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Abstract

Massive multiple input multiple output (MIMO) is a promising technique to
achieve the targets of the fifth generation of mobile communications. However,
the pilot contamination problem creates a limitation to the potential benefits of
massive MIMO systems. To mitigate the pilot contamination, in this thesis. novel
channel estimation schemes are proposed and analyzed. First, an efficient channel
estimation approaches based on Bayesian learning namely Bayesian compressed
sensing (BCS) that rely on prior knowledge of statistical information about the
channel sparsity is proposed for massive MIMO systems. Further enhancement
has been proposed to the proposed technique of BCS through the principle of
thresholding. Also, the multi-task BCS is also proposed to exploit the common
sparsity distribution of the system channel. Furthermore, the Cramer Rao bound
(CRB) has been derived as a reference line. Second, a novel channel estimation
for massive MIMO systems using sparse Bayesian learning (SBL) is proposed. In
the proposed technique, the sparsity of each channel coefficient is controlled by
its own hyperparameter and the hyperparameters of its immediate neighbours.
The mean square error (MSE) analytical expression for the proposed technique
is derived. Based on that MSE expression, a pilot design criteria is proposed
to design the optimal pilot to improve the estimation accuracy of the proposed
algorithm.

Next, the optimal pilot for massive MIMO system has been investigated. The
optimal pilots are designed by minimising the MSE of the minimum mean square
error (MMSE) using the semidefinite programming (SDP) optimisation approach.
Then, the conventional channel estimation is considered for Massive MIMO in a
correlated Rician fading and correlated Nakagami-m fading channel models. Our
analysis reveals that by increasing the line-of-sight (LOS) component the pilot
contamination can be eliminated.

Finally, the discrete Fourier transform (DFT) based channel estimation is
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proposed for massive MIMO, our simulation results show the effectiveness of
the DFT channel estimation techniques for reducing the pilot contamination in
comparison with the conventional based channel estimation.

Thesis Supervisor: Dr Mohammad Reza Nakhai
Title: Senior lecturer
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Chapter 1

Introduction

1.1 Motivations

The main activity of recent research has identified that the major targets for the

next generation of mobile communications, the so-called fifth generation (5G) of

mobile communications, are to achieve 1000 times the system capacity and 10

times the spectral efficiency, energy efficiency and data rate, and 25 times the

average cell throughput [1], [2], as shown in Fig. 1-1. Therefore, it is necessary

to introduce new technologies to meet the demand explosive requirement for

5G. From a high-level perspective, there is a promising technology that enables

reaching higher fifth generation targets, called massive multiple input multiple

output (MIMO). A massive MIMO can be defined as a system using a large

number of antennae at the base station; accordingly, a significant beamforming

can be achieved and the system capacity can serve a large number of users, as

shown in Fig. 1-2 [3], [4].

The major challenge that limits the massive MIMO potential features is the

acquisition of precise channel state information (CSI) at the base station. In

general, based on the operating duplex mode, the acquisition of CSI approaches

can be classified according to the following categories as time division duplex

18
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Figure 1-1: 5G Requirements.

(TDD) mode and frequency division duplex (FDD) mode. In FDD systems, the

antennae at the base station send orthogonal pilots to the mobile stations and

the channel will be estimated by the mobile station. The estimated channel will

be then fed back to the base station. Hence, the number of orthogonal pilots

is proportional to the number of antennae, which makes FDD impractical when

employing massive MIMO, as the antenna array at the base station becomes very

large. However, in TDD mode, each mobile station is assigned an orthogonal

pilot that will be sent to the base station, and the base station will estimate

the channel using an appropriate estimation algorithm. To attain the optimum

channel estimation accuracy, perfect orthogonal pilots allocation to the users are

required, unfortunately, this requirement is a challenge to achieve, because the

number of pilots has to be proportional to the number of users in the system [5-8].

Failure to meet this requirement leads to the creation of a spatially correlated

intercell interference, known as pilot contamination, which reduces the estimation

performance and the spectral efficiency [5-8].

However, the pilot contamination problem could be reduced by decreasing

the number of pilots. Hence, the development of efficient channel estimation
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Figure 1-2: Illustration of massive MIMO system.

techniques that require a fewer number of pilots is a challenge that should be

thoroughly addressed.

1.2 Previous Research

To tackle the pilot contamination problem in massive MIMO systems, several

techniques have been proposed. the author in [9] attempted to address the pi-

lot contamination problem by creating more orthogonal pilots by reducing the

frequency reuse factor, so as results of that the adjacent cells operate on differ-

ent frequencies. Thus, users in different cells have orthogonal pilots. However,

a smaller frequency reuse factor means less bandwidth for each cell, which will

reduce the system capacity [10]. The authors [11]-[15] proposed using precoding

techniques via multi-cell cooperation. In this approach, the base stations are con-

nected to a hub to exchange information via optical fibres. Each BS will upload

data to a network hub. Then, the hub will encode the data through precod-
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ing techniques and disperse them to the corresponding BSs. Each base station

then conducts its own precoding to eliminate pilot contamination. This approach

addresses the pilot contamination problem. However, information exchange be-

tween the base stations will add more complexity and overheads. The authors in

[16] proposed a time shifted communication protocol. In this approach, the cells

are divided into three groups, and different groups employ shifted communica-

tion schedules. When users of an arbitrary cell transmit pilot sequences, all the

contiguous cells are in the phase of downlink data transmission or BS processing.

As a result, pilot contamination can be mitigated to a great extent. However, a

significant problem with this method is the highly restricted pilot length, leading

to a smaller number of users per cell.

On the other attempts, channel estimation approaches are alternative solu-

tions that can attain great improvements in contrast to multi-cell cooperation,

frequency reuse deduction or protocol-based methods.

The authors in [17], [18] and [19] applied classical estimation algorithms,i.e.,

least square (LS) and minimum mean square error (MMSE) for massive MIMO

systems. The LS based estimator is simple to implement, while the MMSE esti-

mator yields much better estimation than the LS, although the MMSE imposes

significantly higher complexity than LS. However, both techniques suffer from

pilot contamination. In addition, the MMSE requires knowledge of the channel

statistics. The authors in [24] -[30] proposed the superimposed channel estima-

tion approach for massive MIMO systems by adding a training (pilot) signal with

low power to the data signal at the transmitter. The superimposed signal is

then utilised at the receiver for channel estimation. However, a proportion of the

power allocated to the training signal is wasted, which has a negative impact on

energy efficiency. In addition, this scheme causes inter-cell interference known as

cross contamination. Motivated by the recent attention to compressed sensing

(CS) techniques, channel estimation based on CS techniques has been investi-

gated for massive MIMO systems in [31] - [32]. CS can recover unknown signals
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using only a small number of measurements significantly fewer samples than is

possible when using the conventional Nyquist rate, by exploiting the sparse na-

ture of signals (that is, only a small number of components in a signal vector

are non-zero). Thus, CS allows for accurate system parameter estimation with

fewer pilots, thereby addressing the pilot contamination problem and improving

the bandwidth efficiency [33]-[34]. However, classical CS algorithms require prior

knowledge of channel sparsity, which is usually unknown in practical scenarios. In

addition, to apply CS algorithms, the sampling matrix must satisfy the restricted

isometry property (RIP) to guarantee reliable estimators. Such a condition can-

not be verified easily because the condition are computationally demanding [33]

- [34]. The authors of [35]-[36] proposed the blind estimation scheme to elimi-

nate the pilot contamination problem completely. However, up to date, most of

the proposed blind methods have major disadvantages, such as slow convergence

speed, high computational complexity and poor performance when compared to

pilot assisted methods.

Given the aforementioned background and motivation, the main objective of

this thesis is to develop an efficient channel estimation scheme for massive MIMO

system to eliminate/alleviate the pilot contamination problem without the need

for the base station cooperation, frequency reuse reduction or relaying on protocol

methods. Therefore, in this thesis the main focus is on channel estimation, which

is the lowest complex approach to address the pilot contamination problem in

massive MIMO system. Furthermore, the objective is to tame the shortages

and limitations of the currently proposed estimation methods of CS, blind and

superimposed channel estimation.

1.3 Contribution

Motivated by the potential features of massive MIMO, in this thesis, we proposed

the following channel estimation algorithm.
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∙ Bayesian Compressed Sensing

In Chapter 3, we proposed an improved channel estimation scheme based on

the theory of Bayesian CS (BCS) that relies on prior knowledge of statistical

information about the channel sparsity to overcome the shortages of CS-

based channel estimation. We also proposed enhancing the performance of

the BCS-based estimator using the principle of thresholding to select the

most significant taps to improve channel estimation accuracy. In addition,

we exploited the common statistical sparsity distribution to enhance the

estimation accuracy performance by proposing the multi task-BCS (MT-

BCS) based estimator. Furthermore, to provide the benchmark for the

minimum performance error of the BSC and MT-BCS, the Cramer Rao

bound (CRB) has been drawn for BCS and it has been derived and drawn

for MT-BCS. Our simulation results indicate that the proposed channel

estimation methods provide improved estimation accuracy and can address

the pilot contamination problem. The material of this contribution appears

in the following publications:

– Hayder AL-Salihi, Mohammad Reza Nakhai, "Bayesian Compressed

Sensing-based Channel Estimation for Massive MIMO Systems", Pro-

ceeding of European Conference on Networks and Communications

(EuCNC), Athens, Greece, 27-30 June 2016, EURAIP/EuCNC Best

Student Paper Award.

– Al-Salihi, H. Q. K. and Nakhai, M. R. "Efficient Bayesian Compressed

Sensing-based Channel Estimation Techniques for Massive MIMO-

OFDM Systems", 23 Feb 2017 In : EURASIP Journal on Wireless

Communications and Networking (EURASIP JWCN).

∙ Sparse Bayesian Learning

In Chapter 4, we proposed a novel channel estimation for massive MIMO

systems, using sparse Bayesian learning (SBL) based on a pattern coupled
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hierarchical Gaussian framework. In the proposed technique, the sparsity

of each channel coefficient is controlled by its own hyperparameter and the

hyperparameters of its immediate neighbours. The simulation results show

that the channel coefficients can be estimated more efficiently in contrast

to the conventional channel estimators in terms of channel estimation. Fur-

thermore, we derive the mean square error (MSE) analytical expression for

the proposed technique and based on that MSE expression, a pilot design

criteria is proposed to design the optimal pilot to improve the estimation

accuracy of the proposed algorithm using the Lagrange multiplier optimi-

sation method. Results showed that we could reduce the MSE of the SBL

estimator by employing the optimal pilot sequence. The material of this

contribution appears in the following publications:

– Hayder AL-Salihi; Mohammad Reza Nakhai and Tuan Anh Le "En-

hanced Sparse Bayesian Learning-based Channel Estimation for Mas-

sive MIMO-OFDM Systems", Proceeding of European Conference on

Networks and Communications (EuCNC), Oulu, Finland, 12-15 June

2017.

– Hayder AL-Salihi; Mohammad Reza Nakhai and Tuan Anh Le "En-

hanced Sparse Bayesian Learning-based Channel Estimation with Op-

timal pilot design for Massive MIMO-OFDM Systems", IET Commu-

nication, under review.

∙ Optimal Pilot Design

In Chapter 5, in order to estimate the CSI in the presence of pilot contami-

nation accurately, we operated the conventional MMSE channel estimation

process using an optimally designed pilot set to improve the performance

of the proposed technique. The optimal pilots were designed to minimize

the MSE under the total transmit power constraint based on optimisation
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problem formulation. Thus, we could reduce the number of the employed

pilots to mitigate the effect of pilot contamination. The material of this

contribution appears in the following publication:

– Hayder Al-Salihi, Trinh Van Chien, Tuan Anh Le, Mohammad Reza

Nakhai, "A Successive Optimization Approach to Pilot Design for

Multi-Cell Massive MIMO Systems", IEEE communication letter, early

access.

∙ Channel Model

Thus far, most of the studies of massive MIMO systems have assumed the

channel condition to be an independent and identically distributed (i.i.d.)

Rayleigh fading. To evaluate massive MIMO in more realistic scenarios,

we need models that capture important massive MIMO channel character-

istics. Furthermore, the effect of correlation should be considered, as the

majority of the previous studies assumed that the channels are indepen-

dent. And in more realistic environments the antennae are not sufficiently

separated and the propagation environment does not provide a sufficient

amount of rich scattering [5]. Therefore, in Chapter 6, we investigated the

multi-cell massive MIMO system in the correlated Rician fading and corre-

lated Nakagami-m fading channel models. The material of this contribution

appears in the following publications:

– Al-Salihi, H. Q. K., Said, F., Nallanathan, A. and Wong, K. K "Esti-

mation accuracy of multi-cell massive multiple-input multiple-output

systems in correlated Rician fading channel", IET Electronics Letters,

vol. 51, issue 22, pp 1830-1832, 29 October 2015.

– Hayder AL-Salihi and Fatin Said "Performance Evaluation of Mas-

sive MIMO in Correlated Rician and Correlated Nakagami-m Fading",

9th International Conference on Next Generation Mobile Applications,
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Services and Technologies (NGMAST), pp 222-227, Cambridge, 9-11

Sept. 2015.

∙ Discrete Fourier Transform (DFT)-Based Channel Estimation

DFT-based channel estimation is a promising technique that is commonly

used to improve the performance of the conventional channel estimation.

The DFT estimation approach can significantly reduce the impact of the

noise and the interference on the estimated channel coefficients. In Chapter

7, we proposed three modified DFT-based channel estimation techniques for

massive MIMO systems. The proposed methods mitigate the pilot contam-

ination significantly by exploiting the properties of DFT-based estimation

through iterations and most significant (MST) approaches. Also, we pro-

posed a whiting rotation (WR) semi-blind estimation for massive MIMO

systems. Using such a scheme we can reduce the number of the required

pilots to estimate the channel coefficient. The estimation accuracy of the

DFT estimator can also be enhanced by combining DFT with the WR

semi-blind estimation.

– Hayder AL-Salihi and Mohammad Reza Nakhai "An Enhanced Whiten-

ing Rotation Semi-Blind Channel Estimation for Massive MIMO-OFDM

in Correlated Fading Channel", ICT 16-18 May 2016, Thessaloniki,

Greece.

– Hayder AL-Salihi; Mohammad Reza Nakhai and Tuan Anh Le, "DFT-

based Channel Estimation Techniques for Massive MIMO Systems",

Intentional Conference on Telecommunication (ICT) 2018, accepted

for publication.

1.4 Achievements

1. EuCNC 2016 student best paper award
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2. EuCNC 2017 travel grant support.



Chapter 2

Background

2.1 MIMO Systems

The conventional wireless communication system employs a single transmit an-

tenna at the transmitter and receiver sides that is known as a single-input single-

output (SISO) systems. However, the wireless channel in such a system is severely

attenuated when the channel in a deep fade and that will put limitation to the

system capacity. This problems can be addressed by employing multiple an-

tennae at the receiver, transmitter or both, whereby this scheme, the multiple

antennae ensures an improved high-quality transmission by combating or exploit-

ing fading. Thus, it is interesting to introduce the multiple antennae on both the

receiver and transmitter sides and such a system is known as a multiple-input

multiple-output or MIMO system. MIMO systems combat multipath by creating

the spatial diversity technique, and those techniques that exploit multipath do

so by performing spatial multiplexing [37]-[39].

For the spatial diversity technique, at any instant, the probability that all

of these channels are influence by a deep fade is reduced significantly, thereby

ensuring high system reliability, as can be shown in Fig. 2-1. Also, it can be seen

in same figure that the MIMO systems can increase the throughput by exploiting

28
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Figure 2-1: MIMO diversity system vsus MIMO multiplexing system.

the multipath by transmitting separate data streams over the transmit antennae

and by separating those streams at the receiver using some form of spatial demul-

tiplexing. Thus, a MIMO system offers the dual benefits of increased capacity due

to spatial multiplexing and fading suppression due to receive/transmit diversity.

These properties have greatly attracted the interest of researchers in the wireless

community and in recent years there has been a flurry of activity in the MIMO

area. In general, MIMO systems are classified into two categories: Point-to point

MIMO and multi-user MIMO (MU-MIMO), as shown in Fig. 2-2. In the first

category, the base station equipped with multiple antennae communicate with

multiple antenna of a single user terminal. While in MU-MIMO, the base station

is equipped with multiple antennae communicates with multiple users, and each

user is with one or multiple antennae. Generally, MU-MIMO compared to single-

antenna systems can provide better coverage, through beamforming that results

in higher received signal power, and enhance the link reliability, through diversity
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Figure 2-2: Single-user MIMO and multi-user MIMO.

schemes that combat fading effects in propagation channels and eventually reduce

communication error probabilities, MU-MIMO can also provide higher capacity,

through spatial multiplexing that transmits and receives several data streams in

the same time-frequency resource [37]-[39].

2.2 Mobile Radio Channel

The communication medium between a transmitter and receiver (such as, mobile

terminal and base station in a cellular system) is called a mobile radio channel.

Radio wave propagation through these wireless channels is a complicated phe-

nomenon characterized by various effects, such as noise, interference, and fading.

Noise becomes the most common form of distortion in communication systems,

resulting from the operating temperatures of the ohmic parts of the receivers,

thereby limiting their sensitivity. The degradation in cellular networks can also

result from intra-cell interference and inter-cell interference. Intra-cell interfer-

ence is caused between frequency channels within the same cell due to adjacency

of both frequencies and power leakage from one channel to an adjacent channel

[40]. While in inter-cell interference is caused between a frequency channel in one

cell and the same frequency channel used in another adjacent cell. On the other
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hand, fading in the mobile radio channel results from the multipath propagation

of the signal and can be divided into two broader categories, i.e. Large-scale

fading and small-scale fading [41]-[42].

2.2.1 Large and Small Scale Fading

Large-Scale Fading

It is represented by the average signal power attenuation due to motion over

large areas and is affected by prominent terrain contours (hills, forests, man-

made structures, clumps of buildings, etc). The statistics of large-scale fading

provide a way of computing an estimate of the average signal strength loss as

a function of distance. This is described in terms of path loss and shadowing

[40]-[41].

∙ Path Loss

The decay of the mean signal power with distance from the transmitter is

defined as path loss. It includes all of the possible elements of loss associated

with interactions between the propagating wave and any object between

the transmit and receive antennae. In free space, the mean signal power

decreases with the square of the distance from the transmitter. In wireless

channels, where often no direct LoS path exists between the transmitter

and receiver, the signal power decreases with a power higher than two and

is typically in the order of three to five [41]-[42].

∙ Shadowing

It is also caused by the obstruction of the transmitted waves by hills, build-

ing, walls, trees, etc., resulting in some paths with increased loss, while

others less obstructed reaching the receiver with increased signal strength.

