to express human WT a-synuclein also 

show a significant reduction in GCase enzyme activity specifically in the lysosomal compartment 

(Mazzulli et al., 2016a). 

 

In conclusion, the cell line created in chapter 4 should demonstrate a significant reduction in 

GCase enzyme activity to be considered a suitable model to investigate the UPR response which 

may contribute to LBD pathology. 

 

4.1.2.2. Other lysosomal enzymes 

The effect of GBA1 mutation should be considered in the context of activity of other lysosomal 

enzymes. Since GCase is located at a critical juncture in the glycosphingolipid pathway, alteration 

in GCase activity may influence the activity of other enzymes in the pathway but also other 

enzymes which function within the lysosome indirectly through a toxic gain of function effect on 

the lysosome. The activity of other lysosomal enzymes can determine whether pathological 

effects noted in association with GBA1 mutation are GCase specific or due to global lysosomal 

dysfunction in which case non-specific lysosomal enzyme activity will be affected. 
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4.1.2.2.1. b-Galactosidase 

b-galactosidase enzyme cleaves the terminal b-galactosyl residues from GM1 gangliosides, 

glycoproteins, oligosaccharides and the glycoaminoglycan keratan sulfate (Sandhoff and Harzer, 

2013). Within lysosomes, b-galactosidase is complexed with two other hydrolases: serine 

peptidase protective protein / Cathepsin A (PPCA) and neuramidiase (Sandhoff and Harzer, 

2013). This multi-enzyme complex is critical for enzyme stability and function within lysosomes 

(Sandhoff and Harzer, 2013).  

 

In relation to cell models of GBA1 mutation the activity of b-galactosidase is increased in 

fibroblasts with GBA1 mutations but is significantly reduced in the corresponding iPSC derived 

dopaminergic neurons (Schondorf et al., 2014). However, a significant reduction in GBA-PD 

fibroblasts has been reported by Garcia-Sanz et al (Garcia-Sanz et al., 2017) whilst McNeill et al 

reports no alteration in b-galactosidase activity in GBA1 heterozygotes either with or without PD 

(McNeill et al., 2014). iPSC derived dopaminergic neurons from healthy individuals infected with 

lentiviral particles to express human WT a-synuclein show a significant reduction in b-

galactosidase enzyme activity specifically in the lysosomal compartment (Mazzulli et al., 2016a). 

However, there is no change in b-galactosidase activity, despite significant reduction in GCase 

activity in a murine model of a-synuclein accumulation due to transgenic overexpression of 

human A53T SNCA (Sardi et al., 2013). Furthermore, b-galactosidase activity and gene 

expression is unaffected in GD mouse models (Vitner et al., 2010; Sardi et al., 2013). 

 

Interestingly, b-galactosidase enzyme activity is unchanged in lumbar CSF from sporadic PD and 

AD patients compared with controls but is significantly reduced in DLB (Balducci et al., 2007; 

Parnetti et al., 2009). These findings potentially implicate more extensive disruption to 

glycosphingolipid metabolism in DLB which could underlie the symptoms of dementia.  

 

4.1.2.2.2. b-Hexosaminidase 

b-hexosaminidase catalyses the degradation of GM2 gangliosides and other molecules 

containing N-acetyl hexosamines (Kolter and Sandhoff, 2006). Functional lysosomal b-

hexosaminidase enzyme exists as a dimer through the combination of a and b subunits to form 

one of three isoenzymes: A, B or S (Kolter and Sandhoff, 2006). Only isoenzyme A, composed 
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of both a and b subunits, can hydrolyse GM2 gangliosides in vivo.  Enzymatic hydrolysis by b-

hexosaminidase requires the enzyme to be complexed to the specific GM2 activator protein within 

the lysosome (Kolter and Sandhoff, 2006) (Figure 5). 

 

GM2 gangliosidosis are a group of autosomal recessive inherited neurodegenerative disorders 

caused by excessive intra-lysosomal neuronal accumulation of ganglioside GM2 related 

glycolipids (Sandhoff and Harzer, 2013). Genetic defect in either the gene encoding the a or b 

subunits (HEXA or HEXB) or the GM2 activator protein (GM2A) can result in accumulation of 

GM2 in neural tissue leading to three forms of GM2 gangliosidosis: Tays-Sachs disease, Sandhoff 

disease and GM2 activator protein deficiency respectively (Sandhoff and Harzer, 2013).  

 

The influence of GBA1 mutations on b-hexosaminidase activity is debated. Increased activity is 

seen in GBA-PD fibroblasts by McNeill et al (McNeill et al., 2014) but was not replicated by 

Schondorf et al or Garcia-Sanz et al in fibroblasts or by Chiasserini et al in human brain tissue 

(Schondorf et al., 2014; Chiasserini et al., 2015; Garcia-Sanz et al., 2017).  

 

There is no change in b-hexosaminidase activity, despite significant reduction in GCase activity 

seen in a murine model of a-synuclein accumulation due to transgenic overexpression of human 

A53T SNCA (Sardi et al., 2013). Furthermore, b-hexosaminidase activity is unaffected in 

D409V/D409V GBA1 homozygous mice (Sardi et al., 2013). Additionally, neuronopathic GD mice 

do not exhibit any alteration in b-hexosaminidase mRNA expression (Vitner et al., 2010). 

Interestingly, as with b-galactosidase enzyme activity in humans, whilst b-hexosaminidase activity 

remains unchanged in CSF from PD patients, enzyme activity is significantly reduced in DLB 

patients indicating DLB may involve more extensive lysosomal pathology (Balducci et al., 2007; 

Parnetti et al., 2009). 
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Figure 5 - Composition of b-hexosaminidase enzyme and substrates. 

 

4.1.3. GCase protein levels 

The expression levels of GCase enzyme are an important consideration in any model. A reduction 

in GCase suggests two possibilities: reduced transcription of GBA1 or increased degradation of 

GCase protein. GCase protein levels are significantly decreased in the substantia nigra and 

cerebellum of sporadic PD brain along with the putamen and frontal cortex in GBA-PD/DLB 

patients (Gegg et al., 2012; Kurzawa-Akanbi et al., 2012). However, not all brain regions show 

reduced GCase protein expression suggesting some regions are more susceptible than others. 

To model these brain regions accurately, a corresponding level of GCase protein expression 

should be reflected in the cell model created. 

 

GCase protein expression is significantly reduced in a mouse neuroblastoma cell line 

overexpressing human WT a-synuclein (Yang et al., 2016). GCase protein expression is also 

significantly reduced in cultured fibroblasts from GBA1 heterozygotes both with and without PD 

(McNeill et al., 2014; Garcia-Sanz et al., 2017). Furthermore, GCase protein expression is also 

significantly reduced in iPSC derived dopaminergic neurons from GBA-PD patients (Garcia-Sanz 

et al., 2017). 
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Therefore, GCase protein expression should ideally be reduced in L444P GBA1 SH-SY5Y cells 

compared with WT GBA1 SH-SY5Y cells to mirror what is reported in literature. 

 

4.1.4. GBA1 mRNA expression 

As indicated in chapter 1.6.2.1, changes associated with GBA1 mutation and in sporadic PD and 

DLB do not appear to be associated with any significant reduction in GBA1 mRNA expression as 

evidenced in human tissue and animal or cell models (Gegg et al., 2012; Garcia-Sanz et al., 

2017). However, overexpression of a-synuclein in SH-SY5Y cells does cause a reduction in 

GBA1 mRNA expression (Gegg et al., 2012). Taking this into consideration, the cell model 

created for this study should not demonstrate any significant change in GBA1 mRNA expression 

under basal levels of a-synuclein expression. 

 

 

Taking into consideration the different approaches for modelling GBA1 mutation in vitro and the 

associated advantages and disadvantages discussed in this chapter, we decided to use an 

overexpression model for this project. The overexpression of GBA1 in SH-SY5Y cells provides a 

technically straightforward approach which is suitable for the study of UPR responses in the 

presence of GBA1 mutation. This cell model is ideal for ‘proof of concept’ experiments which can 

identify new targets and test novel hypotheses before subsequent testing in a more translational 

model.  
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4.2. Aims and objectives 

 

4.2.1. Aims 

The aim of this chapter was to create a reproducible and consistent SH-SY5Y cell overexpression 

model of a pathogenic GBA1 mutation (L444P) and evaluate the associated biochemical 

characteristics. The biochemical characteristics of the cell lines were investigated to determine if 

the cells accurately reflect the biochemical environment which is characterised by heterozygous 

GBA1 mutation carriers. Establishing the cell lines created as viable models of GBA1 mutation 

will facilitate their use in probing the molecular mechanisms linking GCase deficiency to LBD, 

namely the UPR. 

 

4.2.2. Objectives 

• Establish a method to identify cells expressing GBA1 plasmids by cloning the GBA1 open 

reading frame into a GFP tagged plasmid. 

• Generate a mutant L444P GBA1-GFP plasmid by site directed mutagenesis 

• Electroporate WT and L444P GBA1 plasmids into SH-SY5Y cells  

• Separate SH-SY5Y cells by expression of GBA1-GFP plasmids using fluorescence 

assisted cell sorting (FACS) 

• Generate SH-SY5Y cells stably expressing GBA1 plasmids by clonal selection  

• Determine the effect of WT and L444P GBA1 overexpression on the expression of GCase 

protein in SH-SY5Y cells by immunocytochemistry and western blot. 

• Establish the cellular location of overexpressed WT and L444P GCase protein within SH-

SY5Y cells by immunocytochemistry.  

• Determine the effect of WT and L444P GBA1 overexpression on GBA1 gene expression 

globally in SH-SY5Y cells by quantitative PCR. 

• Quantify GCase enzyme activity in WT and L444P GBA1 overexpressing SH-SY5Y cells 

by performing GCase enzyme activity assays. 

• Quantify the enzyme activity of other lysosomal enzymes: b-galactosidase and b-

hexosaminidase to determine if L444P mutation causes a GCase specific or a general 

lysosomal effect. This will be achieved by performing enzyme activity assays. 
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• Establish whether GBA1 mutation affects the cell viability of SH-SY5Y cells by performing 

PrestoBlue® and MTT assays. 
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4.3. Results 

 

4.3.1. Creation of a GFP tagged GBA1 plasmid 

4.3.1.1. PCR amplification of GBA1 ORF 

Primers were successfully designed to amplify the GBA1 ORF from the existing GBA1 plasmid 

by PCR. Figure 6 clearly shows bands at approximately 1600bp, the size of the ORF of GBA1 

according to OriGene technologies, the manufacturers of the GBA1 containing plasmid used as 

the template. 

 

 

 

 

 

 

 

Bands were excised and purified using the WizardÒ SV Gel and PCR clean up kit (Promega, 

Wisconsin USA) according to manufacturer’s instructions. PCR products from reaction number 

one were taken forward for cloning since the DNA had the most favourite characteristics: 

concentration 275.5 ng/µg and 260/280 value 1.67.  

6kB 

Figure 6 - Generation of GBA1 ORF PCR products in preparation for TOPO TA cloning. * denotes 
PCR products taken forward for cloning. 
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4.3.1.2. TOPO TA Cloning  

GBA1 PCR products were subject to adenosine-tailing- addition of adenosine residues to the 3’ 

end of PCR products in preparation for thymidine-adenosine (TA) assisted cloning. The TOPOÒ 

TA vector containing GFP is supplied linearized with topoisomerase enzyme covalently attached 

to phosphate molecules on the 3’ terminal thymidine base of each stand. GBA1 PCR products 

were successfully ligated to the TOPO GFP containing vector utilising topoisomerase enzyme, 

assisted by TA binding. Ligated plasmids were transformed into chemically competent Top10 

E.coli for purification. Bacteria which had taken up the plasmid were selected by ampicillin 

challenge and plasmid DNA extracted. Plasmids from different colonies were subject to diagnostic 

restriction enzyme digest with ApaI to linearize the plasmid and determine if cloning had been 

successful (Figure 7). 

 

Figure 7 shows TOPO TA cloning has been successful in colony number one since the linearized 

plasmid is of the correct size – approximately 7770bp (6157bp GFP containing TOPOÒ vector + 

1611bp GBA1 ORF). Consequently, plasmids from this bacterial colony were sent for Sanger 

sequencing to confirm insertion of the GBA1 ORF and to check correct orientation of the insert 

(Figure 8).  
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Figure 7 - Diagnostic restriction enzyme digest of GBA1-GFP plasmid with Apa1. * denotes linearized 
plasmid of the correct size, approximately 7770bp. 
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4.3.2. Site directed mutagenesis of GBA1-GFP plasmid to create L444P GBA1-GFP 

Primers were designed according to guidelines in the QuikChangeÒ II Site-Directed Mutagenesis 

Kit (Agilent, Santa Clara, USA) protocol. These primers were complementary and encompassed 

the region of sequence containing the nucleotide which would be changed. Primers were 

complementary to the parent sequence i.e. the GBA1 GFP plasmid, other than the insertion of 

the single nucleotide required to generate L444P mutation. The mutant plasmid was synthesised 

by PCR using the designed primers against the ‘parent’ GBA1-GFP plasmid template utilising 

PfuUltra High Fidelity DNA polymerase (Agilent, Santa Clara, USA). Mutant plasmids were 

separated from the ‘parent’ template by digestion with the restriction enzyme Dpn1, which only 

recognises hemi-methylated DNA, and as such selectively digests the ‘parent template’. The 

mutant plasmids were transformed into XL1-blue supercompetent cells to repair ‘nicks’ in the DNA 

and to purify the plasmids. E.coli which had successfully taken up a plasmid were identified by 

ampicillin selection. Of these, bacteria which had taken up the mutant plasmid were identified by 

a blue white screen based upon functional recombination of the lacZ gene between a sequence 

in the synthesised plasmid found in the multiple cloning site (MCS) and a sequence in XL1-blue 

supercompetent E.coli. Functional b-galactosidase enzyme is produced which is able to cleave 

the artificial substrate X-Gal to form an insoluble blue pigment, 5,5’-dibromo-4,4’-dichloro-indigo. 

Figure 8 - Sanger sequencing of GBA1 ORF in TOPOÒ TA GFP vector. Highlighted region shows the 
correct insertion of GBA1 ORF nucleotide sequence flanked by the expected TOPO nucleotide sequence 
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Usually, the MCS has been altered to insert a gene of interest, and so recombination of lacZ does 

not occur, X-Gal is not cleaved, and colonies appear white, forming the basis of the screen. 

However, in this case, the plasmid component of LacZ has not been affected, and so bacteria of 

interest are able to produce functional b-galactosidase and subsequently the colonies are blue 

(Figure 9). 

 

 

 

 

 

 

 

 

 

 

Plasmid DNA was extracted from bacterial colonies and sent for sanger sequencing to confirm 

the single nucleotide change within the GBA1 ORF of thymidine to cytosine, in turn changing the 

amino acid from leucine (CTG) to proline (CCG) (Figure 10). 

  

Figure 9 - Blue/White screen of E.coli for L444P GBA1-GFP plasmid 

Figure 10 - Sanger sequencing confirming single nucleotide change to create L444P mutant GBA1-

GFP plasmid. Chromatogram shows sequencing from the reverse primer. Highlighted area shows the 
change from CAG (leucine) to CGG (proline) on the anti-strand. 
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4.3.3. AmaxaÒ NucleofectionÔ of wild type and L444P GBA1-GFP plasmids into SH-

SY5Y cells 

Previous attempts at transfection of the GBA1-GFP plasmid constructs into SH-SY5Y cells using 

calcium phosphate and LipofectamineÒ proved to be unsuccessful. A new approach was taken 

using AmaxaÒ NucleofectionÔ, a form of electroporation.  An optimised NucleofectionÔ solution 

for SH-SY5Y was supplied and optimised NucleofectionÔ parameters used according to the 

manufacturers protocol. NucleofectionÔ of both the wild type and L444P GBA1-GFP plasmids 

was successful, with green fluorescence from the GFP tag visible under an inverted fluorescent 

microscope. Cells were subsequently checked for cell viability visually using Trypan Blue staining. 

10µL of cell suspension was added to 10µL of Trypan Blue and the resultant solution visualised 

on a haemocytometer. The number of dead cells stained blue was calculated as a percentage of 

non-stained viable cells. 

 

4.3.4. FACS of GBA1-GFP containing SH-SY5Y cells to create stable cell lines 

Cells which had successfully undergone NucleofectionÔ were prepared in a FACS buffer at the 

requisite cell density, alongside control cells – non-transfected SH-SY5Y and empty vector GFP 

plasmid transfected SH-SY5Y cells, in order to create the gating parameters. FACS was 

performed at a specialist FACS facility by a technician who determined the gating strategy. Cells 

with GFP fluorescence (wild type GBA1-GFP and L444P GBA1-GFP cells) were individually 

separated into separate wells of a 96-well plate in order to generate monoclonal cell lines (Figure 

11). The transfection efficiency of both the wild type and L444P GBA1-GFP plasmid were 

relatively low but similar in both cases: approximately 0.1% of the total cell population screened 

by FACS. However, this was sufficient to fill a 96 well plate with individual cells to generate clones. 

These cells were maintained under normal conditions until they were confluent enough to be 

scaled up into flasks. As expected from literature, over 90% of the individual cells died, 

predominantly due to the combination of the physical effect of the FACS process and being grown 

from a single cell. Despite this, a stable monoclonal cell line was successfully generated for 

overexpressing wild type GBA1 and overexpressing L444P GBA1. 
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Figure 11 – FACS to separate cells based upon GFP fluorescence. (a) Cells only and (b) empty vector 
GFP transfected cell controls for gating strategy, (c) Wild type GBA1 SH-SHSY cell population and (d) wild 
type GBA1 SH-SY5Y sorted cells by GFP fluorescence, (e) L444P GBA1 SH-SY5Y cell population and (f) 
L444P SH-SY5Y cells sorted by GFP fluorescence. 
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4.3.5. Evaluation of SH-SY5Y cell lines overexpressing wild type or L444P GBA1 

4.3.5.1. GCase Protein 

Control SH-SY5Y cells demonstrated endogenous levels of GCase protein which was further 

increased in both wild type GBA1 and L444P GBA1 overexpressing SH-SY5Y cell lines. This was 

visually demonstrated by immunocytochemistry (Figure 12). 
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Figure 12 - Immunocytochemistry of (a) SH-SY5Y (b) WT GBA1 SH-SY5Y (c) L444P GBA1 SH-SY5Y 

cells. GCase protein is shown in red, calnexin green and DAPI in blue. Images were taken at x63 

magnificantion with oil immersion. Scale bars shown at 20µM. 
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Cells were probed with calnexin antibody to try and ascertain the cellular location of GCase 

protein. Calnexin is a commonly used marker of endoplasmic reticulum membrane and the cis-

Golgi (Lynes and Simmen, 2011). Figure 12 shows a similar co-localisation pattern between 

GCase and calnexin in control SH-SY5Y and wild type GBA1 SH-SY5Y cells. However, L444P 

GBA1 overexpressing cells show a more diffuse staining pattern with isolated intense points of 

co-localisation with calnexin. This suggests the location of GCase is less well defined in the L444P 

GBA1 mutant cells, implicating trafficking of GCase as an area for further investigation. 

 

To quantify increased GCase protein expression in the overexpressing cell lines, semi 

quantitative western blotting was performed (Figure 13). There was no statistical difference in 

GCase protein level between control SH-SY5Y cells and the overexpressing GBA1 cell lines 

(Figure 13). 
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Figure 13 – GCase protein expression in GBA1 cell lines (a) Representative western blot of GCase 
protein expression in SH-SY5Y cell lines. S=SH-SY5Y, W= WT GBA1 SH-SY5Y, L= L444P GBA1 SH-
SY5Y (b) Quantitation and statistical analysis of western blot. Bars are mean ±SEM, one-way ANOVA, 
p=0.199, n=4 biological replicates 
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Since GFP tagged GBA1 plasmids were used to transfect SH-SY5Y cells in order to create the 

stably overexpressing cell lines, western blot for GFP was performed to confirm overexpression 

of GCase as a consequence of GBA1 plasmid transfection, as illustrated by immunocytochemistry 

(Figure 12). Figure 14 shows strong bands in wild type and L444P GBA1 mutant overexpressing 

cell lines at approximately 90kDa. This corresponds to the combined size of GCase protein 

(60kDa) and GFP (30kDa). This confirms that excess GCase in the overexpressing cell line is 

due to transfection with the GFP tagged GBA1 plasmids and not an indirect consequence of the 

transfection process or conditions of stress. 

