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Abstract
Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few
resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-cen-
tric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 con-
trols, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk
locus at TNFSF15 (rs6478108; P¼1.50�10�8, OR¼1.10), and association of common protein-altering variants at 11 loci previ-
ously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering vari-
ants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a fur-
ther series of protective rare variants (minor allele frequency<0.01) via gene-wide aggregation testing (IFIH1:
pburden¼2.53�10�7, OR¼0.707; TYK2: pburden¼6.17�10�4, OR¼0.744). Both genes play significant roles in type I interferon
(IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved
protein domains, highlighting potential mechanisms through which their effect may be exerted.

Introduction
Psoriasis is a common inflammatory hyperproliferative skin
disorder with a significant genetic component to disease patho-
genesis (1–3). It affects up to 2% of people worldwide, with af-
fected individuals suffering high social and economic costs and
increased morbidity and mortality (1,4). Previous large-scale ge-
nome-wide association studies and meta-analyses have identi-
fied 63 loci that contribute to psoriasis susceptibility in
populations of European origin (5–16). Recent studies have re-
fined the understanding of the allelic architecture of psoriasis

risk at several of these loci, including the major histocompati-
bility complex (MHC), through the detection of multiple inde-
pendent secondary signals (8,12,17,18). Many psoriasis risk loci
harbour genes encoding components of disease-relevant biolog-
ical processes, including innate and adaptive immune path-
ways and skin barrier function (2). Nevertheless, the precise
molecular mechanisms through which the associated genetic
variation confers psoriasis susceptibility remain uncertain for
the majority of these signals (19). The identification of disease-
associated protein-altering variation, including the effects of
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rare alleles, has the potential to illuminate the mechanisms un-
derpinning the pathogenic process and to identify putative tar-
gets for therapeutic intervention. Notably in psoriasis,
investigation of the protective common allele encoding a gluta-
mine residue at position 381 of the interleukin-23 (IL-23) recep-
tor has validated aberrant Th17 signalling as a key disease
driver (20), consistent with the remarkable efficacy of therapeu-
tics targeting this pathway (21).

Potential roles for common and low-frequency protein-al-
tering variants in psoriasis susceptibility have been investi-
gated in the Han Chinese (22,23) and European (8) populations,
but until now the contribution of rare protein-altering alleles
to the disease architecture has not been systematically ex-
plored in any population. Here, we present the most compre-
hensive investigation to date of protein-altering variation in
psoriasis risk in the European population. The analysis
encompasses four independent exome array association stud-
ies, referred to here as the UK, Estonia, Germany and Michigan
studies. These were combined through meta-analysis to total
11 861 psoriasis cases and 28 610 controls (Supplementary
Material, Table S1). Our analysis focused on genetic variation
outside of the MHC region, in which the psoriasis-associated
HLA-C*06:02 allele and independent secondary signals have
been the subject of extensive investigation elsewhere
(17,18,24–26). After quality control (QC), 167 587 single nucleo-
tide variants (SNVs) that were successfully genotyped in
each of the four cohorts were investigated. This set included
155 870 variants located within protein coding regions (and as-
sociated splice sites) of the genome and a further 11 717 non-
coding SNVs including many tagging previously reported
disease-associated SNVs. The allele frequency spectrum of the
set of genotyped variants is skewed towards rare and low-
frequency variants (Supplementary Material, Table S3).

Results
Single marker association testing was performed in each of the
four case-control cohorts using a linear mixed model with an
empirically estimated relatedness matrix to control for popula-
tion structure (27), and results were aggregated across studies
via meta-analysis (Materials and Methods). Results for all vari-
ants achieving an association P-value P< 1� 10�5 are summar-
ised in Supplementary Material, Table S5.

Single marker association tests uphold established
psoriasis susceptibility loci

Of 67 previously reported independent psoriasis susceptibility
signals across 63 loci, we were able to test for disease associa-
tion at 24, either directly using the reported lead SNV or via a
proxy (r2> 0.8 with the reported lead SNV). We observe signifi-
cant disease associations at 23 (20 with genome-wide signifi-
cance, P< 5� 10�8, and three with P< 10�4; Supplementary
Material, Table S6). We find no evidence of association at the
recently reported 13q14.11 locus that encompasses COG6 (10)
(rs7993214: P¼ 0.0589; OR¼ 1.04). It should be noted that before
QC the UK, Estonia, Germany and Michigan studies collectively
included 7885 psoriasis cases that were present in previously
published analyses (6,8,12,14) (Supplementary Material,
Table S1). As such, the associations that originate from these
previous reports should not be considered independently rep-
licated here.