This varying signal strength exhibit a log-normal behaviour and generally

modelled by log-normal distribution [41]-[42].
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Small-Scale Fading

Commonly known as multipath fading, this refers to the drastic changes in signal

amplitude and phase that can be experienced as a result of small changes in

spatial separation between the receiver and the transmitter. It occurs as a result

of reflection, scattering and diffraction of the transmitted electromagnetic wave at

natural and man made objects. A multitude of waves arrive from many different

directions with varying delays, amplitudes and phases, caused by the mobility of

either the receiver, the moving objects or both, in the wireless channel. At the

receiver, the superposition of these waves result in amplitude and phase variations

of the composite received wave resulting in time-variant multipath propagation.

The varying signal strength due to small-scale fading is highly sensitive even to

small movements on the order of the wave length and may result in a totally

different wave superposition [41]-[42].

2.2.2 Modelling of Wireless Multipath Channels

Statistical characterization of wireless fading channels has remaind a very impor-

tant research area and considerable efforts have been devoted for the accurate

modelling of such propagation environments. The results of these intense efforts

provide a range of relatively simple and accurate statistical models for wireless

channels which depend on the particular propagation environment and the un-

derlying communication scenario. In this section, a review of Rayleigh, Rician

and Nakagami-m fading models is presented [43].

Rayleigh Model

The Rayleigh distribution is frequently used to model multipath fading in NLoS

environments between the transmitter and receiver. By letting the channel am-

plitude as 𝛼, the Rayleigh probability density function (PDF) can be given as
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[44]

𝑃𝛼(𝛼) =
2𝛼

Ω
exp(−𝛼

2

Ω
), (2.1)

where Ω is the average power of 𝛼

Rician Model

Also known as Nakagami-n, this model is commonly employed to characterize

propagation environments consisting of one strong direct LoS path with many

random indirect weaker components. When there is a line-of-site component

between transmitter and receiver, the signal will be composed of large number of

independent paths plus line-of-site components. The signal envelope is modelled

by Rician probability density function distribution given by [44]

𝑃𝛼(𝛼) =
2(1 + 𝑛2)𝑒−𝑛2

𝛼

𝐾
exp[−(1 + 𝑛2)𝛼2

𝐾
]𝐼0(2𝑛𝛼

√︂
1 + 𝑛2

𝐾
)𝛼 6 0, (2.2)

where 𝐼0 is the zeroth-order modified Bessel function of first kind and 𝑛 is the

Nakagami-n fading parameter ranging from 0 to ∞, which is also related to the

Rician 𝐾 factor by 𝐾 = 𝑛2. The parameter 𝐾 represents the ratio of the power

received in the LoS path to the total power received via indirect scattered paths

[44].

Nakagami-m Model

This fading model, introduced by Nakagami in early 1940′s, has received consid-

erable attention due to its great versatility in terms of flexibility and accuracy in

providing a better match to various empirically obtained measurement data than

Rayleigh or Rician distributions. It often gives the best fit to land, indoor-mobile

multipath propagation as well as scintillating ionospheric radio links [44]. The
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Nakagami-m PDF is in essence a central chi-square distribution given by [44]-[46]

𝑃𝛼(𝛼) =
2

Γ(𝑚)
(
𝑚

Ω
)𝑚𝛼2𝑚−1 exp(−𝑚

Ω
𝛼2), 𝛼 6 0, (2.3)

where Γ(.) is the Euler Gamma function and m is the Nakagami-m fading pa-

rameter ranging from 0 to 1 [44].

2.3 Massive MIMO Overview

Theoretically, for point-to-point MIMO and the MU-MIMO systems, the more

antennae that those systems are equipped with, the better performance can be

achieved in terms of reliability and the system capacity. The current fourth gen-

eration system of long term evaluation-advanced (LTE-A) employ up to eight

antennae ports at the base station, one can ask, are the potential of MIMO being

fully exploited? Thomas L. Marzetta published a paper in 2010 titled "Non-

cooperative Cellular Wireless with Unlimited Numbers of Base Station Anten-

nae" to investigate the potential of MIMO with a large number of antennae. The

paper concluded that by employing an unlimited number of antennae at the base

station the effects of receiver noise and fast fading are eliminated completely,

and transmissions from terminals within the same cell do not interfere. How-

ever, transmission from terminals in other cells that use the same pilot sequence

constitute a residual interference known as pilot contamination. In contrast to

conventional MU-MIMO with up to eight antennae, the MIMO technology with

a large number of antennae "massive MIMO", "very-large MIMO" or "large-

scale MIMO" will increase the spectral and energy efficiency, system capacity

and throughput [3], [4] and [6].

Considering the massive MIMO benefits, massive MIMO systems as a new

technique suffers from some challenges i.e. hardware impairment, antenna Array

implementation, pilot contaminations and others. However, the main objective
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of this thesis is address the pilot contamination problem [4].

2.4 Pilot Contamination Problem

The major limiting factor in massive MIMO is the availability of accurate, in-

stantaneous channel state information (CSI) that describes channel properties

of a communication link at the base station. The CSI is typically acquired by

transmitting predefined signals (pilot signals) and estimating the channel coeffi-

cients from the received signals by applying an appropriate estimation algorithm

[2] and [30]. Channel estimation accuracy depends on having perfect orthogonal

pilots allocated to the users; however due to shortages of the orthogonal signals,

the same carrier frequency should be used in the neighbouring cells by following

a specific reuse pattern. This leads to the creation of a spatially correlated inter-

cell interference, known as pilot contamination, which reduces the estimation

performance and spectral efficiency [2] and [30].

As elaborated in chapter 1, several methods have been proposed to address the

pilot contamination problem i.e. the protocol-based method, precoding process

approaches and channel estimation techniques [11]-[16]. In this thesis, we will

try to address the pilot contamination problem using novel channel estimation

methods.

2.5 Channel Estimation Philosophies

Channel estimation techniques can be classified into three categories i.e. training,

blind and semi blind based channel estimation [47]. In this section, we introduce

the pilot based estimation in subsection 2.4.1, followed by blind estimation in

subsection 2.4.2 and the semi-blind estimation is discussed in subsection 2.4.3.
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2.5.1 Pilot based Estimation

The conventional wireless communication systems in pilot based channel esti-

mation employ a sequence of symbols that is known as a frame. Each frame

comprised of pilot and data symbols. The pilot symbols follow a fixed set of

symbols that is known at the receiver. So, at the receiver, one can estimate the

channel by the observed received signal and known sequence of pilots. Then,

the receiver can detect the transmitted data symbols. This system is referred

as pilot-based channel estimation and considered as the common approach being

employed in wireless communication system. This approach provides the ad-

vantageous of high quality estimation and low complexity. However, the major

drawback of this approach is the pilot sequence carry no data so it will affect the

overhead of the communication system and leads to bandwidth inefficiency [39]

and [43].

2.5.2 Blind Estimation

Blind estimation is a scheme that does not employ predefined pilot and rely of the

received data to estimate the channel by exploiting the statistical information of

the data. Applying the blind method would eliminate the need for transmitting

the predefined pilot sequence and the system would be totally eliminate the pilot

contamination. However, this approach is suffered from high computationally

complex and convergence problem [39] and [43].

2.5.3 Semi-Blind Estimation

As shown in the previous subsections, there is a tradeoff between the complexity

and robustness versus the bandwidth efficiency and pilot contamination elimi-

nation depends on the employed estimation scheme whether pilot or blind esti-

mation. So, is it possible to construct a scheme with a limited number of pilots

whereby, it is possible to reduce the blind channel estimation shortages, and also
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employ statistical information. This scheme is known as semi-blind estimator as

it employs the pilot and blind information [39] and [43].

2.6 Probability Theory

Probability is defined as the fraction of time that a specific outcome occurs in an

experiment which continues indefinitely. Where an experiment might be tossing

of a coin or it could be receiving a noisy data that provide information about

unknown radio channel in a digital communication system [49].

2.6.1 Tools of Probability Theory

This subsection provides the background on probability theory required to grasp

most of the theoretical aspects.

Joint Probability

Joint probability is the probability of event Y occurring at the same time event

X occurs. Let 𝐴 and 𝐵 events from an experiment, Then, the joint probability

𝑃 [𝐴,𝐵] of event 𝐴 ocuuring at the same time with event 𝐵 is defined as follows

[49].

𝑃 [𝐴,𝐵] = 𝑃 (𝐴)𝑃 (𝐵). (2.4)

Conditional Probability

In most cases, knowledge about an event leads an additional information about

the occurrence of another event. Let 𝐴 and 𝐵 events from an experiment, Then,

the conditional probability of 𝐴 given 𝐵 𝑃 [𝐴/𝐵] is defined as follows [49].

𝑃 [𝐴/𝐵] =
𝑃 (𝐴,𝐵)

𝑃 (𝐵)
. (2.5)
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Independent Events

Statistical independence of two events means that the occurrence on one events

has no influences on the occurrence of the other. Mathematically, two events 𝐴

and 𝐵 are statistically independent if and only if [49].

𝑃 (𝐴𝐵) = 𝑃 (𝐴)𝑃 (𝐵). (2.6)

A corollary of this definition is

𝑃 (𝐴𝐵) = 𝑃 (𝐴), (2.7)

and

𝑃 (𝐴𝐵) = 𝑃 (𝐵). (2.8)

Bayes’ Theorem

More elaboration will be discussed in section 2.8.

2.7 Compressed Sensing

In signal processing, the Nyquist-Shannon sampling theorem states that ana-

logue signals, images, videos can be perfectly recovered from from its samples if

the samples are taken at a rate at least twice the bandwidth of the signal. How-

ever, the recently developed field of compressed sensing has successfully overcome

the Nyquist-Shannon sampling theorem requirements. Compressed sensing tech-

niques allow to sample a signal at a lower than Nyquist rate without any signifi-

cant loss of information [50]. To review the main ideas of CS, Let x ∈ C𝑁×1 be

signal vector with elements 𝑥[𝑛], 𝑛 = 1, 2, ..., 𝑁 , where 𝑥 is a sparse vector, thus x
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is a vector with very few non-zero components and Ψ ∈ C𝑀×𝑁 as a measurement

matrix with 𝑀 ≤ 𝑁 . The observed signal is expressed as a vector

y = Ψx + n, (2.9)

where y ∈ C𝑀×1 and n ∈ C𝑀×1 is the additive noise in the system. The target

of compressed sensing is to recover the signal x with no or insignificant loss of

information using small number of 𝑁 measurements. The best solution for this

problem is to exploit recently developed CS techniques.

In general, the developed compressed sensing techniques can be classified into

two categories. The non-Bayesian compressed sensing (BCS) that is the set of

techniques that are based on convex optimization [6, 7, 8]. These techniques gen-

erally have excellent recovery performance and also have guaranteed performance

bounds. High computational cost is one major drawback of these techniques,

which makes it difficult to apply these techniques to large-scale problems. In

addition these techniques are not practical as those technique assume that the

knowledge of the signal sparsity [50].

Alternative techniques include BCS whereby we exploit prior statistical about

the signal sparsity to tame CS deficiency. More elaboration regarding the Bayesian

estimation philosophy will be presented in the next section.

2.8 Bayesian Estimation

In common literature, channel estimation methods are classified into parametric

and Bayesian approaches. A standard parametric approach is the best linear

estimator which is often referred to as least squares (LS) channel estimation. In

contrast to parametric methods, the Bayesian approach treats the desired param-

eters as random variable with a-priori known statistics. Clearly, a priori PDF of

the channel is assumed to be perfectly known at the receiver [51]-[52]. The esti-
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mation of unknown parameters is the expectation of the posterior probabilistic

distribution, where the posterior distribution is proportional to the prior proba-

bility and the likelihood of the unknown parameters based on the Bayes’ rule, as

can be shown in Fig. 2-3. For more clarifications about sparse Bayesian estima-

tion, let consider the same target in the previous section of estimating the sparse

signal x from observed signal y in (2.4) [51]-[52]. Thus the posterior distribution

can be expressed based on Bayes’ rule as follow

𝑃 (x/y) ∝ 𝑃 (y/x)𝑃 (x), (2.10)

where 𝑝(x,y) is the likelihood function of x and 𝑃 (x) is the prior distribution of

x.

By applying the maximum a posterior (MAP) estimator which is the expec-

tation of the posterior distribution, the estimated sparse vector can be expressed

as

x̂ = 𝐸[𝑃 (x/y)]. (2.11)

2.9 Bayesian Compressed Sensing

BCS provides an approach for solving the compressed sensing problem based on

machine learning. In BCS, it is assumed that the unknown sparse vector follows

a known statistical distribution. And the noise vector is sampled from some

stochastic distribution (e.g. the multivariate Gaussian distribution). The main

goal is now to estimate the parameters of the underlying distributions through

the MAP. More precisely, to estimate the vector x in sections 2.7 and 2.8. It

follows from Bayes rule that

x̂ = argmax
x

[𝑃 (x/y)] = argmax
x

[𝑃 (y/x)𝑃 (x)], (2.12)
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Figure 2-3: Bayesian rule

The distribution 𝑃 (x) models the noise process. The simplest noise model

assumes that the measurement noise is white Gaussian of zero mean and variance

𝜎2I, therefore we have

𝑃 (y/x) =
1

𝜎
√

2𝜋
𝑒−||Ψx−y||22/2𝜎2

(2.13)

Let assume that the a priori that the unknown sparse vector follows Gaussian

distribution of Zero mean and 𝜁 variance.

𝑃 (x) =
1

𝜎
√

2𝜋
𝑒−(x𝐻x)

2
/2𝜁 (2.14)

Now the conjugate of two Gaussian distribution is a Gaussian distribution

with means and variance given by

𝜇 = (𝜎2)−1Σ(Ψ)𝑇y, (2.15)
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Σ = (𝜁I + (𝜎2)−1(Ψ)𝑇Ψ)−1, (2.16)

Based on MAP estimation, the x̂ is the mean of the posterior distribution.

Now, to calculate the values of 𝜎2 and 𝜁, the type II maximum likelihood pro-

cedure is employed where the conditional posterior distribution 𝑃 (y/x) is first

assembled algebraically. The maximum of the distribution is then found by tak-

ing partial derivatives of the distribution with respect to 𝜎2 and 𝜁 in turn to

obtain 𝜎2 and 𝜁 to calculate the x̂ [53]-[54].

2.10 Convex Optimization

Convex optimisation is considered as the most widely research area in optimisa-

tion, in which the objective function and the constraint are convex. There are

many advantageous of formulating the problem as a convex optimization problem.

The most basic advantageous is that the problem can be solved more efficiently

over other methods

Recent developments in convex programming extend the results and algo-

rithms of linear programming for more complicated convex programs, e.g., conic

programming. A conic programming is a linear programming with generalised in-

equalities. This section concisely reviews a standard conic program, i.e. semidefi-

nite programming (SDP). Readers interested in convex optimisation and applica-

tions of convex optimisation in communications are referred to [55]-[57] for more

details.

2.10.1 Semidefinite Programming

The standard form of a SDP is defined as
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min c𝐻x

subject to 𝐹 (𝑥) > 0,
(2.17)

where

𝐹 (𝑥) , 𝐹0 +
𝑚∑︁
𝑖=1

𝑥𝑖𝐹𝑖, (2.18)

is called as the linear matrix inequality. For more calcifications and explanation

about the SDP, lets give an example of how a convex optimization can be cast as

SDP, Consider the problem

min
(c𝑇x)2

d𝑇x

subject to Ax + b > 0,

(2.19)

By introducing an auxiliary variable S that serves as an upper bound on the

objective:

min S

subject to Ax + b > 0,

(c𝑇x)2

d𝑇x
6 S.

(2.20)

By this formulation the convex objective in (2.9) is transferred to constraint

in (2.10). The objective is a linear function of the variables x and S. Now the

constraints can be written as a linear matrix inequality in the variables x and S

using Schur complements [55]-[57]

⎡⎣ S c𝑇x

c𝑇x d𝑇x

⎤⎦ ⪰ 0,

(2.21)
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Thus, the convex problem in (2.9) has formulated as semidefinite program

[55]-[57].

2.11 Conclusion

This chapter review the principles of massive MIMO systems. Then the pilot

contamination problem is introduced. The methods of channel estimation are

presented. Additionally, this chapter also provided an overview of mobile ra-

dio channel model. Then, a brief section about probability theory is presented.

Thereafter, the Bayesian estimation and CS are introduced. Lastly, An approach

to transfer the non-convex optimization problem using SDP approach is pre-

sented. It is to be hoped that the technical background provided in this chapter

delivers the readers with the basic knowledge of the work areas to have better

understanding on the proposed problems in the forthcoming chapters.



Chapter 3

Bayesian Compressed Sensing

Channel Estimation Techniques

As stated in the previous chapters, in massive MIMO systems, the achievable

estimation accuracy is limited in practice due to the problem of pilot contam-

ination. It has recently been shown that compressed sensing (CS) techniques

can address the pilot contamination problem. However, as elaborated in Chapter

1 that the CS-based channel estimation techniques suffers from practical short-

ages. To overcome these shortages, in this chapter, an efficient channel estimation

approach is proposed for massive MIMO systems using Bayesian compressed sens-

ing (BCS) based on prior knowledge of statistical information regarding channel

sparsity. We have also proposed to enhance the performance of the BCS-based

estimator through the principle of thresholding to select the most significant taps

to improve the channel estimation accuracy. Furthermore, by utilising the com-

mon sparsity feature inherent in the massive MIMO system channel, we extend

the proposed Bayesian algorithm to a multi-task (MT) version, so the developed

MT-BCS can obtain better performance results than the single task version. To

provide the benchmark for the minimum performance error of the BSC and MT-

BCS, the Cramer Rao bound (CRB) has been drawn for BCS and it has been

45
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Figure 3-1: Illustration of the system model of a multi-cell multi-user massive
MIMO.

derived and drawn for MT-BCS. Several computer simulation based experiments

are performed to confirm that the proposed methods can reconstruct the original

channel coefficient more effectively when compared to the conventional channel

estimator. The remainder of this chapter is organized as follows: The multi-cell

massive MIMO system model is presented in Section 3.1. The BSC-based and

the MT-BSC based channel estimation details are reviewed in Section 3.2 and

Section 3.3, respectively. In section 3.4, we provide the Cramer-Rao bound anal-

ysis. Section 3.5 presents the simulation results. Finally, the final conclusions are

drawn in Section 3.6.

3.1 Massive MIMO System Model

We consider a time division duplexing (TDD) multi-cell massive MIMO system

with 𝐶 cells as shown in Fig. 3-1. Each cell comprises of 𝑀 antennae at the
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BS and 𝑁 single antenna users. To improve the spectral efficiency, orthogonal

frequency division multiplexing (OFDM) is adopted as in [58],[59].

At the beginning of the transmission, all mobile stations in all cells syn-

chronously transmit OFDM pilot symbols to their serving base stations. Let the

OFDM pilot symbol of user 𝑛 in the 𝑐-th cell be denoted by x𝑛
𝑐 = [𝑥𝑛𝑐 [1] 𝑥𝑛𝑐 [2] · · ·

𝑥𝑛𝑐 [𝐾]]𝑇 , where 𝐾 is the number of subcarriers. The OFDM transmission parti-

tion the multipath channel between the user and each antenna of the BS into 𝐾

parallel flat fading sub-channels in the frequency domain.