 

 

 

 

 

 

 

 

 

4.3.5.2. GBA1 Gene Expression 

Gene expression of GBA1 was investigated in each of the cell lines using quantitative PCR 

(Figure 15). There is an indication of a trend suggesting GBA1 gene expression is increased in 

wild type GBA1 overexpressing cells compared with SH-SY5Y cells alone, as would be expected. 

Interestingly, these results suggest a reduction in GBA1 gene expression in L444P GBA1 mutant 

cells compared with wild type GBA1 overexpressing cells, with the relative mRNA level similar to 

that seen in the control SH-SY5Y cells. This apparent reduction in gene expression between wild 

type and L444P GBA1 overexpressing cells reaches statistical significance if a t-test is performed 

between the two groups (student’s t-test, p=0.0318). 

 

Figure 14 - Representative western blot for GFP as an indirect marker of transfected GCase protein. 

S=SH-SY5Y, W= WT GBA1 SH-SY5Y, L=L444P GBA1 SH-SY5Y  

225kDa 
150kDa 
102kDa 
76kDa 

52kDa 

38kDa 

S1 S2 S3 W1 W2 W3 L1 L2 L3 



133 
 

 

 

 

 

 

 

 

 

 

 

 

  

GBA1 Gene Expression

SH-S
Y5Y

 

WT G
BA
1 S

H-S
Y5Y

 

L44
4P

 G
BA
1 S

H-S
Y5Y

 
0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
m

R
N

A 
Ex

pr
es

si
on

Figure 15 - Relative GBA1 gene expression in overexpressing GBA1 cell lines. Relative expression 
calculated by the DDCT method using HPRT1 housekeeping gene. Data shown as mean ±SEM, one-way 
ANOVA, p=0.1672, n=3 biological repeats and 3 technical repeats 



134 
 

4.3.5.3. GCase Enzyme Activity 

GCase enzyme activity assays were performed to establish the effect of L444P GBA1 mutation 

on GCase enzyme activity of SH-SY5Y cells (Figure 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the presence of sodium taurocholate, an inhibitor of non-lysosomal glucocerebrosidase (Peters 

et al., 1976), GCase enzyme activity was significantly increased in wild type GBA1 

overexpressing cells when compared with control SH-SY5Y cells (one-way ANOVA, Tukey’s 

HSD, p=0.0015), representing an increase of 35.7%. GCase enzyme activity was significantly 

reduced in L444P GBA1 overexpressing cells when compared with wild type GBA1 

overexpressing cells (one-way ANOVA, Tukey’s HSD, p=0.0046), with the enzyme activity at a 

similar level to control SH-SY5Y cells, representing a decrease of 28.4% (Figure 16a). This 

suggests that L444P GBA1 mutation reduces GCase enzyme activity. 

 

In the absence of sodium taurocholate, GCase enzyme activity was significantly increased in wild 

type GBA1 overexpressing cells when compared with control SH-SY5Y cells (one-way ANOVA, 

Tukey’s HSD, p=0.0093). However, unlike in the presence of sodium taurocholate, enzyme 

activity remains at a similar level in L444P GBA1 overexpressing cells compared with wild type 
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Figure 16 - GCase enzyme activity assay (a) assay performed in the presence of sodium taurocholate or 
(b) in the absence of sodium taurocholate. Data expressed as mean ±SEM, one-way ANOVA, Tukey’s HSD, 
n=4 biological repeats and 3 technical repeats, **p=<0.01 
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GBA1 overexpressing cells implying compensatory increase in non-lysosomal GCase activity 

(Figure 16b). 

 

4.3.5.4. b-Galactosidase and b-Hexosaminidase Enzyme Activity 

The activity of two related enzymes in the glycosphingolipid metabolism pathway were also 

examined in the cells; b-galactosidase and b-Hexosaminidase (Figure 17). 

 

 

 

Overexpression of wild type GBA1 caused a significant increase in b-galactosidase activity 

compared with control SH-SY5Y cells (one-way ANOVA, Tukey’s HSD, p=0.007). b-

galactosidase enzyme activity was significantly decreased in L444P GBA1 overexpressing cells 

compared with wild type GBA1 overexpressing cells (one-way ANOVA, Tukey’s HSD, p=0.0065), 

with b-galactosidase enzyme activity resembling levels seen in control SH-SY5Y cells. This 

pattern mirrors GCase enzyme activity as seen in Figure 16a. There was no significant difference 

in the enzyme activity of b-hexosaminidase between the different cell lines. 
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Figure 17 -Enzyme activity of (a) b-galactosidase and (b) b-hexosaminidase. Data expressed as mean 

± SEM, one-way ANOVA, Tukey’s HSD, n=6 biological repeats and 3 technical repeats, **p=<0.01 
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4.3.5.5. Cell viability 

4.3.5.5.1. PrestoBlueÒ assay 

Cell viability was measured indirectly by PrestoBlueÒ assay. L444P GBA1 overexpressing cells 

have significantly reduced cell viability when compared with wild type GBA1 overexpressing cells 

(one-way ANOVA, Tukey’s HSD, p=0.022). Interestingly, cell viability is significantly increased in 

wild type GBA1 overexpressing cells compared to control SH-SH5Y cells (one-way ANOVA, 

Tukey’s HSD, p=0.026) (Figure 18). 

 

 

 

 

4.3.5.5.2. MTT assay 

Cell viability was also indirectly measured by MTT assay to corroborate findings in the 

PrestoBlueÒ assay. As with PrestoBlueÒ, a significant reduction in cell viability was seen in L444P 

GBA1 overexpressing cells when compared with wild type GBA1 overexpressing cells (one-way 

ANOVA, Tukey’s HSD, p=0.010). Cell viability is also significantly reduced in L444P GBA1 

overexpressing cells when compared with control SH-SY5Y cells, which is not seen in the 

PrestoBlueÒ assay (one-way ANOVA, Tukey’s HSD, (p=<0.001). Interestingly, cell viability is also 

significantly reduced in wild type GBA1 overexpressing cells when compared with control SH-

SY5Y cells alone (one-way ANOVA, Tukey’s HSD, p=<0.001) (Figure 19). 
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Figure 18 - PrestoBlueÒ cell viability assay. Data expressed as mean ±SEM, One-way ANOVA, Tukey's 
HSD, n=4 biological repeats and 3 technical repeats, *p=<0.05, **p=<0.01 



137 
 

 

 

 

 

 

 

 

 

 

 

 

4.3.5.6. Summary of biochemical characteristics of L444P GBA1 SH-SY5Y 

cells compared with WT GBA1 SH-SY5Y cells. 

 

 

 

 

Figure 19 - MTT cell viability assay. Data expressed as mean ± SEM, One-way ANOVA, Tukey's HSD, 
n=4 biological repeats and 3 technical repeats, **p=<0.01, ***p=<0.001 

Biochemical characteristic L444P GBA1 SH-SY5Y 

GCase enzyme activity ¯ 

GCase protein expression No change 

GBA1 mRNA Ambiguous 

b-Galactosidase enzyme activity ¯ 

b-Hexosaminidase enzyme activity No change 

PrestoBlue cell viability ¯ 

MTT cell viability ¯ 

Table 14 - Summary of biochemical characteristics tested in L444P GBA1 SH-SY5Y cells compared 

with WT GBA1 SH-SY5Y cells. 
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4.4. Discussion 

4.4.1. Creation of stable SH-SY5Y cell lines overexpressing WT or L444P GBA1 

SH-SY5Y cell lines stably expressing WT or L444P GBA1 have been generated successfully. 

These cells provide a robust and reproducible system for testing the biochemistry and pathogenic 

pathways associated with GBA1 mutations and LBD, specifically the unfolded protein response. 

The rational for creating monoclonal GBA1 cell lines rather than using SH-SY5Y cells transiently 

transfected with GBA1 plasmids was to reduce the effect of inter-cell variability when it came to 

the expression of GBA1 and other cellular factors. Accordingly, the monoclonal cell lines 

generated reflect the homogenous characteristics of the clone selected, allowing for accurate 

contextual comparison of results between experiments.  

 

Transfection efficiency of GBA1-GFP plasmids into SH-SY5Y cells was low. Several attempts 

were made at transfecting the SH-SY5Y cells with no success, including: calcium phosphate, 

LipofectamineÒ 2000 (ThermoFisher, Massachusetts, USA) and ViromerÒ Red (Lipocalyx, Halle, 

Germany). A different approach, using electroporation utilising the AmaxaÒ NucelofectorÔ 

system was successful to a degree. Since the experimental design was to separate cells 

individually by expression of the GBA1-GFP constructs, the low transfection efficiency was not 

necessarily a concern. At least 96 GFP positive cells for both the WT and L444P GBA1 constructs 

were successfully transfected and separated by FACS. The reason behind the low transfection 

efficiency is not fully understood although SH-SY5Y are reported to be difficult to transfect cells 

(Martin-Montanez et al., 2010). 

 

Cell survival following FACS assisted sorting into individual cells was extremely low. This result 

was not unexpected since this method of cell sorting is notoriously harsh on cells (Foo, 2013). 

Shear forces on individual cells as they pass through the nozzle can be extreme and particularly 

detrimental to fragile cells. Shear pressure can be adjusted, for example to 40 from 70 psi, 

however good separation of cells is more difficult at lower pressure. Despite the extent of cell 

death, a small number of cells did survive the process and went on to multiply, forming the new 

GBA1 cell lines. Given the difficulties encountered in creating the cell lines, to date, cells lines 

have only been created from one clone for both the WT and L444P GBA1 cells. Going forward, 
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experimental procedures will be repeated, and monoclonal cell lines created from at least two 

additional separate clones in order to confirm findings reported in this thesis. 

 

Overexpression of GBA1 as an experimental model has been used by other groups. L444P GBA1 

overexpression specifically has been performed in Sf9 cells (Montfort et al., 2004) and MES23.5 

cells expressing human WT SNCA (Cullen et al., 2011). Overexpression of other GBA1 mutations 

has also performed in MES23.5 and PC12 cells (Cullen et al., 2011). Whilst a relatively simple 

model, the GBA1 SH-SY5Y cell lines generated in this study are suitable for biochemical pathway 

analysis, an objective of this project. Crucially, observations purposed to be related to L444P 

mutation need to be considered both against naïve SH-SY5Y cells and WT overexpressing SH-

SY5Y cells. Although not in the scope of this current project, these cells could also be suitable for 

a simple in vitro screen of compounds for LBD based on GCase enzyme activity and ability to 

reverse biochemical changes assessed in this project and future projects utilising these cells. 

 

4.4.2. Evaluation of stable SH-SY5Y cell lines overexpressing WT or L444P GBA1  

The cell lines created in this chapter appear to reflect the necessary characteristics to confirm 

expression of GBA1 plasmid constructs was successful. Immunocytochemistry clearly shows 

increased expression of GCase protein as reflected in the increased intensity of staining in the 

wild type and L444P GBA1 cells compared with control SH-SY5Y cells (Figure 12). However, 

western blotting to quantify the increase in GCase protein did not indicate any significant 

difference (Figure 13). Western blotting using anti-GBA primary antibody produces a band at 

approximately 60kDa. Since the GBA1 plasmid was constructed with the addition of GFP at the 

C-terminal, encoded GCase should be a fusion protein of GCase-GFP. Accordingly, 

overexpressed GCase protein in these cells should be approximately 90kDa. Western blotting 

using anti-GBA primary antibody reflects the levels of endogenous GCase protein in SH-SY5Y 

cells, explaining why these is no significant difference in the supposed GCase overexpressing 

cell lines. There were no bands visible at 90kDa when probing the nitrocellulose membrane with 

anti-GBA primary antibody, suggesting that the GFP tag on the overexpressed GCase protein 

may be shielding the epitope and preventing anti-GBA antibody binding. In order to confirm the 

overexpression of GCase protein, western blotting was performed using anti-GFP primary 

antibody. Strong bands for both the wild type and L444P GBA1 overexpressing SH-SY5Y cells 

were seen at approximately 90kDa, corresponding specifically to the overexpressed GCase 
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fusion protein complete with GFP tag. However, feint bands were seen with control SH-SY5Y 

cells although not comparable in intensity. This may suggest the anti-GFP antibody lacks 

specificity. Western blot also indicates GFP reactivity at approximately 60kDa and 40kDa possibly 

reflecting trafficking and subsequent cleavage of the GCase-GFP fusion protein. 

 

Further evidence to confirm successful expression of GBA1 plasmid constructs in the cell lines 

created is demonstrated by the illustration of increased GCase enzyme activity in wild type GBA1 

cells compared with control SH-SY5Y reflecting the overexpression of GCase protein (35.7%, 

one-way ANOVA, Tukey’s HSD, p=0.0015) (Figure 16). However, overexpression of GBA1 by 

qPCR was not statistically confirmed in wild type GBA1 cells compared with SH-SY5Y cells 

although a trend was demonstrated (Figure 15). The small number of samples used for this 

analysis presumably underlies the variability in results preventing statistical significance. 

 

4.4.3. Impact of L444P GBA1 mutation on cell characteristics 

Overexpressing L444P GBA1 SH-SY5Y cells demonstrate similar characteristics as described in 

models of GCase deficiency and in GBA-PD patients (Sanchez-Martinez et al., 2016; Garcia-

Sanz et al., 2017). Most notably, in the presence of sodium taurocholate, L444P GBA1 cells show 

significantly reduced GCase enzyme activity when compared with wild type GBA1 cells (28.4%, 

one-way ANOVA, Tukey’s HSD, p=0.0046). A significant reduction was not seen in GCase 

enzyme activity when comparing control SH-SY5Y cells with L444P GBA1 cells, indicating the 

observed reduction is due to defective GCase enzyme which has been overexpressed in the cells 

and not due to changes in endogenous GCase enzyme activity (Figure 16). In order to determine 

the GCase enzyme activity attributable specifically to GBA1, GCase enzyme activity assays were 

performed both in the presence and absence of sodium taurocholate, an inhibitor of non-

lysosomal GCase (Peters et al., 1976). Interestingly, in the absence of sodium taurocholate, no 

difference is seen in GCase enzyme activity between wild type GBA1 and L444P GBA1 cells 

implicating a compensatory mechanism by which GBA2 and GBA3 derived GCase enzyme 

boosts total GCase enzyme activity within mutant cells. Compensatory increases in GBA2 related 

GCase enzyme activity in response to GBA1 mutation has been suggested previously (Yildiz et 

al., 2006; Burke et al., 2013).  
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The significant reduction in GBA1 GCase enzyme activity (28.4%) seen in the L444P GBA1 

overexpressing SH-SY5Y cells compared with wild type GBA1 cells is similar to that reported in 

fibroblasts derived from PD patients harbouring heterozygous L444P (35%) and N370S (32%) 

mutation in GBA1 (Sanchez-Martinez et al., 2016; Garcia-Sanz et al., 2017). The reduction in 

enzyme activity seen here does fall short of the 50% reported in iPSC derived dopaminergic 

neurons from GBA-PD patients (Schondorf et al., 2014; Fernandes et al., 2016) and post mortem 

brain (Gegg et al., 2012) but does reflect more subtle reductions in GCase enzyme activity seen 

in the substantia nigra of post mortem sporadic PD brain (33%) (Gegg et al., 2012). It is interesting 

that in a study which uses overexpression of mutant GBA1 plasmids into MES23.5 and PC12 

cells, the same approach taken in this study, no difference was seen in GCase enzyme activity 

(Cullen et al., 2011). The impact of the background in different cells lines needs to be taken into 

account when generating cell models of GCase deficiency. Taking into consideration the variation 

of GCase enzyme activity associated with different model systems and in patients, the SH-SY5Y 

overexpression model created for this study appears to be a good representation of the 

predominant biochemical defect of reduced GCase enzyme activity which is fundamental to 

associated pathology. 

 

In addition to a significant reduction in GCase enzyme activity, L444P GBA1 mutant cells also 

demonstrate a significant reduction in b-galactosidase enzyme activity compared with wild type 

GBA1 overexpressing cells (66.8%, one-way ANOVA, Tukey’s HSD, p=0.0065) (Figure 17). 

Overexpression of WT GBA1 also causes a significant increase in b-galactosidase enzyme 

activity compared with control SH-SY5Y cells (64%, one-way ANOVA, Tukey’s HSD, p=0.007). 

Situated directly upstream of the GCase substrate GluCer, reduced activity of b-galactosidase 

suggests GBA1 mutations impact other elements of the glycosphingolipid metabolism pathway 

perhaps either directly through alterations to the lipid composition of cells or indirectly due to 

pathological changes to the lysosome. However, total b-hexosaminidase activity, situated further 

upstream from GCase and b-galactosidase activity is not significantly altered in response to 

overexpression of either wild type or L444P mutant GBA1 (Figure 17). This could be a 

consequence of assaying total b-hexosaminidase activity rather than considering a and b 

hexosaminidase activity independently. The observation of unaltered b-hexosaminidase is 

however consistent with reports in GBA-PD fibroblasts (Schondorf et al., 2014; Garcia-Sanz et 
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al., 2017), human post mortem brain tissue (Chiasserini et al., 2015) and GD mouse models 

(Sardi et al., 2013).  

 

Immunocytochemistry indicates that L444P GCase protein is differentially located from wild type 

GCase protein whether overexpressed or endogenous (Figure 12). GCase staining appears to 

be more diffuse throughout L444P GBA1 mutant cells whilst staining is more focussed in 

endogenous and wild type overexpressing GBA1 cells. Furthermore, co-localisation with calnexin 

is different in L444P GBA1 cells. The literature indicates that approximately 50% of L444P mutant 

GCase protein is retained within the endoplasmic reticulum (ER) (Bendikov-Bar et al., 2011) and 

so the diffuse expression of mutant L444P GCase in this cell model may be a reflection of 

retention in the diffuse and widespread ER, compared with more compact lysosomes. Whilst co-

localisation with calnexin is different with L444P GCase the specific localisation of mutant GCase 

in this specific cell model remains inconclusive. 

 

The overexpression of both wild type and L444P GBA1 had a significant impact upon cell viability 

indirectly measured through PrestoBlueÒ and MTT assay. PrestoBlueÒ assay showed a 

significant increase in cell viability in wild type GBA1 overexpressing cells compared to SH-SY5Y 

controls (Figure 18). This implies that overexpression of wild type GBA1 may provide a protective 

function. However, MTT assay shows a significant decrease in cell viability upon overexpression 

of wild type GBA1 (Figure 19). The difference in response may be due to the nature of the assays 

used. PrestoBlueÒ is a resazurin based assay that measures cell proliferation through the 

reduction ability of cells. MTT assay on the other hand measures the metabolic activity of 

NAD(P)H dependent cellular oxidoreductase enzymes capable of reducing the tetrazolium dye 

MTT into insoluble formazan. Enhanced cell viability as seen in the PrestoBlueÒ assay may be 

reflecting the protective impact of GCase against cell stresses, whilst the MTT assay is reflecting 

increased stress and energy involved in the overexpression of protein regardless of mutation 

status. Interestingly, L444P GBA1 mutant cells had significantly reduced cell viability compared 

with wild type GBA1 overexpressing cells in both PrestoBlueÒ and MTT assays suggesting that 

L444P GBA1 mutation is detrimental to cell survival. 
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4.4.4. Limitations and further study 

Whilst a reduction in GCase enzyme activity is illustrated in L444P GBA1 cells, the method used 

does not definitively describe the reduction of GCase enzyme activity specifically within the 

lysosome. This is an important consideration since GBA1 derived GCase is lysosomal specific. 

Additionally, some studies suggest non-lysosomal GCase derived from GBA2 and GBA3 may 

compensate for reduced activity of lysosomal GCase in order to limit substrate accumulation 

(Burke et al., 2013). Whilst the addition of sodium taurocholate to the GCase enzyme activity 

does account for GBA2 derived GCase enzyme activity to an extent, the findings of this study 

could be complemented by fractionating cell lysates to isolate lysosomes for the testing of GCase 

enzyme activity. 