Previously unreported genome-wide association at
one locus

We detect genome-wide significant association at one further
locus, mapping to TNFSF15 at 9q32. An association is observed
with the intronic variant rs6478108 (P¼ 1.50� 10�8; OR¼ 1.10;
Supplementary Material, Table S5). TNFSF15, encoding a mem-
ber of the tumor necrosis factor superfamily of cytokines, is pri-
marily expressed in endothelial cells and has previously been
implicated in susceptibility to Crohn’s disease (28). Although a
previous study found nominal association between variants in
this locus and psoriasis susceptibility in a Hungarian population
(29), we establish 9q32 as a genome-wide significant susceptibil-
ity locus for the first time here.

Established association signals map to protein-altering
variants at 11 susceptibility loci

Within psoriasis susceptibility loci, an ongoing challenge is to
fine-map association signals to determine the underlying causal
variants. Disease-associated protein-altering variants represent
plausible candidates through which psoriasis risk is conferred.
We searched for protein-altering SNVs with a consistent direc-
tion of effect across all four studies and exome-wide significant
association (P � 3.0� 10�7). We found 19 such variants within 11
different loci, all of which were previously reported susceptibil-
ity loci (Table 1; Supplementary Material, Table S5). These ob-
servations extend the list of putative causal protein-altering
alleles previously reported (8), most notably defining an addi-
tional candidate causal variant in ERAP1 (rs30187: p.K528R;
P¼ 2.19� 10�11) that is predicted to be damaging by PolyPhen-2
and has a CADD score of 20.6 (Supplementary Material,
Table S5). Furthermore, conditional analysis indicates that this
variant can account for the observed association of rs27432, the
lead SNV in this locus reported by Tsoi et al. (8) (Supplementary
Material, Table S5).

Rare variant aggregation tests identify protective alleles
for type I IFN genes

Despite the substantial sample size of the current study, evalua-
tion of the contribution of individual rare and low-frequency
variants to psoriasis susceptibility is limited by statistical power
to detect association. We therefore performed a series of gene-
based tests, aggregating variants with low minor allele
frequency (MAF). At each MAF threshold (0.01 or 0.05) we per-
formed a burden test to detect an excess of rare alleles in cases
or controls, and a SKAT test, which is designed to detect scenar-
ios in which the effects of the aggregated variants have different
direction or magnitude (30) (Materials and Methods). This test-
ing regime identified two genes, IFIH1 and TYK2, with exome-
wide significant evidence of association (pgene< 2.5� 10�6;
Table 2). Both IFIH1 and TYK2 are located in loci previously im-
plicated in common variant studies of psoriasis risk (5).

In IFIH1, single marker association testing had identified two
genome-wide significant psoriasis-associated protein-coding
variants: the common rs1990760 (p.A946T; MAFcontrols¼ 0.38;
P¼ 4.73� 10�18; OR¼ 0.86) and the low-frequency rs35667974
(p.I923V; MAFcontrols¼ 0.02; P¼ 1.10� 10�15; OR¼ 0.55). The
latter contributes to the observed gene-based association
of variants in IFIH1 with MAF< 0.05 (pSKAT¼ 1.19� 10�20; pbur-

den¼ 1.84� 10�19), although we also observe evidence of associa-
tion with a MAF threshold of 0.01 (pburden¼ 2.53� 10�7;
pSKAT¼ 6.02� 10�5). This association remains when
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conditioning on both rs35667974 and rs1990760 (pconditional-bur-

den¼ 1.36� 10�8; pconditional-SKAT¼ 4.46� 10�6), or on either indi-
vidually (Supplementary Material, Table S8). Examination of
allele frequencies of individual rare and low-frequency coding
SNVs in IFIH1 (Supplementary Material, Table S10) reveals dif-
ferences between cases and controls (P< 0.05) for six variants,
each located within predicted functional domains of MDA5, the
antiviral receptor encoded by this gene (Fig. 1A). Notably, at
each of these sites the minor allele is associated with decreased
psoriasis risk, consistent with a previous study reporting two
rare variant associations in this gene (31).

