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Review
Skin Cell Heterogeneity in Development,
Wound Healing, and Cancer
Emanuel Rognoni1 and Fiona M. Watt1,*
Highlights
Different epidermal and dermal cell
populations not only contribute to tis-
sue homeostasis but also to wound
repair and underlie tumour heteroge-
neity and progression.

Skin cellular behaviour and fate are
regulated by interactions at the level
of single cells, termed microniches,
as well as on higher scales.

Individual niche components and tran-
scription factors can be identified that
Skin architecture and function depend on diverse populations of epidermal
cells and dermal fibroblasts. Reciprocal communication between the epidermis
and dermis plays a key role in skin development, homeostasis and repair. While
several stem cell populations have been identified in the epidermis with distinct
locations and functions, it is now recognised that there is additional heteroge-
neity within the mesenchymal cells of the dermis. Here, we discuss recent
insights into how these distinct cell populations are maintained and coordi-
nated during development, homeostasis, and wound healing. We highlight the
importance of the local environment, or niche, in cellular plasticity. We also
discuss newmechanisms that have been identified as influencing wound repair
and cancer progression.
significantly affect stem cell mainte-
nance and behaviour.

Cell population-specific mechanisms
regulate cellular plasticity and beha-
viour during wound repair and tumour
development.

Epidermal stem cell plasticity is
achieved by a loss of lineage specificity
during wound healing, and may
become permanent in skin cancer.
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Skin Architecture
The skin consists of two layers, the upper epidermis and the lower dermis, which are separated
by a basement membrane, and harbours specialised structures such as hair follicles (HFs) and
sweat glands (Figure 1). The epidermis is amultilayered stratified epithelium, which is constantly
renewed throughout life; homeostasis is maintained by a balance between basal cell prolifera-
tion and suprabasal cell differentiation/stratification. At the onset of differentiation, basal cells
become detached from the basement membrane, stop proliferating, and once located in the
suprabasal cell layer, start executing terminal cell differentiation programmes culminating in loss
of the nucleus. The precise sequence of events for cell commitment and differentiation on the
single cell and tissue scale is still being investigated (reviewed in [1]).

The dermis is composed of different sublayers that are distinguished by cell type, cell density,
and extracellular matrix (ECM) composition (reviewed in [2,3]). The papillary layer is located
close to the basement membrane and shows a high fibroblast density and dense meshwork of
thin, poorly oriented collagen fibres. The reticular dermis is the central and largest layer of the
dermis, consisting of thick, highly organised collagen fibre bundles and lower cellular density.
Under the reticular dermis lies the dermal white adipose tissue (DWAT), also referred to as
hypodermis, which harbours pre- and mature adipocytes. Mature adipocytes are filled with
lipids (Figure 1B). In addition there are specialized fibroblast subsets in the skin that form the
dermal papilla (DP) (see Glossary) at the base of HFs, the dermal sheath that is wrapped
around HFs and the arrector pili muscle (APM), which is connected close to the HF bulge
and is responsible for piloerection (reviewed in [4]).