Each sub-channel is associated with a subcarrier. Let ℎ𝑛𝑐*,𝑐,𝑖[𝑘] denote the 𝑘-th

sub-channel coefficient between the 𝑛-th user in the 𝑐-th cell and the 𝑖-th antenna

of the BS of cell 𝑐* in the uplink. The received signal 𝑦𝑐*,𝑖 by the 𝑖-th antenna

element of the cell 𝑐* at the 𝑘-th subcarrier can be expressed as

𝑦𝑐*,𝑖[𝑘] =
𝑁∑︁

𝑛=1

ℎ𝑛𝑐*,𝑐*,𝑖[𝑘]𝑥𝑛𝑐* [𝑘] +
𝐶∑︁

𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

ℎ𝑛𝑐*,𝑐,𝑖[𝑘]𝑥𝑛𝑐 [𝑘] + 𝑣𝑐*,𝑖[𝑘], (3.1)

for all 1 ≤ 𝑖 ≤𝑀 and 1 ≤ 𝑐 ≤ 𝐶, where 𝑉𝑐*,𝑖[𝑘] is the AWGN at the 𝑖-th antenna

of the BS in cell 𝑐* at the 𝑘-th subcarrier. Letting y𝑐*,𝑖 = [𝑦𝑐*,𝑖[1] · · · 𝑦𝑐*,𝑖[𝐾]]𝑇 ,

we can write (3.1) for all subcarriers at the 𝑖-th antenna of the BS in cell 𝑐* in

the compact form as

y𝑐*,𝑖 =
𝑁∑︁

𝑛=1

X𝑛
𝑐*h

𝑛
𝑐*,𝑐*,𝑖 +

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

X𝑛
𝑐h

𝑛
𝑐*,𝑐,𝑖 + v𝑐*,𝑖, (3.2)

where X𝑛
𝑐* = diag{x𝑛

𝑐*}, h𝑛
𝑐*,𝑐,𝑖 = [ℎ𝑛𝑐*,𝑐,𝑖[1] · · ·ℎ𝑛𝑐*,𝑐,𝑖[𝐾]]𝑇 and v𝑐*,𝑖 = [𝑣𝑐*,𝑖[1] · · ·

𝑣𝑐*,𝑖[𝐾]]𝑇 ∼ 𝒞𝒩 (0, 𝜎2
𝑣). Let g𝑛

𝑐*,𝑐,𝑖 = [𝑔𝑛𝑐*,𝑐,𝑖[1] · · · 𝑔𝑛𝑐*,𝑐,𝑖[ℓ] · · · 𝑔𝑛𝑐*,𝑐,𝑖[𝐿]]𝑇 collect the

samples of the sampled multipath channel impulse response (CIR) between the

𝑛-th user of the 𝑐-th cell and the 𝑖-th antenna of the BS in cell 𝑐*, where 𝐿 is

the number of the channel taps and 𝑔𝑛𝑐*,𝑐,𝑖[ℓ] corresponds to the ℓ-th channel tap.

The 𝐾 frequency domain channel coefficients, i.e., h𝑛
𝑐*,𝑐,𝑖, can be calculated as the
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𝐾-point DFT of the CIR samples, i.e., g𝑛
𝑐*,𝑐,𝑖 ∈ C𝐿×1, e.g., [60]. Hence,

h𝑛
𝑐*,𝑐,𝑖 = Fg′𝑛

𝑐*,𝑐,𝑖, (3.3)

where F ∈ C𝐾×𝐾 represents the discrete Fourier transform (DFT) matrix, whose

element in row 𝑠 and column 𝑟 is given by [ 1√
𝐾
𝑒−𝑗2𝜋*(𝐾−𝑟)(𝐾−𝑠)/𝐾 ], 1 ≤ 𝑟 ≤ 𝐾

and 1 ≤ 𝑠 ≤ 𝐾 and g′𝑛
𝑐*,𝑐,𝑖 ∈ C𝐾×1 is g𝑛

𝑐*,𝑐,𝑖 ∈ C𝐿×1 augmented with 𝐾 − 𝐿 zeros.

Using (3.3) in (3.2), we get

y𝑐*,𝑖 =
𝑁∑︁

𝑛=1

X𝑛
𝑐*Fg

′𝑛
𝑐*,𝑐*,𝑖 +

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

X𝑛
𝑐Fg

′𝑛
𝑐*,𝑐,𝑖 + v𝑐*,𝑖. (3.4)

The channel coefficient is modelled as 𝑔𝑛𝑐*,𝑐,𝑖[ℓ] =
√︀
𝜑𝑐*,𝑐,𝑖[ℓ]𝜓𝑐*,𝑐,𝑖[ℓ] for 1 ≤

ℓ ≤ 𝐿, where 𝜑𝑐*,𝑐,𝑖 model the path-loss and shadowing (large-scale fading) that

change slowly and can be learned over long period of time, while the term 𝜓𝑐*,𝑐,𝑖 is

assumed to be independent identical distribution (i.i.d) of unknown random vari-

ables with 𝒞𝒩 (0, 1) (small-scale fading) [30]. Since the cell layout and shadowing

are captured using the constant 𝜑𝑐*,𝑐,𝑖[ℓ] values, for the purpose of this chapter,

the specific details of the cell layout and shadowing model are irrelevant. In other

words, any cell layout and any shadowing model can be incorporated with the

above abstraction [17] and [30].

The received signal of (3.4) can be re-written as

y𝑐*,𝑖 =
𝑁∑︁

𝑛=1

X𝑛
𝑐*Fg

′𝑛
𝑐*,𝑐*,𝑖 + z𝑐*,𝑖, (3.5)

where the term z𝑐*,𝑖 =
∑︀𝐶

𝑐=1,𝑐 ̸=𝑐*
∑︀𝑁

𝑛=1 X
𝑛
𝑐Fg

′𝑛
𝑐*,𝑐,𝑖 + v𝑐*,𝑖 in (3.5) represents the

net sum of inter-cell interference plus the receiver noise, the variance interference

𝜎2
𝐼 of the inter-cell interference term caused during pilot transmission can be
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Figure 3-2: Illustration of the rich scatterers wireless channel and the resulting
channel impulse response is sparse [61]

expressed as

𝜎2
𝐼 = 𝐸{(

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

X𝑛
𝑐Fg

′𝑛
𝑐*,𝑐,𝑖)× (

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

X𝑛
𝑐Fg

′𝑛
𝑐*,𝑐,𝑖)

𝐻}. (3.6)

We define the measurement matrix A𝑛
𝑐* = X𝑛

𝑐*F, then (3.5) can be rewritten

as

y𝑐*,𝑖 =
𝑁∑︁

𝑛=1

A𝑛
𝑐*g

′𝑛
𝑐*,𝑐*,𝑖 + z𝑐*,𝑖. (3.7)

Based on the physical properties of outdoor electromagnetic propagation, the

CIR in wireless communications usually contain a few significant channel taps as

can be shown in Fig. 3-2, i.e. the CIR are sparse; hence, the number of non-

zero taps of the channel is much smaller than the channel length, then the CS

techniques can be applied for sparse channel estimation. This sparse property

can be exploited to reduce the necessary channel parameters to be estimated. In

this case, we can address the pilot contamination problem by using fewer pilots

than the unknown channel coefficients [60]-[62].
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3.2 BCS-Based Channel Estimation

In this section, BCS-based channel estimation is presented in the context of mas-

sive MIMO channel estimation. Following the general procedure of BCS in [63]

and [64], the full posterior distribution over unknown parameters of interest for

the problem at hand can be given as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖,𝛽, 𝜎

2|y𝑐*,𝑖) =
𝑃 (y𝑐*,𝑖|g′𝑛

𝑐*,𝑐*,𝑖,𝛽, 𝜎
2)𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝛽, 𝜎
2)

𝑃 (y𝑐*,𝑖)
, (3.8)

where 𝛽 represents the hyperparameters1 that control the sparsity of the channel

while 𝜎2 is the net sum of the noise variance and interference variance.

However, the probability of the observation vector, 𝑃 (y𝑐*,𝑖), is defined by the

following equation

𝑃 (y𝑐*,𝑖) =

∫︁ ∫︁ ∫︁
𝑃 (y𝑐*,𝑖|g′𝑛

𝑐*,𝑐*,𝑖, 𝜎
2,𝛽)𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝛽, 𝜎
2)𝑑g′ 𝑑𝛽 𝑑𝜎2, (3.9)

cannot be computed analytically. To go around that, an approximation strategy

must be applied. The posterior distribution can be decomposed based on the

product rule of productivity as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖,𝛽, 𝜎

2|y𝑐*,𝑖) ≡ 𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎

2)𝑃 (𝛽, 𝜎2|y𝑐*,𝑖). (3.10)

The first term of (3.10), 𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎

2), the posterior distribution over

the channel coefficient can be expressed based on Bayes’ rule as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎

2) =
𝑃 (y𝑐*,𝑖|g′𝑛

𝑐*,𝑐*,𝑖, 𝜎
2)𝑃 (g′𝑛

𝑐*,𝑐*,𝑖|𝛽)

𝑃 (y𝑐*,𝑖|𝛽, 𝜎2)
. (3.11)

The posterior distribution given above is Gaussian distribution with mean

1a parameter of a prior distribution



3.2. BCS-Based Channel Estimation 51

𝜇𝑛
𝑐*,𝑐*,𝑖 and the variance Σ𝑛

𝑐*,𝑐*,𝑖 are given by

𝜇𝑛
𝑐*,𝑐*,𝑖 = 𝜎−2Σ𝑛

𝑐*,𝑐*,𝑖A
𝑛
𝑐*y𝑐*,𝑖, (3.12)

Σ𝑛
𝑐*,𝑐*,𝑖 = (𝜁 + 𝜎−2(A𝑛

𝑐*)𝑇A𝑛
𝑐*)−1, (3.13)

where 𝜁 = 𝑑𝑖𝑎𝑔{𝛽1, 𝛽2, ..., 𝛽𝐾}.

The estimated channel based on Bayesian estimation approaches to minimize

the mean square error (MSE) is the expectation of 𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎

2), so the

estimated channel can be expressed as

ĝ′𝑛
𝑐*,𝑐*,𝑖 = 𝐸(𝑃 (g′𝑛

𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎
2)) = 𝜇𝑛

𝑐*,𝑐*,𝑖. (3.14)

Now, to obtain the estimated channel ĝ′𝑛
𝑐*,𝑐*,𝑖, we need to find the heypar-

marpater 𝜎2 and 𝛽 that can be obtained from the second term on the right-hand

side of (3.10) by applying a type−𝐼𝐼 maximum likelihood procedure.

Based on Bayes’ theorem, the posterior distribution 𝑃 (𝛽, 𝜎2|y𝑐*,𝑖) is propor-

tional 𝑃 (y𝑐*,𝑖|𝛽, 𝜎2) [42], Then, the type−𝐼𝐼 maximum likelihood is applied to

the log marginal likelihood as follows

𝑃 (y𝑐*,𝑖|𝛽, 𝜎2) =

∞∫︁
−∞

𝑃 (y𝑐*,𝑖|g′𝑛
𝑐*,𝑐*,𝑖, 𝜎

2)𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛽)𝑑g′. (3.15)

The term 𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛽) follows zero-mean Gaussian distribution and can be

expressed as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛽) = (2𝜋)

−𝐾
2

𝐾∏︁
𝑖=1

𝛽
1
2
𝑘 𝑒𝑥𝑝[

−1

2
g′𝑛
𝑐*,𝑐*,𝑖𝜁(g′𝑛

𝑐*,𝑐*,𝑖)
𝐻 ], (3.16)

while the Gaussian likelihood function of y𝑐*,𝑖 according to the probability theory,

can be written as
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𝑃 (y𝑐*,𝑖|g′𝑛
𝑐*,𝑐*,𝑖, 𝜎

2) = (
2𝜋

𝜎2
)
−𝐾
2 𝑒𝑥𝑝(

−𝜎2

2
||y𝑐*,𝑖 −A𝑛

𝑐*g
′𝑛
𝑐*,𝑐*,𝑖||22). (3.17)

By substituting (3.16) and (3.17) into (3.15), marginal likelihood 𝑃 (y𝑐*,𝑖|𝛽, 𝜎2)

can be expressed as

𝑃 (y𝑐*,𝑖|𝛽, 𝜎2) = log{(𝛽𝑘
2𝜋

)
𝐾
2 (

1

2𝜋
)
𝐾
2

𝐾∏︁
𝑘=1

𝛽
1
2
𝑘

∞∫︁
−∞

exp(−(
𝛽𝑘
2
||y𝑐*,𝑖 −A𝑛

𝑐*g
′𝑛
𝑐*,𝑐*,𝑖||22)

+
1

2
(g′𝑛

𝑐*,𝑐*,𝑖)
𝐻𝜁g′𝑛

𝑐*,𝑐*,𝑖))},

(3.18)

𝛽 can be obtained by differentiating the log marginal likelihood 𝑃 (y𝑐*,𝑖|𝛽, 𝜎2)

with regard to 𝜎2, and equating it to zero and it can be given as

(𝛽𝑘)𝑖𝑖 =
𝐼 − 𝛽𝑘(Σ𝑛

𝑐*,𝑐*,𝑖)𝑘

(𝜇𝑛
𝑐*,𝑐*,𝑖)

2
𝑘

. (3.19)

While 𝜎2 is obtained by differentiate (3.18) with regard to 𝛽 and set these

derivations to zero and can be expressed as

(𝜎2)𝑖𝑖 =
||y𝑐*,𝑖 −A𝑛

𝑐*g
′𝑛
𝑐*,𝑐*,𝑖||22

(𝑀 − 𝐼 +
∑︀𝐾

𝑘=1 𝛽𝑘)
. (3.20)

The 𝛽𝑘 and 𝜎2
𝑘 which maximize the log marginal likelihood 𝑃 (y𝑐*,𝑖|𝛽, 𝜎2) are

then found iteratively by setting 𝛽 and 𝜎2 to initial values and then finding values

for 𝜇𝑛
𝑐*,𝑐*,𝑖 and Σ𝑛

𝑐*,𝑐*,𝑖 from (3.12) and (3.13). These values are then repeatedly

used to calculate a new estimate for 𝛽𝑘 and 𝜎2 and until a convergence criteria is

met.

Further details of the BCS algorithm can be found in [63], [64]. The procedure
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for implementation of the proposed technique is summarized in algorithm 1.

In contrast to the conventional BCS-based estimator, it can also improve the

performance of the BCS estimator based on the principle of thresholding, which

can be applied to keep the most significant taps. The proposed algorithm applies

a threshold approach by retaining the channel taps that have energy above a

threshold value of 𝜚 and set the other taps to zero. The value of 𝜚 is the energy

of the channel impulse response.

Algorithm 1 BCS-Based Channel Estimation Algorithm
INPUTS:
1: Pilot signal x𝑛

𝑐* .
2: Observation matrix A𝑛

𝑐* = x𝑛
𝑐*F.

Initial Configuration:
3: Select a suitable value for convergence 𝛿.
4: 𝑖𝑖← 1
5: Select a start value for 𝜎2 and 𝛽.
6: Compute Σ𝑛

𝑐*,𝑐*,𝑖 = (𝜁 + 𝛽(A𝑛
𝑐*)𝑇A𝑛

𝑐*)−1.
7: Compute 𝜇𝑛

𝑐*,𝑐*,𝑖 = 𝛽Σ𝑛
𝑐*,𝑐*,𝑖A

𝑛
𝑐*y𝑐*,𝑖.

repeat
8:Update (𝛽𝑘)𝑖𝑖 =

𝐼−𝛽𝑘(Σ
𝑛
𝑐*,𝑐*,𝑖)𝑘

(𝜇𝑛
𝑐*,𝑐*,𝑖)

2
𝑘

and (𝜎2)𝑖𝑖 =
||y𝑐*,𝑖−A𝑛

𝑐*g
′𝑛
𝑐*,𝑐,𝑖||

2
2

(𝑀−𝐼+
∑︀𝐾

𝑘=1 𝛽𝑘)
.

9: Until 𝛿 > Σ𝑖𝑖=1(𝜎
2)𝑖𝑖+1 − (𝜎2)𝑖𝑖.

10: Compute ĝ′𝑛
𝑐*,𝑐*,𝑖 = 𝜇𝑛

𝑐*,𝑐*,𝑖 = 𝐸(𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|y𝑐*,𝑖,𝛽, 𝜎

2)).
OUTPUTS: Return the Estimated Channel ĝ′𝑛

𝑐*,𝑐*,𝑖.

3.3 Multi-Task BCS Based Channel Estimation

With a high probability of user movements, the massive MIMO system channel

may vary. Consequently, the channels at different time instants/locations are

different but share the same common statistical property. As a result, to estimate

the current channel, we can exploit the previous compressive vectors in addition

to the current compressive vector [66].

Given the system model in II, the received signals of (3.7) can have the following

formulation



54 Chapter 3. Bayesian Compressed Sensing Channel Estimation Techniques

y𝑐*,𝑖,𝑗 =
𝑁∑︁

𝑛=1

A𝑛
𝑐*,𝑗g

′𝑛
𝑐*,𝑐*,𝑖,𝑗 + z𝑐*,𝑖,𝑗, (3.21)

for 𝑗 = 1, 2, ...𝐽 where 𝐽 is the number of the task, A𝑛
𝑐*,𝑗,g

′𝑛
𝑐*,𝑐*,𝑖,𝑗 and z𝑐*,𝑖,𝑗

represents the 𝑗𝑡ℎ measurement matrices, channel vector and the noise vector,

respectively [66].