In TYK2, which encodes one of the Janus family of kinases
(32), we detect a gene-level association across variants with
MAF< 0.05 (pSKAT¼ 6.34� 10�41; pburden¼ 1.47� 10�39). As with
IFIH1, a strong single-variant association contributes to the ag-
gregated signal (rs34536443: MAFcases¼ 0.023; MAFcontrols¼ 0.044;
P¼ 1.72� 10�42; OR¼ 0.51). Nevertheless, the variants with
MAF< 0.01 also display evidence for disease association
(pSKAT¼ 2.82� 10�4; pburden¼ 6.17� 10�4). There is a complex
linkage disequilibrium (LD) structure between individual vari-
ants that have been previously reported at this locus (see
Discussion). Our data suggest that the observed aggregate rare
variant association is independent of the single marker associa-
tions (pconditional-SKAT¼ 7.21� 10�5; pconditional-burden¼ 1.45� 10�4),
although a suitable proxy to facilitate conditional analysis with
the common disease-associated intronic SNV rs280519 was
unavailable for this analysis (5). The low-frequency variant
rs34536443 results in a substitution in TYK2’s kinase domain
(p.P1104A), as does the only rare variant that is nominally asso-
ciated with a single marker test (rs35018800: P¼ 0.0003;
OR¼ 0.68; Fig. 1B; Supplementary Material, Table S10).

Since IFIH1 and TYK2 are located in known psoriasis suscepti-
bility loci, we further scrutinized genes in all previously reported
psoriasis susceptibility loci (Online Methods). We observed sug-
gestive evidence for aggregated rare variant association at four
further genes (IL23R, TNFAIP3, DDX58 and STAT2; Supplementary
Material, Table S9), the rare alleles displaying a protective effect
in each case. Of these, we note that DDX58 (pburden¼ 3.01� 10�5;
pSKAT¼ 7.82� 10�5 for MAF< 0.05) encodes RIG-I, a paralog of the
MDA5 receptor (encoded by IFIH1) with a closely related function

(33). The most strongly associated single marker in the region
(rs657454; P¼ 2.16� 10�5; OR¼ 1.08; MAFcontrols¼ 0.38) is not re-
sponsible for the observed association (pconditional-bur-

den¼ 3.15� 10�5; pconditional-SKAT¼ 3.07� 10�5), although without a
suitable proxy for conditional analysis we cannot fully rule out
that the association is driven by the previously reported (8) com-
mon SNV rs11795343 (r2 with rs657454¼ 0.411). Furthermore
STAT2 (pburden¼ 3.80� 10�5; pSKAT¼ 9.48� 10�5 for MAF< 0.05),
like IFIH1, DDX58 and TYK2, also encodes an important compo-
nent of the type I IFN signalling pathway.

Discussion
The systematic analysis of protein-altering variation reported
here allows a thorough examination of the contribution of func-
tional genetic mechanisms to psoriasis risk. For each locus in
which we identified robustly associated single variants, the
Supplementary Note provides a summary of evidence for func-
tional involvement. For several loci (including those harbouring
IL23R, IL13 and STAT2), the most strongly associated functional
variants remain those previously suggested by Tsoi et al. (8).
Findings at other loci (1q21.3, 6q21, 16p11.2, 20q13.13) offered
less clear interpretation but we did not find sufficient evidence
to reject existing disease models involving candidate disease
genes LCE3B/C, TRAF3IP2, FBXL19 and RNF114, respectively
(7,34–36). We note the significant association of rs30187 in
ERAP1 (P¼ 2.19� 10�11; OR¼ 0.89), a missense variant that can
explain the association signal at the previously proposed causal
variant rs27044 (8) and which, unlike the latter SNV, is predicted
to be deleterious by both PolyPhen-2 and CADD (Supplementary
Material, Table S5). We also identified one significantly associ-
ated missense variant in the recently reported 19q13.33 locus
(16): rs602662 in the gene FUT2 (P¼ 3.29� 10�8; OR¼ 1.09). This
gene encodes a-(1,2) fucosyltransferase, a Lewis antigen system
enzyme that is central to determining an individual’s secretor
status (37) and is associated with protection from and suscepti-
bility to certain viral, bacterial and fungal infections (38–40).