In this review we highlight recent advances in dissecting different cell subpopulations in the
epidermis and dermis. We discuss how epidermal and dermal cells interact with each other
during homeostasis, wound healing, and cancer.
Trends in Cell Biology, Month Year, Vol. xx, No. yy https://doi.org/10.1016/j.tcb.2018.05.002 1
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Glossary
Arrector pili muscle: smooth
muscle attached to the bulge region
of the hair follicle that is responsible
for piloerection.
Bulge: hair follicle region that marks
the bottom of the permanent portion
of the hair follicle and the insertion
point of the arrector pili muscle. The
bulge harbours the stem cells of the
hair follicle that divide infrequently.
Cell lineage: developmental history
of a differentiated cell based on the
cell from which it arose – an analogy
would be a family tree. As cells
progress along a lineage they
undergo transcriptional and
epigenetic changes associated with
differentiation. Cells that have a
common differentiated state can still
arise from different lineages.
Cellular state: describes the
physiological condition of a given cell
defined by molecular profiles, such
as transcriptome or proteome. Cell
state is distinct from cell lineage and
may be transient, such as
proliferative or quiescent, or the point
of transition from undifferentiated to
differentiated.
Dedifferentiation: describes the
process whereby differentiated cells
lose their specialised characteristics
and may acquire stem cell potential.
Dermal papilla: specialised subset
of mesenchymal cells located at the
base of each hair follicle. Dermal
papilla cells communicate with the
neighbouring epithelial cells and
provide essential signals for hair
follicle formation and regeneration.
Dermal sheath: connective tissue
sheath consisting of mesenchymal
cells that wrap around the hair follicle
and span from the bulge to the
dermal papilla.
Gene ontology: bioinformatic
initiative for a unifying representation
of gene and gene product attributes
across all species. It classifies gene
functions according to cellular
components, molecular function and
biological processes.
Hair follicle placode: thickening of
the embryonic epidermis that marks
the initiation of hair follicle formation.
Infundibulum: upper part of the hair
follicle, above the entry point of the
sebaceous duct, which extends to
the interfollicular epidermis.
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Figure 1. StemCell andMesenchymalCellPopulationDiversity in theSkin. (A) Stem cell and other cell populations in
the interfollicular epidermis and hair follicle. Distinct markers shown in the colour code legend have been identifiedmapping
the spatial distribution of distinct stem cell and differentiated cell populations in the hair follicle bulge, isthmus, infundi-
bulum, sebaceous gland, and interfollicular epidermis. A basement membrane separates the epidermis from the dermis.
Note that the sebacous duct is not visible. (B) Mesenchymal cell populations in the indicated dermal layer. Papillary
fibroblasts are located close to the basement membrane and surrounded by thin collagen fibres whereas reticular
fibroblasts reside in the central dermis associated with thick collagen bundles (grey). The preadipocytes are located close
to the DWAT, which harbours the mature, lipid-filled adipocytes. In addition[304_TD$DIFF], the dermis contains specialized fibroblast
subpopulations (brown) forming the DP, DS, and APM, as well as surrounding the blood vessels (pericytes [305_TD$DIFF]). Abbreviations:
APM, arrector pili muscle; DP, dermal papilla; DS, dermal sheath; DWAT, dermal white adipose tissue; ECM, extracellular
matrix; [306_TD$DIFF]Lrig1, leucine-rich repeats and immunoglobulin-like domains protein 1.
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Interfollicular fibroblasts:
fibroblasts located between hair
follicles.
Interfollicular epidermis:
multilayered epithelium that forms the
outer covering of the skin and is
distinct from adnexal structures (hair
follicles, sweat glands, and
sebaceous glands).
Isthmus: hair follicle region between
the infundibulum and bulge.
Junctional zone: region that lies at
the junction between the
infundibulum, permanent portion of
the hair follicle (bulge) and the
sebaceous gland. Also known as the
‘upper isthmus’.
Lineage tracing: genetic labelling of
single cells or populations with a
marker (e.g., fluorescent protein) that
is transmitted to all progeny, thus
tracking them in space and time.
Neutral drift model: holds that cell
fate decisions (such as stem cell
renewal or differentiation) are
governed by stochastic processes.
Niche: local environment
(microenvironment) of a cell or group
of cells that comprises specific
extracellular matrix proteins, growth
factors, cell–cell interactions, and
other signals that regulate cell
behaviour.
Orthokeratotic differentiation:
differentiation programme within the
interfollicular epidermis that is
characterised by the formation of a
granular layer and loss of nuclei in
the cornified layers. Characteristic of
mouse tail interscale interfollicular
epidermis.
Panniculus carnosus muscle:
layer of striated muscle in the
subcutaneous tissue which provides
rodent loose skin with twitching and
thermoregulation properties and is
important for wound contraction.
Papillary fibroblasts: subpopulation
of dermal mesenchymal cells that are
located close to the epidermal
basement membrane and
surrounded by thin collagen fibres.
These fibroblasts are required for hair
follicle formation in wounded or
reconstituted skin.
Parakeratotic differentiation:
differentiation programme observed
in the scale interfollicular epidermis of
mouse tail skin where the nucleus is
retained in the cornified layers and
the granular layer is absent.
Parakeratotic differentiation is a
Stem Cell Populations in the Epidermis
Multiple epithelial stem cell (SC) populations have been shown to contribute to skin homeo-
stasis. In mice a highly diverse pool of SCs has been identified in the HF[336_TD$DIFF], ranging from the lower
HF (Lgr5+[335_TD$DIFF] and CD34+/Krt15+) bulge to the upper HF (Gli1+ and Lgr6+) and junctional zone
(Lrig1+) (Figure 1A). In undamaged skin the different cells populate distinct and restricted areas
in the HF, whereas upon tissue injury these cells have the intrinsic ability to give rise to all
epidermal cells, including the interfollicular epidermis (IFE), which is located between HFs
and comprises the largest pool of keratinocytes in the skin [5,6]. How these differential cellular
behaviours are regulated at the molecular level is currently being investigated (Box 1).

During development, the epidermis is formed by a flat single layered epithelium known as the
surface ectoderm. Local induction of Wnt signalling in the epidermis and subsequently in the
dermis leads to the formation of HF placodes, which are characterised by expression of adult
SC markers such as Sox9 [7]. While adult skin SC maintenance and differentiation depend on
signals from local niches such as the HF bulge, during hair bud development, SC specification
is achieved by asymmetric cell division, differential levels of Wnt signalling, and the response to
sonic hedgehog (SHH) of basal and suprabasal cells [8]. During further maturation of the HF
placode, the SC markers start to segregate into the distinct HF structures including the HF
bulge isthmus and sebaceous gland (reviewed in [9]). When the HFs form they further
provide niche structure and signals to induce the specification of Merkel cells, a specialised
subpopulation of keratinocytes that become organised into touch domes around primary HFs.
These innervated mechanoreceptors mediate light touch sensation [10].

Beside epithelial cells (keratinocytes and Merkel cells), the adult IFE harbours melanocytes and
immune cells (Langerhans cells and gdT-cells). Until recently the organisation of epithelial SCs
within adult mouse IFE was a matter of some debate. Initial in vivo clonal analysis in mouse tail
and ear epidermis indicated that a single cell population is responsible for epidermal homeo-
stasis, and variation in clone size could be explained by stochastic (random) cell division of a
homogeneous population of keratinocytes, referred as the neutral drift model [11–13].
However, it is now clear that IFE SCs are heterogeneous. More detailed characterisation of
tail IFE, in which [338_TD$DIFF]clonal growth studies supporting the neutral drift model were carried out,
revealed that there are two distinct pathways of terminal differentiation [339_TD$DIFF], one corresponding to
the parakeratotic scale IFE that is not associated with HFs, and the other to the orthoker-
atotic interscale IFE located close to the HFs[340_TD$DIFF], each being generated and maintained by [341_TD$DIFF]a
different pool of basal cells [14,15]. The size of the scale and interscale regions is controlled by
epidermal Eda and Wnt/b-catenin signalling, and there is a corresponding patterning of
melanocytes and papillary dermal fibroblasts [14]. Lgr6+[337_TD$DIFF] cells contribute to the interscale
but not to the scale IFE [5]. The scale and interscale IFE can also be distinguished by expression
of Slc1a3 and Dlx1, respectively [16]. The two tail IFE SC compartments differ in their
proliferative dynamics, gene-expression profiles and ability to repair the epidermis after injury
[16,17].