The main target is to estimate the channel g′𝑛
𝑐*,𝑐*,𝑖,𝑗 which can be computed

based on Bayesian channel estimation philosophy as the mean of the channel

posterior distribution that can be represented as

ĝ′𝑛
𝑐*,𝑐*,𝑖,𝑗 = 𝐸(𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝑗|y𝑐*,𝑖,𝑗,Ξ𝑗, 𝜉0)), (3.22)

where 𝜉0 represents the inverse of the net sum of the noise variance and interfer-

ence variance, while Ξ𝑗 represent the hyperparameters that control the sparsity

of the channel. Based on Bayes’ rule the posterior distribution can be given as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖,𝑗|y𝑐*,𝑖,𝑗,Ξ𝑗, 𝜉0)

=
𝑃 (y𝑐*,𝑖,𝑗|g′𝑛

𝑐*,𝑐*,𝑖,𝑗, 𝜉0)𝑃 (g′𝑛
𝑐*,𝑐*,𝑖,𝑗|Ξ𝑗)∫︀

𝑃 (y𝑐*,𝑖,𝑗|g′𝑛
𝑐*,𝑐*,𝑖,𝑗, 𝜉0)𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝑗,Ξ𝑗)𝑑g′

∼ 𝑁(𝜇𝑛
𝑐*,𝑖,𝑗,Σ

𝑛
𝑐*,𝑖,𝑗), (3.23)

the mean and covariance can be given by

𝜇𝑛
𝑐*,𝑖,𝑗 = 𝜉0Σ

𝑛
𝑐*,𝑖,𝑗A

𝑛
𝑐*,𝑗y𝑐*,𝑖,𝑗, (3.24)

Σ𝑛
𝑐*,𝑖,𝑗 = (𝜓 + Ξ𝑗(A

𝑛
𝑐*,𝑗)

𝑇A𝑛
𝑐*,𝑗)

−1, (3.25)

where 𝜓 = 𝑑𝑖𝑎𝑔(𝜓0, 𝜓1, 𝜓2, ..., 𝜓𝐾).
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The likelihood function for the parameter g′𝑛
𝑐*,𝑐*,𝑖,𝑗 and 𝜉0 based on the received

signal y𝑐*,𝑖,𝑗 and can be expressed as

𝑃 (y𝑐*,𝑖,𝑗|g′𝑛
𝑐*,𝑐*,𝑖,𝑗, 𝜉0) = (

2𝜋

𝜉0
)
−𝑁
2 exp(

−𝜉0
2
||y𝑐*,𝑖,𝑗 −A𝑛

𝑐*,𝑗g
′𝑛
𝑐*,𝑐*,𝑖,𝑗||22). (3.26)

The channel coefficients g′𝑛
𝑐*,𝑐*,𝑖,𝑗 are assumed to be drawn from a product of

zero-mean Gaussian distributions that are shared by all tasks as follow

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖,𝑗|Ξ𝑗) =

𝑁∏︁
𝑖=1

(g′𝑛
𝑐*,𝑐*,𝑖,𝑗|0,Ξ−1

𝑗 ) = (2𝜋)
−𝑁
2

𝑁∏︁
𝑖=1

Ξ
1
2
𝑗

× exp[
−1

2
(g′𝑛

𝑐*,𝑐*,𝑖,𝑗)
𝐻Ξ𝑗g

′𝑛
𝑐*,𝑐*,𝑖,𝑗]. (3.27)

To obtain the estimated channel, we need to estimate Ξ𝑗 and 𝜉0 by applying

the same procedure in section 3.2 to the posterior distribution 𝑃 (y𝑐*,𝑖,𝑗|,Ξ𝑗, 𝜉0)

that can be inferred as [66]

𝑃 (y𝑐*,𝑖,𝑗|Ξ𝑗, 𝜉0) ≡ 𝑃 (y𝑐*,𝑖,𝑗|g′𝑛
𝑐*,𝑐*,𝑖,𝑗, 𝜉0)𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝑗|Ξ𝑗). (3.28)

Now, by maximizing the log marginal likelihood and then differentiating with

respect to Ξ𝑗 and 𝜉0 and setting to zero yields

(Ξ𝑗)
𝑛𝑒𝑤 =

𝐽 −Ξ𝑗

∑︀𝐽
𝑗=1Σ

𝑛
𝑐*,𝑐*,𝑖,𝑗∑︀𝐽

𝑗=1(𝜇
𝑛
𝑐*,𝑐*,𝑖,𝑗)

2
, (3.29)

(𝜉0)
𝑛𝑒𝑤 =

∑︀𝐽
𝑗=1(𝐾 − 𝐽 +

∑︀𝐽
𝑖=1Σ

𝑛
𝑐*,𝑐*,𝑖,𝑗Ξ𝑗)∑︀𝐽

𝑗=1 ||y𝑐*,𝑖,𝑗 −A𝑛
𝑐*,𝑗g

′𝑛
𝑐*,𝑐*,𝑖,𝑗||22

. (3.30)

Further information on MT-BCS can be found in [67].
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3.4 CRB For BCS-Based Estimator

In this section, we analyse the CRB for the proposed BCS and MT-BCS based

channel estimation techniques to provide a benchmark for the minimum estima-

tion error that can be achieved by the proposed algorithm. The CRB on the

covariance of any estimator 𝜃̂ can be given as

𝐸{(𝜃̂ − 𝜃)(𝜃̂ − 𝜃)𝑇} ≥ 𝐽−1(𝜃), (3.31)

where 𝐽(𝜃) is the Fisher information matrix (FIM) corresponding to the obser-

vation 𝑓 , and can be given as

𝐽(𝜃) = 𝐸(
𝜕

𝜕𝜃
log 𝑙(𝜃, 𝑓))(

𝜕

𝜕𝜃
log 𝑙(𝜃, 𝑓))𝑇 , (3.32)

where 𝑙(𝜃, 𝑓) is the likelihood function corresponding to the observation 𝑓 , pa-

rameterized by 𝜃 [67].

Based on (3.32), we can write the FIM as

𝐽(y𝑐*,𝑖,𝑗) ≥ −𝐸(
𝜕2𝑙𝑜𝑔(𝑃y𝑐*,𝑖,𝑗 |Ξ𝑗 ,𝜉0(𝑃 (y𝑐*,𝑖,𝑗|Ξ𝑗, 𝜉0)))

𝜕2g′ )−1 (3.33)

Reference the Bayes’ rule in (3.23), the FIM can be decomposed into two

terms

− 𝐸(
𝜕2𝑙𝑜𝑔(𝑃y𝑐*,𝑖,𝑗 |Ξ𝑗 ,𝜉0(𝑃 (y𝑐*,𝑖,𝑗|Ξ𝑗, 𝜉0)))

𝜕2g′ ) = −

𝐸(
𝜕2𝑙𝑜𝑔(𝑃y𝑐*,𝑖,𝑗 |g′𝑛

𝑐*,𝑐*,𝑖,𝑗 ,𝜉0
(𝑃 (y𝑐*,𝑖,𝑗|g′𝑛

𝑐*,𝑐*,𝑖,𝑗, 𝜉0))

𝜕2g′ )−

𝐸(
𝜕2𝑙𝑜𝑔(𝑃g′𝑛

𝑐*,𝑐*,𝑖,𝑗 |Ξ𝑗
(𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝑗|Ξ𝑗)))

𝜕2g′ ), (3.34)

which can be expressed in matrix form as
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J = J𝐷 + J𝑃 , (3.35)

where J, J𝐷 and J𝑃 represent the Bayesian FIM, data information matrix and

prior information matrix, respectively.

Using (3.26), the data information matrix J𝐷 can be given as

J𝐷 = −
𝜕2𝑙𝑜𝑔(𝑃y𝑐*,𝑖,𝑗 |g′𝑛

𝑐*,𝑐*,𝑖,𝑗 ,𝜉0
(𝑃 (y𝑐*,𝑖,𝑗|g′𝑛

𝑐*,𝑐*,𝑖,𝑗, 𝜉0))

𝜕2g′ =

𝜕

𝜕g′ [−𝑙𝑜𝑔(2𝜋)
1
2 𝜉−1

0 −
𝜉0
2
||y𝑐*,𝑖,𝑗 −A𝑛

𝑐*,𝑗g
′𝑛
𝑐*,𝑐*,𝑖,𝑗||22], (3.36)

=
1

𝜉0
(y𝑐*,𝑖,𝑗 −A𝑛

𝑐*,𝑗g
′𝑛
𝑐*,𝑐*,𝑖,𝑗), (3.37)

by applying the second derivative to (3.37), we get

𝜕2𝑙𝑜𝑔(𝑃y𝑐*,𝑖,𝑗 |g′𝑛
𝑐*,𝑐*,𝑖,𝑗 ,𝜉0

(𝑃 (y𝑐*,𝑖,𝑗|g′𝑛
𝑐*,𝑐*,𝑖,𝑗, 𝜉0))

𝜕2g′ =
A𝑛

𝑐*,𝑗(A
𝑛
𝑐*,𝑗)

𝑇

𝜉0
. (3.38)

By applying the same procedure in (3.36-3.38) to the second term of (3.34)

gives

J𝐷 = 𝐸(
𝜕2𝑙𝑜𝑔(𝑃g′𝑛

𝑐*,𝑐*,𝑖,𝑗 |Ξ𝑗
(𝑃 (g′𝑛

𝑐*,𝑐*,𝑖,𝑗|Ξ𝑗)))

𝜕2g′ ) = (Ξ𝑗)
−1. (3.39)

Thus, the closed form expression of the BCRB for the proposed MT-BCS can
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be given as

𝐽(g′𝑛
𝑐*,𝑐*,𝑖,𝑗) ≥ (

1

Ξ 𝑗
+

A𝑛
𝑐*,𝑗(A

𝑛
𝑐*,𝑗)

𝑇

𝜉0
)−1. (3.40)

3.5 Simulation Results

To verify the accuracy of our analytical results, we consider a multi cell system

with 7 cells, each cell has a base station equipped with 𝑀 = 100 antennae and

serves 𝑁 = 10 users. The number of the channel taps 𝐿 is 128, the number of

subcarrier 𝐾 is 4096 and the convergence 𝛿 is 10−6. The simulation results are

obtained by averaging over 1000 realizations.

To compare the accuracy of the channel estimation techniques, the normalized

MSE is used for performance evaluation and is computed as

𝑀𝑆𝐸 =
||ĝ′𝑛

𝑐*,𝑐*,𝑖,𝑗 − g′𝑛
𝑐*,𝑐*,𝑖,𝑗||22

||g′𝑛
𝑐*,𝑐*,𝑖,𝑗||22

. (3.41)

Fig. 3-3 shows the MSE performance comparison among a BCS-based channel

estimation of three scenarios under small pilot contamination (𝜑𝑐*,𝑐*,𝑖 = 1 and

𝜑𝑐*,𝑐,𝑖 = 0.1), strong pilot contamination (𝜑𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑐*,𝑐,𝑖 = 0.5), very strong

pilot contamination (𝜑𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑐*,𝑐,𝑖 = 0.9), regularized least square (RLS)-

based estimator with no pilot contamination as a benchmark and the BCRB for

BCS as a reference line. The results have shown significant improvement in

estimation accuracy and addressing the pilot contamination problem for SNR

values of -40 dB to 40 dB for the proposed technique compared with R-LS. This

is a result of exploiting the prior statistical of channel sparsity. Furthermore, the

results still show enhanced estimation performance for high SNR.

Fig. 3-4 shows the MSE performance versus SNR with a different value of
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setting to the number of subcarrier𝐾 = {640, 1280 and 1920}, so the compression

ratio (CR) (i.e. L/K) is to be CR= {0.2, 0.1and 0.06}, while the experiment is

run under small pilot contamination (𝜑𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑐*,𝑐,𝑖 = 0.1). The results

prove that the estimation accuracy is better performed by decreasing the values

of the number of subcarriers, accordingly with increasing CR.

Fig. 3-5 demonstrates the MSE of the BSC-based channel estimation versus

SNR for three scenarios of different settings to the number of antennae at the base

station 𝑀 = {100, 200 and 300}, the system under strong pilot contamination

(𝜑𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑐*,𝑐,𝑖 = 0.7). The results show that the estimation accuracy of

the proposed algorithm is enhanced by increasing the number of antennae. Thus

according to the law of large numbers, more coordinated BS antennae could

provide more accurate support estimation.

Figure 3-3: MSE performance comparison between BSC, BCRB for 𝜑𝑐*,𝑐,𝑖 =
{0.1, 0.5, 0.9} and R-LS versus SNR.
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Figure 3-4: MSE of BSC for 𝐾 = {640, 1280 and 1920} and 𝐶𝑅 = {0.2, 0.1 and
0.06}, respectively.

Fig. 3-6 shows the MSE performance versus SNR for BCS with different

values for the number of pilots: 1000, 500, 100, 50 and 25, where the number of

subcarrier 𝐾 is 4096. The number of the CIR path is 128 while the experiments

run under strong pilot contamination. For cases of the number of the pilots is

greater than the number of channel taps (i.e., 1000 and 500), the BCS provides

inefficient estimation accuracy, while for the other cases of the number of the pilot

of (100, 50 and 25), which is less than 128, the estimation accuracy is enhanced

significantly. In addition, there is no significant improvement for the cases of

the number of the pilots 100, 50 and 25. In these cases, we can address pilot

contamination by employing small values for the number of the pilot i.e. 25.

Fig. 3-7 compares the MSE performance versus SNR among BCS, threshold-

BSC, MT-BCS, LS, orthogonal message passing (OMP) and the bilinear approx-
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Figure 3-5: MSE of BSC for 𝑀 = {100, 200 and 300} versus SNR.

Table 3.1: Complexity Analysis
Estimators Computation Complexity
R-LS 𝑂(𝐿2)
BCS 𝑂(𝐾𝐿2)
MTBCS 𝑂(𝐾𝐿3)
OMP 𝑂(𝐿 log (𝐾))
BiAMP 𝑂(𝐿𝐾 +𝐾)

imate message passing (Bi-AMP)[43]. The number of subcarrier 𝐾 is 1024 and

the number of the CIR path is 100. Results show the proposed MT-BCS enjoys

significant performance improvement over all the other estimators as a result of

exploiting the statistical prior information on a large scale. However, this ad-

vantage is at the expense of a relatively high complexity of BCS and MT-BCS

over other estimators as depicted in Table 1, which compares the computational
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Figure 3-6: MSE performance comparison of BSC based estimator for different
values of the number of the pilot 100, 50 and 10 versus SNR.

complexity Bi-AMP [68], BCS [64], OMP [69], LS [70] and the MT-BCS [66].

Also, the results showed that the thresholding approach enhances the estimation

accuracy of the conventional BCS, as the CIR contains so many taps with no

significant energy. By setting the threshold and neglecting these taps, a huge

part of the noise and interference from pilot contamination will be eliminated.

3.6 Conclusion

To address the pilot contamination problem in massive MIMO systems, we pro-

posed a BCS-based channel estimation algorithm for the multi-cell multi-user

massive MIMO. The simulation results have revealed that the BCS-based chan-

nel estimation algorithm has tremendous improvement over conventional-based
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Figure 3-7: MSE performance comparison between BCS, Thresholded BCS, LS,
MT-BCS, OMP and BiAMP based estimators versus SNR.

channel estimation algorithms and can address the pilot contamination problem.

Furthermore, the proposed technique can be enhanced by thresholding the CIR

to a certain value and also by exploiting the common sparsity feature inherent

in the system channel. In addition, the number of antennae and the compression

ratio should be selected wisely to achieve optimum estimation accuracy.



Chapter 4

Sparse Bayesian Learning Channel

Estimation with Optimal Pilot

Design

In the previous chapter, we proposed a Bayesian compressed sensing (BCS) ap-

proach to overcome the shortages of compressed sensing (CS) techniques. How-

ever, these works assume dependency among antennae elements. The antennae

in MIMO systems are not well separated in realistic environments, so the MIMO

channel is correlated [71]. Thus, in this chapter, we propose an improved channel

estimation technique based on a sparse Bayesian learning (SBL) scheme that con-

sider the impact of antennae correlation, namely, a pattern-coupled SBL [72]-[73],

whereby a priori probabilistic information regarding channel sparsity is controlled

by its own hyperparameter and its neighbouring hyperparameters. This depen-

dency feature can be exploited to provide more reliable channel recovery. The

simulation results show that the channel coefficients can be estimated more ef-

ficiently in contrast to the conventional channel estimators in terms of channel

estimation with pilot contamination based on a mean square error (MSE) ana-

lytical expression. Furthermore, based on that MSE expression, a pilot design

64
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criteria is formulated to design the optimal pilot to improve the estimation ac-

curacy of the proposed algorithm. Results show that we can reduce the MSE of

the SBL estimator by employing the optimal pilot sequence.

The remainder of this chapter is organized as follows. Section 4.1 describes

the multi-cell massive MIMO system model. Section 4.2 analyses the SBL-based

Channel Estimator. Optimal Pilot design analysis is presented in section 4.3. Sec-

tion 4.4 provides the analysis of the achievable uplink rate. Section 4.5 presents

the CRB for the proposed technique. Section 4.6 presents the simulation results

and we summarize the conclusions in Section 4.7.

4.1 System Model

The system model considered in this chapter is the same model in the previous

chapter with the exception of assuming that the channel impulse response (CIR)

of different transmit-receive antenna pairs share a common sparse pattern for 𝑑
𝑐
≤

1
10𝐵

, where 𝑑 is the distance between two antennae and 𝑐 is the speed of light and

𝐵 is the bandwidth of the signal bandwidth [74] and [75], we refer the interested

reader to [76] for more clarifications about these assumption. Therefore, CIR

of different transmit-receive antenna pairs share very similar scatters, as shown

in Fig. 4-1. This sparsity communality of the channel is generalized to a block-

sparse channel, in which a group of channel coefficient is sharing the same sparsity

pattern. To take the practical advantages of block sparsity, the block structure

CS framework is exploited by applying the pattern coupled-SBL approach to

achieve better estimation accuracy.

4.2 SBL-Based Channel Estimator

In this section, the pattern-coupled sparse Bayesian learning method is presented

in the context of massive MIMO channel estimation. Based on Bayesian channel
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Figure 4-1: Spatial correlations of sparse MIMO channels.

estimation philosophy, the unknown parameters of interest can be estimated by

applying the expectation of the posterior probability. As such, to obtain the

estimated channel, we need to infer the posterior probability of the unknown

parameters.

4.2.1 Bayesian Inference Model

Following the pattern-coupled sparse Bayesian learning model and based on

Bayes’ rule [72], [73], the full posterior distribution of g′𝑛
𝑐*,𝑐*,𝑖 over unknown param-

eters of interest for the problem at hand is proportional to the prior probability

and the likelihood of the unknown parameters, that can be computed as

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛼, 𝛾,y𝑐*,𝑖) = 𝑃 (g′𝑛

𝑐*,𝑐*,𝑖|𝛼)𝑃 (y𝑐*,𝑖|g′𝑛
𝑐*,𝑐*,𝑖), (4.1)
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where 𝛾 represents the inverse of the net sum of the noise and interference covari-

ance matrices and 𝛼 are non-negative hyperparameters controlling the sparsity

of the channel g′𝑛
𝑐*,𝑐*,𝑖. According to probability theory, the term 𝑃 (y𝑐*,𝑖|g′𝑛

𝑐*,𝑐*,𝑖)

can be written as

𝑃 (𝑦𝑐*,𝑖|g′𝑛
𝑐*,𝑐*,𝑖) = (

1√
2𝜋𝛾−1

) exp(−
||𝑦𝑐*,𝑖 − g′𝑛

𝑐*,𝑐*,𝑖𝐴
𝑛
𝑐* ||22

2𝛾−1
), (4.2)

The statistical properties of the sparse multipath structure of the channel is

following Gaussian distribution based on the central line theorem [77]. So, the

Gaussian prior for each channel coefficient 𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛼) in the pattern-coupled

model is given by [72]

𝑃 (g′𝑛
𝑐*,𝑐*,𝑖|𝛼) =

𝑀∏︁
𝑖=1

𝑃 (𝐻𝑛
𝑐*,𝑐*,𝑖[𝑣, 𝑘]|𝛼𝑖, 𝛼𝑖+1, 𝛼𝑖−1) (4.3)

=(2𝜋)
−𝑀
2

𝑀∏︁
𝑖=1

(𝑑𝑒𝑡(𝛼𝑖, 𝛽𝛼𝑖+1, 𝛽𝛼𝑖−1))
−𝑀
2

exp[
−1

2
(𝐻𝑛

𝑐*,𝑐*,𝑖[𝑘])𝑇 (𝛼𝑖, 𝛽𝛼𝑖+1, 𝛽𝛼𝑖−1)
−1𝐻𝑛

𝑐*,𝑐*,𝑖[𝑘]], 𝑖 = 1, ...,𝑀 (4.4)

where 0 ≤ 𝛽 ≤ 1 is a parameter indicating the pattern relevance between the

channel coefficient𝐻𝑛
𝑐*,𝑐*,𝑖[𝑘] and its neighboring coefficients {𝐻𝑛

𝑐*,𝑐*,𝑖+1[𝑘], 𝐻𝑛
𝑐*,𝑐*,𝑖−1[𝑘]}.

