
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Lano, K. C., & Alfraihi, H. A. A. (2018). Technical Debt in Model Transformation Specifications. Lecture Notes in
Computer Science.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 27. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/e032d1b9-97a4-4a1e-a2eb-e70100263379


Technical debt in Model Transformation
specifications

K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf, H. Alfraihi

Dept. of Informatics, King’s College London
Email: { kevin.lano, hessa.alfraihi }@kcl.ac.uk

Dept. of Software Engineering
University of Isfahan, Iran

Email: { sh.rahimi, m.sharbaf }@eng.ui.ac.ir

Abstract. Model transformations (MT), as with any other software ar-
tifact, may contain quality flaws. Even if a transformation is functionally
correct, such flaws will impair maintenance activities such as enhance-
ment and porting. The concept of technical debt (TD) models the impact
of such flaws as a burden carried by the software which must either be
settled in a ‘lump sum’ to eradicate the flaw, or paid in the ongoing
additional costs of maintaining the software with the flaw. In this paper
we investigate the characteristics of technical debt in model transfor-
mations, analysing a range of MT cases in different MT languages, and
using measures of quality flaws or ‘bad smells’ for MT, adapted from
code measures.
Based on these measures we identify significant differences in the level
and kinds of technical debt in different MT languages, and we propose
ways in which TD can be reduced.

1 Introduction

This paper will investigate the issue of technical debt (TD) [14] in model trans-
formations (MT). Technical debt refers to the short and long-term impact of
software quality flaws such as duplicated code. The principal cost of TD is in-
curred when refactoring or other redesign is used to remove the TD from the
software, whilst the interest is paid in the additional cost due to the TD each
time the software is maintained.

The concept of TD was initially applied to code artifacts, but can also be
extended to analysis and design models [3].

In the MDE context, model transformations are a key software resource,
which enable MDE processes such as the production of software and documen-
tation from models, the synchronisation of models, and model comparison. Thus
the quality and maintainability of MT are likely to be important factors in the
successful use of MDE.

The high-level goal of our research is to quantify and characterise the nature
of technical debt in model transformations. We will adopt the goal-question-
metric (GQM) approach of [4] to decompose this goal into specific questions and
metrics. The goal leads to the following research questions:



RQ1: What is the prevalence (flaw density) of TD in MT cases?
RQ2: What are the most frequent forms of quality flaw in MT cases?
RQ3: Does the level and character of TD vary between MT languages and

between MT categories?
RQ4: Is there a difference between TD prevalence in MT languages and in

traditional programming languages?

The questions imply that a significant sample of transformations must be
surveyed, for a range of transformation languages and categories. We will use
published and machine-readable transformation cases, and public repositories
of transformations. Only cases where the complete code of the transformations
is available will be considered. We survey the ATL and QVT-R transformation
languages because these are the most widely-used MT languages by practition-
ers [5]. We also consider ETL and UML-RSDS, which are MT languages with
distinctive features (implicit invocation in ETL; no rule-rule dependencies in
UML-RSDS) whose impact on TD levels is of interest.

2 Metrics for technical debt

Following on from the research questions, we need to find concrete measures
which quantify the aspects (TD and categories of TD) which the questions refer
to. Measures of various ‘bad smells’ or quality flaws are typically used as metrics
of TD in code. However, these need adaptation when used for declarative or
hybrid MT specification languages: MT specifications define their effect in a less
procedural manner than code, they are usually more concise, and are structured
based upon rules and operations instead of upon classes and objects. Therefore
we define measures specific to MT specifications, adapting TD measures Exces-
sive Class Length, Excessive Method Length, Excessive Number of Parameters,
Duplicate Code, Cyclomatic Complexity, Coupling Between Objects, Too Many
Methods to the MT context.

Based on our experience of developing and maintaining MT specifications, we
considered that the following were the most significant factors in impeding the
understanding and maintenance of MT specifications: size; semantic complexity
(of expressions, rules and operations); complexity of relationships and depen-
dencies between rules/operations; redundancy. These impact the Analysability,
Changeability and Testability quality characteristics of software as defined in
the ISO/IEC 25010 quality model [8]. In practice they manifest as:

– Excessively large transformations, with many rules/operations and/or high
total length (MT size factor). Measured by ETS , ENR, ENO , defined below.

– Unclear rule precedence or execution order (MT rule dependency factor).
Measured by UEX .

– Excessively complex expressions (MT semantic complexity factor): ETS ,
ERS , EHS .

– Excessive rule or operation length (MT size factor): ERS , EHS .



– Excessive numbers of parameters/auxiliary variables for a rule, transforma-
tion or operation (MT semantic complexity factor): EPL.

– Duplicated expressions or code (MT redundancy factor): DC .