Single cell transcriptomic analysis of mouse dorsal epidermis and cultured human epidermis has
identifiedat least twodistinct IFESC transcriptional signatures, even though there appears tobea
single terminal differentiation programme [18,19]. It is not known at present whether the cellular
heterogeneity in the IFE reflects differential susceptibility to initiating keratinocyte differentiation. In
addition the proliferative properties of cells in the IFE basal layer are influenced by the HF cycle.
Lineage tracing experiments have revealed that while cell clones associated with HF show a
rapid increase in size during the HF growth phase, distant clones cycle more slowly, yet can be
mobilised upon tissue injury [20]. Thus, while in mouse tail IFE, distinct SC populations are
Trends in Cell Biology, Month Year, Vol. xx, No. yy 3
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feature of some human skin
disorders such as psoriasis.
Pericyte: contractile mesenchymal
cell that wraps around the
endothelial cells associated with
small blood vessels in the body.
associated with unique differentiation programmes, SC heterogeneity in mouse back skin IFE
underlies a single differentiation programme and could reflect different cellular states.

To gain further insights into the proliferative dynamics of epidermal cells with age [342_TD$DIFF], in recent
yearsclonal analysis has been applied to human epidermis by making use of sunlight induced
Reticular fibroblasts:
subpopulation of dermal
mesenchymal cells that are located
in the central dermis and surrounded
by thick collagen fibres. These cells
form the first wave of dermal repair
during wound healing.
Sebaceous gland: exocrine gland
associated with the hair follicle,
which secretes sebum to lubricate
the skin surface and hair.
Transdifferentiation: describes the
process of a cell changing its lineage
identity.
Tumour stroma: microenvironment
associated with a tumour comprising
all nontransformed tissue
components such as extracellular
matrix proteins, fibroblasts, immune
cells and endothelial cells.

Box 1. Epithelial SC [323_TD$DIFF]Niche Interactions

In the IFE and HF maintenance of distinct SC populations relies on a tight interplay of intrinsic [324_TD$DIFF]factors and extrinsic
factors that [325_TD$DIFF]define the cellular microenvironment or niche (Figure I). The composition of the niche – neighbouring cells,
ECM, GF, and physical parameters – is highly location and cell specific. Key signalling pathways involved in [326_TD$DIFF]cell
microenvironment regulation in [327_TD$DIFF]the skin includeWNT/b-catenin, TGFb, BMP, fibroblast growth factor, SHH, and Notch,
which can act in an autocrine and paracrine manner [74–76].

Key intrinsic factors include SC-specific regulation of metabolism, gene expression, and chromatin arrangement. For
example, HFSCs produce more lactate than other epidermal cells, suggesting that differences in cellular glycolytic
metabolism influence SC activity [77]. In the HF bulge the transcription factor Foxc1 is specifically induced in HFSC upon
activation of the hair cycle, and regulates the expression of BMP and nuclear factor of activated T cells 1 to maintain
HFSC quiescence during HF growth [78,79].

Within the niche interactions between neighbouring cells are important regulators of cell behaviour. Upon epithelial SC
ablation neighbouring cells are able to replace niche SC even if they are committed progenitors [73]. In addition, loss of
single ECM components can be sufficient to dramatically impact SC maintenance in the niche. DNA damage induced
proteolysis of collagen 17a1 in the HF bulge with age leads to a cyclic elimination of HFSCs through epidermal terminal
differentiation [80]. Maintaining or replenishing collagen 17a1 in the skin [328_TD$DIFF]inhibits the ageing phenotypes, suggesting a
possible therapeutic application [80,81].

Extrinsic niche factors can act on a single cell level and are either produced by the SCs themselves [82] or provided by
surrounding cells such as progenitor cells, fibroblasts, resident immune cells, or sensory neurons [39,40,83–85].
Sensory neurons in contact with the HF create a perineural niche microenvironment in the bulge and isthmus. The
[329_TD$DIFF]secretion of SHH results in a specialised subset of bulge cells characterised by high Gli1 expression and activated
Hedgehog [330_TD$DIFF]signalling [83]. A subset of resident regulatory T cells located close to the HF bulge and expressing high levels
of Jag1 promotes HFSC proliferation and differentiation through direct activation of Notch signalling in HFSCs [84].
Impaired crosstalk between epidermal and dendritic T cells severely affects wound repair in aged skin, highlighting the
importance of different resident immune cell types in homeostasis as well as tissue repair [85].

Physical parameters such as tension, pressure, or temperature contribute to the cellular microenvironment, are sensed
by distinct cell populations, and influence cellular fate. For example, in epidermal SCs a mechanosensory complex
consisting of emergin, nonmyosin-IIA, and actin affects gene transcription and lineage commitment [86]. Extrinsic force-
induced relocation of emergin and a change in cellular G-actin levels leads to a switch in histone methylation and loss of
heterochromatin anchoring to the nuclear lamina, thereby inhibiting global gene transcription. It has also been noted in
single cells that there is a potential interplay between the actin cytoskeleton and epigenetic modifications [87].