TYK2, as a Janus kinase, is widely expressed and facilitates a
broad range of intracellular-signalling processes (32). It provides
another link between psoriasis-associated innate and adaptive

Table 2. Exome-wide significant gene-based associations

Locus Gene SNVs
conditioned

on

MAF< 0.01 MAF< 0.05

pburden OR
(95% CI)

pSKAT nSNVs cMAF pburden OR
(95% CI)

pSKAT nSNVs cMAF

Unconditioned analysis
2q24.2 IFIH1 - 2.53 3 1027 0.707 6.02�1025 24 0.0261 1.84 3 10219 0.620 1.19 3 10220 25 0.0461

(0.626–0.799) (0.564–0.682)
19p13.2 TYK2 - 6.17� 1024 0.744 2.82�1024 17 0.0115 1.47 3 10239 0.593 6.34 3 10241 19 0.0675

(0.626–0.885) (0.549–0.641)
Conditional analysis
2q24.2 IFIH1 rs35667974 and

rs1990760
1.36 3 1028 0.687 4.46�1026 24 0.0261 1.36 3 1028 0.687 4.46� 1026 24 0.0261

(0.607–0.776) (0.607–0.776)
19p13.2 TYK2 rs34536443,

rs2304256 and
rs12720356

1.45� 1024 0.728 7.21�1025 17 0.0115 1.85� 1025 0.790 6.53� 1025 18 0.0239

(0.611–0.868) (0.701–0.890)

MAF¼minor allele frequency; OR¼odds ratio estimated by collapsing test; nSNVs¼number of SNVs included in test (this may vary between unconditioned and condi-

tional analysis since SNVs to be conditioned on which are sufficiently rare are not included in the test statistic for the conditional test); cMAF¼ cumulative minor allele

frequency of SNVs included in test. Exome-wide significant P-values (pgene<2.5� 10�6) are indicated in bold.
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immune pathways, having been shown, for example, both to
mediate Th17 cell responses to IL-23 signalling and Th1 re-
sponses to IL-12 signalling, and to regulate type I interferon
(IFN) signalling (41,42). Our results highlight the complex LD
structure at this locus, with protective associations at two previ-
ously identified independent missense variants which are each
predicted to impair protein function (rs34536443 described ear-
lier; rs12720356: P¼ 1.39� 10�16; OR¼ 0.76; MAFcases¼ 0.068;
MAFcontrols¼ 0.083) (5,8). A third SNV, rs2304256 (P¼ 2.88� 10�23;
OR¼ 0.81; MAFcases¼ 0.243; MAFcontrols¼ 0.280), is in weak LD
with both rs34536443 and rs12720356 (r2¼ 0.107 and 0.290, re-
spectively) and its association disappears when conditioning on
either SNV (pconditional¼ 0.0559 and pconditional¼ 0.1063, respec-
tively). Our data included no proxy SNV for rs280519, another in-
dependent psoriasis signal with which rs2304256 is also in

moderate LD (r2¼ 0.357). In other immune-mediated diseases,
rs2304256 has been shown to represent a synthetic association
due to neighbouring rarer variants including rs34536443 and
rs12720356 (43,44). It is notable that the observed association at
TYK2 under the rare variant aggregation tests is driven by two
protective alleles which disrupt TYK2’s kinase domain (Fig. 1B).
This may suggest that the catalytic activity of TYK2 helps to ini-
tiate and maintain the positive feedback loops that culminate
in psoriatic inflammation. Indeed, our independently associated
common SNV rs12720356 leads to the substitution p.I684S
within the pseudokinase JAK-homology 2 domain (32,42,45),
while conversely our likely synthetic association rs2304256
(p.V362F) impacts neither kinase domain.

IFIH1 encodes the innate antiviral receptor MDA5, which de-
tects and binds to double-stranded RNA, promoting a pro-

Figure 1. Rare and low-frequency protein-altering variants in IFIH1 and TYK2. Frequency of alternative allele in cases and controls across all four studies for rare and

low-frequency variants, displayed by protein consequence. ** designates exome-wide significant association (P < 3.0� 10�7); * designates nominally significant associa-

tion (P < 0.05). Common protein-altering variants that we report to be associated are marked by red triangles. Variant effect predictions (by SIFT, PolyPhen-2 and

CADD) are red where a substitution is predicted to be damaging, white where it is not, and grey where no prediction was possible. SNV ¼ single nucleotide variant; ESS