– Complex rule or code logic (MT semantic complexity factor): CC .

– Complex calling relations between rules, especially cyclic relations (self or
mutual recursion). Inheritance of rules/operations is also counted as a depen-
dency of the generalised rule/operation upon the specialised rules/operations
(MT rule dependency factor): CBR.

– Excessive numbers of rules/operations called from one rule or operation (MT
rule dependency factor): EFO .

The size of software artifacts is often measured in terms of lines of code
(LOC). We prefer to adopt a measure c(τ) of the semantic content of a model
transformation specification τ , based on the complexity of expressions/activities
in the transformation. Unlike LOC, this is independent of code formatting style
or white space. Each of ATL, ETL, QVT-R and UML-RSDS have similar ex-
pression languages based on OCL, and ATL, ETL and UML-RSDS have similar
activity languages. Therefore c(τ) can be defined consistently for all these lan-
guages. Table 1 summarises the semantic complexity measure c(e) for some OCL
expressions e. c(e) can be considered a count of the number of basic semantic
elements in a specification (identifiers plus composite expressions). We also in-
clude a token count measure t(e), which is used for clone detection. We will
investigate how LOC correlates with the c measure of size.

Expression e Complexity c(e) Token count t(e)

Numeric, boolean or 0 1
String value

Identifier iden 1 1
Basic expression obj .f c(obj ) + c(f ) + 1 t(obj ) + t(f ) + 1

Operation call e(p1, ..., pn) c(e) + 1 +Σic(pi) t(e) + n + 1 +Σi t(pi)

Unary expression op e 1 + c(e) 1 + t(e)
e→op() 4 + t(e)

Binary expression e1 op e2 c(e1) + c(e2) + 1 t(e1) + t(e2) + 1
e1→op(e2) t(e1) + t(e2) + 4

Ternary expression op(e1, e2, e3) c(e1) + c(e2) + c(e3) + 1 t(e1) + t(e2) + t(e3) + 5
if e1 then e2 t(e1) + t(e2) + t(e3) + 4
else e3 endif

Set{e1, ..., en} 1 +Σic(ei) 2 + n +Σi t(ei)
Sequence{e1, ..., en}

Table 1. OCL expression complexity measures

A similar measure can be given to activities (Table 2 shows the values for
UML-RSDS syntax, similar definitions can be given for the ATL and ETL state-
ment syntax).



Activity s Complexity c(s) Token count

return e 1 + c(e) 1 + t(e)

v := e c(v) + c(e) + 1 t(v) + t(e) + 1

s1; s2 c(s1) + c(s2) + 1 t(s1) + t(s2) + 1

Operation call e(p1, ..., pn) c(e) + 1 +Σic(pi) t(e) + n + 1 +Σi t(pi)

if e then s1 else s2 1 + c(e) + c(s1) + c(s2) 3 + t(e) + t(s1) + t(s2)

for v : e do s c(e) + c(s) + 1 3 + t(e) + t(v) + t(s)

while e do s c(e) + c(s) + 1 t(e) + t(s) + 2

break 1 1
continue 1 1

Table 2. Activity complexity measures

Using these measures, c(r) for a transformation rule r is taken as the sum
of the c measures of its parts (such as from, to and do clauses in ATL), likewise
for operation definitions. The semantic complexity c(τ) of a transformation is
taken as the sum of the complexities of its rules and operations. We also adopt
the metric of fan-out from [9], this is the number of different rules or operations
called from one rule or operation. This quantity has a direct impact on the
understandability of the calling rule/operation.

We also consider LOC measures of size because this is widely used for TD
estimation. We will evaluate flaw density both wrt LOC and complexity. Based
on [9], we adopt 50 LOC per rule/operation and 500 LOC per transformation as
size thresholds, for size measured by LOC. These thresholds apply to ATL, ETL
and QVT-R. For UML-RSDS we adopt limits based on expression complexity
(100 and 1000 respectively) since UML-RSDS specifications consist of graphical
use cases and class diagrams. These limits are based on our experience with
maintenance of UML-RSDS transformations. In future work we will evaluate
the validity of these limits using normalisation of encountered values [14].

Technical debt in MT developments will therefore be measured by identi-
fying the frequency of occurrence of the following specific ‘bad smells’ in MT
specifications:

ETS: Excessive transformation size (c(τ) > 1000, or length > 500 LOC)

ENR: Excessive number of rules (nrules > 10)

ENO: Excessive number of helpers/operations (nops > 10)

UEX: Excessive use of undefined execution orders/priorities between rules (>
10 undefined orderings)

ERS: Excessive rule size (c(r) > 100 or length greater than 50 LOC)

EHS: Excessive helper size (c(h) > 100 or length > 50 LOC)

EPL: Excessive parameter list (for transformation, rules, and helpers): > 10
parameters including auxiliary rule/operation variables

DC: Duplicate expressions/code (duplicate expressions or statements x with
token count t(x ) > 10)

CC: Cyclomatic complexity (of rule logic or of procedural code) (> 10)



CBR: Coupling between rules (number of rule/operation explicit or implicit
calling relations > nrules + nops, or any cyclic dependencies exist in the
rule/operation call graph).

