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Motion Corrected Compressed Sensing for
Free-Breathing Dynamic Cardiac MRI

Muhammad Usman,'* David Atkinson,? Freddy Odille,? Christoph Kolbitsch,’
Ghislain Vaillant," Tobias Schaeffter,’ Philip G. Batchelor,' and Claudia Prieto"*

Compressed sensing (CS) has been demonstrated to acceler-
ate MRI acquisitions by reconstructing sparse images of good
quality from highly undersampled data. Motion during MR
scans can cause inconsistencies in k-space data, resulting in
strong motion artifacts in the reconstructed images. For CS to
be useful in these applications, motion correction techniques
need to be combined with the undersampled reconstruction.
Recently, joint motion correction and CS approaches have
been proposed to partially correct for effects of motion. How-
ever, the main limitation of these approaches is that they can
only correct for affine deformations. In this work, we propose a
novel motion corrected CS framework for free-breathing
dynamic cardiac MRI that incorporates a general motion cor-
rection formulation directly into the CS reconstruction. This
framework can correct for arbitrary affine or nonrigid motion in
the CS reconstructed cardiac images, while simultaneously
benefiting from highly accelerated MR acquisition. The applica-
tion of this approach is demonstrated both in simulations and
in vivo data for 2D respiratory self-gated free-breathing cardiac
CINE MRI, using a golden angle radial acquisition. Results
show that this approach allows for the reconstruction of respi-
ratory motion corrected cardiac CINE images with similar qual-
ity to breath-held acquisitions. Magn Reson Med 70:504-516,
2013. ©2012 Wiley Periodicals, Inc.
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INTRODUCTION

Compressed sensing (CS) has been recently proposed and
applied to speed up the acquisition of MR images (1-3).
Its use has been successfully demonstrated in several MR
applications where the images are sparse in themselves or
in some transform representation. Applications include
brain (3), cardiac (4), coronary (5), and pediatric MR imag-
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ing (6), among others. In all these applications, motion
artifacts such as blurring and ghosting can be introduced
in the MR image reconstruction due to unwanted or
involuntary movement during acquisition. In free-breath-
ing cardiac gated MR acquisitions, different k-space pro-
files belonging to a specific cardiac phase are acquired at
distinctive breathing positions or “motion states.” The
combination of profiles from the same cardiac phase but
different respiratory motion states can result in inconsis-
tencies in k-space, leading to motion artifacts in the
reconstructed images. In addition, this unwanted motion
can also reduce the sparsity level of MR images in the
sparse representation, thus reducing the acceleration fac-
tor achievable with CS reconstruction (7). Hence, to bene-
fit from the high acceleration available from CS methods
in these applications, additional flexibility is required to
combine motion correction with the CS reconstruction.

Some approaches to combine CS reconstruction with
motion correction techniques have been recently pro-
posed (7,8). Jung et al. proposed a CS technique “k-t
FOCal Underdetermined System Solver (FOCUSS)”
(9-11) that incorporated a motion estimation procedure to
predict different cardiac phases from a fully sampled ref-
erence cardiac frame. The knowledge of motion between
cardiac phases was mainly used to enhance the sparsity in
the sparse representation for better CS reconstruction.
This framework was demonstrated for breath-hold CINE,
where all data were acquired in one respiratory motion
state (i.e., end expiration) and hence, there was no issue of
motion corruption due to inconsistencies among the
acquired k-space data. For free-breathing 2D cardiac MRI
where data are acquired in different respiratory motion
states, Otazo et al. proposed a combination of CS and par-
allel imaging with 1D translational respiratory motion cor-
rection (7). For 3D static coronary imaging, Doneva et al.
(8) proposed a method that performed CS reconstruction
from data acquired in each motion state and afterward
averaged the CS reconstructed images following image
based affine registration. However, in general, the motion
can be arbitrary affine or nonrigid. Hence, a CS-based
motion correction framework is needed that can correct
for arbitrary nonrigid motion in the CS reconstruction
using data acquired at multiple motion states.

In 2005, Batchelor et al. (12) introduced a generalized
motion correction framework that can correct for general
(affine or nonrigid) motion in the image reconstruction.
This framework modeled the transformation from the
motion free image to the acquired motion corrupted
k-space samples at different motion states via a matrix-
vector equation. Provided, the motion (affine or nonrigid)
itself is known, standard numerical matrix inversion
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algorithms can be used to reconstruct a motion corrected
image. Using information from multiple coils in parallel
MRYI, the application of this framework has been recently
demonstrated in brain imaging (12), coronary MRI (13),
cardiac CINE (14-16), and liver MRI (17) to correct for
nonrigid motion.

In this work, we propose a novel motion corrected-
compressed sensing (MC-CS) framework for free-breath-
ing dynamic cardiac MRI, which incorporates a general-
ized motion correction formulation directly into the CS
reconstruction. This framework can correct for general
(affine or nonrigid) motion in the cardiac images recon-
structed from CS undersampled respiratory motion-cor-
rupted k-space data. To separate parallel imaging effects
from CS, the acquired data from a single element of a
multicoil array are considered in this work. The number
of acquired k-space samples in each motion state is
below the Nyquist rate. The framework was tested using
a respiratory self-gated golden angle radial acquisition
(18). This acquisition allows for the reconstruction of
images with arbitrary temporal resolution, a property
that can be exploited for self-gating and motion estima-
tion. The golden radial acquisition also satisfies the
pseudorandom sampling required by CS reconstruction
(19). The usefulness of MC-CS framework is demon-
strated both in simulations and in vivo free-breathing 2D
cardiac CINE MRIL.