It remains to be determined whether force-induced changes in chromatin structure are transient or if SCs functionally
adapt and memorise the stress response [331_TD$DIFF]. It was recently shown that epithelial SCs exhibit a memory of previous
inflammation upon tissue damage by maintaining chromosomal accessibility at key stress response genes[332_TD$DIFF], promoting
faster transcription [88]. This memory does not require the presence of resident immune cells but is critically dependent
on Aim2 (absent in melanoma 2), which is an activator of the inflammasome upstream of caspase-1 and interleukin-1b.
A side effect of this increased responsiveness to stressors in epithelial SCs might [333_TD$DIFF]be increased susceptibility to
autoimmune and hyperproliferative disorders including cancer.

Epidermal b-catenin activation not only results in cell-intrinsic effects but also alters the behaviour of neighbouring cells
[89]. Recent single cell gene expression profiling has shown on cell intrinsic b-catenin activation, gene expression
heterogeneity is reduced in neighbouring cells and the effect is most dramatic for genes associated with protein
synthesis [90]. The effect is dependent on cell–cell contact and the changes in gene expression are accompanied by a
shift to a more proliferative SC state.

It is conceivable that many more specialized SC subpopulations, maintained and defined by a complex array of niche
factors, will be discovered [334_TD$DIFF]; indeed that all epidermal cells in contact with ECM have SC properties.

4 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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Figure I. Comparison of Extrinsic and Intrinsic Regulatory Factors of Epithelial and Mesenchymal Cells in
the Skin. Note that the arrow type and thickness indicates differential impact of extrinsic (orange) and intrinsic (blue)
factors on epithelial (left) and mesenchymal (right) cells. Niche factors have been shown to exert a strong impact on all
cell populations (solid thick arrow), impact on some cell populations (solid thin arrow), or weak/unclear/unknown impact
(dashed thin arrow). A combination of extrinsic and intrinsic niche factors (black) defines the autocrine and epithelial/
mesenchymal signals. Cell–cell interactions are categorised as homotypic (between neighbouring cells of the same
type) and heterotypic (between other cell types such as immune, endothelial, or neuronal cells). Physical factors include
tension, compression, shear stress, as well as temperature. Gene and chromatin refer to intrinsic changes in gene
expression and chromatin state. Abbreviations: ECM, extracellular matrix; GF, growth factor.
mutations in cancer-associated genes, such as p53, as markers [21,22]. This has led to
conflicting conclusions about the relative importance of positive selection and neutral drift in
clonal evolution. Recently, by sequencing larger areas of skin than previously and focusing on
skin from patients who had previously developed a skin tumour, it has been possible to
establish that some human mutant clones are too large to be accounted for solely by neutral
drift. Rather, secondary mutations arising at the edge of a mutant clone have a selective growth
advantage [23].

Mesenchymal Cell Heterogeneity and Behaviour in Dermal Homeostasis
Beside its role as an ECM-rich scaffold, the dermis harbours highly diverse fibroblast, pericyte,
and immune and endothelial cell populations that dynamically change with age and influence
the properties and cellular behaviour of the overlying epidermis [2,4,24] (Figure 1B). Although
the dermal layers can be easily distinguished by collagen structure and cellular density, the
cellular events generating and maintaining dermal architecture have not been explored in detail
until recently. During mouse embryonic development, dermal fibroblasts arise from at least two
spatially and functionally distinct cell lineages that differentiate into distinct subpopulations
and contribute to the dermal layers [25,26]. Neonatal dermis fibroblasts of the papillary layer are
characterised by active Wnt signalling and proliferation, whereas populations in the reticular
layer show increased expression of ECM and immune cell associated genes [26–28]. Whether
bone-marrow-derived mesenchymal stromal cells (MSCs) contribute to the resident fibroblasts
of mouse dorsal skin under homeostatic conditions or following wounding is controversial
(reviewed in [2]).

During development, gene expression in dermal fibroblasts is highly dynamic and there is a swift
change in dermal fibroblast behaviour on the tissue scale during dermalmaturation [26,27].While
Trends in Cell Biology, Month Year, Vol. xx, No. yy 5
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fibroblasts are highly proliferative during embryonic development they rapidly stop proliferating in
the postnatal dermal growth phase, which is characterised by extensive ECM deposition and
remodelling. Clonal analysis reveals that individual fibroblastswithin clones start to be segregated
by increasedECMdeposition, leading toadramatic reduction infibroblastdensitypostnatally [27].
In addition there is an increase in the adipocyte layer with age [29]. The different dermal fibroblast
lineages are spatially segregated in P2 mouse skin, whereas mixing of lineages occurs during
subsequent dermal maturation. Recent single cell RNA sequencing studies of human dermal
fibroblasts identified several transcriptionally distinct subpopulations[343_TD$DIFF], some of which are spatially
segregated whereas others are not [28,30]. Further studies are needed to clarify whether the
transcriptionally heterogeneous fibroblast subpopulations in human dermis represent different
cellular states or functionally distinct fibroblast lineages.