EFO: Excessive fan-out of a rule/operation (> 5 different rules/operations
called from one rule/operation).

Number of tokens is used for detecting clones, because in this case value
expressions should be counted as contributing to the clone. The lower limit for
clone size is set to avoid trivial clones. It could be reduced, at the cost of increased
processing time. In [15] clones of any size are considered. In [7], a lower bound
of 50 tokens is used for code clone detection. We experimented with using 25
tokens as the threshold, but this led to many significant clones being ignored,
and we adopted 10 tokens for our analysis. Only identical clones are counted.

At present, we limit our scope to considering individual transformations,
rather than transformations in a system of inter-operating transformations. We
also do not consider problematic issues in the use of OCL [6] – OCL ‘smells’
such as the use of chained implies, ‘magic literals’, chained forAll quantifiers,
long chained navigations in expressions, and other constructions which impair
the comprehensibility of the specification.

3 Analysis and Results

The measures of TD are computed on the abstract syntax representations of
ATL, ETL, QVT-R and UML-RSDS specifications, according to the respective
metamodels of these languages. The languages have many similarities at this
level (eg., top-level rules in QVT-R correspond to non-lazy rules in ETL, non-
lazy non-called rules in ATL, and to use case constraints in UML-RSDS). Hence
the same general specification of measures can be applied to each language, with
some differences to account for the different language styles and semantics.

We present the results in Tables 3, 4, 5, 6, 7, 8. For ETS we show separately
the LOC measures rs of the transformation rules and os of the helper operations,
after their total. ENR is the number of rules in the case, ENO is the number
of operations. ERS is the number of rules with length over the threshold (50
LOC), likewise EHS for operations. EPL is the number of rules/operations with
more than 10 parameters, including local auxiliary variables. EFO is the number
of rules/operations which depend on more than 5 rules/operations. CC is the
number of rules/operations over the CC threshold (10). CBR is expressed as
CBR1(CBR2) where CBR1 is the total number of rule/operation dependencies,
and CBR2 is the number of rules/operations which occur in cycles of calling
dependencies. DC is the number of distinct cloned expressions (e with t(e) > 10)
in the case. Underlined measures in Tables 3, 6 identify where flaws occur.

3.1 ATL

For ATL we consider the cases of Table 3 from the ATL transformations zoo,
which is widely used in surveys of model transformations. The cases are chosen
as being typical of medium to large sized ATL transformations.



For ATL, UEX is n ∗ (n − 1)/2 where n is the number of concrete non-
lazy, non-called rules. For all of the ATL examples EPL and EFO are 0, so are
omitted. Where a transformation consists of several subtransformations, we list
these as (i), (ii) etc below the main transformation entry.

Transformation ETS (rs, os) ENR ENO ERS EHS CC CBR DC UEX

MOF to UML 935 (746, 189) 11 11 5 0 0 27(0) 7 55

KM3 to DOT 451 (251,200) 7 18 1 0 0 33(0) 4 21

MySQL to KM3 995 (571, 424) 20 28 1 0 1 62(4) 7 71

(i) XML2XML 101 (87, 14) 4 1 0 0 0 2(0) 2 6
(ii) XML2MySQL 281 (137,144) 5 10 0 0 0 22(2) 2 10
(iii) MySQL2KM3 613 (347,266) 11 17 1 0 1 38(2) 3 55

Excel Injector 395 (231,164) 11 10 0 0 0 38(0) 3 55

Excel Extractor 311 (251,60) 13 5 0 0 0 6(1) 2 66

(i) SpreadsheetML 263 (246,17) 12 1 0 0 0 1(0) 2 66
Simplified2XML
(ii) XML2ExcelText 48 (5,43) 1 4 0 0 0 5(1) 0 0

PetriNet to/from 1267 (799,468) 23 32 2 1 0 88(2) 8 47
PathExpression

(i) PetriNet2PathExp 70 (70,0) 3 0 0 0 0 0(0) 1 3
(ii) XML2PetriNet 228 (136,92) 5 8 0 0 0 22(0) 2 10
(iii) PetriNet2XML 222 (189,33) 5 3 1 0 0 12(0) 4 10
(iv) PathExp2PetriNet 104 (87,17) 3 1 0 0 0 5(0) 0 3
(v) TextualPathExp2PathExp 643 (317,326) 7 20 1 1 0 49(2) 1 21

