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Abstract

One of the simplest models for the slow relaxation and aging of glasses is the trap
model by Bouchaud and others, which represents a system as a point in configuration-
space hopping between local energy minima. The time evolution depends on the
transition rates and the network of allowed jumps between the minima. We consider
the case of sparse configuration-space connectivity given by a random graph, and
study the spectral properties of the resulting master operator. We develop a general
approach using the cavity method that gives access to the density of states in large
systems, as well as localisation properties of the eigenvectors, which are important
for the dynamics. We illustrate how, for a system with sparse connectivity and finite
temperature, the density of states and the average inverse participation ratio have
attributes that arise from a non-trivial combination of the corresponding mean field
(fully connected) and random walk (infinite temperature) limits. In particular, we
find a range of eigenvalues for which the density of states is of mean-field form but
localisation properties are not, and speculate that the corresponding eigenvectors may
be concentrated on extensively many clusters of network sites.

1 Introduction

Glasses are disordered materials that do not exhibit the structural periodicity of crystals
but nonetheless possess the mechanical behaviour of solids. The most common way of
making a glass is by quenching, i.e. cooling a viscous liquid so rapidly that crystallisation
is avoided. The resulting system is called a supercooled liquid. The quench brings the
molecules of the material into a configuration where the typical time needed to rearrange
them is so long that the structure of the liquid appears frozen. The system falls out of
equilibrium in the sense that the relaxation time becomes of the order of the observation
time window. The resulting extremely slow evolution is called glassy dynamics, and the
transition into the regime of very long relaxation times is referred to as the glass transition.
Technically this phenomenon is not a real phase transition as there are no discontinuous
changes in any physical property. Nevertheless, one can associate a critical temperature
TG to a certain liquid, below which the rate of change of e.g. volume due to a change in
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temperature is comparable to that of a solid. The value of TG also depends on the rate at
which the system is cooled: slower cooling allows the material to fall out of equilibrium
at lower temperatures (allowing more time for configurational sampling).

Several theoretical approaches have been proposed to investigate the nature of the glass
transition; the general discussion is presented in a recent review by Biroli and Berthier
[1] (see also references therein). In spite of a sustained research effort dedicated to this
problem, a full understanding of glasses has not been achieved yet. One of the most
successful theories (based on a microscopic description) is the mode-coupling theory, which
predicts a dynamical arrest in supercooled liquids associated with a power law divergence
of the ‘slow’ time scale [2, 3]. Another important class of models in the context of glassy
systems is that of spin glasses, where one generally starts from a Hamiltonian H with
disordered interactions and derives the thermodynamic properties of the spin system and
its dynamical behaviour by averaging over the disorder [4, 5].

A further useful angle of attack on the glass problem focusses on the dynamics in
configuration-space. The energy landscape of a glass is typically very rugged, consisting
of many local minima (metastable states) separated by energetic barriers, and a global
minimum (the crystalline equilibrium state) that is kinetically extremely difficult to reach.
One can then think of this energy landscape as a set of basins of attraction that act as
‘traps’ for the dynamics: during its evolution towards equilibrium, the system jumps
between local minima at rates that decrease strongly with decreasing temperature. Based
on this picture, several studies have been developed, focusing on various aspects of glassy
dynamics in configuration-space. These range from investigations of the potential energy
landscape, in particular the structure and distribution of minima and energetic barriers
between them [6, 7, 8], to simplified models that describe the evolution between traps at
a more phenomenological level [9, 10, 11].

Interestingly, once the description of the configuration-space dynamics has been simpli-
fied to motion among traps without internal structure, it is directly related to the research
field of stochastic processes on networks. The structure of the energy landscape and the
relative positions of neighbouring minima define a network of allowed transitions: the sys-
tem can only jump between traps that are linked within this network, i.e. between minima
that are close in the configuration-space. Therefore methodology and results from network
theory [12, 13] can be applied to understand the phenomenology of glasses. In particu-
lar, information about the energy landscape can be used to model the time evolution of
the system as a Markov process on the network of minima, with rates depending on the
relevant energy barriers. Mathematically, the problem thus turns into solving a master
equation for the time-dependent probability distribution that describes the position of the
system in configuration-space.

One of the simplest and most successful descriptions that belong to this framework
is the trap model by Bouchaud and others [11]. The transition rates are assumed to
depend on the depth of the departing trap j only, not on the arrival trap i, and have the
Arrhenius-like form

rij =
1

N
e−βEj (1)

Here β is the inverse temperature, Ej > 0 is the trap depth and N is the size of the
network (the number of traps). Every transition effectively involves activation to the top
of the energy landscape, where all the energy barriers are located, and then falling into a
new state that is chosen randomly among all the minima. The latter assumption implies
that this model postulates a mean field (fully connected) network structure. It is easy
to show that, for an exponential density of trap depths ρE(E) = e−E , a glass transition
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occurs at finite temperature. More specifically, below TG = 1 the equilibrium probability
distribution across trap depths becomes non-normalisable. The exponential form of the
trap density of states can be motivated from several points of view, e.g. the mean-field
replica theory of spin-glasses [4], the random energy model [14], or phenomenological
arguments in the context of supercooled liquids [15]. Also, following an extreme value
statistics argument, one might expect that deep minima of potential energy landscapes
are described by the Gumbel distribution, whose tail is indeed exponential [16]

The simple expression for the transition rates and the fully connected network structure
allow one to solve the master equation for the model described above analytically. This is
simplest in the Fourier-Laplace domain, from where the behaviour in the time domain can
then be extracted straightforwardly [11]. Trap models have been also studied in Euclidean
space, where the system jumps between the nodes of a regular lattice; see for example
[11, 17] or the work by Ben Arous and collaborators [18, 19]. Variants include branching
phenomena [20] and walks on positive integers [21], though this is less plausible when
modelling configuration-space dynamics. The first extension to a trap model on a network
was considered relatively recently by Baronchelli et al, who used a simple heterogeneous
mean field approximation to study the dynamics. This assumes that the probability to
find the system on a certain site only depends on the degree (i.e. on the number of adjacent
nodes) of the site. It therefore has to postulate that the trap depth at any site is fixed fully
by its degree [22, 23]. Numerical results do indeed show some correlation between trap
depth and degree [24, 25], though the relation between the two is far from deterministic.

In this work we extend the analysis of the trap model to dynamics on generic (random)
networks with sparse inter-trap connectivity. Compared to [23] we develop a more flexible
approach to the modelling of glassy configuration-space dynamics that allows an arbitrary
(deterministic or stochastic) relation between trap depth and node degree. Within this
general scenario we then consider the simplest case where trap depths are uncorrelated
with degrees.

For disordered energy landscapes with sparse connectivity a direct analytical solution
of the dynamics is not possible in either frequency or time domain; we therefore tackle the
problem via the spectral properties of the master operator, which are key in determining
the dynamics of the system. Specifically we calculate the density of states (DOS), which
gives the spectra of relaxation rates of the system, and the localisation properties of the
eigenvectors, measured using the inverse participation ratio (IPR). We develop a general
cavity method for this purpose, leading in the infinite system size limit to an integral
equation that can be solved numerically via a population dynamics algorithm. Technically,
the approach follows analogous applications of the cavity method to the spectral analysis
of symmetric random matrices; see e.g. [26, 27, 28, 29] or [30, 31] for a rigorous discussion,
and [32, 33, 34] for related work on heavy-tailed random matrices. Based on the DOS and
IPR, we are able to obtain insights into the relevant time scales and time regimes of the
system. However, we do not have access to some time-dependent objects like correlation
functions, which are the main quantities of interest within the literature of trap models.
Our analysis will therefore be different from that of previous works [9, 10, 11, 35, 18, 19, 22],
and limited to describing the dynamics in terms of the static quantities mentioned above.

This paper is organised as follows. In section 2 we define the general set-up of the
problem. In section 3 we discuss by way of background the localisation of the ground
state as a function of the temperature, and summarise the known results for the mean
field and random walk limits. In section 4 we address the general case of trap model
dynamics on networks with finite connectivity and at finite temperature, and we propose
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a simple analytical approximation for the DOS. Also, we explain how the parameter ε that
appears in the evaluation of the DOS can be exploited as a detection tool for localisation
transitions within the spectrum of the system. We then use these methods to extract
dynamical properties of the trap model on random regular graphs, where all nodes have
the same degree. In section 5 we extend the analysis to other network topologies including
scale-free graphs. Section 6 summarises our conclusions and outlines perspectives for
future work.

2 Problem set-up

The general setting of the problem is the following: we consider a continuous-time Markov
process defined on a network of N nodes that represent the energy states accessible by
the system, i.e. the minima of the potential energy landscape or simply the traps. The
starting point is then given by the master equation for the probability distribution p(t) =
(p1(t), . . . , pN (t)), where pi(t) is the probability to find the system in trap i at time t:

∂tp(t) = Mp(t) (2)

The master operator M has the following structure:

Mij = cijrij Mii = −
∑

j 6=i
Mji (3)

where cij = cji = 1 if nodes i and j are connected and cij = 0 otherwise, also cii = 0
(there are no self-loops), and rij is the transition rate from node j to node i. Note that∑

jMji = 0, which ensures that probability is conserved. We shall now specify the trap-
depth distribution, the transition rates and the network topology. We assume

1. exponentially distributed energies: E ∼ ρE(E) = e−E , E ≥ 0;

2. random graph structure: the cij are sampled from a random graph ensemble with
finite connectivity. The simplest case for our purposes is one where all those graphs
have equal probability for which each node i is connected to exactly c others; the
probability distribution of node degrees ki =

∑
j cij is then pk = δc,k. Samples

that belong to this ensemble are called random regular graphs (RRG). In this work
we are interested in the case of c ≥ 3. This condition ensures that the fraction of
nodes outside the giant component vanishes in the large system limit [36], which also
implies that the configuration-space is connected, therefore ergodic. We will develop
our theory for general random graph ensembles where the degree distribution is
constrained to some pk; in that case c is defined as the average degree c =

∑
k k p(k).

3. Bouchaud transition rates: rij = e−βEj/c ≡ rj . The total escape rate from node
j is defined as r̂j =

∑
i cijrij and can be written in terms of the node degree as

r̂j = kjrj . We will find it useful to define τj = (crj)
−1 = eβEj . This gives the

expected waiting time to exit from trap j, exactly so for regular graphs and up to a
factor c/kj in the general case. From the energy distribution we obtain that the τj
have the distribution

ρτ (τ) = Tτ−(T+1) with τ ∈ [1,∞) (4)

which implies that the average waiting time 〈τ〉 diverges for T < 1, signalling the
occurrence of glassy dynamics and aging.
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With the above assumptions the master operator M is a sparse random matrix. It will be
important to bear in mind that two sources of randomness come into play: the disorder
in the trap depths {Ei} and in the inter-trap connectivity {cij}. Accordingly we also have
two different notions of distance that are relevant for this model: the distance in energy, i.e.
the energy difference among the minima, and the distance on the graph structure. As we
will see in the following sections, these notions of distance play different roles, depending
on the case being studied, with regards to their relevance for the degree of localisation of
the eigenstates.