 

Localisation of L444P GCase in this cell model remains inconclusive. Co-localisation of GCase 

with calnexin did not definitively show retention of L444P GCase in the ER. Despite calnexin being 

widely used as a marker of the ER, it may not have been the best choice for co localisation with 

a potentially misfolded protein since calnexin protein can shuttle between the ER membrane, 

specifically the mitochondrial associated membrane, to the peri-nuclear ER quality control 

compartment upon ER stress caused by unfolded proteins (Myhill et al., 2008; Lynes and 

Simmen, 2011)(Figure 20). This ability of calnexin to translocate within the ER and early Golgi 

adds another variable to the precise location of any co-localised proteins.  
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Further studies to elucidate the precise location of L444P GCase should include co-localisation 

with a lysosomal marker such as LAMP. Furthermore, endoH digestion of cell lysates should be 

performed. Endo-H is a specific endoglycosidase that can distinguish between high mannose 

sugars and a mature N-glycan complex (Koide and Muramatsu, 1974). As GCase matures and 

is trafficked through the ER and Golgi, Golgi mannosidase II removes two mannose residues in 

the mid-Golgi (Erickson et al., 1985). Therefore, endo-H distinguishes between glycoproteins that 

have not reached the mid-Golgi and are most likely retained in the ER and mature glycoproteins. 

 

Further investigation of the impact of overexpressed GBA1 on cell viability would be an interesting 

expansion of this work to establish definitively whether L444P GBA1 does impact cell viability. 

The repercussions of confirming reduced cell viability in association with L444P GBA1 mutation 

could be significant since factors such as apoptosis and necrosis could be implicated. Assays 

such as lactose dehydrogenase and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-

end labelling assay) are options to help explore this area further. Furthermore, it would be 

interesting to investigate mitochondrial function within the cell lines created to establish whether 

overexpression of wild type GBA1 does in fact boost mitochondrial function and whether L444P 
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GBA1 mutant cells have dysfunctional mitochondria. Since the initiation of mitochondrial 

apoptosis can be signalled by the UPR, reduced cell viability in GBA1 mutant cells is further 

justification for the investigation of UPR responses described in this thesis. 
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5. Investigating the Unfolded Protein Response (UPR) in wild 

type and L444P GBA1 overexpressing SH-SY5Y cells – XBP1 

 

5.1. Introduction 

The endoplasmic reticulum (ER) is a key cellular organelle which coordinates the synthesis, 

folding and structural maturation of at least a third of all cellular proteins (Hetz et al., 2015). 

Evidence suggests that upwards of 30% of all polypeptides translocated into the ER fail quality 

control mechanisms that ensure proper folding (Schubert et al., 2000). Misfolded proteins which 

fail ER quality control are removed to the cytosol for ubiquitination and degradation by the 26S 

proteasome, a process known as ER associated degradation (ERAD) (Vembar and Brodsky, 

2008). 

 

However, ER stress can also trigger an adaptive signal transduction pathway called the unfolded 

protein response (UPR). The UPR allows cells to manage protein misfolding by temporarily 

reducing de novo protein synthesis and improving the folding and clearance capacity of the ER 

(Ron and Walter, 2007). However, if these responses do not adequately reduce ER stress, the 

UPR can signal to initiate apoptosis (Tabas and Ron, 2011). 

 

5.1.1. The unfolded protein response 

Misfolded proteins within the ER are detected by three transmembrane UPR sensors which have 

luminal domains that sense the protein folding environment in the ER, and cytoplasmic effector 

domains which interact with transcriptional or translational apparatus (Ron and Walter, 2007). 

These are: double stranded RNA-activated protein kinase-like endoplasmic reticulum kinase 

(PERK); activating transcription factor 6 (ATF6); and inositol-requiring kinase 1a (IRE1a) (Ron 

and Walter, 2007).  

 

Under basal conditions, the ER chaperone BiP constitutively binds to the luminal domains of the 

ER sensors, preventing activation (Bertolotti et al., 2000). However, changes to protein folding 

and ER stress promote a reversible dissociation of BiP from the luminal domains of PERK and 

IRE1a triggering signal transduction (Bertolotti et al., 2000). The dissociation of BiP, analogous 
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to ER stress signals, selectively activates downstream cascades (Figure 21). Activation of the 

first discovered UPR sensor, IRE1a (Hetz et al., 2015) and the corresponding signal cascade is 

discussed further in this chapter. 
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Figure 21 - The unfolded protein response signalling pathways. Adapted from (Hetz et al., 2013) 
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5.1.2. IRE1a pathway 

IRE1a is an ER resident type 1 transmembrane protein; a bifunctional enzyme with both Ser/Thr 

protein kinase and site-specific endoribonuclease activities associated with the cytoplasmic 

domain, both regulated by an intrinsic kinase module (Korennykh et al., 2009). IRE1a senses ER 

stress through the luminal domain causing oligomerization in the plane of the membrane allowing 

for trans-autophosphorylation of juxtaposed kinase domains (Credle et al., 2005; Korennykh et 

al., 2009). Oligomerisation can be triggered directly by the binding of unfolded proteins to the 

IRE1a luminal domain, which bears resemblance to the peptide binding domains of major 

histocompatibility complex, or through the release of oligomerization repressing chaperones 

including BiP(Ron and Walter, 2007). Trans-autophosphorylation of the kinase domain of IRE1a 

causes activation of the endoribonuclease domain resulting in cleavage of the only known IRE1a 

substrate: XBP1 mRNA (Calfon et al., 2002). 

 

Endoribonuclease activity of activated IRE1a catalyses the excision of a 26-nucleotide intron 

within XBP1 mRNA, causing a shift in the codon reading frame, generating a stable and active 

transcription factor known as XBP1s (Calfon et al., 2002). XBP1s controls the upregulation of a 

pool of UPR related genes involved in processes including: protein folding, protein entry to the 

ER, ERAD and secretion (Lee et al., 2003). Furthermore, XBP1s also indirectly regulates the 

biosynthesis of the ER and Golgi by enhancing activity of enzymes related to phospholipid 

biosynthesis (Sriburi et al., 2004). Additioanlly, XBP1s can heterodimerize with other transcription 

factors to mediate widespread gene expression, most notably in conjunction with ATF6 (Lee et 

al., 2003; Acosta-Alvear et al., 2007). Un-spliced nascent XBP1, XBP1u, also contributes to the 

functioning of the IRE1a pathway since it has a regulatory function involved in translational 

pausing and efficient targeting and splicing of XBP1u mRNA (Yanagitani et al., 2011). 

 

IRE1a activity is also associated with the degradation of RNA known as regulated IRE1-

dependent decay (RIDD) (Hollien and Weissman, 2006). RIDD is sequence specific and targets 

mRNA encoding proteins that are localised in the cytosol, nucleus, ER or secreted, (Maurel et al., 

2014). However, ER localised mRNA is preferentially targeted by IRE1a activation (Hollien and 

Weissman, 2006; Maurel et al., 2014). Basal RIDD is required to maintain ER homeostasis 

although RIDD activity increases under ER stress (Maurel et al., 2014). During adaptive UPR 
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responses, IRE1a conducts RIDD on mRNAs encoding ER-translocating proteins to prevent 

further increases in protein folding demand within the ER (Han et al., 2009; Chen and Brandizzi, 

2013). However, persistent and unresolved ER stress causes oligomerization of IRE1a which 

surpasses a threshold resulting in activation of apoptosis through RIDD, specifically the 

repression of anti-apoptotic mRNAs (Ghosh et al., 2014) and degradation of adaptive UPR target 

genes, including BiP (Han et al., 2009) 

 

5.1.3. ER retention of mutant GCase  

Mutant GCase species undergo variable levels of ER retention due to misfolding and undergoes 

ERAD (Ron and Horowitz, 2005; Bendikov-Bar et al., 2011; Bendikov-Bar and Horowitz, 2012). 

The degree of ER retention and ERAD is considered one of the predominant factors which 

determines GCase enzyme activity and severity of GD symptoms (Bendikov-Bar and Horowitz, 

2012).  

 

Pharmacological chaperones, small molecules which bind misfolded proteins in the ER, assisting 

folding and trafficking have proven to be effective in improving stability and subsequent delivery 

of mutant GCase to lysosomes thereby enhancing GCase enzyme activity (Bendikov-Bar and 

Horowitz, 2012; Migdalska-Richards and Schapira, 2016). Ambroxol, a mucolytic drug identified 

as a GCase chaperone through a screen of a FDA approved chemical library (Maegawa et al., 

2009), significantly increases brain GCase enzyme activity in wild type, L444P/WT GBA1 and a-

synuclein overexpressing mice (Migdalska-Richards et al., 2016). Furthermore, Ambroxol 

reduces a-synuclein accumulation in an a-synuclein overexpressing mice (Migdalska-Richards 

and Schapira, 2016). More recently, the ability of oral Ambroxol to cross the blood brain barrier 

and significantly enhance GCase enzyme activity in the brain of healthy non-human primates has 

also been reported (Migdalska-Richards et al., 2017). The in vivo success of Ambroxol in 

enhancing brain GCase enzymatic activity and reducing a-synuclein accumulation (Sriburi et al., 

2004; Migdalska-Richards et al., 2016) has highlighted the retention of mutant GCase enzyme in 

the ER as a key pathological event. An indirect consequence of mutant GCase retention could 

conceivably be ER stress and therefore UPR activation (Bendikov-Bar and Horowitz, 2012), the 

focus of both this and the following chapter.  
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5.1.4. Activation of the UPR in association with GBA1 mutation and 

synucleinopathy – BiP expression. 

Upregulation of BiP protein expression is an indirect measure of global UPR activation (Bertolotti 

et al., 2000) Expression of BiP is significantly increased in the putamen of GBA-PD human post 

mortem brain tissue by 26% and in sPD by 28% (Gegg et al., 2012). This implies that mutant 

GCase is implicated in the activation of UPR responses. However, BiP protein expression is also 

significantly increased in the cingulate gyrus and parietal cortex of PDD and DLB human post 

mortem tissue without GBA1 mutation when compared with controls (Baek et al., 2016). The 

finding of enhanced BiP protein expression independent from GBA1 mutation could suggest 

activation of the UPR is not a direct effect of GBA1 mutation, rather a consequence of a-synuclein 

accumulation and neurodegeneration. Conversely, BiP protein expression has been reported to 

significantly decrease in the frontal cortex of a cohort of PD and DLB patients regardless of GBA1 

mutation status (Kurzawa-Akanbi et al., 2012). ‘Healthy’ control patients carrying a heterozygous 

mutation in GBA1 also show similar reduction in BiP expression to PD/DLB patients in the frontal 

cortex (Kurzawa-Akanbi et al., 2012). 

 

Cultured fibroblasts generated from GD patients exhibit significantly increased expression of BiP 

mRNA and protein (Maor et al., 2013; McNeill et al., 2014; Braunstein et al., 2018). A significant 

increase in BiP expression is also reported in fibroblasts generated from GBA1 heterozygous PD 

patients, an increase which is significantly reduced upon treatment with the pharmacological 

chaperone Ambroxol (Maor et al., 2013; McNeill et al., 2014; Sanchez-Martinez et al., 2016; 

Garcia-Sanz et al., 2017). Intriguingly, BiP expression is also significantly increased in fibroblasts 

from ‘healthy’ GBA1 mutation carriers (McNeill et al., 2014). Since a-synuclein is predominantly 

a neuronal protein, fibroblasts have very low expression of a-synuclein, implying the impact of 

mutant GCase on ER stress and activation of the UPR is independent from a-synuclein mediated 

effects (McNeill et al., 2014). Confirming the importance of the presence of misfolded GCase, 

UPR activation is not witnessed in association with CbE treatment nor in the absence of GCase 

protein (Farfel-Becker et al., 2009; Maor et al., 2013). 

 

Further in vitro evidence of activated UPR comes from iPSC derived dopaminergic neuronal 

cultures from GBA(N370S)-PD patients which also demonstrate significant upregulation of BiP 
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(Fernandes et al., 2016). However, evidence of UPR activation is not universal in association with 

GBA1 mutation. Transient transfection of WT human a-synuclein into MES23.5 cells expressing 

mutant GBA1 does not result in activation of the UPR as assessed by BiP expression (Cullen et 

al., 2011). 

 

In vivo, BiP protein expression is significantly enhanced by 320% in the substantia nigra of a 

mouse model of a-synuclein overexpression targeted specifically to the nigrostriatal pathway 

(Bellucci et al., 2011). Furthermore, BiP immunoreactivity is co-localised with a-synuclein 

immuno-positive inclusions (Bellucci et al., 2011). Overexpression of BiP protects dopaminergic 

neurons and improves motor performance in rat models of PD induced by direct injection of AAVs 

encoding human a-synuclein into the SNpc (Gorbatyuk et al., 2012). It is also documented that 

age-related decline in BiP expression makes dopaminergic neurons more vulnerable to a-

synuclein, presumably due to reduced availability of BiP to act as a hold on UPR activation 

(Salganik et al., 2015). Drosophila generated with double heterozygous GBA1 mutation resulting 

in 30% GCase enzyme activity, mirroring carriers of GBA1 mutation, also exhibit a significant 

increase in the expression of BiP (Maor et al., 2013). Ubiquitous ectopic expression of human 

N370S or L444P mutant GCase in Drosophila also significantly increases mRNA expression of 

BiP (Maor et al., 2013). 

 

5.1.5. Activation of the IRE1a pathway in association with GBA1 mutation and 

synucleinopathy  

Activation of the IRE1a pathway of the UPR is predominantly confirmed through the expression 

of the downstream effector sXBP1(Calfon et al., 2002). Splicing of XBP1 is not universally seen 

in human post mortem brain tissue from GBA-PD or sPD patients when compared with control 

brains (Gegg et al., 2012). Transient transfection of WT human a-synuclein into MES23.5 cells 

expressing mutant GBA1 also does not exhibit activation of the UPR as monitored by XBP1 

splicing (Cullen et al., 2011). However, fibroblasts generated from GD patients do exhibit 

significantly increased expression of spliced XBP1 as do fibroblasts generated from heterozygous 

GBA1 mutation carriers (Maor et al., 2013; Braunstein et al., 2018). Furthermore, iPSC derived 

dopaminergic neuronal cultures from GBA-PD patients demonstrate upregulation of IRE1a 

although splicing of XBP1 mRNA was not observed (Fernandes et al., 2016).  
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Transgenic Drosophila expressing human N370S or L444P mutant GBA1 exhibit significantly 

increased expression of the ER stress reporter transgene Xbp1-eGFP in the developing eye 

tissue which is significantly reduced upon treatment with the pharmacological chaperone 

Ambroxol (Sanchez-Martinez et al., 2016). Drosophila generated with double heterozygous GBA1 

mutation resulting in 30% activity, mirroring carriers of GBA1 mutation, also exhibit significant 

XBP1 splicing (Maor et al., 2013). 

 

Activation of the adaptive UPR responses through the generation of active XBP1s is associated 

with neuroprotection of dopaminergic neurons in 6-OHDA models of PD (Mercado et al., 2016). 

Down regulation of XBP1 specifically in the SNpc of adult mice is associated with chronic ER 

stress and induction of the pro-apoptotic protein CHOP causing spontaneous neuronal 

degeneration (Valdes et al., 2014). Additionally, delivery of active XBP1s to the SNpc of adult 

mice using AAV delivery confers neuroprotection against 6-OHDA (Valdes et al., 2014). 

 

The body of evidence from literature strongly suggests activation of the UPR both in association 

with GBA1 mutation and with synucleinopathies (chapter 5.1.4). However, it is important to 

establish whether adaptive responses of the UPR are mediated through the generation of XBP1s. 

Whilst evidence does suggest that XBP1s is upregulated there are few dedicated studies 

investigating UPR responses in association with GBA1 mutations. It is important to unequivocally 

determine whether UPR activation is contributing to pathology or has a protective function in an 

already comprised cellular condition and as such, this results chapter aims to contribute to this 

area of research.
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 Table 15 - Summary of BiP expression in relation to GBA1 mutation and synucleinopathies. 

Model Effector Result Reference 

GBA-PD putamen human tissue BiP protein  (126%) (Gegg et al., 2012) 

sPD putamen human tissue BiP protein (128%) (Gegg et al., 2012) 

sPD and sDLB frontal cortex human tissue BiP protein ¯ (Kurzawa-Akanbi et al., 2012) 

sPDD and sDLB cingulate gyrus human tissue BiP protein  (Baek et al., 2016) 

sPDD and sDLB parietal cortex human tissue BiP protein  (Baek et al., 2016) 

GBA non-demented control frontal cortex human tissue BiP protein ¯ (Kurzawa-Akanbi et al., 2012) 

GD fibroblasts BiP protein *L444P/WT only  (153%) (Sanchez-Martinez et al., 2016) 

GD fibroblasts BiP mRNA   (Maor et al., 2013) 

GD fibroblasts BiP protein  (15%) (McNeill et al., 2014) 

GBA-non-demented control fibroblasts BiP protein  (15%) (McNeill et al., 2014) 

Primary hippocampal neurons +CbE BiP protein  No change (Farfel-Becker et al., 2009) 

N370S GBA-PD iPSC derived dopaminergic neurons BiP protein  (Fernandes et al., 2016) 

MES23.5 GBA1 + human SNCA BiP protein No change (Cullen et al., 2011) 

SNCA overexpressing mouse model targeted to nigrostriatal 

pathway 

BiP protein  (320%) (Bellucci et al., 2011) 

Drosophila double heterozygous GBA1 mutation BiP protein  (Maor et al., 2013) 

Human N370S/L444P GBA Drosophila model BiP mRNA  (Maor et al., 2013) 
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Table 16 – Summary of IRE1a pathway activation  

Model Effector Result Reference 

GBA-PD human post mortem tissue sXBP1 mRNA Inconclusive (Gegg et al., 2012) 

sPD human post mortem tissue sXBP1 mRNA Inconclusive (Gegg et al., 2012) 

MES23.5 GBA + SNCA sXBP1 mRNA No change (Cullen et al., 2011) 

GD fibroblasts sXBP1 mRNA  (Maor et al., 2013) 

GBA-PD fibroblasts sXBP1 mRNA  (Braunstein et al., 2018) 

(N370S) GBA-PD iPSC derived dopaminergic neurons sXBP1 mRNA No change (Fernandes et al., 2016) 

(N370S) GBA-PD iPSC derived dopaminergic neurons IRE1a protein   (Fernandes et al., 2016) 

Drosophila double heterozygous GBA1 mutation sXBP1 mRNA   (Maor et al., 2013) 

Human N370S/L444P GBA Drosophila model sXBP1-eGFP protein    (Sanchez-Martinez et al., 2016) 
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5.2. Aims and objectives 

 

5.2.1. Aim 

The aim of this chapter is to establish whether mutant GCase enzyme activates the UPR in the 

GBA1 SH-SY5Y cell lines created. Specifically, the ability of L444P mutant GCase to evoke a 

protective UPR response through the IRE1a pathway and production of spliced XBP1 will be 

investigated. Furthermore, this chapter will try to ascertain the influence of a-synuclein on the 

production of spliced XBP1. 

 

5.2.2. Objectives 

• Establish if the UPR is activated by evaluating BiP protein expression in SH-SH5Y cell 

lines stably expressing L444P GBA1 by western blot. 

• Establish XBP1, specifically XBP1s, protein and gene expression in SH-SH5Y cell lines 

stably expressing L444P GBA1 by western blot and quantitative PCR. 