Make to Ant 368 (242,126) 13 11 0 0 0 13(2) 2 31

(i) XML2Make 147 (73,74) 5 7 0 0 0 7(1) 0 10
(ii) Ant2XML 177 (164,13) 7 1 0 0 0 2(0) 2 21
(iii) XML2Text 44 (5,39) 1 3 0 0 0 4(1) 0 0

Maven to Ant 1307 (1139,168) 90 18 0 0 0 80(0) 7 1326

(i) XML2Maven 575 (472,103) 36 13 0 0 0 74(0) 3 630
(ii) Maven2Ant 360 (308,52) 30 4 0 0 0 4(0) 1 420
(iii) Ant2XML 372 (359,13) 24 1 0 0 0 2(0) 3 276

Table 3. Technical debt measures for ATL

Table 4 gives a summary of the technical debt of these cases. To compute the
number of flaws in a transformation, we count 1 for each of ETS , ENR, ENO ,
UEX , CBR1 over the thresholds, plus ERS + EHS + CC + EPL + EFO + DC
+ CBR2. For a transformation system, we sum the number of flaws in each of
its subtransformations. We use the transformation intent classifications of [12]
for MT categories. It is noticeable that the number of flaws per LOC is quite
similar across all of the cases, (the standard deviation is 0.0023).

It can be noted that the ratio of complexity to LOC is 1.71, reflecting the
relatively low semantic density of typical ATL specifications. The flaw rate per
semantic element is 0.00931 (number of flaws divided by complexity).



Transformation Category [12] LOC c(τ) % in rules # flaws flaws/LOC

MOF to UML Migration 935 1002 79.7% 17 0.018

KM3 to DOT Refinement 451 926 55.6% 8 0.017

MySQL to KM3 Abstraction 995 1726 57.3% 19 0.019

Excel Injector Migration 395 601 58.5% 6 0.015

Excel Extractor Migration 311 528 81% 5 0.016

Petri Net from/to Semantic map 1267 1645 63% 20 0.016

Make to Ant Migration 368 808 65.7% 5 0.013

Maven to Ant Migration 1307 3075 87% 16 0.012

Average 753.6 1288.9 70.2% 12 0.016
Table 4. Results summary for ATL

3.2 ETL

ETL has a similar rule and transformation structure to ATL, but with a more
general processing model and more complex semantics. For ETL we define UEX

as n∗(n−1)
2 where n is the number of concrete non-lazy rules. We identified ETL

cases to analyse from the Eclipse ETL repository (git.eclipse.org), and from other
published cases (github.com/epsilonlabs).

ETL has implicit invocation of rules by rules or operations, where the text of
the transformation does not contain an explicit reference to rules that may be
invoked due to equivalent/equivalents expressions. In calculating the call graph
and CBR metric, such implicit calls must be taken into account. In ETL, an
expression e.equivalent() may implicitly invoke any concrete lazy or non-lazy
rule which has an input variable v : T with T containing the actual value of e at
runtime. Thus the calling rule or operation implicitly depends upon all concrete
rules in the transformation, potentially leading to large values for fan-out and
call graph size. The abbreviated form v ::= e of v = e.equivalent() is considered
in the same manner. The detailed TD evaluations for ETL may be found at
nms.kcl.ac.uk/kevin.lano/icmt18.pdf.

Table 5 gives a summary of the technical debt of these cases. The same
computation of number of flaws is used as for ATL. It is noticeable that the
rate of flaws per LOC is higher than for ATL in general, and with a much wider
range of rates than for ATL (the s.d. is 0.06). This may be due to the wide
variety of styles supported by ETL, from the highly imperative transformations
of StateElimination, to the very implicit and declarative CopyOO . Using the F-
distribution test, there is a statistically-significant difference between the ETL
and ATL TD levels [17]. In the most complex cases, such as MDDTIF , three
forms of inter-rule/operation dependence are used simultaneously: inheritance,
explicit calls and implicit calls, leading to high values for CBR and EFO .

From Table 5 we have that complexity/LOC for ETL is 2.9, indicating a
greater semantic density in ETL specifications than for ATL. The rate of flaws
per semantic element is 0.024.



Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

Flowchart2HTML Code-generation 163 377 100% 2 0.012

CopyFlowchart Migration 57 153 100% 7 0.122

CopyOO Migration 110 438 100% 23 0.209

In2out Migration 19 53 100% 1 0.052

OO2DB Refinement 142 464 85.2% 6 0.042

RSS2ATOM Refinement 88 154 84% 6 0.068

Tree2Graph Refinement 15 37 100% 1 0.066

uml2xsd Migration 17 44 100% 1 0.058

MDDTIF Refinement 145 377 95.8% 26 0.179

Argouml2ecore Migration 96 321 79% 13 0.135

StateElimination Refactoring 313 1062 49.5% 7 0.022

TTC Live Case 2017 Refinement 206 573 79% 6 0.029

uml2Simulink Refinement 148 477 77% 11 0.074

Average 116.8 348.46 80.5% 8.46 0.072
Table 5. Results summary for ETL

3.3 QVT-R

For QVT-R transformations the CBR and UEX measures are of particular in-
terest, since QVT-R rules (termed ‘relations’) may be interdependent in several
different ways: a rule may refer to another in its when or where clause, and may
have a recursive dependency upon itself, and may override another rule. UEX is

taken as n∗(n−1)
2 where n is the number of concrete top-level rules in a transfor-

mation. A special feature of QVT-R is that relations may define a large number
of auxiliary variables to transfer data from one relation domain to another, or
to transfer data between relations. This may result in high EPL values even for
small transformations. This can cause problems in understanding the relations
because the meaning and role of each variable needs to be understood.

The OCL syntax used in QVT-R differs from that of the other MT languages.
We evaluate complexity directly on this syntax, rather than upon its standard
OCL translation. Thus an object specification e

obj : E1 { att = var, rel = obj2 : E2{} }

has c(e) = 11, versus 19 for its conventional OCL equivalent expression:

obj : E1 and obj .att = var and obj2 : E2 and obj .rel = obj2

We have selected published examples of QVT-R specifications from the Mod-
elMorf repository, from the QVT-R standard, and from published papers [13].
Table 6 gives the measures for the selected QVT-R cases.

Table 7 gives a summary of the technical debt of these cases. The same
computation of number of flaws is used as for ATL. There are 0.023 flaws/LOC
and 0.011 flaws per semantic element, figures intermediate between ATL and
ETL. There are 2.09 semantic elements/LOC, a density figure again intermediate
between ATL and ETL.



Transformation ETS (rs, os) ENR ENO ERS EHS EPL EFO CBR DC UEX

HierarchicalStateMachine2 85 (79, 6) 3 1 0 0 1 0 3(0) 0 3
FlatStateMachine

AbstractToConcrete 47 (47,0) 1 0 0 0 0 0 0(0) 0 0

ClassModelToClassModel 85 (85,0) 3 0 0 0 0 0 4(1) 0 1

DNF 396 (396,0) 9 0 4 0 4 0 10(4) 3 6

DNF bbox 263 (263,0) 5 0 4 0 5 0 4(0) 3 6

SeqToStm 104 (104,0) 4 0 0 0 1 0 4(0) 0 6

seqtostmct 149 (149,0) 5 0 0 0 0 0 6(3) 0 0

UmlToRdbms 238 (226,12) 7 1 1 0 1 0 10(3) 0 3

UmlToRel 98 (65,33) 2 2 0 0 0 0 3(0) 0 1

RelToCore 2038 (1937, 101) 50 5 11 0 13 5 141(7) 3 15

Bpmn2UseCase 522 (522,0) 23 0 0 0 0 0 12(0) 4 55

hsm2nhdm (recursion) 48 (48,0) 5 0 0 0 0 0 5(2) 0 3
Table 6. Technical debt measures for QVT-R

Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

HSM2FlatSM Abstraction 85 137 93% 1 0.011

AbstractToConcrete Refactoring 47 57 100% 0 0

ClassModelToClassModel Migration 85 85 100% 2 0.023

DNF Refactoring 396 665 100% 16 0.04

DNF bbox Refactoring 263 470 100% 12 0.045

SeqToStm Refinement 104 175 100% 1 0.009

seqtostmct Refinement 149 162 100% 4 0.027

UmlToRdbms Refinement 238 314 95% 6 0.025

UmlToRel Refinement 98 75 95% 0 0

RelToCore Refinement 2038 5415 95% 43 0.021

Bpmn2UseCase Migration 522 877 100% 7 0.013

hsm2nhdm (recursion) Abstraction 48 105 100% 2 0.041

Average 339.4 711.25 96% 7.83 0.023
Table 7. Results summary for QVT-R



3.4 UML-RSDS

For UML-RSDS transformations we consider three substantial case studies: two
parts of the UML2C code generator [11] and the class diagram modulariser cra
from [10]. A range of other examples are also included from nms.kcl.ac.uk/kevin.lano/
uml2web/zoo. In total there are 36 individual transformations and 10 transfor-
mation systems. The TD detailed measures for UML-RSDS are available at
nms.kcl.ac.uk/kevin.lano/icmt18.pdf.

Table 8 summarises the results for UML-RSDS. We estimated LOC by print-
ing the specification files and counting lines of operation and use case code,
omitting metamodel class, generalisation and association declarations.

Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

uml2Ca Code generation 874 1272 69% 22 0.025

uml2Cb Code generation 1576 5621 16% 119 0.075

cra Refactoring 490 1360 32% 12 0.024

f2p/p2f Bidirectional 58 158 86% 3 0.052

calc Analysis 15 83 100% 0 0

movies Analysis 156 432 40% 3 0.019

Monte-Carlo sim Analysis 51 90 68% 0 0

Nelson-Seigal Refinement 458 1219 67% 15 0.032

CDO Analysis 94 182 17% 2 0.02

PetriNet to SM Refactoring 66 174 100% 0 0

Average 383.8 1059.1 34.9% 17.6 0.0458
Table 8. Results summary for UML-RSDS

It can be noted that the c(τ) measure is around 2.76 times the LOC, a similar
level of semantic density to ETL.

An interesting aspect of the results is the balance of functionality between
helpers and rules. Excessive use of helpers produces transformations which are
akin to programs in a functional programming language. In the largest transfor-
mation (uml2Cb, cra) there is a considerable imbalance of functionality towards
helpers, whilst smaller transformations such as the Monte-Carlo simulator are
more balanced.

4 Discussion and Summary of Results

We consider the results for each language with respect to the research questions.
For ATL, for RQ1, all of the 19 individual transformations had flaws (100%),
and 8 of 8 transformation systems contained transformations with flaws (100%).
For RQ2, the most common flaws were DC (15/19), CBR – either CBR1 > 0 or
CBR2 > 0 – (13/19), UEX (10/19), ENR (7/19) and ENO (5/19).

A particular issue in ATL is the use of resolveTemp expressions in rules to
look up target model elements produced by another rule, during transformation



processing. This is considered a semantic complexity factor in [2] because it
introduces a syntactic and semantic dependency of the rule calling resolveTemp
upon the rule identified by the call. We include the rule-to-rule dependencies
induced by resolveTemp in the CBR measure.

For ETL, the critical factor in the considered transformations is the implicit
CBR due to usage of equivalent and related operators. For RQ1, 19 of the 24
individual transformations contained flaws (79%), and all of the 13 transforma-
tion systems contained transformations with flaws (100%). For RQ2 the most
common flaws were CBR (18/24), EFO (7/24) and DC and UEX (both 5/24).
Excessive size of rules/helpers or transformations was not a significant problem.

For QVT-R, for RQ1, out of 12 transformations, 10 had flaws (83%). For
RQ2, EPL and CBR both occur in 6 of 12 transformations, whilst DC and ERS
occur in 4. High values of EPL arise because of the use of many local variables
within QVT-R relations, to facilitate bidirectional use of the relations. CBR
flaws arise from the unstructured nature of QVT-R transformations in which
rules may be closely inter-dependent. In the largest transformation, relToCore,
there is informal stratification of the transformation into groups of rules, but
this could be clearer if the transformation were explicitly decomposed into client
and supplier sub-transformations.

For UML-RSDS, for RQ1, out of 36 transformations, 16 had some flaws
(44%), whilst 7 of 10 transformation systems contained some transformations
with flaws (70%). The uml2Cb case somewhat distorts the flaw density data:
without this case the flaws per LOC would be the same as for QVT-R.

For RQ2, excessive CBR occurs in 9 transformations. DC also occurs in 9
cases. ENO occurs in 7 cases. CC occurs in 6 cases. In all cases, the coupling is-
sues concern complex dependencies between helpers, rather than between rules.
The prevalence of CBR and ENO flaws suggest overuse of helpers/operations.
Poor structure and high numbers of flaws were apparent in the largest transfor-
mations.

ForRQ3, Table 9 summarises the different prevalence of TD types in different
MT languages, counting the number of individual transformations which have
flaws of each kind. Unusual patterns of TD are emphasised.

In summary, it seems that excessive CBR and DC are the most significant
design flaws which arise across all MT languages, although there are significant
variations in the kinds of TD problem between different languages. These find-
ings suggest that an important factor in understanding and maintaining model
transformations are the dependencies between rules/operations.

CBR could be reduced by the stratification and modularisation of transfor-
mations into smaller units. Currently MT languages offer such external compo-
sition [16] of transformations by the sequencing of individual transformations:
a facility heavily used in the UML-RSDS examples in particular. However it
seems what is needed is a modularisation mechanism to support a hierarchical
client-supplier relationship between transformations, with the internal details of
the supplier module independent of its clients. This would enable, for example,
a transformation mapping OCL expressions to be called as a ‘black box’ from



TD category ATL ETL QVT-R UML-RSDS Overall

CBR 13/19 18/24 6/12 9/36 46/91
DC 15/19 5/24 4/12 9/36 33/91
UEX 10/19 5/24 2/12 0/36 17/91
ENR 7/19 0/24 2/12 3/36 12/91
ENO 5/19 0/24 0/12 7/36 12/91
ERS 5/19 2/24 4/12 0/36 11/91

EFO 0/19 7/24 1/12 1/36 9/91
EPL 0/19 2/24 6/12 0/36 8/91
ETS 4/19 0/24 2/12 2/36 8/91
CC 1/19 0/24 0/12 6/36 7/91
EHS 1/19 2/24 0/12 1/36 4/91

Table 9. Technical debt prevalence in different MT languages

a transformation mapping UML activities. The combination of these two trans-
formation processes into uml2Cb is a significant factor in its high flaw count.