For 𝛽 = 0, the Gaussian prior distribution in (4.4) is reduced to the prior for the

conventional sparse Bayesian learning (which represents the uncorrelated channel

scenario). The prior conjugate of Gaussian distribution times Gaussian distribu-

tion is a Gaussian distribution so, the posterior 𝑃 (g′𝑛
𝑐*,𝑐,𝑖|𝛼, 𝛾,𝑦𝑐*,𝑖) ∼ 𝑁(𝜇,Σ)

follows a Gaussian distribution with its mean and covariance given respectively

by

𝜇 = 𝛾ΣAn
c*

𝑇y𝑐*,𝑖, (4.5)
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Σ = (D + 𝛾(An
c*)𝑇A𝑛

𝑐*)−1, (4.6)

where D is a diagonal matrix with its 𝑖𝑡ℎ diagonal element is given by [𝛼𝑖, 𝛽𝛼𝑖+1, 𝛽𝛼𝑖−1],

for 𝑖 = 1, ...,𝑀 . The maximum a posterior (MAP) estimate of g′𝑛
𝑐*,𝑐,𝑖 is the mean

of its posterior distribution, i.e.,

ĝ′𝑛
𝑐*,𝑐*,𝑖 = 𝜇 = ((An

c*)𝑇A𝑛
𝑐* + 𝛾−1𝐷)−1(An

c*)𝑇𝑦𝑐*,𝑖. (4.7)

4.2.2 Hyperparameters Estimation

To obtain the term ĝ′𝑛
𝑐*,𝑐*,𝑖, we need to jointly estimate the hyperparameters 𝛼

and 𝛾, which can be achieved by exploiting the expectation-maximization (EM)

approach (we refer interested readers to [72] and [73] for detailed derivations).

So, the new estimate of 𝛼(𝑡+1) and 𝛾(𝑡+1) can be given as

𝛼
(𝑡+1)
𝑖 = 10−4/0.5(𝜇̂2

𝑖 + Σ̂𝑖,𝑖) + 𝛽(𝜇̂2
𝑖+1 + Σ̂𝑖+1,𝑖+1)

+ 𝛽(𝜇̂2
𝑖−1 + Σ̂𝑖−1,𝑖−1) + 10−4, 𝑖 = 1, ...,𝑀, (4.8)

𝛾(𝑡+1) = 𝑀 + 2 * 10−4/||y𝑐*,𝑖 − g′𝑛
𝑐*,𝑐*,𝑖A

𝑛
𝑐* ||22

+ (𝛾(𝑡))−1
∑︁
𝑖

(1− Σ̂𝑖,𝑖(𝛼
(𝑡)
𝑖 + 𝛽𝛼

(𝑡)
𝑖−1 + 𝛽𝛼𝑖+1)

(𝑡)) + 2 * 10−4. 𝑖 = 1, ...,𝑀, (4.9)

The procedures for implementation of the proposed technique are summarized

in Algorithms 2.

To verify the merit of the proposed channel estimation technique, the MSE

tool is used. The approximated MSE expression for the proposed SBL can be

expressed as [52]
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Algorithm 2 SBL-based Channel Estimator
INPUTS: Pilot Signal 𝑋𝑛

𝑐* , observation matrix 𝑦𝑐*,𝑖 and the measurement
matrix 𝐴𝑛

𝑐* = 𝐹𝑋𝑛
𝑐*

Initial Configuration:
1: Select a specific convergence value 𝜖
2: Select a start value for 𝛼(𝑡) and 𝛾(𝑡)
3: 𝑡 = 0
4:While ‖(ĝ′𝑛

𝑐*,𝑐*,𝑖)
(𝑡+1) − (ĝ′𝑛

𝑐*,𝑐*,𝑖)
(𝑡)‖ ≤ 𝜖 do

5: Obtain a new estimate for 𝛼(𝑡+1) and 𝛾(𝑡+1) as in (15) and (17), respectively.
6: Compute Σ = (𝐷 + 𝛾(A𝑛

𝑐*)𝑇A𝑛
𝑐*)−1

7: Compute ĝ′𝑛
𝑐*,𝑐*,𝑖 = 𝜇 = 𝛾Σ𝐴𝑛

𝑐*
𝑇𝑦𝑐*,𝑖

8: 𝑡← 𝑡+ 1
9: end
OUTPUTS: Return the estimated channel ĝ′𝑛

𝑐*,𝑐*,𝑖

𝑀𝑆𝐸 = 𝑡𝑟{(D + 𝛾(A𝑛
𝑐*)𝑇A𝑛

𝑐*)−1}, (4.10)

= 𝑡𝑟{(D + 𝛾F𝑇 (X𝑛
𝑐*)𝑇X𝑛

𝑐*F)−1}. (4.11)

4.3 Optimal Pilot Design

In (4.11), we observe that the MSE of the SBL estimation algorithm relies on

the choice of the pilot sequence. Hence, in this section, we design the optimal

pilot signals to improve the channel estimation accuracy based on non uniform

placements for training signal with respect to MSE of the SBL channel estimator.

It has been shown that the minimum MSE can be achieved if 𝑡𝑟((A𝑛
𝑐*)𝑇A𝑛

𝑐*) =

𝑃𝑈𝐸, where 𝑃𝑈𝐸 is a fixed power dedicated for training [78]-[80]. To obtain the

minimum MSE, we formulate the following optimization problem

To obtain the minimum MSE, we formulate the following optimization prob-

lem:
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minimize
𝑋𝑛

𝑐

𝑀𝑆𝐸

s.t. 𝑡𝑟((A𝑛
𝑐*)𝑇A𝑛

𝑐*) ≤ 𝑃𝑈𝐸, 1 ≤ 𝑛 ≤ 𝑁,

(4.12)

where 𝑃𝑈𝐸 is a fixed power dedicated for training [78]-[80]. Under the power

constraint of the MSE estimator, the optimal pilot can be characterized by the

following theorem.

The Lagrangian of (4.12) can be formed as follow

𝐿(A𝑛
𝑐* , 𝜇) = 𝑡𝑟[(D−1 + 𝛾(A𝑛

𝑐*)𝑇A𝑛
𝑐*)−1] + 𝜇(𝑡𝑟((A𝑛

𝑐*)𝑇A𝑛
𝑐*)− 𝑃𝑈𝐸), (4.13)

where 𝜇 is the Lagrange multiplier. Taking the derivative of (4.13) with respect

to A𝑛
𝑐* and using the chain rule, we have

𝜕𝐿(A𝑛
𝑐* , 𝜇)

𝜕(A𝑛
𝑐*)

=
𝜕𝑡𝑟[(D−1 + 𝛾(A𝑛

𝑐*)𝑇A𝑛
𝑐*)−1]

𝜕[(D−1 + 𝛾(A𝑛
𝑐*)𝑇A𝑛

𝑐*)]

×𝜕𝑡𝑟[D
−1 + 𝛾(A𝑛

𝑐*)𝑇A𝑛
𝑐*)]

𝜕A𝑛
𝑐*

+𝜇
𝜕𝑡𝑟((A𝑛

𝑐*)𝑇A𝑛
𝑐*)

𝜕(A𝑛
𝑐*)

− 𝜇 𝜕𝑃
𝑈𝐸

𝜕(A𝑛
𝑐*)
, (4.14)

= [−(D−1 + 𝛾(A𝑛
𝑐*)𝑇A𝑛

𝑐*)−2]

×[
𝜕𝑡𝑟(D−1)

𝜕(A𝑛
𝑐*)

+ 𝛾
𝜕𝑡𝑟[(A𝑛

𝑐*)𝑇A𝑛
𝑐* ]

𝜕(A𝑛
𝑐*)

]

+𝜇
𝜕𝑡𝑟((A𝑛

𝑐*)𝑇A𝑛
𝑐*)

𝜕(A𝑛
𝑐*)

. (4.15)

Adopting the following identity [81],

𝜕𝑡𝑟((Z)𝑇Z)

𝜕(Z)
= 2Z, (4.16)

one can rewrite (4.15) as follows:
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𝜕𝐿(A𝑛
𝑐* , 𝜇)

𝜕(A𝑛
𝑐*)

= 2[−(D−1 + 𝛾(A𝑛
𝑐*)𝑇A𝑛

𝑐*)−2]𝛾A𝑛
𝑐* + 2𝜇A𝑛

𝑐* . (4.17)

At the optimal point 𝜕𝐿(A𝑛
𝑐* ,𝜇)

𝜕(A𝑛
𝑐* )

= 0. With some simple manipulations, one can

write

(A𝑛
𝑐*)𝑇A𝑛

𝑐* = 𝛾−1(

√︂
𝛾

𝜇
I−D−1). (4.18)

Taking the derivative of (4.13) with respect to 𝜇 and equalling it to zero, we

have

𝑡𝑟
(︀
(A𝑛

𝑐*)𝑇A𝑛
𝑐*

)︀
= 𝑃𝑈𝐸. (4.19)

Applying trace operation to both sides of (4.18) and using (4.19), we have

𝑃𝑈𝐸 = 𝑡𝑟(𝛾−1(

√︂
𝛾

𝜇
I−D−1)). (4.20)

With some simple manipulations, one can arrive at

√︂
𝛾

𝜇
I = 𝛾(𝑡𝑟(D−1) + 𝑃𝑈𝐸)I. (4.21)

Substituting
√︁

𝛾
𝜇
I by the right hand side of (4.21) into (4.18), the optimal

measurement matrix should satisfy the following equation

(A𝑛
𝑐*)𝑇A𝑛

𝑐* = 𝛾−1(𝛾(𝑡𝑟(D−1) + 𝑃𝑈𝐸)I−D−1). (4.22)

Substituting (A𝑛
𝑐*)𝑇A𝑛

𝑐* by the right hand side of (4.22) into (4.10), we can

obtain the MSE of the proposed estimator in-terms of optimal training design.
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The optimal MSE expression for the proposed SBL can be given as

𝑀𝑆𝐸 = 𝑡𝑟{(D−1 + 𝛾(𝛾−1(𝛾(𝑡𝑟(D−1) + 𝑃𝑈𝐸)I−D−1))−1}. (4.23)

4.4 Achievable Uplink Rate Analysis

Reference (3.4), the base station processes the received signal vector by multiply-

ing it by the uplink maximal ratio combining (MRC) 𝑊𝐻
𝑐 , as follows

𝑤𝐻
𝑐 y𝑐*,𝑖 = 𝑤𝐻

𝑐

𝑁∑︁
𝑛=1

X𝑛
𝑐*Fg

′𝑛
𝑐*,𝑐*,𝑖 +𝑤𝐻

𝑐

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

X𝑛
𝑐Fg

′𝑛
𝑐*,𝑐,𝑖 +𝑤𝐻

𝑐 v𝑐*,𝑖. (4.24)

The achievable rate can be expressed as

𝑅 = 𝐸{𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)}, (4.25)

where 𝑆𝐼𝑁𝑅 is the signal to interference and noise ratio

𝑆𝐼𝑁𝑅 =
|𝑤𝐻

𝑐

∑︀𝑁
𝑛=1 Fg

′𝑛
𝑐*,𝑐*,𝑖|2

|𝑤𝐻
𝑐

∑︀𝐶
𝑐=1

∑︀𝑁
𝑛=1Fg

′𝑛
𝑐*,𝑐,𝑖|2 − |𝑤𝐻

𝑐

∑︀𝑁
𝑛=1Fg

′𝑛
𝑐*,𝑐*,𝑖|2 + ‖𝑤𝑐‖2

. (4.26)

4.5 CRB For SBL-Based Estimator

To quantify the best performance that can be achieved by the proposed algorithm,

in this section, we derive the CRB of the pattern-coupled SBL channel estimation

[82]-[84]. The CRB on the covariance of any estimator 𝜃̂ can be given as

𝐸{(𝜃̂ − 𝜃)(𝜃̂ − 𝜃)𝑇} ≥ (I + S)𝐽−1(𝜃)(I + S)𝑇 , (4.27)
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where 𝐽(𝜃) is the Fisher information matrix (FIM) that defined in Chapter 3,

and S is the bias gradient matrix defined by that can be given by

S = −I +
1

1 + (g′𝑛
𝑐*,𝑐*,𝑖)

𝑇Jg′𝑛
𝑐*,𝑐*,𝑖

g′𝑛
𝑐*,𝑐*,𝑖(g

′𝑛
𝑐*,𝑐*,𝑖)

𝐻J. (4.28)

Following the same procedures in section 3.4. The approximated Bayesian CRB

for the proposed SBL can be given as

𝐽(g′𝑛
𝑐*,𝑐*,𝑖) ≥ (

1

(𝛼𝑖, 𝛽𝛼𝑖+1, 𝛽𝛼𝑖−1)
+

A𝑛
𝑐*(A𝑛

𝑐*)𝑇

𝛾
)−1.

𝑖 = 1, ...,𝑀. (4.29)

4.6 Simulation Results

In this section, we conduct experiments to evaluate the performance of the pro-

posed algorithm and compare it to existing methods. The simulation parameters

used are the same of the previous chapter with the exception of that the scenario

is influenced by strong pilot contamination (𝜑𝑛
𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑛

𝑐*,𝑐,𝑖 = 0.7). The

simulation results are averaged over 1000 channel realizations.

Fig. 4-2 demonstrates the MSE performance comparison of LS with no pi-

lot contamination, SBL-based, thresholded-SBL, Bayesian compressed sensing

(BCS) channel estimation techniques along with the BCRB reference line. The

results show that the proposed SBL approach provide significant performance

enhancement over LS and BCS with respect to estimation accuracy as a result of

exploiting the correlation between the antennae and the block sparsity concept.

Fig. 4-3 shows the MSE performance comparison of SBL-based channel esti-

mation with different settings for 𝛽 = {0.1, 0.5, and 1} for 𝑀 = 200 antennae,

𝐿 = 128 taps and 𝐾 = 512 subcarriers, as indicated earlier in this chapter, 𝛽 is a
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Figure 4-2: Relative MSE performance comparison between SBL, Modified SBL,
BCS, and the LS versus SNR.
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Figure 4-3: Relative MSE of the Pattern-Coupled SBL for 𝛽 = {0.1, 0.5 and 1}.
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Figure 4-4: Relative MSE of the Pattern-Coupled SBL compared with SBL with
optimal pilot scheme for 𝑀 = 30, 100 and 250.

parameter quantifying the dependencies among channel neighbouring coefficients.

It can be observed that estimation accuracy is quite comparable to the values of

𝛽, as promised by the theory of pattern coupled SBL and that the proposed

method is not very sensitive to the choice of 𝛽. Thus, it is not required to be

either tracked using a little feedback overhead, or estimated using a direct reverse

link as the conventional MMSE required to obtain the second order statistics.

Fig. 4-4 shows the performance of the proposed techniques with an optimal

pilot design for {𝑀 = 10, 100 and 250}, 𝐿 = 20 taps and 𝐾 = 128 subcarri-

ers, compared with the conventional SBL-based estimator. The results showed

degradation in estimation error for the optimal pilot design based approaches

compared with the conventional SBL algorithm.
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Figure 4-5: Achievable Uplink Rate for R-LS,Pattern Coupled SBL and the per-
fect channel estimation versus SNR.

Finally, Fig. 4-5 shows the achievable uplink rate achieved by the MRC for

LS, SBL estimators compared with the perfect channel estimator. It can be seen

that the results demonstrate the previous results. Also it can be observed that

with SBL-based estimator we have achieved a comparable performance to the

perfect channel estimation. As compared to other receiver, i.e. zero forcing (ZF)

and the minimum mean square error (MMSE) receivers, the achievable uplink

rate are expected to be enhanced significantly by employing these receivers.

4.7 Conclusion

In this chapter, we proposed a SBL-based channel estimation algorithm for multi-

cell massive MIMO systems. The proposed technique jointly exploits prior knowl-
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edge on the channel statistic and antenna correlation to provide optimum per-

formance. The simulation results demonstrate that the SBL-based channel esti-

mation algorithm provides better performance over the conventional methods in

terms of MSE and the achievable uplink rate. Furthermore, the results demon-

strate that the estimation accuracy is enhanced by employing the optimal pilot

design sequence set.



Chapter 5

Optimal Pilot Design for Massive

MIMO

In this chapter, we consider a multi-cell Massive MIMO system adopting min-

imum mean square error (MMSE) estimators at the base stations. We derive

the mean square error (MSE) of the adopted MMSE estimator as a widely-used

criteria of accuracy for estimation. We, then, formulate an optimisation problem

to find optimal pilot signals that minimize the total derived MSE of the MMSE

estimators of all base stations in the network subject to a transmit power con-

straint at each user. The proposed formulation is non-convex with respect to the

pilot matrices. To overcome non-convexity, we, first, decompose the proposed

optimization problem into distributed subproblems at base stations, where each

base station in the network optimizes its own pilot signal, given the knowledge of

the pilot signals of other base stations. We then introduce a successive optimiza-

tion approach to transform each subproblem into a linear matrix inequality (LMI)

problem which is convex and can be effectively solved by available optimization

packages, e.g., [85].

79
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5.1 System Model

Consider a multi-cell massive MIMO system with 𝐶 cells operating in time divi-

sion duplexing (TDD) mode. Each cell comprises of 𝑀 antennae at the base sta-

tion and𝑁 single-antenna users. The propagation factor between the 𝑖-th antenna

of base station 𝑐* and user 𝑛 in cell 𝑐 is
√︀
𝜑𝑛
𝑐,𝑐*ℎ

𝑛
𝑐,𝑐*,𝑖, where 𝜑𝑛

𝑐,𝑐* is the large scale

fading coefficient modeling the path-loss and shadowing, while ℎ𝑛𝑐,𝑐*,𝑖 ∼ 𝒞𝒩 (0, 1)

is small-scale fading. Hereafter, unless otherwise stated, 𝑐 ∈ {1, 2, · · · , 𝐶},

𝑐* ∈ {1, 2, · · · , 𝐶}, 𝑖 ∈ {1, 2, · · · ,𝑀}, and 𝑛 ∈ {1, 2, · · · , 𝑁}.

