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Markov state models (MSMs) are more and more widely used in the analysis of 

molecular simulations to incorporate multiple trajectories together and obtain more 

accurate timescale information of the slowest processes in the system. Typically, 

however, multiple lagtimes are used and analyzed as input parameters, yet 

convergence with respect to the choice of lagtime is not always possible. Here, we 

present a simple method for calculating the slowest relaxation time (RT) of the 

system in the limit of very long lagtimes.  Our approach relies on the fact that the 

second eigenvector’s autocorrelation function of the propagator will be 

approximately single exponential at long lagtimes. This allows us to obtain a simple 

equation for the behavior of the MSM’s relaxation time as a function of the lagtime 

with only two free parameters, one of these being the RT of the system. We 

demonstrate that the second parameter is a useful indicator of how Markovian a 

selected variable is for building the MSM. Fitting this function to data gives a limiting 

value for the optimal variational RT. Testing this on analytic and molecular dynamics 

(MD) data for Ala5 and umbrella sampling-biased ion channel simulations shows 

that the function accurately describes the behavior of the RT and furthermore that 

this RT can improve noticeably the value calculated at the longest accessible lagtime. 

We compare our RT limit to the hidden Markov model (HMM) approach that 

typically finds RTs of comparable values. However, HMMs cannot be used in 

conjunction with biased simulation data, require more complex algorithms to 

construct than MSMs, and the derived RTs are not variational, leading to ambiguity 

in the choice of lagtime at which to build the HMM model. 

  

Keywords: Markov-state model (MSM), hidden Markov model (HMM), molecular dynamics (MD), 

relaxation time (RT), lagtime 
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I. INTRODUCTION 

 

Markov state models (MSMs) have proven to be a useful tool for analyzing and understanding the 

results of a vast range of molecular dynamics (MD) simulations1,2 from folding/unfolding and 

conformational dynamics under applied forces3,4. MSMs allow for the convenient combination of 

multiple MD trajectories into a single kinetic network model from which experimental observables 

can be more accurately computed5–12. 

 

The construction of MSMs involves choosing several parameters and collective variables. These 

include for example reaction coordinates13, the discretization of the state space (e.g., metastable 

and transition state clustering14,15), and the choice of the lagtime (LT) at which transition 

probabilities are determined. The optimal and efficient calculation of these parameters is an active 

area of research and discussion16. Furthermore, there is also a number of options recently available 

to calculate unbiased MSMs from biased simulation data.17–20  

 

The slowest relaxation time (RT) of a system represents the timescale upon which the slowest 

process in the system takes place and can be calculated directly from an MSM of a molecular system 

using the eigenvalues of the propagator8. However, when constructing an MSM in practice, the RT 

will have a functional dependence, due to non-Markovian behavior, on the LT (i.e., the time at which 

the conditional transition probabilities are calculated) at which the MSM model is constructed. The 

most common condition for making a choice of a good LT value for an MSM is such that the 

Chapman-Kolmogorov equation is satisfied (RT of the MSM is effectively constant with respect to 

changes in the LT). However, in practical applications the RT will depend on the LT and the choice of 

what is considered effectively constant may be arbitrary and as the range of accessible LTs is limited 

by the length of available simulation data. Therefore, it is possible that the slowest RT of the MSM 

will not be observed to converge fully. 

 

MSMs provide timescale information that follows a variational principle21, and the better the model 

the longer timescales are obtained. More accurate estimate of the slowest RTs from MD simulations 

is usually also sought after to compare the slowest timescales modelled in the simulations with 

experimental data. We are therefore interested in computing the limiting value of the RT for the 

largest available LTs given a set of simulation trajectories using MSMs. Alternatively, RTs are also 

obtained from more complex and slower algorithms, such as HMMs, which do not follow a simple 

variational principle with respect to the RTs, and are also more difficult to implement. Here, we 

2 
 



derive an approximate expression for RT behavior applicable to MSMs and, interestingly, we show 

that the limiting RT value can deviate and thus improve significantly from the values calculated at 

the longest accessible LTs. In addition to obtaining the limiting value of the lagtime, we also fit a 

second parameter that is related with how Markovian a selected collective variable is in constructing 

MSMs at reduced dimensions. We apply our method on analytical models, as well as demonstrate 

it’s applicability on MD simulations of two systems: (i) unbiased Ala5 trajectories and (ii) Umbrella 

Sampling-biased pentameric GLIC ion channel simulation data.  