THEORY

Batchelor et al. (12) proposed an exact formulation for
the effect of any motion during acquisition of k-space
that is described as follows: let s be the motion-free
image to be reconstructed, y the motion corrupted k-
space data and assume D possible motion states (d = 1,
2, 3, ..., D) of the underlying object. The motion cor-
rupted k-space data y consists of the sum of the k-space
samples acquired over all the motion states (12):

y=) AUz (1]

where, Uy is a motion matrix that warps the pixels in
image s (reference) to the position at the dth motion
state, F® is the 2D Fourier encoding matrix that trans-
forms the warped image to the k-space, and Ay is the
undersampling operator that selects the k-space samples
acquired at motion state d. For non-Cartesian acquisi-
tions, Ay also includes the gridding operation.

Considering a free-breathing CINE acquisition with N
retrospectively assigned cardiac phases and D respiratory
positions, similar to Eq. 1, the motion corrupted under-
sampled k-space data (y,) for each cardiac phase n = 1,
2, ..., N correspond to:

V. = Zd Ad‘nFsUd,nsn = Ensn [2]

where s, is the motion-corrected image for cardiac phase
“n,” Uy, is the matrix describing the general (affine or
nonrigid) motion of cardiac phase n (n = 1, 2, ..., N)
from a reference respiratory position (usually at end ex-
piration) to the dth respiratory position (d =1, 2, ..., D),
F® is the 2D spatial Fourier encoding matrix, Ay, is the
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pseudorandom sampling pattern at the dth respiratory
position for the cardiac phase n and includes the gridd-
ing operation for non-Cartesian acquisitions, and E, is
the encoding operator given by E,, = > 4A4,F°Uy . For a
specific cardiac phase n and a particular respiratory
position d, the sampling given by A,, does not satisfy
the Nyquist criterion. The corresponding undersampling
factor varies for each respiratory position d according to
the breathing cycle, being lower for the most probable
breathing states (i.e., end-expiration) and higher for other
motion states.

The MR dynamic cardiac images are sparse in the 3D
spatio-temporal domain x—y—f space (x,y: spatial posi-
tion, f: temporal frequency; Refs. 4 and 20) due to the
quasiperiodic motion of the heart. Exploiting sparsity in
the x—y—f space, the proposed MC-CS formulation to
recover the respiratory motion-corrected cardiac phases
is given as:

ming|[F's||, s.t|y—Es|,<c (3]
Y1 E,
where y= y.z , E= Bz , and
Y By
S1
s= . include all N cardiac phases, F' is the tempo-
SN

ral Fourier operator that transforms the signal s from the
x—y—t space to the sparse x—y—f space by applying the
Fourier transform along the temporal dimension, |I.] 14
denotes the I; norm given as the sum of absolute values
of all elements in the sparse representation, |I[.11,
denotes the I, norm, ¢ is a parameter that controls the fi-
delity of the reconstruction to the measured data and is
usually set below the expected noise level. The differ-
ence between this formulation and the standard CS
reconstruction is that the encoding operator E includes
the motion information U, , and uses data from all the
motion states.

Using the motion information embedded in Ug,, the
MC-CS formulation given in Eq. 3 finds the sparsest so-
lution in the x—y—f space. Here, for simplicity, we have
assumed independence of motion between cardiac
phases in any R-R interval as has been previously
assumed in the literature (14,15,21,22). The above formu-
lation is independent of the acquisition trajectory, pro-
vided the motion information U,, is available and a
pseudorandom undersampled acquisition is performed.

METHODS

We propose a new framework for respiratory motion cor-
rected reconstruction in 2D dynamic cardiac CINE MRI
The basic strategy is to acquire free-breathing cardiac
data for a number of cardiac cycles and reconstruct a car-
diac CINE free of respiratory motion. To apply MC-CS
formulation (as defined in Eq. 3) for general (affine or
nonrigid) motion correction, the k-space profiles in the
acquired free-breathing cardiac MR data have to be
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FIG. 1. Block diagram of the proposed MC-CS framework for dynamic cardiac MRI using golden radial acquisition. a: A respiratory sig-
nal is estimated from virtual navigator (vNAV) images reconstructed from the acquired k-space data y. b: The respiratory signal allows

binning of the acquired data y into D motion states/bins. c: From
..., ¥Ypinp), @ preliminary CS reconstruction (without motion correctiol
images in a reference bin are registered to the images in other bin

the acquired data binned into D different motion states (Voin1, Ybin2s
n) is performed independently for each bin. d: The CS reconstructed
s to generate the motion matrices Uy, Uy, ..., Up. e: Employing the

acquired data y and the motion matrices U,’s (d = 1, 2, ..., D), the final MC-CS reconstruction is performed yielding motion corrected

image s.

associated/binned into different motion states d = 1, 2,
..., D such that respiratory motion within each motion
state can be assumed small enough to not cause motion-
artifacts in images reconstructed from the data. Thus,
binning of data resolves inconsistencies among k-space
data in each motion state. The motion between different
motion states can be estimated by first reconstructing the
images at each motion state and then registering these
images to get the motion information U.