¼ essential splice site; AA pos ¼ amino acid position; PP ¼ PolyPhen-2. (A) IFIH1 variants (MDA5 protein): CARD ¼ caspase activation recruitment domain; Hel ¼ helicase

domain. (B) TYK2 variants: FERM ¼ 4.1/ezrin/radixin/moesin domain; SH2-like ¼ Src homology 2-like domain; JH2 ¼ JAK-homology 2; Prot. kin. JH1 ¼ protein kinase

JAK-homology 1.
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inflammatory type I interferon (IFN) response (46). Rare variants
in IFIH1, including three of the six variants underlying our ag-
gregation tests that exhibit nominal disease association, have
previously been shown to be protective for type I diabetes (47),
with evidence that the associated rare alleles lead to a decrease
in downstream IFNb expression arising from impaired signal
propagation (48). It is evident that this pathway is also relevant
to psoriasis pathogenesis indicating potential shared mecha-
nisms at this locus in these immune-mediated diseases. The
most strongly associated rare variant is rs35667974, whose mi-
nor (C) allele exhibits a large protective effect (P¼ 1.10� 10�15;
MAFcases¼ 0.010; MAFcontrols¼ 0.020; OR¼ 0.55). This SNV is one
of two independent rare variants at the IFIH1 locus previously
implicated by Li et al. in psoriasis susceptibility (31), the other
(rs10930046) having not been tested in our study. Our single
marker tests identified one further protein-altering variant with
exome-wide significant disease association, but the association
at the common variant rs1990760 (reported previously (10)) is
lost when conditioning on rs35667974 (pconditional¼ 0.9619),
implying that it is a consequence of LD. It is also not predicted
to be damaging (Supplementary Material, Table S5), which
suggests rs35667974 could represent the more likely functional
variant at this locus.

Several of the variants we report here exhibit some degree of
effect size heterogeneity in our meta-analysis (Supplementary
Material, Table S5). Notably, many variants display only modest
evidence for association in the Estonia cohort, likely driven by
the relatively small sample size for this study (Supplementary
Material, Table S1). However, each of the variants has consistent
direction of effect across all four studies and are consistent with
established psoriasis susceptibility signals, and as such repre-
sent robust associations.

The results of our meta-analysis contribute to our under-
standing of several mechanisms of psoriasis pathogenesis.
However, it might have been anticipated that the large study size
and exome-wide genotyping coverage would result in more novel
biological insights than was borne out in practice. We therefore
examined how completely the 167 587 variants in our study cov-
ered the autosomal protein-altering variants (outside the MHC re-
gion and predicted to impair protein function) that are observed
in 33 370 European whole-exome- or whole-genome-sequenced
samples in the ExAC reference dataset (Supplementary Material,
Table S11). Of 14 123 common variants (MAF� 0.05) in ExAC, 5487
(38.9%) are absent from at least one version of the exome arrays
used across our four studies. A further 1564 (11.1%) were removed
from the analysis during genotyping QC, meaning that 7072
(50.1%) were tested in our analysis. A similar proportion of low-
frequency (0.01�MAF< 0.05) and rare (0.001�MAF< 0.01) SNVs
were tested. As expected, coverage of very rare variants with MAF
below 0.001 was substantially sparser, the drop in coverage being
more pronounced the lower the MAF (Supplementary Material,
Table S11).

To assess the impact of this incomplete coverage on our abil-
ity to map established psoriasis susceptibility signals to func-
tional variants, we searched for all SNVs that are in moderate
LD with a previously reported association (r2> 0.2) in 1000
Genomes European samples and predicted to impair protein
function by at least one of SIFT, PolyPhen-2 and CADD
(Supplementary Material, Table S12). We found 23 such vari-
ants, of which 11 (47.8%, consistent with overall coverage) were
not tested in our meta-analysis and are therefore potentially in-
teresting candidate variants for future association testing. The
12 variants which were tested include 8 with strong evidence of
association (and present in Table 1). The remaining four

variants are not exome-wide significantly associated with psori-
asis susceptibility, but none are in strong LD with the corre-
sponding established signal (r2 range 0.29-0.69; Supplementary
Material, Table S12).

We note that the rare and low-frequency variants found to
be associated in this study display broadly protective effects on
psoriasis risk. We cannot exclude that this is due to selection
bias, since the exome array design is based largely on variants
observed in whole exome sequencing studies of a range of com-
plex traits, which do not include psoriasis (http://genome.sph.
umich.edu/wiki/Exome_Chip_Design). This could limit the prob-
ability that the array includes rare variants associated with in-
creased psoriasis risk, either individually or via gene-wide
aggregation tests.