• Investigate the impact of a-synuclein on XBP1 gene and protein expression in SH-SH5Y 

cell lines stably expressing L444P GBA1 by western blot and quantitative PCR. 
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5.3. Results 

 

5.3.1. BiP 

5.3.1.1.  BiP protein expression in GBA1 SH-SY5Y cell lines 

BiP protein expression is significantly increased in WT GBA1 overexpressing SH-SY5Y cells 

when compared with control SH-SY5Y cells (one-way ANOVA, Tukey’s HSD, p=0.0171) 

However, BiP protein expression is significantly reduced in L444P GBA1 SH-SY5Y cells 

compared with WT GBA1 cells (one-way ANOVA, Tukey’s HSD, p=0.0415). BiP protein 

expression appears to be similar in both SH-SY5Y control and L444P GBA1 cells (Figure 22). 
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Figure 22 - BiP protein expression in SH-SY5Y cell lines. (a) Representative western blot of BiP protein 
expression (b) Quantification and statistical analysis of BiP protein expression. Bars are mean ± SEM. One-
way ANOVA, Tukey’s HSD, n=3, *p=<0.05. S=SH-SY5Y, W= WT GBA1 SH-SY5Y, L=L444P GBA1 SH-
SY5Y 
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5.3.2. XBP1  

5.3.2.1. XBP1 gene expression in GBA1 SH-SY5Y cell lines 

The mRNA expression of XBP1 was measured relative to the housekeeping gene HPRT1. There 

was no significant difference in XBP1 gene expression between SH-SY5Y control cells, wild type 

GBA1 overexpressing or L444P GBA1 overexpressing cells. Interestingly, XBP1 gene expression 

appears similar between SH-SY5Y control cells and L444P GBA1 overexpressing cells, which is 

greater than seen in wild type GBA1 overexpressing cells (Figure 23). 

 

 

 

 

 

5.3.2.2. XBP1 protein expression GBA1 SH-SY5Y cell lines – 

Immunocytochemistry 

Immunocytochemistry clearly shows increased XBP1 protein expression in both the wild type and 

L444P GBA1 overexpressing cells when compared with control SH-SY5Y cells. Furthermore, 

L444P GBA1 overexpressing cells clearly show increased XBP1 protein when compared with 

wild type GBA1 overexpressing cells, with a particular increase in what appears to be nuclear 

XBP1, consistent with the role XBP1s as a transcription factor (Figure 24). 
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Figure 23 –Relative XBP1 gene expression in overexpressing GBA1 cell lines. (a) Relative expression 
calculated by the  DDCT method using HPRT1 housekeeping gene. Data shown as mean +/- SEM, one-way 
ANOVA, p=0.2566, n=3-6. (b) Standard curves to measure primer efficiency. XBP1 primer efficiency = 
1.847, HPRT1 primer efficiency = 1.885. Standard curves show primers successfully target the gene of 
interest resulting in exponential amplification of the mRNA of interest, validating the gene expression assay. 
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5.3.2.3. XBP1 protein expression – Western blot 

In a bid to further examine the apparent increase in XBP1 protein expression between wild type 

and mutant GBA1 expressing cells, western blotting was used to complement the 

immunocytochemical findings. Spliced XBP1 protein is comprised of 376 amino acids and is 

approximately 40kDa in size, whereas un-spliced XBP1 protein is comprised of 261 amino acids 

and is approximately 29kDa in size (Yoshida et al., 2009).  

 

L444P GBA1 overexpressing cells have significantly more spliced XBP1 of 37kDa size compared 

with wild type GBA1 overexpressing (one-way ANOVA, Tukey’s HSD, p=0.0182) and control SH-

SY5Y cells (one-way ANOVA, Tukey’s HSD, p=0.0365). Interestingly, the level of 37kDa XBP1 

protein expression appears to be very similar between control SH-SY5Y and wild type GBA1 

overexpressing cells. 

 

Figure 24 –Immunocytochemistry of (a) SH-SY5Y (b) WT GBA1 SH-SY5Y (c) L444P GBA1 SH-SY5Y 
cells. XBP1 protein shown in green, DAPI in blue. Images were taken at x63 magnificantion with oil 
immersion. Scale bars shown at 20µM.  

C 
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Despite a strong trend showing increased protein expression of 20kDa XBP1 in L444P GBA1 

overexpressing cells compared with both wild type GBA1 overexpressing and control SH-SY5Y 

cells, there was no statistically significant difference. Again, 20kDa XBP1 protein expression 

seems to be very similar in control SH-SY5Y and wild type GBA1 overexpressing cells (Figure 

25). However, while the ratio of spliced to un-spliced XBP1 protein indicates a strong trend 

towards activation of the IRE1a UPR pathway in response to L444P mutant GCase, no statistical 

significance was obtained by one-way ANOVA.  
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Figure 25 – XBP1 protein expression in SH-SY5Y cells 
(a) Representative western blot of XBP1 protein expression 
in SH-SY5Y cell lines (b) Quantification and statistical 
analysis of XBP1 20kDa western blot (c) Quantitation and 
statistical analysis of XBP1 37kDa western blot (d) 
Quantification and statistical analysis of XBP1s:XBP1u. 
Bars are mean+/- SEM, one way ANOVA, p=0.1017, n=3-
4  Bars are mean +/- SEM, one-way ANOVA, Tukey’s HSD, 
n=3-4, *p=<0.05. S=SH-SY5Y, W= WT GBA1 SH-SY5Y, 
L=L444P GBA1 SH-SY5Y 
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5.3.3. XBP1 in a-synuclein transiently transfected cells 

5.3.3.1. XBP1 gene expression  

XBP1 gene expression is highly significantly increased (Two-way ANOVA, Bonferroni post hoc, 

p=0.0003) in wild type GBA1 overexpressing cells when transiently transfected with GFP tagged 

a-synuclein when compared with an empty GFP tagged plasmid This is not seen in either the SH-

SY5Y controls or wild type GBA1 overexpressing cells. Furthermore, when comparing the cell 

lines transfected with a-synuclein, XBP1 gene expression is highly significantly increased in both 

wild type GBA1 overexpressing cells compared with L444P GBA1 overexpressing (Two-way 

ANOVA, Bonferroni post hoc, p=0.0007) and control SH-SY5Y cells (Two-way ANOVA, 

Bonferroni post hoc, p=0.0015) respectively (Figure 26). 
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Figure 26 - Relative XBP1 gene expression in cells transiently transfected with a-synuclein. Relative 
expression calculated by the  DDCT method using HPRT1 housekeeping gene. Data shown as mean +/- 
SEM, Two-way ANOVA, Bonferroni post hoc, n=3, **p=<0.01, ***p=<0.001 
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a response not seen with XBP1 gene expression. The degree of spliced XBP1 protein expression 

in similar to basal levels associated with control and WT GBA1 cells. This reduction is response 

to a-synuclein accumulation is significant when performing a student’s t-test between the empty 

vector and a-synuclein data in this cell line alone (Two-Way ANOVA, without post hoc, p=0.0194) 

but significance is lost following two-way ANOVA with correction for multiple comparisons (Figure 

27).  
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Figure 27 – XBP1s protein expression in SH-SY5Y cells transiently transfected with a-synuclein (a) 
Representative western blot (b) Quantitation and statistical analysis of XBP1 37kDa western blot. Bars are 
mean+/- SEM. Two-way ANOVA, (p=0.0194), n.s. following Bonferroni post hoc. Exploratory individual 
student t-tests per cell line, n=3, *p=<0.05. SS=SH-SY5Y + a-synuclein, SC=SH-SY5Y + empty vector, 
WS=WT GBA1 SH-SY5Y + a-synuclein, WC= WT GBA1 SH-SY5Y + emptor vector, LS=L444P GBA1 SH-
SY5Y + a-synuclein, LC= L444P GBA1 SH-SY5Y + empty vector. 
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5.4. Discussion 

These results suggest activation of the IRE1a pathway of the UPR occurs in response to 

misfolded L444P mutant GCase enzyme causing the production of spliced XBP1.  

 

Expression of BiP protein is significantly increased when wild type GCase protein is 

overexpressed in SH-SY5Y cells due to the increased requirement for protein folding and quality 

control (Figure 22). Despite the implication of increased BiP protein expression, overexpression 

of GBA1 does not cause increased gene expression of XBP1 (Figure 23). Furthermore, 

overexpression of GBA1 does not affect either spliced or non-spliced XBP1 protein expression 

(Figure 25). This could imply that ER stress, although sufficient enough to cause dissociation of 

BiP, is not sufficient to fully activate the IRE1a pathway to generate downstream effectors. 

Consequently, this finding suggests that overexpression of wild type GCase protein, potentially 

as a therapeutic in the future, is not detrimental to the cell in terms of significantly increasing ER 

stress. Additionally, this result infers that another factor in addition to increased ER load/stress is 

required to activate the IRE1a pathway of the UPR, nominally the presence of misfolded proteins. 

 

Surprisingly, SH-SH5Y cells overexpressing L444P GBA1 did not show increased expression of 

BiP as expected and reported in fibroblasts from ‘healthy’ GBA1 mutation carriers and GBA-PD 

patients (Maor et al., 2013; McNeill et al., 2014; Sanchez-Martinez et al., 2016; Garcia-Sanz et 

al., 2017) (Figure 22). However, the converse has been suggested to explain the role of BiP in 

the activation of the UPR whereby evidence suggests that loss of BiP correlates with the formation 

of active IRE1a and PERK while overexpression of BiP attenuates their action (Bertolotti et al., 

2000). In this context, these results suggest overexpression of wild type GBA1 prevents activation 

of the UPR which can be seen both as protective and detrimental. L444P GBA1 overexpressing 

cells showing a significant reduction in BiP protein expression compared with wild type GBA1 

overexpressing cells could alternatively therefore be indicating activation of the UPR. 

 

Further considerations need to be made when interpreting these results. The model system used 

in this study does not accurately reflect the conditions and stresses experienced in a complex 

network of different cells as seen in vivo and which underlie cellular signalling. Furthermore, SH-

SY5Y cells are a neuroblastoma cell line and as such may have endogenous protective 
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mechanisms to prevent activation of any pathways which may prevent proliferation. Moreover, 

these experiments should be repeated in differentiated SH-SY5Y cells. 

 

Whilst L444P GBA1 expression did not alter XBP1 gene expression (Figure 23), the presence of 

mutant GCase protein did cause an increase in XBP1 protein expression as seen by 

immunocytochemistry (Figure 24). Specifically, L444P GBA1 cells showed a significant increase 

in the expression of spliced, active XBP1 illustrated by western blot (Figure 25). This finding is 

confirmed by the increased nuclear expression of XBP1 seen by immunocytochemistry in L444P 

GBA1 cells consistent the function of spliced XBP1 as a transcription factor. Gene expression 

assays performed using predesigned TaqManÒ gene expression assays were performed with 

primers designed against XBP1, not specifically spliced XBP1 mRNA. It would be interesting to 

repeat the gene expression assay for XBP1 specifically to see whether there is an increase in 

spliced, active XBP1 mRNA. However, an increase in total XBP1 gene expression was still 

expected in order to accommodate any potential increased requirement of splicing to provide the 

substrate necessary to effect activation of the IRE1a pathway, which was not seen. This may be 

due to the splicing of XBP1 mRNA preventing the annealing of primers. Whilst there was a 

significant increase in the expression of spliced XBP1 protein which was generated in L444P 

GBA1 cells, the ratio of spliced to un-spliced XBP1 protein did not show a significant difference 

between wild type and L444P mutant GBA1 cells, although a strong trend is evident. A possible 

explanation for this finding may be a general increase in XBP1 protein expression in L444P GBA1 

cells concurrent with the activation of the IRE1a pathway. 

 

Since SH-SY5Y cells express low levels of endogenous a-synuclein and it is known that GBA1 

mutation is associated with increased expression of a-synuclein (Mazzulli et al., 2011), cells were 

transiently transfected with a-synuclein in order to better mimic biochemical conditions. 

Interestingly, the presence of accumulated a-synuclein caused a highly significant increase in 

XBP1 gene expression in wild type GBA1 overexpressing cells but did not alter XBP1 gene 

expression in neither control SH-SHSY nor L444P GBA1 SH-SY5Y cells (Figure 26). This 

increase in XBP1 gene expression in wild type GBA1 overexpressing cells correlated with an 

increase in spliced XBP1 protein although not to a statistically significant level (Figure 27). 

Intriguingly, the expression of spliced XBP1 protein significantly reduces in L444P GBA1 SH-
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SY5Y cells transiently expressing a-synuclein, mirroring basal expression of spliced XBP1 in 

control and WT cells (Figure 27). This implies that the additional challenge of accumulated a-

synuclein ceases activation of the IRE1a pathway and production of the downstream adaptive 

transcription factor, spliced XBP1. Since the responses elicited by the UPR exist in balance and 

there is extensive cross talk between the different pathways (Ron and Walter, 2007), perhaps it 

is not surprisingly that the IRE1a pathway is seemingly dampened under this condition of extreme 

ER stress which raises the question about the effect of mutant GCase and a-synuclein on the 

other UPR pathways, specifically those implicated in activating apoptosis. A caveat of this 

experimental design which needs to be considered when interpreting the IRE1a pathway 

response is the overexpression of a-synuclein to levels which are unlikely to be physiological. 

Furthermore, it is known that specifically a-synuclein oligomers are implicated with reduced 

GCase enzyme activity and the so called bi-directional loop which is considered to underlie 

pathology in the synucleinopathies. It is possible that transiently transfected a-synuclein does 

oligomerise within these cells although it would need to be confirmed. An alternative approach 

would be to test spliced XBP1 expression in cells treated with pre-formed a-synuclein fibrils 

(Volpicelli-Daley et al., 2014) or even oligomers (Hinault et al., 2010) although determining the 

exact species of a-synuclein and application of consistent concentrations between the cell lines 

would be challenging.  

 

As alluded to, the demonstration of spliced XBP1 in L444P GBA1 mutant cells and the dampening 

of response in the presence of a-synuclein uncovers the possibility of an alternative UPR 

response occurring. Since the levels of ER stress are increased with accumulating a-synuclein, 

investigating the PERK pathway and production of the pro-apoptotic effector CHOP is the logical 

progression of this work, discussed in the next chapter. 
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6. Investigating the Unfolded Protein Response (UPR) in wild 

type and L444P GBA1 overexpressing SH-SY5Y cells – CHOP 

 

6.1. Introduction 

One of the most important adaptive responses of UPR activation is global repression of protein 

translation to minimise ER load and stress (Walter and Ron, 2011). This response is activated 

through the PERK pathway of the UPR and the effector eIF2a (Harding et al., 1999). PERK 

activation by ER stress is rapidly reversible and within minutes of restoring ER homeostasis, 

activated PERK is dephosphorylated (Bertolotti et al., 2000). Whilst a temporary halt in protein 

translation mediated by eIF2a phosphorylation is beneficial for cells, sustained ER stress causing 

a prolonged block in translation is detrimental to cell survival (Hetz et al., 2015). Furthermore, 

chronic ER stress is able to trigger cell death pathways initiated through the PERK pathway 

involving the upregulation of C/EBP homologous protein (CHOP) (McCullough et al., 2001).  

 

6.1.1. PERK pathway   

PERK superficially resembles IRE1a; both are ER localised type 1 transmembrane proteins with 

luminal stress sensing domains and cytoplasmic protein kinase domains which undergo trans-

autophosphorylation by oligomerization and BiP dissociation in response to ER stress (Harding 

et al., 1999; Bertolotti et al., 2000). However, unlike IRE1a which has itself as the only known 

substrate, activated PERK phosphorylates the a subunit of eukaryotic translation initiation factor 

(eIF2) at serine residue 51 (Harding et al., 1999). Phosphorylation of eIF2a prevents GTP-GDP 

exchange by eIF2B, a pentameric complex which recycles eIF2 to its active GTP associated form 

(Hetz et al., 2015). eIF2a binds to both GTP and initiator methionyl-tRNA and is responsible for 

transferring methionyl-tRNA to the 40S ribosomal subunit (Rozpedek et al., 2015). After the 

initiation of translation, GTP is hydrolysed to GDP dependent upon the action of eIF2B facilitating 

the rebuild of new complexes of eIF2 to activate the next round of translation (Ron and Walter, 

2007). Prevention of GTP-GDP exchange by eIF2a thereby results in global translation initiation 

repression and attenuation of protein synthesis thus reducing ER load and stress (Hetz et al., 

2015). 
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Phosphorylation of eIF2a also allows for the preferential translation of UPR dependent genes 

such as activating transcriptional factor 4 (ATF4). Important targets for ATF4 are CHOP and 

GADD34 (Hetz et al., 2015). 

 

6.1.2. CHOP 

C/EBP homologous protein (CHOP) is a basic leucine domain transcription factor which is 

activated is response to persistent and unresolved ER stress causing activation and translation 

of ATF4 through the PERK pathway (Fawcett et al., 1999). Translated ATF4 protein binds to and 

activates the CHOP promoter (Fawcett et al., 1999) while CHOP protein is post-translationally 

activated by p38 kinase (Wang and Ron, 1996). Activation of CHOP causes reduced cell viability 

(McCullough et al., 2001) while cells which lack CHOP protein are significantly protected against 

ER stress mediated cell death (Zinszner et al., 1998). 

 

CHOP promotes cell death through the repression of the anti-apoptotic protein BCL-2 

(McCullough et al., 2001; Marciniak et al., 2004). The BCL-2 family of anti-apoptotic proteins 

govern the intrinsic mitochondrial apoptotic pathway by regulating the permeability of the 

mitochondrial membrane (Hockenbery et al., 1990). Dysregulation of BCL-2 due to the action of 

CHOP causes the upregulation and activation of the pro apoptotic BH3-only proteins which go on 

to further neutralise anti apoptotic BCL-2 proteins and directly engage the pro-apoptotic BAX and 

BAK proteins (Tait and Green, 2010; Shore et al., 2011). The result is permeabilization of the 

outer mitochondrial membrane (Tait and Green, 2010; Shore et al., 2011). Thus far it has been 

confirmed that this terminal arm of the UPR, the PERK pathway, activates at least 4 distinct BH3-

only proteins: BID, BIM, NOXA and PUMA which ultimately signal mitochondrial apoptosis 

effected by the executioner protein, caspase 3 (Tait and Green, 2010; Shore et al., 2011) (Figure 

28).  

 

Additionally, CHOP is able to directly trans-activate the growth arrest and DNA inducible protein 

GADD34 (Marciniak et al., 2004; Han et al., 2013). GADD34 promotes de-phosphorylation of 

eIF2a to prevent the repression of protein translation, further increasing ER stress in affected 

cells causing the production of reactive oxygen species and the depletion of ATP (Marciniak et 

al., 2004; Han et al., 2013). 
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However, forced expression of CHOP does not cause significant transcription of previously 

identified apoptosis genes (Han et al., 2013). Furthermore, forced CHOP expression itself does 

not trigger cell death in vitro whereas forced expression of ATF4 does decrease cell survival (Han 

et al., 2013). This suggests that ATF4 may be the primary signal and CHOP the secondary signal 

required to trigger ER stress induced cell death (Han et al., 2013). 

 

 

 

  
Figure 28 - Overview of mitochondrial associated apoptotic mechanisms. Cell death signals trigger 
BID and BIM to activate BAX and BAK, which in turn initiate mitochondrial outer membrane permeabilization 
leading to apoptosis. Cell death signals, in this case CHOP, can also inhibit the action of anti-apoptotic BCL-
2 proteins resulting in the activation of pro apoptotic activates and effectors. Figure adapted from (Gibson 
and Davids, 2015)  
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6.1.3. Activation of the PERK pathway in association with GBA1 mutation and 

synucleinopathy  

 

Unlike the impact of GBA1 mutation on BiP protein expression as discussed in chapter 5, 

activation of the PERK pathway causing upregulation of eIF2a and CHOP expression appears to 

be conclusive across different studies (Table 17) 

 

Human post mortem tissue from sPD patients shows significant activation of PERK and eIF2a 

which is also observed in nigral dopaminergic neurons with a-synuclein inclusions (Hoozemans 

et al., 2007). Furthermore, immunohistochemistry has identified a significant increase in 

phosphorylated PERK in PDD and DLB human post mortem brain tissue from the prefrontal 

cortex when compared with controls (Baek et al., 2016). 