The formal solution of equation (2) is given by

p(t) =
∑

α

eλαt(wα,p(0))uα (5)

where λα,wα,uα are respectively the eigenvalues, left eigenvectors and right eigenvectors
of M, indexed by α = 0, 1, . . . , N − 1, and (wα,p(0)) denotes the scalar product between
the left eigenvector wα and the initial probability distribution p(0). In the following we
will refer to rα = −λα as the relaxation rates of the system, and write r for a generic
relaxation rate. If the network is connected, there is a single vanishing eigenvalue λ0 = 0.
All other λα must then have negative real part so that the corresponding modes uα make
a contribution to p(t) that is exponentially suppressed over time. In the long-time limit
only u0 survives, which is the equilibrium Boltzmann distribution of the system associated
with the ground state λ0. The corresponding left eigenvector is w0 = (1, . . . , 1). So

lim
t→∞

p(t) = u0 = peq =
1

Z
(eβE1 , . . . , eβEN ) (6)

Within the present formulation the energies are positive as they represent the depth of
each trap, so eβEi is the correct Boltzmann weight for node i.

The evolution of the probability at finite t depends on the spectral properties of the
master operator. In particular, slowly decaying modes govern the long-time behaviour of
the system, and solving the master equation amounts to diagonalising M. This operation
can be performed analytically only for a few special cases presented in section 3. However,
information about the spectrum and the localisation properties of M can still be obtained
in the large system limit; we use the cavity method [37] for this purpose. This method
links M to the inverse covariance matrix of a Gaussian distribution, and therefore requires
the symmetrised form of the master operator

Ms = P−1/2
eq MP1/2

eq (7)

or in components M s
ij = r

1/2
i Mijr

−1/2
j , where we have introduced a diagonal matrix Peq

with (Peq)ii = peq
i ∝ r−1

i . This transformation preserves the eigenvalue spectrum of M,
implying that the associated eigenvalues are real, as Ms is real and symmetric. We note
that the diagonal elements of M remain unchanged: (Ms)ii = (M)ii. The eigenvectors vα

of Ms are given by vα = P
−1/2
eq uα = P

1/2
eq wα. Physically, the symmetry of Ms means that

the dynamics we are considering obeys detailed balance with respect to the Boltzmann
steady state.

Our study aims to predict the statistics of the eigenvalues and eigenvectors of Ms.
The first quantity of interest is the density of states (DOS), i.e. the fraction of eigenvalues
lying between λ and λ+ dλ, defined as ρ(λ)dλ with

ρ(λ) =
1

N

N−1∑

α=0

δ(λ− λα) (8)
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We average the DOS over random samples, finitely sized, and assume self-averaging in
the thermodynamic limit. The DOS is crucial as it defines the time scales {|λ−1

α |} of
the dynamics, or, more precisely, it gives the full spectra of relaxation rates {rα}. It is
essential to keep this in mind as, for consistency, we will present the results in terms of
the DOS throughout the paper, and occasionally remind the reader of the simple relation
rα = −λα.

The second key quantity that we are interested in is the degree of localisation of the
eigenstates, which carries information about their ability to contribute to the transport
properties of the system across the network: localised modes can only contribute to local
probability-flows. The rationale behind this is clear: assuming pi(0) = δij , then if the
vectors {uα,wα} are mostly localised, only a few terms in the sum on the r.h.s. of equa-
tion (5) give a significant contribution to the probability distribution p(t), which should
therefore spread only slowly over time away from the initial node j. In general, we expect
that the ability of the system to explore the configuration-space depends on the degree
of localisation of the eigenvectors of M. To quantify this we use the inverse participation
ratio (IPR) defined as

Iq(v) =

∑N
i=1 v

2q
i

(
∑N

i=1 v
2
i )
q
∼ N−tq (9)

where v = (v1, . . . , vN ) is an eigenstate; if v is normalised the denominator equals unity.
The exponent tq defines the scaling of Iq with N . We refer to [38] for a general introduction
to the IPR and related quantities. In what follows we concentrate on the standard IPR
with q = 2. We can distinguish two extreme situations: if the “mass” of the eigenstate
v is evenly spread over all the states of the system, namely each element vi is of order
1/
√
N , then the eigenstate is delocalised and I2(v) = O(1/N), t2 = 1. If instead only a

few elements of v differ from zero, the eigenstate is localised and I2(v) = O(1), t2 = 0.
Interestingly, the localisation properties of eigenstates defined on random regular graphs

(and random matrices) are studied also in the context of quantum many body systems
– with similar terminology and methodology – where they are linked to the problem of
ergodicity and equilibration dynamics [39, 40, 41].

A number of studies have looked instead at the localisation of the time-dependent
probability distribution of trap models on lattices. Particularly interesting is the 1D case,
which exhibits dynamical localisation where localisation properties differ between the ag-
ing regime and the final Boltzmann distribution [35]. Flegel and Sokolov analysed this
phenomenon using the spectral properties of the master operator [42]; they trace the
non-equilibrium value of the IPR during aging back to the eigenvector statistics, while
the eigenvalue statistics only make a minor contribution. Dynamical localisation is also
discussed in the context of statistical mechanics of trajectories [43], which represents an-
other interesting approach to describing the glass transition in terms of configuration-space
evolution.

The model we study, which is a Markov process on a random graph with Bouchaud
transition rates, is described by two main parameters: the temperature T and the mean
connectivity c. As depicted in figure 1, there are two obvious limits that can be considered:
the mean field (MF) c→∞ limit, where the network structure becomes trivial and only
the disorder in energy is present, i.e. there are “glassiness effects” only, and the T → ∞
limit, where the trap depths become irrelevant and the system effectively performs a
random walk (RW) among neighbouring traps. The point shown in the (1/c, 1/T ) plane
in figure 1 represents our model with finite connectivity, at finite temperature. This
general case can be thought of as a combination of the two limiting situations of mean
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field and random walk. In this work we illustrate how, for a system with finite c and T ,
quantities such as the DOS and the average IPR of eigenstates have attributes that arise
by a non-trivial combination of the corresponding MF and RW limits.
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Figure 1: Infinite temperature (x-axis) and infinite mean connectivity (y-axis) limits for
the Bouchaud trap model on a network. The point at (1/c, 1/T ) represents the general
case of finite connectivity and finite temperature. Note that we only consider graphs
with a giant connected component, which imposes a minimal value of c (e.g. c = 1 for
Erdös-Rényi graphs [12]) so that the horizontal axis has a finite range.

3 Ground state and limiting cases

3.1 Ground state: λ = 0

The eigenvector u0 represents the equilibrium probability distribution of the system, peq =
limt→∞ p(t). This is independent of the network structure and its statistics depend only on
the energy distribution ρE(E). One can assess the degree of localisation of the equilibrium
distribution via the IPR of either u0 or its symmetrised analogue v0. Explicitly, these are
proportional to

u0 = peq ∝ (eβE1 , . . . , eβEN ) v0 = ps
eq ∝ (eβE1/2, . . . , eβEN/2) (10)

The localisation of the ground state depends on whether the Boltzmann weights are con-
centrated on the deepest traps or not. Since the energies are randomly allocated to the
vertices of the network, its topology will not affect the IPR of the equilibrium distribution;
the distance in energy is the only relevant one here. From the definition of the IPR, we
get for the ground state of the symmetrised master operator

I2(v0) =

∑
i e

2βEi

(
∑

i e
βEi)2

∼ N
∫ Nβ

1 dττ1−T

(N
∫ Nβ

1 dττ−T )2
'





N−1 if T > 2

N−2+2/T if 1 < T < 2

N0 if T < 1

(11)

where the cutoff Nβ derives from the extreme value statistics of the distribution ρτ [44]:
the k largest waiting times of N samples τN+1−k < . . . < τN fall in the range [τN+1−k,∞),
therefore the fraction k/N is of the order of the area under ρτ over this range, which for
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k = 1 gives 1/N ' τ−TN = τ−Tmax. From (10), the result for the non-symmetrised version is
the same except for the replacement of T by T/2. We focus on the symmetrised case as this
is the most sensible from the random matrix perspective that we use. The symmetrised
eigenvectors are also the natural objects to appear in our cavity approach, which starts
from a (complex) Gaussian distribution and hence requires a symmetric covariance matrix
as input (see section 4 and references therein). While the symmetrised eigenvectors do
not describe the Markov process that obeys equation (2), away from the ground state the
symmetrisation is not expected to affect their localisation properties. In other words, a
localised/delocalised symmetrised eigenvector should stay localised/delocalised also in its
(either left or right) unsymmetrised form. We refer to appendix E for further discussion
and data showing that qualitative localization statistics for uα, wα and vα are the same
except in the small finite-size region of the crossover towards the ground state. We also
note that the IPR of the symmetric ground state coincides with the measure of ground
state localisation considered in previous works [45, 16, 43]. Finally, using symmetrised
eigenvectors to calculate the IPR has an additional benefit: the characteristic temperature
where the IPR ceases to be of O(1) coincides with the glass transition temperature that
is known from the dynamics. Indeed, according to equation (11), the ground state v0 is
localised below the glass transition TG = 1, delocalised for T > 2, and has an intermediate
behaviour for 1 < T < 2. Figure 2 shows the exponent t2(v0) of this prediction compared
with the average t̄2(v0) = 〈− ln I2(v0)/ lnN〉 of data taken from direct diagonalisations of
the symmetrised master operator (hereafter labelled “numerics” in the plots). Note that
in the limit N →∞ the IPR is of order unity for T < 1, and drops to zero above, so that
the intermediate temperature region (1 < T < 2) should also be regarded as delocalised.
In the localised regime, an infinite-N calculation shows that the O(1) value of the IPR
is given explicitly by I2(v0) = 1 − T for T < 1 [16, 45], dropping to zero at T = 1 in
agreement with our result.

0 1 2 3 4 5 6

T

0.0

0.5

1.0

t 2
(v

0
)

Theory
Numerics

Figure 2: Ground state exponent t2(v0) (black) predicted by (11), and numerical average
t̄2(v0) (dashed line) taken across M = 100 ground state realisations of size N = 1000.

3.2 Random walk limit: T →∞
In the infinite temperature limit the dynamics is only affected by the graph topology, i.e.
there are network effects only and the differences in energy depth among traps become
immaterial. In this case the master operator coincides with its symmetrised form, and it
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simplifies to

Mij =
cij
c
− δij (12)

where the first term on the right hand side is the off-diagonal contribution (because cii =
0). Given that M = c−1A − I is directly related to the adjacency matrix A, its DOS
can be deduced where that of A is known. For the case of a random regular graph, one
obtains the DOS for N →∞ as a shifted and scaled Kesten-McKay law [46]:

ρ(λ) =
c

2π

√
4
c− 1

c2
− (λ+ 1)2

/(
1− (λ+ 1)2

)
(13)

which can alternatively be derived using e.g. the cavity construction explained below. For
this graph ensemble all the eigenvectors are delocalised with high probability [47]. These
results are illustrated in figure 3-left.

The dynamics in this case has no glassy features, all local waiting times equal unity so
that jumps occur at a constant rate, and the average distance from the initial node grows
linearly with time. This is true because, at every jump, the particle has c − 1 outward
paths, and only one inward path pointing towards the starting node, thus the motion
effectively resembles a 1D biased random walk.

