
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1017/fms.2016.27

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Dembélé, L., Diamond, F., & Roberts, D. P. (2016). Serre weights and wild ramification in two-dimensional
Galois representations. FORUM OF MATHEMATICS SIGMA, 4, 1-48. Article e33.
https://doi.org/10.1017/fms.2016.27

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1017/fms.2016.27
https://kclpure.kcl.ac.uk/portal/en/publications/094b3a11-ee49-49e5-95a8-bd602a53ace4
https://doi.org/10.1017/fms.2016.27


Forum of Mathematics, Sigma (2016), Vol. 4, e33, 49 pages
doi:10.1017/fms.2016.27 1

SERRE WEIGHTS AND WILD RAMIFICATION IN
TWO-DIMENSIONAL GALOIS REPRESENTATIONS
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Abstract

A generalization of Serre’s Conjecture asserts that if F is a totally real field, then certain
characteristic p representations of Galois groups over F arise from Hilbert modular forms.
Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois
representation at primes over p. This characterization of the weights, which is formulated using
p-adic Hodge theory, is known under mild technical hypotheses if p > 2. In this paper we give,
under the assumption that p is unramified in F , a conjectural alternative description for the set of
weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct
bases for local Galois cohomology spaces in terms of which we identify subspaces that should
correspond to ones defined using p-adic Hodge theory. The resulting conjecture amounts to an
explicit description of wild ramification in reductions of certain crystalline Galois representations.
It enables the direct computation of the set of Serre weights of a Galois representation, which we
illustrate with numerical examples. A proof of this conjecture has been announced by Calegari,
Emerton, Gee and Mavrides.

2010 Mathematics Subject Classification: 11F80 (primary); 11S15, 11S25 (secondary)

1. Introduction

A conjecture of Serre [24], now a theorem of Khare and Wintenberger [17, 18],
asserts that if p is prime and

ρ : GQ → GL2(Fp)

c© The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.27
Downloaded from https:/www.cambridge.org/core. King's College London, on 04 Jul 2017 at 11:28:50, subject to the Cambridge Core

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:lassina.dembele@gmail.com
mailto:fred.diamond@kcl.ac.uk
mailto:roberts@morris.umn.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/fms.2016.27&domain=pdf
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.27
https:/www.cambridge.org/core


L. Dembélé, F. Diamond and D. P. Roberts 2

is a continuous, odd, irreducible representation, then ρ arises from a Hecke
eigenform in the space Sk(Γ1(N )) of cusp forms of some weight k and level
N . Serre in fact formulated a refined version of the conjecture specifying the
minimal such k and N subject to the constraints k > 2 and p - N ; a key point is
that the weight depends only on the restriction of ρ to a decomposition group at p,
and the level on ramification away from p. The equivalence between the weaker
version of the conjecture and its refinement was already known through the work
of many authors for p > 2, and finally settled for p = 2 as well by Khare and
Wintenberger.

Buzzard, Jarvis and one of the authors [4] considered a generalization of Serre’s
conjecture to the setting of Hilbert modular forms for a totally real number field F
and formulated an analogous refinement for representations ρ : G F → GL2(Fp)

assuming p is unramified in F ; versions without this assumption are given in [22]
and [12]. The equivalence between the conjecture and its refinement was proved,
assuming p > 2 and a Taylor–Wiles hypothesis on ρ, in a series of papers by Gee
and several sets of co-authors culminating in [15] and [14], with an alternative to
the latter provided by Newton [20]. Generalizations to higher-dimensional Galois
representations have also been studied by Ash, Herzig and others beginning with
[2]; see [13] for recent development.

One of the main difficulties in even formulating refined versions of
generalizations of Serre’s conjecture is in prescribing the weights; the approach
taken in [4] and subsequent papers, at least if ρ is wildly ramified at primes
over p, is to do this in terms of Hodge–Tate weights of crystalline lifts of ρ.
The main purpose of this paper is to make the recipe for the set of weights more
explicit. In view of the connection between Serre weights and crystalline lifts, this
amounts to a conjecture in explicit p-adic Hodge theory about wild ramification
in reductions of crystalline Galois representations.

We now explain this in more detail. Let F be a totally real number field, O its
ring of integers, n a nonzero ideal of O, SF the set of embeddings F → R and
suppose Ek ∈ ZSF with all kτ > 2 and of the same parity. A construction completed
by Taylor in [25] then associates a p-adic Galois representation to each Hecke
eigenform in the space of Hilbert modular cusp forms of weight Ek and level n.
One then expects that every continuous, irreducible, totally odd

ρ : G F → GL2(Fp)

is modular in the sense that it arises as the reduction of such a Galois
representation. One further expects that the prime-to-p part of the minimal
level from which ρ arises is its Artin conductor, but the prediction of the possible
weights is more subtle. If p is unramified in F , then a recipe is given in [4] in
terms of the restrictions of ρ to decomposition groups at primes p over p. An
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Serre weights and wild ramification in two-dimensional Galois representations 3

interesting feature of this recipe not so apparent over Q is the dependence of the
conjectured weights on the associated local extension class when the restriction
at p is reducible. If

ρ|G Fp
∼
(
χ1 ∗
0 χ2

)
(1)

for some characters χ1, χ2 : G Fp → F
×
p , then the resulting short exact sequence

0→ Fp(χ1)→ Vρ → Fp(χ2)→ 0

defines a class in

cρ ∈ Ext1
Fp[G K ](Fp(χ2),Fp(χ1)) ∼= Ext1

Fp[G K ](Fp,Fp(χ)) ∼= H 1(G K ,Fp(χ))

where K = Fp and χ = χ1χ
−1
2 . The class cρ is well defined up to a scalar in F

×
p ,

in the sense that another choice of basis with respect to which ρ|G K has the form
(1) yields a nonzero scalar multiple of cρ . Alternatively, we may view cρ as the
class in H 1(G K ,Fp(χ)) defined by the cocycle z obtained by writing

χ−1
2 ⊗ ρ|G K ∼

(
χ z
0 1

)
.

The space H 1(G K ,Fp(χ)) has dimension at least [K : Qp], with equality
unless χ is trivial or cyclotomic. Whether ρ is modular of a particular weight
depends on whether this extension class lies in a certain distinguished subspace
of H 1(G K ,Fp(χ)) whose definition relies on constructions from p-adic Hodge
theory. If K 6= Qp and ρ is wildly ramified at p, then the associated extension
class is a nontrivial element of a space of dimension at least two, making it
difficult to determine the set of weights without a more explicit description of
the distinguished subspaces.

We address the problem in this paper by using local class field theory and
the Artin–Hasse exponential to give an explicit basis for the space of extensions
(Corollary 5.2), in terms of which we provide a conjectural alternate description of
the distinguished subspaces (Conjecture 7.2). We point out that a related problem
is considered by Abrashkin in [1]; in particular, the results of [1] imply cases
of our conjecture where the distinguished subspaces can be described using the
ramification filtration on G K .

An earlier version of this paper was posted on the arXiv in March 2016. At
the time, we reported that a proof of Conjecture 7.2 under certain genericity
hypotheses would be forthcoming in the Ph.D thesis of Mavrides [19]. In fact,
Conjecture 7.2 has now been proved completely by Calegari, Emerton, Gee, and
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L. Dembélé, F. Diamond and D. P. Roberts 4

Mavrides in a preprint posted to the arXiv in August 2016 [5]. We remark that
our restriction to the case where K is unramified over Qp is made essentially for
simplicity. The methods of this paper, and indeed of [5], are expected to apply to
the general case where K/Qp is allowed to be ramified, but the resulting explicit
description of the distinguished subspaces is likely to be much more complicated.

The now-proved Conjecture 7.2 immediately yields an alternate description
of the set of Serre weights for ρ. Combining this with the predicted modularity
of ρ gives Conjecture 7.3, for which we have gathered extensive computational
evidence. Indeed the appeal of our description is that one can compute the set
of Serre weights directly from ρ. In this paper, we illustrate this computation
systematically in several examples with K/Qp quadratic and p = 3. A sequel
paper [9] will support Conjecture 7.3 via a much broader range of examples and
elaborate on computational methods. In particular, the examples provided in [9]
illustrate subtle features of the recipe for the weights arising only when χ is
highly nongeneric, with particular attention to the case p = 2. Such examples
were instrumental in leading us to Conjecture 7.2 in its full generality.

This paper is structured as follows: In Section 2 we recall the general statement
of the weight part of Serre’s conjecture for F unramified at p. In Sections 3,
4 and 5, we study the space of extensions H 1(G K ,Fp(χ)) in detail, arriving
at an explicit basis in terms of the Artin–Hasse exponential. In Sections 6
and 7, we use this basis to give our conjectural description of the distinguished
subspaces appearing in the definition of the set of Serre weights. We illustrate this
description in more detail in the quadratic case in Section 8, and with numerical
examples for p = 3 in Sections 9 and 10. We remark that aside from these
examples and the discussion of Serre’s conjecture at the end of Sections 2 and 7,
the setting for the paper is entirely local.

2. Serre weights

2.1. Notation and general background. Let K be an unramified extension of
Qp with ring of integers OK and residue field k, and let f = [K : Qp] = [k : Fp].
We fix algebraic closures Qp and K of Qp and K , and let T denote the set of
embeddings K → Qp. We let Fp denote the algebraic closure Fp obtained as
the residue field of the ring of integers of Qp, and we identify T with the set of
embeddings k → Fp via the canonical bijection.

For a field F , we write G F for the absolute Galois group of F . We let IK

denote the inertia subgroup of G K , that is, the kernel of the natural surjection
G K → Gk . We write Frob for the absolute (arithmetic) Frobenius elements on k
and on Fp, and FrobK for the arithmetic Frobenius element of G K/IK

∼= Gk . We
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Serre weights and wild ramification in two-dimensional Galois representations 5

let ArtK : K× → Gab
K denote the Artin map, normalized in the standard way, so

the image of any uniformizer of K in G K/IK is Frob−1
K .

Recall that the fundamental character ω f : G K → k× is defined by

ω f (g) = g(π)/π mod πOL

where π is any root of x p f−1 + p = 0 and L = K (π) ⊂ K . Then the composite
of ω f with the Artin map K× → Gab

K → k× is the homomorphism sending p
to 1 and any element of O×K to its reduction mod p. Replacing π by a root of
x p f−1+ up = 0 for u ∈ O×K alters ω f by an unramified character, so in fact ω f |IK

is independent of the choice of uniformizer up of K . For each τ ∈ T , we define
the associated fundamental character ωτ : IK → F

×
p to be τ ◦ ω f |IK .

A Serre weight (for GL2(K )) is an irreducible Fp-representation of GL2(k).
Recall that these are precisely the representations of the form

VEd,Eb =
⊗
τ∈T

(det dτ ⊗k Symbτ−1k2)⊗k,τ Fp,

where dτ , bτ ∈ Z and 1 6 bτ 6 p for each τ ∈ T . Moreover, we can assume that
0 6 dτ 6 p − 1 for each τ ∈ T and that aτ < p − 1 for some p, in which case
the resulting (p f − 1)p f representations VEd,Eb are also inequivalent.

Let ρ : G K → GL2(Fp) be a continuous representation. The next two
subsections recall from [4] the definition of the set W (ρ) of Serre weights
associated to ρ.

2.2. Serre weights associated to a reducible representation ρ. Suppose
first that ρ is reducible and write ρ ∼ (χ1 ∗

0 χ2

)
. The isomorphism class of

ρ is then determined by the ordered pair (χ1, χ2) and a cohomology class
cρ ∈ H 1(G K ,Fp(χ)), where we set χ = χ1χ

−1
2 . We first define a set

W ′(χ1, χ2) =

(VEd,Eb, J )

∣∣∣∣∣∣∣∣∣∣
J ⊂ T, χ1|IK =

∏
τ∈T

ωdτ
τ

∏
τ∈J

ωbτ
τ

and χ2|IK =
∏
τ∈T

ωdτ
τ

∏
τ 6∈J

ωbτ
τ

 . (2)

For each pair (V ,J )∈W ′(χ1,χ2)we define a subspace LV,J ⊂ H 1(G K ,Fp(χ)),
but we first need to recall the notion of labelled Hodge–Tate weights.

Recall that if V is an n-dimensional vector space over Qp and
ρ : G K → AutQp

(V ) is a crystalline (hence de Rham) representation, then
D = DdR(V )= (BdR⊗Qp V )G K is a free module of rank n over K⊗Qp Qp endowed
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L. Dembélé, F. Diamond and D. P. Roberts 6

with an (exhaustive, separated) decreasing filtration by (not necessarily free)
K ⊗Qp Qp-submodules. Writing K ⊗Qp Qp

∼=∏τ∈T Qp, we have a corresponding
decomposition D = ⊕

τ∈T Dτ where each Dτ is an n-dimensional filtered
vector space over Qp. For each τ ∈ T , the multiset of τ -labelled Hodge–Tate
weights of V are the integers m with multiplicity dimQp

gr−m Dτ . In particular,

if ψ : G K → Q
×
p is a crystalline character, then it has a unique τ -labelled

Hodge–Tate weight mτ for each τ ∈ T . One finds that the vector Em = (mτ )τ∈T

determines ψ up to an unramified character, and that ψ |IK =
∏

τ∈T ω
mτ
τ .

Returning to the definition of LV,J , suppose that V = VEd,Eb. Let χ̃1 be the
crystalline lift of χ1 with τ -labelled Hodge–Tate weight dτ + bτ (respectively
dτ ) for τ ∈ J (respectively τ 6∈ J ) such that χ̃1(ArtK (p)) = 1, and similarly let
χ̃2 be the crystalline lift of χ2 with τ -labelled Hodge–Tate weight dτ (respectively
dτ + bτ ) for τ ∈ J (respectively τ 6∈ J ) such that χ̃2(ArtK (p)) = 1. We then
let L ′V,J denote the set of extension classes associated to reductions of crystalline
extensions of χ̃2 by χ̃1. We then set LV,J = L ′V,J except in the following two cases
(continuing to denote χ1χ

−1
2 by χ ):

• if χ is cyclotomic, Eb = (p, . . . , p) and J = T , then LV,J = H 1(G K ,Fp(χ));

• if χ is trivial and J 6= T , then LV,J = L ′V,J + H 1
ur(G K ,Fp(χ)) where

H 1
ur(G K ,Fp(χ)) is the set of unramified homomorphisms G K → Fp.

Finally we define W (ρ) by the rule

V ∈ W (ρ) ⇐⇒ (V, J ) ∈ W ′(χ1, χ2) and cρ ∈ LV,J for some J ⊂ T . (3)

Thus V ∈ W (ρ) if and only if cρ ∈ LV where LV is defined as the union of the
LV,J over

SV (χ1, χ2) = {J ⊂ T | (V, J ) ∈ W ′(χ1, χ2)}
(so LV depends on the ordered pair (χ1, χ2), and it is understood to be the empty
set if SV (χ1, χ2) = ∅).