 

Fibroblasts generated from N370S GBA1 PD patients have significantly increased expression of 

PERK mRNA (Garcia-Sanz et al., 2017) while eIF2a phosphorylation is significantly increased in 

fibroblasts derived from both GD patients and GBA1 heterozygous mutation carriers (Maor et al., 

2013; Braunstein et al., 2018). Phosphorylation of eIF2a is also seen in Drosophila generated to 

mimic GBA1 mutation carriers (Maor et al., 2013). Ubiquitous ectopic expression of human N370S 

or L444P mutant GCase in Drosophila also significantly increases phosphorylation of eIF2a (Maor 

et al., 2013). The use of a salubrinal, compound which is capable of phosphorylating eIF2a, 

preventing transduction of the signal cascade to activate CHOP, delays disease onset and 

improve motor defects in a rodent model of PD consistent with a-synuclein overexpression (Colla 

et al., 2012). However, this approach does not fully protect dopaminergic neurons despite 

reduced accumulation of a-synuclein in the ER (Colla et al., 2012).  

 

ATF4 expression is significantly increased by 140% in the substantia nigra of a mouse model of 

a-synuclein overexpression targeted specifically to the nigrostriatal pathway (Bellucci et al., 

2011). Specifically, ATF4 expression is induced within the cell nuclei of a-synuclein positive 

neurons reflecting the action of ATF4 as a transcription factor (Bellucci et al., 2011). 

CHOP mRNA expression is significantly increased in the putamen of GBA-PD human post 

mortem brain tissue by 63% and in sPD by 89% (Gegg et al., 2012). Further evidence of increased 
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CHOP expression is seen in fibroblasts generated from GD patients homozygous for either 

N370S or L444P demonstrating significantly increased expression of both CHOP mRNA and 

protein (Maor et al., 2013; Braunstein et al., 2018). Furthermore, fibroblasts generated from 

L444P GBA1 heterozygous PD patients exhibit a significant 280% increase in CHOP mRNA 

expression which is unaffected by treatment with the pharmacological chaperone Ambroxol (Maor 

et al., 2013; Sanchez-Martinez et al., 2016). Significant increase in CHOP mRNA expression is 

also seen in N370S GBA1 PD heterozygous fibroblasts (Maor et al., 2013; Garcia-Sanz et al., 

2017). Interestingly, deletion of CHOP in mouse models of PD protects dopaminergic neurons 

from 6-OHDA and MPTP induced dopaminergic cell death (Silva et al., 2005). 

 

Activation of the PERK pathway in response to GBA1 mutation and in PD appears to be 

conclusive from review of the literature. Most significantly, the upregulation of CHOP gene and 

protein expression in association with GBA1 mutation suggests a plausible link between GBA1 

mutation and detrimental cellular effects, most prominently initiation of apoptosis. However, few 

studies have looked at the impact of upregulated CHOP by assessing associated apoptotic 

markers. Accordingly, the expression of CHOP and the initiation of apoptosis will be investigated 

in this chapter.  
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Model Effector Result Reference 

sPD striatal human tissue PERK  (Hoozemans et al., 2007) 

sPD striatal human tissue eIF2a  (Hoozemans et al., 2007) 

PDD prefrontal cortex human tissue Phosphorylated PERK  (Baek et al., 2016) 

DLB prefrontal cortex human tissue Phosphorylated PERK  (Baek et al., 2016) 

N370S GBA-PD fibroblasts PERK mRNA  (Garcia-Sanz et al., 2017) 

GBA-PD fibroblasts Phosphorylated eIF2a  (Braunstein et al., 2018) 

GD fibroblasts Phosphorylated eIF2a  (Maor et al., 2013) 

Drosophila mimicking GBA1 heterozygosity Phosphorylated eIF2a  (Maor et al., 2013) 

Drosophila expressing human N370S or L444P Phosphorylated eIF2a  (Maor et al., 2013) 

a-synuclein overexpressing mouse model ATF4  (140%) (Bellucci et al., 2011) 

GBA-PD putamen human tissue CHOP mRNA  (63%) (Gegg et al., 2012) 

sPD putamen human tissue CHOP mRNA  (89%) (Gegg et al., 2012) 

GD fibroblasts CHOP mRNA  (Maor et al., 2013) 

GD fibroblasts CHOP protein  (Braunstein et al., 2018) 

L444P GBA-PD fibroblasts CHOP mRNA *L444P/WT only  (280%) (Sanchez-Martinez et al., 2016) 
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N370S GBA-PD fibroblasts CHOP mRNA  (Garcia-Sanz et al., 2017), 

N370S GBA-PD fibroblasts CHOP mRNA  (Maor et al., 2013) 

 
Table 17- Summary of PERK pathway activation in relation to GBA1 mutation and synucleinopathies. 
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6.2. Aims and objectives 

 

6.2.1. Aim 

The aim of this chapter is to determine whether the PERK pathway of the UPR is activated in 

response to L444P mutation in the GBA1 SH-SY5Y cell lines created in chapter 4. Specifically, 

the ability of L444P mutant GCase to evoke a response detrimental to cell survival through the 

enhanced expression of CHOP will be assessed. The relative contribution of accumulated a-

synuclein on the expression of CHOP will also be investigated in these cells. Furthermore, the 

aim of this chapter is to also evaluate the expression of CHOP and linked effectors of the apoptotic 

cascade in human post mortem DLB tissue with and without GBA1 mutation.  

 

6.2.2. Objectives 

 

• Establish whether CHOP protein expression is increased in L444P GBA1 mutant SH-

SY5Y cells by immunocytochemistry and western blot. 

• Establish whether CHOP gene expression is increased in L444P GBA1 mutant SH-SH5Y 

cells by quantitative PCR. 

• Determine the effect of a-synuclein on CHOP gene expression in L444P GBA1 mutant 

SH-SY5Y cell lines by quantitative PCR 

• Determine the effects of a-synuclein on CHOP protein expression in L444P GBA1 mutant 

SH-SY5Y cells by western blot. 

• Assess CHOP protein expression in N370S GBA1 and sporadic human DLB brain tissue 

by western blot. 

• Assess BCL-2 protein expression in L444P GBA1 mutant SY-SY5Y cells by western blot. 

• Assess BCL-2 protein expression in N370S GBA1 and sporadic human DLB brain tissue 

by western blot. 

• Identify evidence of activated apoptosis through caspase 3 and caspase 12 protein 

expression in N370S GBA1 and sporadic human DLB brain tissue by western blot. 
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6.3. Results 

 

6.3.1. CHOP in SH-SY5Y GBA1 cell lines 

6.3.1.1. CHOP gene expression 

The mRNA expression of CHOP was measured relative to the housekeeping gene HPRT1. There 

was no significant difference in CHOP gene expression between any of the cell groups tested. 

The degree of variance within each group, particularly the L444P GBA1 overexpressing cells is 

extensive (Figure 29).  

 

 

 

 

 

 

 

 

 

 

6.3.1.2. CHOP protein expression in SH-SY5Y GBA1 cell lines – 

Immunocytochemistry  

Immunocytochemistry suggests there may be increased CHOP protein expression in wild type 

GBA1 overexpressing cells compared with control SH-SH5Y cells, and more extensively in L444P 

GBA1 overexpressing cells compared with both control SH-SY5Y and wild type GBA1 

overexpressing cells (Figure 30). 

 

  

Figure 29 –Relative CHOP gene expression in overexpressing GBA1 cell lines (a) Relative expression 
calculated by the  DDCT method using HPRT1 housekeeping gene. Data shown as mean +/- SEM, one-way 
ANOVA, p=0.2566, n=5-6. (b) Standard curves to measure primer efficiency. CHOP primer efficiency = 
1.931, HPRT1 primer efficiency = 2.091. Standard curves show primers successfully target the gene of 
interest resulting in exponential amplification of the mRNA of interest, validating the gene expression assay 
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Figure 30 – Immunocytochemistry of (a) SH-SY5Y (b) WT GBA1 SH-SY5Y (c) L444P 
GBA1 SH-SY5Y cells. CHOP protein shown in green, DAPI in blue. Images were 
taken at x63 magnificantion with oil immersion. Scale bars shown at 20µM.  
 

C 
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6.3.1.3. CHOP protein expression in SH-SY5Y GBA1 cell lines – Western 

blot 

L444P GBA1 overexpressing cells show significantly more CHOP protein expression compared 

with control SH-SY5Y cells when semi-quantitatively assessed by western blot (one-way ANOVA, 

Tukey’s HSD, p=0.011). CHOP protein expression does increase in wild type GBA1 

overexpressing cells, predominantly due to sample W1, but does not reach statistical significance 

(Figure 31).   
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Figure 31 – CHOP protein expression in SH-SY5Y GBA1 cell lines (a) Representative western blot of CHOP 
protein expression (b) Quantitation and statistical analysis of CHOP western blot. Bars are mean+/- SEM, one-
way ANOVA, Tukey’s HSD, n=4, *p=<0.05. S= SH-SY5Y, W= WT GBA1 SH-SY5Y, L= L444P GBA1 SH-SY5Y 
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6.3.2. CHOP in a-synuclein transiently transfected SH-SY5Y GBA1 cells 

6.3.2.1. CHOP gene expression 

Transient transfection with a-synuclein does not affect CHOP gene expression in either controls 

or GBA1 overexpressing cell lines; expression remains similar in both the empty vector and a-

synuclein transfected cells. Interestingly, CHOP gene expression in the empty vector transfected 

cells, acting as an experimental control, does show an increase in both wild type and L444P 

GBA1 gene expression compared to control SH-SY5Y cells, although this does not reach 

statistical significance (Figure 32). 

 

 

6.3.2.2. CHOP protein expression  

CHOP protein expression is significantly increased in wild type GBA1 overexpressing cells 

transiently transfected with a-synuclein compared with cells transfected with an empty vector 

(two-way ANOVA, Bonferroni post hoc, p=0.014). CHOP protein expression does not change in 

the presence of a-synuclein in either control SH-SY5Y or L444P GBA1 overexpressing cells. 

CHOP protein expression in the experimental control empty vector transfections mirrors the 

pattern of expression seen in cells under normal conditions: increased CHOP protein expression 

in L444P GBA1 overexpressing cells compared with SH-SY5Y control cells, validating the earlier 

result. Interestingly, the increase in CHOP protein expression seen in the wild type GBA1 
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Figure 32 - Relative CHOP gene expression in cells transiently transfected with a-synuclein. Relative 
expression calculated by the  DDCT method using HPRT1 housekeeping gene. Data shown as mean +/- 
SEM, Two-Way ANOVA, n=3. 
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overexpressing cell line upon transfection with SNCA does not far exceed that seen in the L444P 

GBA1 overexpressing cells both transfected with a-synuclein and empty vector (Figure 33). 
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Figure 33 – CHOP protein expression in cells transiently transfected with a-synuclein (a) 
Representative western blot of CHOP protein expression (b) Quantitation and statistical analysis of CHOP 
western blot. Bars are mean+/- SEM, two-way ANOVA, Bonferroni post hoc, n=3, *p=<0.05. SS=SH-SY5Y 
+ a-synuclein, SC=SH-SY5Y + empty vector, WS=WT GBA1 SH-SY5Y + a-synuclein, WC= WT GBA1 SH-
SY5Y + emptor vector, LS=L444P GBA1 SH-SY5Y + a-synuclein, LC= L444P GBA1 SH-SY5Y + empty 
vector. 
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6.3.3.  CHOP protein expression in human post mortem DLB brain tissue  

CHOP protein expression remains constant relative to alpha tubulin between non-demented 

control, DLB and N370S-DLB cases when evaluating the dorsolateral prefrontal cortex (BA9) 

(one-way ANOVA, Bonferroni post hoc, p=0.616). However, there is a significant reduction in 

CHOP protein expression in N370S-DLB cases compared with DLB cases (one-way ANOVA, 

Bonferroni post hoc, p=0.0164) and non-demented controls (one-way ANOVA, Bonferroni post 

hoc, p=0.0064) respectively in the parietal cortex (BA40) (Figure 34). It should be noted that 

expression of a-tubulin remained constant amongst all groups and was tested by one-way 

ANOVA. a-tubulin is therefore a suitable loading control for all following investigations in human 

post mortem tissue. 
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Figure 34 - Relative CHOP protein expression in human post mortem DLB brain tissue (a) 
Representative western blots of CHOP protein expression (b) Quantification and statistical analysis. 
Data are mean ± SEM, N370S-DLB n=4, DLB n = 8-9, control n=4-6, one-way ANOVA, Tukey’s HSD, * 
p=<0.05, **p=<0.01. 
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6.3.4.  BCL-2 protein expression in SH-SY5Y GBA1 cell lines 

BCL-2 protein expression relative to a-tubulin is not significantly different between control cells 

and those overexpressing either WT or L444P mutant GBA1 (one-way ANOVA, p=0.9387) 

(Figure 35). 
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Figure 35 – BCL-2 protein expression in SH-SY5Y GBA1 cell lines (a) Representative western blot of 
BCL-2 protein expression (b) Quantitation and statistical analysis of BCL-2 western blot. Bars are mean+/- 
SEM, one-way ANOVA, n=3. S= SH-SY5Y, W= WT GBA1 SH-SY5Y, L= L444P GBA1 SH-SY5Y  
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6.3.5.  BCL-2 protein expression in human post mortem DLB brain tissue 

BCL-2 protein expression remains constant between non-demented controls, DLB and N370S-

DLB cases in the dorsolateral prefrontal cortex (one-way ANOVA, p=0.9735) and parietal cortex 

(one-way ANOVA, Tukey’s HSD, p=0.7997). However, BCL-2 protein expression is significantly 

reduced in N370S GBA1 mutant DLB cases compared with sporadic DLB in the temporal cortex 

(BA21) (one-way ANOVA, Tukey’s HSD, p=0.0320) whilst BCL-2 protein expression is 

significantly increased in sporadic DLB cases compared with non-demented controls in the 

anterior cingulate gyrus (BA24) (one-way ANOVA, Tukey’s HSD, p=0.0307) (Figure 36). 

 

 

 

 

  

N3
70

S-
DL

B 

RA
T 

CO
RT

EX
 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

RA
T 

CO
RT

EX
 

X X 

BCL-2 20kDa 
Alpha Tubulin 40kDa 

BCL-2 20kDa 
Alpha Tubulin 40kDa 

RA
T 

CO
RT

EX
 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

RA
T 

CO
RT

EX
 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

BCL-2 20kDa 
Alpha Tubulin 40kDa 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B N3

70
S-

DL
B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

RA
T 

CO
RT

EX
 

RA
T 

CO
RT

EX
 

X 

BA9 

BA21 

BA24 

BA40 

A 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

CO
NT

RO
L 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B 

DL
B N3

70
S-

DL
B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

N3
70

S-
DL

B 

RA
T 

CO
RT

EX
 

RA
T 

CO
RT

EX
 

CO
NT

RO
L 

BCL-2 20kDa 
Alpha Tubulin 40kDa 



184 
 

  

Bcl2 Protein Expression - BA9

N37
0S

-D
LB

DLB

Contro
l

0.00

0.01

0.02

0.03

0.04

0.05

R
FU

 r
el

at
iv

e 
to

 a
lp

ha
 tu

bu
lin

Bcl2 Protein Expression - BA21

N37
0S

-D
LB

DLB

Contro
l

0.00

0.02

0.04

0.06

0.08

R
FU

 r
el

at
iv

e 
to

 a
lp

ha
 tu

bu
lin *

Bcl2 Protein Expression - BA24

N37
0S

-D
LB

DLB

Contro
l

0.00

0.02

0.04

0.06

0.08

0.10

R
FU

 r
el

at
iv

e 
to

 a
lp

ha
 tu

bu
lin *

Bcl2 Protein Expression- BA40

N37
0S

-D
LB

DLB

Contro
l

0.00

0.01

0.02

0.03

0.04

R
FU

 r
el

at
iv

e 
to

 a
lp

ha
 tu

bu
lin

Figure 36 - BCL-2 protein expression in human post mortem DLB brain tissue (a) 
Representative western blots of BCL-2 protein expression (b) Quantification and statistical analysis 
of BCL-2 protein expression. Data are mean ± SEM, N370S-DLB n=3-4, DLB n = 8-9, control n=5-
8, one-way ANOVA, Tukey’s HSD, * p=<0.05 
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6.3.6. Caspase 3 protein expression in human post mortem DLB brain tissue 

Caspase 3 protein expression remains constant between non-demented controls, sporadic DLB 

and N370S-DLB cases both in the temporal cortex (BA21) (one-way ANOVA, p=0.4458) and 

parietal cortex (BA40) (one-way ANOVA, p=0.1918) (Figure 37). 
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Figure 37 – Caspase 3 protein expression in human post mortem DLB brain tissue (a) Representative 
western blots of caspase 3 protein expression (b) Quantification and statistical analysis of caspase 3 protein 
expression. Data are mean ± SEM, N370S-DLB n=3-4, DLB n = 8-9, control n=5-8, one-way ANOVA, * p=<0.05 
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6.3.7. Caspase 12 protein expression in human post mortem DLB brain tissue 

Caspase 12 protein expression does not differ between non-demented controls and either 

sporadic DLB or N370S GBA1 heterozygous DLB cases in the temporal cortex (BA21), the 

parietal cortex (BA40) or the dorsolateral prefrontal cortex (BA9). However, the presence of 

N370S GBA1 mutation in DLB cases causes a significant reduction in caspase 12 expression 

when compared with non-demented controls in the anterior cingulate gyrus (BA24) (one-way 

ANOVA, Tukey’s HSD, p=0.0446) (Figure 38). 
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Figure 38 - Caspase 12 protein expression in human post mortem DLB brain tissue (a) Representative 
western blots of caspase 12 protein expression (b) Quantification and statistical analysis of caspase 12 protein 
expression. Data are mean ± SEM, N370S-DLB n=3-4, DLB n=8-9, control n=7, one-way ANOVA, Tukey’s 
HSD, * p=<0.05. 
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6.4. Discussion 

Overexpression of L444P GBA1 in SH-SY5Y cells demonstrates upregulation of CHOP protein 

both by ICC (Figure 30) and western blot of cell lysates (Figure 31, Figure 33). Interestingly, a 

corresponding increase in CHOP gene expression was not seen (Figure 29). There is the 

possibility that variability within the qPCR results may have masked any significant change in 

gene expression although CHOP mRNA shows a similar expression profile in both qPCR 

performed on the untreated GBA1 overexpressing SH-SY5Y cell lines and the same cell lines 

transfected with an empty vector GFP expressing plasmid used as a control for a later experiment 

(Figure 29, Figure 32). This indicates that it is likely that CHOP gene expression is not 

differentially regulated in conjunction with GBA1 mutation. Consequently, increased CHOP 

protein expression seen in L444P GBA1 cells cannot be explained simply by increased gene 

expression and must involve some other mechanism or pathway. Under normal cellular 

conditions, CHOP is expressed at very low levels in cells (Li et al., 2014). This is demonstrated 

by western blot in this study by the very feint bands corresponding to CHOP in control SH-SY5Y 

cells which makes the strong appearance of bands corresponding to CHOP in L444P GBA1 cells 

more striking (Figure 31). However, the lack of a positive control in the experimental design 

prevents a comparison of the extent of CHOP protein expression in L444P GBA1 cells against a 

known strong inducer of CHOP protein expression. Interestingly, one such known inducer of 

CHOP protein expression, tunicamycin, blocks protein glycosylation (Li et al., 2014). Glucose 

deprivation also induces CHOP protein expression due to inhibition of N-linked protein 

glycosylation (Li et al., 2014). It is known that a proportion of mutant GCase proteins are retained 

in the ER as identified through endoglycosidase H (EndoH) processing (Bendikov-Bar et al., 2011; 

Fernandes et al., 2016). EndoH is a highly specific endoglycosidase which cleaves asparagine-

linked mannose oligosaccharides, but not highly processed oligosaccharides from glycoproteins 

(Maley et al., 1989). Many mutant GCase proteins are not endoH resistant indicating firstly that 

the protein is ER retained and has not traversed the Golgi. Secondly, the implication that 

glycosylation is deficient with mutant GCase protein, mirroring the effect of tunicamycin and 

glucose deprivation, provides a possible link with upregulation of CHOP protein. An increase in 

CHOP protein expression is consistent with previously reported findings in GD fibroblasts 

(Braunstein et al., 2018) although the upregulation of CHOP mRNA is more widely reported in 

GBA-PD fibroblasts (Maor et al., 2013; Sanchez-Martinez et al., 2016; Garcia-Sanz et al., 2017). 
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It could be hypothesised that the GBA1 mutant cells are demonstrating a transient increase in 

CHOP protein expression due to alterations in the rapid degradation mechanisms for CHOP 

described earlier. This would cause a transient increase in CHOP protein expression in the 

absence of any change in CHOP mRNA levels.  