3.3 Mean field limit: c→∞
In the infinite c limit the master operator reduces to that of the mean field (fully connected)
case. There is no notion of space and only the distance in energy is relevant for the degree
of localisation of the eigenstates. For such a fully connected system of size N we have
(approximating c = N − 1 ≈ N , which is immaterial for N →∞)

Mij =
e−βEj

N
(1− δij)− e−βEj (1−

1

N
)δij (14)

The eigenvalue equation in this case reads

1

N

∑

j 6=i
e−βEjuα,j − e−βEi(1−

1

N
)uα,i = λαuα,i (15)

This can be written as

1

N

∑

j

e−βEjuα,j − e−βEiuα,i = λαuα,i (16)

and, as the first term is independent of i, one has

uα,i ∝ (λα + e−βEi)−1 (17)

Similarly, for the symmetrised case one obtains

vα,i ∝
e−βEi/2

λα + e−βEi
(18)

Note that for λα = 0 these expressions recover the equilibrium distribution (10) as they
should. The solution (17) is in agreement with [48] where the spectral properties of the
mean field trap model are discussed extensively. From (17, 18) we expect the IPR to be of
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order one for all λ 6= 0, for either their symmetrised or non-symmetrised forms. A simple
argument for this localisation result in mean field is presented in appendix A; we note
here only that the eigenvector entries decay as a power law with energy difference to the
“centre” of the eigenvector at e−βEi ≈ −λα (the “centre” has to be understood here as
defined on the energy axis). Returning to the eigenvalues, the condition for λα follows
from equations (16) and (17) as

∑

j

e−βEj

N(λα + e−βEj )
= 1 (19)

which implies that there is an eigenvalue in each interval (−τ−1
i ,−τ−1

i+1), assuming that

the energies are ordered so that Ei < Ei+1 (recall that τi = eβEi). Therefore in the large
N limit the DOS is given by

ρ(λ) =

∫
dτ ρτ (τ) δ(λ+

1

τ
) (20)

which gives
ρ(λ) = T (−λ)T−1 (21)

for −1 < λ < 0. These results are shown in figure 3-right. Note that the eigenvalue
condition (19) and the interleaving of eigenvalues between the (negative) inverse trap
lifetimes can also be seen from the fact that the mean field master operator (14) is a
diagonal matrix with a rank one perturbation [49], as all elements in each column are the
same except for those appearing on the diagonal.

Interestingly, all modes remain localised at any finite temperature, while glassiness
manifests itself only for T < 1, and even then only for the ground state. This circumstance
has to be attributed to the slow decay of the mass of MF eigenvectors away from their
localization centre, which does not impair the mobility of the particle. This agrees with
the intuition that, in the absence of spatial structure, the particle is always able to reach
any node of the network in finite time, as long as the average trapping time is finite, i.e.
for T > 1.

4 Finite connectivity and finite temperature

4.1 The cavity method

We now turn to the main contribution of our work: moving on from the two limiting
scenarios discussed above, we study the general case of finite connectivity and finite tem-
perature where the distance on the graph structure and separation between trap energies
are both relevant. We do this by means of the cavity method, exploiting the fact that
the random graphs we consider become locally treelike in the large N limit. The master
operator in this case has the general structure (7). In what follows we omit the index “s”
and consider the symmetrised master operator only. The DOS of the matrix M can be
written in terms of the resolvent G(λε) as

ρ(λ) = lim
ε→0

1

πN

N∑

i=1

ImGii(λε) (22)

where
G(λε) =

[
λεI−M

]−1
(23)
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Figure 3: Left: Infinite temperature limit for random regular graphs with mean connec-
tivity c = 3, 5, 7. Main plot: Average t̄2(vα) from direct diagonalisation, with averaging
performed both across M = 100 random graphs and within λ-bins centred on the sym-
bols. For the finite system size N = 1000 used, t̄2 is close to but has not yet reached its
asymptotic value 1. Inset: DOS for N →∞, given by equation (13) and plotted as density
of ln(−λ) to show the full range; the factor −λ appearing on the label of the y-axis is the
Jacobian of the transformation λ → ln(−λ). We recall that the quantity −λ represents
the relaxation rate of the system, so this plot can equivalently be read as the density of
ln(r), plotted against r on a logarithmic x-axis. Right: Analogous plot for the infinite
connectivity limit c→∞, where t̄2 ≈ 0 indicates localised eigenvectors, and the DOS is a
power law given by (21).

Here λε = λ− iε, with ε a small, positive quantity, while i is the imaginary unit; I indicates
the N × N identity matrix. To derive equation (22) one replaces the delta distributions
in (8) with Lorentzians of width ε and takes the limit ε → 0; this explains the origin of
the small imaginary term in λε. For a detailed description we refer to the original work
of Edward and Jones [50]. We define the complex Gaussian measure P (x) as

P (x) ∝ e− i
2
xTG−1x = e−

i
2

∑
i,j(λεδij−Mij)xixj (24)

with x = (x1, . . . , xN ). The diagonal entries of the resolvent are then given by the local
variances

Gjj = i

∫
dxj x

2
jP (xj) (25)

where P (xj) is the marginal distribution

P (xj) =

∫ ∏

k 6=j
dxk P (x) (26)

To make further progress we recall that the off-diagonal terms of the symmetrised

master operator are Mjk = cjkr
1/2
j r

1/2
k , while the diagonal terms are Mjj = −∑k ckjrj .

This gives

P (x) ∝ e− i
2

[λε
∑
j x

2
j−

∑
jk cjk(−rjx2j+r

1/2
j r

1/2
k xjxk)] (27)

Symmetrising rjx
2
j to (rjx

2
j + rkx

2
k)/2 allows the term in brackets in the last sum to be

written as a complete square. Equation (27) can be further simplified by the change of
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variables yj = xjr
1/2
j , which has the benefit of confining the disorder from the transition

rates rj to the local terms:

P (y) ∝ e− i
2

[λε
∑
j y

2
j /rj+

1
2

∑
jk cjk(yj−yk)2] =

∏

j

e−
i
2
λε

∑
j y

2
j /rj

∏

(jk)∈G

e−
i
2

(yj−yk)2 (28)

where the last product runs over all distinct edges of the graph G defined by the inter-trap
connectivity {cij}.

The core of the cavity approach is to decompose P (y) into the factors involving a given
node j, and the remaining factors. The latter define the cavity graph G(j), where node j
and all its connections have been removed from G, and a corresponding cavity distribution
denoted P (j)(·). This leads to the following equation for the marginal distribution P (yj):

P (yj) = e−
i
2
λεy2j /rj

∫
dy∂j e

− i
2

∑
k∈∂j(yj−yk)2 P (j)(y∂j) (29)

where P (j)(y∂j) denotes the (complex) probability distribution of the variables {yk} on
the nodes that are neighbours of j on the graph G. The cavity method is based on the
assumption that the joint distribution P (j)(y∂j) factorises on G(j) as

P (j)(y∂j) =
∏

k∈∂j
P (j)(yk) (30)

This is exact if the original graph G is a tree, because the cavity graph G(j) then consists of
disconnected branches. Sparse graphs do contain loops, but these have an average length
of order ln(N) [12]. Intuitively, as the total number of nodes in the k-th coordination shell
is ck, these will typically be distinct as long as ck � N . Conversely, different sub-trees
rooted in the neighbourhood of j can be connected to a common site, hence producing a
loop, if ck = O(N), or k = O(ln(N)). In the large N limit these graphs therefore become
locally treelike and the factorisation (30) will again become exact: conditional on a given
node, the branches rooted at that node become independent of each other. Equation (29)
then simplifies to

P (yj) = e
− i

2
λε

y2j
rj

∏

k∈∂j

∫
dyk e

− i
2

(yj−yk)2P (j)(yk) (31)

Similarly one can show for the marginals of the cavity distribution around node j

P (j)(yk) = e
− i

2
λε

y2k
rk

∏

l∈∂k\j

∫
dyl e

− i
2

(yl−yk)2P (k)(yl) (32)

where ∂k \ j indicates the neighbourhood of node k excluding node j. As all distributions
involved are zero mean Gaussians, also the marginals must be of this form, i.e.

P (j)(yk) =

√
ω

(j)
k

2π
e−

1
2
ω
(j)
k y2k P (yj) =

√
ωj
2π
e−

1
2
ωjy

2
j (33)

We follow statistical terminology and call the ω, which are inverse variances, precisions [51].
Their real part must be positive in order to preserve normalisability of the corresponding
Gaussians.
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In terms of the precisions and using r−1
j = τjc, equations (31), (32) become

ω
(j)
k = iλετkc+

∑

l∈∂k\j

iω
(k)
l

i + ω
(k)
l

ωj = iλετjc+
∑

k∈∂j

iω
(j)
k

i + ω
(j)
k

(34)

as derived in more detail in appendix B. The equations for the cavity precisions form

a closed set {ω(j)
k } that can be solved iteratively. Note that for an actual tree, no it-

eration is required as the equations can be solved recursively by working inwards from
the leaves. Once the cavity precisions are known, the marginal precisions {ωj} can be
deduced. Finally, from (25) and (34) one obtains the diagonal entries of the resolvent:

Gjj =
iτjc

ωj
(35)

The factor τjc = r−1
j arises here from the transformation from yj back to xj .

Given a specific realisation of the disorder, i.e. for a single instance of the matrix M,
we know the rates {ri} and the connections {cij}, therefore (34) can be solved iteratively
starting from a suitable initial condition. The eigenvalue spectrum of the system is finally
given by (35) and (22). We will refer to this procedure as the single instance cavity method.

In the large N limit (34-left) turns into a self-consistent equation for the distribution
p(ω) of the cavity precisions – here to keep the notation clean we drop the superscript
indicating the cavity graph. For the simplest case of a random regular graph this reads

p(ω) =

∫
dτ ρτ (τ)

c−1∏

l=1

dωl p(ωl) δ(ω − Ωc−1) (36)

where

Ωa = Ωa({ωl}, τ) = iλετc+

a∑

l=1

iωl
i + ωl

(37)

The intuition here is that because p(ω) is a distribution resulting from the solution of
the equations (34) for the cavity precisions, updating the precision on a randomly chosen
edge of the graph with the r.h.s. of (37) does not change the distribution. Technically, one
assumes here that the distribution of Gjj , and consequently p(ω), is self-averaging in the
limit N → ∞. In the case of a general random graph, the only change is an additional
average over the number of neighbours k of a randomly chosen edge, with the appropriate
probability weight kpk/c; see appendix B for details.

A numerical solution for p(ω) at any given λε can be obtained using a population
dynamics algorithm [52]. The basic idea is to represent the distribution p(ω) with a
population of Np cavity precisions P = (ω1, . . . , ωNp). One starts with a certain initial
condition and lets the population evolve according to the update rule given by the delta
function in (36). Once equilibrated, the histogram of P should give an approximation of
p(ω). In summary the algorithm works as explained in the following box:
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Population Dynamics Algorithm

1. Start with an initial (complex) population P = (ω1, . . . , ωNp).

2. Pick c− 1 random elements {ωl} from P and a sample τ from ρτ .

3. Replace a random element of the population with Ωc−1({ωl}, τ).

4. Repeat 2 and 3 until equilibration is reached.

Finally, we use (22) and (35) to write the DOS as an average over the distributions p(ω)
and ρτ

ρ(λ) = lim
ε→0

lim
N→∞

1

πN

N∑

i=1

ImGii(λε) = lim
ε→0

1

π
Re
〈 τc

Ωc({ωl}, τ)

〉
{ωl},τ

(38)

where the {ωl} are sampled from the population of cavity precisions converged to equilib-
rium.

We next discuss the relative merits of single instance cavity method versus population
dynamics, and the influence of ε. The single instance method allows us to find the spectrum
of (large) sparse symmetric matrices M, under the cavity approximation of factorisation
in each cavity graph. In terms of computational cost this method is in principle much
faster than direct diagonalisation because one only has to find the O(N) cavity precisions,
typically from a number of iterations of the cavity equations that does not grow with N .
However, one still has to store all the information on the disorder {τi, cij} and, as is true
generally with the cavity technique, one obtains little information about the eigenstates.
The calculation also has to be repeated across a suitably fine grid of λ-values in order to
find the spectrum.