We remark that LV,J has dimension at least |J |, with equality holding unless
χ = χ1χ

−1
2 is trivial or cyclotomic (see [4, Lemma 3.12]). Moreover, in a

typical situation (for example if χ = ∏τ∈T ω
aτ
τ with 1 < aτ < p − 1 for all τ ),

the projection from W ′(χ1, χ2) to the set of subsets of T is bijective, and the
projection to the set of Serre weights is injective (see [4, Section 3.2]). In that
case W ′(χ1, χ2) has cardinality 2 f and hence so does that of W (ρ) if cρ = 0. On
the other hand, one would expect that for ‘most’ ρ, the class cρ does not lie in
any of the proper subspaces LV,J for J 6= T , so that W (ρ) contains a single Serre
weight.
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Serre weights and wild ramification in two-dimensional Galois representations 7

It is not however true in general that the projection from W ′(χ1, χ2) to the set
of Serre weights is injective, that is, SV (χ1, χ2) may have cardinality greater than
1, in which case it is not immediate from the definition of LV that it is a subspace
of H 1(G K ,Fp(χ)). However, it is proved in [15] if SV (χ1, χ2) 6= ∅ and p > 2,
then there is an element Jmax ∈ SV (χ1, χ2) such that LV = LV,Jmax, so that LV is
in fact a subspace. Indeed the proof of Theorem 9.1 of [15] shows that if p > 2
and V = VEd,Eb, then ρ has a crystalline lift with τ -labelled Hodge–Tate weights
({dτ , dτ + bτ })τ∈T , if and only if SV (χ1, χ2) 6= ∅ and cρ ∈ LV,Jmax. It follows that
LV,J ⊂ LV,Jmax for all J ∈ SV (χ1, χ2) (using that Jmax = T in the exceptional case
where χ is cyclotomic and Eb = (p, . . . , p)), and that V ∈ W (ρ) if and only if ρ
has a crystalline lift with τ -labelled Hodge–Tate weights ({dτ , dτ + bτ })τ∈T .

The main aim of this paper is to use local class field theory to give a more
explicit description of H 1(G K ,Fp(χ)), and to use this description to define
subspaces which we conjecture coincide with the LV (even for p = 2).

2.3. Serre weights associated to an irreducible representation ρ. While the
focus of this paper is on the case where ρ is reducible, for completeness we recall
the definition of W (ρ) in the case where ρ is irreducible. We let K ′ denote the
quadratic unramified extension of K , k ′ the residue field of K ′, T ′ the set of
embeddings of k ′ in Fp, and π the natural projection T ′ → T . For τ ′ ∈ T ′, we
let ωτ ′ denote the corresponding fundamental character of IK ′ = IK . Note that if
ρ is irreducible, then it is necessarily tamely ramified and in fact induced from a
character of G K ′ . We define W (ρ) by the rule:

ρ|I ∼
∏
τ∈T

ωdτ
τ


∏
τ ′∈J ′

ω
bπ(τ ′)
τ ′ 0

0
∏
τ ′ /∈J ′

ω
bπ(τ ′)
τ ′


VEd,Eb ∈ W (ρ)⇐⇒

for some J ′ ⊂ T ′ such that π : J ′
∼−→T .

(4)

It is true in this case as well that W (ρ) typically has cardinality 2 f (see [4,
Section 3.1]). Moreover, the result of [15] characterizing W (ρ) in terms of
reductions of crystalline representations (for p > 2) holds in the irreducible case
as well.

2.4. The case K = Q p. To indicate the level of complexity hidden in the
general recipe for weights, we describe the set W (ρ) more explicitly in the
classical case K = Qp. Replacing ρ by a twist, we can assume ρ|IQp

has the

form
(
ωa

2 0
0 ω

pa
2

)
or
(
ωa ∗
0 1

)
for some a with 1 6 a 6 p− 1 (where ω = ω1 is the mod
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L. Dembélé, F. Diamond and D. P. Roberts 8

p cyclotomic character). In the first case we find that W (ρ) = {V0,a, Va−1,p+1−a}
(with the two weights coinciding if a = 1). In the second case we may further
assume (after twisting) that ρ = (χ ∗0 1

)
for some character χ : GQp → F

×
p . Since

the space H 1(GQp ,Fp(χ)) is one-dimensional unless χ is trivial or cyclotomic,
one does not need much information about the spaces LV,J in order to determine
W (ρ); indeed all one needs is that:

• LV,T = H 1(GQp ,Fp(χ)) unless χ is cyclotomic and V = V0,1;

• LV0,1,T is the peu ramifiée subspace if χ is cyclotomic, that is, the subspace
corresponding to Z×p ⊗ F

×
p under the Kummer isomorphism H 1(GQp , µp) ∼=

Q×p /(Q×p )p.

• LV,∅ = 0 if χ 6= 1.

It then follows (see [4]) that

W (ρ) =



{V0,a} if 1 < a < p − 1 and ρ is nonsplit,
{V0,a, Va,p−1−a} if 1 < a < p − 2 and ρ is split,
{V0,p−2, Vp−2,p, Vp−2,1} if a = p − 2, p > 3 and ρ is split,
{V0,p−1} if a = p − 1 and p > 2,
{V0,p} if a = 1, χ = ω and ρ is not peu ramifiée,
{V0,p, V0,1, V1,p−2} if a = 1, p > 3 and ρ is split,
{V0,3, V0,1, V1,3, V1,1} if a = 1, p = 3 and ρ is split,
{V0,p, V0,1} otherwise.

We remark that the first case above is the most typical and the next one arises in
the setting of ‘companion forms’. The remaining cases take into account special
situations that arise when χ |IK or its inverse is trivial or cyclotomic.

2.5. Serre’s conjecture over totally real fields. We now recall how Serre
weights arise in the context of Galois representations associated to automorphic
forms. Let F be a totally real field in which p is unramified. Let OF denote its
ring of integers and Sp the set of primes of OF dividing p. For each p ∈ Sp, we
let kp = OF/p, fp = [kp : Fp] and Tp the set of embeddings τ : kp → Fp. The
irreducible Fp-representations of GL2(O/pO) ∼= ∏p∈Sp GL2(kp) are then of the
form: V =⊗{p∈Sp} Vp where each Vp is a Serre weight for GL2(Fp).

Suppose that ρ : G F → GL2(Fp) is continuous, irreducible and totally odd. A
notion of ρ being modular of weight V is introduced in [4], where the following
generalization of Serre’s Conjecture (from [24]) is made:
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Serre weights and wild ramification in two-dimensional Galois representations 9

CONJECTURE 2.1. The representation ρ is modular of weight V =⊗{p∈Sp} Vp if
and only if Vp ∈ W (ρ|G Fp

) for all p ∈ Sp.

We refer the reader to [4] for the definition of modularity of weight V and its
relation to the usual notion of weights of Hilbert modular forms. We just remark
that ρ is modular of some weight V if and only if ρ is modular in the usual sense
that ρ ∼= ρ f for some Hilbert modular eigenform f , and that the set of weights
for which ρ is modular determines the possible cohomological weights and local
behaviour at primes over p of those eigenforms (see [4, Proposition 2.10]).

Under the assumption that ρ is modular (of some weight), Conjecture 2.1 can
be viewed as the generalization of the weight part of Serre’s Conjecture and has
been proved under mild technical hypotheses (for p > 2) in a series of papers by
Gee and co-authors culminating in [15], together with the results of either Gee and
Kisin [14] or Newton [20]. Moreover, their result holds without the assumption
that p is unramified in F using the description of W (ρ) in terms of reductions of
crystalline representations.

Finally we remark that Conjecture 2.1 is known in the case F = Q. In this
case the modularity of ρ is a theorem of Khare and Wintenberger [17, 18], and
the weight part follows from prior work of Gross, Edixhoven and others (see [4,
Theorem 3.20]); it amounts to the statement that if 2 6 k 6 p + 1, then ωdρ

arises from a Hecke eigenform of weight k and level prime to p if and only if
Vd,k−1 ∈ W (ρ).

3. The ramification filtration on cohomology

In this section we use the upper numbering of ramification groups to define
filtrations on the Galois cohomology groups parametrizing the extensions of
characters under consideration.

3.1. Definition of the filtration. Continue to let K denote a finite unramified
extension of Qp of degree f with residue field k, and let χ : G K → F

×
p be any

character. Recall from [23, IV.3] that G K has a decreasing filtration by closed
subgroups Gu

K where G−1
K = G K , Gu

K = IK for −1 < u 6 0, and
⋃

u>0 Gu
K

is the wild ramification subgroup PK . We define an increasing filtration on
H 1(G K ,Fp(χ)) by setting

Fils H 1(G K ,Fp(χ)) =
⋂

u>s−1

ker(H 1(G K ,Fp(χ))→ H 1(Gu
K ,Fp(χ)))

for s ∈ R. Note that Fils H 1(G K ,Fp(χ)) = 0 for s < 0, and that

Fil0 H 1(G K ,Fp(χ)) = ker(H 1(G K ,Fp(χ))→ H 1(IK ,Fp(χ))).
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Let z be a cocycle representing a class in c ∈ H 1(G K ,Fp(χ)). Since χ |PK is
trivial, the restriction of z defines a homomorphism PK → Fp; so if s > 1, then
c ∈ Fils(H 1(G K ,Fp(χ))) if and only if z(Gu

K ) = 0 for all u > s−1. In particular,
c ∈ Fil1(H 1(G K ,Fp(χ))) if and only if z(PK ) = 0; since H 1(IK/PK ,Fp(χ)) = 0,
it follows that Fils H 1(G K ,Fp(χ)) = Fil0 H 1(G K ,Fp(χ)) for 0 6 s 6 1.

3.2. Computation of the jumps in the filtration. For any s ∈ R, we set
Fil<s(H 1(G K ,Fp(χ))) =

⋃
t<s Filt(H 1(G K ,Fp(χ))). Since Gu

K =
⋂

v<u Gv
K , the

compactness of G K and continuity of the cocycle z imply that in fact

Fil<s(H 1(G K ,Fp(χ))) = ker(H 1(G K ,Fp(χ))→ H 1(Gs−1
K ,Fp(χ))).

We now compute the jumps in the filtration, that is, the dimension of

grs(H 1(G K ,Fp(χ))) = Fils(H 1(G K ,Fp(χ)))/Fil<s(H 1(G K ,Fp(χ)))

for every s and χ .
We must first introduce some notation. Choose an embedding τ0 : k → Fp,

let τi = τ0 ◦ Frobi where Frob is the absolute Frobenius on k. Recall that
ω f : G K → k× denotes the character defined by

ω f (g) = g(π)/π,

where π is any root of x p f−1 = −p in K , and set ω f,i = ωτi = τi ◦ ω f for i = 0,
. . . , f − 1. We may then write χ |IK = ωn

f,0|IK where n =∑ f−1
j=0 a j p j for integers

a j satisfying 1 6 a j 6 p for j = 0, . . . , f − 1. Moreover, this expression is
unique if we further require (in the case that χ |IK is the cyclotomic character) that
some a j 6= p for some j . We extend the definition of a j to all integers j by setting
a j = a j ′ if j ≡ j ′ mod f . We define (a0, a1, . . . , a f−1) to be the tame signature
of χ ; thus the tame signature of χ is an element of the set

S = {1, 2, . . . , p} f − {(p, p, . . . , p)}.
Define an action of Gal(k/Fp) = 〈Frob〉 ∼= Z/ f Z on S by the formula

Frob · (a0, a1, . . . , a f−1) = (a f−1, a0, . . . , a f−2).

Note that if χ has tame signature Ea, then Frob ◦χ has tame signature Frob(Ea), as
does χ ◦ σ where σ is the (outer) automorphism of G K defined by conjugation
by a lift of Frob ∈ Gal(k/Fp) ∼= Gal(K/Qp) to GQp . We define be the period of
Ea ∈ S to be the cardinality of its orbit under Gal(k/Fp), and the absolute niveau of
χ to be the period of its tame signature. (Note that the orbit of the tame signature
of χ under Gal(k/Fp) is independent of the choice of τ0.)
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Serre weights and wild ramification in two-dimensional Galois representations 11

For i = 0, . . . , f − 1, we define

ni =
f−1∑
j=0

ai+ j p j , (5)

so that n0 ≡ ni pi mod (p f − 1) and χ |IK = ωni
f,i |IK .

THEOREM 3.1. Let ds = dimFp
grs(H 1(G K ,Fp(χ))) for s ∈ R. Then ds = 0

unless s = 0 or 1 < s 6 1 + p/(p − 1). Moreover, if ds 6= 0 and 1 < s <
1 + p/(p − 1), then s = 1 + m/(p f − 1) for some integer m not divisible by p.
More precisely, if χ has tame signature (a0, a1, . . . , a f−1) of period f ′ and the
integers ni are defined by (5), then:

(1) d0 = 1 if χ is trivial and d0 = 0 otherwise;

(2) if 1 < s < p/(p − 1), then

ds =


f/ f ′

if s = ni+k/(p f − 1) for some i, k such that k > 0,
ai = p, ai+1 = · · · = ai+k−1 = p − 1 and ai+k 6=
p − 1,

0 otherwise;

(3) if p/(p − 1) 6 s < 1+ p/(p − 1), then

ds =
{

f/ f ′ if s = 1+ ni/(p f − 1) for some i such that ai 6= p,
0 otherwise;

(4) d1+p/(p−1) = 1 if χ is cyclotomic, and d1+p/(p−1) = 0 otherwise.

Proof. We let d ′s denote the value claimed for ds in the statement. Note that if
1 < s < p/(p − 1), then d ′s is the number of j ∈ R such that s = n j/(p f − 1),
where R is the set of j ∈ {0, . . . , f − 1} such that a j 6= p − 1 and (ai , ai+1, . . . ,

a j−1) = (p, p− 1, . . . , p− 1) for some i with j − f 6 i < j . Moreover, R is in
bijection with the set of i ∈ {0, . . . , f − 1} such that ai = p, and if j ∈ R, then
1 < ni/(p f − 1) < p/(p − 1). Therefore,∑

1<s<p/(p−1)

d ′s = #{i ∈ {0, . . . , f − 1}|ai = p}.

Similarly if p/(p − 1) 6 s < 1 + p/(p − 1), then d ′s is the number of
i ∈ {0, . . . , f − 1} such that s = 1 + ni/(p f − 1) and ai 6= p; moreover, if
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L. Dembélé, F. Diamond and D. P. Roberts 12

ai 6= p, then p/(p − 1) 6 1+ ni/(p f − 1) < 1+ p/(p − 1), so∑
p/(p−1)6s<1+p/(p−1)

d ′s = #{i ∈ {0, . . . , f − 1}|ai 6= p}.

It follows that

∑
s∈R

d ′s =
 f + 2 if p = 2 and χ is trivial,

f + 1 if p > 2 and χ is trivial or cyclotomic,
f otherwise.

Therefore,
∑

s∈R d ′s = dimFp
H 1(G K ,Fp(χ)) =

∑
s∈R ds , so it suffices to prove

that d ′s 6 ds for all s, and we need only consider s such that d ′s > 0.
For s = 0, the inflation–restriction exact sequence

0→ H 1(G K/IK ,Fp(χ)
IK )→ H 1(G K ,Fp(χ))→ H 1(IK ,Fp(χ))

shows that gr0 H 1(G K ,Fp(χ)) ∼= H 1(G K/IK ,Fp(χ)
IK ) has dimension 1 if χ

is trivial, and 0 otherwise, so that d0 = d ′0. We may therefore assume that
s > 1 and that m = (s − 1)(p f − 1) is an integer. Moreover, either 0 < m <

p(p f − 1)/(p − 1) and m is not divisible by p, or m = p(p f − 1)/(p − 1).
Let M = L(π) where π p f−1 = −p and L is an unramified extension of K of

degree prime to p such that χ |G M is trivial; thus χ = µωn0
f,0 for some unramified

character µ of Gal(L/K ). Since Gal(M/K ) has order prime to p, inflation–
restriction gives

H 1(G K ,Fp(χ)) ∼= H 1(G M ,Fp(χ))
Gal(M/K ) = HomGal(M/K )(Gab

M ,Fp(χ)),

which we identify with

HomGal(M/K )(M×,Fp(χ)) = HomGal(M/K )(M×/(M×)p,Fp(χ))

via the isomorphism M× ∼= W ab
M ⊂ Gab

M of local class field theory.
Since M is tamely ramified over K , we have Gu

K ⊂ G M for u > 0,
and in fact Gu

K = Gu(p f−1)
M by [23, IV, Proposition 15], which maps onto

1 + π du(p f −1)eOM under the homomorphism WM → M× of local class field
theory (see [23, Corollary 3 to Theorem 1]). Therefore, a class in H 1(G K ,

Fp(χ)) has trivial restriction to Gu
K for all u > s − 1 (respectively Gs−1

K ) if and
only if the corresponding homomorphism M×/(M×)p → Fp(χ) factors through
M×/(M×)pUm+1 (respectively M×/(M×)pUm), where we write Ut = 1+ π tOM

for a positive integer t . It follows that

grs(H 1(G K ,Fp(χ))) ∼= HomGal(M/K )(Um/(Um ∩ (M×)p)Um+1,Fp(χ)).
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Serre weights and wild ramification in two-dimensional Galois representations 13

Now suppose that m < p(p f − 1)/(p − 1) and m is not divisible by p. Then
we claim that Um∩(M×)p ⊂ Um+1. Indeed suppose that vπ (x p−1) = m for some
x ∈ M×, and let t = vπ (x − 1). Then t > 0 and writing x = 1 + yπ t for some
y ∈ O×M , we have

x p − 1 = (1+ yπ t)p − 1 = pyπ t + · · · + y pπ pt .