An image based respiratory signal (obtained, e.g., from
external navigator on diaphragm or from acquired data
itself as self-gated signal) acts as a surrogate of respira-
tory motion in the head—feet (H-F) direction and hence
can be used for data binning (22). Within each motion
state, separate CS reconstructions are performed. The
most common respiratory motion state is chosen as the
reference, and all the CS reconstructions are nonrigidly
registered to this reference. The registrations provide an
estimate of motion and the MC-CS formulation in Eq. 3
can be used to reconstruct images free of respiratory
motion. The golden angle radial based acquisition (18) is
used, because it ensures the k-space sample locations for
different k-space profiles for a particular cardiac phase n
and a respiratory position “d” are mutually exclusive
(except for the center point in k-space) in subsequent R—
R intervals, thus allowing flexibility in the reconstruc-
tion. Moreover, the reconstruction flexibility of this tra-
jectory allows estimation of respiratory surrogate from
the same acquired data.

To summarize, the proposed MC-CS framework for
free-breathing dynamic cardiac MRI can be divided into
five different steps: (a) a respiratory signal for data bin-
ning is estimated by rigid registration of low resolution
virtual 2D navigator (VNAV) images reconstructed from
the acquired data; (b) the acquired k-space profiles are
binned into different motion states (or bins) based on
vINAV position and a selected reference bin; (c) prelimi-
nary CS reconstructions without motion correction are
performed from binned k-space data for each motion
state; (d) preliminary CS reconstructed CINE images for
the reference bin are registered to preliminary CS recon-
structed CINE images in each bin via nonrigid registra-

tion that yields the required respiratory motion fields; (e)
MC-CS reconstruction (Eq. 3) is performed using motion
information and data available from all the bins to obtain
the final motion corrected CINE images. These different
steps are shown as a block diagram in Figure 1 and fur-
ther described later.

vNAV Images Generation

To generate a navigator signal for data binning, low tem-
poral resolution vNAV images are generated by combin-
ing golden angle radial profiles for each R-R interval
over the whole respiratory cycle. Respiratory transla-
tional displacement is estimated doing a rigid registra-
tion of these VNAV images (22). Registration is per-
formed on a region of interest (ROI) containing the heart
using the respiratory position of the first vNAV image as
reference (Fig. 2). An example respiratory navigator sig-
nal obtained from free-breathing data containing 35 car-
diac cycles is shown in Figure 3. Each value in the sig-
nal represents the average position of the heart during
the respective heartbeat.

Data Binning

The acquired radial profiles from all heartbeats are
binned into a number of respiratory motion states/bins
according to the breathing position at which these were
acquired, given by the vNAV images. The number of
bins should be as large as possible to minimize intrabin
motion, and at the same time the width of each bin
should be large enough to ensure that it has sufficient
data for image reconstruction.

There are two strategies available in the literature for
data binning: (a) uniform data binning and (b) adaptive
data binning. The standard uniform binning procedure
(23) uses bins of equal width. As the breathing patterns
can be irregular, the uniform data binning may lead to
some bins having a reduced amount of data and hence
reconstructions with undersampling artifacts in those
bins. These reconstructed images with artifacts lead to
registration errors in the motion estimation step. To
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FIG. 2. An illustration of respiratory signal estimation with the proposed method for dynamic cardiac MRI. Low resolution vNAV images
were reconstructed from golden angle radial profiles acquired in every heart beat. Rigid translational registration is performed on a ROI
containing the heart using the first vNAV image in the sequence as the reference. This generates a respiratory signal that contains one
average displacement value per heart beat. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

avoid this issue, another strategy is to use adaptive bin-
ning of acquired data with overlapping bins. This has
been used in a recent work (24) with golden angle radial
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FIG. 3. Data binning step of proposed method: an example respi-
ratory signal estimated from free-breathing data acquired over 35
heart beats is shown. The data are grouped into four overlapped
bins (B1-B,), each bin comprising data from 11 heart beats, with
data acquired over three heart beats shared between the adjacent
bins. This results in bins of different sizes, the bin-width being de-
pendent on the spread of the navigator displacement values in
that bin. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

phase encoding trajectory, where the width of each bin
was arbitrarily adjusted to include more profiles improv-
ing the sampling density of each bin. Due to the flexibil-
ity of the golden radial trajectory, the data binning can
be used in an overlapped fashion, because data from ad-
jacent bins are complimentary and hence can be com-
bined. The advantage of using overlapping binning is
that a higher number of bins can be reconstructed to
describe the respiratory motion.

In our work, we use a similar adaptive overlapping bin-
ning strategy based on the spread of the displacement val-
ues in the respiratory signal. To satisfy the requirements of
data binning, the total number of bins P is defined such that
data in each bin correspond to equal number of heart beats
and the amount of data in each bin is sufficient to ensure
good CS reconstructed images (4—6 times undersampling
compared to Nyquist rate). This can be done by sorting the
displacement values in the respiratory signal and grouping
the profiles acquired in heart beats corresponding to the
sorted displacement values into P bins. The grouping can
be done in overlapping fashion to increase the total number
of bins. Increasing the number of heart beats will increase
the number of bins, as finer resolution bins can be formed
that satisfy the CS sampling requirements. The reference
bin is selected to be the one with smallest bin width, as it
will have least amount of intra bin motion.

An example data binning is shown in Figure 3. The
data were grouped into four overlapping bins (B;—B4),
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each bin comprising data from 11 heart beats, with
shared data of three heart beats from the adjacent bins.
This resulted in bins of different sizes, with the bin-
width depending on the breathing pattern.