 

 

II.  THEORY 

 

i. Markov State Models 

 

An MSM at an LT τ  is constructed from MD simulation data as a set of conditional probabilities 

between an initial microstate iS  and a final microstate jS , where these microstates are discrete 

regions along our chosen (possibly multidimensional) reaction coordinate x. 

 Prob[ ( ) |x(t) ]τ= + ∈ ∈ji j im x t S S   (1) 

Here t is the start time between the transitions that we average over for all the available time 

trajectories. Typically, a sliding window10 approach is employed, such that the conditional 

probabilities (and consequently our system propagators) are not dependent on the choice of t. In 

some practical applications, one might wish to consider this dependence explicitly, and e.g., study 

how it influences the spectral properties of the propagators.22 Here, we assume that our 

probabilities are independent of the time at which the measurements are taken, and average over 

all available t. In the case of a continuous reaction coordinate, one must choose a certain 

discretization procedure.23,24 The corresponding matrix of conditional transition probabilities 

[ ]( ) jiji
M mτ =  can be used to propagate the current probability distribution (0)P  to its value at τ  

time later, ( )P τ . 

 ( ) P(0)P τ = M(τ)   (2) 

This is equivalent to the rate matrix formalism whereby the time evolution of the probability 

distribution is given by the differential equation dP P
dt

= K  and the rate matrix ( K ) and Markov 

matrix ( M(τ) ) are hence related via the LT value by e τ= KM(τ) . 
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 A spectral decomposition allows the Markov matrix to be written in terms of its eigenvalues and 

eigenvectors which provide information about the dynamics of the system.  

 

 [ ]( ) ( ) ( ) nR L
n nji

n
M j i eλ ττ ψ ψ=∑   (3) 

Where R
nψ  and L

nψ are the right and left eigenvectors, respectively, corresponding to eigenvalues 

neλ τ . nλ  are the eigenvalues of the associated rate matrix and they are ordered such that 

1 20 ...λ λ λ= < ≤ ≤ N . 

 

The second largest eigenvalue (in magnitude) of the MSM (second smallest in magnitude in the 

rate matrix formalism) describes the slowest relaxation process in the system. In practice, the RT 

determined from an MSM will have a functional dependence on the LT at which the model is 

constructed. This introduces a question of what LT an MSM should be constructed at. Typically, the 

Chapman-Kolmogorov (CK) condition, Eq. (4) is used to assess non-Markovian effects: 

 [ ]( ) ( )τ τ=nM P M n P   (4) 

which states that a system is Markovian at LT τ  if using the propagator M(τ)  n times is equivalent 

to using the propagator M(nτ) . This is equivalent to the eigenvalues (and consequently the RT) of a 

Markovian system being invariant under LT changes.  

 

In practice, MSMs of biomolecular systems are not truly Markovian due to dimensionality 

reduction, e.g., reaction coordinate discretization or insufficient data, thus the “best” LT is typically 

chosen for MSMs at the largest available values, for which the change in the RT is small. Here, 

instead of choosing a LT where the RT values appear converged at different LTs, we propose to 

estimate the optimal RT by fitting the RT curve as a function of LT with a proposed analytical 

expression, which allows us to calculate the limiting variational RT value from this fit. 