So m > min(t+p f−1, tp), with equality unless t+p f−1= tp. If t+p f−1> tp,
then m = tp contradicts that m is not divisible by p, and if t + p f − 1 6 tp, then
t > p f − 1/(p − 1) contradicts that m < p(p f − 1)/(p − 1). This establishes
the claim, from which it follows that

grs H 1(G K ,Fp(χ)) ∼= HomGal(M/K )(Um/Um+1,Fp(χ)).

Letting l denote the residue field of L , the map x 7→ 1+xπm induces a Gal(M/K )-
equivariant isomorphism l(ωm

f )
∼= Um/Um+1, and the map x ⊗ 1 7→ (σ (x))σ

induces a Gal(M/K )-equivariant isomorphism

l(ωm
f )⊗Fp Fp

∼=
f−1⊕
i=0

(⊕
σ∈Si

Fp(ω
m
f,i)

)

where Si is the set of embeddings l → Fp restricting to τi and the action of
Gal(M/K ) on

⊕
σ∈Si

Fp(ω
m
f,i) is defined by g((xσ )σ ) = ωm

f,i(g)(xσ◦g)σ . Noting
that

⊕
σ∈Si

Fp
∼= IndGal(M/K )

Gal(M/L)Fp, we see that

(Um/Um+1)⊗Fp Fp
∼=

f−1⊕
i=0

⊕
µ

Fp(µω
m
f,i),

where the second direct sum is over all charactersµ : Gal(L/K )→ F
×
p . Therefore,

ds is the number of i such that m ≡ ni mod (p f − 1). The inequality d ′s 6 ds is
now immediate from the definition of d ′s .

Finally consider the case s = 1 + p/(p − 1), so m = p(p f − 1)/(p − 1);
we may assume χ is cyclotomic, and it suffices to prove that ds > 1.
For x ∈ Um+1, we see that exp(p−1 log x) converges to a pth root of x , so
Um+1 ⊂ (M×)p. It follows that Fils H 1(G K ,Fp(χ)) = H 1(G K ,Fp(χ)). Therefore,
it suffices to prove that Fil<s H 1(G K ,Fp(χ)) 6= H 1(G K ,Fp(χ)), that is, that there
is a class in H 1(G K ,Fp(χ)) whose restriction to G p/(p−1)

K is nontrivial. Since
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G p/(p−1)
K = G p/(p−1)

Qp
, the diagram

H 1(GQp ,Fp(χ)) −→ H 1(G p/(p−1)
Qp

,Fp(χ))

↓ ‖

H 1(G K ,Fp(χ)) −→ H 1(G p/(p−1)
K ,Fp(χ))

reduces us to the case K = Qp, and we may further assume M = Qp(π) =
Qp(ζp). We see in this case that if x ∈ U1, then x p ∈ Up+1, so that Up ∩ (M×)p ⊂
Up+1 (and in fact equality holds). It follows that

grs(H 1(GQp ,Fp(χ))) ∼= HomGal(M/Qp)(Up/Up+1,Fp(χ)),

which is nontrivial (in fact one-dimensional) since Up/Up+1
∼= Fp(χ).

3.3. Terminology associated with ramification. Note that the dimensions ds

in Theorem 3.1 are at most 1 if χ has absolute niveau f , in which case we say χ
is primitive; otherwise we say χ is imprimitive. Thus χ is imprimitive if and only
if its tame signature (a0, a1, . . . , a f−1) has nontrivial rotational symmetry, which
is equivalent to χ extending to a character of G K ′ for some proper subfield K ′ of
K containing Qp.

The statement of the theorem is also simpler if ai < p for all i , in which case we
say χ is generic; otherwise we say χ is nongeneric. Thus if χ is generic, then ds =
0 if 1 < s < p/(p − 1) (by part (2) of the theorem); moreover, ni 6 p f −1 for all
i , so we also have ds = 0 if 2 < s < 1+ p/(p − 1) (by part (3) of the theorem).
To characterize the types of exceptional behaviour arising in extensions when χ
is nongeneric (or trivial or cyclotomic), we introduce the following subspaces of
H 1(G K ,Fp(χ)):

H 1
un(G K ,Fp(χ)) = Fil0 H 1(G K ,Fp(χ)) = Fil1 H 1(G K ,Fp(χ));

H 1
gt(G K ,Fp(χ)) = Fil<p/(p−1)H 1(G K ,Fp(χ));

H 1
fl (G K ,Fp(χ)) = Filp/(p−1)H 1(G K ,Fp(χ));

H 1
cg(G K ,Fp(χ)) = Fil2 H 1(G K ,Fp(χ));

H 1
ty(G K ,Fp(χ)) = Fil<1+p/(p−1)H 1(G K ,Fp(χ)).

We call H 1
un(G K ,Fp(χ)) the unramified subspace of H 1(G K ,Fp(χ)), and

we call H 1
gt(G K ,Fp(χ)) (respectively H 1

fl (G K ,Fp(χ)), H 1
cg(G K ,Fp(χ)),

H 1
ty(G K ,Fp(χ))) the gently (respectively flatly, cogently, typically) ramified

subspace of H 1(G K ,Fp(χ)). We use the same terminology to describe the
cohomology classes in these subspaces.

The following is immediate from Theorem 3.1:
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Serre weights and wild ramification in two-dimensional Galois representations 15

COROLLARY 3.2. With the above notation, we have

(1) H 1
un(G K ,Fp(χ)) = 0 unless χ is trivial, in which case H 1

un(G K ,Fp(χ)) has
dimension 1;

(2) H 1(G K ,Fp(χ))/H 1
ty(G K ,Fp(χ)) = 0 unless χ is cyclotomic, in which case

it has dimension 1;

(3) H 1
fl (G K ,Fp(χ))/H 1

gt(G K ,Fp(χ)) = 0 unless χ |IK is cyclotomic, in which
case it has dimension f ;

(4) H 1
ty(G K ,Fp(χ))/H 1

un(G K ,Fp(χ)) has dimension f ;

(5) H 1
gt(G K ,Fp(χ))/H 1

un(G K ,Fp(χ)) has dimension equal to the number of i ∈
{0, . . . , f − 1} such that ai = p;

(6) H 1
cg(G K ,Fp(χ)) = H 1

ty(G K ,Fp(χ)) if χ is generic.

Let ρ : G K → GL2(Fp) be a reducible representation of the form ρ ∼ (χ1 ∗
0 χ2

)
and cρ an associated cohomology class. For s > 1 (respectively s > 1), we say
that ρ has slope at most s (respectively less than s) if Gu

K ⊂ ker(ρ) for all u > s−1
(respectively u > s−1), or equivalently if cρ ∈ Fils(H 1(G K ,Fp(χ))) (respectively
Fil<s H 1(G K ,Fp(χ))). Note that ρ is (at most) tamely ramified if cρ is unramified;
we say that ρ is gently (respectively flatly, cogently, typically) ramified according
to whether cρ is. We remark that [11, 2.1] shows that if ρ arises from a finite
flat group scheme over OK , then cρ is flatly ramified. If χ is cyclotomic, then
our notion of flatly ramified coincides with Serre’s notion of peu ramifiée in [24]
recalled above.

4. The Artin–Hasse exponential

In this section we establish some properties of the Artin–Hasse exponential
which strike us as having independent interest. Recall from, for example, [21,
Section 7.2] that the Artin–Hasse exponential is defined by a power series with
rational coefficients:

E p(x) = exp
(∑

n>0

x pn

pn

)
.

Here, as usual, exp(x) =∑n>0(x
n/n!). Since p is fixed throughout, we omit the

subscript and simply write is as E(x). The denominators of the coefficients of
E(x) are prime to p, so we may regard E(x) ∈ Zp[[x]], and hence as a function
E : Br (0)→ Br (1) for any r < 1, where Br (a) denotes the open disk of radius r
of a ∈ Cp.
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L. Dembélé, F. Diamond and D. P. Roberts 16

4.1. First multiplicativity lemma for E(x). Let l be a finite field and let L
be the field of fractions of W (l). For a ∈ l, let [a] ∈ W (l) denote the Teichmüller
lift of a. The following lemma establishes the key property of E(x) we need; we
use it to relate the additive structure of l to the multiplicative structure of tamely
ramified extensions of L .

LEMMA 4.1. If a, b ∈ l then E([a]x)E([b]x)E([a + b]x)−1 ∈ (W (l)[[x]]×)p.

Proof. For n > 0, we define elements δn ∈ L inductively as follows:

δ0 = 1
p
([a] + [b] − [a + b])) ,

δn = 1
pn

(
ϕn(δ0)−

n−1∑
i=0

piδ
pn−i

i

)
for n > 1.

We claim that δn ∈ W (l) for all n > 0. The statement is clear for n = 0, so suppose
that n > 0. For i = 0, . . . , n − 1, we have δ p

i ≡ ϕ(δi) mod p, and therefore

δ
pn−i

i = (δ p
i )

pn−1−i ≡ ϕ(δi)
pn−1−i

mod pn−i .

By the definition of δn−1 we have ϕn−1(δ0) =
∑n−1

i=0 piδ
pn−1−i

i , so

ϕn(δ0) =
n−1∑
i=0

piϕ(δi)
pn−1−i ≡

n−1∑
i=0

piδ
pn−i

i mod pn,

which gives the claim.
Now consider the power series

f (x) =
∏
i>0

E(δi x pi
),

which converges in W (l)[[x]] since E(x pi
) ≡ 1 mod x pi . We claim that

E([a]x)E([b]x)E([a + b]x)−1 = f (x)p.

We prove this working in L[[x]], where exp(g(x)) exp(h(x)) = exp(g(x)+h(x))
for g(x), h(x) ∈ x L[[x]], and therefore exp(

∑
i>0 gi(x)) =

∏
i>0 exp(gi(x)) if

gi(x) ∈ x pi
L[[x]]. Note first that we have

E([a]x)E([b]x)E([a + b]x)−1 = exp
(∑

n>0

an x pn

)
,
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Serre weights and wild ramification in two-dimensional Galois representations 17

where an = p−n([a]pn + [b]pn − [a + b]pn
) = p1−nϕn(δ0). On the other hand

f (x)p =
∏
i>0

E(δi x pi
)p

=
∏
i>0

exp
(

p
∑
m>0

p−mδ
pm

i x pi+m

)
= exp

(∑
i,m>0

p1−mδ
pm

i x pi+m

)
= exp

(∑
n>0

bn x pn

)
,

where

bn =
n∑

i=0

p1+i−nδ
pn−i

i = an.

This proves the claim and hence the lemma.

4.2. Second multiplicativity lemma for E(x). We also need the following
property of E(x), which will be used to ensure that our constructions later are
independent of various choices made.

LEMMA 4.2. If δ ∈ W (l), then

E(x)E((1+ pδ)x)−1
∏
m>0

E(pδx pm
) ∈ (W (l)[[x]]×)p.

Proof. We have

E((1+ pδ)x)E(x)−1 = exp
(∑

n>0

an x pn

)
where

an =
pn∑

i=1

(
pn

i

)
pi−nδi .

Note that
(

pn

i

)
pi−n has valuation i−vp(i) for i = 1, . . . , pn , so that an ≡ pδ mod

p2 if p > 2, and an ≡ 2(δ + δ2) mod 4 if p = 2. On the other hand∏
m>0

E(pδx pm
) = exp

(∑
n>0

bn x pn

)
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L. Dembélé, F. Diamond and D. P. Roberts 18

where

bn =
n∑

j=0

p p j− jδ p j
.

Setting cn = p−1(bn − an) gives exp(cn x pn
) ∈ W (l)[[x]]× since cn ∈ pW (l), and

E(x)E((1+ pδ)x)−1
∏
m>0

E(pδx pm
) =

(∏
n>0

exp(cn x pn
)

)p

.

4.3. Homomorphisms induced by E(x). Suppose now that M is a subfield
of Cp containing L , and α ∈ M is such that |α| < 1. Note that Lemma 4.1 yields
a homomorphism ε : l → OL[[x]]× ⊗ Fp defined by ε([a]) = E([a]x) ⊗ 1. We
can therefore define a homomorphism

εα : l ⊗ Fp → O×M ⊗ Fp (6)

as the extension of scalars of the composite of ε with the multiplicative
homomorphism OL[[x]]× → O×M induced by evaluation at α, so that
εα(a ⊗ b) = E([a]α)⊗ b.

In addition to properties of εα derived from Lemmas 4.1 and 4.2, we also need
the following:

LEMMA 4.3. If |α| < p−1/p(p−1), then

εα p ◦ Frob = ε−pα

where Frob is the automorphism of l⊗Fp induced by the absolute Frobenius on l.

Proof. It suffices to prove that if β ∈ OM is such that |β|<p−1/p(p−1), then
E(β p)E(−pβ)−1 ∈ (O×M)p. On the one hand we have E(β p) = exp(−pβ)E(β)p.
On the other hand, setting γ =∑n>1 p pn−n−1(−β)pn , we see that |γ | < p−1/(p−1),
so exp(γ ) converges to an element of O×M such that

E(−pβ) = exp(−pβ + pγ ) = exp(−pβ) exp(γ )p.

5. A basis for the cohomology

We return to the setup of Section 3, so K is an unramified extension of Qp of
degree f with residue field k, T is the set of embeddings k → Fp, and χ is a
character G K → F

×
p . We use a homomorphism of the form (6) to construct an

explicit basis for H 1(G K ,Fp(χ)).
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Serre weights and wild ramification in two-dimensional Galois representations 19

Let M be a tamely ramified abelian extension of K such that χ |G M is trivial.
We assume M is of the form L(π) where L is an unramified extension of K of
degree prime to p and π is a uniformizer of M such that π e ∈ K× where the total
ramification degree e of M divides p f −1. We thus allow M and π to have a more
general form than in the proof of Theorem 3.1, but note that we still have

H 1(G K ,Fp(χ)) ∼= HomGal(M/K )(M×,Fp(χ)),

which we identify with the Fp-dual of the vector space

Uχ =
(
M× ⊗ Fp(χ

−1)
)Gal(M/K )

.

Our explicit basis for H 1(G K ,Fp(χ)) will be defined as the dual basis to one we
construct for Uχ .