Previously established risk loci account for around 28% of
the estimated heritability of psoriasis (16). Based on the method
of So et al. (49) we find that the newly reported association at
TNFSF15 explains 0.23% of estimated heritability (50).
Aggregated rare and low-frequency variants (MAF< 0.05) in
IFIH1 account for 0.47% of estimated heritability (0.17% after
conditioning on previously reported associations); for TYK2 we
estimate 0.80% (0.06% after conditional analysis). While these
figures do not substantially increase the cumulative proportion
of heritability explained to date, they do highlight the possibility
that some fraction of the residual unexplained heritability will
be due both to many as yet unidentified psoriasis susceptibility
loci and to rare variants at existing loci. Further efforts to isolate
such variants will require larger sample sizes and more compre-
hensive coverage of the full frequency spectrum of genetic
variation.

In summary, we establish genome-wide significant psoriasis
associations at the TNFSF15 locus and identify a series of alleles
at established psoriasis loci with plausible evidence for causal-
ity based on predicted effects on protein structure and function.
Our investigation of alleles at the low end of the frequency spec-
trum with variant aggregation tests has expanded our under-
standing of the allelic architecture of psoriasis risk at the IFIH1
and TYK2 loci. The observation that rare alleles that disrupt con-
served domains within each gene have protective effects is
compatible with the hypothesis that the common ancestral al-
leles of IFIH1 and TYK2 contribute to a robust immune response
to pathogens, but this comes at the expense of increased risk of
immune-mediated disease. Our findings support a central role
for type I IFN signalling in psoriasis pathogenesis, consistent
with clinical observations that type I IFN therapy can induce
or exacerbate psoriasis symptoms (51,52). They also highlight
putative therapeutic mechanisms; the efficacy of other janus
kinase inhibitors (53–55) suggest that TYK2 in particular may be
a fruitful drug target.

Materials and Methods
Study samples and genotyping

The meta-analysis includes four independent studies, referred
to as the UK, Estonia, Germany and Michigan studies. In each
study, all samples were collected from unrelated individuals of
European ancestry after obtaining written informed consent.
Enrolment of subjects in each study was approved by the ethics
boards of the participating institutions, in accordance with
Declaration of Helsinki principles. All cases had been diagnosed
with psoriasis vulgaris by a dermatologist. DNA was isolated
from blood using standard methods.
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UK data
Psoriasis cases (n¼ 1971) were recruited as previously described
(8). Further cases (n¼ 960) were recruited from centres in the UK
via the Biomarkers of Systemic Treatment Outcomes in
Psoriasis (BSTOP) cohort study (www.kcl.ac.uk/lsm/research/di
visions/gmm/departments/dermatology/Research/stru/groups/
bstop/index.aspx; date last accessed August 15, 2017) after re-
search ethics approval (REC reference 11/H0802/7). Unselected
population-based controls (n¼ 6400) were obtained from the
1958 British Birth Cohort. Genotyping was performed using
Illumina HumanExome-12 v1.1 BeadChip and Illumina
HumanOmniExpressExome-8 v1.2 BeadChip for psoriasis cases,
and Illumina HumanExome-12 v1.0 BeadChip for controls
(Supplementary Material, Table S1).

German data
All German psoriasis cases (n¼ 2928) were recruited through
local outpatient services at either the Department of Dermatology
at Christian-Albrechts-University Kiel, or the Department of
Dermatology and Allergy at the Technical University of Munich.
The psoriasis cases were genotyped using Illumina HumanExome-
12 v1.1, HumanCoreExome-12 v1.1B or HumanCoreExome-24 v1.0 A
BeadChips. German healthy control individuals (n¼ 15 966) were
obtained from the PopGen biobank, the KORA S4 survey (an inde-
pendent population-based sample from the general population liv-
ing in the region of Augsburg, southern Germany), the Heinz-
Nixdorf Recall (HNR) cohort, Bonn, and the SHIP and SHIP-TREND
cohorts (56) (from the Study of Health in Pomerania, a prospective
longitudinal population-based cohort study in West Pomerania).
German controls were genotyped using Illumina HumanExome-12
v1.0, HumanCoreExome-24 v1.0 A or HumanOmniExpressExome-8
v1.2 A BeadChips (Supplementary Material, Table S1).