 

The quantity which we will use in our subsequent derivation is the normalized correlation 

function, (f,g, t,M)c  for dynamics propagated by M. This can be written in terms of the eigenvalues 

and the eigenvectors of the Markov matrix. The equation for the correlator (f,g, t, )c M  between two 

time-dependent quantities f and g (where f and g have elements [ ]f i  and [ ]g i , respectively, and 

ψf  represents the dot product between the two vectors f and ψ ) is given by: 8,25,26 
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2

( )( )
(f,g, t,M)

( )( )

n

N
t R R

n n
n

N
R R
n n

n

e g f
c

g f

λ ψ ψ

ψ ψ

=

=

=
∑

∑

 

 

  (5) 

 
 

ii. Lagtime dependence of the MSM relaxation times 

 

The founding assumption of the derivation laid out in this section is that in constructing a coarse 

grained MSM, these lower dimensional eigenvectors behave similarly to the eigenvectors of the 

exact dynamics. In many cases, a dynamic continuous Markovian system could effectively be 

described as an N-state system with an effective dominant eigenvalue 2
MSM

eλ τ  and effective 

eigenfunctions ψ −R MSM
n  corresponding to the correlation function: 

 ( ) 2

2

( )( )
(f,g, t,M )

( )( )

MSM
n

N
t R MSM R MSM

n n
MSM n

N
R MSM R MSM
n n

n

e g f
c

g f

λ ψ ψ
τ

ψ ψ

− −

=

− −

=

=
∑

∑

 

 

  (6) 

Equivalently, we could consider the full continuous description of the system as in Eq. (7): 

 2

2

( )( )
(f,g, t,M)

( )( )

nt R R
n n

n

R R
n n

n

e g f
c

g f

λ ψ ψ

ψ ψ

∞

=
∞

=

=
∑

∑

 

 

  (7) 

In the above equations we have kept the general expression for a correlator between two 

arbitrary functions f and g. Now we consider the concrete example where these are both equal to 

the second left eigenvector ( 2ψ −= = L MSMf g ) of the MSM. From orthogonality we then find that: 

 ( ) 2

2 2
2

2 2

2 2
2

( )( )
( , , t, M )

( )( )

λ

λ
ψ ψ ψ ψ

ψ ψ τ
ψ ψ ψ ψ

− − − −

− − =

− − − −

=

= =
∑

∑

 

 

MSM
n

MSM

N
t L MSM R MSM L MSM R MSM

n n
MSM tL MSM L MSM n

N
L MSM R MSM L MSM R MSM

n n
n

e
c e   (8) 

Now let us consider the same correlation function calculated with respect to the full dimensional 

continuous dynamics: 

  ( ) ( )
( ) ( )

( ) ( )

2 2
2

2 2
2

2 2
2

ˆ ˆ(P )(P )
ˆ ˆ(P ,P , t,M)

ˆ ˆ(P )(P )

λ

λ
ψ ψ ψ ψ

ψ ψ
ψ ψ ψ ψ

∞
− −

∞
− − =

∞
− − =

=

= =
∑

∑
∑

 

 

n

n

t L MSM R L MSM R
n n

tL MSM L MSM n
n

L MSM R L MSM R n
n n

n

e
c A e  (9) 

 
Where ( )2P̂ ψ −L MSM  is the projection of the second MSM eigenvector onto the full dimensional 

space such that the ∈i I -th element of the ( )2P̂ ψ −L MSM  vector is equal with the corresponding coarse 

grained element ( )2ψ −L MSM I , and the coefficients iA -s  are the scalar product between the projected 
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second left eigenvector ( ( )2P̂ ψ −L MSM ) of the coarse grained MSM and the i-th eigenvector of the 

continuous dynamics.  