While the nature of the switch between fibroblast proliferation and ECM production is unknown,
gene expression analysis of neonatal (proliferative) and aged (nondividing) dermal fibroblasts
suggests that it is controlled by epigenetic changes at the chromatin level [27,31]. In vitro
studies suggest that there is not a common nonproliferative state in fibroblasts but that it is
rather an accumulation of different states that are actively maintained [32,33]. [344_TD$DIFF]Besides actively
reinforcing the nondividing cell cycle state and repressing the transition into senescence or
terminal differentiation, aged fibroblasts remain highly metabolically active [34]. They increase
expression of ECM proteins such as collagen I and III, which is partly due to changes in
expression of miRNAs such as miR-29 [35].

Epidermal–Dermal Interactions via Reciprocal Niche Signals
Reciprocal signalling between epidermis and dermis plays a key role in skin development,
homeostasis, wound repair, and cancer. A prime example of tight temporal and spatial
regulation involves the DP fibroblasts at the base of the HF and the overlying HF bulb (reviewed
in [36,37]). The transcriptional repressor Blimp1 is a key target and mediator of this interaction
[38]. Upon HF induction during development epidermal Wnt/b-catenin signalling induces
Blimp1 expression in the DP via transforming growth factor (TGF)b signalling. In the DP,
Blimp1 promotes Wnt/b-catenin signalling activity and HF growth.

When the DPmatures during HF growth, heterogeneity of mesenchymal signals at the single cell
level involving gradients ofWnt ligands and bonemorphogenetic protein (BMP) inhibitors creates
distinct microniches along the epithelial–mesenchymal interface in the DP [39]. By secreting
distinct combinations of factors these microniches coordinate the hierarchy of self-renewal and
differentiationstatesofepithelial cells in theHFmatrix, enabling formationof thedifferentHF layers.

The HF bulge SC niche harbours a distinct combination of ECM components[345_TD$DIFF]. Bulge cells have
been shown to create microniches for APM cells by depositing specific ECM components
including nephronectin in the basement membrane [40]. Nephronectin is specifically recognised
bya8b1-integrin positivemesenchymal cells of theAPM,which is essential for proper anchorage
and function. Interestingly, regenerated HFs in wounds lack APMs[346_TD$DIFF], indicating that additional
factors or specific mesenchymal subpopulations are required for APM formation [26,27].

In contrast to the HF, in the IFE the spatial and temporal coordination of epidermal–dermal
interactions has not been defined at single cell resolution. However, in tail skin, leucine-rich
repeats and immunoglobulin-like domains protein 1 (Lrig1) expression is selectively upregu-
lated in dermal fibroblasts that underlie the interscale epidermal compartment, pointing to
different dermal niches in the interscale and scale [14].
6 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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One of the key pathways of epidermal–dermal communication is via canonical Wnt signalling.
Activation of Wnt/b-catenin in basal keratinocytes of adult mouse epidermis induces a rapid
increase in fibroblast proliferation and stimulates ECM remodelling [31,41].

It seems likely that, similar to the epidermis, dermal subpopulations are maintained by a
complex combination of extrinsic and intrinsic factors (Box 1). On the one hand, reciprocal
transplant experiments involving fibroblasts of different developmental origins (oral cavity vs
skin [347_TD$DIFF]) have revealed that their differential ECM deposition and migratory behaviour is maintained
and thus are cell intrinsic features [25]. Furthermore Sox2+ DP fibroblasts maintain their identity
in cell culture [42]. On the other hand, different fibroblast subpopulations respond to distinct
paracrine signals from the epidermis. Epidermal SHH signalling stimulates proliferation and
ECM remodelling of the upper dermis, while TGFb-2 influences proliferation, ECM deposition
and differentiation of the lower dermis [41]. In addition, secreted factors of Wnt/b-catenin
activated keratinocytes promote adipocyte differentiation and expansion of the hypodermis
[29] whereas PDGF expressed by preadipocytes stimulates HF SC activity [43].

Epidermal SC Behaviour during Wound Healing
Wound healing and tissue regeneration are coordinated processes that involve epidermal,
dermal, [349_TD$DIFF]endothelial and immune cells, and can be divided into distinct phases (reviewed in
[44,45]). Upon wounding, a blood clot forms and immune cells infiltrate the wound [350_TD$DIFF]site
(inflammatory phase). The cells from the epidermis and dermis start proliferating and migrate
into the wound bed to close the wound (proliferative phase). Then, dermal cells deposit and
restructure the ECM in the wound bed (resolution phase). Of note, wound healing responses
differ between species: for example, in mice wounds closemainly through tissue contraction as
a result of the action of the panniculus carnosusmuscle [351_TD$DIFF], a structure that is absent in human
skin (reviewed in [46]). In mouse skin, several epidermal cell populations contribute to the skin
wound repair process, leading to the picture that not only cells close to thewound edge but also
HF epithelial cells are recruited to the wound site (Figure 2A,B). How distinct cell populations
from different niches coordinate on the tissue scale and move into the wound bed, ensuring
rapid wound closure and tissue regeneration, has only recently been addressed.