In choosing the λ-grid, one has to bear in mind that the general approach replaces
the N delta-functions in (8) by Lorentzians of width ε, therefore ε is the “resolution” that
we have on the lambda axis. To catch all eigenvalues of a single instance, one therefore
requires a grid spacing in λ of order ε or smaller. Conversely, for a fixed λ-grid, ε has
to be chosen larger than the grid spacing, otherwise the chance of hitting all eigenvalues
becomes too low to obtain accurate results.

In practice, we always perform the cavity iterations themselves with ε = ε0 → 0
(specifically we set ε0 ∼ 10−300) so that the resulting cavity precisions are not affected by
the width of the Lorentzians. The required nonzero ε (� ε0) is then applied only in the
evaluation of the average (38), i.e. in the measurement step. This makes it easy to explore
the effect of changes in ε, without having to solve the cavity equations afresh. From (33,
34) one sees that using ε 6= ε0 to calculate the marginal precisions is equivalent to adding
ε− ε0 to the inverse variance of each xj . This provides a regularization for the case where
the variance calculated using ε0 is close to imaginary because the chosen λ has hit an
eigenvalue.

In contrast to the single instance approach, the population dynamics algorithm is
designed to give the DOS of infinitely large systems. There is no need to keep track of
the disorder because of self-averaging, and we only have to let the population equilibrate.
The eigenvalue spectrum becomes densely populated, typically showing a continuous part
referred to as the bulk. This means that we are always able to compute the DOS over this
region, even with ε0 ∼ 10−300. A common feature of (sparse) random matrices is that the
states covering the bulk are in fact delocalised (or extended), and localisation (Lifshitz )
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tails are present at the edges of the spectrum [53, 54, 29, 55]. The values of λ where
these localisation transitions occur are called mobility edges. Pure points, i.e. isolated
eigenvalues [56], do sometimes occur within the bulk of the spectrum, as is the case for
e.g. sparse adjacency matrices with varying node degrees [57]. In the following sections
we refer to the density of all the states of the system as the total DOS (tDOS), obtained
by the population dynamics algorithm with ε small but finite, and to the density of the
extended states only as the extended DOS (eDOS), obtained with ε effectively equal to
zero.

4.2 Total DOS via population dynamics

We next present the results for the total DOS of a trap model on a random regular graph
with connectivity c = 5. Figure 4-left shows the results obtained using the population
dynamics algorithm compared with data from direct diagonalisation of the master operator
for finite N (labelled “numerics”). The agreement across the entire λ range is clearly very
good. In figure 4-right we include the MF and RW-limits of the DOS for comparison;
recall that the quantity r = −λ represents the relaxation rate of the system, so the plots
showing −λρ(λ) vs −λ can equivalently be read as the density of ln(r), plotted against r
on a logarithmic x-axis. We observe that the small |λ| tails (the slow modes governing the
long-time dynamics) follow the MF trend (blue dashed lines), showing the same power law
exponent asymptotically. Conversely, fast modes (large |λ|) show a non-linear DOS which
originates primarily from the Kesten-McKay law (RW limit). We note here that because
of the MF tail, one expects systems of finite size to have a spectral gap that scales with
N as in mean field [48], so the second largest eigenvalue should be bounded from above
by −τ−1

max ∼ −N−β; a detailed analysis of the N -scaling of the spectral gap, however, is
beyond the scope of the present work. Note that at the highest temperature T = 2.5,
the small |λ| tail of the DOS shows larger statistical uncertainties because of finite size
effects: in direct diagonalisation, finite-sized matrices only rarely have eigenvalues in this
region; similarly population dynamics sampling runs of finite length produce only a limited
number of samples contributing to the slow mode regime.

To understand the structure of the DOS in more qualitative terms, we can perform
a simple (high T ) analytical approximation: we take one cavity iteration at finite tem-
perature starting from the infinite temperature solution. This means that only the local
disorder is taken into account when computing the DOS, i.e. the central node receives
its messages from c neighbours belonging to an infinite temperature cavity network. A
similar idea, called the single defect approximation, has been used to explain localisation
phenomena arising from topological disorder in random lattices [55, 58]. In the large T
and N limits, where all nodes become equivalent, the cavity precision distribution p(ω)
becomes delta-peaked on the value ω̄ that solves (36), i.e.

ω̄ = Ωc−1({ω̄}, 1) (39)

The approximated total DOS is then evaluated as in (38)

ρA(λ) = lim
ε→0

1

π
Re
〈 τc

Ωc({ω̄}, τ)

〉
τ

(40)

The average can be performed analytically, as detailed in appendix C. Figure 5-left shows
the resulting first order approximation ρA(λ) against the DOS obtained by direct diago-
nalisation. One observes that the approximation is in remarkably good agreement with the
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Figure 4: Total DOS for mean connectivity c = 5 and temperatures T = 0.5, 1.5, 2.5.
Left: predictions from cavity method (population dynamics, evaluated using ε ∼ 10−4

and population size Np = 2500) compared to direct diagonalisation spectra (grey) for
networks of size N = 1000, with statistics taken across M = 104 graph samples. Right:
cavity predictions for total DOS compared with MF and RW limits, respectively given by
(13) and (21).

numerical data in the region of slow (MF-like) modes, though even in the RW-like regime
it is qualitatively correct. We can iterate the scheme to obtain higher order approxima-
tions: to the second order we perform two cavity iterations at finite temperature starting
from the infinite temperature solution, and so on. The second order approximation is then
given by

ρ2A(λ) = lim
ε→0

1

π
Re
〈 τc

Ωc({Ωc−1({ω̄}, τl)}, τ)

〉
{τl},τ

(41)

This average cannot be carried out analytically but is straightforward to perform by sam-
pling from the distribution of waiting times. Figure 5-right shows the first and second
order approximations on a linear scale. One gets a slightly better result with the second
order approximation ρ2A in the large |λ|-region, though not yet a quantitative match to
the full cavity predictions. In the small |λ| tail we find (not shown here) that there is
no significant difference between the first and second order approximations. As a final
remark, we note that an infinite order approximation would give the population dynamics
result: in this case, the infinite temperature solution ω̄ corresponds to a particular ini-
tial condition for P, which is lost after a large number of iterations of the approximation
scheme.

4.3 Extended DOS and IPR

As explained above, we can measure the extended DOS (only) by evaluating the cavity
predictions in the limit ε→ 0 as it is this part of the spectrum that becomes continuous in
the thermodynamic limit. Comparing the extended and total DOS then allows us to locate
the mobility edges of the system. Figure 6-left shows the total DOS and the extended DOS
on a linear scale, with an inset zooming in on the localisation transition occurring on the
right end of the spectrum. Figure 6-right displays the same plot with a logarithmic y-axis,
where we have included evaluations of the total DOS for different ε values. This allows one
to estimate the left end of the spectrum from the point on the λ-axis where the total DOS
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Figure 5: Total DOS for mean connectivity c = 5 and temperatures T = 0.5, 1.5, 2.5. Left:
first order approximation compared to spectra from direct diagonalisation (grey, statistics
from M = 104 system samples of size N = 1000). Right: population dynamics prediction
(green), first order (black) and second order (dashed) approximations for T = 1.5. All the
evaluations have been performed using ε ∼ 10−4 and a population of size Np = 2500.

ceases to be ε-independent. Note that on approaching the mobility edges, the convergence
of the population dynamics to its steady state becomes very slow. The peaks in the
extended DOS that are visible in the inset of figure 6-left are caused by this and should
accordingly be ignored as unphysical. While it is not surprising to find localisation tails
at the edges of the spectrum, at least from a random matrix perspective, it is remarkable
that the appearance of mobility edges arises directly from the combination of two limiting
cases with exclusively extended (RW) and localised (MF) eigenvectors, respectively. We
can already argue that the fastest and slowest processes are governed by localised modes,
with an intermediate regime where all modes are delocalised. Since we are interested in
the long time dynamics, our attention will be focused on the bulk of extended states and
on the slow (MF) localised modes only; we will also show that the fraction of fast localised
states is relatively small compared to that of slow modes. As we will see, the mobility edge
occurring on the slow end of the spectrum (of eigenvalues, or similarly relaxation rates)
allows one to identify three different regimes in the time domain.

The localisation transition described above is associated with a change in the distri-
bution p(ω): the population of cavity precisions converges to a steady state which has
complex support for λ in the bulk of the spectrum, and purely imaginary support out-
side. This transition can be detected by considering the average real part of the cavity
precisions, which is shown in figure 7-left: as these precisions must have non-negative real
part, the vanishing of the average real part means all real parts are zero. “Zero” is to
be interpreted here as of order ε0, the value of ε used in the population dynamics; our
ε0 ∼ 10−300 is indistinguishable from zero even on the logarithmic scale of figure 7-left.
The figure shows the average real part of the cavity precisions and the total/extended
DOS as a function of λ. As claimed above, the average real part is nonzero in the bulk
of the spectrum, goes to zero exactly where the extended DOS does, and then vanishes
within the localised spectrum. The approach of the average real part to zero is continuous
(see inset), indicating that the transition in the structure of the distribution of cavity
precisions is likewise continuous.
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Figure 6: Left: total DOS (green, tDOS) and extended DOS (black, eDOS) for connectivity
c = 5 and temperature T = 1.5. Inset: zoom on the localisation transition occurring on
the right edge of the spectrum; the mobility edge lies at λc ' −0.04. The evaluations
have been performed using a population of size Np = 2500. The noisy peaks in eDOS are
due to the slow convergence of the algorithm at the localisation transition and should be
ignored as unphysical. Right: same plot with a logarithmic y-scale, including total DOS
evaluations with two different ε values.

Note that having imaginary cavity precisions amounts to having real diagonal entries of
the resolvent (via eq. (35)), which in the context of field theory and Anderson localisation
are related to the so called self-energies. Similarly to what we have outlined above, the state
of an electron in a disordered medium is classified as localised or delocalised depending on
whether the electron’s self-energy is real or complex [59].

We complement the above results by measuring the average degree of localisation of the
eigenvectors. For N → ∞ one cannot access the IPR of individual eigenvectors. Instead
one can consider the average IPR in a small range ε around λ and then take ε to zero:

Ī2(λ) = lim
ε→0

lim
N→∞

1

Nρ(λ)

N−1∑

α=0

δε(λ− λα)I2(vα) (42)

where δε(x) = ε/[π(x2+ε2)] is a Lorentzian of width ε and ρ(λ) is assumed to be calculated
similarly, using δε(x) instead of δ(x) in the definition (8). The order of the limits in the
definition ensures self-averaging because the number of λα that contribute, which is of
order Nε, becomes large.