 

Upon transient transfection of GBA1 overexpressing cells with a-synuclein, CHOP gene 

expression was also unaffected (Figure 32). Interestingly, CHOP protein expression significantly 

increased in cells overexpressing wild type GBA1 when transfected with a-synuclein whilst there 

was no difference in CHOP protein expression in L444P GBA1 overexpressing cells treated with 

a-synuclein or empty vector (Figure 33). These results may suggest that CHOP protein 

expression cannot be further enhanced by the combination of accumulated a-synuclein and 

mutant GCase protein since maximal expression of CHOP protein has already been achieved in 

this model system. Furthermore, it may provide evidence for the gain of function effect of GBA1 

mutations since the presence of a GBA1 mutation alone is sufficient to induce the expression of 

CHOP protein.  

 

Whilst L444P GBA1 overexpressing SH-SY5Y cells demonstrate a significant increase in the 

expression of CHOP protein, the opposite is seen in human post mortem brain tissue. CHOP 

protein expression is constant between N370S GBA1-DLB, sporadic DLB and non-demented 

controls in BA9. However, BA40 exhibits a significant reduction in CHOP protein expression in 

N370S GBA1-DLB cases when compared with both sporadic DLB and non-demented control 

cases, respectively (Figure 34). Consideration does need to be given to the different GBA1 

mutations studied between the cell lines and human tissue, especially since a dosage effect is 

well established with regard to the different GBA1 mutations (sections 1.3.4 and 1.5.1.8). It may 

be that the mild N370S mutation is not capable of evoking a UPR response capable of resulting 

in the expression of CHOP. However, this would not satisfactorily explain why CHOP protein 

expression is significantly reduced in N370S GBA1-DLB cases when compared with sporadic 

DLB or non-demented controls. Although we did not investigate gene expression, our findings 

contradict reported increases in CHOP mRNA in the putamen of GBA-PD and sporadic PD 

human post mortem tissue (Gegg et al., 2012). Investigating CHOP gene expression in the post 

mortem cases used in this current study would be beneficial for comparison purposes although a 
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direct comparison between post mortem studies may not necessarily be the best approach due 

to the different brain regions used. Furthermore, data derived from human post mortem brain 

tissue is associated with the caveat of post mortem delay possibility affecting the expression of 

some proteins, which cannot be excluded when interpreting data. Whilst not significantly different, 

post mortem delay in sporadic DLB cases was lower (44.75 hours) compared with non-demented 

controls and N370S-DLB (56.19 hours and 56.04 hours). Considering these points, a possible 

explanation for a reduction in CHOP protein expression in N370S GBA1-DLB cases may involve 

a situation whereby enhanced CHOP protein expression has occurred earlier in the lifetime of the 

affected individuals and has already reached a maximal effect. To validate this hypothesis, further 

investigation of the clinical characteristics of the cases involved in the study needs to be 

performed to identify age on onset. As discussed in chapter 1.5, GBA1 mutations are widely 

associated with earlier age of onset of dementia for both PDD and DLB, adding merit to this 

hypothesis. It may be that once transient CHOP protein expression has been enhanced and 

triggered apoptosis, levels of CHOP expression remain constant or return to basal levels.  

 

To evaluate the impact of GBA1 mutation on UPR induced apoptosis through the production of 

CHOP protein, BCL-2, caspase 3 and caspase 12 protein levels were evaluated in human post 

mortem tissue. A reduction of anti-apoptotic Bcl-2 protein expression, associated with the signal 

to induce apoptosis was identified in BA21 when comparing N370S GBA1-DLB cases with 

sporadic DLB (Figure 36). However, this does not correspond to increased expression of the 

active form of the executioner caspase, caspase 3 in the same brain region (Figure 37). 

Additionally, activated caspase 3 was not upregulated in either N370S GBA1-DLB or sporadic 

DLB cases in the other brain region tested, the parietal cortex. Perhaps this is not surprising since 

extensive atrophy is not necessarily associated with DLB pathology unless concurrent AD-like 

pathology is also present in which case greater atrophy is seen in the temporal and parietal 

cortices (Nedelska et al., 2015). 

 

Caspase 12 is unusual since it has been suggested to be anchored in the ER and part of an 

independent apoptotic cascade specifically activated in response to ER stress (Nakagawa et al., 

2000). When activated, caspase 12 translocates from the ER to the cytosol where it directly 

cleaves pro-caspase 9 which in turn activates the executioner caspase, caspase 3 (Szegezdi et 

al., 2003). However, to date functional caspase 12 has only been cloned from mouse and rat and 
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there is debate as to whether a human isoform of caspase 12 exists (Szegezdi et al., 2003). 

Despite this debate, activation of caspase 12 during apoptosis has been reported in human cells 

(Szegezdi et al., 2003). Cleaved caspase 12 was detected in all human post mortem tissues by 

western blot (Figure 38). While the level of cleaved caspase 12 was comparable between N370S 

GBA1-DLB, sporadic DLB and non-demented controls in the temporal cortex, parietal cortex and 

dorsolateral prefrontal cortex, the expression of activated caspase 12 was significantly lower in 

N370S GBA1-DLB cases compared with non-demented controls in anterior cingulate cortex 

(Figure 38). One interpretation of this result may be that GBA1 mutation prevents apoptotic cell 

death through caspase 12 in the anterior cingulate gyrus. However, caspase 12 has also been 

designated as an inflammatory caspase (Shalini et al., 2015). Specifically, caspase 12 is a 

negative regulator of inflammation triggered by infection, inhibiting the production of the pro-

inflammatory cytokines IL-1b and IL-18 (Garcia de la Cadena and Massieu, 2016). Conversely 

the human paralog to caspase 12, caspase 4, is a positive regulator of inflammation (Garcia de 

la Cadena and Massieu, 2016). It may be that caspase 12 down regulation as a result of GBA1 

mutation in DLB may be triggering the release of pro-inflammatory cytokines in response to 

accumulated and aggregated a-synuclein. Investigation of a potential link between caspase 12 

and the established neuroinflammation associated with both DLB and PD (Lim et al., 2016) would 

be an interesting area of further study. 
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7. Behavioural characterisation of GBA1 D427V/WT transgenic 

mice. 

 

7.1. Introduction 

In vivo models of GBA1 deficiency have been developed for the study of GD. However, with the 

emergence of the link between GBA1 mutations and synucleinopathy these models are 

increasingly being adapted to study pathological mechanisms and develop therapeutic 

compounds for LBD. Broadly, there are 3 main categories of GD mouse model: chemically 

induced, conditional knock down and point mutations. 

 

7.1.1. Chemical models (CbE) 

An in vivo model of GD was first developed in 1975 by Kanfer et al using the pharmacological 

GCase inhibitor CbE (Kanfer et al., 1975). This initial study established a dose of 100mg/Kg 

injected intraperitoneally was sufficient to cause an approximate 50% increase in GluCer in 

peripheral tissues and a 5-fold increase of GluCer in the brain of animals 3 months post-natal in 

the absence of any overt phenotypic consequence (Kanfer et al., 1975). However new born mice 

injected with CbE for 28 days exhibit profound symptoms indicating CNS involvement including: 

tail arching, tremor and a minimal startle response (Kanfer et al., 1975). 

 

Neurological consequences associated with reduced GCase enzyme activity via the 

administration of CbE have since been replicated. Wild type mice injected intraperitoneally with 

CbE 100mg/Kg/day initiated at post-natal day 5 for 10 days display a neurological phenotype 

which is reversible with a 3-4 day latency following the last CbE injection (Xu et al., 2008). 

However post-natal day 15 mice injected with CbE developed a more severe neurological 

phenotype which results in death after 7-12 days contradicting the early reports by Kanfer et al 

(Kanfer et al., 1975; Xu et al., 2008). 

 

More recently, a conclusive study demonstrated a correlation between the amount of CbE injected 

into mice and the levels of accumulated GluCer and GluSph in the brain which in turn correlates 

with survivability (Vardi et al., 2016). This study also confirmed that the age of the animal is an 
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important factor for severity of neurological symptoms and survival (Vardi et al., 2016). Mice 

injected with CbE of any concentration from post-natal day 15 display less severe symptoms and 

survive longer (Vardi et al., 2016). Of particular note is the report that CbE injected mice 

demonstrate very similar pathology and altered gene expression profiles to the genetic models 

K14-lnl and GBA1flox/flox;nestin-cre described below, making CbE an attractive tool for modelling 

GD and potentially for studying the link between GBA1 and synucleinopathies (Vardi et al., 2016). 

  

7.1.2. Conditional knockdown 

Initial attempts to create a GBA1 knock down mouse model proved unsuccessful since ubiquitous 

knock down of GBA1 caused neonatal lethality (Tybulewicz et al., 1992). Later, it was discovered 

that GCase activity is critical to dermal development with the cause of death of these mice being 

excessive water loss through the skin (Holleran et al., 1994). 

 

A conditional type 1 GD mouse model has been generated using the Mx1-Cre-loxP system, 

allowing Cre mediated deletion of a floxed murine GBA1 upon activation of the Mx1 promoter with 

polyinosinic-polycytidylic acid (Enquist et al., 2006). Mx1-cre mediated deletion of GBA1 occurs 

in haematopoietic stem cells and in all progeny including macrophages but only to a limited extent 

in the CNS (Enquist et al., 2006). These mice have significantly accumulated GluCer in bone 

marrow, spleen and liver but not the brain (Enquist et al., 2006). Phenotypically, these mice have 

a normal lifespan and do not show gross signs of bone disease or CNS abnormalities (Enquist et 

al., 2006). Similarly, mice have been generated whereby murine GBA1 has been flanked by loxP 

sites and crossed with a Tie2Cre mouse line to enact knock down of GBA1 in cells of 

haematopoietic and endothelial origin, resulting in similar visceral deficiencies of GCase enzyme 

activity and GluCer accumulation (Sinclair et al., 2007). A more recent adaptation of the Mx1-Cre-

loxP system to conditionally knock down GBA1 has proved to be more effective, causing over 

95% reduction in GCase enzyme activity in cells of haematopoietic and mesenchymal stem cell 

lineages resulting in dramatic accumulation of GluCer and GluSph (Mistry et al., 2010). 

Furthermore, in addition to visceral and haematological pathologies, these mice also exhibited 

profound skeletal defects (Mistry et al., 2010). As such, the models described above may prove 

more useful for the investigation of GD, rather than PD-GD. 
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Conditional knockdown of GBA1 has been performed to generate models of neuronopathic GD. 

Insertion of a loxP-neo-loxP (lnl) cassette into inton 8 of murine GBA1 causes lnl homozygous 

mice to die within hours of birth, with a similar skin phenotype to ubiquitous GBA1 knock down 

mice (Tybulewicz et al., 1992; Enquist et al., 2007). However, crossing GBA1lnl/lnl mice with K14-

Cre transgenic mice allows for Cre-recombinase expression driven by the K14 promoter 

facilitating recombination of GBA1lnl/lnl within the skin (Enquist et al., 2007). The subsequent mice, 

K14-lnl/lnl, develop rapidly progressing neurological disease after an initial 10-day symptom free 

period (Enquist et al., 2007). Mice show symptoms of motor dysfunction including abnormal gait 

and seizures, ultimately requiring euthanasia 2 weeks following birth (Enquist et al., 2007). K14-

lnl mice exhibit dramatically reduced GCase enzyme activity and accumulated levels of GluCer 

and GluSph in the brain, spleen and liver (Enquist et al., 2007). The same research group also 

developed the GBA1flox/flox;nestin-cre transgenic mouse in which GCase enzyme deficiency is 

restricted to the progeny of neural and glial cell precursors but maintain normal GCase enzyme 

activity within microglia (Enquist et al., 2007). These mice also develop pathology and symptoms 

of neurogenic GD similar to those in K14-lnl mice although with a delayed onset of 2-3 weeks 

from birth (Enquist et al., 2007). 

 

A different approach to creating a conditional neuronopathic model of GD has been the use of 

the K14 promoter to drive Cre recombination of D409H mutant GBA1 allele in the skin, leaving 

all other tissues GBA1 null (Xu et al., 2008). In this case, Kn-9H mice start to develop progressive 

neurological defects from post-natal day 10 including altered gait, tremor, myoclonus and 

seizures (Xu et al., 2008).  However, the very early symptomatic onset reported in these models 

precludes them from modelling a late onset neurodegenerative condition such as GD-PD. 

 

7.1.3. Point mutation 

The introduction of point mutations into GBA1 are considered to be the ‘gold standard’ for studying 

GD since this approach mirrors the molecular basis of the condition and involves factors other 

than solely reduced GCase enzyme activity. However, generation of these models has proved 

difficult. The first point mutations inserted into murine GBA1 were RecNcil and L444P although in 

both cases the mice did not survive past 24 hours (Liu et al., 1998). A viable L444P mutant mouse 

has been engineered by crossing GBA1+/L444P mice with mice expressing heterozygous knockout 

of GluCer synthase (Ugcg+/- ) to generate the GBA1+/L444P;Ugcg+/- mouse (Mizukami et al., 2002). 
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Through a series of cross breeding and inter-crossing, double mutant L444P mice were 

generated: GBA1L444P/L444P;Ugcg+/+ (GBA1L444P/L444P ).(Mizukami et al., 2002). GBA1L444P/L444P mice 

which survive weaning are generally fertile and have a lifespan of over 1 year (Mizukami et al., 

2002). As expected there is a significant reduction in GCase enzyme activity in several organs, 

15-20% of wild type levels, although the reduction in GCase enzyme activity does not result in 

GluCer accumulation making their utility for the study of GD debatable (Mizukami et al., 2002). 

Despite the lack of GluCer accumulation, these mice do display an interesting characteristic of 

extensive multi-organ inflammation (Mizukami et al., 2002) 

 

Direct introduction of point mutations into the murine GBA1 gene was first performed successfully 

by Xu et al (Xu et al., 2003). Homozygous V394L, D409H and D409V point mutations result in 

GCase enzyme activity between 4 and 25% of wild type in the major organs (Xu et al., 2003). 

However, GluCer accumulation is only present at modest levels and is absent in the brain (Xu et 

al., 2003). Additionally, there is no overt behavioural phenotype. Surprisingly, homozygous 

N370S mutation in murine GBA1 caused neonatal lethality (Xu et al., 2003). The GD phenotype 

associated with V394L, D409H and D409V mutation has further been enhanced with concomitant 

intra-peritoneal injection of CbE to cause CNS involvement and death after 2 weeks (Xu et al., 

2008). Neuronal degeneration is progressive and GluCer storage persists in D409V homozygous 

mice in the 2-5 months following CbE cessation; wild type and D409H mice have persistent 

neurological damage without progression (Xu et al., 2008). This suggests that a threshold of 

GCase enzyme activity is required to prevent progression to CNS involvement. Furthermore, 

neuronopathic GD phenotype has been enhanced in D409H and V384L homozygous mice by 

crossing with prosaposin-deficient mice containing hydromorphic PSAP (Xu et al., 2011). 

 

Human wild type, N370S and L444P GBA1 have been bred into mice with a GBA1 null 

background, demonstrating progressive and early elevation of tissue GluCer and GluSph in the 

liver and spleen (Sanders et al., 2013). Specifically, human L444P causes dramatic elevation of 

GluCer particularly at older age. Unfortunately, CNS pathology or phenotype has not been 

investigated in this model (Sanders et al., 2013). 
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Intra peritoneal 
injection of GCase 
inhibitor CbE 
100mg/Kg for 21-
28 days 

No evident behavioural 
difference at 3 months 
of age. Approx 50% 
increase in GluCer in 
peripheral tissues and 5 
fold increase in brain 
tissue. 
New born mice injected 
with CbE demonstrate 
CNS involvement. 

(Kanfer et 
al., 1975) 

 Intra peritoneal 
injection of GCase 
inhibitor CbE 
100mg/Kg daily for 
8-12 days 
 

Post-natal day 5 mice 
injected with CbE for 10 
days display a 
neurological phenotype 
which is reversible with 
a 3-4 day latency 
following the last CbE 
injection. Injection of 
post-natal day 15 mice 
causes a more severe 
phenotype and death 
after 7-12 days. 

(Xu et al., 
2008) 

 Intra peritoneal 
injection of GCase 
inhibitor CbE 
100mg/Kg daily for 
9 days into 8 week 
old mice 
 

Motor impairment, 
Widespread activation 
of glia. 

(Ginns et 
al., 2014) 

 Intra peritoneal 
injection of GCase 
inhibitor CbE 
100mg/Kg daily for 
28 days into 8 
week old mice 
 

Widespread microglial 
activation in motor 
cortex, striatum and 
substantia nigra. 
Neuronal cell loss in 
motor and 
somatosensory 
cortices. 

(Noelker et 
al., 2015) 

 Intra peritoneal 
injection of GCase 
inhibitor CbE at 
different doses 
(25-100mg/Kg) for 
different durations 
and different post-
natal age. 
 

90-95% reduction in 
brain GCase activity 
regardless of CbE dose. 
Injection from post-natal 
day 15 causes less 
severe symptoms better 
survival. 
Similar pathology and 
altered gene expression 
profiles to the 
conditional knock down 
genetic models. 

(Vardi et al., 
2016) 

 Ubiquitous GBA1 
knock out  

Neonatal lethal. Die 
within 24 hours of birth 
due to GCase 
involvement in skin 
formation. 

(Tybulewicz 
et al., 1992) 

 
 

 
 

Conditional 
knockout. 
Mx1-cre mediated 
deletion of GBA1 
in haematopoietic 
stem cells and 
progeny 

Normal lifespan. 
Accumulated GluCer in 
bone marrow, spleen 
and liver but NOT brain. 

(Enquist et 
al., 2006) 

CbE 

 

Mx1-Cre-loxP 

CbE 

 

CbE 

 

CbE 

 

CbE 

 

GBA1-/- 
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 Conditional knock 
out. 
Hematopoietic and 
endothelial cell 
specific Tie2Cre 
strain 

Progressive 
splenomegaly and 
GluCer storage by 26 
weeks. 

(Sinclair et 
al., 2007) 

 
 

 
 
 

 

Conditional 
knockout. Mx1-cre 
mediated deletion 
of GBA1 in 
haematopoietic 
and mesenchymal 
stem cell lineages 

Dramatic visceral 
accumulation of GluCer 
and GluSph. 
Visceral, 
haematological and 
profound skeletal 
pathology. 

(Mistry et 
al., 2010) 

 
 
 
 
 

 

Conditional 
knockout. 
GBA1lnl/lnl crossed 
with K14-Cre 
transgenic mice to 
facilitate 
recombination of 
GBA1lnl/lnl within 
the skin. 

Rapidly progressing 
neurological disease 
(nGD). Exhibit motor 
dysfunction and 
seizures. Die after 2 
weeks.  
Reduced GCase 
enzyme activity and 
GluCer accumulation in 
visceral tissues and 
brain. 

(Enquist et 
al., 2007) 

 
 

 
 
 
 

 
 

Conditional 
knockout. 
GBA1lflox/flox;nestin-
cre. 
GCase deficiency 
restricted to 
progeny of neural 
and glial cell 
precursors. 
Normal GCase 
activity in 
microglia. 

Similar pathology and 
development of 
neurological symptoms 
to GBA1lnl/lnl with 
delayed onset of 2-3 
weeks  

(Enquist et 
al., 2007) 

 
 
 
 
 
 
 
 

Conditional 
expression of 
D409H in the skin 
using the K14 
promoter. 

progressive 
neurological defects 
from post-natal day 10 
including altered gait, 
tremor, myoclonus and 
seizures. 

(Xu et al., 
2008) 

 
 

 
 
 

 
 

Murine 
homozygous 
RecNcil and 
L444P GBA1 

Neonatal lethal (Liu et al., 
1998) 

 

loxP-GBA1-loxP 
X 

Tie2Cre 

 

 

Mx1-Cre-loxP 

GBA1lnl/lnl 
X 

K14-Cre 

Kn-9H 

RecNcil/RecNcil 
L444P/L444P 

GBA1flox/flox 
X 

Nestin-Cre 
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Murine L444P 
GBA1 
homozygous 
mice bred to be 
viable through 
cross breeding 
with Ugcg-/+ mice.  