5.1. Definition of ui . As in Section 3 we choose an embedding τ0 : k → Fp

and let τi = τ0 ◦ Frobi , let (a0, . . . , a f−1) be the tame signature of χ and define
the integers ni by (5), so that χ |IK = ωni

f,i |IK . We define τi , ai and ni for all i ∈ Z
by requiring that they depend only on i mod f .

Since χ |IK has order dividing e, we see that ni is divisible by (p f − 1)/e for all
i . Letting ωπ : Gal(M/K )→ µe(K ) ⊂ K× be the character defined by ωπ (g) =
g(π)/π , we see that ωπ |IK = ω f |(p f −1)/e

IK
, so that

χ |IK = (τi ◦ ωπ )|eni /(p f −1)
IK

.

We now define an embedding τ ′i and an integer n′i for each i . If ai+1 6= p, then
we set τ ′i = τi+1 and n′i = eni+1/(p f − 1). If ai+1 = p, then we let j be the least
integer greater than i such that a j+1 6= p−1; thus (ai+1, ai+2, . . . , a j) = (p, p−1,
. . . , p−1), but a j+1 6= p−1. We then set τ ′i = τ j+1 and n′i = en j+1/(p f −1)− e.
Note that for each i we have n′i > 0 and

χ = µ(τ ′i ◦ ωπ )n
′
i

for some unramified character µ : Gal(L/K )→ F
×
p independent of i .

Recall that we have an isomorphism

l ⊗ Fp
∼=
⊕
τ∈T

(l ⊗k,τ Fp)

defined by the natural projection on to each component. By the Normal Basis
Theorem, l is free of rank one over k[Gal(L/K )] = k[Gal(l/k)], so each
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L. Dembélé, F. Diamond and D. P. Roberts 20

component in the above decomposition is free of rank one over Fp[Gal(L/K )].
It follows that for each embedding τ ∈ T , the µ-eigenspace

Λτ,µ = {a ∈ l ⊗k,τ Fp | ga = (1⊗ µ(g))a for all g ∈ Gal(L/K )}
is one-dimensional over Fp. Let λτ,µ be a nonzero element ofΛτ,µ. We now define

ui = επn′i (λτ ′i ,µ) ∈ O×M ⊗ Fp (7)

for i = 0, . . . , f − 1, where ε
π

n′i is defined by (6).
For g ∈ Gal(M/K ), a ∈ l, n ∈ Z, we have

g(E([a]π n)) = E(g([a]π n)) = E(ωπ (g)ng([a])π n),

so that
g(επn (λ)) = επn ((ωπ (g)n ⊗ 1)g(λ))

for all λ ∈ l ⊗ Fp. Since

(ωπ (g)n
′
i ⊗ 1)g(λτ ′i ,µ) = (ωπ (g)n

′
i ⊗ µ(g))λτ ′i ,µ = (1⊗ χ(g))λτ ′i ,µ,

we conclude that gui = (1 ⊗ χ(g))ui for all g ∈ Gal(M/K ). We can therefore
view ui as an element of Uχ .

5.2. Definition of utriv and ucyc. We now define additional classes in Uχ

in the case that χ is trivial or cyclotomic. Note that if g ∈ Gal(M/K ), then
g(π) = ωπ (g)π and ωπ (g) ∈ µe(K ), which is contained in (M×)p. It follows that
g(π ⊗ 1) = π ⊗ 1 in M× ⊗ Fp, so that

utriv = π ⊗ 1 (8)

defines an element of Uχ for the trivial character χ .
If χ is cyclotomic then the assumption that χ |G M is trivial ensures that

Qp(ζp) ⊂ M ; in particular e is divisible by p − 1. We now determine which
elements α ∈ 1+π ep/(p−1)OM are pth-powers. Recall that Qp(ζp) = Qp(δ)where
δ p−1 = −p, so we may write α in the form 1+ βδ p with β ∈ OM . We claim that
α = 1 + βδ p ∈ (M×)p if and only if trl/Fpβ = 0. Suppose first that trl/Fpβ = 0.
We can then write β = γ −γ p for some γ ∈ l. (This follows for example from the
fact that H 1(Gal(l/Fp), l) = 0 since l is free over Fp[Gal(l/Fp)] by the Normal
Basis Theorem. Alternatively, note that trl/Fp is surjective since l is separable over
Fp, so counting dimensions shows that l → l → Fp is exact, where the maps
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Serre weights and wild ramification in two-dimensional Galois representations 21

are 1− Frob and trl/Fp .) We can therefore write β ≡ γ − γ p mod πOM for some
γ ∈ OM , so that

α(1+ γ δ)p ≡ 1+ (β − γ + γ p)δ p ≡ 1 mod π 1+ep/(p−1)OM .

Since exp(p−1 log x) converges to a pth root of x if |x − 1| < p−p/(p−1), it follows
that α(1 + γ δ)p ∈ (O×M)p, and hence that α ∈ (O×M)p. Suppose conversely that
α = 1+βδ p ∈ (M×)p. Then considering valuations as in the proof of Theorem 3.1,
we see that α = (1+ γ δ)p for some γ ∈ OM . Since

(1+ γ δ)p ≡ 1+ (γ p − γ )δ p mod δ p+1OM ,

we deduce that β ≡ γ p − γ mod π , and hence that trl/Fp(β) = 0. This completes
the proof of the claim. Now choose any b ∈ l such that trl/Fp b 6= 0, and define

ucyc = εδ p(b ⊗ 1) = E([b]δ p)⊗ 1, (9)

which is a nontrivial element of O×M ⊗ Fp by the above claim. Moreover, since
trl/Fp(gb) = trl/Fp(b) for all g ∈ Gal(M/K ), it also follows from the claim and
Lemma 4.1 that E(g([b])δ p)E([b]δ p)−1 ∈ (O×M)p, so εδ p(gb ⊗ 1) = εδ p(b ⊗ 1).
Since g(δ) = [χ(g)]δ, we see as in the construction of the elements ui that

g(ucyc) = εδ p(χ(g)gb ⊗ 1) = (1⊗ χ(g))εδ p(gb ⊗ 1) = (1⊗ χ(g))ucyc,

and therefore that ucyc ∈ Uχ .

5.3. Bases for Uχ and H1(G K ,F p(χ)).

THEOREM 5.1. Let B denote the subset of Uχ consisting of the elements ui for
i = 0, . . . , f −1, together with utriv if χ is trivial and ucyc if χ is cyclotomic. Then
B is a basis for Uχ .

Before giving the proof, we remark that if p = 2, then the cyclotomic character
is trivial, so the basis B includes both utriv and ucyc and hence consists of f + 2
elements.

Proof. Define a decreasing filtration on Uχ with Fil0Uχ = Uχ and FilmUχ as the
image of (Um ⊗ Fp(χ

−1))Gal(M/K ) for m > 1, where Um = 1 + πmOM . Setting
grmUχ = FilmUχ/Film+1Uχ , we see as in the proof of Theorem 3.1 that

dimFp
grmUχ = dimFp

grs H 1(G K ,Fp(χ))

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.27
Downloaded from https:/www.cambridge.org/core. King's College London, on 04 Jul 2017 at 11:28:50, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.27
https:/www.cambridge.org/core


L. Dembélé, F. Diamond and D. P. Roberts 22

where s = 1+m/e if m > 1, and s = 0 if m = 0. Recall that these dimensions ds

are given by Theorem 3.1. We prove that for each m > 0, there are ds elements of
B∩FilmUχ whose images in grmUχ are linearly independent. It then follows that B
spans Uχ , which suffices since the cardinality of B coincides with the dimension
of Uχ .

If m > pe/(p − 1), then s > 1+ p/(p − 1), so ds = 0 and there is nothing to
prove.

If m = pe/(p − 1), then s = 1+ p/(p − 1), so ds = 0 unless χ is cyclotomic
in which case ds = 1. Therefore, it suffices to note that ucyc is a nontrivial element
of Filpe/(p−1)Uχ .

Now suppose e/(p − 1) 6 m < ep/(p − 1), so ds is the number of i such
that s = 1 + m/e = 1 + ni+1/(p f − 1) and ai+1 6= p. For each such i , we have
n′i = eni+1/(p f − 1) = m and τ ′i = τi+1, so that ui = επm (λτi+1,µ) ∈ FilmUχ . We
now show that the images of these ui in grmUχ are linearly independent. We may
assume that ds > 0 and hence that m is not divisible by p. Since m < pe/(p − 1),
we see as in the proof of Theorem 3.1 that the natural map

Um/Um+1 → (M×/Um+1)⊗ Fp

is injective, so that we may identify grmUχ with

(Um/Um+1 ⊗ Fp(χ
−1))Gal(M/K ).

Since the map
l ⊗ Fp → Um/Um+1 ⊗ Fp

induced by επm is an isomorphism and the elements λτi+1,µ are linearly
independent over Fp, it follows that so are their images in grmUχ .

Now suppose that 0 < m < e/(p − 1). In this case ds is the number of i such
that s = 1+m/e = n j+1/(p f − 1), a j+1 6= p−1, and (ai+1, . . . , a j) = (p, p−1,
. . . , p−1) for some j > i . For each such i , we have n′i = en j+1/(p f − 1)−e = m
and τ ′i = τ j+1, so that ui = επm (λτ j+1,µ) ∈ FilmUχ . Note also that for distinct i , the
corresponding j are distinct mod f . The proof that the images of ui in grmUχ are
linearly independent is then the same as in the preceding case.

Finally note that if m = 0, then s = 0, so ds = 0 unless χ is trivial, in which
case ds = 1. Therefore, it suffices to note that utriv is not in Fil1Uχ .

We can now define a basis for H 1(G K ,Fp(χ)) as the dual basis to the
one in Theorem 5.1, denoting the corresponding cohomology classes cτ for
τ : k → Fp, together with cun if χ is trivial and ctr if χ is cyclotomic. We record
the construction as follows:
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Serre weights and wild ramification in two-dimensional Galois representations 23

COROLLARY 5.2. The set consisting of the classes cτ for τ ∈ T , together with
cun if χ is trivial and ctr if χ is cyclotomic, forms a basis for H 1(G K ,Fp(χ)).

6. Dependent pairs and admissible subsets

We now determine the extent to which the basis for H 1(G K ,Fp(χ)) just
constructed is independent (up to scalars) of the choices made. We maintain
the notation of Section 5, so K is an unramified extension of Qp of degree f
with residue field k, T = {τ0, . . . , τ f−1} (where τi = τ0 ◦ Frobi ) is the set
of embeddings k → Fp, and we fix a character χ : G K → F

×
p and write

χ |IK =
∏ f

i=0 ω
ai
τi

where ωτi : IK → F
×
p corresponds to τi by local class field

theory and (a0, . . . , a f−1) is the tame signature of χ .

6.1. Dependent pairs. Recall that we chose an extension M of K with a
uniformizer π such that χ |G M is trivial and M = L(π) where L/K is unramified
of degree prime to p, e = [M : L] divides p f − 1, and π e ∈ K×. We introduce
the following notion in order to explain how the basis of Corollary 5.2 depends
on the choice of M and π :

DEFINITION 6.1. For i, t ∈ Z with 1 6 t 6 f − 1, we say that ([i], [i + t]) ∈
(Z/ f Z)2 is a dependent pair if ai+1 = p, ai+t+1 6= p, and

ai+2 = · · · = ai+s = p − 1, ai+s+1 = · · · = ai+t = p

for some s ∈ 1, . . . , t .

Note that the first (respectively second) displayed chain of equations
automatically holds if s = 1 (respectively s = t). Note that if ai+1 6= p
then there are no dependent pairs of the form ([i], [ j]), and that if ai+1 = p then
the number of dependent pairs ([i], [ j]) is either s or s − 1 where s ∈ {1, . . . , f }
is such that

ai+2 = · · · = ai+s = p − 1, ai+s+1 6= p − 1.

More precisely, the number of such dependent pairs is s unless

(ai+2, . . . , ai+s, ai+s+1, . . . , ai+ f+1) = (p − 1, . . . , p − 1, p, . . . , p),

in which case it is s − 1. Note that there are no dependent pairs at all if χ |IK is
trivial (in which case all ai = p − 1) or cyclotomic (in which case all ai = 1).
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6.2. Dependence of the basis on the choice of uniformizer. Recall that we

defined a basis for Uχ =
(
M× ⊗ Fp(χ

−1)
)Gal(M/K )

using the elements ui (for
i = 0, . . . , f − 1), utriv (if χ is trivial) and ucyc (if χ is cyclotomic) defined by
Equations (7)–(9). Suppose now that we choose another uniformizer π ′ (for the
same M) such that (π ′)e ∈ K× and accordingly define elements u ′i for i = 0, . . . ,
f − 1, and u ′triv if χ is trivial. (Note that ucyc does not depend on the choice of
uniformizer.)

PROPOSITION 6.2. For i = 0, . . . , f − 1, the element u ′i differs from a nonzero
multiple of ui by an element of the span of

{u j | ([i], [ j]) is a dependent pair}
and ucyc if χ is cyclotomic.

Proof. Recall that we require π e and (π ′)e to be in K , so setting α = π ′/π and
a = α ∈ l, we have αe ∈ O×K and ae ∈ k×.

Suppose first that α = [a]. Note that ωπ ′ = ωπωa , where ωa is the unramified
character of Gal(L/K ) ∼= Gal(l/k) sending g to g(a)/a ∈ µe(k). Writing

χ = µ(τ ′i ◦ ωπ )n
′
i = µ′(τ ′i ◦ ωπ ′)n

′
i ,

we see µ = µ′(τ ′i ◦ ωa)
n′i . Recall that ui and u ′i are defined by

ui = επn′i (λτ ′i ,µ) and u ′i = ε(π ′)n′i (λτ ′i ,µ′),

where λτ ′i ,µ and λτ ′i ,µ′ are any nonzero vectors in the corresponding eigenspaces
Λτ ′i ,µ and Λτ ′i ,µ′ . Note however that Λτ ′i ,µ = (an′i ⊗ 1)Λτ ′i ,µ′ , so we may choose
λτ ′i ,µ = (an′i ⊗ 1)λτ ′i ,µ′ , which gives ui = u ′i .

The preceding paragraph shows that we may replace π by [a]π and hence
assume that α ≡ 1 mod πOM . Note that ωπ ′ = ωπ , so µ = µ′ and we may use
the same λτ ′i ,µ in the definitions of ui and u ′i . Since αe ∈ 1+ pOK , we see that in
fact α ∈ 1+ pOK , so that (π ′)n′i = π n′iαn′i where αn′i = 1+ pδ for some δ ∈ OK .

We now apply Lemma 4.2 with x evaluated at π n′i . First note that if ai+1 6= p,
then n′i > e/(p − 1), so E([a]pδ(π n′i )pm

) ≡ 1 mod π ep/(p−1) for all a ∈ l and
m > 0. The lemma then implies that u ′i − ui ∈ Filep/(p−1)Uχ , so ui = u ′i unless χ
is cyclotomic, in which case u ′i − ui is in the span of ucyc.

Now suppose that ai+1 = p and let s be the least positive integer such that
ai+s+1 6= p − 1. We then have n′i = eni+s+1/(p f − 1)− e, where

ni+s+1 = ai+s+1 + ai+s+2 p + · · · + ai p f−s−1 + p f .
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Serre weights and wild ramification in two-dimensional Galois representations 25

For m = 0, . . . , s − 1, we see that

pm(ni+s+1 − (p f − 1)) = ni+s−m+1 − (p f − 1).