Swapping the two limits, i.e. assuming that at any given λ at most one eigenvector
contributes to the average IPR, one can relate Ī2(λ) to the squared modulus |Gjj(λ)|2 of
the resolvent entries. Bollé et al. obtained from this a formula that allows the IPR to be
evaluated within population dynamics [29], and used this to study localisation transitions
in Laplacian and Levy matrices. In our notation their expression reads

Ī2(λ) = lim
ε→0

ε

πρ(λ)

〈∣∣∣ τc

Ωc({ωl}, τ)

∣∣∣
2〉
{ωl},τ

(43)

which can be rewritten more explicitly as

Ī2(λ) = lim
ε→0

〈 ε

(ε+Ar)2 + (λ+Ai)2

〉/〈 ε+Ar

(ε+Ar)2 + (λ+Ai)2

〉
(44)

18



where, to keep the notation simple, we have used

A = Ar + iAi =
Ωc

τc
− iλε =

1

τc

c∑

l=1

iωl
i + ωl

(45)

with Ar and Ai respectively the real and imaginary part of A. If the cavity precisions
have zero/positive real part, then Ar is zero/positive accordingly. It follows from (44)
that Ī2(λ) = 1 in the localised part of the spectrum, where the distribution p(ω) has
purely imaginary support, and it is of order ε within the bulk, where the support of p(ω)
is complex. While we expect an average IPR of order unity, a value exactly equal to one
is implausible in our case. This can be seen from the large c-limit, where we must recover
the IPR of the MF eigenvectors (17), for which clearly Ī2 < 1 (see also figure 3-right). The
discrepancy indicates that the swapping of the limits ε→ 0 and N →∞ is not in general
justified. Nonetheless, (43) remains useful as a tool for differentiating between localised
and extended parts of a spectrum.

As an alternative to the treatment of Bollé et al, we suggest an approximation to the
IPR that is derived by taking N → ∞ at fixed ε, and therefore is suitable for use within
population dynamics based on (36). We leave the derivation to appendix D and only give
the result

Ī?2 (λ) = lim
ε→0

2ε

πρ(λ)
Var
[
Re
( τc

Ωc({ωl}, τ)

)]
{ωl},τ

(46)

where Var(·) indicates the variance. The order of limits (N → ∞ first, then ε → 0) used
ensures that there are always enough states within the λ-range of width ε where quantities
are measured. In this regard, our approach is opposite to that of Bollé et al, where the two
limits are inverted. Even so, we observe a very close agreement between the IPR estimates
(43) and (46), as shown in figure 14 – appendix D.

Figure 7-right shows the total DOS, the extended DOS, and the average IPR predicted
by (43). As explained above, in the localised region Ī2(λ) has a constant value of one,
even where the total DOS drops to the ε-value used in the measurement step of the pop-
ulation dynamics algorithm, i.e. outside of the support of the spectrum. The localisation
transitions, detected as the points on the λ-axis where the value of Ī2 changes from O(ε)
to O(1), occur where the extended DOS drops to O(ε0). This confirms what we have dis-
cussed before: in the thermodynamic limit the spectrum has a continuous part of extended
states, with localisation tails of pure point states occurring at the edges of the bulk.

4.4 Finite size effects

The advantage of the population dynamics approach is that it allows us to evaluate the
spectral properties of infinitely large systems at a relatively low computational cost. As
described above, the distribution p(ω) is approximated by a large population P of represen-
tative cavity precisions samples. This population converges to steady states that depend
on the value of λ, and it undergoes critical transitions at the mobility edges. The location
of these transitions turns out to have a non-negligible dependence on the population size
Np (see figure 8-left). Finite size effects in population dynamics algorithms have been
discussed in the context of the Moran model [60] and in the evaluation of large deviation
functions [61, 62]. In particular in [62] the authors show that in their case, systematic
errors in the algorithm decrease proportionally to the inverse of the population size. In
order to determine the actual position of the mobility edges occurring within our spectra
we assume that

|λL/R
∞ − λL/R

c (Np)| ∼ N−ap (47)
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Figure 7: Left: Average real part of the cavity precisions (red), extended DOS (black
dashed line) and total DOS (green) for connectivity c = 5 and temperature T = 1.5. In
the localised part of the spectrum, the cavity precisions have vanishing real part, i.e. are
purely imaginary. The inset shows a zoom on the left localisation transition on a linear
scale. The average real part of the precisions drops continuously to zero. Right: average
IPR Ī2(λ) (blue) predicted by (43), alongside extended DOS (black) and total DOS (green
dashed line). In the extended region of the spectrum the IPR scales with ε as expected.
The inset shows a zoom on the left localisation transition on a linear scale, where in
the localised region Ī2(λ) equals unity. The evaluations have been performed using a
population of size Np = 2500. For the total DOS and Ī2(λ) we have used ε ∼ 10−3; for
the extended DOS we have used ε0 ∼ 10−300.

where λ
L/R
c (Np) is the left/right mobility edge measured using a population of size Np,

and λ
L/R
∞ = limNp→∞ λ

L/R
c (Np). Accordingly, we gather data for different Np and then fit

them using
λL/R

c (Np) = c1 + c2N
−a
p (48)

where c1, c2 and the exponent a are determined by minimizing the least-squares deviation.

This then identifies, in particular, the extrapolated value λ
L/R
∞ = c1. As shown in figure

8-right, with the exponent a chosen in this way our data {(λL/R
c (Np), N−ap )} do lie on a

straight line to a good approximation as (48) assumes. This fitting method is applied to
determine the right and left mobility edges for different values of the temperature, with
mean connectivity c = 5. The exponent a is non-trivial in our case: it shows a monotonic
increase with inverse temperature and typically lies between 0 and 1 (see figure 10, top-
right), in contrast to the setting in [62] where a = 1. We conjecture that the T -dependence
of a is related to the fact that also the exponent of the distribution of waiting times ρτ (τ)
varies with T ; a more precise quantitative understanding of the value of a remains an open
problem, however. Figure 9-left shows the DOS with the extrapolated right λR

∞ and left
λL
∞ mobility edges (respectively on the left and right of the plot, because the x-axis shows
−λ), the RW-DOS and the power-law MF-DOS for the slow modes. We note that λR

∞ lies
at a point on the λ-axis where the full DOS is already MF-like. In facts, it seems natural
to describe the spectrum as composed of three main regions: the slowest modes possess
MF-like features as they are localised and power-law distributed. The fastest modes are
delocalised and exhibit a non-monotonic DOS that is closely related to the Kesten-McKay
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law for the RW limit. Finally, the intermediate region (green shaded area) has mixed
properties of the two limiting cases: here the eigenstates are delocalised (RW-like) but
show a power-law distribution (MF-like). We also observe that this intermediate region
becomes wider – the fraction of delocalised modes with a MF-like density of states increases
– as the temperature decreases (figure 9-right).

From the extrapolated position of the mobility edges in the eigenvalue spectrum we
can estimate the fraction of localised modes πtot in our system. This is given by the
integral of the total DOS over the λ-regions containing localised states, which in our case
lie at the edges of the spectrum. It is in fact simpler to evaluate πtot by working out the
complement, i.e. integrating over the bulk of the DOS:

πtot = 1−
∫ λR∞

λL∞

dλ ρ(λ) (49)

Here λL
∞ and λR

∞ are the left and right mobility edges of the system, extrapolated to
infinite population size as explained above.

We can similarly obtain the fraction of localised fast/slow modes by integrating over
the λ-region at the left/right end of the spectrum. Since we have Lorentzian tails of width
ε affecting the total DOS, the most accurate way of computing these fractions is to locate
the left end of the spectrum λL

end by exploiting the ε dependence of the total DOS (see
figure 6-right), then evaluating the fraction of localised fast modes as

πL =

∫ λL∞

λLend

dλ ρ(λ) (50)

The fraction of localised slow modes is finally given by πR = πtot−πL. Figure 10 shows the
fractions of localised modes (left) and the right mobility edge (bottom-right) as functions
of the temperature, for mean connectivity c = 5. We observe that as the temperature
decreases the localisation region on the right edge of the spectrum becomes narrower
while the fraction of slow localised modes in this increases. Overall, the total fraction
of localised eigenstates becomes larger as the temperature decreases. Nevertheless, even
at T = 0.5 – the lowest temperature considered here – the fraction of localised modes
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Figure 9: Left: total DOS (green solid line), extrapolated right and left mobility edges
(green dashed line), occurring respectively on the left and right sides of the plot, MF DOS
(power law, blue dashed line) and RW DOS (black solid line) for c = 5 and T = 1.5;
the RW DOS is evaluated via (13). The spectrum is composed of three main regions:
MF-localised (left), MF-extended (centre, green shaded area) and RW-extended (right).
Right: total DOS (solid lines) and extrapolated right mobility edges (dashed lines) for
c = 5 and T = 0.5 (blue), 1.5 (green), 2.5 (red). These spectra show the same qualitative
features discussed for the case of T = 1.5, but with the fraction of modes in the central
“mixed” (MF-extended) region increasing as T decreases. The evaluations of the total
DOS have been performed using ε ∼ 10−5 and a population of size Np = 2500.

only amounts to around 10% of the total DOS. The majority of these localised eigenstates
lie in the low |λ| tail, as can be seen from the fact that the quantities πR and πtot are
almost overlapping on the log scale shown in figure 10-left. Importantly for the long-time
dynamics, all the slowest modes in the system are localised, at least for the temperature
regime that we have considered here. The temperature trend for low T is consistent, at
the other end, with the T →∞ limit: here we obtain a RW spectrum with only extended
and no localised modes.

5 More disordered network topologies

So far we have focused on the case of random regular graph (RRG) connectivity, where
the network defining the possible paths among minima in the potential energy landscape
has a regular structure that becomes free of disorder in the thermodynamic limit. From
a topological perspective the absence of disorder might seem as unrealistic as, say, in the
n-dimensional hypercubic lattice or the complete graph with its mean field connectivity.
However, the RRG does introduce the essential features of sparse random networks, i.e.
it is “infinite dimensional” – the number of nodes grows exponentially with distance –
and it confines all dynamical transitions to a local environment. The RRG case is also
interesting as the localisation properties of the eigenvectors of the master operator are the
opposite of those in the mean-field Bouchaud model, where the connectivity is infinite and
all eigenmodes are power-law localised on the energy axis.

The question that we want to address in this section is whether the RRG case pos-
sesses all the relevant features of sparsely connected energy landscapes, at least in terms

22



0.5 1.0 1.5 2.0

1/T

10-4

10-3

10-2

10-1
Lo

ca
lis

ed
 s

ta
te

s
πtot

πR
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temperature; note that the two curves almost overlap. Right: exponent a (top) and
right mobility edge (bottom) extrapolated from the least squares fit (see equation (48)),
plotted against inverse temperature. These evaluations have been performed with mean
connectivity c = 5.

of the spectral properties discussed so far, or whether more disordered network topologies
add new features (see e.g. [63]). We therefore extend our analysis to Erdös-Rényi (ER)
and scale-free (SF) graph structures, which have been widely studied in other contexts
[12, 64]. They both have finite average degree c but are paradigmatic as graph ensem-
bles with finite (ER) and infinite (SF) degree variance, respectively. Further motivation
comes from the fact that numerical studies on a relatively small number of Lennard-Jones
interacting atoms have suggested a configuration-space connectivity of the scale-free type
[24], which is also the network topology assumed by Baronchelli et al [23] as discussed in
the introduction. The SF case may therefore represent the best candidate for modelling
configuration space connectivity, though we stress that our approach is flexible and can
be applied to any network topology without short loops.

Looking at the random walk (RW) and mean-field (MF) limits, we note first that
in the former case there is no simple closed form expression for the DOS, analogous to
(13) for regular graphs, on complex network structures: we will have to obtain results by
population dynamics instead for the T →∞ limit. The limit c→∞, on the other hand,
effectively brings us back to the fully connected case so our previous results and discussion
for the MF limit still apply.