Estonian data
All Estonian samples were provided by the population-based
biobank of the Estonian Genome Center, University of Tartu.
Subjects were recruited by general practitioners (GP) and phy-
sicians in the hospitals. Participants in the hospitals were
randomly selected from individuals visiting GP offices or hos-
pitals. Diagnosis of psoriasis on the basis of clinical symptoms
was posed by a general practitioner and confirmed by a der-
matologist (n¼ 1459). At the time of recruitment, the con-
trols (n¼ 3167) did not report diagnosis of osteoarthritis,
psoriasis, or autoimmune diseases. All Estonian samples
were genotyped using Illumina HumanExome-12 v1.1
or HumanCoreExome-24 v1.0 BeadChips (Supplementary
Material, Table S1).

Michigan data
Psoriasis cases (n¼ 6344) and unrelated, unaffected controls
(n¼ 6085) of European Caucasian descent were collected in
North America and Sweden (Supplementary Material, Table S1).
The cohort was genotyped using the Affymetrix Axiom
Biobank Plus Genotyping Array at the Affymetrix facility
(Santa Clara, CA). In addition to the exome array content ana-
lysed in the present study, the chip included genome-wide
and customized content analysed as part of a concurrent
GWAS meta-analysis (16).

Genotype calling and quality control

Initial genotype calling and QC was performed separately for
each of the four studies. Subsequently a joint QC procedure was

undertaken to ensure that consistent QC standards were ad-
hered to (Supplementary Material, Table S2).

UK data
Genotype calling was performed separately for the three differ-
ent chips using Illumina’s GenomeStudio Data Analysis soft-
ware (samples clustered using GenTrain 2.0 algorithm). Sample
QC was performed using PLINK (v1.07) (57) and R (58), with
samples excluded based on call rate (< 0.95), suspected non-
European ancestry, heterozygosity (64 s.d. from the mean), ar-
ray signal intensity (> 4 s.d. from the mean) and relatedness.
SNVs were excluded due to call rate (< 0.99), deviations
from Hardy-Weinberg equilibrium (P< 0.0001) and low
GenomeStudio cluster separation score (< 0.4). We also ex-
cluded duplicate assays, tri-allelic variants and insertions/dele-
tions from further analysis. zCall software (version 3) (59) was
employed to improve genotype calling for samples and SNVs
that passed the initial QC. Subsequently we excluded SNVs and
samples having a revised call rate below 99% to give a total of
234 976 SNVs in 2431 cases and 5892 controls. Genotype inten-
sity cluster plots were manually inspected for the 5000 SNVs
found to have the lowest P-values in a preliminary association
test (see below). Where appropriate, genotypes were manually
“rescued” using Evoker (version 2.3) (60).

German and Estonian data
We removed samples from the German and Estonian cohorts
with high missingness (> 2%). SNVs were removed if they had
low call rate (< 95%) or deviated from Hardy Weinberg equilib-
rium (P< 0.0001) across both cohorts combined. Triallelic vari-
ants, insertions, deletions and one of each pair of duplicated
markers were excluded. Rare variant genotypes were called
using the zCall algorithm after removing samples with a call
rate< 95%. zCall was employed using default settings (59) for
the German and Estonian cohorts separately.

Michigan data
We removed samples with high missingness (> 2%), and
markers with low call rate (< 95%) or that deviated from Hardy
Weinberg equilibrium (P< 1� 10�6). Additional QC steps and
rare variant calling using zCall were performed in Kiel as de-
scribed above for the German and Estonian datasets.

Joint quality control
All four datasets were filtered to exclude variants with call rate
below 99% and samples with missingness above 1%. We took
forward for subsequent analysis only those SNVs that were pre-
sent in all four datasets. We excluded SNVs where alleles did
not match between datasets or where the minor allele was am-
biguous (i.e. symmetrical SNVs with MAF> 0.45 and disagree-
ment between datasets).