Since ni+2 > 1 + p + · · · p f−2 + p f , we see also that ps(ni+s+1 − (p f − 1)) =
p(ni+2 − (p f − 1)) > (p f − 1)/(p − 1), and hence that psn′i > e/(p − 1).
Therefore, E([a]pδ(π n′i )pm

) is in (O×M)p for all a ∈ l and m > s, so Lemma 4.2
implies that

ε
(π ′)n

′
i
= ε

π
n′i +

s−1∑
m=0

ε
pδπn′i pm ◦ Frobm

.

Note also that pδπ n′i pm = βπ n′i pm+e for some β ∈ OK , and another application of
Lemma 4.2 shows that ε

βπ
n′i pm+e = ε[β]πn′i pm+e . It follows that

u ′i − ui = τi+s+1(β)

s−1∑
m=0

ε
π

n′i pm+e(Frobm
(λτi+s+1,µ)).

We show that each term is a multiple of a vector of the form ui+t , where either
t ∈ {1, . . . , s − 1}, or t is the least integer such that t > s and ai+t+1 6= p. Note
that ([i], [i + t]) is a dependent pair for each such t (including t = f + 1 in the
case (ai+2, . . . , ai+s, ai+s+1, . . . , ai+ f+1) = (p − 1, . . . , p − 1, p, . . . , p)).

First consider the term with m = 0, and note that n′i + e = eni+s+1/(p f − 1).
If ai+s+1 6= p, then n′i+s = eni+s+1/(p f − 1) and τ ′i+s = τi+s+1, so ε

π
n′i+e(λτi+s+1,µ)

= ui+s . On the other hand, if ai+s+1 = p, then ni+s+1 is divisible by p and
eni+s+1/p(p f − 1) > e/p(p − 1), so Lemma 4.3 implies that

ε
πeni+s+1/(p

f −1) = ε−pπeni+s+1/p(p f −1) ◦ Frob−1
.

Writing−p = γπ e for some γ ∈ O×K and noting that ni+s+2 = ni+s+1/p+ p f −1,
we see that this is the same as ε

γπeni+s+2/(p
f −1) ◦ Frob−1, and another application

of Lemma 4.2 shows that we may replace γ by [γ ]. Since Frob−1 sends
Λτi+s+1,µ to Λτi+s+2,µ, we conclude that ε

π
n′i+e(λτi+s+1,µ) is a scalar multiple of

ε
πeni+s+2/(p

f −1)(λτi+s+2,µ). If ai+s+2 6= p, then this is ui+s+1. If ai+s+2 = p, then we
may iterate the argument to conclude that ε

π
n′i+e(λτi+s+1,µ) is a multiple of ui+t ,

where t is the least integer such that t > s and ai+t+1 6= p.
Finally for m = 1, . . . , s − 1, we have ai+s−m+1 = p − 1 6= p, so

n′i+s−m =
eni+s−m+1

p f − 1
= e

p f − 1
(pm(ni+s+1 − (p f − 1))+ p f − 1) = n′i pm + e

and τ ′i+s−m = τi+s−m+1. Since Frobm sends Λτi+s+1,µ to Λτi+s−m+1,µ, we conclude
that ε

π
n′i pm+e(Frobm

(λτi+s+1,µ)) is a multiple of ui+t where t = s − m.
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6.3. Dependence of the dual basis on the choice of M. Recall that we
defined a basis for H 1(G K ,Fp(χ)) as the dual basis to the one constructed for Uχ ,
denoting the corresponding cohomology classes cτ for τ : k → Fp, together with
cun if χ is trivial and ctr if χ is cyclotomic. Suppose now that we make another
choice of M ′ and π ′ of the required form and denote the corresponding basis
elements c′τ for τ : k → Fp, and c′tr if χ is cyclotomic. (Note that if χ is trivial,
then cun spans H 1

un(G K ,Fp), so, up to scalar, is independent of the choices.)

PROPOSITION 6.3. For i = 0, . . . , f − 1, the element c′τi
differs from a nonzero

multiple of cτi by an element of the span of

{cτ j | ([ j], [i]) is a dependent pair}
and cun if χ is trivial.

Proof. Suppose first that the cτ and c′τ are defined using the same field M , but
different choices of uniformizers π and π ′. Suppose also that χ is not trivial or
cyclotomic. Define T = (ti j) ∈ GL f (Fp) by ui =∑ f−1

i=0 ti j u ′j for i = 0, . . . , f −1,
so that c′τi

=∑ f−1
j=0 t j i c′τ j

for i = 0, . . . , f − 1. The conclusion is then immediate
from Proposition 6.2, which shows that ti i 6= 0 for each i , and that ti j = 0 unless
i = j or ([i], [ j]) is a dependent pair. If χ is trivial or cyclotomic, then there are
no dependent pairs, and the conclusion is again immediate from Proposition 6.2.

Now suppose that M and M ′ are any two extensions of K of the required
form. By symmetry, we may replace M ′ with a larger extension satisfying the
hypotheses, and hence assume that if M = L(π), then M ′ = L ′(π ′) where L ′ is
an unramified extension of L of degree prime to p and (π ′)d = π where de divides
p f − 1. By the preceding paragraph, we may assume that the c′τ are defined using
the uniformizer π ′.

Note that we have used the isomorphisms of class field theory in order to
identify H 1(G K ,Fp(χ)) with both HomFp

(Uχ ,Fp) and with HomFp
(U ′χ ,Fp),

where

Uχ =
(
M× ⊗ Fp(χ

−1)
)Gal(M/K )

and U ′χ =
(
(M ′)× ⊗ Fp(χ

−1)
)Gal(M ′/K )

.

Recall that this identification is compatible with the isomorphism U ′χ → Uχ

induced by the norm map from (M ′)× to M×. Denoting this isomorphism νM ′/M

and the basis elements for U ′χ by u ′i , it suffices to prove that νM ′/M(u ′i) is a multiple
of ui for i = 0, . . . , f − 1, and similarly for u ′cyc and ucyc if χ is cyclotomic.

With our choices of π and π ′, the map ε
π

n′i appearing in the definition of ui

is simply the restriction to l ⊗ Fp of the one in the definition of u ′i . Note also
that the embeddings τ ′i and unramified characters µ are the same for M and M ′.
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Therefore,

νM ′/M(u ′i) =
∑

g∈Gal(M ′/M)

ε
π

n′i λ
′
τ ′i ,µ
= dε

π
n′i trl ′/ l(λ

′
τ ′i ,µ
),

where λ′
τ ′i ,µ

is in the µ-eigenspace for the action of Gal(l ′/k) on l ′ ⊗k,τ ′i Fp. The
conclusion follows from the observation that trl ′/ l(λ

′
τ ′i ,µ
) ∈ Λτ ′i ,µ. Finally, if χ is

cyclotomic, then the argument for u ′cyc is similar.

6.4. Admissible sets.

DEFINITION 6.4. We say that a subset J ⊂ Z/ f Z is admissible if for all
dependent pairs ([ j], [i]), we have that if [i] ∈ J , then [ j] ∈ J . We say that a
subset J ⊂ T is admissible if the corresponding subset of Z/ f Z is admissible.

The following is immediate from Proposition 6.3:

COROLLARY 6.5. If J ⊂ T is admissible, then the span of the set {cτ | τ ∈ J }
in H 1(G K ,Fp(χ))/H 1

ur(G K ,Fp(χ)) is well defined, that is, independent of the
choice of M and π .

Finally we give some criteria for admissibility in terms of the subspaces of
H 1(G K ,Fp(χ)) which were defined in Section 3 using the ramification filtration.
Note that since cun ∈ H 1

un(G K ,Fp(χ)) (if χ is trivial) and ctr 6∈ H 1
ty(G K ,Fp(χ)) (if

χ is cyclotomic), we always have that {cτ | τ ∈ T } is a basis for the f -dimensional
space H 1

ty(G K ,Fp(χ))/H 1
un(G K ,Fp(χ)).

THEOREM 6.6. With the above notation we have:

(1) If τ ∈ T , then the following hold:

(a) {τ } is admissible if and only if cτ ∈ H 1
cg(G K ,Fp(χ));

(b) T − {τ } is admissible if and only if cτ 6∈ H 1
gt(G K ,Fp(χ)).

(2) The following are equivalent:

(a) χ is generic;

(b) all subsets of T are admissible;

(c) H 1
cg(G K ,Fp(χ)) = H 1

ty(G K ,Fp(χ));

(d) H 1
gt(G K ,Fp(χ)) = H 1

un(G K ,Fp(χ)).
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Proof. To prove part (1), let τ = τi . From the proof of Theorem 5.1, we see that
cτ is in Fils H 1(G K ,Fp(χ)) but not in Fil<s H 1(G K ,Fp(χ)), where s = 1 + n′i/e
and n′i is as in the definition of the classes ui .

For (1a), note that {i} fails to be admissible if and only if ai+1 6= p and
(a j , . . . , ai) = (p, p − 1, . . . , p − 1) for some j with i − f + 1 < j 6 i ,
which in turn is equivalent to n′i > e. Therefore, {τ } is admissible if and only
if cτ ∈ Fil2 H 1(G K ,Fp(χ)) = H 1

cg(G K ,Fp(χ)).
For (1b), note that T − {τ } is admissible if and only if ai+1 6= p or χ |IK is not

cyclotomic, which in turn is equivalent to n′i > e/(p − 1). Therefore, T − {τ } is
admissible if and only if cτ 6∈ Fil<p/(p−1)H 1(G K ,Fp(χ)) = H 1

gt(G K ,Fp(χ)).
Turning to part (2), note that (2a) and (2b) are both equivalent to the condition

that there be no dependent pairs, which in turn is equivalent to the admissibility
of all singletons. The equivalence of (2b) and (2c) thus follows from (1a) and the
fact that the {cτ | τ ∈ T } span H 1

ty(G K ,Fp(χ))/H 1
un(G K ,Fp(χ)). The equivalence

of (2a) and (2d) is immediate from part (5) of Corollary 3.2.

7. Distinguished subspaces

We now return to the setting of Section 2, so K is an unramified extension of
Qp of degree f with residue field k, T is the set of embeddings k → Fp, and
ρ : G K → GL2(Fp) is a continuous representation. We assume further that ρ is
reducible, so ρ ∼ (χ1 ∗

0 χ2

)
for some characters χ1 and χ2 of G K . We let χ = χ1χ

−1
2

and let cρ ∈ H 1(G K ,Fp(χ)) denote the extension class associated to ρ.
Recall that we have defined a set W ′(χ1, χ2) of certain pairs (V, J ), where V

is a Serre weight (that is, an irreducible representation of GL2(k) over Fp) and
J is a subset of T and for each (V, J ) ∈ W ′(χ1, χ2) a certain subspace LV,J of
H 1(G K ,Fp(χ)). We then define d LV as the union of the subspaces LV,J such that
(V, J ) ∈ W ′(χ1, χ2), and W (ρ) as the set of V such that cρ ∈ LV . In this section
we give a conjectural description of LV in terms of the basis for H 1(G K ,Fp(χ))

of Corollary 5.2.
As in the preceding sections, we choose an embedding τ0 ∈ T , set τi = τ0 ◦

Frobi (for i ∈ Z or Z/ f Z), and let ωτi : IK → F
×
p denote the corresponding

fundamental character. We let χ = χ1χ
−1
2 and write

χ |IK =
f−1∏
i=0

ωai
τi
,

where (a0, . . . , a f−1) is the tame signature of χ . We often interchange τi and
i in the notation, and thus identify T with Z/ f Z (except in the notation for
fundamental characters where this could lead to confusion).
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7.1. Shifting functions δ andµ. For any subset J of Z/ f Z, we define a subset
µ(J ) of Z/ f Z. First we define a function δ : Z→ Z depending on the integers ai

as follows: If j ∈ Z we let δ( j) = j unless

(ai+1, ai+2, . . . , a j) = (p, p − 1, . . . , p − 1)

for some i < j (necessarily unique), in which case we let δ( j) = i . Note that δ
induces a function Z/ f Z→ Z/ f Z, which we also denote by δ. If δ(J ) ⊂ J , then
we let µ(J ) = J . Otherwise we choose some [i1] ∈ δ(J )\ J and let j1 be the least
integer such that j1 > i1, [ j1] ∈ J and δ( j1) = i1. Now write J = {[ j1], . . . , [ jr ]}
with j1 < j2 < · · · < jr < j1 + f , and define iκ for κ = 2, . . . , r inductively as
follows:

iκ =
{
δ( jκ) if iκ−1 < δ( jκ),
jκ otherwise.

We then have i1 < i2 < · · · < ir < i1+ f , and we set µ(J ) = {[i1], . . . , [ir ]}. One
checks easily that this is independent of the choice of i1. Note that by construction
we have δ(J ) ⊂ µ(J ) ⊂ δ(J ) ∪ J .

LEMMA 7.1. The set µ(J ) is admissible.

Proof. Suppose that ([i + t], [i]) is a dependent pair with notation as in
Definition 6.1. We must show that if [i + t] ∈ µ(J ), then [i] ∈ µ(J ). Recall from
Section 6.1 that s is such that ai+s = p − 1 but ai+s+1 = p. Note that

δ(i + 1) = · · · = δ(i + s) = i, and δ(i + ν) = i + ν − 1 for ν = s + 1, . . . , t .

In particular δ([i+ t]) 6= [i+ t], and since ai+t+1 6= p, it follows that [i+ t] is not
in the image of δ. If [i + t] ∈ µ(J ), we must therefore have i + t = jκ = iκ for
some choice of i1 and some κ ∈ {2, . . . , r}. If s < t , then the resulting inequalities

jκ − 1 = δ( jκ) 6 iκ−1 6 jκ−1 < jκ

imply that iκ−1 = jκ−1 = i + t − 1 and κ > 3. Repeating the argument shows that
for ν = 2, . . . , s− t , we have iκ−ν = jκ−ν = i + t− ν and κ > ν+2. In particular
[i + s] ∈ J , and hence [i] = δ([i + s]) ∈ µ(J ).

7.2. Explicit distinguished subspaces. Now let V = VEd,Eb and suppose that
(V, J ) ∈ W ′(χ1, χ2) for some J ⊂ T . Then there is a unique Jmax ⊂ Z/ f Z such
that (V, Jmax) ∈ W ′(χ1, χ2), and Jmax satisfies the two conditions:

• if (bi , bi+1, . . . , b j−1, b j) = (p, p − 1, . . . , p − 1, 1) for some i < j such that
i, i + 1, . . . , j − 1 6∈ Jmax, then j 6∈ Jmax;
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• if (b0, . . . , b f−1) = (p−1, p−1, . . . , p−1), or if p = 2 and (b0, . . . , b f−1) =
(2, 2, . . . , 2), then Jmax 6= ∅.

(This is proved in [15] for p > 2, but one easily checks that it holds also for
p = 2.) We then define LAH

V ⊂H 1(G K ,Fp(χ)) to be the span of {cτ | τ ∈ µ(Jmax)}
together with cun if χ is trivial, unless χ is cyclotomic and V = VEd,Eb with Jmax = T
and (b0, . . . , b f−1) = (p, p, . . . , p), in which case LAH

V = H 1(G K ,Fp(χ)) (that
is, we include ctr as well). By Corollary 6.5 and Lemma 7.1 the space LAH

V is well
defined, that is, independent of the choices made in Section 5. (The superscript
AH refers to the use of the Artin–Hasse exponential in its definition.)

We now state our conjectural explicit description of the subspaces appearing in
the recipe for the weight:

CONJECTURE 7.2. If (V, J ) ∈ W ′(χ1, χ2) for some J , then LV = LAH
V .