Preliminary CS Reconstruction

Data within each motion state/bin are retrospectively
assigned to N cardiac phases based on an external elec-
trocardiogram (ECG) signal. For each motion state, the
data are in k,—k,~t space, where time index “t” in k—k,~
t refers to the cardiac phase index n rather than real
time. A preliminary CS reconstruction (k—-t Sparse; Ref.
4), without motion correction is performed for each bin
independently, with the 3D x—y—f space as the sparse
representation. This step reconstructs N cardiac phases
for each respiratory motion state. To transform data from
k—k,~t to the x—y—f space, first the k-space data for each
time index t are transformed (gridded since a non-Carte-
sian trajectory is used) to the image space. Then, a Fou-
rier transform is taken along the temporal direction to
get the x—y—f space representation.

Motion Estimation

Each CS reconstructed cardiac phase n at the reference
respiratory position is registered to the corresponding
cardiac phase n at other respiratory positions (d = 1, 2,
.., D) using an efficient intensity-based nonrigid regis-
tration algorithm (25). This algorithm achieves nonrigid
motion estimations by combining multiple local affine
registrations. Pixel-wise motion fields for every cardiac
phase within each bin are obtained from the registration
process. These motion fields are used to construct the
motion matrices Ug,’s. Each row of the matrix Uy, con-
tains mostly zeros except for those columns correspond-
ing to the pixels in the reference image that would con-
tribute to a given pixel in the warped image at the dth
motion state. The number of nonzero entries in each row
is determined by the size of the interpolation kernel. In
case of bilinear interpolation used in this work, there are
only four nonzero entries in each row of Ug,.

MC-CS Reconstruction

Using estimated U, ,’s and acquired data y from all the
motion states, the final MC-CS reconstruction is per-
formed using Eq. 3, to yield the motion-corrected retro-
spectively reordered cardiac image sequence.

The preliminary CS reconstruction, motion estimation,
and MC-CS reconstruction steps are illustrated in Figure 4.

EXPERIMENTS

The proposed method was tested on simulated and in
vivo free breathing retrospectively cardiac gated 2D car-
diac CINE MR data. To demonstrate that MC-CS frame-
work can correct for arbitrary nonrigid motion in the
reconstruction, cardiac data acquired during breath-hold
were motion-corrupted by different nonrigid deforma-
tions in the simulations. In both simulations and in vivo
experiments, the performance of the MC-CS framework
was compared against CS reconstructions from free-

Usman et al.

breathing data without motion correction (CS + no MC)
and the CS reconstruction from breath-held acquisition
(BH-CS). In all cases, the x—y—f space was used as the
sparse representation. The acceleration factors men-
tioned or shown in the text and figures indicate the
acceleration factors relative to the radial Nyquist sam-
pling rate (w/2 times the number of frequency encoding
points).

Reconstruction

All reconstructions were implemented in MATLAB
(R2010, The MathWorks, Inc., Natick, MA) on a work
station with a six core processor, Intel Xeon X5670, 2.93
GHz, and 24 GB memory using a nonlinear conjugate
gradient reconstruction algorithm with backtracking line-
search (3). The nonlinear conjugate gradient algorithm
solves the following unconstrained Hermitian-symmetric
form of problem in Eq. 3 expressed as:

ming\||F's||, + ||E"y — EVEs||? (4]

where N\ is a regularization parameter that selects the
trade-off between the sparsity of the underlying signal s
in x—y—f space and data consistency, and E is the encod-
ing operator. The Hermitian-symmetric form:

El'y = EMEs 5]
is considered for data consistency in Eq. 4, with E'y =
Eg)ﬁ E?El -
E E E
Z_yz and E'E = 2 , where
EXYy EXEn

EnHYH = Zd UI(;I,n(FS)HAIc}I,HYH and EII-IIEH = Zd Ugn( S)H
A A4, (F$)Ug, for n = 1, 2, ..., N. Here (F)" is the 2D
inverse Fourier encoding matrix that transforms data
from k-space to the image domain and Ulin is the Hermi-
tian of Ugn, which may be approximated as inverse
motion transformation matrix.

In our simulations, the optimal value range for A
(0.04-0.07) was determined by comparing reconstruc-
tions with different N’s to the fully sampled ground
truth. In all simulations and in vivo experiments, N was
chosen from this range and set to the same value for pre-
liminary CS reconstructions and the final MC-CS
reconstruction.

The gridding and degridding steps in the encoding
operators E and E™ were implemented using Kaiser-Bes-
sel gridding kernel as proposed in Ref. 26, and the den-
sity compensation functions were numerically estimated
using Voronoi diagrams (27).