Erdös-Rényi graphs [65] of size N are constructed by assigning an edge between any
pair of vertices with probability p, so the average number of edges in the network is
N(N − 1)p/2 and we need (N − 1)p to be finite to ensure that the resulting graphs
are sparse. The probability that a given node has k neighbours then follows a binomial
distribution, which in the large N limit approaches a Poisson distribution with parameter
c = (N − 1)p. We therefore apply our cavity method assuming pk = e−cck/k!, with
〈k〉 = Var(k) = c. Since the Poisson distribution is strongly peaked around c, the local
environment of these graphs is typically subject to weak fluctuations, and the overall
structure is not far from that of random regular graphs. In the following we will assume
c = 5, which ensures that the fraction of nodes in the giant cluster is approximately
equal to one, ignoring the effects of very small disconnected components on the spectral
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properties of the whole system. The population dynamics algorithm applies as explained
in section 4, with the only difference that at each update we pick k− 1 elements from the
population of cavity marginals with probability pkk/c; see appendix B for further details.

The spectral features of the ER ensemble with c = 5 and T = 1.5 are shown in figure
11-left. The total DOS is displayed for evaluations involving two different values of ε,
whose effect is visible on the left of the plot. The total DOS of the RW limit would have
the same ε tail for small |λ| but we do not show this region as the RW DOS becomes too
small to estimate reliably there. Similarly to the case of random regular graphs, the DOS
is composed of three main parts: a mean field power-law tail occurs at the slow end of the
spectrum, covering localised (left) and delocalised (centre) modes, while the distribution
of fast modes (right) is non-monotonic and follows closely the DOS of the corresponding
RW limit. In contrast to the RRG case, the connectivity disorder alone is enough to
induce localisation transitions within the spectrum; the mobility edges are extrapolated
by the least squares fit discussed in the previous section, and they are marked by the green
(T = 1.5) and red (T → ∞) dashed lines in the plot. We observe that the area under
the total DOS of MF localised modes at T = 1.5 is much larger than that corresponding
to the RW case. This means that the intrinsic localisation attributes of ER graphs are
sub-dominant with respect to the effects introduced by energy disorder, which become
stronger when the temperature is lowered.
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Figure 11: Left: spectral attributes for Erdös-Rényi networks. Total DOS (green solid
lines) and extrapolated mobility edges (green dashed lines) for c = 5 and T = 1.5, with
the corresponding MF DOS (power law, blue dashed line), RW DOS (black solid line) and
extrapolated RW mobility edges (red dashed lines). The spectrum is composed of three
main regions: MF-localised (left), MF-extended (centre, green shaded area) and RW-like
(right). Right: analogous plot for scale-free networks with system parameters γ = 2.5
(implying c ' 4.53), and T = 1.5. The same colour scheme of the left-hand plot applies.
Both plots have −λ on the x-axis, making the right mobility edges appear on the left side
of the pots (and vice-versa for the left mobility edges). The quantities tDOS, RW eDOS
and RW tDOS in both plots have been computed using a population of size Np = 2500.

The last class of networks that we address in this work is the scale-free type. In the
form originally proposed [66], these networks are constructed via preferential attachment:
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starting with a dimer of two nodes linked together, one connects a new node to the existing
ones with a probability that is proportional to the number of links that they already have,
repeating the process until the network has the desired size. More generally SF networks
are characterised by a degree distribution pk that decays as k−γ . Here γ is typically in
the range 2 < γ < 3, implying that second and higher order moments diverge. This
motivates the appellative “scale-free” as, by contrast to Erdös-Rényi and random regular
graphs, the degree fluctuations are infinitely large and have no intrinsic scale. Defining a
SF graph ensemble by assigning equal probability to all networks with the given degree
distribution, one typically finds many hubs within the network, i.e. nodes with very high
degree, occurring at all (degree) scales. In order to minimise the number of disconnected
sub-graphs we introduce a lower bound on the range of degrees by imposing p0 = p1 = 0.
Also, in practice we cannot deal numerically with unbounded probability distributions, and
a cutoff KMAX has to be specified so that pk = 0 ∀ k > KMAX; we take KMAX = 1000.
The cutoff is entirely immaterial for the ER case, where for the Poisson degree distribution
with e.g. c = 5 one has pKMAX

∼ 51000/1000! ∼ 10−1869. Even for SF graphs, with γ = 2.5,
pKMAX

∼ 1000−2.5 ∼ 10−8 so the cutoff lies far in the tail of the distribution. It does make
all moments of the distribution finite, but still retains much larger degree fluctuations than
for random regular and ER graphs.

The results for the SF ensemble with γ = 2.5 and T = 1.5 are shown in figure 11-right,
using the same colour scheme as for the ER plot on the left and a population of 2500 cavity
precisions. A striking difference is that the spectrum is much broader than for the previous
cases, by at least one order of magnitude (scaling the rates by the average connectivity
is ineffective when the variance of degrees is large as here): a long tail of fast, localised
modes appears (at the left end of the spectrum, which on the plot is on the right as the
x-axis shows −λ). Similarly to the case of ER graphs, the area under the total DOS of MF
localised modes at finite temperature (T = 1.5) is much larger than that corresponding to
the RW case, which demonstrates the strengthening of slow mode localisation when the
temperature is lowered. Overall, in spite of some differences in the details, the DOS for
SF networks has the same structure as for random regular and Erdös-Rényi graphs, with
a tail of slow modes following the mean field statistics, a mixed region where the DOS is
MF-like but eigenstates are delocalised, and a remaining part of the spectrum that is non-
monotonic and closely related to the associated RW case. By lowering the temperature
we induce a shift in the DOS towards slower modes, the range of MF-RW mixed modes
becomes wider, and the fraction of slow localised modes increases.

6 Conclusions and future perspectives

In this paper we have considered the problem of walks on the potential energy landscape
as described by the trap model of Bouchaud and others, extending previous analyses to
the case of sparse inter-trap connectivity. In this scenario there are two different sources
of disorder: one is associated with the topology defining the connectivity among minima,
and the other one is given by the different energy depth of the traps. Accordingly there are
two important notions of distance: the distance on the graph structure and the distance
on the energy axis. The sparse structure of the master operator M makes the problem
impossible to solve with analytical tools, and we then approached it by means of the cavity
method, which in the thermodynamic limit leads to a population dynamics algorithm. This
allowed us to evaluate the eigenvalue spectrum of M, and the localisation properties of
the associated eigenstates (the modes of the dynamics), which are key to understanding

25



the dynamical behaviour of the model.
We first discussed the spectral properties of the ground state, i.e. the equilibrium dis-

tribution, focussing on how the IPR scales with system size for different temperatures;
these results are independent of network structure because the transition rates obey de-
tailed balance. In the bulk of the paper we considered the case of random networks with
regular connectivity, where the key system parameters are the temperature T and the
mean connectivity c. We discussed the limiting situation of infinite temperature, where
the dynamics is a random walk (RW) and only the distance on the graph structure mat-
ters. Here the density of states (DOS) is given by a shifted and scaled Kesten-McKay law,
and all eigenmodes are delocalised. In the opposite mean-field (MF) limit c→∞, where
traps are distinguished only by their energy depth, the eigenstates are localised and the
DOS follows a power law with a T -dependent exponent. We found that these features
are combined in the general case of finite connectivity and finite temperature where both
notions of distance are relevant: a MF-like tail of slow localised modes (governing the
long time dynamics) appears, while fast modes follow the RW case, being delocalised and
showing a non-monotonic DOS related to the Kesten-McKay law. Localisation transitions
appear within the spectrum at the changeover between these two behaviours; they corre-
spond to continuous transitions in the nature of the support of p(ω), the distribution of
cavity precisions that is the key quantity within the population dynamics algorithm. The
location of these transitions is affected by population size, and we extrapolated them to
the infinite population limit using a simple power law form. This revealed a surprise: the
combination of RW and MF features give rise to a mixed region separating the fast modes
from the slow modes, where the DOS has a MF shape but eigenstates are nonetheless
delocalised.

The shape of the DOS, and particularly the power law MF-like tail of slow modes, are
well captured by a simple “high temperature” approximation scheme. At first order, one
cavity iteration (involving disorder) is performed starting from the infinite temperature
solution found on the cavity graph (where, in the case of RRG, disorder is absent). This
is similar to the “single defect approximation” [55]: the central vertex is the only source
of randomness and this allows one to find an analytical solution for the DOS.

We observed the same overall structure in the spectra for more disordered network
topologies, specifically Erdös-Rényi and scale-free graphs, though with some changes in
the details particularly for the fastest modes. The broader degree distributions of these
networks are sufficient to induce localisation transitions even for infinite temperature, i.e.
without any effects from the trap depths. However, the fraction of slow localised modes is
greatly enhanced at finite temperature, where the corresponding DOS has a power-law MF
shape. The latter feature arises in every graph ensemble considered here. Bearing in mind
that the spectrum of relaxation times is simply given by the collection of inverse eigenvalues
{1/|λα|}, the ultimate long time dynamics should then always be of mean field kind. This
asymptotic independence from the network structure is in fact consistent with the way the
trap model was originally designed, namely to describe dynamics in configuration-space on
a very long time scale where deep minima are effectively fully connected by paths passing
through shallow traps. The presence of a region in the spectrum with mixed MF and RW
properties suggests the existence of an intermediate time scale during which the dynamics
should exhibit features of both the short-time random walk behaviour, which is network
dependent, and the long time mean field evolution. How this distinction based on the
spectral analysis can be quantified in the time domain remains an open problem and will
have to be addressed in future.
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More generally, the lack of detailed information about the eigenvectors remains the
major limitation of our approach, as it impedes a direct evaluation and classification
of the ageing dynamics. Nevertheless, we believe that there is scope here for significant
improvement and we hope that this work stimulates further investigations in this direction.
In particular, these should include exploring the time domain and trying to characterise the
three different regimes that we have highlighted above. This can be done e.g. by looking
at the time-dependent probability of return to a given trap, which can be expressed as the
Laplace transform of the local density of states (i.e. the contribution to the total DOS from
a local node with a given trap depth). The local DOS will typically be peaked around the
value of −λ that corresponds to the initial decay of the return probability, and this would
allow one to focus on a single one of the three distinct regions that we have identified in
the spectrum. Alongside the return probability, other time dependent quantities, such as
the mean number of distinct nodes visited within some time t, will help to characterise
the (non-equilibrium) dynamics and identify the system’s time scales. This question can
be tackled with the techniques of [67], accompanied by numerical simulations of random
walks on trapping networks to assess finite size and pre-asymptotic (short t) effects.

Future work should aim also to elucidate the link between the dynamics and the lo-
calisation properties of glassy dynamics on networks. Insights might come from a closer
look at the structure of the eigenvectors. The IPR carries no information on the spatial
distribution of the eigenvector components, nor is it able to distinguish between exponen-
tial or non-exponential localisation, either in energy or on the graph structure. For this
reason it is not clear from our results how the two sources of randomness influence the
localisation strength of, say, the localised eigenstates governing the long time dynamics.
The region of the spectrum that we have characterised as “MF-localised” might exhibit
eigenvectors that are e.g. exponentially localised within small areas of the network, rather
than covering all the nodes through a power law decay with difference in trap energy (as
happens for mean field connectivity). Then, for waiting times in the range of the slow
localised modes (which will be the typical case at low temperature), when the system
escapes from a deep trap all delocalised modes will have decayed and the motion will
remain confined to the neighbourhood of the initial node, in contrast to MF dynamics.
Similarly, in the “mixed” region of the spectrum the delocalised eigenvectors might have
non-trivial spatial structure; one might conjecture that they should be concentrated onto
an extensive number of clusters of nodes, interpolating between the localised slow modes
and the delocalised fast ones. Overall, therefore, more detailed information on the distri-
bution of the entries of the slow eigenvectors and their spatial correlations should allow
a better understanding of the asymptotic dynamics. The former quantity can easily be
obtained numerically via e.g. the multifractality spectrum [38], while the latter could be
assessed with an analogue of the radial distribution function (or similar measures) from
liquid state theory [68]. To calculate them in the large system size limit, on the other
hand, as outputs from a population dynamics algorithm, remains a technical challenge.