Recall that [15] proves that if p > 2 and (V, J ) ∈ W ′(χ1, χ2), then
LV,J ⊂ LV,Jmax, so that LV can be replaced by LV,Jmax in the statement of
Conjecture 7.2 if p > 2. Since LAH

V is a subspace of H 1(G K ,Fp(χ)) of dimension
at most that of LV,Jmax, Conjecture 7.2 implies that LAH

V = LV,Jmax, and hence the
assertion that LV,J ⊂ LV,Jmax for all (V, J ) ∈ W ′(χ1, χ2) still holds for p = 2.

7.3. A weight-explicit Serre’s conjecture. Finally we record a more explicit
form of Conjecture 2.1. For ρ as above, define W AH(ρ) to be the set of V such
that (V, J ) ∈ W ′(χ1, χ2) for some J and cρ ∈ LAH

V . For irreducible ρ : G K →
GL2(Fp), define W AH(ρ) = W (ρ).

Suppose now that ρ : G F → GL2(Fp) is continuous, irreducible and totally
odd. Combining Conjectures 2.1 and 7.2 then yields:

CONJECTURE 7.3. The representation ρ is modular of weight V = ⊗{p∈Sp}Vp if
and only if Vp ∈ W AH(ρ|G Fp

) for all p ∈ Sp.

If ρ is modular (of some weight) and satisfies the hypotheses under which the
weight part of Serre’s Conjecture is known (by [14] or [20]), then Conjecture 7.3
is immediate from Conjecture 7.2.

8. The quadratic case
In this section we delineate the possibilities for the spaces of extensions LAH

V
and the sets of Serre weights W AH(ρ) in the case f = 2. We refer the reader to the
forthcoming paper [9] for a more detailed discussion of the situation for arbitrary
f and the underlying combinatorics.
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Suppose now that K is the unramified quadratic extension of Qp, and ρ : G K →
GL2(Fp) is a continuous representation.

8.1. Three reducible cases. Suppose first that ρ is reducible, so that
ρ ∼ (χ1 ∗

0 χ2

)
for some characters χ1, χ2 : G K → F

×
p . Twisting by χ−1

2 , we
may assume χ2 = 1, and we write χ for χ1 and cρ ∈ H 1(G K ,Fp(χ)) for the
associated extension class. Choosing an embedding τ0 : k → Fp, we may write
χ |IK = ωa

τ0
with p + 1 6 a < p2 + p. We let (a0, a1) denote the tame signature

of χ , so a = a0 + a1 p; altering our choice of τ0, we may further assume that
1 6 a0 6 p − 1 and a0 6 a1 6 p. We now divide our analysis into three cases,
following the terminology introduced after Theorem 3.1:

(I) χ is primitive and generic: 1 6 a0 < a1 < p;

(II) χ is imprimitive and generic: 1 6 a0 = a1 < p;

(III) χ is primitive and nongeneric: 1 6 a0 < a1 = p.

Thus the analysis in Case I is simplest, and the other two cases represent the two
main complications that can occur. Note that Case II occurs precisely when χ
has absolute niveau 1, so χ |IK = ωc where ω is the cyclotomic character and
1 6 c 6 p − 1, and Case III occurs precisely when χ |IK = ωc

τ for some τ and c
with 1 6 c 6 p − 1. Note also for f = 2 (or indeed any prime f ), χ cannot be
both imprimitive and nongeneric.

8.2. Case I. In Case I, the elements of W ′(χ, 1) are the pairs (VEd,Eb, J )
given by the columns of the table:

J T {0} {1} ∅
Ed (0, 0) (p − 1, a1 − 1) (a0 − 1, p − 1) (a0, a1)
Eb (a0, a1) (a0 + 1, p − a1) (p − a0, a1 + 1) (b0, b1)

(10)

where

(b0, b1) =
(p − 1− a0, p − 1− a1) if a1 < p − 1,
(p − 2− a0, p) if a1 = p − 1 and a0 < p − 2,
(p, p − 1) if (a0, a1) = (p − 2, p − 1).

For each V = VEd,Eb in the table, there is a unique J ∈ SV (χ, 1), so that J = Jmax;
moreover, J = µ(J ) is admissible. If J = T , then LAH

V is the whole two-
dimensional space H 1(G K ,Fp(χ)), and if J = ∅, then LAH

V = 0, but if J = {i}
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for i = 0 or 1, then LAH
V is a one-dimensional subspace of H 1(G K ,Fp(χ)) which

we simply denote L i . We then have four possibilities for W AH(ρ):

(Ia) {V(0,0),(a0,a1)} if cρ 6∈ L0 ∪ L1;

(Ib1) {V(0,0),(a0,a1), V(a0−1,p−1),(p−a0,a1+1)} if cρ ∈ L1, cρ 6= 0;

(Ib2) {V(0,0),(a0,a1), V(p−1,a1−1),(a0+1,p−a1)} if cρ ∈ L0, cρ 6= 0;

(Ic) {V(0,0),(a0,a1), V(p−1,a1−1),(a0+1,p−a1), V(a0−1,p−1),(p−a0,a1+1), V(a0,a1),(b0,b1)} if
cρ = 0.

We now proceed to describe the subspaces L0 and L1.
With notation as in Section 5, we have n0 = a = a0+ pa1 and n1 = a1+ pa0, so

that n1 < n0. Choosing a tamely ramified extension M with uniformizer π , residue
field l, and ramification degree e as in that section, we have n′0 = en1/(p2 − 1),
n′1 = en0/(p2 − 1), and

χ = µ(τ1 ◦ ωπ )n′0 = µ(τ0 ◦ ωπ )n′1,
where ωπ (g) = g(π)/π .

Theorem 5.1 provides a basis {u0, u1} for Uχ = (M× ⊗ Fp(χ
−1))Gal(M/K ) with

ui ∈ επn′i (l ⊗ Fp) = E([l]π n′i )⊗ Fp.

We can therefore describe the elements of the dual basis {c0, c1} for

H 1(G K ,Fp(χ)) ∼= HomGal(M/K )(M×,Fp(χ))

by specifying their values on the elements of M× of the form E([a]π n′i ) for
a ∈ l and i = 0, 1. We find that c0 and c1 are defined (up to scalars) by the
homomorphisms

c0(E([a]π n′1)) = 0, c0(E([a]π n′0)) =
∑

g∈Gal(l/k)

µ−1(g)τ̃0(ga p)

and c1(E([a]π n′0)) = 0, c1(E([a]π n′1)) =
∑

g∈Gal(l/k)

µ−1(g)τ̃1(ga p)

for any choices of embeddings τ̃i : l → Fp extending the τi . Indeed it is
straightforward to check that ci(hx) = χ(h)c0(x) for x = E([a]π n′i ), we clearly
have c0(u1) = c1(u0) = 0, and the following lemma shows that c0 and c1 are
not identically 0. For the lemma, we momentarily drop the assumptions that
[k : Fp] = 2 and that [l : k] is not divisible by p.
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LEMMA 8.1. Suppose that k ⊂ l are finite extensions of Fp, µ : Gal(l/k)→ F
×
p

is a character and τ̃ : l → Fp is an embedding. Then the function f : l → Fp

defined by f (a) =∑g∈Gal(l/k) µ(g)τ̃ (ga) is not identically zero.

Proof. Suppose that f (a) = 0 for all a ∈ l. Let F denote the subfield of Fp

generated by the values of µ, and let r = [F : Fp]. For i = 0, . . . , r − 1, consider
the function f (i) : l → Fp defined by f (i)(a) = ∑

g∈Gal(l/k) µ
pi
(g)τ̃ (ga). Since

f (i)(a pi
) = ( f (a))pi = 0 for all a ∈ l, the function f (i) is identically zero, and

therefore so is the function h : l → Fp defined by

h(a) =
r−1∑
i=0

f (i)(a) =
∑

g∈Gal(l/k)

trF/Fp(µ(g))τ̃ (ga).

Taking a so that {ga | g ∈ Gal(l/k)} is a normal basis for l/k, the τ̃ (ga) are
linearly independent over τ̃ (k), and hence over Fp. It follows that trF/Fp(µ(g))= 0
for all g ∈ Gal(l/k). Since the values µ(g) span F as a vector space over Fp, this
implies that trF/Fp is identically zero, yielding a contradiction.

We thus obtain the criterion that cρ ∈ L i if and only if E([a]π eni /(p2−1)) ∈
ker(cρ) for all a ∈ l. Since n1 < n0, this provides a description of L0 in terms of
the ramification filtration on cohomology defined in Section 3. By Theorem 3.1,
we have

dimFp
Fils(H 1(G K ,Fp(χ)))=

0 if s < 1+ n1/(p2 − 1),
1 if 1+ n1/(p2 − 1) 6 s < 1+ n0/(p2 − 1),
2 if 1+ n0/(p2 − 1) 6 s.

We thus see that

L0 = Fil1+n1/(p2−1)(H 1(G K ,Fp(χ))) = Fil<1+n0/(p2−1)(H 1(G K ,Fp(χ))), (11)

so that cρ ∈ L0 if and only if Gn0/(p2−1)
K ⊂ ker(ρ). The space L1 cannot be

described in terms of the ramification filtration, but it can still be characterized
in terms of splitting fields. Indeed if we let N denote the splitting field over M of
ρ, then we have

cρ ∈ L i if and only if E([a]π eni /(p2−1)) ∈ NormN/M(N×) for all a ∈ l. (12)

8.3. Case II. We now turn to Case II, where the tame signature (a0, a0) has
period 1. Then W ′(χ, 1) is given exactly as in (10) with the following changes:
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• if a0 = 1, then we also have Ed = (0, 0), Eb = (p, p) for J = T ;

• if a0 = p − 2, then we also have Ed = (p − 2, p − 2), Eb = (p, p) for J = ∅;
• if a0 = p−1, then take Eb = (p−1, p−1) for J = ∅, and we have the following

additional elements:

J {0} {1} ∅ (if p = 2)

Ed (p − 2, p − 1) (p − 1, p − 2) (0, 0)
Eb (1, p) (p, 1) (2, 2)

For each V we still have a unique J ∈ SV (χ, 1) unless a0 = p− 1, in which case
each SV (χ, 1) has two elements, and the ones appearing in the last bullet above
are precisely those for which J 6= Jmax. Note that every J arises as Jmax for some
V unless a0 = p − 1, in which case Jmax = ∅ does not arise. Moreover, Jmax

uniquely determines V unless a0 = 1, in which case V(0,0),(1,1) and V(0,0),(p,p) both
have Jmax = T , or a0 = p − 2, in which case V(p−2,p−2),(0,0) and V(p−2,p−2),(p,p)

both have Jmax = ∅. It is still the case that J = µ(J ) is admissible for every J .
If Jmax = ∅, then LAH

V = 0. If Jmax = T , then LAH
V = H 1(G K ,Fp(χ)) unless

χ is cyclotomic and V = V(0,0),(1,1), in which case LAH
V = H 1

fl (G K ,Fp(χ)) =
H 1

ty(G K ,Fp(χ) has codimension one in H 1(G K ,Fp(χ)). If Jmax = {i} for i = 0
or 1, then writing simply L i for LAH

V , we have the sequence of inclusions of
subspaces with codimension one:

H 1
un(G K ,Fp(χ)) ⊂ L i ⊂ H 1

ty(G K ,Fp(χ)). (13)

We now list the possibilities for W AH(ρ).
If a0 = 1, then W AH(ρ) is:

(IIz) {V(0,0),(p,p)} if cρ 6∈ H 1
ty(G K ,Fp(χ));

(IIa) {V(0,0),(p,p), V(0,0),(1,1)} if cρ ∈ H 1
ty(G K ,Fp(χ))− (L0 ∪ L1);

(IIb1) {V(0,0),(p,p), V(0,0),(1,1), V(0,p−1),(p−1,2)} if cρ ∈ L1 − L0;

(IIb2) {V(0,0),(p,p), V(0,0),(1,1), V(p−1,0),(2,p−1)} if cρ ∈ L0 − L1;

(IIc) {V(0,0),(p,p), V(0,0),(1,1), V(p−1,0),(2,p−1), V(0,p−1),(p−1,2), V(1,1),(p−2,p−2)}
if cρ ∈ L0 ∩ L1 = H 1

un(G K ,Fp(χ)),

where in Case (IIc) we omit V(1,1),(p−2,p−2) if p = 2 and add V(1,1),(3,3) if
p = 3. Note that Case (IIz) is only possible if χ is cyclotomic, and recall that
H 1

un(G K ,Fp(χ)) = 0 unless χ is trivial (which implies here that p = 2).
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If 2 6 a0 6 p − 1, then W AH(ρ) is:

(IIa′) {V(0,0),(a0,a0)} if cρ 6∈ L0 ∪ L1;

(IIb′1) {V(0,0),(a0,a0), V(a0−1,p−1),(p−a0,a0+1)} if cρ ∈ L1 − L0;

(IIb′2) {V(0,0),(a0,a0), V(p−1,a0−1),(a0+1,p−a0)} if cρ ∈ L0 − L1;

(IIc′)
{

V(0,0),(a0,a0), V(p−1,a0−1),(a0+1,p−a0), V(a0−1,p−1),(p−a0,a0+1),

V(a0,a0),(p−1−a0,p−1−a0)

}
if cρ ∈ L0 ∩ L1 = H 1

un(G K ,Fp(χ)),

where in Case (IIc′) we omit V(1,1),(p−1−a0,p−1−a0) if a0 = p − 1 and add V(1,1),(p,p)
if a0 = p−2. (Recall again that H 1

un(G K ,Fp(χ)) = 0 unless χ is trivial, in which
case a0 = p − 1.)

We now turn to the description of the subspaces L i . The main difference from
Case I is that we now have n0 = n1 = a = a0(1 + p), so that n′0 = n′1 in the
notation of Section 5. (Note also that we may choose e to divide p − 1.) Another
difference is that χ may be trivial or cyclotomic, so that H 1(G K ,Fp(χ)) and Uχ

may have dimension greater than two. However, from the inclusions (13) we see
that it suffices to describe the image L ′i of L i in the quotient

H 1
ty(G K ,Fp(χ))/H 1

un(G K ,Fp(χ)) ∼= HomGal(M/K )(O×M/Um,Fp(χ))

⊂ HomGal(M/K )(O×M ,Fp(χ)),

where Um = 1 + πmOM for m = dep/(p − 1)e. This quotient has a basis
{c′0, c′1} where c′i spans L ′i and is determined by its values on elements of the
form E([a]π n′0) for a ∈ l by the formula

c′i([a]π n′0) =
∑

g∈Gal(l/k)

µ−1(g)τ̃i(ga p), (14)

where τ̃i : l→ Fp is any choice of embedding extending τi . Indeed it follows from
the definitions of the elements u j that c′i ∈ L ′i and from Lemma 8.1 that c′i 6= 0.

As for the ramification filtration on cohomology, the fact that the tame signature
has period 1 in this case gives that

dimFp
Fils(H 1(G K ,Fp(χ)))

=


0 if s < 0,
δtriv if 0 6 s < 1+ n0/(p2 − 1),
δtriv + 2 if 1+ n0/(p2 − 1) 6 s < 1+ p/(p − 1),
δtriv + 2+ δcyc if 1+ p/(p − 1)) 6 s,

where δtriv (respectively δcyc) is 1 or 0 according to whether or not χ is trivial
(respectively cyclotomic). Unlike Case I, neither of the spaces L i can be described
in terms of the ramification filtration, nor can we necessarily detect whether
cρ ∈ L i from the splitting field of ρ.
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8.4. Case III. Finally we consider Case III, where the tame signature of χ has
the form (a0, p). The elements of W ′(χ, 1) are then given in the table:

J T {0} {1} ∅

1 6 a0 < p − 1
Ed (0, 0) (p − 2, p − 1) (a0, p − 1) (a0, p)
Eb (a0, p) (a0 + 2, p) (p − 1− a0, 1) (b0, b1)

a0 = p − 1
Ed (0, 0) (p − 1, 0) (p − 1, p − 2) (0, 1)
Eb (p − 1, p) (1, p − 1) (p, 2) (b0, b1)

where

(b0, b1) =
(p − 2− a0, p − 1) if a0 < p − 2,
(p, p − 1) if a0 = p − 2 or p = 2,
(p − 1, p − 2) if a0 = p − 1 and p > 2.