Simulations

In the simulations, the performance of MC-CS recon-
struction framework as a function of the acceleration fac-
tor was investigated. In addition, the effect of accelera-
tion on the accuracy of nonrigid registration in the
motion estimation step of the proposed method was also
analyzed.
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FIG. 4. An illustration of preliminary CS reconstruction, motion estimation, and MC-CS reconstruction steps of the proposed framework.
For simplicity, only three motion states and six heart beats are shown here. The data binning step assigns data acquired in each heart
beat to one of the three motion states. Hence, after the data binning step, the respiratory resolved data for each motion state are
obtained. Here, the motion state 1 is assumed to be the reference (REF). Preliminary CS reconstruction is done for each respiratory
motion state, yielding N reconstructed cardiac phases for each motion state. Each cardiac phase n in reference motion state 1 is regis-
tered to the corresponding cardiac phase at respiratory motion states 2 and 3 to yield motion fields. Using these motion fields and the
acquired data, MC-CS reconstruction recovers the respiratory motion-free CINE images. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Golden angle radial motion corrupted data were simu-
lated from cardiac gated breath-held CINE data acquired at
end-expiration on a Philips 1.5T Achieva scanner (b-SSFP,
pulse repetition time/echo time = 3/1.46 ms, reconstruction
matrix size: 160 x 160, 25 cardiac phases, field of view: 400
x 320 mm?). The reference respiratory position was consid-
ered to be the end expiration at which data were acquired.
The motion was assumed to be nonrigid between the refer-
ence and the other respiratory positions. To simulate data
for other respiratory positions, nonrigid transformations
corresponding to different radial and angular deformations

were generated. To achieve this, each cardiac phase from
the reference respiratory position was transformed using a
nonrigid transformation ® described by polar coordinates
(r, 0) as follows:

o= h(®)”
00+ f(5)°
where 0 < r < R, R being the maximum radius in the ra-

dial direction with origin (r = 0) being the center of the
object (heart); f, and fy are the scaling parameters with f,

(6]
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(b) Non-rigid motion fields
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FIG. 5. Reconstruction performance of MC-CS reconstruction method on simulated motion corrupted dynamic cardiac MR data; the
motion corrupted data were simulated on a golden angle radial trajectory: (a) From acquired fully sampled breath-held data, a gold
standard fully sampled cardiac time frame and a profile corresponding to the temporal variation of pixel intensities is shown. The
breath-held data were assumed to be acquired in the reference motion state (numbered 1). b: Two example sets of motion fields that
were used to generate nonrigid transformations from reference motion state to other motion states (numbered 2 and 3) are shown. Both
horizontal and vertical components of the nonrigid motion fields (m, 1_o, m, 1_5, m, 1_3, m, 1_3) are included. c: CS reconstruction
without motion correction (CS + no MC) is shown for different acceleration factors (3.5, 7, 10.5, and 20 for each motion state), where
the data from all three motion states were combined without motion correction. Strong blurring is evident in the reconstruction at all
degrees of undersampling (d) preliminary (Prelim) standard CS reconstruction for the reference (REF) motion state. High degree of
undersampling (acceleration factors of 7, 10.5, and 20) resulted in loss of high frequency components in x-y—f space, resulting in blurred
CS reconstructions. e: MC-CS reconstruction using available data from all the motion states. MC-CS corrected the motion artifacts and
achieved high spatial and temporal fidelity to the gold standard images in (a). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

€ [0,1] and fy € [—-m, 7], « and B are the parameters that
determine the extent of the radial and angular deforma-
tions. The parameters were chosen to yield visually plau-
sible heart motion and were set as f, = 1, fy = w/20 and B =
1. Two nonrigid deformations were generated by having a
different radial deformation parameter o that was set to
value of 1/16 for one deformation, and —1/16 for the other.
Including the untransformed data, the above procedure
provided a sequence of cardiac phases for each of the
three simulated respiratory positions. To mimic a realistic
golden angle radial trajectory for sampling in k-space, a re-
spiratory signal was obtained from a prolonged in vivo
free-breathing cardiac scan comprising several heartbeats.
Given the respiratory signal and the number of bins set to
3, every heartbeat in the free-breathing scan was associ-
ated with one of the three respiratory positions using the
binning procedure described in the “Methods” section.
The data acquisition was simulated by sampling the

deformed cardiac phase sequence in each respiratory posi-
tion on the golden angle radial trajectory defined by the re-
spiratory signal. To simulate CS undersampling, the num-
ber of heartbeats from the respiratory signal was decreased
such that the number of radial profiles for each cardiac
phase at a specific respiratory position was reduced by
acceleration factor of 3.5-20.

For each reconstruction (CS + no MC, MC-CS, and
BH-CS), the overall relative root mean square (RMS)
reconstruction error (Recon RMSE) for the reconstructed
signal x (of length K) was calculated as:

Relative RMS Error =

where x denote the reconstructed signal, and x is the
gold standard signal reconstructed using the number of
projections corresponding to the radial Nyquist rate.
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FIG. 6. a: Relative RMS reconstruction error (Recon RMSE) for different CS reconstructions (CS reconstruction without motion correction
(CS + no MC), preliminary CS reconstruction for reference bin (Prelim CS), and proposed MC-CS reconstruction) as function of acceleration
factor; b: relative RMS registration error (Registration RMSE) as function of acceleration factor. Both Recon RMSE and Registration RMSE
were computed in a ROI containing the heart. c: For one of the cardiac time frames, the registration difference images (difference of image

transformed with gold standard deformations and image transformed

with estimated deformations) are shown as function of acceleration

factor, all difference images are shown on same scale. The Registration RMSE remains low (<0.06) up to the acceleration factor of 7, as
shown in the registration difference images in (c) for acceleration factors of 3.5 and 7. For higher acceleration factors, the registration error
increases significantly (see registration difference images for acceleration factors of 10.5 and 20 in (c)). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

To analyze the accuracy of the motion estimation step,
for different acceleration factors, the motion fields esti-
mated via nonrigid registrations were used to deform the
untransformed images in motion state 1. The registration
error (Registration RMSE) was computed using Eq. 7,
where x; now represents the images transformed with
gold standard deformations in Eq. 6 and X; represents
the images transformed with estimated deformations.
Both Recon RMSE and Registration RMSE were com-
puted in a ROI containing the heart.