In the pilot training phase, all users in each cell synchronously send their pilot

signals. Let x𝑛
𝑐 ∈ C𝜏×1 be the pilot signal used by user 𝑛 in cell 𝑐 and

‖x𝑛
𝑐 ‖2 ≤ 𝑃max,𝑐,∀𝑐, (5.1)

where 𝜏 is the length of the pilot signal, and 𝑃max,𝑐 is the maximum allocated

power level by each user in cell 𝑐 to its pilot signal. The received baseband

training signal y𝑐*,𝑖 ∈ C𝜏×1 at the 𝑖-th antenna element of the base station in

cell 𝑐*, denoted as base station 𝑐*, in the network can be expressed as

y𝑐*,𝑖 =
𝐶∑︁
𝑐=1

𝑁∑︁
𝑛=1

√︁
𝜑𝑛
𝑐,𝑐*ℎ

𝑛
𝑐,𝑐*,𝑖x

𝑛
𝑐 + v𝑐*,𝑖, (5.2)

where v𝑐*,𝑖 is Gaussian noise with v𝑐*,𝑖 ∼ 𝒞𝒩 (0, 𝜎2I𝜏 ). Let the received signals,

Gaussian noises, pilot signals by all antenna elements of base station 𝑐* and the

corresponding large scale channel coefficients be denoted as

Y𝑐* = [y𝑐*,1, y𝑐*,2, . . . ,y𝑐*,𝑀 ] ∈ C𝜏×𝑀 , (5.3)

V𝑐* = [v𝑐*,1, v𝑐*,2, . . . , v𝑐*,𝑀 ] ∈ C𝜏×𝑀 , (5.4)

X𝑐* = [x1
𝑐* , x

2
𝑐* , . . . ,x

𝑁
𝑐* ] ∈ C𝜏×𝑁 , (5.5)

D𝑐,𝑐* = diag{[𝜑1
𝑐,𝑐* , 𝜑

2
𝑐,𝑐* , . . . , 𝜑

𝑁
𝑐,𝑐* ]𝑇} ∈ C𝑁×𝑁 . (5.6)
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Also, let the small-scale fading channel coefficients of all 𝑁 users in cell 𝑐 as seen

by base station 𝑐* be expressed as

H𝑐,𝑐* =

⎡⎢⎢⎢⎣
ℎ1𝑐,𝑐*,1, . . . , ℎ1𝑐,𝑐*,𝑀

... . . . ,
...

ℎ𝑁𝑐,𝑐*,1 . . . , ℎ𝑁𝑐,𝑐*,𝑀

⎤⎥⎥⎥⎦ ∈ C𝑁×𝑀 . (5.7)

Then, using (5.3) − (5.6), one can formulate the received training signals by all

𝑀 antenna elements of base station 𝑐*, according

Y𝑐* = X𝑐*D
1
2
𝑐*,𝑐*H𝑐*,𝑐* +

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

X𝑐D
1
2
𝑐,𝑐*H𝑐,𝑐* + V𝑐* . (5.8)

The first term in right hand side of (5.8) involves desired channel coefficients

and the remaining terms indicate the effects of mutual interference and Gaussian

noise. The channel estimate ̂︀H𝑐*,𝑐* of the original channel H𝑐*,𝑐* is computed by

utilizing the MMSE estimation upon the observation of Y𝑐* is [86]:

̂︀H𝑐*,𝑐* = E[H𝑐*,𝑐*Y
𝐻
𝑐* ]

(︀
E[Y𝑐*Y

𝐻
𝑐* ]
)︀−1

Y𝑐* . (5.9)

Plugging (5.8) in (5.9) and after some mathematical manipulations, we obtain

̂︀H𝑐*,𝑐* = 𝑀D
1
2
𝑐*,𝑐*X

𝐻
𝑐*Ω

−1
𝑐* Y𝑐* , (5.10)

where

Ω𝑐* = 𝑀

𝐶∑︁
𝑐=1

X𝑐D𝑐,𝑐*X
𝐻
𝑐 +𝑀𝜎2I𝜏 . (5.11)

See appendix A.

From (5.10), the channel estimation quality depends on the pilot design and if

𝜏 < 𝐶𝑁 , it also suffers from pilot contamination. Let the channel estimation
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errors at base station 𝑐* be denoted as

Δ𝑐* = ̂︀H𝑐*,𝑐* −H𝑐*,𝑐* (5.12)

and the MSE be defined as

MSE𝑐* = E
[︀
‖Δ𝑐*‖2𝐹

]︀
= E

[︀
tr
(︀
Δ𝑐*Δ

𝐻
𝑐*

)︀]︀
. (5.13)

Then, using (5.8), (5.9), and (5.10) and after some mathematical manipulations,

one can rewrite MSE in (5.13) as:

𝑀tr
(︀
A−1 −A−1B(C−1 + DA−1B)−1DA−1

)︀
, (5.14)

where A−1 = I𝑁 , B = 𝑀D
1
2
𝑐*,𝑐*X

𝐻
𝑐* , D = X𝑐*D

1
2
𝑐*,𝑐* , and C−1 = 𝑀

∑︀𝐶
𝑐=1,𝑐 ̸=𝑐* X𝑐D𝑐,𝑐*X

𝐻
𝑐 +

𝑀𝜎2I𝜏 . By utilizing the Sherman-Morrison-Woodbury identity [52]

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

and defining MSE𝑐* , 𝑓𝑐* (X𝑐*), one can reformulate (5.13) as

𝑓𝑐* (X𝑐*) = 𝑀tr
(︂(︁

I𝑁 + D
1
2
𝑐*,𝑐*X

𝐻
𝑐*F

−1
𝑐* X𝑐*D

1
2
𝑐*,𝑐*

)︁−1
)︂
, (5.15)

where F𝑐* =
∑︀𝐶

𝑐=1,𝑐 ̸=𝑐* X𝑐D𝑐,𝑐*X
𝐻
𝑐 + 𝜎2I𝑁 . See appendix B.

5.2 Optimal Pilot Design

It can be observed from (5.15) that the performance of the MMSE estimation

algorithm depends on the pilot structure. Hence, in this section, we develop an

optimal pilot design to minimize the total channel estimation errors of all base

stations in the network subject to the transmit power constraints at individual
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users. To that end, we introduce the following optimization problem for the

network as

minimize
{X𝑐*}

𝐶∑︁
𝑐*=1

𝑓𝑐* (X𝑐*)

s.t. X𝐻
𝑐*X𝑐* ⪯ 𝑃max,𝑐*I𝑁 ,∀𝑐*,

(5.16)

where {X𝑐*} = {X1,X2, · · · ,X𝐶}. Problem (5.16) is non-convex due to its ob-

jective function. To tackle the problem, we first introduce an auxiliary variable

G𝑐* , denote {G𝑐*} = {G1, · · · ,G𝐶}, remove the constant 𝑀 , and then rewrite

(5.16) as

minimize
{X𝑐*},{G𝑐*}

𝐶∑︁
𝑐*=1

tr (G𝑐*)

s.t. X𝐻
𝑐*I

−1
𝜏 X𝑐* ⪯ 𝑃max,𝑐*I𝑁 , ∀𝑐*,(︁

I𝑁 + D
1
2
𝑐*,𝑐*X

𝐻
𝑐*F

−1
𝑐* X𝑐*D

1
2
𝑐*,𝑐*

)︁−1

⪯ G𝑐* , ∀𝑐*.

(5.17)

Adopting the Schur complement [87], one can reformulate problem (5.17)

equivalently as

minimize
{X𝑐*},{G𝑐*}

𝐶∑︁
𝑐*=1

tr (G𝑐*)

s.t.

⎡⎣𝑃max,𝑐*I𝑁 X𝐻
𝑐*

X𝑐* I𝜏

⎤⎦ ⪰ 0,∀𝑐*,

⎡⎣G𝑐* I𝑁

I𝑁 I𝑁 + D
1
2
𝑐*,𝑐*X

𝐻
𝑐*F

−1
𝑐* X𝑐*D

1
2
𝑐*,𝑐*

⎤⎦ ⪰ 0,∀𝑐*.

(5.18)

The second set of constraints in (5.18) is still non-convex due to the nonlin-

earity of the term D
1
2
𝑐*,𝑐*X

𝐻
𝑐*F

−1
𝑐* X𝑐*D

1
2
𝑐*,𝑐* with respect to optimization variable

X𝑐* , ∀𝑐*, i.e., the optimization variable is in quadratic forms and appears in both

numerator and denominator of the term. As a main contribution of this chapter,

we propose a distributed algorithm where every base station 𝑐* optimizes its own

pilot signals given the knowledge of the pilot signals of the other cells in F−1
𝑐* , as
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follows in the sequel:

minimize
X𝑐* ,G𝑐*

tr (G𝑐*)

s.t.

⎡⎣𝑃max,𝑐*I𝑁 X𝐻
𝑐*

X𝑐* I𝜏

⎤⎦ ⪰ 0,

⎡⎣G𝑐* I𝑁

I𝑁 I𝑁 + D
1
2
𝑐*,𝑐*X

𝐻
𝑐*F

−1
𝑐* X𝑐*D

1
2
𝑐*,𝑐*

⎤⎦ ⪰ 0.

(5.19)

Although (5.19) only considers X𝑐* ,G𝑐* as the optimization variables, its

second constraint is still not in an LMI form with respect to X𝑐* . To proceed,

we propose a successive optimization approach where, at the 𝑡-th iteration, base

station 𝑐* updates its pilot signals by solving the following problem:

minimize
X

(𝑡)
𝑐* ,G

(𝑡)
𝑐*

tr
(︁
G

(𝑡)
𝑐*

)︁

s.t.

⎡⎣𝑃max,𝑐*I𝑁 X
(𝑡),𝐻
𝑐*

X
(𝑡)
𝑐* I𝜏

⎤⎦ ⪰ 0,

⎡⎣G(𝑡)
𝑐* I𝑁

I𝑁 I𝑁 + D
1
2
𝑐*,𝑐*X

(𝑡),𝐻
𝑐* (F−1

𝑐* )(𝑡−1)X
(𝑡−1)
𝑐* D

1
2
𝑐*,𝑐*

⎤⎦ ⪰ 0,

(5.20)

where F−1
𝑐* from the previous iteration is

(F−1
𝑐* )(𝑡−1) =

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

X(𝑡−1)
𝑐 D𝑐,𝑐*X

(𝑡−1),𝐻
𝑐 + 𝜎2

𝑁I𝑁 , (5.21)

X
(𝑡−1)
𝑐* and X

(𝑡−1)
𝑐 are the optimal pilots of cells 𝑐* and 𝑐, respectively, which are

obtained from the (𝑡− 1)-th iteration. In order to make the second constraint in

(5.20) in LMI form with respect to both X
(𝑡)
𝑐* and G

(𝑡)
𝑐* , we have used the known

value of X
(𝑡−1)
𝑐* . Notice that at the stationary point attained after a sufficient
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number of iterations, the approximation

X
(𝑡)
𝑐* ≈ X

(𝑡−1)
𝑐* ,∀𝑐*. (5.22)

can be assured with any desired accuracy. Note that, still the matrix in the

second constraint of (5.20) is not Hermitian during the iterations, due to the

mismatch between X
(𝑡)
𝑐* and X

(𝑡−1)
𝑐* ,∀𝑐*. To guarantee a Hermitian matrix in the

second constraint of (5.20), we introduce a new variable A
(𝑡)
𝑐* , such that

2A
(𝑡)
𝑐* =D

1
2
𝑐*,𝑐*X

(𝑡),𝐻
𝑐* (F−1

𝑐* )(𝑡−1)X
(𝑡−1)
𝑐* D

1
2
𝑐*,𝑐*

+ D
1
2
𝑐*,𝑐*X

(𝑡−1),𝐻
𝑐* (F−1

𝑐* )(𝑡−1)X
(𝑡)
𝑐* D

1
2
𝑐*,𝑐* .

(5.23)

Finally, we reformulate (5.20) as

minimize
X

(𝑡)
𝑐* ,G

(𝑡)
𝑐* ,A

(𝑡)
𝑐*

tr
(︁
G

(𝑡)
𝑐*

)︁

s.t.

⎡⎣𝑃max,𝑐*I𝑁 X
(𝑡),𝐻
𝑐*

X
(𝑡)
𝑐* I𝜏

⎤⎦ ⪰ 0,

⎡⎣G(𝑡)
𝑐* I𝑁

I𝑁 I𝑁 + A
(𝑡)
𝑐*

⎤⎦ ⪰ 0,

constraint (5.23).

(5.24)

Problem (5.24) is now convex and can be efficiently solved by CVX [87]. The

procedure to obtain the optimal pilot signals for all 𝐶 cells in the network is

summarized in Algorithm 3.

5.3 Simulation Results

A multi-cell Massive MIMO system is considered for simulations with 𝐶 = 4,

𝑀 = 500, and 𝑁 = 10. All users are randomly distributed over the coverage
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Algorithm 3 Successive optimization approach for (5.17)

1: Inputs: D𝑐,𝑐* , 𝑃max,𝑐* , 𝜎2, stopping criteria 𝛿 > 0, initialize X
(0)
𝑐 , ∀𝑐, 𝑐*;

2: 𝑡 = 1;
3: Each cell 𝑐* calculates F

(𝑡−1)
𝑐* utilizing (5.21) and then solves (5.24) to attain

X
(𝑡)
𝑐* , ∀𝑐*;

4: Exchange X
(𝑡)
𝑐* with the other cells;

5:
∑︀𝐶

𝑐*=1 ‖X
(𝑡)
𝑐* −X

(𝑡−1)
𝑐* ‖𝐹 ≤ 𝛿

6: Go to step 10;
7:

∑︀𝐶
𝑐*=1 ‖X

(𝑡)
𝑐* −X

(𝑡−1)
𝑐* ‖𝐹 > 𝛿

8: 𝑡 = 𝑡+ 1;
9: Go to step 3;
10: Outputs: X⋆

𝑐* ← X
(𝑡)
𝑐* , ∀𝑐*.

area. However, the distance between any user 𝑛 of cell 𝑐 and base station 𝑐*,

denoted as 𝑑𝑛𝑐,𝑐* , is always satisfied 𝑑𝑛𝑐,𝑐* ≥ 0.035 km. The system utilizes 20 MHz

bandwidth related to the noise variance of −96 dBm and the noise figure of 5 dB.

The large-scale fading coefficient 𝜑𝑛
𝑐,𝑐* [dB] is modeled as

𝜑𝑛
𝑐,𝑐* = −148.1− 37.6 log10(𝑑

𝑛
𝑐,𝑐*) + 𝑧𝑛𝑐 , (5.25)

where 𝑧𝑛𝑐 is the shadow fading which follows a log-normal Gaussian distribution

with standard variation 7 dB. Monte-Carlo simulations are tackled over 200 dif-

ferent realizations of user locations. The orthogonal pilot design with an equal

power 200 mW assigned to each pilot symbol that is popularly used in many

prior works, e.g., [88], [89], is used as a benchmark. The power constraint for

pilot signal is set to be 𝑃max,𝑐 = 200𝜏 mW, ∀𝑐.

Fig. 5-1 shows the cumulative distribution function (CDF) of the base station-

user antenna link which is defined by 𝑓𝑐*(X𝑐*)/(𝑀𝑁). It is clear from the figure

that the channel estimation accuracy of the proposed approach is significantly im-

proved compared to that of the benchmark. This confirms the effectiveness of our

optimal pilot design in combating pilot contaminations. The results also indicate

that the performance gap between the proposed approach and the benchmark in-
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Figure 5-1: The CDFs of the MMSE per user-base station antenna link for the
proposed and benchmark approaches in [88] and [89].

creases as the pilot length increases. This is due to a fact that increasing the pilot

length gives more degrees of freedom to the proposed approach for optimizing its

performances.

Fig. (5-2) (a) displays the CDFs of the power allocated to each pilot symbol

with different pilot lengths. It can be seen from the figure that for most of the

cases, e.g., around 80 % for 𝜏 = 6 and 70 % for 𝜏 = 10 and 𝜏 = 16, the proposed

approach spends less power for each symbol than the benchmark does, i.e., less

than 200 mW per symbol.

Fig. (5-2) (b) illustrates the average power for each pilot symbol against the

length of pilot signals. When 𝜏 < 𝑁 = 10, the proposed approach consumes

less power than the benchmark does. In this case, the number of pilot signals

is less than the number of users in each cell. Consequently, the system suffers

from both intra-cell and inter-cell interference. In such hostile situations, the

proposed approach can still effectively handle the pilot contaminations which

results in higher accuracy, i.e., as seen in Fig. 5-1, with less power consumption
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Figure 5-2: (𝑎) The CDFs of the power allocated for each pilot symbol of the
proposed approach with different pilot lengths; (𝑏) The average power allocated
for each pilot symbol of the proposed approach versus the pilot length.

in comparison with the benchmark. Interestingly, when 𝜏 ≥ 𝑁 , the optimal

transmit power spent on each symbol turns out to be 200 mW and to be constant

irrespective to the value of 𝜏 , which can also be observed from the CDF shown

in Fig. 5-2 (a).

Finally, Fig.(5.3) reveals the fast convergent speed of the proposed approach,

i.e., within less than 20 iterations.

5.4 Conclusion

In this chapter, we tackle the pilot contamination problem in multi-cell Massive

MIMO systems. We introduce a novel optimal pilot design approach that mini-

mizes the total mean square errors of the minimum mean square error estimators

of all base stations subject to the transmit power constraints of individual users

in the network. First, we decompose the original non-convex problem into dis-
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Figure 5-3: The convergence of MMSE per user-base station antenna link versus
iteration index for the proposed approach.

tributed optimization sub-problems at individual base stations, where each base

station can optimize its own pilot signals given the knowledge of pilot signals

from the remaining base stations. We then introduce a successive optimiza-

tion approach to transform each optimization sub-problem into a linear matrix

inequality (LMI) form, which is convex and can be solved by available optimiza-

tion packages. Simulation results confirm the fast convergence of the proposed

approach. The results also indicate that the proposed approach prevails a bench-

mark scheme in terms of providing higher accuracy.



Chapter 6

Channel Model for Massive MIMO

System

In this chapter, we investigate the performance analysis of a multi-cell massive

multiple-input multiple-output (MIMO) system that applies a conventional chan-

nel estimation technique, namely the minimum mean square error (MMSE) in

correlated Rician and correlated Nakagami-m fading channels. Based on this

analysis, we found that, by increasing the line-of-sight (LOS) component the

channel estimation accuracy is enhanced. Also, we found that the pilot contam-

ination can be eliminated with the usage of very large number of antennae and

applying large values of the K-Rice fading factor for the Rician fading channel

model. Similarly, the pilot contamination will be eliminated by using large values

of antennae and applying large values of the m-shaping factor for the Nakagami-

m fading channel. The remainder of this chapter is organized as follows. The

multi-cell massive MIMO system model is presented in Section 6.1. The analysis

of the achievable uplink spectral efficiency and the pilot contamination analysis

are addressed in Section 6.2 and 6.3, respectively. Simulation results are provided

in Section 6.4, and the final conclusions are drawn in Section 6.5.