In the past, two distinct mechanisms for epidermal cell movement into the wound bed have
been proposed. One involves a smooth flow of epidermis following a homeostatic rule of
unidirectional basal to suprabasal transfer of cells with front edge movement [352_TD$DIFF]that is achieved
by basal cells migrating across the wound [47,48]. The second, referred to as leapfrogging,
involves suprabasal cells sliding over the leading basal cells to become basal cells themselves
[49,50]. Two recent studies, combining in vivo live cell imaging, lineage tracing, and tran-
scriptomic analysis, have mapped the anatomy and spatiotemporal dynamics of the wound
healing response [353_TD$DIFF]and identified two concentric zones of cellular activity and differential gene
expression [51,52]. The cell population closest to the wound edge is characterised by rapid
migration and differentiation. Further from the wound there is a zone with high epidermal
proliferation and little migration along the basement membrane. In the first (migratory) zone
both basal and suprabasal cells actively migrate with increasing speed towards the wound
centre and upregulate genes involved in ECM remodelling and cell adhesion [354_TD$DIFF]. These include
integrin a5b1, a fibronectin receptor, which enables keratinocytes to migrate on the provi-
sional ECM deposited by immune and fibroblast cells. Epidermal cell migration and differen-
tiation rates are coupled, inducing a coordinated tissue thickening over time in the leading
edge. The second (proliferative) zone of keratinocytes not only supplies new cells but also
controls the involvement of the surrounding unwounded epithelium during re-epithelialisation.
During wound healing, the direction of cell movement within the migratory epidermal zone
Trends in Cell Biology, Month Year, Vol. xx, No. yy 7
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(Figure legend continued on the bottom of the next page.)

[308_TD$DIFF][310_TD$DIFF][312_TD$DIFF][314_TD$DIFF][316_TD$DIFF][318_TD$DIFF]Epidermal and Mesenchymal Cell Heterogeneity and Plasticity During Wound Healing. (A) Stem
cells and other cell subpopulations are recruited during wound healing in the epidermis and dermis. While cell lineages of
the bulge (brown), infundibulum (orange), and interfollicular epidermis (white) enter more as a cohesive cell population (solid
arrows), sebaceous duct cells (blue) migrate to the wound site suprabasally as individual cells (dashed arrow) (1). Note that
once different cells of the hair follicle and interfollicular epidermis enter the wound healing zones they exhibit similar cellular
behaviours in proliferation (2) and cell migration and differentiation (3). Wound healing zone key features are shown in
boxes, with cell division in the proliferative zone (2) and cell migration and differentiation in the migratory and differentiation
zone (3). In the mixed zone all key features can be observed. Whether these zones of collective behaviour propagate into
the dermis and how mesenchymal cells are organised during wound healing are less clear. During wound healing reticular
fibroblasts (red) are the first and most abundant fibroblasts to enter the wound bed (red thick arrow) and are the major
source of myofibroblasts (white cell in the wound bed). Papillary fibroblasts (green) enter the wound bed at a later stage
(green thin arrow). Preadipocytes (yellow), adipocytes and pericytes (brown) have also been shown to contribute to dermal
wound healing (black thin arrow). (B) Plasticity of epithelial cells during wound healing, with associated key signalling
pathways and transcription factors. Epithelial cell populations of the interfollicular epidermis and hair follicle transiently lose
their lineage identity during wound healing (central cell with red nucleus) and are able to differentiate (black arrow) or
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influences cell division orientation towards the wound bed centre, demonstrating a spatial
interplay between proliferation and migration. Clonal lineage tracing reveals that most of the
committed progenitor cells become highly proliferative and rapidly differentiate in the early
wound healing phase, whereas basal (SC-enriched) cells become activated and increase the
pool of SCs later. These studies suggest a model whereby the nonproliferating leading edge
functions as a scaffold, preparing the wound bed for efficient repopulation towards the wound
bed centre and protecting SCs during tissue repair. The clonal dynamics of different SC
populations from the HF and IFE are similar, indicating that the behaviour balancing prolifera-
tion and differentiation within the wound healing zones is independent of the original cell.
Furthermore, the leading edge cell gene signature is specified independently of cell division or
inflammation. This indicates that both intrinsic and extrinsic factors establish the wound
healing zones.

Epidermal wound healing [355_TD$DIFF]induces plasticity in differentiated sebaceous duct cells such that they
dedifferentiate, proliferate, and contribute to long-termmaintenance of the IFE [53]. These cells
are located in thesuprabasal layerof thesebaceousduct thatconnects theHF junctional zonewith
the sebaceous gland and are defined by high expression of the transcription factor GATA[356_TD$DIFF]6, a key
regulator of the sebaceous duct lineage during homeostasis [53]. Upon wounding, differentiated
GATA6 lineage cells in the HF duct becomemobilised, migrate to thewound site suprabasally as
individual cells, reattach to thebasementmembrane,andstartproliferating to regenerate the IFE in
the wound bed [53]. Mitogen-activated protein kinase [357_TD$DIFF]signalling is a key pathway that regulates
keratinocyte differentiation,while the signals regulatingdedifferentiation remain unclear [53,72]. In
vivo live imaging reveals thatdownwardcellmigration ismorepronouncedat thewoundedge than
distally. This is in contrast to the [358_TD$DIFF]behaviour of basal Lrig1+[348_TD$DIFF] cells of the HF junctional zone[359_TD$DIFF], which
enter the wound bed as a cohesive basal cell population [6,51,53]. GATA6 lineage cells not only
contribute towound repair but alsopopulate the lowerHFandsebaceousglandofHFclose to the
wound [53]. Similar cell displacement hasbeenobserved in regenerating tail IFE.Uponwounding,
SC populations in the interscale and scale migrate into neighbouring territories and contribute to
tissue repair outside their normal niche [16]. This observation indicates a loss of lineage restriction
during tissue repair, which is controlled by the transcription factors KLF5 and Sox9 [54].