To analyze the effect of selection of regularization pa-
rameter N on the MC-CS reconstruction quality, MC-CS
reconstructions were done using varying values of \ in
the range of 0.0001-0.5. The Recon RMSE was computed
for each case.

As there can be a number of degrees of freedom in the
nonrigid motion that might occur, a number of different
motion realizations were generated by varying the set of
parameters f,, fo. o, and B in Eq. 6. The parameters were
varied randomly within 20% from their values (f, = 1, fy
= m/20, B = 1, « = *1/16) in previous simulation such
that the corresponding image transformations looked vis-
ually realistic. MC-CS reconstructions were done in each
case.

In Vivo Experiments

ECG-gated free-breathing golden angle radial acquisitions
were performed on Philips 1.5T in five healthy volun-
teers. Scan parameters include b-SSFP, pulse repetition

time = 2.98 ms, echo time = 1.49 ms, field of view: 320
x 320 mm?, spatial resolution: 1.5-2.0 mm?, number of
frequency encoding points: 160-212, 180-200 golden
angle radial profiles per heartbeat, heart rate: 65—85 beats
per minute (bpm), number of cardiac cycles = 25-33,
scan duration = 19-25 s. Scans were performed using a
5-channel coil but a single channel (with high sensitivity
over the heart) was selected for MC-CS reconstruction.
The acquired free-breathing data were binned into 6-7
respiratory positions, depending on the number of heart
beats, using the described adaptive binning procedure.
The CS acceleration factor in each bin was set in the
range of 4-6. Twenty cardiac phases were retrospectively
reconstructed resulting in temporal resolution of 30-40
ms. For comparison, the breath-held data were acquired
at the end-expiration state in all the volunteers with the
same imaging parameters, except that the scan duration
was reduced (number of cardiac cycles = 13-29, acquisi-
tion time = 10-20 s).

RESULTS
Simulations

The gold standard fully sampled reconstruction for one
of the cardiac time frames is shown in Figure 5a. A gold
standard fully sampled temporal profile corresponding
to the temporal variation of pixel intensities along the
dotted line is also shown. Two example sets of motion
fields corresponding to the nonrigid transformations
from breath-hold reference motion state 1 to motion
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FIG. 7. a: MC-CS relative RMS reconstruction error (Recon
RMSE) as a function of regularization parameter (\) in Eq. 4 for
different acceleration factors (xR). The parameter \ in the range
0.01-0.1 gave comparable reconstruction results and low values
of RMSE (b) MC-CS reconstructions for different values of A with
7-fold acceleration; an example reconstructed cardiac frame and
temporal profile are shown. Too low values (A = 0.001) resulted in
appearance of undersampling artifacts in the reconstruction; too
high values (A = 0.5) resulted in blurry reconstruction. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

states 2 and 3 are shown in Figure 5b. Both horizontal
and vertical components of the motion fields (my 1 .o,
my, | ., My ;.3 My, ;_3) are shown. Relative to the
Nyquist sampling rate (160 x w/2 ~ 251 profiles)
required for each cardiac phase, acceleration factors of
3.5, 7, 10.5, 15, and 20 were simulated for k-space data
in each of the three respiratory positions. The CS recon-
structed cardiac frames and temporal profiles are shown
in Figure 5c—e. Strong blurring artifacts due to nonrigid
motion were evident in the CS reconstruction without
motion correction (CS + no MC) for all acceleration fac-
tors (Fig. 5¢). The preliminary CS reconstruction for the
reference breath-hold position is shown in Figure 5d.
The preliminary CS reconstructions at other respiratory
positions (not shown here) were of similar or lower qual-
ity. At an acceleration factor of 3.5 (72 golden angle ra-
dial profiles per cardiac phase), all preliminary CS
reconstructions had good quality, and the expected var-
iations in the temporal profile were observed. However,
at higher acceleration factors of 7, 10.5, and 20, the pre-
liminary CS reconstructions tend to become blurrier.

Usman et al.

MC-CS reconstruction (Fig. 5e) visually corrected for
blurriness in the combined motion corrected images and
had high spatial and temporal fidelity to the gold stand-
ard images in Figure 5a.

A plot of relative RMS reconstruction error (Recon
RMSE) in the ROI containing the heart for different CS
reconstructions as a function of acceleration factor is
shown in Figure 6a. Although not reported in the manu-
script, the reconstruction error was stronger in the region
outside the ROI than inside, as both registration and CS
reconstruction favor high contrast components for align-
ment and reconstruction, and region outside the ROI
contains mainly the low contrast components.

The RMS registration error (Registration RMSE) as a
function of acceleration factor is shown in Figure 6b. For
different acceleration factors, the registration error differ-
ence images (difference of an image transformed with
gold standard deformation and image transformed with
estimated deformation) for one of the cardiac time frames
are also shown in Figure 6c. The registration error
remains low (Registration RMSE < 0.06) up to the accel-
eration factor of 7. For higher acceleration factors, the
registration error increases significantly (see registration
difference images for acceleration factors of 10.5 and 20
in Fig. 6¢).