90
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6.1 System Model

Following the system model in [90], we consider a multi-cell massive MIMO with

𝐿 cells. Each cell consists of M antennae at the base station, 𝑁 single antennae

users, and the system operates in the time-division duplex (TDD) mode to exploit

the channel reciprocity. Assuming a block fading structure, each block begins with

a uplink pilot, followed by downlink data transmission. The system then toggles

to the DL and begins with the uplink data transmission; the coherence period

ends the downlink data transmission. The uplink channel is used for pilot-based

channel estimation, and the received signal at the base station is expressed as

y =
√
𝑝𝑢Hx + n, (6.1)

where x is a pilot signal that is used for channel estimation, and the term n is an

ergodic process that consists of independent receiver noise n𝑛𝑜𝑖𝑠𝑒 ∼ 𝒞𝒩 (0, 𝜁2𝐵𝑆𝐼)

as well as potential interference n𝑖𝑛𝑡𝑒𝑟𝑓 from other simultaneous transmissions.

We assume that n𝑖𝑛𝑡𝑒𝑟𝑓 has zero mean and covariance matrix S during pilot

transmission, where 𝑆 = 𝐸[n𝑖𝑛𝑡𝑒𝑟𝑓n
𝐻
𝑖𝑛𝑡𝑒𝑟𝑓 ], H is the block of fading of the fast

fading matrix between the base station and the user equipment and the average

power is 𝑝𝑢 = 𝐸[|x|2] [90]. The fast fading matrix H is modelled as:

∙ Correlated Rician fading channel, so H𝑅𝑖𝑐𝑒 can be written as [91]:

H𝑅𝑖𝑐𝑒 = [𝐾(𝐾 + 1)−1]1/2 + H[(𝐾 + 1)−1]1/2 (6.2)

where 𝐾 is the Rice factor, which represents the ratio of the power of the

deterministic component to the power of the fading component [92].

∙ Correlated Nakagami-m fading channel, thus H𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖−𝑚 can be given as

[93]

H𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖−𝑚 = H𝑒1−𝑚 + H𝑅𝑖𝑐𝑒(1− 𝑒1−𝑚) (6.3)
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where 𝑚 is the shaping factor of the Nakagami-m fading that describes the

fading degree of the propagation field due to the scattering and multipath

interference processes [93].

6.2 Uplink MMSE Channel Estimation

The mean square error (MSE) of the MMSE estimator will be derived in this

section. The appropriate relationship of the MMSE estimator for the Rician

fading channel that minimises the estimation error of the channel matrix h can

be given as in [94] and [95]

Ĥ = 𝑀 + (y −𝑀x)Z, (6.4)

where Z values are the complex weights chosen to minimise the MSE between the

true value of the channel and the estimated channel, and 𝑀 is the mean value of

the channel, and can be given as in [94]

𝑀 =

√︂
𝐾

𝐾 + 1
. (6.5)

The MSE of the MMSE estimate of H can be expressed as

𝑀𝑆𝐸 =
⃦⃦⃦
H− Ĥ

⃦⃦⃦2

𝐹
(6.6)

= ‖H−𝑀 − (y −𝑀x)‖2𝐹 , (6.7)

𝑀𝑆𝐸 = 𝑡𝑟[𝐸{(H−𝑀 − (y −𝑀x)Z)𝐻(H−𝑀 − (y −𝑀x)Z)}], (6.8)

Considering:

𝐸[yyℎ] = 𝑝𝑢R + S + 𝜁2𝐵𝑆I, (6.9)
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Thus, the MMSE estimator can be achieved by differentiating (6.8) with respect

to Z and equating to zero, and the result can be given as

Z = x𝐻R(𝑝𝑢R + S + 𝜁2𝐵𝑆I)
−1
. (6.10)

Finally, the estimated channel can be expressed as

Ĥ = 𝑀 + (y −𝑀x)x𝐻R(
√
𝑝𝑢R + S + 𝜁2𝐵𝑆I)

−1
. (6.11)

6.3 Achievable Spectral Efficiency

Reference the system model in section 6.1, the received vector y ∈ C𝑀×1 at 𝑚-th

antenna at the BS can be expressed as

y =
√
𝑝𝑢H𝑛x𝑛 +

√
𝑝𝑢

𝐿∑︁
𝑙=1,𝑙 ̸=𝑛

H𝑙x𝑙 + n, (6.12)

where H𝑛 and x𝑛 are the 𝑛-th elements of H and x, respectively.

The base station processes its received signal vector by multiplying it by the

uplink linear MMSE receiver matrix A, as follows:

r = A𝐻y. (6.13)

The 𝑛-th element of r can be given as

r =
√
𝑝𝑢a

𝐻
𝑛 H𝑛x𝑛 +

√
𝑝𝑢

𝐿∑︁
𝑙=1,𝑙 ̸=𝑛

a𝐻
𝑛 H𝑙x𝑙 + a𝐻

𝑛 n, (6.14)

where a𝑛 is the 𝑛-th column of A. The achievable rate can be expressed as

[96]:
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Figure 6-1: The MSE of the MMSE channel estimator versus the average SNR
for various Rician K-factors.

𝐶 = 𝐸{log2(1 + 𝑆𝐼𝑁𝑅)} (6.15)

where 𝑆𝐼𝑁𝑅 is the signal to interference and noise ratio that can be given as

𝑆𝐼𝑁𝑅 =
𝑝𝑢|𝐸{a𝐻

𝑛 H𝑛}|2

𝑝𝑢
∑︀𝐿

𝑙=1𝐸{|a𝐻
𝑛 H𝑛|2} − 𝑝𝑢|𝐸{a𝐻

𝑛 H𝑛}|2 + ‖a𝑛‖
(6.16)
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Figure 6-2: The achievable uplink spectral efficiency of the multi-cell multi-user
massive MIMO in correlated Rayleigh fading versus the results reproduced from
[90].

6.4 Numerical Results

In this section, the MSE results over correlated Rician fading channels are pro-

vided. The relative MSE is to be normalised with the channel covariance matrix,

and can be written as

𝑀𝑆𝐸 =

⃦⃦⃦
H− Ĥ

⃦⃦⃦2

𝐹

𝑡𝑟(R)
(6.17)

The channel covariance matrix R is generated by the exponential correlation

model [97]. The system model considers the effect of large scale fading in terms

of path losses and the shadowing effect of the LTE-system model, as in the 3GPP
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Figure 6-3: The achievable uplink spectral efficiency of multi-cell multi-user mas-
sive MIMO in correlated Nakagami-m fading versus the results reproduced from
[90].

propagation model in [98]. We assume the number of users is 10, the number

of base station antennae is 100 and the correlation factor is 0.7. In Fig.6-1, the

MSE versus the signal-to-noise ratio (SNR) in dB in the presence of the pilot

contamination for K-Rice factor = 1,10 and 100 is plotted, and it can be clearly

observed that the estimation accuracy of the MMSE is enhanced as the line-of-

sight (LOS) component increases via increasing the values of K-Rice fading factor.

Fig.6-2 illustrates the achievable uplink spectral efficiency of a multi-cell massive

MIMO for both the scenarios of unique and reused pilots in highly correlated

Rayleigh fading with a correlation factor of 0.9 versus the results reproduced

form [90]. It can be seen the achievable spectral efficiency is dropped by the

effect of high correlation.
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Figure 6-4: The achievable uplink spectral efficiency of multi-cell multi-user mas-
sive MIMO over correlated Rician fading versus the K-Rice fading factor for the
unique pilot and reused pilot scenarios.

Fig. 6-3 illustrates the achievable uplink spectral efficiency of the multi-

cell massive MIMO for both scenarios of unique and reused pilots in correlated

Nakagami-m fading with a correlation factor of 0.9 and an m-shaping factor of

about 200, versus the results reproduced from [90]. It can be seen that the effect

of the correlation can be reduced with a high value of m-shaping factor. Fig. 6-4

and Fig. 6-5 illustrate the achievable uplink spectral efficiency of the massive

MIMO versus the K-Rice factor and the m-shaping factor, respectively, it can

clearly be observed that the effect of pilot contamination can be eliminated.
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Figure 6-5: The achievable uplink spectral efficiency of the multi-cell multi-user
massive MIMO over correlated Rician fading versus the m-shaping factor for the
unique pilot and reused pilot scenarios.

6.5 Conclusion

In this chapter, the performance analysis of a massive MIMO in a multi-cell

scenario over correlated Rician fading and correlated Nakagami-m fading channel

models have been investigated. It can be found that, as the values of the K-Rice

factor increase, the estimation accuracy in terms of the MSE of the MMSE is

enhanced. Furthermore, based on the achievable uplink spectral efficiency results,

the pilot contamination problem can be eliminated when applying large values

for the K-Rice factor and using a large number of antennae. The same sort of

results of the elimination of the pilot contamination can be achieved for correlated

Nakagami-m fading when employing a very large number of antennae and large
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values for the m-shaping factor. In addition, it can be observed that, for very

large values of the K-Rice factor or the m-shaping factor of the Nakagami-m, the

achievable uplink spectral efficiency approaches a constant value. The results may

assist the system designer to determine how the system and channel parameters

affect the reliability of the achievable spectral efficiency and MSE of massive

MIMO systems. The theoretical simulation and closed form approximation for the

MSE and the achievable rate for the correlated Rician fading and the correlated

Nakagami-m fading is left for future research and as an extension to the work in

this research.



Chapter 7

DFT-Based Channel Estimation

Techniques

In this chapter, the pilot contamination problem of massive MIMO systems is ad-

dressed using three modified DFT-based channel estimation approaches, namely,

the iterative DFT, the DFT-based Most Significant Taps Approach (DMSTA)

and the joint DFT with whitening rotation (WR) semi blind estimation.

In DFT-based approach, the channel frequency response (CFR) is first es-

timated by applying the conventional channel estimation i.e. linear minimum

mean-square error (LMMSE) algorithm in the frequency domain. Then, the

IDFT is applied to obtain the channel impulse response (CIR) in time domain

[99], [100]. Thereafter, a truncation of the CIR is performed to improve the es-

timation accuracy in the time domain. Finally, DFT is applied to the truncated

CIR to obtain the estimated CFR [76], [77]. In iterative DFT, the procedure

in DFT estimation described previously is executed several times to address the

pilot contamination problem. While in DMSTA, more CIR truncation will be ap-

plied based on threshold value to select the taps with the most significant power

[99], [101] and [102].

As explained in the previous chapters, pilot based estimation for massive

100
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MIMO systems suffers from pilot contamination, while the blind based estimation

suffers from high computationally complexity. Thus, in the last part of this

chapter, we propose a channel estimation scheme that employ a limited number of

pilots to address the pilot contamination problem and to alleviate the complexity

of the blind method. Such a scheme is known as a semi-blind, since it employs

both pilot and blind information [6]. The WR technique consists of two steps:

1) estimation of the whitening matrix using information data; and 2) estimation

of the unitary matrix using pilots [67]. We combine the DFT-based channel

estimator presented in the previous section with the WR technique. The results

show that the proposed scheme provides better performance compared to the WR

based and the cramer-rao bound (CRB) reference line.

The remainder of this chapter is organised as follows. The massive MIMO

system model is described in Section 7.1. The conventional-DFT based estimator

is presented in Section 7.2. The iterative DFT-based channel estimation is intro-

duced in Section 7.3. The DMSTA-Based is presnsted in section 7.4. WR-Based

semi-blind estimator is addressed in Section 7.5. Numerical results are provided

in Section 7.6. Finally, conclusions are drawn in Section 7.7.

7.1 Massive MIMO System Model

The system model considered in this chapter is the same as the one in Chapter

3. Thus reference (3.1), the estimated channel using the conventional LMMSE

estimator that completed entirely in the frequency domain based upon the ob-

servation of 𝑌𝑐*,𝑖[𝑘] can be expressed as

ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝑘] = 𝐸[ℎ𝑛𝑐*,𝑐*,𝑖[𝑘](𝑦𝑐*,𝑖[𝑘])𝐻 ](𝐸[𝑦𝑐*,𝑖[𝑘]

(𝑦𝑐*,𝑖[𝑘])𝐻 ])−1𝑦𝑐*,𝑖[𝑘], (7.1)
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ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝑘] = 𝐸[ℎ𝑛𝑐*,𝑐*,𝑖[𝑘](

𝑁∑︁
𝑛=1

ℎ𝑛𝑐*,𝑐*,𝑖[𝑘]𝑥𝑛𝑐* [𝑘]+

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

ℎ𝑛𝑐*,𝑐,𝑖[𝑘]𝑥𝑛𝑐 [𝑘] + 𝑣𝑐*,𝑖[𝑘])𝐻 ]

𝐸[(
𝑁∑︁

𝑛=1

ℎ𝑛𝑐*,𝑐*,𝑖[𝑘]𝑥𝑛𝑐* [𝑘] +
𝐶∑︁

𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

ℎ𝑛𝑐*,𝑐,𝑖[𝑘]

𝑥𝑛𝑐 [𝑘] + 𝑣𝑐*,𝑖[𝑘])(
𝑁∑︁

𝑛=1

ℎ𝑛𝑐*,𝑐*,𝑖[𝑘]𝑥𝑛𝑐* [𝑘]+

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

𝑁∑︁
𝑛=1

ℎ𝑛𝑐*,𝑐,𝑖[𝑘]𝑥𝑛𝑐 [𝑘] + 𝑣𝑐*,𝑖[𝑘])𝐻 ])−1𝑦𝑐*,𝑖[𝑘]. (7.2)

Assuming that ℎ𝑛𝑐*,𝑐*,𝑖[𝑘] consists of independent, complex Gaussian compo-

nents with zero mean and unit variance, then 𝐸{ℎ𝑛𝑐*,𝑐*,𝑖[𝑘](ℎ𝑛𝑐*,𝑐*,𝑖[𝑘])𝐻} = 𝐼.

Hence (7.3) can expressed as

ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝑘] =

𝑁∑︁
𝑛=1

(𝑥𝑛𝑐* [𝑘])𝐻 [
𝑁∑︁

𝑛=1

𝑥𝑛𝑐* [𝑘](𝑥𝑛𝑐* [𝑘])𝐻 +
𝐶∑︁
𝑐=1

𝑁∑︁
𝑛=1

𝑥𝑛𝑐 [𝑘](𝑥𝑛𝑐 [𝑘])𝐻 + 𝜎2
𝑣𝐼⏟  ⏞  

=𝜉

]−1

𝑦𝑐*,𝑖[𝑘].

(7.3)

7.2 DFT-Based Channel Estimator

To improve the LMMSE estimation accuracy, the DFT-based channel estimation

algorithm has been proposed to reduce the noise and interference components in

the time domain. The LMMSE estimated sample of CIR can be expressed as

ℎ𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝜔] = 𝐼𝐷𝐹𝑇𝑘{ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸

𝑐*,𝑐*,𝑖 [𝑘]}, (7.4)
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Figure 7-1: DFT-based channel estimation [99].

for 1 ≤ 𝑘 ≤ 𝐾, where 𝐼𝐷𝐹𝑇𝑘{} indicates 𝐾-point IDFT and 𝜔 is the time

domain sample index. As the estimated CIR from the LMMSE has most of

its power concentrated in a few initial samples, the CIR is typically limited to

the number of the channel taps 𝐿, which is much smaller than the number of

subcarriers. Hence, (7.5) can be expressed as:

ℎ̂
𝑛,𝐼𝐷𝐹𝑇

𝑐*,𝑐*,𝑖 [𝜔] =

⎧⎪⎨⎪⎩ℎ
𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝜔], 0 ≤ 𝑙 ≤ 𝐿

0, 𝑂𝑡ℎ𝑒𝑟𝑠

. (7.5)

In doing so, more noise and interference are cancelled, and the intended chan-

nel information is retained. Next, the DFT operation is conducted to recover the

channel responses into the frequency domain, as follow:

ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑘] = 𝐷𝐹𝑇𝑘{ℎ̂

𝑛,𝐼𝐷𝐹𝑇

𝑐*,𝑐*,𝑖 [𝜔]}. (7.6)

From what has been described earlier, it is clear that compared with LMMSE,

the DFT based channel estimation method makes use of IDFT/DFT to suppress
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noise and interference in the time domain [20], as shown in the basic block diagram

of the DFT-based estimation in Fig. 7-1 (for notational simplicity in Fig. 7-1,

we refer to ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝑘], ℎ̂𝑛,𝐼𝐷𝐹𝑇

𝑐*,𝑐*,𝑖 [𝑤] and ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑤] as 𝐻𝑙𝑚𝑚𝑠𝑒(𝑘), ℎ𝐼𝐷𝐹𝑇 (𝐿) and

𝐻𝐷𝐹𝑇 (𝑘), respectively).

We now derive an expression for the approximated ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑘], by taking the

IFFT and FFT to the CFR of the LMMSE estimated channel multiplied by the

rectangular function that represent the limitation of the CIR of the DFT-based

estimator definition that can be written as follow

ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑘] = ℱ{𝑅𝑒𝑐𝑡[𝜔]ℱ−1{ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸

𝑐*,𝑐*,𝑖 [𝑘]}}, (7.7)

where ℱ/ℱ−1 stands for the IDFT/DFT operations, respectively, and 𝑅𝑒𝑐𝑡[𝜔]

can be given as:

𝑅𝑒𝑐𝑡[𝜔] =

⎧⎪⎨⎪⎩1, 𝜔 < 𝐿

0, 𝜔 ≥ 𝐿

,

ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑘] = {{𝑅𝑒𝑐𝑡[𝜔]}~ ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸

𝑐*,𝑐*,𝑖 [𝑘], (7.8)

ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 [𝑘] = 𝜓(𝑘) ~ ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸

𝑐*,𝑐*,𝑖 [𝑘], (7.9)

where 𝜓(𝑘) can be given as

𝜓(𝑘) = 1√
𝐿𝐾
𝑒

−𝑗𝜋(𝐿−1)
𝐾

𝑆𝑖𝑛𝑐(𝜋𝑘𝐿
𝐾

).

7.3 Iterative DFT-Based Channel Estimation

To address the pilot contamination problem, we proposed an iterative algorithm

for a DFT-based estimator for a massive MIMO-OFDM system. Accurate channel

estimation can be obtained by applying algorithm 4 [102], [103].
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Algorithm 4 Iterative-based DFT Channel Estimation
1: Inputs: Number of the channel taps 𝐿, Threshold value 𝛿.
2: Perform the LMMSE estimation to obtain the ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸

𝑐*,𝑐*,𝑖 [𝑘].
3: 𝑝 = 0
4: Perform the IFFT to transform the CFR to time domain, as described in
section III.
5: Truncate the CIR for the time delay 𝐿− 1.
6: Perform the DFT-based estimator to obtain ℎ̂𝑛,𝐷𝐹𝑇,𝑝

𝑐*,𝑐*,𝑖 [𝑘].
7: Iterative Procedure:
8: If 𝛿 ≤ 𝑚𝑎𝑥|ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸,𝑝

𝑐*,𝑐*,𝑖 [𝑘]− ℎ̂𝑛,𝐿𝑀𝑀𝑆𝐸
𝑐*,𝑐*,𝑖 [𝑘]|, then 𝑝 = 𝑝+ 1 and Repeat: 4 to 6.