Significant reduction in 
GCase enzyme activity 
but NO accumulation of 
GluCer. 

(Mizukami 
et al., 2002) 

 Murine 
homozygous 
D409V, D409H 
and V394L GBA1 
mutation. 
 
 
 
 
Murine 
homozygous 
N370S GBA1 
mutation. 

GCase activity reduced 
to 4-25% in major organs. 
No GluCer accumulation 
in brain. 
 
 
 
 
 
Neonatal lethal 

(Xu et al., 
2003) 

 
 
 
 
 

 

Murine 
homozygous 
D409V, D409H 
and V394L GBA1 
mutation + 
100mg/Kg CbE 
i.p. for 8-12 days 

CNS involvement and 
death after 2 weeks. 
 
Neuronal degeneration is 
progressive and GluCer 
storage persists in 
D409V homozygous 
mice in the 2-5 months 
following CbE cessation; 
wild type and D409H 
mice have persistent 
neurological damage 
without progression 

(Xu et al., 
2008) 

 
 
 
 
 
 

Murine 
homozygous, 
D409H or V394L 
GBA1 mutation 
with 
hypomorphic 
prosaposin 
transgene  

Progressive neurological 
manifestations and brain 
GluCer accumulation 

(Xu et al., 
2011) 

 
 

 
 
 

Human N370S or 
L444P 
homozygote bred 
into GBA1-/- 

background 

Progressive and early 
elevation of tissue 
GluSph and GluCer in 
spleen and liver. 
L444P caused 
particularly enhanced 
elevation of GluCer at 
older age. CNS not 
assessed. 

(Sanders et 
al., 2013) 

Table 18 - Summary of GD mouse models 

L444P/L444P 

N370S/N370S 
D409V/D409V 
D409H/D409H 
V394L/V394L 

 
 

 
D409V/D409V 
D409H/D409H 
V394L/V394L 

+ CbE 

 
 

 
D409H/D409H 
V394L/V394L 

X 
PS-NA 

 
 

hN370s/N370S 
hL444P/L444P 
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7.1.4. D427V/D427V GBA1 mouse 

The D427V GBA1 homozygous mouse model is of particular interest for GBA1 associated studies 

since it has been reported that these mice have a cognitive impairment phenotype (Sardi et al., 

2011). Since these mice could be of particular value for studying the link between GBA1 mutation 

and LBD, the characteristics of this model are described in detail below. 

  

7.1.4.1. Biochemistry 

GCase enzyme activity within the brain of D427V GBA1 homozygous mice is less than 25% of 

wild type mice (Xu et al., 2003; Cullen et al., 2011; Sardi et al., 2011). Additionally, GCase enzyme 

activity is reduced to 2.5% compared with wild type in the liver, 6.2% in the spleen and 5.4% in 

the lungs (Xu et al., 2003).  

 

D427V1 GBA1 homozygous mice exhibit a 2-4 fold increase in GluCer in the liver, lung and spleen 

at 6 months of age, but not the brain (Xu et al., 2003). Accordingly, mass spectrometry analysis 

of glycosphingolipids in the hippocampus shows normal GluCer levels at 12 months but a marked 

and progressive accumulation of GluSph starting from 2 months (Sardi et al., 2011). 

 

Total a-synuclein concentration in the forebrain measured by ELISA is not significantly different 

from wild type in D427V GBA1 homozygous mice of 6 months of age however a significant 

increase in membrane bound a-synuclein is seen in mice at 12 months (Cullen et al., 2011). 

Similarly, a 125% increase in membrane bound a-synuclein is seen in the hippocampus of these 

animals concurrent with a trend for reduced soluble a-synuclein (Cullen et al., 2011). Importantly, 

these mice do not show a significant increase in the levels of insoluble a-synuclein characteristic 

of human PD and DLB brain (Cullen et al., 2011). 

 

Whilst Cullen et al reported increased anti-ubiquitin staining by IHC in the cytoplasm of isolated 

neurons in the cortex and hippocampus from D427V GBA1 homozygous mice at 12 months there 

was no consistent evidence of either neuronal or glial a-synuclein accumulation or cytoplasmic 

inclusions by standard IHC protocol using 2 antigen retrieval steps (Cullen et al., 2011). However, 

using an adapted IHC technique and including treatment with proteinase K, Sardi et al. revealed 

the presence of a-synuclein aggregates containing ubiquitin in the hippocampus of the same 
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animals in a progressive manner starting from 6 months of age, mirroring pathology seen in 

human DLB or advanced PD (Sardi et al., 2011). These a-synuclein/ubiquitin aggregates are also 

present in the cerebral cortex and cerebellum but to a lesser extent and primarily occur within 

neurites (Sardi et al., 2011). 

 

D427V GBA1 homozygous mice also exhibit progressive accumulation of tau aggregates from 6 

months predominantly in the hippocampus but also in the cortex and cerebellum (Sardi et al., 

2013). A modest but significant increase in hyper-phosphorylated tau detected by AT8 staining in 

hippocampal lysates from 18 months D427V GBA1 homozygous mice hints at the presence of 

neurofibrillary tangles, a contributor to the mixed pathology of human LBD (Sardi et al., 2013). 

 

D427V GBA1 homozygous mice at 12 months show no evidence of inflammation in hippocampal 

sections through the absence of significant Iba1 or GFAP staining (Sardi et al., 2011). 

Furthermore, Fluoro-Jade C staining revealed no significant neuronal cell death in the 

hippocampus (Sardi et al., 2011). Tyrosine hydroxylase staining shows no overt nigrostriatal cell 

loss (Sardi et al., 2011). 

 

7.1.4.2. Phenotype 

D427V GBA1 homozygous mice have a normal lifespan and display no overt signs of neurological 

dysfunction (Xu et al., 2003; Cullen et al., 2011). However, at 6 months D427V GBA1 

homozygous mice exhibit impaired cognitive function demonstrated through a significant lack of 

novelty discrimination assed through the novel object recognition test (Sardi et al., 2011). 

Confounding factors such as loss of ambulatory activity or anxiety were excluded due to similar 

performance to wild type mice in the open field behavioural test (Sardi et al., 2011). Memory 

impairment in the same mice has been confirmed with the fear conditioning paradigm whereby 

D427V GBA1 homozygous mice at 6 months exhibit significant deficits in both contextual and 

cued fear tasks (Sardi et al., 2011). 

 

7.1.4.3. D427V/WT GBA1 mouse 

Since heterozygous mutations in GBA1 are associated with PD and DLB, a heterozygous D427V 

GBA1 mouse may more accurately reflect GCase enzyme activity and be a more translational 
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model for LBD. Unfortunately, very few characteristics of heterozygous mice are reported in the 

literature.  

 

D427V/WT GBA1 mice exhibit 59% brain GCase enzyme activity compared with wild type mice 

and do not show accumulation of GluSph as seen in homozygous mice, suggesting that one wild 

type allele is sufficient to prevent toxic substrate accumulation (Sardi et al., 2011). However, a-

synuclein-ubiquitin aggregates are detected in the hippocampus but the number of aggregates is 

only approximately 50% of those seen in the homozygous D427V GBA1 mouse (Sardi et al., 

2011). Interestingly, a-synuclein-ubiquitin aggregates are not seen in GBA1 +/- mice (Sardi et al., 

2011). D427V/WT mice aged to 12 months have been reported to show a non-significant trend 

towards increased a-synuclein in the hippocampus (+6%) and brainstem (+2%) by ELISA (Cullen 

et al., 2011). 

 

D427V/WT GBA1 mice have a normal lifespan and display no overt signs of neurological 

dysfunction (Xu et al., 2003; Cullen et al., 2011). Unlike D427V GBA1 homozygous mice, 

heterozygotes do not exhibit any hippocampal memory deficit at 6 months of age (Sardi et al., 

2011). The authors suggest that hippocampal a-synuclein-ubiquitin aggregates to the extent seen 

in this model are not sufficient to causes a loss in memory recognisable by novel object 

recognition or contextual fear conditioning; loss of more than 75% GCase activity appears to be 

the additional requirement (Sardi et al., 2011). 

 

Since heterozygous GBA1 mutant mice would be a more translational model for LBD, it appears 

the lack of studies extensively characterising the behavioural phenotype of these mice is an 

unmet area of research. Accordingly, the final chapter of this thesis investigates cognitive 

impairment in the D427V/WT GBA1 mouse. 
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Table 19 - Summary of characteristics of D427V GBA1 mouse model  

  

 

 D427V/D427V GBA1 D427V/WT GBA1  

GCase enzyme activity 25% 59% 

a-synuclein-ubiquitin 
aggregates in hippocampus 

Progressive accumulation 
from 6 months 

Evidence of aggregates at 12 
months. 50% of homozygous 

aggregates 

GluCer accumulation in 
hippocampus 

No accumulation No accumulation 

GluSph accumulation in 
hippocampus 

Progressive accumulation 
from 2 months 

No accumulation 

Tau aggregates in 
hippocampus 

Progressive accumulation 
from 6 months 

Not tested 

Neurofibrillary tangles in 
hippocampus 

Potentially – moderate but 
significant increase in AT8 

staining 

Not tested 

Inflammation in hippocampus 
(Iba1 and GFAP staining) 

None at 12 months Not tested 

Neuronal cell death in 
hippocampus (Fluoro-jade 
staining) 

None at 12 months Not tested 

Nigrostriatal cell loss 
(Tyrsoine hydroxylase 
staining) 

None at 12 months Not tested 

   

Novel object recognition Cognitive impairment from 6 
months 

No cognitive impairment 
evident at 6 months 

Contextual fear conditioning Cognitive impairment from 6 
months 

Not tested 

Anxiety (open field) Not evident at 12 months Not tested 

Locomotion (open field) No impairment at 12 months Not tested 
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7.2. Aims and objectives 

 

7.2.1. Aims 

The aim of this chapter is to characterise the behavioural phenotype of D427V/WT GBA1 mice 

over a 12-month period to establish whether D427V/WT mice are a suitable translational model 

for the study of LBD. Previously, heterozygous mice had only been tested until the age of 6 

months. 

 

7.2.2. Objectives 

• Establish whether D427V/WT mice have a motor impairment by performing open field 

analysis at 3, 6, 9 and 12 months of age 

• Establish whether D427V/WT mice display symptoms of anxiety evident in open field 

analysis 

• Establish whether D427V/WT mice have a cognitive impairment phenotype as assessed 

by Morris water maze and Y-maze at 3, 6, 9 and 12 months of age   
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7.3. Results 

 

7.3.1. Open field  

7.3.1.1. Distance moved 

At 3 months of age, D427V/WT mice appeared to move a greater distance (35211 ± 9268cm) 

compared with WT (25057 ± 6262cm) although not to a statistically significant degree (repeated 

measured ANOVA, F(3,39)=10.49, p=0.3624). From 6 months of age, D427V/WT and WT mice 

cover shorter distances (5196.723 ± 324.019cm and 9055.017 ± 486.868cm, respectively) which 

are not statistically different dependent upon genotype (repeated measures ANOVA, 

F(3,39)=10.49, p=0.3624). From this age point onwards, D427V/WT and WT mice perform 

similarly for the parameter of distance moved (Figure 39). 
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Figure 39 –Distance moved in open field. Distance moved measured in cm by WT (blue) and 
D427V/WT(red) mice at 3,6,9 and 12 months of age. Data are represented as mean ± SEM, n=8-10 per 
group, repeated measures ANOVA, F(3,39)=10.49, p=0.3624). No significant differences were observed 
between groups at any age tested. 



205 
 

7.3.1.2. Velocity 

The speed each animal moved in the open field was measured and recorded as cm/s. At 3 months 

of age D427V/WT mice moved faster than WT mice of the same age although not to a statistically 

significant degree (31.35 ± 6.006 cm/s and 24.41 ± 8.257 cm/s respectively, repeated measures 

ANOVA, Sidak ‘s post hoc, F(3,39)=11.17, p=0.4713). At 6 months of age D427V/WT and WT 

mice move at similar speeds (4.334 ± 0.271 cm/s and 7.702 ± 0.412 cm/s respectively) although 

the speed is much slower than the performance of 3-month-old mice. From 6 months of age 

onwards, D427V/WT and WT mice exhibit similar velocity without any impact of genotype on 

performance (Figure 40).  
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Figure 40 – Velocity of mice in the open field. Velocity measured as cm/s in WT (blue) and 
D427V/WT (red) mice at 3,6,9 and 12 months of age. Data are represented as mean ± SEM, n=8-10 
per group. Repeated measures ANOVA, Sidak’s post hoc, F(3,39)=11.17, p=<0.001. No significant 
differences were observed between groups at any age tested after correcting for multiple comparison 
using Sidak’s post hoc test. 
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7.3.1.3. Anxiety - % time in perimeter 

The amount of time each mouse spent within a 11.25cm2 perimeter of the open field arena was 

calculated and expressed as a percentage of the 20-minute trial. Between genotype and across 

all time points, there was no difference in % time spent in the perimeter, indicating the absence 

of an anxiety phenotype (Figure 41).  

 

 

 

 

 

  

Figure 41 - Anxiety measured in open field. Anxiety measured indirectly through % cumulative time spent 
in the perimeter of the open field arena of WT (blue) and D427V/WT (red) mice at 3,6,9 and 12 months of 
age. Data are represented as mean ± SEM, n=8-10 per group. Repeated measured ANOVA, 
F(3,39)=0.0513, p=0.6759. No significant differences were seen between groups at any age tested. 
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7.3.2. Y-Maze 

7.3.2.1. Spontaneous alternation performance (SAP) 

The number of spontaneous alternating arm entries in a Y-maze were recorded and presented in 

the graph below as a percentage of the total number of triad arm entries attempted during the 

trial period.  

 

The %SAP was very similar between D427V/WT and WT mice in 3,6 and 9-month cohorts 

indicating similar cognitive performance in executing the test. However, by 12 months of age there 

is a significant decrease in %SAP indicative of cognitive impairment in D427V/WT mice compared 

with WT mice of the same age (Repeated measures ANOVA, Sidak’s post hoc test, 

F(3,42)=4.591, p=0.0189) (Figure 42). 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 42 - Spontaneous alternation performance measured in the Y-maze. SAP measured as a 
percentage of the total number of attempts within 8 minutes. %SAP measured in WT (blue) and D427V/WT 
(red) mice at 3,6,9 and 12 months of age. Data are represented as mean +/- SEM, n=8-10 per group, repeated 
measures ANOVA, Sidak’s post hoc test, F(3,42)=4.591, p=0.0189 between D427V and WT at 12 months of 
age, *p=<0.05 
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7.3.3. Morris water maze 

7.3.3.1. Trial duration 

The time taken for mice to reach a submerged platform was recorded and averaged over 4 trials 

from different starting locations in the maze. This was repeated for 5 consecutive days to generate 

learning curves for both WT and D427V/WT mice. 

 

Testing at 3 months of age, both D427V/WT and WT mice exhibit learning as seen by the 

reduction in trial duration over time. Surprisingly, D427V/WT mice performed better than WT, 

finding the platform significantly faster by day 5 (19.11 ± 1.949s compared with 43.55 ± 8.872s, 

two-way ANOVA with Bonferroni correction, F(1,16)=8.466, p=0.0383) (Figure 43).  

 

At 6 months of age, both groups show reduction in trial duration over the consecutive 5 days of 

testing indicating learning had taken place. There was no significant difference in the time taken 

to find the platform between WT and D427V/WT mice at any day during the test (Figure 43). Mice 

at 9 months of age once again demonstrate learning; reduction in trial duration over time. 

However, in contrast to 3 months old mice, D427V/WT consistently perform worse than WT; 

taking longer to find the platform throughout the test. However, the difference between the groups 

fails to reach statistical significance on any specific day following Bonferroni correction, despite 

overall significance seen by two-way ANOVA (two-way ANOVA with Bonferroni correction, 

F(1,16)=7.208, p=>0.05) (Figure 43).  

 

By 12 months of age, learning continues to be exhibited in WT animals but appears to plateau in 

D427V/WT; trail duration remains relatively constant over the time of the test. Consequently, there 

are statistically significant increases in trial duration by D427V/WT mice when compared to WT 

at day 2 (56.79 ± 4.847s compared with 34.82 ± 4.089s, Two-way ANOVA with Bonferroni 

correction, F(1,16)=17.27, p=0.0423) and more prominently at day 5 (45.57 ± 8.123s compared 

with 17.79 ± 2.657s, two-way ANOVA with Bonferroni correction, F(1,16)-17.27, p=0.0051) 

(Figure 43). 

 

Findings were validated by performing a probe trial in which the platform was removed, and the 

time mice spent in the quadrant previously containing the platform recorded. There was a 

statistically significance decrease in the amount of time D427V/WT mice spent in the correct 
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quadrant (11.57 ± 2.293s) when compared with WT mice at 12 months of age (17.87 ± 

2.293s)(Repeated measures ANOVA, F(1,16)=0.0397, p=0.0397), although significance was lost 

after correction for multiple comparison using Sidak’s post hoc test. Exploratory analyses using 

student’s t-test used also describes a statistically significance between WT and D427V/WT at 12 

months (p=0.0445) (Figure 44). 
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Figure 43 – Trial duration in Morris water maze. Trial duration measured in seconds, averaged over 4 trials 
in D427V/WT (red) and WT (blue) mice at 3,6,9 and 12 months of age. Data are represented as mean ±SEM, 
n=8-10 per group. Two-way ANOVA with Bonferroni correction, 3 months old F(1,16)=8.4688, p=0.0383, 12 
months old F(1,16)=17.27, p = 0.0051, *p=<0.05, **p=<0.01 

Figure 44 – Morris water maze probe trial. Cumulative time in the correct quadrant measured in seconds 
in D427V/WT (red) and WT (blue) mice at 3,6,9 and 12 months of age. Data are represented as mean ±SEM, 
n=8-10 per group, repeated measures ANOVA, Sidak’s post hoc test. No significant differences were 
observed between groups at any age tested. 
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7.3.3.2. Trial distance covered 

The distance each mouse travelled whilst searching for the platform was recorded to account for 

any possible motor impairments which may confound trial duration as a readout for learning and 

memory. 

 

Total distance to platform reduced over time indicating learning was observed in both WT and 

D427V/WT mice in the 3,6 and 9 months age groups. Furthermore, there was no significant 

difference in performance between D427V/WT and WT mice at any of these age groups. 

However, by 12 months of age D427V/WT mice take a significantly longer distance to find the 

platform compared with WT mice at day 2 (903.507 ± 87.867cm compared with 493.973 ± 

63.860cm, Two-way ANOVA with Bonferroni correction, F(1,16)=19.67, p=0.0059) and day 5 

(651.068 ± 121.832cm  compared with 257.069 ± 46.378cm, Two-way ANOVA with Bonferroni 

correction, F(1,16)=19.67, p=0.0088) (Figure 45). 
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Figure 45 – Distance to platform in Morris water maze. Total distance measured in cm, averaged over 4 trials 
in D427V/WT (red) and WT (blue) mice at 3,6,9 and 12 months of age. Data are represented as mean ±SEM, n=8-
10 per group. 12 months old, Two way ANOVA with Bonferroni correction, F(1,16)=19.67, *p=<0.05,**p=<0.01 
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7.3.3.3. Velocity 

The velocity of mice whilst swimming was recorded to identify any potential motor impairment 

which could confound conclusions based upon time taken to platform results. Velocity 

measurements indicate there was no statistically significant difference between D427V/WT and 

WT mice at any age. However, at 3 months of age, there is a trend for increased velocity in 

D427V/WT mice at day 5, with statistical significance by two-way ANOVA (two-way ANOVA, 

F(1,16)=5.155, p=0.0373) which is lost upon Bonferroni correction (Figure 46).  
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Figure 46 - Swimming velocity of mice in Morris water maze. Velocity measured in cm/s, averaged over 4 
trials in D427V/WT (red) and WT (blue) mice at 3,6,9 and 12 months of age. Data are represented as mean 
±SEM, n=8-10 per group. Two-way ANOVA followed by Bonferroni correction. No significant differences were 
observed between groups at any age tested. 
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7.4. Discussion 

Behavioural testing has identified a progressive cognitive impairment phenotype in D427V/WT 

mice which is significantly evident by 12 months of age. The existence of cognitive impairment in 

these mice can be reported due to deficits identified by two independent behavioural tests: Morris 

water maze and Y-maze (Figure 44, Figure 42).  