A plot of Recon RMSE as a function of regularization
parameter \ is shown in Figure 7a for different accelera-
tion factors. The RMSE remained low and MC-CS recon-
structions looked comparable (not shown here) in the
range of A = 0.01-0.1. MC-CS reconstructions for differ-
ent values of N with 7-fold acceleration are shown in Fig-
ure 7b. For A > 0.1, the MC-CS reconstructions tend to
become blurry, losing some of the variations in the tem-
poral profiles. For N < 0.01, the MC-CS reconstructions
tend to become noisy with undersampling artifacts.

For 20 different nonrigid motion realizations achieved
with different values of set of parameters (f., fy, o, and B)
in Eq. 6, MC-CS method corrected for nonrigid motion in
each case and gave similar reconstruction quality and

Recon s
RMSE 0.11F

0.1 J *—" J
0.09+ e g

0'080 5 10 15 20 25

Acceleration Factor =——>

FIG. 8. For 20 different nonrigid motion realizations simulated by
variation of motion parameters in Eq. 6, plot of mean value of
MC-CS relative RMS reconstruction error (Recon RMSE) is shown
as a function of acceleration factor, the standard deviation of
RMSE is also indicated at each acceleration factor. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 9. Results of different steps of proposed method for in vivo data from volunteer 1: a free-breathing scan of 30 heart beats was
performed on a healthy volunteer, each R-R interval comprised 180 golden angle radial profiles. A respiratory signal (shown in (a)) was
obtained from registration of virtual navigator (vNAV) images reconstructed from golden angle radial profiles acquired in each heart
beat. This respiratory signal was then used for retrospectively binning of cardiac data into different respiratory motion states/bins. Distri-
bution of number of golden angle radial profiles at different displacement values of respiratory signal are shown in (b). Different bins
(B1-B-) formed are shown, the data in each bin corresponded to approximate acceleration factor of 5.3 relative to the Nyquist rate. c:
Results of CS reconstruction without motion correction (CS + no MC), both diastole and systolic cardiac phases are shown together
with a temporal profile corresponding to the temporal variation of pixel intensities along the dotted line (d-f) preliminary standard CS
reconstructions for reference (REF) bin B; and two other bins (B4 and Bg) at different respiratory positions are shown. g: Proposed MC-
CS reconstruction using data available from all bins. The MC-CS reconstructed images had higher spatial and temporal quality com-
pared to CS + no MC and all preliminary CS reconstructions (arrows in (c)-(g)). h: CS reconstruction from data acquired in a breath-
held scan (BH-CS), the breath-hold scan comprised 29 heart beats acquired at end-expiration state.

values of RMSE. A plot of mean Recon RMSE obtained In Vivo Experiments
from MC-CS results with 20 different nonrigid motion . . .
realizations is shown in Figure 8. The standard deviation For volunteer 1, the respiratory signal obtained from the

of reconstruction error is also indicated for each acceler- VNAV images is shown in Figure 9a (from a 20 s free-
ation factor. breathing scan comprising 30 heart beats).The result of
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FIG. 10. Performance comparison of different CS reconstructions for in vivo data from volunteers 2 and 3; the free-breathing scans for
volunteers 2 and 3 comprised 25 and 33 heart beats, respectively. Data were binned into six and seven respiratory positions for volun-
teers 2 and 3, respectively. CS reconstructed frames during both systole and diastole are shown together with the temporal variation of
pixel intensities along the dotted lines. CS reconstruction without motion correction (CS + no MC), proposed MC-CS reconstruction
and CS reconstruction from breath-hold acquisition (BH-CS) are shown. The breath-hold scans were of 10- and 15-s duration, and com-
prised 13 and 20 heart beats for volunteers 2 and 3, respectively. Proposed MC-CS reconstruction corrected for most of the blurring in
CS + no MC reconstruction and had similar spatial and temporal quality than the BH-CS reconstruction (see the region pointed by
arrows). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the proposed data binning strategy is shown in Figure 9b,
which shows the distribution of the number of golden
angle radial profiles at different displacement values of
the vINAV images. The preliminary CS reconstructions for
the reference bin (B4), and bins at two other respiratory
positions (B4 and Bg) are shown in Figure 9d—f. The data
in the reference bin and other bins correspond to an accel-
eration factor of 5.3. The MC-CS reconstruction (Fig. 9g)
corrected for most of the artifacts in CS 4+ no MC (Fig. 9c¢)
reconstruction. The MC-CS reconstructed images were
better in quality than all preliminary CS reconstructions
(Fig. 9d—f) and were visually of similar quality as the BH-
CS reconstruction (Fig. 9h) from breath-hold acquisition
of approximately the same duration (19.5 s).

The MC-CS reconstructed cardiac frames and temporal
profiles for two other volunteers (volunteers 2 and 3) are
shown in Figure 10, in comparison with the noncor-
rected (CS + no MC) and reconstruction from breath-
held (BH-CS) acquisitions. Figure 10 shows that MC-CS
reconstruction achieved similar quality to the breath-
hold images.

DISCUSSION

This work proposes a CS motion corrected reconstruc-
tion from undersampled general (affine or nonrigid)
motion corrupted dynamic cardiac MR data. The pro-

posed method is a combination of CS (4) and the motion
correction technique by Batchelor et al. (12) and can cor-
rect for arbitrary motion in the CS reconstruction. The
use of the proposed method is demonstrated in 2D gated
cardiac CINE MRI, where 20 respiratory-motion free car-
diac phases were reconstructed with high spatial and
temporal fidelity to the breath-held images, resulting in a
temporal resolution of 30—40 ms. The flexibility of the
golden angle radial acquisition was used for respiratory
self-gating and adaptive binning in free-breathing
dynamic cardiac MRI. The proposed approach permits
free-breathing acquisitions, and further studies may
explore its application to 3D dynamic cardiac MRI.