Correlation functions that define the MSM Markov matrix elements, correspond to the choice of 

the coarse grained indicator function ( )
1, if I

f
0, if II

J
J

J
=

=  ≠
, are exactly equal at t τ=  to the full 

dimensional correlation functions with projection vectors of the full dimensional space, 

( )
1, if
0, ifI

i I
g i

i I
∈

=  ∉
:  

 

( ) ( ) ( ) ( )
2 2

, (f )(f ) ( )( ) ,λ τ λ τψ ψ ψ ψ
∞

− −

= ∈ ∈ = ∈ ∈

= = =∑ ∑∑∑ ∑∑   

MSM
n n

N
MSM R MSM R MSM R R full

I n J n I n J n
n i I j J n i I j J

M I J P J e e g g M i j P j  

 (10) 
Using Eq. (10) and writing 2

L MSMψ − as a linear combination of weighted sum of f I -s as basis vectors, 

we can equate the two correlation functions of Eqs. (8) and (9) exactly at t τ= : 

 ( ) ( ) ( )2 2 2 2
ˆ ˆ( , , ,M ) (P ,P , ,M)ψ ψ ττ τψ ψ− − − −=MSML MSM L MSM L MSM L MSMc c   (11) 

 
If we also assume that the MSM is a faithful reproduction of the full dynamics then we expect that

2 2iA A >>>  in Eq. (9). Moreover, at long LTs, only the 2λ  eigenvalue will dominate the expression in 

Eq. (9):   

 2
2

2

λ λ
∞

=

≈∑ n t t
n

n
A e A e   (12)   

If we once again assume that the coarse grained picture is accurate and 2A  does not have a 

significant LT dependence, then from Eq. (11) we can obtain the coarse grained second eigenvalue as 

a function of the LT: 

 2 2
2

2

λ τλ τ λ τ
∞

=

= ≈∑
MSM

n
n

n
e A e A e   (13) 

 

 2 2
MSM ελ λ

τ
= +   (14) 

Where 2log( )Aε =  and the relaxation timescales of the system are the inverse of the eigenvalues  

( 1relax
n

n

µ
λ

= ). This leads to Eq. (15), which describes the RT, 2
relax MSMµ − , as a function of the LT, τ : 

 2
2

2

relax
relax MSM

relax

τ µ
µ

τ εµ
− ×

=
+

  (15) 

We have thus obtained a functional dependence for the observed RT as a function of the LT τ  at 

large values, with two free parameters: the true (limiting) relaxation timescale 2µ
relax and initial rate 

of change of the effective RT ε . The latter is related to how well the second eigenvector is captured 
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with the MSM, therefore how good the collective variable used for the MSM is in describing the 

slowest process. If 0ε = , the system is perfectly Markovian with respect to the slowest relaxation 

time (there is no LT dependence). Hence, by generating the RT for a range of large LTs, fitting this 

curve to the data will yield a value for both the intrinsic limiting RT parameter ( 2µ
relax ) and the 

quality of the MSM via ε .  

The derivation demonstrated above is built upon the assumption that the correlation functions 

obtained from a full dimensional MSM and a coarse grained MSM behave similarly. As such, Eq. (15) 

is applicable to any set of data from which an MSM can be constructed. This includes umbrella 

sampling simulations, since a number of unbiasing methods exist17–20  which can construct MSMs 

from biased data.  

 

iii. Hidden Markov Models 

 

For comparison, the approach derived above is contrasted with the results of using a hidden Markov 

Model (HMM) formalism.27 This method is outlined in detail in a recent publication by Noe et al.28  

The central idea of HMMs is that there exist some set of unobserved (hidden) states on which the 

dynamics of the system are Markovian. Then from these underlying hidden states { }ih , at each 

observation time the system will project onto one of our observed states { }jS  with a given 

probability ijE . 

 

Given a set of observation data amongst the observed states one can then construct a Markov 

model that describes the dynamics amongst the hidden states and proceed to analyze the resulting 

model as one would with a regular MSM. This approach has been shown to be successful in 

analyzing MD simulation data and to accurately identify relaxation times from short LTs.28  

 

However, the RTs obtained by implementing the HMM method do not generally follow a variational 

principle, and might result in longer RTs than the true value. Moreover, the RTs do not follow the 

functional dependence as a function of the LTs as MSMs do, as there is no corresponding theoretical 

description. Therefore, our fitting procedure is not applicable for HMM data as there are situations 

where the HMM does not display the same functional dependence as our derived fitting equation. 