Mesenchymal Cell Dynamics during Wound Repair and Fibrosis
Our understanding of epidermal wound healing has rapidly advanced, while the contribution of
different dermal cell populations has been less clear (Figure 2A,C). Fibroblasts in the vicinity of a
wound are known to become rapidly activated, are referred to as myofibroblasts, and change
their behaviour and transcriptional program. TGFb signalling is the key pathway for fibroblast
activation [360_TD$DIFF][26,55,58,61]. During the whole wound repair process there is an intensive and highly
dynamic crosstalk with multiple immune cell populations, which influences mesenchymal cell
behaviour (reviewed in [44,45]). We and others have shown that distinct fibroblast populations
show differential recruitment and contribution to wound healing [25–27]. Fibroblasts residing in
the reticular dermis mediate the first phase of wound repair and are the major source of
myofibroblasts, whereas fibroblasts in the papillary dermis enter the wound at a later stage and
are essential for HF regeneration. Moreover, while fibroblasts from the DP do not contribute to
dedifferentiate (grey arrow) and acquire the potential to regenerate all tissue structures. (C) Plasticity of mesenchymal cells
during wound healing with associated key signalling pathways. Mesenchymal cells close to the wound bed become
activated (grey arrow), are referred to as myofibroblasts, and change their behaviour and transcriptional programme
(central cell with red nucleus). Whether APM fibroblasts also participate is unknown (dashed grey arrow). During the wound
resolution phase myofibroblasts are able to convert to adipocytes, interfollicular fibroblasts (solid black arrow) and
presumably also other cell populations (dashed black arrow). Abbreviations: APM, arrector pili muscle; BMP, bone
morphogenetic protein; MAPK, mitogen-activated protein kinase; TGFb, transforming growth factor b.
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mal Cell Heterogeneity in Cancer.
Distinct epithelial cell populations give rise
to different tumour types. Oncogenic
b-catenin signalling in different hair follicle
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Krt15+, pink; Gli1+, green; Lgr5+, violet,
and Lgr6+, dark blue) and isthmus junc-
tional zone (Lirg1+, orange) inducedifferent
types of benign hair follicle tumours (grey
circle), while BCCs only arise from basal
(Krt14+) interfollicular epidermis (white cell)
and Lrig1+ cells of the hair follicle isthmus
and infundibulum (orange cell) upon
Hedgehog signalling activation (dark grey
circle). In contrast, a hyperactive Kras
mutation is able to induce SCC in all epi-
dermal lineages (lightgreycircle). If different
tumour types are associated with distinct
mesenchymal subpopulations (green,
papillary fibroblast; red, reticular fibroblast;
yellow, preadipocyte; white, undefined
fibroblast; brown, APM, dermal sheath,
dermal papilla fibroblast, pericyte [321_TD$DIFF]and adi-
pocyte) (dashed arrows) and if mesenchy-
mal subpopulation specific signalling
pathways are involved (?), is unclear.
Abbreviations: APM, arrector pili muscle;
BCC, basal cell carcinoma;HF, hair follicle;
SCC, squamous cell carcinoma.
wound repair, preadipocytes and adipocytes do contribute [361_TD$DIFF][56,57]. Intriguingly, depletion or
manipulation of specific mesenchymal subpopulations in the dermis [362_TD$DIFF]has been shown to
significantly reduce tissue fibrosis or scar formation upon tissue injury [363_TD$DIFF][25,55].

Fibroblast-specific inhibition of Wnt/b-catenin signalling in mice enhances HF regeneration by
preventing the early expansion of lower dermal cells [27]. In contrast[364_TD$DIFF], sustained Wnt/b-catenin
signalling in dermal fibroblasts impairs regeneration, induces fibrotic lesions in adult skin, and
inhibits adipocyte differentiation [365_TD$DIFF][59,60]. Lineage tracing experiments reveal that this is due to a
TGFb-mediated conversion of adipocytes to myofibroblasts [366_TD$DIFF][58]. Conversely, during wound
healing, BMP signalling from regenerating HFs induces myofibroblasts to convert to adipocytes
in the wound bed [61]. The signals promoting myofibroblast conversion to other mesenchymal
cell populations are currently unclear.

Epithelial Plasticity in Cancer
Similar to wound healing, different epidermal and dermal populations contribute to cancer in
different ways (Figure 3). This is well illustrated in the case of oncogenic b-catenin signalling,
where depending on the epidermal SC type in which stabilised b-catenin is expressed, different
tumours are formed. For example, targeting the Lgr5+ population promotes formation of
pilomatricomas (benign HF skin tumours), while Lrig1+ cells develop trichoadenomas (a rare
benign follicular tumour with cornifying cysts) and the Lgr6+ population gives rise to derma-
tofibromas within the IFE [5]. Similarly, activation of Hedgehog signalling demonstrates that only
basal Krt14+ cells in the IFE and HF infundibulum can initiate basal cell carcinoma (BCC)
formation [15,62]. BCC initiation and progression are highly dependent on expression of the
transcription factor Sox9 [63]. In contrast, squamous cell carcinoma (SCC) can originate from
10 Trends in Cell Biology, Month Year, Vol. xx, No. yy
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more than one epidermal population, including HF bulge SCs, as overexpression of a hyper-
active Kras mutant in different epidermal lineages induces tumours with comparable efficiency
[64]. Consistent with this, it has been shown that SCC cells harbour a distinct open chromatin
landscape combining active gene signatures from distinct SC lineages [54]. This state of lineage
infidelity can be transiently observed in wounds, [368_TD$DIFF]but persists during malignant progression,
promoting uncontrolled growth and heterogeneous tumour cell behaviour [54,65].