As in Case I, there is a unique J ∈ SV (χ, 1) for each V in the table, so that
J = Jmax. However, only T , {0} and ∅ are admissible, and the functions δ and µ
introduced in Section 7 are nontrivial. Indeed we find that µ(T ) = T , µ({0}) =
µ({1}) = {0} and µ(∅) = ∅. If J = T , then LAH

V is the whole two-dimensional
space H 1(G K ,Fp(χ)), and if J = ∅, then LAH

V = 0, but if J = {i} for i = 0
or 1, then LAH

V is the same one-dimensional subspace of H 1(G K ,Fp(χ)) which
we simply denote L0. We therefore have three possibilities for W AH(ρ).

If 1 6 a0 < p − 1, then W AH(ρ) is:

(IIIa) {V(0,0),(a0,p)} if cρ 6∈ L0;

(IIIb1) {V(0,0),(a0,p), V(p−2,p−1),(a0+2,p), V(a0,p−1),(p−1−a0,1)} if cρ ∈ L0, cρ 6= 0;

(IIIc) {V(0,0),(a0,p), V(p−2,p−1),(a0+2,p), V(a0,p−1),(p−1−a0,1), V(a0,p),(b0,b1)} if cρ = 0.

If a0 = p − 1, then W AH(ρ) is:

(IIIa′) {V(0,0),(a0,p)} if cρ 6∈ L0;

(IIIb′1) {V(0,0),(a0,p), V(p−1,0),(1,p−1), V(p−1,p−2),(p,2)} if cρ ∈ L0, cρ 6= 0;

(IIIc′) {V(0,0),(a0,p), V(p−1,0),(1,p−1), V(p−1,p−2),(p,2), V(0,1),(b0,b1)} if cρ = 0.

Turning to the subspace L0, we now have n0 = a0 + p2 and n1 = (a0 + 1)p,
so that again n′1 = en0/(p2 − 1), but now n′0 = n′1 − e if a0 < p − 1 and
n′0 = e/(p2 − 1) = 1 if a0 = p − 1. Therefore, L0 is spanned by the class c0

determined by the formula

c0(E([a]π n′1)) = 0, c0(E([a]π n′0)) =
∑

g∈Gal(l/k)

µ−1(g)τ̃0(ga p)
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for a ∈ l, where τ̃0 is any choice of embedding extending τ0. We thus obtain the
criterion that cρ ∈ L0 if and only if E([a]π en0/(p2−1)) ∈ ker(cρ) for all a ∈ l. In
terms of the splitting field N of ρ over M , we have

cρ ∈ L0 if and only if E([a]π en0/(p2−1)) ∈ NormN/M(N×) for all a ∈ l. (15)

As for the ramification filtration, we now have

dimFp
Fils(H 1(G K ,Fp(χ)))=

0 if s < 1+ m/(p2 − 1),
1 if 1+ m/(p2 − 1) 6 s < 1+ n0/(p2 − 1),
2 if 1+ n0/(p2 − 1) 6 s,

where m = a0 + 1 if 1 6 a0 < p − 1 and m = 1 if a0 = p − 1. We thus see that

L0 = Fil1+m/(p2−1)(H 1(G K ,Fp(χ))) = Fil<1+n0/(p2−1)(H 1(G K ,Fp(χ))), (16)

so that cρ ∈ L0 if and only if Gn0/(p2−1)
K ⊂ ker(ρ). Moreover, since m < p+1 and

n0 > p2−1, we have L0 = H 1
gt(G K ,Fp(χ)) = H 1

cg(G K ,Fp(χ)), so that these are
precisely the gently ramified classes, which in this case coincide with the cogently
ramified classes.

We remark that if a0 = p−2, we have LV(p−2,p−1),(1,1) ⊂ H 1
fl (G K ,Fp(χ)) by [11];

together with the equality LV(p−2,p−1),(1,1) = LV(p−2,p−1),(p,p) provided by [6], it follows
in this particular case that W AH(ρ) = W (ρ).

8.5. Two irreducible cases. For completeness, we also list the possibilities
when ρ is irreducible. Recall that in this case we let W AH(ρ) = W (ρ) as defined
in (4).

We let K ′ denote the unramified quadratic extension of k and k ′ its residue
field. Choose an embedding τ ′ : k ′ → Fp and let ψ = ωτ ′ : IK → F

×
p denote the

associated fundamental character, so ψ has order p4 − 1. We then have

ρ|IK ∼
(
ψa 0
0 ψ p2a

)
for some a with 1 6 a 6 p4 − 1 and a 6≡ 0 mod p2 + 1. Twisting by characters
of G K , we may alter a by multiples of p2 + 1 and hence assume 1 6 a 6 p2.
Altering our choice of τ ′, we may further assume a = a0 + a1 p where either

(IV) 2 6 a0 6 p − 1 and 1 6 a1 6 p − 2, or

(V) 1 6 a0 6 p − 1 and a1 = 0.

In Case IV, which is equivalent to a 6≡ i p j mod p2 + 1 for i = 1, . . . , p − 1,
j = 0, 1, 2, 3, we find that
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W (ρ) = {V(0,0),(a0,a1), V(a0−1,a1),(p+1−a0,p−1−a1), V(a0−1,p−1),(p−a0,a1+1),

V(0,a1),(a0−1,p−a1)

}
where the indices in T are ordered so the first embedding is the restriction of our
chosen τ ′. In case V, we find that

W (ρ) = {V(p−2,p−1),(a0+1,p), V(a0−1,0),(p+1−a0,p−1), V(a0−1,p−1),(p−a0,1),

V(0,0),(a0−1,p)
}

with the last weight omitted if a0 = 1.

9. Examples of Galois representations

We now illustrate the possible behaviour discussed in the preceding section
with eight explicit examples for p = 3, f = 2. In the next section, we
exhibit in Table 3 numerically matching automorphic data for each of the Galois
representations described here. We refer to [9] for an extensive collection of
examples for more general p and f and elaboration on methods for obtaining
and analysing them.

We are restricting here to p = 3, as this is the smallest prime for which all
the reducible Cases I, II and III arise. We organize the examples according to the
classification in the preceding section, and we content ourselves with examples for
each type labelled (a) or (bi ) as these already illustrate the main new phenomena
involving wild ramification in the quadratic case.

In the first two examples, F = Q(
√

2) while in the last six, F = Q(
√

5). All
our representations ρ take values in GL2(k), where k = OF/3OF is viewed as a
subfield of F3 via the embedding labelled τ0. We let α denote a root of x2+2x−1
if F = Q(

√
2), and a root of x2 − x − 1 if F = Q(

√
5), and in either case we use

the same symbol α for its image in k ⊂ F3.
In the list below, we describe ρ by specifying its projective splitting field, its

conductor (prime to 3) and its local behaviour at p = 3 up to an unramified
quadratic twist. In each of our examples one can show there is a unique
representation ρ satisfying this description, except for those in Case III, where
there are two such representations differing by a quadratic twist.

9.1. Case I. We use examples with tame signature (a0, a1) = (1, 2), so n0 = 7
and n1 = 5. This means that ρ|G K is a twist of a representation of the form(

χ ∗
0 1

)
, with χ |IK = ω7

τ0
= ω5

τ1
;

in particular χ is primitive and generic.
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In all our examples, χ will in fact have the form ω7
π : Gal(M/K )→ k× where

π 8 is a uniformizer of K , M = K (π) and ωπ is the associated fundamental
character. The class cρ ∈ H 1(G K , k(ω7

π )) thus corresponds via local class field
theory to a Gal(M/K )-linear homomorphism

M× −→ Gal(N/M) ∼= k(ω7
π )

with kernel NormN/M(N×) where N is the projective splitting field of ρ|G K . This
kernel contains I M×, where I is the kernel of the surjection Z[Gal(M/K )] → k
induced by ω7

π . As a k-vector space M×/I M× is two-dimensional, spanned by
E3(π

5) ≡ 1 + π 5 and E3(π
7) ≡ 1 + π 7, and NormN/M(N×)/I M× is a one-

dimensional subspace that determines W AH(ρ|G K ) via (12).

Example Ia. Let F = Q(
√

2) and let E denote the splitting field over Q of the
polynomial

fIa(x) = x10 − 24x7 − 42x6 − 24x4 − 48x3 − 18x2 − 32x − 96.

Then F ⊂ E , and there is an isomorphism % : Gal(E/F)→ PGL2(k) that lifts to
a representation ρ : G F → GL2(k) of conductor p6

2, where p2 = (
√

2).
Up to an unramified quadratic twist, the local representation ρ|G K has the form

ω5
π ⊗

(
ω7
π ∗

0 1

)
where π 8 = 3, and the splitting field N of the projective local representation is
that of the polynomial x9 + 6x7 + 3x6 + 6. Here and in the later examples, we
are using the database described in [16] to pass from the global polynomial to a
local 3-adic Eisenstein polynomial. As will be explained in more detail in [9], the
above form for the local representation is determined up to twist by the maximal
tamely ramified subfield of N (in this case M = K (π)), the action of Gal(M/K )
on Gal(N/M) and the choice of isomorphism %. The twist is then specified, up
to an unramified quadratic character, as part of the data characterizing the lift
ρ of the projective representation %. Using a Magma program described in [9],
we find that NormN/M(N×)/I M× consists of the classes of elements of the form
1 + [a]π 5 − [a]3π 7 for a ∈ k. Taking into account the twist by ω5

π , we conclude
from (12) that W AH(ρ|G K ) = {V(2,1),(1,2)}.

Example Ib1. Let F = Q(
√

2) again and let E denote the splitting field over F
of the polynomial

fIb1(x) = x10 − 9x8 + 78x6 − 246x4 − 48x3 + 459x2 + 224x − 75.

We again have F ⊂ E and an isomorphism Gal(E/F) ∼= PGL2(k) lifting to a
representation ρ : G F → GL2(k) of conductor p6

2.
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Up to an unramified quadratic twist, ρ|G K has the form

ω2
π ⊗

(
ω7
π ∗

0 1

)
where now π 8 =−3 and the local projective splitting field N is that of x9+3x7+3.
In this case however NormN/M(N×)/I M× consists of the classes of 1+[a]π 5 for
a ∈ k, so (12) implies that cρ ∈ L1. Taking into account the twist by ω2

π , we
conclude that W AH(ρ|G K ) = {V(2,0),(1,2), V(0,0),(2,3)}.

Example Ib2. Now, and for all the remaining examples, let F = Q(
√

5). Let E
denote the splitting field over Q of the polynomial fIb2(x) =
x10−2x9+9x8+48x7−132x6+504x5+228x4−1824x3+6894x2−7676x+4462.

We again have F ⊂ E and an isomorphism Gal(E/F) ∼= PGL2(k) lifting to a
representation ρ : G F → GL2(k) of conductor (2)5.

Up to an unramified quadratic twist, ρ|G K has the form

ω7
π ⊗

(
ω7
π ∗

0 1

)
where π 8 = −3 and the local projective splitting field N is that of x9+6x5+6.We
now find that NormN/M(N×)/I M× consists of the classes of 1+ [a]π 7 for a ∈ k,
so that cρ ∈ L0 by (12) (or by (11) since G7/8

K ⊂ ker(ρ)). Taking into account the
twist by ω7

π , we conclude that W AH(ρ|G K ) = {V(1,2),(1,2), V(1,1),(2,1)}.

9.2. Case II. We use examples with tame signature (a0, a1) = (1, 1), so
n0 = n1 = 4. Thus ρ|G K is a twist of a representation of the form(

χ ∗
0 1

)
, with χ |IK = ω4

τ0
= ω4

τ1
;

in particular χ is imprimitive and generic.
Note that we may write χ = µωπ where µ is unramified and π 2 = −3, so ωπ is

the cyclotomic character. In all our examples, we will have cρ ∈ H 1
ty(G K , k(χ)),

and since H 1
ur(G K , k(χ)) = 0, we see that W AH(ρ|G K ) is determined by whether

cρ is a multiple of either of the classes defined in (14).

Example IIa. Let E be the splitting field over Q of the polynomial

fIIa(x) = x4 − x3 + 2x − 11.
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A representation ρ : G F → GL2(F3) of conductor (7) with projective splitting
field E is given by the 3-torsion of a quadratic twist of the base change to
F = Q(

√
5) of the elliptic curve over Q with Cremona label 175A.

Up to an unramified quadratic twist, the local representation ρ|G K has the form(
ωπ ∗
0 1

)
where π 2 = −3, so we can take M = K (π) and l = k. The local projective
splitting field N is that of x3 + 3x + 3. Since ωπ is cyclotomic, we have that
H 1

fl (G K ,F3(ωπ )) = H 1
ty(G K ,F3(ωπ )) has codimension one in H 1(G K ,F3(ωπ )).

One can check directly that G3/2
K ⊂ ker(ρ) and hence that cρ ∈ H 1

ty(G K ,F3(ωπ )),
or deduce this from the fact ρ is defined by an elliptic curve with good ordinary
reduction at 3. On the other hand since cρ is nontrivial and takes values in F3, but
the homomorphism in (14) is simply τi and hence has image of order 9, it follows
that cρ 6∈ L0 ∪ L1. Therefore, W AH(ρ|G K ) = {V(0,0),(3,3), V(0,0),(1,1)}.

Example IIb1. Let E be the splitting field over F = Q(
√

5) of

fIIb1(x) = x6−3αx5+3αx4+(6α+6)x3−(21α+12)x2+(21α+12)x−8α−4.

The Shimura curve associated to the units of a maximal order of a quaternion
algebra over F ramified at one archimedean place and the prime p61 = (3−7α) has
genus two, and its Jacobian has real multiplication by F (see [8, Remark 3]). The
3-torsion points of this Jacobian give rise to a representation ρ : G F → GL2(k) of
conductor p61 with E as its projective splitting field. Note that unlike the preceding
examples, E is not Galois over Q.

Up to an unramified quadratic twist, the local representation ρ|G K has the form

ν−1 ⊗
(
ν2ωπ ∗

0 1

)
where π 2 = −3 and ν is the unramified character of G K sending FrobK to (the
reduction of) α3. We let M = L(π) where L is the unramified extension of K of
degree 4, so also [l : k] = 4. The splitting field of the character ν2ωπ is not of the
form required for the construction of Section 5, so we have adjoined π in order to
obtain a field of the required form; note that the extension M/K is not cyclic. Note
also that since ν2 is nontrivial, we have H 1

ty(G K , k(ν2ωπ )) = H 1(G K , k(ν2ωπ )).
The class cρ now corresponds to a Gal(M/K )-linear homomorphism

M×/I M× −→ Gal(N/M) ∼= k(ν2ωπ )
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where I is the kernel of the surjection Z[Gal(M/K )] → k induced by ν2ωπ , and
N is the composite of M with the projective local splitting field of ρ. As a k-
vector space, M×/I M× is two-dimensional, consisting of the classes of E3([a])≡
1 + [a]π for a in the kernel of trl/k′ , where k ′ is the quadratic extension of k.
Unravelling (14), we find that cρ ∈ L0 (respectively L1) if and only if cρ is trivial
on those 1+[a]π such that a8 = ν2(FrobK )= α2 (respectively a8 = ν6(FrobK )=
−α2). Explicit computation of elements of NormN/M(N×) shows that indeed cρ
is in L1 (and hence not in L0 since cρ 6= 0), so that W AH(ρ|G K ) = {V(0,0),(3,3),
V(0,0),(1,1), V(0,2),(2,2)}.