Such examples are also demonstrated here in the context of the pentalanine simulation data. 
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III. RESULTS 

 

The derived equation for the slowest RT is tested on three different systems: (i) a trajectory in an 

unbiased analytic potential, (ii) MD trajectories of unbiased pentalanine in explicit water and (iii) an 

umbrella sampling simulations of an ion passing through a pentameric GLIC ion channel. The results 

are compared to the RTs predicted by the HMM approach implemented in PyEMMA29 for the 

unbiased cases. A series of Markov models are constructed at different LTs and the values for the 

fitting parameters that minimize the error are calculated. The fitting parameters are obtained by 

doing least squares fitting over the range of LTs shown in the figures. 

 

 

i. Analytic potential  

The first system we tested is an analytic potential given by ( ) ( ) 02sin x / 2
8

π
π

= − − + +  
xV x c  where 

0c  is a number such that the minimum of the function in the domain 4 4xπ π− ≤ ≤   is 0 (Fig. 1).  

The system’s dynamics is constrained within this domain. We identified the elements of the 

associated rate matrix K by discretizing the x-axis into 100 bins and used an Arrhenius-like 

expression of 
( ) ( )

2
V j V i

ijK Ae
β − −  
 =  to calculate the transition rates (with 2.5A = ), where our 

analytic potential is given by the aforementioned function ( )V x .  From this rate matrix, a series of 

trajectories were generated by a simple Markov chain propagation approach on a 100 state model 

created by discretizing the interval x  into equally sized bins. We also tested the Gillespie algorithm30 

as an alternative, that gives largely similar results (data not shown). Each MSM was constructed 

using 100 independent simulations of length 40000 which is approximately twice the exact 

relaxation time of the system (~19200). This process was repeated 10 times to estimate errors bar 

on the calculated values.  These trajectories are used to construct a series of MSMs at different LTs 

as shown in Fig 1(b). The advantage of using an artificial potential is that by construction we know 

the exact relaxation time of the system and we can evaluate whether Eq. (15) is an effective method 

of calculating the RT.   
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Figure 1: Analytic free energy profile used to determine the system’s dynamics and corresponding relaxation times. 

Optimal cluster boundaries for 2-state (black vertical line) and 3-state (red dashed vertical lines) clustering are shown. 

The optimal boundaries are calculated using a recent variational method for obtaining cluster boundaries15.  

 

We considered here two interesting trajectory types based on different initial conditions. In the first 

case, we ran a series of trajectories with randomly chosen initial state and clustered the states in the 

resulting trajectory into two clusters (with a boundary shown as black vertical line, Fig 1). The 

boundaries for the (2- and 3-state) clusterings (Fig. 1) are the variationally optimal clustering 

boundaries for coarse graining as described in Ref. 15. We then extracted the RTs obtained by 

constructing an MSM and a 2-state HMM using the PyEMMA software. Our derived method is then 

used to fit to the MSM relaxation times and find the limiting value of the RT. For comparison the 

analysis is repeated using only 25% of the data, such that each trajectory is of length 10000 and 

hence is approximately half of the RT of the system (Fig. 2a.). This can be contrasted with the full 

data in Fig 2b.  As previously observed, the 2-state HMM finds RTs much closer to the true value 

than the MSMs and moreover it finds these values at shorter LTs. However, we found here that 

performing a best fit to the MSM data leads to a limiting RT that is approximately the same as the 

HMM value, yet using a much simpler approach. We find that, as expected, increasing the length of 

the trajectories results in calculated RTs closer to the exact value.  
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Figure 2: Slowest relaxation times constructed from MSMs (blue stars), HMMs (green stars) and from the fit using Eq. 

(15) (Fig. 1, black) of data obtained using an analytic potential with an exact relaxation time shown in black. The best fit 

is shown by a light blue line and the limit of the best fit is given by a dashed red line. The fitting is performed with a least 

squares approach on LTs in the range 1 to 25.     