 

The Morris water maze has historically been used as a test of spatial learning and memory 

mediated predominantly by the hippocampus (Morris, 1984; Vorhees and Williams, 2006). 

Accordingly, deficits in Morris water maze performance identified in this study implicate the 

hippocampus as a potential area of pathological interest in association with a heterozygous GBA1 

mutation. Correspondingly, pathological accumulation of a-synuclein and tau have previously 

been reported in the hippocampus of D427V GBA1 homozygous mice alongside a cognitive 

deficit at the earlier age of 6 months (Sardi et al., 2011; Sardi et al., 2013). It may be that 

heterozygous mice require an additional age-related decline in GCase enzyme activity in order 

to manifest a cognitive impairment phenotype potentially involving the accumulation of tau and a-

synuclein; a hypothesis requiring further investigation. It is now established that in addition to the 

hippocampus, the cholinergic basal forebrain is necessary for Morris water maze assessed spatial 

learning and memory since rats with lesions in medial septum or nucleus basalis of Meynert 

display overt deficits (D'Hooge and De Deyn, 2001). Accordingly, the highest proportion of GCase 

expression has recently been identified in the cholinergic neurons of the nucleus basalis of 

Meynert in non-human primate brain (Dopeso-Reyes et al., 2017). Reduced activity of GCase 

enzyme activity in this particularly GCase dependent subset of neurons may therefore contribute 

to cognitive impairment demonstrated in the Morris water maze.  

 

Deficits were also observed in the cognitive function of 12-month D427V/WT mice which had 

undergone Y-maze testing (Figure 42). Spontaneous alternation performance (SAP) is a 

controversial measure of working memory implicating involvement of the hippocampus (Deacon 

and Rawlins, 2006). SAP involves responsiveness to novelty that relies on the need to remember 

which two maze arms were recently visited so as to enable selection of the novel alternative 

(Hughes, 2004). However, the choice made does not necessarily reflect memory of the previously 

entered arms and may involves sensory and attentional factors in addition to motivationally 
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related novelty preferences (Hughes, 2004). Despite these concerns, when taken into 

consideration with other tests of cognition, deficits in Y-maze SAP performance can strengthen 

the case for cognitive impairment, which is the case with this study.  

 

The cognitive impairment phenotype in D427V/WT mice described by this study appears to be 

independent from the effect of locomotor deficits or anxiety as measured by performance in the 

open field arena (Figure 39, Figure 40, Figure 41). Heterozygous D427V mutation did not affect 

the distance or speed mice moved. This finding is significant since locomotor deficit could have 

confounded the interpretation of Morris water maze results. Further evidence for the lack of motor 

impairment can be derived from the constant swim speeds in the Morris water maze when 

comparing D427V/WT and WT mice. Perhaps it is surprising that there was no motor impairment 

in D427V/WT mice of any age given the link between GBA1 and PD (Sidransky et al., 2009b). 

However, motor impairment has not been reported in the D427V homozygous mouse either (Sardi 

et al., 2011). In order to confidently exclude the presence of motor impairment, it is important to 

perform specifically designed motor behaviour tasks such as rotarod which have not been 

reported in the literature as yet. 

 

Interestingly, young D427V/WT mice appear to display some degree of hyperactivity. Whilst not 

statistically significant, D427V/WT mice at 3 months of age move faster and further than WT mice 

in the open field. This same phenomenon can also be seen in the Morris water maze to a 

significant degree. D427V/WT mice at 3 months of age find the platform significantly faster than 

WT mice. It is unlikely this is a reflection of cognitive ability, but more accordingly hyperactivity 

since the distance travelled to the platform remained constant. Furthermore, although not 

statistically significant, there was a trend for D427V/WT mice to have a faster swim speed than 

WT at this key age. Hyperactivity has been widely reported in A53T mutant a-synuclein mouse 

models (Unger et al., 2006; Graham and Sidhu, 2010) and in a model of cognitive impairment 

caused by knockout out vesicular acetylcholine transferase (vAChT) (Martyn et al., 2012). 

Hyperactivity as an early symptom may therefore prove to be an interesting candidate as an early 

diagnostic marker at which point interventions could be made to prevent irreversible progression 

to cognitive impairment associated with LBD. 
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This study represents the first report of a progressive decline in cognitive impairment phenotype 

associated with heterozygous GBA1 mutation. Moreover, cognitive decline is evidenced by two 

independent behavioural tests providing a strong evidence base for the phenotype. Therefore, 

the main aim of this chapter has been achieved. It would be interesting to test mice of an older 

age to more accurately mirror the age of onset associated with LBD and further investigate the 

impact of age. Considering the impact of age upon phenotype, testing for motor deficits at later 

time points would be of relevance since the development of a motor impairment following the 

presentation of cognitive deficits would provide more evidence that the D427V/WT mouse is an 

appropriate translational model for DLB in particular.  

 

Overall, the novel phenotypes described in this GBA1 D427V/WT mouse could prove to be a 

helpful translational model of LBD with implications for drug discovery and testing. 
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8. General discussion 

 

GBA1 cell lines were successfully created demonstrating the fundamental characteristic 

associated with GCase: reduced GCase enzyme activity in L444P mutant cells and enhanced 

GCase enzyme activity in wild type overexpressing cells (chapter 4.3.5.3) (McNeill et al., 2014; 

Schondorf et al., 2014; Sanchez-Martinez et al., 2016). The creation of monoclonal GBA1 cell 

lines for comparison has permitted several experiments to be performed on what can be 

considered equivalent cells, therefore a more accurate picture of changes within the unfolded 

protein response can be assessed and considered in the context of other results. Whilst 

successful insertion of the GBA1 ORF into the TOPO-GFP plasmid and L444P site directed 

mutagenesis was demonstrated by sanger sequencing (Figure 8, Figure 10), sanger sequencing 

of the monoclonal cells themselves should also be performed to validate that the cells do in fact 

express GFP tagged wild type / L444P GBA1. This would also help address the uncertainty 

around the expression of GFP protein as an indirect measure of overexpressed GCase protein 

(Figure 14). Furthermore, relative expression of GFP mRNA could be assessed between naïve 

SH-SHSY cells and those overexpressing GBA1-GFP. Despite these additional validation steps 

which could be performed, alterations to GCase enzyme activity are robustly demonstrated, 

indicating expression of the plasmid constructs. With this is mind and the validation steps already 

performed, the aim of chapter 4 was successfully achieved: Monoclonal GBA1 overexpressing 

SH-SY5Y cell lines were created.  

 

An interesting finding from chapter 4 is the impact of overexpressed WT and L444P mutant GBA1 

on SH-SY5Y cell viability (Figure 18, Figure 19). Whilst the results from the two different 

measures of cell viability (PrestoBlueÒ and MTT assay) do not replicate each other, both do show 

a significant reduction in cell viability in L444P GBA1 overexpressing cells, indicating that L444P 

GBA1 mutation is detrimental to cell health. However, the impact of overexpressed WT GBA1 on 

cell viability is unclear. It would be beneficial to investigate the viability of the cell lines created 

with alternative measures of cell viability and cell death such as the lacto dehydrogenase and 

TUNEL assays.  
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As discussed in chapter 4, further investigation is required to confirm ER retention of L444P 

mutant GBA1 in the cell model created, complementing the literature (Ron and Horowitz, 2005; 

Bendikov-Bar et al., 2011; Fernandes et al., 2016), in order to consolidate the evidence for ER 

stress and subsequent activation of the UPR which is reported in this thesis. Accompanying ER 

retention, alterations to the trafficking of GCase to lysosomes as a consequence of GBA1 

mutation is considered a pathway to reduced GCase enzyme activity since GCase is only 

functional in the acidic environment of the lysosome. Furthermore, the success of chaperones, 

particularly Ambroxol in stabilising mutant GCase protein and assisting trafficking to the lysosome 

thereby enhancing GCase activity (McNeill et al., 2014; Ambrosi et al., 2015; Migdalska-Richards 

et al., 2016), highlights the importance of trafficking as a pathogenic mechanism involved in PD 

and DLB. Nevertheless, deficient trafficking of solely mutant GCase cannot underlie PD/DLB 

since GCase enzyme activity is also significantly reduced in the brain of sporadic PD and DLB 

patients (Gegg et al., 2012; Chiasserini et al., 2015; Rocha et al., 2015a). However, Ambroxol is 

also able to improve lysosomal delivery of non-mutant GCase in the brain (Migdalska-Richards 

et al., 2016; Migdalska-Richards et al., 2017). It may be possible that pathogenic substrates 

associated with PD and DLB, primarily aggregated a-synuclein, may invoke ER stress, preventing 

the maturation of GCase within the ER thereby causing ER retention and subsequently ER stress. 

Alternatively, a-synuclein may affect ER resident chaperones associated with trafficking. a-

synuclein has been reported to interact with the GCase specific receptor required for trafficking 

to lysosomes, LIMP 2. Since GCase binds LIMP 2 in the late ER/early Golgi, the impact of a-

synuclein interacting with LIMP 2 may cause accumulation of GCase in the ER and subsequent 

ER stress. Since enhanced trafficking of GCase to lysosomes boosts GCase activity and is 

associated with improved phenotypes in a Drosophila model of heterozygous GBA1 mutation 

(Sanchez-Martinez et al., 2016), ER stress mechanisms appear to play a critical part in the 

pathogenesis of PD/DLB. Accordingly, the expression of key UPR effector molecules described 

in this thesis, particularly those associated with adverse outcomes, is significant and 

complements current hypotheses.
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Figure 47 - Summary of UPR changes included in this thesis 



218 
 

The aim of chapters 5 and 6 was to establish whether the UPR is activated in response to L444P 

GBA1 mutation in SH-SH5Y cells, more specifically whether the PERK pathway is preferentially 

activated (findings summarised in Figure 47). This thesis reports that the L444P mutation causes 

a significant increase in spliced XBP1 protein expression compared with wild type GBA1 (Figure 

24) (Figure 25) which is subsequently significantly reduced in the presence of excess a-synuclein 

(Figure 27). Accordingly, excess a-synuclein does not alter XBP1 transcript levels in L444P cells 

but does cause a significant increase in wild type GBA1 cells (Figure 26). These findings suggest 

that IRE1a pathway activation initially serves the protective function reported in literature (chapter 

5.1.2). However, as the pathological impact of GBA1 mutation progresses, represented by a-

synuclein accumulation, and is compounded by age related decline in GCase activity, expression 

of the protective spliced XBP1 ceases and returns to basal levels. The relationship described 

supports the general hypothesis of this thesis: UPR responses adapt from being protective to 

being detrimental. Furthermore, significantly increased CHOP protein expression is only seen in 

L444P mutant cells (Figure 31) which does not change in the presence of excess a-synuclein, 

whereas CHOP protein expression is induced in wild type GBA1 cells in the presence of a-

synuclein (Figure 33). CHOP, an effector with detrimental effects to cells, is seemingly expressed 

when IRE1a responses of the UPR are insufficient to resolve stress, demonstrated in this thesis 

by the presence of L444P mutation or accumulation of a-synuclein.  

 

Novel interpretation of UPR activation as a balance between protective and detrimental 

responses contributes to the field since it widens interpretation of previous reports pertaining to 

the expression of UPR effectors, which tend to be considered in isolation. The UPR comprises of 

3 arms which are known to exhibit extensive cross reactivity (Chan et al., 2015), therefore a 

hypothesis which involves a balance between the pathways which is perturbed in the presence 

of GBA1 mutation is more feasible.  

 

The aim to identify UPR linked initiation of mitochondrial apoptosis through the action of CHOP 

has been less conclusive. While downregulation of the anti-apoptotic protein Bcl-2 was not 

identified in L444P mutant cells (Figure 35), significant downregulation was seen in N370S GBA1 

DLB human post mortem tissue from the temporal cortex (Figure 36). Since the cells were not 

tested in the presence of excess a-synuclein, it may be that the cells are not stressed to a high 
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enough degree to initiate apoptosis. The impact of enhanced CHOP expression and possible 

links to apoptosis requires further investigation and could be performed in the GBA1 D427V/WT 

mouse phenotypically characterised as part of this thesis (chapter 7). Unfortunately, time did not 

permit UPR investigations in the GBA1 D427V/WT mouse for this thesis. 

 

The role of the UPR in neurodegenerative diseases has been of increasing interest with confirmed 

reports of PERK pathway activation in AD, PD and frontotemporal dementia (FTD) (Smith and 

Mallucci, 2016). The results from the cell line experiments evaluating CHOP expression in this 

thesis appear to contribute to these reports. Furthermore, therapeutics have been developed, 

inhibiting phosphorylation of PERK or enacting de-phosphorylation of eIF2a (Smith and Mallucci, 

2016). Amelioration of memory impairments and reduction of phosphorylated tau has been 

reported in a mouse model of FTD treated with an inhibitor of PERK phosphorylation (Radford et 

al., 2015). These therapeutic adjustments to UPR responses in neurodegenerative conditions 

could therefore be of value in LBD once UPR response and the impact of GBA1 have been fully 

characterised and explored. 

 

Behavioural characterisation of the D427V/WT GBA1 mouse has revealed an important and 

previously unreported phenotype which may prove to have a translational purpose for the study 

of LBD – cognitive impairment. Hitherto, cognitive impairment has only been reported in the 

D427V GBA1 homozygous mouse, which by definition is a model of Gaucher’s disease (Sardi et 

al., 2011). However, Sardi et al report the absence of cognitive impairment measured by novel 

object recognition, in heterozygous mice (Sardi et al., 2011). Sardi et al tested heterozygous mice 

at 6 months of age, whereas we identified a progressive decline in cognition which reached 

significance by 12 months of age, albeit with a different tests of cognitive function – the Morris 

water maze and Y-maze (Figure 42, Figure 43, Figure 44, Figure 45). Since heterozygous mice 

have a subtler decline in GCase enzyme activity, approximately 69% of wild type activity (Sardi 

et al., 2011), age related factors must contribute to cause the progressive decline in cognitive 

function we report. Nominally, we postulate that an age-related decline in GCase enzyme activity 

(Rocha et al., 2015a; Supriya et al., 2017) contributes to deficiencies conferred by the single 

D427V mutant allele, crossing a biochemical threshold for presentation of a cognitive impairment 

phenotype. In order to confirm this, brain GCase enzyme activity will need to be measured in wild 

type mice over a range of ages in order definitively establish the contribution of reduced 
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endogenous GCase enzyme activity. Furthermore, to consolidate these findings, brain GCase 

enzyme activity should be measured in the D427V/WT mice at different ages. A limitation of the 

behavioural characterisation of D427V/WT mice is ageing of the mice. Since aging mice is time 

consuming and costly, the final time point for this study was 12 months of age. It would be 

beneficial to study mice of an older age which is more translational to the age of onset of LBD. 

Accordingly, mice aged between 18-24 months are considered old with the human age 

equivalence of 56-69 years (https://www.jax.org/research-and-faculty/research-labs/the-harrison-

lab/gerontology/life-span-as-a-biomarker ) 

 

MWM is a behavioural test historically used to investigate spatial learning and memory mediated 

predominantly by the hippocampus (Morris, 1984; Vorhees and Williams, 2006). Since the 

homozygous D427V GBA1 mouse displays significant accumulation of ubiquitin positive a-

synuclein aggregates in the hippocampus (Sardi et al., 2011) this was considered an appropriate 

test of cognitive function to investigate the heterozygous D427V/WT GBA1 mouse. Furthermore, 

at 6 months of age D427V/WT GBA1 heterozygous mice but not GBA1+/-despite having similar 

residual GCase enzyme activity, have been reported to show ubiquitin positive a-synuclein 

aggregates in the hippocampus, although not to a significant level (Sardi et al., 2011). We suggest 

that the findings we report in the MWM may be explained by a progressive accumulation of a-

synuclein in relation to a progressive decline in GCase enzyme activity. Staining for a-synuclein 

aggregates should be performed in D427V/WT GBA1 mice at 12 months of age and beyond to 

validate this hypothesis. Furthermore, since LBD is associated with mixed pathology and not 

solely aggregation of a-synuclein (chapter 1.1.5), staining for the associated pathological proteins 

amyloid beta and phosphorylated tau should be performed to assess whether the D427V/WT 

GBA1 mouse is translational for LBD research. 

 

Evaluating the activity of non-lysosomal GCase transcribed from GBA2 would be an interesting 

addition to the characterisation both the D427V/WT GBA1 mice and GBA1 cell lines generated. 

A compensatory increase in GBA2 GCase enzyme activity has been reported to occur in 

response to GBA1 mutation (Aureli et al., 2012; Burke et al., 2013).Furthermore, in addition to 

hydrolysing excess cytoplasmic GluCer, GBA2 transcribed GCase hydrolyses GluSph in the 
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cytoplasm forming sphingosine and consequently the toxic metabolite sphingosine-1-phosphate 

(Dekker et al., 2011b; Ferraz et al., 2016a). Enhanced action of GBA2 transcribed GCase may 

therefore contribute to pathology and needs to be considered. 

 

A growing school of thought regarding the pathological links between GBA1 mutation and 

synucleinopathies postulates that phenotypes and pathology described in the literature are not 

GBA1 specific. It is suggested that a wider dysfunction of lysosomes underlies changes 

traditionally attributed to GBA1 mutations (Moors et al., 2016). Furthermore, it is suggested that 

the genetic link between GBA1 mutation and synucleinopathies are a reflection of GD being the 

most common lysosomal storage disorder and as such more easily identifiable. Indeed, the 

activity of other lysosomal enzymes are reported to be altered in Parkinson’s disease (Moors et 

al., 2016) and a recent genetic study identified an excessive burden of lysosomal storage disorder 

gene variants in Parkinson’s disease including CTSD, SLC17A5, and ASAH1 (Robak et al., 

2017). 
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9. Concluding remarks 

The work presented in this thesis presents a novel interpretation of UPR activation as a 

consequence of GBA1 mutation. Whilst enhanced expression of both spliced XBP1 and CHOP 

in L444P GBA1 mutant cells (Figure 25, Figure 31) complements findings in the field (Table 15, 

Table 16, Table 17), this thesis demonstrates that L444P mutant cells illustrate a switch in UPR 

response upon experiencing further stress in the form of overexpressed a-synuclein. The return 

of spliced XBP1 to basal levels upon overexpression of a-synuclein (Figure 27) suggests that 

L444P GBA1 cells have reached a level of stress which has surpassed the ability of IRE1a 

signalling to resolve and therefore UPR signalling continues through PERK signalling and 

detrimental CHOP expression (Figure 33). Although this finding requires further investigation, the 

implications for drug development are promising. The identification of compounds which are able 

to readdress the balance between expression of protective un-spliced XBP1 and detrimental 

CHOP would be an interesting next step, particularly investigation into whether said compounds 

could ameliorate behavioural phenotypes in the D427V/WT mouse model. 

 

This thesis also presents the previously unreported finding of progressive cognitive decline in 

D427V/WT GBA1 mice (Figure 42, Figure 43, Figure 44, Figure 45). This is a significant 

discovery since cognitive impairment was only previously only reported in homozygous D427V 

GBA1 mice (Sardi et al., 2011). This finding consolidates previous reports of an age-related 

decline in brain GCase enzyme activity (Rocha et al., 2015a; Supriya et al., 2017) as a 

contributing factor towards the development of synucleinopathies through the illustration of a 

progressive decline in cognitive impairment whereby a statistically significant decline in cognition 

was only seen at 12 months of age. The implications for the field are that we suggest study of 

cognitive decline in heterozygous GBA1 mutant mice should be performed from the age of 12 

months to better represent endogenous GCase enzyme activity. Furthermore, D427V/WT mice 

may prove to be a good translational model for the study of LBD and subsequent development of 

novel therapies. However, biochemical investigation of the D427V/WT mouse is required to be 

carried out initally, which unfortunately time did not permit for inclusion in this thesis.  
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