9: Else if:
10: Output: Return the estimated channel ℎ̂𝑛,𝐷𝐹𝑇,𝑝+1

𝑐*,𝑐*,𝑖 [𝑘]

7.4 DMSTA-Based Approach

Practically, the CIR contains many taps with no significant energy, by neglecting

those taps, the noise and interference through pilot contamination will be elim-

inated and that can improve the channel estimation performance significantly.

In this section, we will use thresholding approach by retaining the channel taps

whose energy is above a threshold value 𝜂 and set the other taps to zero, while

the suitable value of 𝜂 will be determined based on the facts mentioned earlier in

this chapter, that most channel taps will concentrated on the lower region in time

domain while the noise and pilot contamination components will be spread over

the CIR. So, by estimating the power of the noise and interference by averaging

the samples on the noise and interference region [104]-[106], the threshold value

can be given as follows

𝜂 = 𝜁𝛼. (7.10)

where 𝜁 can be given as

𝜁 =
1

𝐿

𝐾∑︁
𝑘=𝐿

|ℎ̂𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 |2. (7.11)
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Figure 7-2: DMSTA-based channel estimation [99].

and 𝛼 is a scaling factor that can be adjusted as noise margin.

So, the most significant taps block will detect the significant channel taps

[104]-[107], as follows:

ℎ̂𝑛,𝑇𝑐*,𝑐*,𝑖 =

⎧⎪⎨⎪⎩ℎ̂
𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 , |ℎ̂

𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 | > 𝜂

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (7.12)

Therefore, the DMSTA-based channel estimation algorithm can be expressed

in the frequency domain as

ℎ̂𝑛,𝐷𝑀𝑆𝑇𝐴
𝑐*,𝑐*,𝑖 = 𝐷𝐹𝑇{ℎ̂𝑛,𝑇𝑐*,𝑐*,𝑖} (7.13)

More elaborations can be found in Fig. 7-2.
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7.5 WR-Based Semi-Blind Channel Estimation Al-

gorithm

Based on the WR algorithm that proposed and analysed in [67], [110]-[112], the

channel matrix H can be decomposed as

𝐻 =𝒲Q𝐻 , (7.14)

where 𝒲 is a whitening matrix and Q is a unitary rotation matrix.

By performing the singular value decomposition (SVD) to the 𝐻 , we can

obtain

𝐻 = U𝑊Ξ𝑊V𝐻
𝑊 , (7.15)

So, one possible solution of 𝒲 and Q𝐻 can be 𝑈𝑊Ξ𝑊 and V𝑊 , respectively.

Now, the concern is how to estimate the whitening matrix𝒲 and rotation matrix

Q. The whitening matrix can be estimated blindly from using the second order

statistic of the received data. Thus, we can assume that the whitening matrix is

perfectly known at the base station.

The unitary matrix 𝑄 can be estimated from the pilot symbol sequence 𝑋𝑐*

by minimizing the following optimization problem [76], [110]-[112].

minimize
{Q}

‖𝑌 𝑐* −𝒲𝑄𝐻𝑋𝑐*‖2, (7.16)

s.t. 𝑄𝐻𝑄 = 𝐼𝑁 (7.17)

By letting

𝑀 =𝒲𝐻𝑌 𝑐*𝑋
𝐻
𝑐* , (7.18)
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the rotation matrix 𝑄 can be calculated by

𝑄̂ = 𝑉 𝑄𝑈
𝐻
𝑄 , (7.19)

where 𝑈𝑄 and 𝑉 𝑄 are obtained from an SVD of M as

𝑀 = 𝑈𝑄Ξ𝑄𝑉
𝐻
𝑄 . (7.20)

By estimating 𝒲 and 𝑄 matrices, the channel matrix 𝐻 can be given from

(8.5) [76], [110]-[112].

7.6 Numerical Results

In this section, various computer simulations are carried out to evaluate the

performance of the LMMSE, DFT-based and iterative-DFT estimators. We as-

sumed that 𝑁 = 20 users, 𝑀 = 100 antennae and the system under the influence

of strong pilot contamination i.e. 𝜑𝑐*,𝑐*,𝑖 = 1 and 𝜑𝑐*,𝑐*,𝑖 = 0.7. The relative MSE

can be written as

𝑀𝑆𝐸 =
𝐸{||ℎ𝑛,𝐷𝐹𝑇

𝑐*,𝑐*,𝑖 − ℎ̂
𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 ‖2𝐹}

𝐸{||ℎ𝑛,𝐷𝐹𝑇
𝑐*,𝑐*,𝑖 ‖2𝐹}

. (7.21)

Fig. 7-3 shows the MSE performance of the DFT-based channel estimation

with different values of 𝐾 = {256, 512 and 1024}, 𝐿 = 128 taps, so the com-

pression ratio (CR), i.e. L/K is to be 𝐶𝑅 = {0.5, 0.25 and 0.125}. The results

indicate that the performance of the conventional DFT-based estimator is en-

hanced when decreasing the number of the CR, as a result of eliminating more

components of noise and interference.
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Figure 7-3: The MSE of the DFT-based channel estimation versus the SNR for
the number of path is 128 and for different values of {𝐾 = 256, 512 and 1024} so
the compression ratio (CR) (i.e. L/K) is to be 𝐶𝑅 = {0.5, 0.25 and 0.125}.

Fig. 7-4 demonstrates the MSE performance of the conventional LMMSE,

DFT, the modified DFT-based estimator in [107], and the iterative DFT-based

channel estimation with one, two and three iterations. The results obviously show

the iterative DFT estimators outperforms the other estimators.

Fig. 7-5 demonstrates the MSE performance of the conventional LMMSE,

DFT, DMSTA, the modified DFT-based estimator in [107]. Obviously, it can be

seen that the DMSTA provide better estimation performance compared to other

estimators.

Fig. 7-6 and Fig. 7-7 shows the uplink achievable rate of the matched re-

ceiver combining (MRC) for the iterative DFT-based (2-5 iterations) and DM-

STA, respectively. The performance of the proposed techniques is compared with
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Figure 7-4: The MSE comparison of LMMSE, DFT and iterative-DFT-based
estimators as a function of SNR.

the LMMSE with pilot contamination, conventional DFT-based,and the exact

LMMSE (LMMSE with no noise and pilot contamination). It can be seen that

the iterative DFT-based estimators and DMSTA performed closed to the exact

LMMSE estimator with increasing the iterations. This demonstrates a significant

improvement in addressing the pilot contamination problem.

From the results in Fig. 7-8, the MSE has been plotted versus SNR in the

range of 0dB to 35dB for the LMMSE, WR, DFT and the joint DFT and WR

for (𝐿=10, 50 and 100, respectively). The CRB of the semi-blind scheme is also

plotted as a reference [112]. It can be observed that the performance of the WR

semi-blind is better than that of the conventional LMMSE based estimator. Also,

it can be found that the joint DFT and WR based channel estimation provides

enhanced performance compared to WR, and its performance is closer to the CRB
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Figure 7-5: MSE of the conventional LMMSE, DFT and DMSTA and the modi-
fied DFT-based in [84] versus SNR.

than the conventional WR algorithm. Also, it can be seen that the estimation

accuracy of the joint DFT-based and WR approaches can progressively improve

toward the CRB with decreasing values of number of the paths.

Fig. 7-9 shows the uplink achievable rate for LMMSE with no pilot contam-

ination, joint DFT and WR with 𝐿=100 under the effect of pilot contamination

and the perfect channel estimation scenarios. It can be seen that the performance

of the proposed estimator of the joint DFT and WR has closed performance to

the perfect channel estimation and better performance than the LMMSE with no

pilot contamination which demonstrate a significant improvement in estimation

accuracy and addressing the pilot contamination problem.
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Figure 7-6: Uplink achievable rate for LMMSE with no pilot contamination,
conventional DFT, Iterative DFT and LMMSE under the effect of strong pilot
contamination versus SNR.

7.7 Conclusion

In this chapter, we propose three modified DFT-based channel estimation tech-

niques. In the first part of the chapter, the proposed estimators tackled the pilot

contamination problem by applying the iterative DFT and the MST approaches.

The simulation results showed that the proposed technique provides much better

performance compared to the conventional methods in terms of addressing the

pilot contamination problem. Furthermore, the estimation performance of the

DFT-based based estimator can be enhanced by increasing the number of sub-

carriers. In the last part of the chapter, We enhanced the DFT estimation by

combining DFT with WR. Simulation results demonstrated improved estimation
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Figure 7-7: Uplink achievable rate for LMMSE with no pilot contamination,
conventional DFT, DMSTA and LMMSE under the effect of strong pilot con-
tamination versus SNR.

accuracy performance and significant addressing to the pilot contamination prob-

lem of the combined technique compared to the classical WR, the LMMSE and

the reference CRB. In addition, it can be concluded that the estimation accuracy

of the combined techniques can also be improved by decreasing the values of the

number of the paths.
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Chapter 8

Conclusions and Future Works

In this chapter, the main conclusions of the works in this thesis are presented.

Some interesting future research directions are also explored in Section 8.2.

8.1 Summary of Results and Contributions

This thesis dealt with the pilot contamination reduction/elimination techniques

for multi-user multi-cell massive multiple input multiple output (MIMO) systems.

Several methods have been proposed based on different approaches i.e. Bayesian

learning, semi-blind channel estimation, time domain channel estimation, optimal

pilot design and the performance of pilot contamination under the effect of Rician

and Nakagami-m fading channel models. The main contributions of the thesis

are summarised below with concluding remarks.

In Chapter 3, we proposed the Bayesian compressed sensing (BCS) technique

as a channel estimation algorithm to overcome the compressed sensing (CS) lim-

itation. The BCS exploits the prior knowledge of the channel sparsity for better

estimation accuracy. The pilot contamination problem addressed by employing

fewer number of pilots than required by the conventional method. We proposed

an enhancement approach to the performance of the BCS-based estimator via

the principle of thresholding, which selected the most significant taps. The multi

116
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task-BCS (MT-BCS) was also proposed to exploit the common statistical spar-

sity distribution to enhance the estimation accuracy performance. The Cramer

Rao bound (CRB) has been derived as a reference line. The results showed that

the BCS-based channel estimation algorithm could address the pilot contamina-

tion problem and provide better estimation accuracy compared to conventional

methods.

In Chapter 4, the sparse Bayesian learning (SBL)-based channel estimation

was proposed for a multi-cell massive MIMO system based on a pattern cou-

pled hierarchical Gaussian framework. In the proposed technique, the sparsity

of each channel coefficient is controlled by its own hyperparameter and the hy-

perparameters of its immediate neighbours. Closed form expression was derived

for the mean square error (MSE) for the proposed technique. The approximated

expression for the optimal pilot was derived to improve the estimation accuracy

of the proposed algorithm using the Lagrange multiplier optimisation method.

The CRB has been derived as a reference line. The results demonstrated the

effectiveness of the proposed techniques to address pilot contamination in terms

of MSE.

In Chapter 5, we addressed the pilot contamination problem in multi-cell

massive MIMO systems by proposing a novel optimal pilot design to minimise

the total MSE of the minimum mean square error (MMSE) estimators of all base

stations subject to a transmit power constraint for each user in the network.

By decomposing the non-convex MSE expression into distributed sub-problems

at the base stations, each base station optimises its own pilot signals given the

knowledge of pilot signals from the neighbouring base stations.Then, a successive

optimisation is performed to transform each optimisation problem into convex

form to be solved by the available optimisation packages. The results indicated

that the proposed approach could reduce/mitigate pilot contamination efficiently.

In Chapter 6, we investigated the multi-cell massive MIMO over correlated

Rician and correlated Nakagami-m fading channel models. We showed that the
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estimation accuracy could be enhanced by increasing the values of the Rician

fading factor by increasing the line-of-sight (LOS) component. Moreover, the

achievable uplink rate and the MSE tools demonstrated that the pilot contam-

ination problem could be addressed by increasing the values of the m-shaping

factor and the K-Rician factor.

In Chapter 7, we investigated the discrete Fourier transform (DFT) channel

estimation techniques for massive MIMO. The channel frequency response (CFR)

was first estimated by applying the MMSE estimation, then it will transferred

to the time domain by applying the inverse DFT (IDFT) to obtain the channel

impulse response (CIR), a truncation of the CIR to remove the noise and inter-

ference is then performed. Thereafter, the CIR is transferred to CFR by applying

the DFT. In addition, we proposed two modified DFT estimation algorithms by

applying the same DFT procedure several times to obtain better estimation ac-

curacy or by applying a threshold to the CIR to obtain the most significant taps.

Further enhancement for DFT estimator has been proposed by proposing the

joint DFT and whiting rotation (WR) channel estimation.

8.2 Suggestions for Future Research

With regard to future work, we identify a few potential problems, as follows.

8.2.1 Temporal Correlation-SBL

In chapter 4, we exploited the spatial correlation of the channel. However, the

wireless channel is also subject to temporal correlation. Further work must con-

ducted to exploit the temporal and spatial correlation to enhance the estimation

accuracy.
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8.2.2 Frequency Division Duplex (FDD) Mode for Massive

MIMO systems

As explained in Chapter 1, massive MIMO can work in TDD and FDD modes,

in FDD, the channel is estimated by users using a downlink training sent by BS.

The estimated channel is then fed back to the BS. Thus, the pilot overhead is

proportional to the number of antennae, which makes FDD impractical when

the antenna array at the base station becomes large. However, under some as-

sumptions, it is possible to use FDD to learn the channels in the large antenna

array case. One possible solution to reduce the pilot overhead is to employ the

CS-based estimator. However, as we explained in previous chapters, the CS esti-

mation algorithms suffer from practical limitations. To address the CS limitation,

we proposed SBL methods for FDD mode as a research challenge and as a work

extension of this research.

8.2.3 Superimposed based channel estimation

In superimposed channel estimation, the pilot will be superimposed with data in

such a way that the pilot contamination problem will be cancelled. By definition,

the superimposed is not a channel estimation, but an arrangement of the pilot

with data, thus it would be good to combine it with other estimation algorithms

and to modify it in such a way as to reduce the energy efficiency.

8.2.4 Filter bank for Massive MIMO systems

The filter bank is a candidate technology for 5G that has good features when

combined with massive MIMO, as the blind channel estimation of the filter bank

will cancel the pilot contamination problem. Thus, further enhancement must be

conducted to overcome blind estimation shortages.
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8.2.5 Millimetre-Wave and small cells

In addition to massive MIMO, the millimetre wave and small cells are candidates

for 5G. The small cells and millimeter wave can address the pilot contamination

problem [113] and [3]. The study of pilot contamination using the combination

of these technologies will be an important research direction in the future.

8.2.6 Hardware Impairment

Massive MIMO uses low-cost components, which may lead to hardware imper-

fections and cause distortion of the signal. In all the chapters, an ideal hardware

is assumed. The pilot contamination issue in the non-ideal case is actually easier

to mitigate compared to the ideal case [4], [67]. It would be interesting to include

the impact of hardware impairment as extension of the proposed methods.
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MMSE channel estimate ̂︀H𝑐*,𝑐*

approximation

Reference (5.9), the term 𝐸{H𝑐*,𝑐*(Y𝑐*)𝐻} can be obtained as follow

𝐸{H𝑐*,𝑐*(Y𝑐*)𝐻} = 𝐸{H𝑐*,𝑐*(X𝑐*D
1
2
𝑐*,𝑐*H𝑐*,𝑐* +

𝐶∑︁
𝑐=1,𝑐 ̸=𝑐*

X𝑐D
1
2
𝑐,𝑐*H𝑐,𝑐* + V𝑐*)𝐻},

(A.1)

𝐸{H𝑐*,𝑐*(Y𝑐*)𝐻} = 𝐸{H𝑐*,𝑐*H
𝐻
𝑐*,𝑐*D

1
2
𝑐*,𝑐*X

𝐻
𝑐*}, (A.2)

𝐸{H𝑐*,𝑐*(Y𝑐*)𝐻} = 𝑀D
1
2
𝑐*,𝑐*X

𝐻
𝑐* . (A.3)

While the term Ω𝑐* = 𝐸{Y𝑐*(Y𝑐*)𝐻} can be obtained as follow
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𝐸{Y𝑐*(Y𝑐*)𝐻} = 𝐸{X𝑐*D
1
2
𝑐*,𝑐*H𝑐*,𝑐* +
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𝐸{Y𝑐*(Y𝑐*)𝐻} = 𝑀
𝐶∑︁
𝑐=1

X𝑐D𝑐*,𝑐(X𝑐)
𝐻 +𝑀𝜎2I𝜏 . (A.5)

Ω𝑐* = 𝑀
𝐶∑︁
𝑐=1

X𝑐D𝑐*,𝑐(X𝑐)
𝐻 +𝑀𝜎2I𝜏 . (A.6)

Now we can obtained the approximated ̂︀H𝑐*,𝑐* as in (5.10).
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MSE closed form expression for the

MMSE estimator

Reference (5.12) and (5.13) the mean square error can be written as

𝑀𝑆𝐸𝑐* = 𝑡𝑟[𝐸{(Ĥ𝑐*,𝑐* −H𝑐*,𝑐*)(Ĥ𝑐*,𝑐* −H𝑐*,𝑐*)𝐻}] (B.1)

𝑀𝑆𝐸𝑀𝑀𝑆𝐸 = 𝑡𝑟[𝐸{Ĥ𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻 − Ĥ𝑐*,𝑐*(H𝑐*,𝑐*)𝐻 −H𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻

+H𝑐*,𝑐*(H𝑐*,𝑐*)𝐻}] (B.2)

The term 𝐸{Ĥ𝑐*,𝑐*(H𝑐*,𝑐*)𝐻} can be simplified as follow

𝐸{Ĥ𝑐*,𝑐*(H𝑐*,𝑐*)𝐻} = 𝐸{𝑀D
1
2
𝑐*,𝑐*(X𝑐*)𝐻 [𝑀

𝐶∑︁
𝑐=1

X𝑐D𝑐*,𝑐(X𝑐)
𝐻 +𝑀𝜎2I𝜏 ]−1

Y𝑐*(H𝑐*,𝑐*)𝐻}

(B.3)
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since 𝐸{H𝑐*,𝑐*(H𝑐*,𝑐*)𝐻} = 𝑀I𝑁 .

While the term 𝐸{H𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻} can be simplified mathematically as follow
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Now the term 𝐸{Ĥ𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻} can be written as follow
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It can be seen that 𝐸{Ĥ𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻} = 𝐸{H𝑐*,𝑐*(Ĥ𝑐*,𝑐*)𝐻} So,

𝑀𝑆𝐸𝑐* = 𝑡𝑟[𝐸{−Ĥ𝑐*,𝑐*(H𝑐*,𝑐*)𝐻 + H𝑐*,𝑐*(H𝑐*,𝑐*)𝐻}] (B.13)

So, the closed form expression can be written as
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