Table 10 shows the overall figures for LOC, c, and flaws, for each language.

Language LOC c c/LOC Flaws Flaws/LOC Flaws/c

ATL 6029 10311 1.71 96 0.016 0.009
ETL 1519 4530 2.98 110 0.072 0.024
QVT-R 4073 8535 2.09 94 0.023 0.011
UML-RSDS 3838 10591 2.76 176 0.046 0.017

Overall 15459 33967 2.19 476 0.031 0.014
Table 10. Overall size and TD results

The flaw density figures for ETL and UML-RSDS are higher than for ATL
and QVT-R, both wrt LOC and wrt c. This difference can be due to specific
language features such as implicit calls (ETL), or excessive use of operations
(UML-RSDS), but also due to the use of ETL and UML-RSDS for more complex
transformations, including update-in-place cases such as PetriNet to SM which
would be very difficult to express in ATL or QVT-R.

We can also compare the levels of TD in different categories of transforma-
tion, across languages. Table 11 shows the TD frequency for the main categories
of transformations in our survey. Although the sample numbers are too small for
statistical significance, the difference in flaw levels between the main categories
is in accord with expectations that more complex MT tasks such as refinement
will result in transformations with higher numbers of flaws compared to simpler
tasks such as migration.

For RQ4, TD densities in developer-coded Eclipse projects have been mea-
sured in [7], with values ranging from 0.005 to 0.04 flaws per LOC, with an
average around 0.015. We also evaluated manually coded versions of a UML to
C++ translator (18,100 lines of Java), and 2 versions of the CDO case study



Category LOC Flaws Flaws/LOC

Code generation 2613 143 0.055
Bidirectional 58 3 0.052
Refinement 4280 133 0.031
Refactoring 1575 47 0.029
Migration 4222 103 0.024
Abstraction 1128 22 0.019
Analysis 316 5 0.016
Semantic map 1267 20 0.016

Table 11. TD for MT categories

(200 lines of C++, and 236 lines of Java) using the PMD code size library
(https://pmd.github.io). These had TD levels of 0.009/LOC, 0.021/LOC and
0.017/LOC, respectively. The TD levels of ETL and UML-RSDS are high in
comparison with these code TD results, whilst ATL and QVT-R exhibit TD
levels more typical of executable code.

5 Threats to validity

The conclusions we have drawn may be challenged on the basis that (a) the
measures chosen are not appropriate for evaluating TD; (b) the selection of
transformation cases was unrepresentative; (c) the basis of TD measurement of
different MT languages are not equivalent.

Regarding (a), we have adopted established TD measures which have been
used extensively for TD evaluation of programs. We have used 500 LOC as a
threshold for transformation size, and 50 LOC as a threshold for rule/operation
size. This is partly justified by the fact that overall the ratio of complexity to
LOC is close to 2, and thus the 50/500 LOC limits correspond, on average, to
the 100/1000 limits for complexity. In addition, out of 74 cases where both trans-
formation LOC and c(τ) were available, in 69 cases (93%) the thresholds were
in agreement: both c(τ) > 1000 and LOC > 500 in 9 cases, or both c(τ) ≤ 1000
and LOC ≤ 500 in 60 cases. Two cases were over 500 LOC but below 1000
c(τ) whilst 3 had the converse. Transformations that operate on large meta-
models or that perform complex tasks will typically have high TD if they are
not effectively modularised (such as MOF to UML, RelToCore, or uml2Cb). De-
composition into subtransformations (as for PetriNet to/from PathExpression,
and cra) can significantly reduce TD levels, even for transformations with large
metamodels/complex tasks.

Regarding (b), we have considered public repositories of cases and published
examples of MT specifications for each language, and the selection of cases has
been on the same basis for each language. For each language, we have endeav-
oured to obtain a wide range of transformation examples, spanning in size from
small cases to the largest cases available, and across the range of all available
categories of transformation. However, higher TD measures were obtained for



languages (ETL, UML-RSDS) with a wider range of transformation facilities,
and hence that have been applied to more complex tasks. It can be noted that
the ETL cases are significantly smaller (average complexity size 348) than the
ATL, QVT-R or UML-RSDS cases (average sizes 1289, 711 and 1059). There are
few large publicly-available ETL cases, which restricted our choice for analysis.