Finally, we point out two possible extensions of the present work: given the evidence
for correlations between the depth and the number of neighbours of an energy minimum,
this would be a feature worth including within our model. Such a more general setting
should be amenable to an analysis similar to the one in this paper as we sketch briefly
in appendix B. In principle, correlations in the degree of neighbouring minima could
also be taken into account. The idea, supported by previous works on simulations of
L-J interacting atoms [24], is that deep minima in the potential energy landscape are
surrounded by many shallower ones, creating a hierarchical structure and thus inducing
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degree-degree and degree-energy correlations.
The second interesting model extension would be to consider alternative transition

mechanisms among minima, as considered e.g. by Barrat and Mézard [69, 70], who used
Glauber transition rates. These rates depend on the difference in energy between the
departure and arrival nodes, and as energy-decreasing transitions are always allowed one
can picture the situation on a fully-connected graph as an energy landscape made up
of steps rather than traps. Here the entropy of relaxation paths is key and leads to a
completely different phenomenology (see for example [71, 72, 73]), with ageing arising
from entropic rather than energetic barriers. On sparse graphs, on the other hand, even
Glauber dynamics will encounter energy barriers – consider a deep trap with only shallow
neighbours – and so a much richer and possibly more realistic dynamics should result.
Work towards analysing this case is in progress.
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A Localisation in mean field limit

We give here a qualitative argument why in the mean-field limit a generic eigenvector
associated with eigenvalue λ < 0 will be localised. We regard λ < 0 as fixed here and
take N → ∞, to stay well away from the groundstate. For finite N one would expect
a crossover to the localisation properties of the (delocalised, for T > 1) ground state as
λ→ 0.

The explicit form of the eigenvector components is given in (17). To estimate how
these components vary across nodes i, consider a typical realisation of the trap depths
{E1, E2, . . . , EN}, arranged in ascending order such that Ei < Ei+1. The inverse trapping
times τ−1

i = exp(−βEi), which determine the eigenvector components ui ∝ (λ + τ−1
i )−1

(we drop the eigenvector label α here), are then in descending order. The largest com-
ponent will occur at the node i with τ−1

i closest to |λ|; call this node j. The number
of inverse trapping times at other nodes that lie in an interval [τ−1

j , τ−1
i ] is typically

Nρτ−1(τ−1
j )(τ−1

i − τ−1
j ) where ρτ−1 denotes the distribution of inverse trapping times.

Abbreviating this density of states-factor as simply ρ, we can therefore write

j − i = Nρ(τ−1
i − τ−1

j ) (51)
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as a deterministic approximation for the values of the inverse trapping times around τ−1
j .

Now call SN and SD respectively the sum on the numerator and denominator in the
definition (9) of I2. Using that λ ≈ −τ−1

j , we have

SN =
∑

i

u4
i ∝

∑

i

(λ+ τ−1
i )−4 '

∑

i

(j − i
Nρ

)−4
(52)

The last sum can be approximated as twice the integral over the positive values of m = i−j

SN ' 2ρ4

∫ ∞

1
dm

1

(m/N)4
∝ ρ4N4 (53)

Similarly, for the sum in the denominator in I2 we get

SD '
(

2ρ2

∫ ∞

1
dm

1

(m/N)2

)2
∝ ρ4N4 (54)

Taking the ratio, it follows that I2 = O(1) for any eigenvector u with an eigenvalue
away from zero; this statement holds at any temperature. Note that the sums or integrals
defining SN and SD all converge at the upper end, i.e. have their mass concentrated around
small m = i− j. This justifies our initial approximation of focussing on inverse trapping
times close to τ−1

j . It also implies that the above argument for the IPR of the right
eigenvectors of the master operator applies equally to the eigenvectors of the symmetric

master operator: these differ only by factors of τ
−1/2
i , which vary weakly (by O(1/N))

across the relevant range where m = i− j is finite.

B The cavity method

In this appendix we illustrate how to derive the equations (34) relating the (cavity) pre-
cisions, starting from the cavity marginal probability distributions as expressed in (32),
i.e.

P (j)(yk) = e−
i
2
λεy2k/rj

∏

l∈∂k\j

∫
dyl e

− i
2

(yl−yk)2P (k)(yl) (55)

which is based on the factorisation (30). As depicted in figure 12, this assumption works
well if the graph lacks short loops, i.e. when it is locally treelike. Under this condition the
correlations between the variables y∂j belonging to different branches become negligible
when the common root is removed from the graph. Inserting the ansatz given in (33), i.e.

P (j)(yk) =

√
ω

(j)
k

2π
e−

1
2
ω
(j)
k y2k (56)

we obtain for the cavity marginals

P (j)(yk) ∝ e−
i
2
λεy2k/rk

∏

l∈∂k\j

∫
dyl e

− i
2

(yl−yk)2− 1
2
ω
(k)
l y2l (57)

Completing the square and integrating out yl one finds

P (j)(yk) ∝ e−
i
2
λεy2k/rk

∏

l∈∂k\j

e−
i
2
y2k−

1
2

(i+ω
(k)
l )−1y2k

(58)
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As by definition this must be proportional to exp(−ω(j)
k y2

k/2), it follows that

ω
(j)
k =

iλε
rk

+
∑

l∈∂k\j

iω
(k)
l

i + ω
(k)
l

(59)

which after replacing rk = (τkc)
−1 is the desired cavity equation. The calculation for the

marginal precisions {ωj} (see (34)) is exactly analogous. Note that the discussion so far
allows any kind of graph structure, i.e. it is independent of a specific choice for the degree
distribution pk, and it also allows correlations between degree and energies.

When going from the above considerations for a single finite-sized graph to the thermo-

dynamic limit, one assumes that the cavity precisions {ω(j)
k } are random variables taken

from some distribution p(ω). Equation (59) then turns into a self-consistent equation for
p(ω). For a general degree distribution pk and a joint distribution ρτ,k(τ, k) = ρτ |k(τ |k)pk
this reads

p(ω) =
∑

k

pkk

c

∫
dτ ρτ |k(τ |k)

k−1∏

l=1

dωl p(ωl) δ(ω − Ωk−1) (60)

where c is the average degree of the network, pkk/c is the probability that a randomly
chosen edge connects the root-node to a neighbour with degree k, and

Ωk−1 = Ωk−1({ωl}, τ) = iλετc+
k−1∑

l=1

iωl
i + ωl

(61)

Clearly (60) reduces to the result for random regular graphs (36) in the main text once
we impose that ρτ |k(τ |k) = ρτ (τ) and pk = δc,k. The population dynamics algorithm for
the general case (60) follows the same protocol as discussed in section 4, with the only
difference that, at each update, one has to pick k randomly with weight pkk/c, then draw
k − 1 elements from P and τ from ρτ |k(τ |k).

We conclude this appendix with a final remark: while the change of variable yi =

xir
1/2
i is not essential for single instance cavity evaluations, i.e. for fixed realisations of

the disorder, this step becomes necessary in going to the thermodynamic limit. This is
because otherwise correlations between cavity precisions on different branches of a cavity
graph would be created by the coupling to the local disorder, and therefore the assumption
of statistical independence between these cavity precisions would be violated.

j
k

j
k

Figure 12: Neighbourhood of site j on G (left) and on G(j) (right). The red cross indicates
that j is absent in G(j) and the branches become independent when the local structure is
treelike.
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C High T approximation

In this appendix we discuss the construction of the high T approximation for the DOS,
ρA(λ) (see (40)). As mentioned in section 4, we take one cavity iteration at finite T ,
starting from the infinite temperature solution. Consequently the cavity precisions are
evaluated without on-site disorder as the limit T →∞ gives τk = 1 for all k. Also, in the
thermodynamic limit the random regular graph structure becomes effectively a regular
tree, and the problem of finding the cavity precisions becomes free of disorder. Figure 13-
left shows a schematic representation of this procedure. In this non-disordered framework
the distribution p(ω) is then expected to be delta peaked on some value ω̄. We have

p(ω) = δ(ω − ω̄) =

∫
dτρτ (τ)

c−1∏

l=1

dωl p(ωl)δ(ω − (iλεc+
c−1∑

l=1

iωl
i + ωl

))

=

∫ c−1∏

l=1

dωl δ(ωl − ω̄)δ(ω − (iλεc+
c−1∑

l=1

iωl
i + ωl

))

= δ(ω − (iλεc+ (c− 1)
iω̄

i + ω̄
))

(62)

Thus ω̄ needs to satisfy

ω̄ = iλεc+ (c− 1)
iω̄

i + ω̄
(63)

and out of the two roots we need to pick the one with Re ω̄ ≥ 0, to which we also simply
refer as ω̄. We recall that the DOS in the thermodynamic limit is obtained by averaging
over the cavity precisions and waiting time distributions according to

ρ(λ) = lim
ε→0

1

π
Re
〈 τc

Ωc({ωl}, τ)

〉
{ωl},τ

(64)

The first order of our approximation scheme thus gives

ρA(λ) = lim
ε→0

1

π
Re
〈 τc

Ωc({ω̄}, τ)

〉
τ

(65)

where
〈 τc

Ωc({ω̄}, τ)

〉
τ

=

∫ ∞

1
dτ ρτ (τ)

τ

iλετ + iω̄
i+ω̄

=
T

iλε

∫ ∞

1
dτ

τ−T

τ + C(λε)

(66)

with C(λε) = ω̄/(λε(i + ω̄)). The integral over τ can be done directly giving a hypergeo-
metric function of T and C. Explicitly, one obtains

ρA(λ) = Re
[
2F1(1, T ; 1 + T | − C(λ))/iπλ

]
(67)

The second order approximation consists of two cavity steps at finite T – and simi-
larly the nth order approximation would have n cavity steps – starting from the infinite
temperature solution (see figure 13-right). The cavity precisions are evaluated with their
on-site disorder. As a result, the average giving the DOS contains the disorder of the
neighbouring environment {τk}, plus the local disorder of the central node τ :

ρ2A(λ) = lim
ε→0

1

π
Re
〈 τc

Ωc({Ωc−1({ω̄}, τk)}, τ)

〉
{τk},τ

(68)
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Similarly to (66) we have

〈 τc

Ωc({Ωc−1({ω̄}, τk)}, τ)

〉
{τk},τ

=

∫
dτ ρτ (τ)

c∏

k=1

dτk ρτ (τk)
τc

iλετc+
∑c

k=1
iΩc−1({ω̄},τk)

i+Ωc−1({ω̄},τk)

(69)

The results of numerical evaluation of ρ2A(λ) are discussed in section 4.
Since the equation for ω̄ is T -independent, the localisation transitions detected by this

approximation do not depend on temperature and they always lie at the ends of the RW-
limit spectrum, specifically for the RRG case we have λL/R = −(2c − 1)/c,−1/c (from
(13)). This is true for any finite iteration of the approximation scheme, as can be argued
inductively: the m-th iteration cavity precisions will be imaginary – indicating a localised
region of the spectrum – whenever they are evaluated using an imaginary (m − 1)-th
iteration solution, as long as the imaginary part in λε used for these evaluations is kept
small enough.

k
j j

k

ll

Figure 13: Left: schematic representation of the first order approximation: the sub-graph
in red (only a small portion is shown here, namely the nearest and next-nearest neighbours
of j), where disorder is absent, follows the infinite temperature solution. The “messages”
from the nearest neighbour nodes k feed into the central node through one cavity step
at finite T (blue arrows indicate an evaluation involving energy disorder). Right: at the
second order we take two finite T steps starting from the infinite temperature solution at
the next-nearest neighbours l.