Example IIb2. We may take Example IIb1 and replace ρ by ρ ◦ σ , where σ
is the outer automorphism of G F induced by conjugation by an element of GQ
extending the nontrivial element of Gal(F/Q). The resulting representation has
conductor p′61 = (4 − 7α) and projective splitting field σ(E); the character ν
in the description of ρ|G K is the same as in Example IIb1, but the kernel of the
homomorphism induced by cρ would be replaced by its Galois conjugate. We
therefore conclude that cρ is in L0 instead of L1, so that WAH(ρ|G K ) = {V(0,0),(3,3),
V(0,0),(1,1), V(2,0),(2,2)}. The corresponding system of Hecke eigenvalues is obtained
from the one in Example IIb1 by interchanging each av with aσ(v). (Note that a
similar procedure could not have been used to generate an example of type Ib2

from Ib1 since the inequality n1 < n0 would not be preserved.)
Alternatively, we could obtain an example of type IIb2 by replacing the

representation ρ in Example IIb1 by its composite with the automorphism of
GL2(k) induced by Frob on k. The projective splitting field is then the same as
in Example IIb1, as is the description of ρ|G K , except that ν is replaced by the
unramified character sending FrobK to α and the homomorphism corresponding
to cρ : M× → k(ν2ωπ ) is obtained from the preceding one by composing with
Frob. Note that N and I M× do not change, but the criteria for cρ to be in L0 and
L1 in terms of NormN/M(N×) are interchanged. In this case the corresponding
system of Hecke eigenvalues is obtained from the one in Example IIb1 by
replacing each av with Frob(av). Finally of course, we could just as well have
obtained an example of type IIb1 by replacing the original ρ with Frob ◦ ρ ◦ σ .

9.3. Case III. We use examples with tame signature (a0, a1) = (1, 3), so
n0 = 10 and n1 = 6. Thus ρ|G K is a twist of a representation of the form(

χ ∗
0 1

)
, with χ |IK = ω2

τ0
= ω6

τ1
;

in particular χ is primitive and nongeneric.
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In both our examples χ will in fact have the form ωπ : Gal(M/K ) → k×

where π 4 is a uniformizer of K , M = K (π) and ωπ is the associated fundamental
character. The class cρ will be nontrivial, so that W AH(ρ|G K ) is determined by
whether cρ lies in the space L0 described in (15) or (16). Note also that since
a0 = p − 2, we know in fact in this case that W AH(ρ|G K ) = W (ρ|G K ) by the
remark at the end of Section 8.

For both examples, there are in fact two representations with the given
description; choosing either to be ρ, the other is δ ⊗ ρ where δ the nontrivial
character of Gal(F(ζ5)/F).

Example IIIa. Let E denote the splitting field over Q of the polynomial

fIIIa(x) = x10 − 5x9 + 135x6 − 360x5 + 405x4 − 270x3 + 135x2 − 45x + 9.

We then have F = Q(
√

5) ⊂ E and an isomorphism Gal(E/F) ∼= PSL2(k) lifting
to a representation ρ : G F → GL2(k) of conductor p3

5, where p5 = (
√

5).
Up to an unramified quadratic twist, ρ|G K has the form

ω$ ⊗
(
ω2
$ ∗
0 1

)
where $ 8 = 3ω2, so we may take M = K (π) with π = $ 2. The splitting field
N of the projective local representation is that of the polynomial x9 + 9x + 6,
and we find that G5/4

K 6⊂ ker(ρ), so that cρ 6∈ L0 = Fil5/4 H 1(G K ,F3(ωπ )) by (16).
Taking into account the twist by ω$ , we conclude that W AH(ρ|G K ) = {V(1,0),(1,3)}.

Example IIIb1. Let E denote the splitting field over Q of the polynomial

fIIIb1(x) = x6 − 3x5 + 5x3 − 5.

We again have F ⊂ E and an isomorphism Gal(E/F) ∼= PSL2(k) lifting to a
representation ρ : G F → GL2(k), now of conductor (2)p3

5.
Up to an unramified quadratic twist, ρ|G K again has the form

ω$ ⊗
(
ω2
$ ∗
0 1

)
,

but now $ 8 = 3, and we take M = K (π) with π = $ 2. In contrast to
the preceding example, we find that G5/4

K ⊂ ker(ρ), so that cρ ∈ L0 by (16).
Taking into account the twist by ω$ , we conclude that W AH(ρ|G K ) = {V(1,0),(1,3),
V(0,0),(3,3), V(0,0),(1,1)}.
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10. Numerical matching with automorphic forms

To facilitate computations, both here and in the sequel [9], we work with
algebraic automorphic forms on definite quaternion algebras over totally real
fields. Recall that these are related to Hilbert modular forms by the Jacquet–
Langlands correspondence, and under mild hypotheses give the set of weights
of forms giving rise to ρ in the sense of Conjectures 2.1 and 7.3.

More precisely, we consider totally real fields F in which p is inert and definite
quaternion algebras B over F which are split at p, and we present pairs (φ, ρ)
where:

• φ = (av, dv)v∈Σφ is a system of eigenvalues for the standard Hecke operators
Tv and Sv (as defined in [25]) acting on mod p algebraic modular forms for B
of some level nφ (where Σφ is a large set of good primes);

• ρ : G F → GL2(Fp) is a Galois representation unramified outside pnφ such that
ρ(Frobv) has characteristic polynomial x2 ± avx + dvN(v) for all v ∈ Σφ;

• the set of weights for which φ occurs at level nφ is precisely W AH(ρ|G Fp
).

The reason for the sign ambiguity in the trace of ρ(Frobv) is that in practice
we work with the associated projective representation. The ρ we consider,
particularly in [9], are typically constructed independently from automorphic
forms. The existence of a numerically matching φ can be viewed as evidence
for the modularity part of Conjecture 7.3 (and hence Conjecture 2.1).

For each of the eight Galois representations ρ from the previous section, we
exhibit a corresponding φ here, taking Σφ to be all good primes with norm at
most 100. The methods for computing φ are based on those described in [7] and
[3, Appendix B].

10.1. A summarizing table. Table 1 summarizes our eight examples, adding
some more information. Note that in all cases besides the conjugate cases IIb1 and
IIb2, the polynomial Fc(x) := fc(x) has coefficients in Q. Its Galois group is given
in the G column. In this column, an exceptional isomorphism identifies the group
PSL2(9) with the alternating group A6. The group PΓ L2(9) = Aut(PSL2(9))
contains PSL2(9) ∼= A6 with index four and the three intermediate groups are
M10, PGL2(9), and S6. The entry shared by the IIb1 and IIb2 rows is the Galois
group of the product FIIb(x) := fIIb1(x) fIIb2(x) ∈ Z[x]. The D column gives the
field discriminant of Q[x]/Fc(x). The largest slope s is explained in the next
subsection.
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Table 1. Information on the eight examples. The weight in ordinary type is computed from
the tame signature. As explained in Section 10.2, weights in italics come from small slopes
and weights in boldface come from other sources.

Ex. F G D s n N(n) f Weights (W AH(ρ))

Ia Q(
√

2) PΓ L2(9) 227315 15/8 p6
2 64 p6

2 [2, 1; 1, 2]
Ib1 Q(

√
2) PΓ L2(9) 228315 15/8 p6

2 64 p6
2 [2, 0; 1, 2], [0, 0; 2, 3]

Ib2 Q(
√

5) PΓ L2(9) 23131353 13/8 (2)5 1024 (2)5 [1, 2; 1, 2], [1, 1; 2, 1]
IIa Q(

√
5) S4 −335272 3/2 (7) 49 O [0, 0; 3, 3], [0, 0; 1, 1]

IIb1 Q(
√

5)
A2

6.2 31256612 3/2
p61 61 O [0, 0; 3, 3], [0, 0; 1, 1], [0, 2; 2, 2]

IIb2 Q(
√

5) p′61 61 O [0, 0; 3, 3], [0, 0; 1, 1], [2, 0; 2, 2]
IIIa Q(

√
5) M10 318510 9/4 p3

5 125 O [1, 0; 1, 3]
IIIb1 Q(

√
5) S6 223652 5/4 (2)p3

5 500 O [1, 0; 1, 3] , [0, 0; 3, 3], [0, 0; 1, 1]

10.2. Slopes. For a separable polynomial f (x) ∈ Qp[x], wild ramification in
the algebra A = Qp[x]/ f (x) can be measured by slopes, as explained in [16].
These slopes are breaks in the upper numbering of [23, IV.3], increased by 1.
When all factors of f (x) have degree 6 11, they are computed automatically by
the website of [16].

A common situation in our current setting is that f (x) ∈ Q[x] has degree
ten, and factors over Q3 into a primitive nonic and a linear factor, giving
A = B ×Q3. In this case, the primitive nonic field B has a certain largest slope s
with multiplicity eight and 0 with multiplicity one. As Q3 has the trivial slope
0 as well, ord3(D) = 8s. This situation occurs in our four cases with Fc(x)
decic, namely Ia, Ib1, Ib2, and IIIa. The other cases are similar. For example,
Q3[x]/ fIIIb1(x) is a sextic field with a tame subfield of degree two. In this case,
ord3(D) = 6 decomposes as 4s + 1+ 0; the 1 comes from the tame subfield and
s = 5/4 is the quantity of current interest.

The slope column illustrates that some extra weights come simply from s
being smaller than the maximum allowed by the tame signature. For example,
for the tame signature (a0, a1) = (2, 2), the maximum allowed s is 5/2, while
our examples are peu ramifiée and have slope 3/2. However, other extra weights
are not simple consequences of small slopes. The sequel paper [9] will illustrate a
principle clear from the theory here: as the local degree [K : Qp] increases, slopes
account for a decreasing fraction of the phenomenon of extra weights.

10.3. The class set PGL2(9)\. Table 2 summarizes how one does projective
matching for general ρ into GL2(k) where k has order 9. On the automorphic

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.27
Downloaded from https:/www.cambridge.org/core. King's College London, on 04 Jul 2017 at 11:28:50, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.27
https:/www.cambridge.org/core
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Table 2. The class set PGL2(9)\ and its view from the automorphic and Galois sides.
The outer involution · of PGL2(9) makes the interchanges 5A ↔ 5B, 8A ↔ 8B, and
10A↔ 10B, and fixes the other five classes.

dv dv is a square dv is not a square
bv 1 0 1 2 α2 α6 0 α α3 α5 α7

PGL2(9)\ 1 2u 3 4 5A 5B 2v 8A 8B 10B 10A
PGL2(9) 110 24 12 33 1 42 12 52 52 25 8 12 8 12 10 10

A6 16 22 12 32 or 3 13 4 2 5 1 5 1
S4 14 22 or 2 12 3 1 4

side, one has the pairs (av, dv) ∈ k×k×. On the Galois side, the most immediately
available quantities are partitions λv with parts being the degrees of the irreducible
factors of fc(x) in the completed ring Ov.

When fc(x) is chosen to be a decic in the standard way, the table explains how
the projective quantities bv = a2

v/dvN(v) correlate with the decic partitions λv.
In fact, let PGL2(9)\ be the set of conjugacy classes in the group PGL2(9). Then
the Frobenius class Frv ∈ PGL2(9)\ determines both bv and λv. Conversely, the
pair (bv, λv) determines Frv. Using the FrobeniusElement command [10] in
Magma, with adaptations to account for ground field F rather than Q, we have
gone beyond partitions and have in all cases identified the correct label A or B,
directly from the polynomial fc(x). Table 2 also has lines corresponding to our
sometimes replacing decic polynomials by sextic and quartic polynomials.

10.4. Matching for our eight examples. Table 3 is headed by the ten smallest
split primes p for each of the two fields F in question. For each p, it gives one of
the two v above it. The conjugate prime σ(v) is obtained by the substitution α 7→
−α−2 in the case F = Q(

√
2) and α 7→ 1−α in the case F = Q(

√
5). For each

example, we list the classes Frv ∈ PGL2(9)\ associated to ρ and the eigenvalues
av and dv of a numerically matching eigenform φ. We omit the lines for dv when
they are identically 1. Recall that in Examples IIIa and IIIb1 there are two choices
for ρ differing by twist by the quadratic character δ : Gal(Q(ζ5)/F) → {±1};
accordingly we list the two matching eigenforms, each obtained from the other
by replacing av with δ(v)av where δ(v) = δ(Frv) = (NF/Q(v)/5).

For each v listed in the table, the eigenvalues aσ(v) and dσ(v) can be recovered
as follows: In all the examples, one has dσ(v) = d3

v , and in all but IIb1, IIb2 and
IIIb1, one has aσ(v) = a3

v . In examples IIb1 and IIb2, with eigenvalues a′v and a′′v
respectively, one has a′σ(v) = a′′v ; finally in IIIb1, one has aσ(v) = δ(v)a3

v . Similarly,
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Table 3. Matching in our eight examples for ten v.

F = Q(
√

2)

p 7 17 23 31 41 47 71 73 79 89
p mod 3 1 2 2 1 2 2 2 1 1 2

v 1+ 2α 2+ 3α 4− α 3+ 4α 5− 2α 6− α 7+ 6α 7− 2α 8− α 10+ 7α

Ia
av α3 α3 0 α3 α α2 2 α3 1 α2

dv α7 α7 α6 α3 α7 α6 α2 1 α3 α

Frv 10A 8B 2u 8B 10A 5A 5A 5Ba 10B 10A

Ib1

av 1 α α2 α6 α α3 0 α2 α7 2
dv α α5 α6 α α α2 α2 2 α α7

Frv 10A 8A 5A 8B 10B 3 2u 3 10B 10B

F = Q(
√

5)

p 11 19 29 31 41 59 61 71 79 89
p mod 3 2 1 2 1 2 2 1 2 1 2

v 2− 3α 1− 4α 5+ α 3− 5α 6+ α 2− 7α 4− 7α 8+ α 5− 8α 10− α

Ib2

av α2 α6 α α7 α 2 α α α7 α2

dv α3 α2 2 α α5 α3 α3 2 α α7

Frv 10B 5A 5A 10B 8A 8A 10A 5A 10B 8A

IIa
av 0 0 2 2 2 2 1 1 2 0
Frv 2u 2u 4 3 4 4 3 4 3 2u

IIb1
av α7 0 α6 α5 α α3 0 2 α3 1
Frv 5A 2u 3 5A 5B 5A 2u 4 5B 4

IIb2
av α6 α6 α3 α2 α7 α α5 α6 α6

Frv 3 4 5A 4 5A 5B 5B 4 3

IIIa
av 0 ±α ±2 α5 α5 ±α6 α2 α5 0 ±α7

Frv 2u 5A 4 5A 5B 3 4 5B 2u 5A

IIIb1
av 2 ±α5 ±α7 α7 α5 ±α6 α6 α ±α3 ±1
Frv 4 5A 5A 5B 5B 3 4 5B 5B 4
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in all the examples but IIb1 and IIb2, one has Frσ(v) = Frv. In examples IIb1

and IIb2, with Frobenius classes Fr′v and Fr′′v respectively, one has Fr′σ(v) = Fr′′v .
Thus, for example, the first split prime v = (1 + 2α) for Q(

√
2) has conjugate

σ(v) = (3 + 2α), and in example Ia, one has aσ(v) = α, dσ(v) = α5 and
Frσ(v) = 10B.

The agreement exhibited on Table 3 extends also to those v with N(v) < 100
which do not have a place on the table.
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