  
The second case we examined involves a series of downhill trajectories with a 3-state clustering (Fig 

1, red dashed vertical lines show cluster boundaries).  Similarly, we ran 100 trajectories of length 

40,000 with each trajectory initiated from the top of the barrier (inside the transition state). In this 

case we observed that a 3-state MSM (blue symbols) or a 2-state HMM (green symbols) correctly 

identified the true RT while a 3-state HMM (red symbols) slightly exceeded this value. 

 
 

 
Figure 3: Relaxation timescale plots for a series of 100 downhill trajectories (simulations initialized from the top of the 

barrier). Timescales are extracted from 3-state MSM (blue stars), 2-state (green stars) and 3-state (magenta stars) 

HMM. The fitting method (solid blue line) used in conjunction with the MSM data finds a limiting value (dashed red line) 

of almost exactly the correct timescale (solid black line), as does the two state HMM. The 3-state HMM slightly exceeds 

the correct value although this is within the margin of error (shaded color).  
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These analytic examples demonstrate that using the fitting procedure in conjunction with MSMs 

obtained at different LTs results in RTs much closer to the true value than using the RT calculated at 

the largest LT. This limiting value is close to the value found by the HMM method and has error bars 

of similar magnitude.  

 
 

ii. Unbiased Ala5 simulation data 

 

In the following section we apply our approach to an MD simulation of pentalanine (Ala5). This 

system has become one of the more commonly used example systems for new MSM analysis 

methods,9 as it is one of the simplest systems allowing it to be simulated until convergence, whilst 

still demonstrating interesting kinetic behavior for helix-coil transition. Here, the Ala5 MD 

simulations of Ref. 8 are analyzed via the 10 Ramachandran angles: five φ and five Ψ backbone 

dihedral angles.  

 

The data used for our study was obtained from the study of Buchete and Hummer8 and further 

details of the simulation methods and parameters can be found there. The relevant simulations 

details for our analysis is that the data consists of four 250 ns long independent unbiased MD 

simulations at different initial conditions with frames saved every 1 ps. The RT is calculated by 

creating a single MSM from the full dataset. The error on this number is taken to be the variance on 

the RT obtained from splitting the data into four sets based on simulation time and creating MSMs 

for each set separately. Here we demonstrate the results using one of the coordinates, φ3, a 

summary of the key information of the other coordinates is presented in Table 1 and in the SI.  

 

We analyzed the LT dependence of the RTs for all angles, and found that even the MSMs 

constructed at the longest accessible LTs are not fully converged and do not satisfy the CK condition. 

Accordingly, a best fit with Eq. (15) a limiting RT is obtained that is much longer than the longest RT 

of the MSMs in many cases, particularly for the φ angles that are generally less good reaction 

coordinates. Intriguingly, however, the limiting RT values are very similar for all but one (φ5) angles 

(Table 1), and well approximate the ~6-7 ns RT obtained8 by an analysis that simultaneously 

considers all angles and uses a transition-based state assignment. Therefore, our results 

demonstrate that building MSMs using almost any of our finely discretized 1D Ramachandran angle 

provides very similar RTs as obtained from the more complex analysis, but coarse grained to strictly 

metastable states. Moreover, we can also evaluate how good a reaction coordinate is by comparing 
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the fitted ε values (Table 1), these values tell us how fast the RC converges to its long time limit. 

Smaller values indicate a faster convergence to the long time limit and hence more Markovian 

behavior. In particular, for a perfect reaction coordinate, we expect ε to vanish and thus show no LT 

dependence, therefore the smaller the value the better the reaction coordinate is in describing the 

slowest process. In general, smaller ε values also correspond to larger RTs of the MSMs at the 

longest, but not necessarily at the smallest LTs. 