During tumour initiation, mutant epidermal cells have the ability to engage nontransformed (healthy)
cells via paracrine signalling, such asWnt ligand secretion, to induce aberrant growth of the whole
tissue [66]. Intriguingly, the converse is also observed: a tumour protective, ‘neighbourhoodwatch
like’ mechanism, contributes to neoplastic tumour suppression. Using an in vivo live imaging
approach, it was observed that healthy epithelial cells routinely recognise, surround, and eliminate
mutant cells to restore tissue homeostasis, revealing an innate cellular ability to prevent over
proliferation and tumour initiation [67]. So far the molecular mechanism of cell recognition and
elimination andwhether it is restricted to specific cell types remains unclear. The tumour-promoting
as well as protective effects upon oncogenic b-catenin signalling rely on Wnt ligand secretion,
suggesting that distinct Wnt ligand combinations balance cellular plasticity and behaviour.

Mesenchymal Heterogeneity in the Tumour Microenvironment
The tumour microenvironment, including the tumour stroma, comprising all nontransformed
tissue components associated with a tumour, can have both tumour-promoting and -inhibitory
effects. Besides endothelial and immune cells a major component of the microenvironment are
cancer-associated fibroblasts (CAFs), which play an important role in the evolution of solid
tumours. Similar to myofibroblasts, CAFs seem to originate from different mesenchymal pop-
ulations, ranging fromnormalfibroblastsandMSCsto transdifferentiatedepithelial andendothelial
cells. In contrast to normal fibroblasts, CAFs either residewithin the tumourmargin or infiltrate the
tumour mass and show increased proliferation, migration, ECM deposition, and secretion of
growth factors and other ECM modulators (reviewed in [68,69]). Functionally, while CAFs are
highly heterogeneous [369_TD$DIFF]in terms of gene expression, they show enrichment of similar gene
ontology classes such as cell adhesion, immune response [370_TD$DIFF]and ECM modulation, suggesting
that different cell types under similar conditions perform similar tasks. Thus it has been proposed
that CAFs represent a dynamic cellular state of fibroblast-like cells in the vicinity of the tumour
rather than a specific cell lineage [69]. This state could bemaintained by a combination of genetic
mutations, epigenetic alterations, and persistent environmental effects.

Similar to wound healing it seems likely that distinct fibroblast populations give rise to CAFs.
Indeed, one study identified that in adult mice CD26+[367_TD$DIFF] fibroblasts are the main contributor to
ECM deposition in a skin melanoma xenograft model [25]. Depletion of this fibroblast sub-
population significantly reduced tumour growth, revealing that targeting distinct fibroblast
subpopulations impacts tumour development. Inhibition of CD26 activity reduces the growth
of wound-induced epidermal tumours, although it must be noted that CD26 is expressed [371_TD$DIFF]by
both epidermal and dermal cells and that during tumour progression there are dynamic
changes in dermal CD26 expression [70].

To date there have been few studies of how different fibroblast lineages contribute to [372_TD$DIFF]tumour
stroma formation. Intriguingly, the different tumours induced by stabilizing b-catenin in Lgr5+,
Lgr6+, and Lrig1+ epithelial cells exhibit both similarities and differences in stromal composition.
In all three cases there are local increases in fibroblast proliferation, ECM remodelling, and
expression of CD [373_TD$DIFF]44, a major hyaluronic acid surface receptor. However, dermal CD26
expression is upregulated in the stroma of Lgr6 but not Lgr5 or Lrig1 tumours. Conversely
Trends in Cell Biology, Month Year, Vol. xx, No. yy 11
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Outstanding Questions
How is the behaviour of cell popula-
tions in the epidermis and dermis coor-
dinated during wound repair and
tumour development on the tissue
scale?

What defines and [376_TD$DIFF]distinguishes cellular
state and cellular type in the skin?

What are cell type specific and univer-
sal mechanisms for establishing and
maintaining cellular identity and plas-
ticity in the skin?

What are the key changes that create a
pro-oncogenic environment?

How do distinct epidermal and dermal
cell populations contribute to tumour
heterogeneity and progression?

What are the dynamics and organisa-
tion of microniches in the dermis and
epidermis?
Lgr6 and Lrig1 tumours have associated stromal inflammation while Lgr5 tumours do not [5]. It
will be of interest to discover whether or not these differences reflect differences in the lineages
of fibroblasts associated with each type of tumour or whether fibroblasts respond to tumour-
specific signals independent of lineage.

Concluding Remarks
In recent years our appreciation of epidermal and dermal cell heterogeneity has grown, together
with a realisation that cells are capable of exhibiting plasticity and changing fate through
dedifferentiation and transdifferentiation. It is now clear that the responses of the skin to the
challenges of wounding or tumorigenesis reflect a combination of changes in cell intrinsic
properties and responses to different microenvironments. Microniches and cell memory are
exciting new concepts that warrant further investigation, together with unravelling the distinc-
tion between cell types and states, for example in tumour stroma (see Outstanding Questions).

As more single cell gene expression profiles become publically available and tools to make
those datasets readily accessible to researchers with a biological background improve [19,71],
we anticipate greater appreciation of the significance of cellular heterogeneity. The combination
of experimental data with computational modelling [16,20,23,72,73] not only allows rigorous
evaluation of data quality but also fosters hypothesis generation. Ultimately we anticipate major
benefits in terms of understanding tissue scale behaviour, dynamics, and the interplay of
distinct cell populations during [374_TD$DIFF]tissue development, homeostasis [375_TD$DIFF]and disease .
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