Regarding (c), some distortion is introduced by the analysis of cases where
one MT language feature is used to express another concept in the source speci-
fication. For example, in the KM32DOT ATL transformation, the first 9 helper
operations DiagramType(), Mode(), etc are used to represent the parameters of
the transformation. Such cases would require manual correction in the analysis,
but we consider that it is preferable to analyse the transformations on the basis
of their actual text, not on the basis of how the specifier intended the text to be
interpreted (since this knowledge may not be available in some cases, leading to
inconsistency in the analysis).

6 Related work

One of the first works to consider metrics for MT was [9]. They define mea-
sures for the size and complexity of QVT-R transformations, including lines
of code, number of relations (corresponding to number of rules), and specific
measures for the size and inter-relationship of QVT-R rules. Their analysis is
limited to QVT-R and does not consider clone detection or detailed analysis of
the rule dependency graph. They evaluated one large (auto-generated) QVT-R
transformation and three moderate/small transformations. Undefined execution
order between rules is a significant problem in the large transformation. In [1],
measures of ATL and QVT-R and QVT-O are computed for versions of two
transformations in each language. In [2], seven ATL transformations are evalu-
ated by metrics and by expert analysis, in order to identify correlations between
metric values and expert evaluation of quality characteristics. Wimmer et al [18]
use quality measures to evaluate the effect of MT refactorings. They adopt ERS,
DC and EFO as quality criteria for ATL transformations.

Clone detection in transformations is considered by [15], and they evaluate
alternative tools for clone detection in graph transformations.

Conclusion

We have shown that technical debt can be evaluated for different MT languages.
We have evaluated 91 transformations in four transformation languages, and
identified significant differences between the languages in their frequency and
type of TD: while ATL and QVT-R cases have flaw densities similar to tradi-
tional code, the more complex languages ETL and UML-RSDS have cases with
typically higher flaw densities. All languages suffer from flaws due to complex
dependencies between rules/operations. This may be a symptom of poor modu-
larisation facilities in MT languages. The identification of design flaws can help



MT specifiers to improve their transformations and to prioritise refactoring or
other quality improvement work on their transformations.

References

1. M. van Amstel, S. Bosems, I. Kurtev, L. Pires, Performance in model transfor-
mations: experiments with ATL and QVT, ICMT 2011, LNCS 6707, pp. 198–212,
2011.

2. M. van Amstel, M. van den Brand, Using metrics for assessing the quality of ATL
model transformations, MtATL 2011.

3. T. Arendt, G. Taentzer, UML model smells and model refactorings in early software
development phases, Technical report FB 12, Philipps Universitat, Marburg, 2010.

4. V. Basili, Software modeling and measurement: the goal/question/metric paradigm,
1992.

5. E. Batot, H. Sahraoui, E. Syriani, P. Molins, W. Sboui, Systematic mapping study
of model transformations for concrete problems, Modelsward 2016, pp. 176–183.

6. A. Correa, C. Werner, Refactoring OCL specifications, SoSyM 6: 113–138, 2007.
7. X. He, P. Avgeriou, P. Liang, Z. Li, Technical debt in MDE: A case study on

GMF/EMF-based projects, MODELS 2016.
8. IEC/ISO, 25010 Systems and software engineering – systems and software quality

models, 2011.
9. L. Kapova, T. Goldschmidt, S. Becker, J. Henss, Evaluating maintainability with

code metrics for model-to-model transformations, Research into Practice – Reality
and Gaps, Springer, 2010.

10. K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Solving the CRA case using
UML-RSDS, TTC 2016.

11. K. Lano et al., Translating from UML-RSDS OCL to ANSI C, OCL 2017.
12. L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani, M.

Wimmer, Model transformation intents and their properties, SoSyM (2016) 15:
647–684.

13. N. Macedo, A. Cunha, Least-change bidirectional model transformation with QVT-
R and ATL, SoSyM (2016) 15: 783–810.

14. R. Marinescu, Assessing technical debt by identifying design flaws in software sys-
tems, IBM Journal of Research and Development, 56(5), 2012.

15. D. Struber, J. Ploger, V. Acretoaie, Clone detection for graph-based MT languages,
ICMT 2016.

16. D. Wagelaar, Composition techniques for rule-based MT languages, ICMT 2008.
17. G. B. Weatherill, Elementary statistical methods, Chapman and Hall, 1978.
18. M. Wimmer, et al., A Catalogue of Refactorings for model-to-model transforma-

tions, Journal of Object Technology, vol. 11, no. 2, 2012.