  

Examining the data in Table 1, we see that φ5 has the largest ε value and hence the slowest 

convergence to its long time value. This may explain why our estimate for the long time value is so 

different from those from the other coordinates. Also the Ψ coordinates, which are known to be 

good reaction coordinates all have much smaller values of ε (<0.2, except for Ψ5 that is also known 

to correspond to the flexible end of the peptide).  This suggests that our fitted ε parameter may be 

useful in identifying good RCs. 

 

For comparison, the same data is examined using the HMM formalism implemented in PyEMMA. 

Using the full data set, HMMs find approximately the same RTs as the limiting fit (green data points 

in Fig. 4). However, while it finds consistent RTs at short LTs, the HMM appears to break down at 

earlier LTs than the MSM for longer LTs, giving rise to larger numerical error. Similar results are also 

obtained for the other Ramachandran angles of Ala5 that are included in the SI. Typically the HMM 

and limiting fit results in similar RT estimates with similar errors.  

 
Figure 4: Relaxation timescale plot for angle φ3 of the Ala5 simulation data using a 100-state MSM model (blue 

symbols and color shaded error bars). The fit with Eq. (15) is in the range 1 to 8 ns LTs (red dashed line). The relaxation 

times on the y-axis are on a log10 scale. The HMM relaxation times are also shown for 2-state (green symbols and color 

shaded error bars).  
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Table 1: Relaxation times (in ps) calculated for Markov models at short (τ = 1 ps) and long (τ = 1000 ps) LTs for each 

Ramachandran angle of Ala5. The fitted values to Eq. (15) 2
relaxµ  are also given. 

 
COORDINATE LT=1 LT=1000 EPSILON  LIMITING RT 

1 (Φ1) 6.5 516.1 1.81  6976.3 

2 (Ψ1) 952.2 2700.7 0.23  4711.3 

3 (Φ2) 25.5 567.7 1.75  6042.0 

4 (Ψ2) 687.2 3353.6 0.17  6571.1 

5 (Φ3) 33.9 515.8 2.01  6875.1 

6 (Ψ3) 653.2 2813.0 0.22  5101.8 

7 (Φ4) 65.8 424.7 2.47  9421.1 

8 (Ψ4) 490.0 1929.3 0.47  5325.4 

9 (Φ5) 27.1 302.9 3.43  11303.5 

10 (Ψ5) 189.5 740.5 1.06  5594.0 

 

 

iii. Umbrella sampling biased GLIC simulation data 

 

Analysis on a more complex system is also presented based on umbrella sampling MD simulations 

carried out previously for an ion passing through a GLIC channel (Fig. 5, top).31,32 This system is of 

particular interest for our method as the data here was generated from a series of harmonically 

biased simulations with Hamiltonian replica exchange3,9 steps attempted every 200 fs (simulation 

timestep 1 fs, full simulation parameters are described in detail in the referenced publications), 

unlike the unbiased data presented in the above examples. As mentioned previously, our fitting 

method can be applied to biased data provided one has an unbiasing procedure with which to 

construct an MSM. In this application since our data was generated using umbrella sampling, an 

MSM can be constructed using the DHAM method of Rosta and Hummer.17 
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Figure 5: Top. Representation of the simulation system with water (sticks), lipids (spheres) and the protein (sticks and 

cartoon). Bottom. Relaxation timescales (blue symbols) of MSMs for ion channel simulation data where the reaction 

coordinate is the distance from the center of the membrane. The best fit to the data points (blue line) has a limiting value 

which is greatly in excess of the longest accessible LT (red dashed line). The best fit gets much closer to the experimental 

value (black line) than the relaxation time at the longest accessible lag time. The fitting was performed with a least squares 

approach on LTs in the range of 30 to 100 fs.   

 

14 
 



To ensure adequate sampling of transitions using DHAM and taking into account that Hamiltonian 

replica exchange was also used in the original simulations with 200 fs exchange frequency, we 

constructed our MSMs at up to 100 fs lagtimes. By constructing an MSM at LT 100 fs we obtained a 

relaxation time of 4.08x108 fs which is more than an order of magnitude smaller than the estimate of 

6.25x109 fs (corresponding to a rate of 1.6x105 s-1) obtained from experimental data by Zhu and 

Hummer.31,32  

The HMM formalism cannot be used here since it is only valid for unbiased simulation data. 