D The inverse participation ratio I?2

In this appendix we explain how to derive the equation (46), which constitutes an alter-
native to the formula that Bollé et al proposed for estimating the average IPR [29]. We
start by expressing the diagonal resolvent entries in terms of the eigenvector components

Gjj(λε) =

N∑

α=1

v2
α,j

λ− iε+ λα
(70)

whose imaginary part reads

ImGjj(λε) =

N∑

α=1

ε

(λ− λα)2 + ε2
v2
α,j (71)

In order to simplify the notation we will omit the lambda argument in Gjj(λε) and ρ(λ)
where necessary. We also takeN as large but finite and assume that ρ(λ) is finite, too. This
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can be ensured by choosing ε small but such thatNε� 1: for any given λmany eigenvalues
then contribute to ρ(λ), which evaluates the DOS using Lorentzians δε(λ − λα) of width
ε. Since the statistics of the ImGjj are crucial in determining the value of important
quantities like the DOS, we consider the associated cumulant generating function F (q) =
ln〈exp(

∑
j qj ImGjj)〉, which can be expressed as

F (q) '
〈

ln
∏

α,j

〈
eqjεv

2/[(λ−λα)2+ε2]
〉
v

〉

{λα}

(72)

Here we have made two approximations. The first is to treat the vα,j for different α and
j as independent, thus ignoring normalisation and orthogonality constraints on the eigen-
vectors. This is plausible as the number of constraints is much smaller than the number of
variables vα,j , producing only weak correlations. To see this, note that there are O(Nρε)
eigenvectors contributing significantly to (71). These have O(N×Nρε) components, while
the number of orthonormality constraints between them is O(N2ρ2ε2) and so smaller by a
factor ε. The second approximation in (72) is that we are neglecting correlations between
eigenvalues and eigenvectors. This again seems plausible given that the eigenvalues λα
that contribute lie within a small range of O(ε) around λ where the statistics of the vα,j
should change little.

To evaluate F (q) it now remains to average over the λα. As the number of contributing
eigenvalues is O(Nρε) and hence large, small fluctuations of the eigenvalues around their
mean positions should be immaterial. We therefore approximate the λα as lying on a
linear grid with the relevant spacing (Nρ)−1, and in the same spirit replace the sum over
α by an integral, shifting its origin so that α = 0 designates the eigenvalue closest to λ.
Then (72) becomes

F (q) '
∑

j

∫
dα ln

〈
eqjεv

2/[(α/(Nρ))2+ε2]
〉
v

=
∑

j

∫
dα ln

〈
eβα(qj)v

2〉
v

(73)

where we have defined

βα(q) =
N2ρ2εq

α2 +N2ρ2ε2
(74)

Expanding in the qj now gives a conventional cumulant expansion

F (q) '
∑

j,n

∫
dα

βnα(qj)

n!
Knv2 (75)

where we denote by Knx the n-th cumulant of x. The remaining integral is
∫
dαβnα(q) = qnNρε−(n−1)cn (76)

where cn =
∫

dx(1/(1 + x2))n, so that

F (q) '
∑

j,n

qnj
n!
Nρε−(n−1)cnKnv2 (77)

Picking out the term of order qnj finally leads to the following correspondence between the

n-th cumulants of ImGjj and v2

KnImGjj ' Nρ(λ)ε−(n−1)cnKnv2 (78)
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We can now use the above general result to relate the second cumulant of v2 to the IPR:
from the definition (43) we have I2(λ) ' 〈v4〉/(N〈v2〉2), while generally K2

v2 = 〈v4〉−〈v2〉2.
Imposing the eigenvector normalization condition 〈v2〉 = 1/N we obtain

K2
v2 '

1

N2
(NI2(λ)− 1) (79)

When I2(λ) = O(1), i.e. in a localised part of the spectrum, the first term dominates for
large N and we obtain K2

v2 ' I2(λ)/N . Equation (78) evaluated at second order then
gives a formula for the IPR that is N -independent:

I2(λ) = lim
ε→0

lim
N→∞

2ε

πρ(λ)
Var
[
ImGjj

]
(80)

where we have noted explicitly the order of limits involved. In the large N -limit taken,
one expects I2 to be self-averaging and thus approach some value Ī?2 . Substituting (35)
into (80), in the infinite-N limit we finally obtain the IPR estimate (46) in the main text.

Figure 14-left shows the IPR estimated via (43) and (46) using different values of
ε, at temperature T = 1.5 and for average connectivity c = 5; the total and extended
DOS are also included. We observe that the IPR scales linearly with ε within the bulk
of the spectrum, which is as expected for (43). Our alternative estimate (46) is directly
applicable only within the localised part of the spectrum, but also turns out to be O(ε)
for extended states. In finite systems, the IPR for extended states is O(1/N). Intuitlvely,
one can therefore say that in the population dynamics algorithm, which assumes N →∞,
the “regulariser” ε effectively plays the role of the inverse system size, 1/N .

In the localised part of the spectrum, figure 14-left shows that both IPR estimates are
of order unity, though Ī2(λ) = 1 throughout for ε → 0 while Ī?2 (λ) remains below unity
as one would expect physically (an average IPR of one would require all eigenvectors to
be localised onto a single node, which is not even true in the mean-field limit). We note,
however, that Ī?2 (λ) can be written as

Ī?2 (λ) = lim
ε→0

2ε
〈x2〉 − 〈x〉2
〈x〉 (81)

where, using the notation of (44),

x =
ε+Ar

(ε+Ar)2 + (λ+Ai)2
(82)

The second (mean squared) term in (81) is irrelevant in the limit ε → 0, because 〈x〉 =
πρ(λ) is of order unity. In the localised part of the spectrum Ar = 0 so x simplifies to
x = ε/(ε2 + (λ+Ai)

2). Here, the remaining term

Ī?2 (λ) = lim
ε→0

2ε
〈x2〉
〈x〉 (83)

makes clear that the second moment of x must be O(1/ε) and hence significantly larger
than the squared mean. In fact, if the distribution of Ai approaches a smooth limit ρ(Ai)
for ε→ 0, then (for small ε)

〈x〉 = πρ(−λ), 〈x2〉 =
π

2ε
ρ(−λ) (84)
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because both are given by integrals that are sharply peaked at Ai = −λ. Finally (83) and
(84) give

Ī?2 (λ) = 1 (85)

This argument is confirmed by the data shown in figure 14-right: on the top we can clearly
see that the histogram of Ai is smooth everywhere, and in particular around the value of
−λ that dominates the computation. The plot at the bottom shows the convergence (green
points) of Ī?2 when epsilon decreases; here we have used the same data as in the plot for
ρ(Ai). The reason why the last few points (in black) drop to zero is that the amount of
data collected was enough to give a smooth histogram on a scale as small as 10−4, but not
less.

In conclusion, our estimate for the average IPR is expected to give a value of unity
in the localised region of the spectrum, in the limit ε → 0. Surprisingly this is the same
result given by the Bollé et al formula, even though the latter is based on the opposite
assumption of the estimate of the IPR being dominated by a single eigenvector.

Figure 14: Left: average IPR evaluated via (43) and (46) using different values of ε
(dark blue to light blue), extended DOS (black) and total DOS (green dashed line); Ī?2 (λ)
from (46) is averaged within λ-bins for clearer visualisation. In the extended region of
the spectrum the IPR scales with ε as expected. Top right: histogram of the Ai values
collected at λ ' −1.465 (in the localised region on the left side of the spectrum), note
that ρ(Ai) is smooth around Ai = −λ. Bottom right: Ī?2 (λ) against decreasing values of
ε. The green points converge to the limiting value of unity, the black points drop to zero
because the ε values used over there are too small to ensure proper averaging. Evaluations
were performed using a population of size Np = 2500, with temperature and connectivity
of T = 1.5 and c = 5, respectively.

E Numerical results for the IPR

In section 3 we discussed briefly the effect of the symmetrisation (7) on the localisation
properties of the eigenvectors, focussing particularly on the ground state. Recall that the
right, left and symmetrised eigenvectors, respectively uα, wα and vα, are related via Peq

as vα = P
−1/2
eq uα = P

1/2
eq wα, where (Peq)ii = peq

i ∝ τi = exp(βEi) and (Peq)ij = 0. In
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Figure 15: Scatterplots of IPR values of the symmetrised vα, right uα and left wα eigen-
vectors against r = −λ for the case of random regular graphs with system parameters
c = 5, and T = 1.5. The data have been collected across M = 2000 samples of size
N = 2000. The bottom-right plot shows the bin-wise average of the IPR values in the
scatterplots, together with the DOS.

the infinite temperature limit (RW) the symmetrisation is immaterial as Peq reduces to
the identity matrix, which implies vα = uα = wα. In appendix A we have discussed
the localisation in the mean field limit where the system has no spatial structure and the
IPR of symmetrised or non-symmetrised eigenvectors is dominated by the pole in −λ (see

equations (17, 18)); the factor τ
−1/2
i in the numerator of the symmetrised case does not

affect the value of the IPR qualitatively. Likewise, we generally expect that multiplying
element-wise the eigenvectors by a smooth function of the energy will not change the
qualitative behaviour of I2(λ). This idea is confirmed by the numerical results presented
in this appendix. Figure 15 shows the IPR of left, right and symmetrised eigenvectors
across the entire λ-range (except for the ground state λ = 0) for the case of random
regular graphs with mean connectivity c = 5 and temperature T = 1.5. We observe that
the different choices of eigenvectors have qualitatively the same localisation behaviour,
except in the range of small r = −λ, where there is a natural crossover to the ground state
value. We also observe that the IPR values in the scatterplots are mostly concentrated on
their bin-wise average (bottom-right). The latter also indicates that symmetric and right
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eigenvectors have almost overlapping values of I2. Figure 16 shows the average IPR of left,
right and symmetric eigenvectors across the λ-range, for different values of the system size
N , together with the DOS and the extrapolated mobility edge from population dynamics
(see section 4). The N -dependence is as expected: the average IPR scales as 1/N in
delocalised regions and it is of order 1 for localised regions. The scaling with 1/N is
illustrated by the horizontal lines in the right plot. These are separated by a factor of 2
on the y-axis corresponding to the change from N = 2000 to N = 4000. The separation
on the r-axis between the two regimes (localised and delocalised) is consistent with the
extrapolated mobility edge (see particularly the right plot), though the decrease of the
IPR towards values of order 1/N is slow in the delocalised regime near the mobility edge.
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Ī 2

(λ
)

DOS
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Figure 16: The plots show the DOS and the bin-wise average IPR of the left wα (left plot),
right uα (right plot) and symmetrised vα (black dashed line in the right plot) eigenvectors
for the case of random regular graphs with system parameters c = 5, and T = 0.5, and
system size N = 500, 1000, 2000, 4000. The vertical black line represents the extrapolated
mobility edge predicted from population dynamics (i.e. in the infinite system size limit),
with shaded areas covering the 68% and 95% confidence interval. The horizontal black
lines in the right plot show the decrease of the IPR by a factor of two when N is increased
from 2000 to 4000.
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