While motion correction methods have been well inte-
grated into parallel imaging (14,15,21,22), CS-based
reconstruction methods integrated with motion correc-
tion have been only shown for rigid motion. Compared
to parallel imaging methods that reconstruct each cardiac
phase/frame independently, the proposed MC-CS frame-
work for dynamic cardiac MRI exploits redundancy
along the temporal dimension by finding the sparsest so-
lution in the spatio-temporal x—y—f space.

At high acceleration factors (undersampling factor of 7
in each cardiac phase in Fig. 5d), due to insufficient
number of measurements in each bin, the preliminary
CS reconstructions are unable to reconstruct high fre-
quency temporal components in the x—y—f space and
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lead to slightly blurred reconstructions. However, these
slightly blurred reconstructions are still good enough to
estimate precise nonrigid motion between different
motion states (RMS registration error < 0.06 for 7-fold
acceleration, Fig. 6b,c). Using the estimated motion
fields, the MC-CS is able to correct the nonrigid motion
in the final reconstruction with high spatial and tempo-
ral fidelity compared to the gold standard reconstruction
in Figure 5a. At very high acceleration factors (accelera-
tion factor of 20 per cardiac phase Fig. 5d), the prelimi-
nary CS reconstructions suffer from strong undersam-
pling artifacts, and the image quality is not good enough
to get precise motion between different respiratory posi-
tions (Registration RMSE ~ 0.10, see registration differ-
ence images in Fig. 6c), hence the final MC-CS recon-
struction still suffers from some blurring artifacts.

We used an adaptive binning procedure for data
acquired in 19-25 s free-breathing scans, comprising
25-33 cardiac cycles. The number of bins was in the
range of 6—7 depending on the number of acquired heart-
beats. The size of each bin was adjusted to guarantee
undersampling factors of 4-6 for each bin for prelimi-
nary CS reconstruction. This resulted in preliminary CS
reconstructions of sufficient quality to achieve accurate
registrations and good quality subsequent MC-CS recon-
structions. The number of bins was set to be higher than
five overlapping windows to get an average bin width of
2 mm. If too few bins are used (<3), this will lead to
strong intrabin motion and motion artifacts remaining in
the reconstruction despite having more than sufficient
amount of data in each bin for the CS reconstruction. If
too many bins are used, preliminary CS reconstructed
images may not have enough quality to ensure accurate
nonrigid motion estimation. In the experiments, we have
used data available from all bins in the final MC-CS
reconstruction. To further improve the reconstruction,
the data corresponding to bins having larger widths
(greater than 4 mm, for example) could be rejected for
MC-CS reconstruction to avoid high intrabin motion.

The proposed approach corrects for respiratory motion
during free-breathing cardiac acquisition, but correction
for heart-rate variability is not considered in this work.
Hence, further modifications will be needed to apply the
proposed method in arrhythmic patients. In our work,
we have assumed that all cardiac phases are in the same
respiratory motion state. However, the golden radial tra-
jectory offers the option of reconstructing multiple navi-
gator images (VNAV) for different cardiac phases, which
will be investigated in future work.

The MC-CS framework is computationally more com-
plex compared to the standard CS reconstruction, as pre-
liminary CS reconstructions have to be performed for
each bin and additionally for the final MC-CS step. With
a nonoptimized MATLAB based implementation, the av-
erage time for reconstruction of motion corrected images
from in vivo free-breathing data was in the range of 2—
2.5 h, whereas for breath-held data it was in the range of
15-30 min. However, several steps of the proposed
framework are highly parallelizable and the reconstruc-
tion time might be reduced using parallel computing
techniques.
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The proposed method has preliminary CS reconstruc-
tion, motion estimation, and final MC-CS reconstruction
as sequential stages. One of the limitations of such
architecture is that errors in any stage are propagated to
the next one. A possible way around this would be to
combine all steps into one coupled problem, using an
approach similar to generalized reconstruction by
inversion of coupled systems (GRICS) (14), where the
image reconstruction and the motion estimation steps
are combined into one coupled optimization problem,
leading to an autocalibrated motion model.

In the motion estimation step of the proposed method,
we have used intensity-based nonrigid registration algo-
rithm (25) to estimate nonrigid motion between different
respiratory positions. Instead of using registrations, block
based dense motion field estimation as done in k-t
FOCUSS (9-11) might be used for motion estimation.

The use of MC-CS framework may be extended to al-
ternative applications where the respiratory signal can
be used as a motion surrogate signal. An example of this
is motion corrected liver MRI. In other applications
where a motion surrogate signal is not available for data
binning, further novel motion correction techniques
need to be developed.

CONCLUSIONS

A mnovel reconstruction framework was presented for
dynamic cardiac MRI that benefits from the high acceler-
ation available with CS and correction for arbitrary (affine
or nonrigid) motion in the CS reconstruction. The use of
this framework was demonstrated in 2D cardiac gated
MRI using a golden radial acquisition, where respiratory
motion-free cardiac phases were reconstructed from
undersampled self-gated free-breathing k-space data.
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