However, the best fit of Eq. (15) to the data (Fig. 5, bottom) is quite good although there are some 

deviations at short LTs, which is likely due to contributions from the other relaxation timescales. In 

general, as the RT in this case is several orders of magnitude larger than the range of LTs used in the 

fit, we can only expect a good fit if 2A  dominates also at short times according to Eq. (12): 

2 2iA A >>> . The best fit corresponds to a limiting value of 4.09x109  fs that is considerably larger than 

the MSM RT value at the longest accessible LT, and agrees much more closely to the value  obtained 

from experiment. 

 
 

IV. CONCLUSIONS 

 

In the examples provided, the simple expression for the RT behavior gives values that are 

appreciably larger than the value calculated at the longest accessible LTs. In the analytic potential 

example, the hidden Markov model formalism provides similar values to the limit of the MSM fit. 

However, the timescale plots generated via HMMs have a different functional dependence on the 

LT, are not variational, and therefore the ambiguity of choosing the LT and corresponding RT 

remains when using this formalism.  

 

 In the example of the Ala5 MD data, all 10 Ramachandran angles were analyzed independently. 

We found that the limiting RTs agree closely with the values obtained from the HMMs, even though 

the largest accessible RT used for the fitting is less than half for all the φ angles. These limiting RTs 

also agree well to the analysis carried out using all angles simultaneously by Buchete and Hummer. 

Our approach using finely discretized reaction coordinates and a limiting fit therefore offers an 

easier to implement alternative to multidimensional analysis using coarse grained metastable MSMs. 

The HMM results suffer from having a greater numerical sensitivity at longer LTs due to insufficient 

sampling of the system, resulting in larger error bars than do the MSM derived RTs.  
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We can also determine limiting RT values in biased Umbrella Sampling simulations, where the 

HMM formalism cannot be applied. This is of particular use in the case of replica exchange data 

where the accessible lag times are limited by the exchange attempt frequency, regardless of how 

much simulation data is generated. Here, we need an additional assumption that the MSM 

eigenvectors are very close to the exact eigenvectors. In the ion channel example presented here, 

the derived expression fits well to the RT curve and finds a significantly larger RT value that agrees 

well with experimental ion crossing rates. 

 

Our approach may also be useful in estimating the quality of definition for the reaction coordinate 

used in a set of simulation data. If the limiting RT is significantly larger than the value calculated at 

the longest accessible LT, then it will be necessary to generate more data to adequately satisfy the 

CK condition, and it can also suggest that the reaction coordinate is not complete. Our fitted ε 

parameters thus can also be used to provide a quantitative comparison between different reaction 

coordinates in terms of how well they are able to capture the slowest process and how close they 

are to the exact second eigenvector.  

 

Our approach is straightforward to implement and does not require additional analysis besides 

determining MSMs at different LTs that are typically already done. One ambiguity lies in the precise 

choice of LTs at which to perform the fitting on the RTs. We typically chose the regions such that the 

RT is numerically stable with good statistics (i.e. not too large values) and long enough to allow the 

second eigenvalue to dominate and observe the functional dependence described by our fitting 

equation (i.e. not too small values). The optimal choice of data and range of LTs to fit our equations 

on will be subject of future work. 

 

Our examples presented here suggest that our method has a similar accuracy in estimating the RTs 

than the HMM method for analytical examples, yet it is easier to implement and readily available 

once MSMs are constructed. Our method can also provide better RT estimates in cases when the 

HMM method is not applicable, such as biased simulations as shown in the ion-channel example and 

systems where the relaxation time is too long for sufficient sampling. Future work will involve 

developing HMM methods for biased simulation data. 

 

V. SUPPLEMENTARY INFORMATION 

See Supporting Information for relaxation timescale plots of the pentalanine Ramachandran 

angles. 
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