A subset of 32 403 independent SNVs was generated by ex-
cluding SNVs with MAF< 0.001 and SNVs within 250 kb of a
previously-published psoriasis susceptibility locus or in regions
of long-range LD as defined by Price et al. (61); and by using
PLINK to perform LD-pruning (r2 threshold¼ 0.2). Relationship
inference was performed jointly across all samples based on
this independent subset of SNVs, using KING (version 1.4) (62).
For pairs of samples found to be related (second degree
relative or closer; kinship coefficient> 0.0884), the sample
with fewer missing genotypes was retained and the other
excluded from further analysis. For each of the four datasets
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separately, principal component analysis (PCA) was per-
formed based on the SNVs within the independent subset
having MAF> 0.01 in that dataset (between 16 307 and 16 629
SNVs). In order to mitigate against population stratification
we excluded PCA outliers from all four datasets (defined as
samples lying> 6 standard deviations away from the mean for
any of the first ten principal components) (Supplementary
Material, Fig. S1).

Following an initial round of association testing (described
below), genotype intensity cluster plots for all non-MHC vari-
ants with single variant association P-value< 10�5 or included
in a gene achieving a P-value< 10�5 in any aggregation test
were manually inspected (and if necessary, removed or manu-
ally corrected) in all four datasets using Evoker (60). All analy-
sis was subsequently repeated using these final datasets to
give the results presented in this article. Cluster plots have
been checked in the final datasets for all variants and genes
reported here.

Linkage disequilibrium

All LD statistics reported in this work derive from 503 samples
of European ancestry from 1000 Genomes (phase 3) (63).
Estimates of r2 and D’ were calculated using PLINK.

Proxy markers for established psoriasis susceptibility
variants

We curated established genome-wide significant psoriasis suscep-
tibility variants from the literature (5–17,35,64) (Supplementary
Material, Table S6). Where established psoriasis variants were not
present in our study, we identified tested SNVs within 500 kb with
which they are in LD (r2> 0.8); of these, we used the SNV in stron-
gest LD as a proxy for the established variant.

Single marker association testing

We used a linear mixed model (LMM) implemented in EMMAX
(27) to test for association of single variants in each of the four
studies. In each study population, structure was controlled for
using a genetic relatedness matrix derived from the set of 32
403 independent SNVs described above; to avoid confounding
due to LD and known psoriasis association, we also estimated
genomic inflation using the P-values of association for these
SNVs. Evaluation of quantile-quantile (QQ) plots indicated that
inflation was minimal (Supplementary Material, Fig. S2), with
median genomic control (kGC) values ranging from 1.005 to 1.048
across the four studies. We subsequently performed standard-
error weighted fixed-effect meta-analysis using METAL (current
version) (65) to obtain combined P-values. Since EMMAX does
not guarantee the accuracy of effect size estimates for binary
traits, we estimated odds ratios (ORs) separately. For this we
used PLINK (v1.9; www.cog-genomics.org/plink/1.9/; date last
accessed August 15, 2017) (66) to perform logistic regression for
each study with the first ten principal components as covari-
ates, and the ‘meta’ package (67) in R for meta-analysis. We ver-
ified that the P-values generated under this method are
consistent with our primary results generated by the LMM
(Supplementary Material, Fig. S3).

Single variants were only considered significantly associated
with psoriasis susceptibility if their direction of effect was con-
sistent across all four studies and P-value of association was

below the exome-wide significance threshold of 3.0� 10�7 (cor-
responding to 0.05/167 587 variants tested).

Where significantly associated protein-altering variants
were identified in established psoriasis susceptibility loci, we
assessed the degree to which each protein-altering variant cor-
responds to established association signal. This was done by es-
timating LD between the protein-altering variant and the
known associated variant, and where a suitable proxy for the
known variant existed in our data, by performing (bidirectional)
conditional association testing with the protein-altering vari-
ant. Conditional association P-values were generated using
EMMAX and METAL as above, with the genotype of the SNV to
be conditioned on included as a fixed covariate in EMMAX and
with the same genetic relatedness matrices as the uncondi-
tioned analysis.

Gene-based association testing

We prepared genotype data for gene-based association testing
using EPACTS (v3.2.3; http://genome.sph.umich.edu/wiki/
EPACTS; date last accessed August 15, 2017) to annotate vari-
ants. We used RAREMETALWORKER (v4.13.5) (68) to generate
score statistics and covariance information based on individual
markers in each study; population structure was controlled
for using a genetic relatedness matrix derived from the set
of 32 403 independent SNVs described above. We subsequently
used rareMETALS2 (v0.1; http://genome.sph.umich.edu/wiki/
RareMETALS2; date last accessed August 15, 2017) to perform
combined gene-level meta-analysis, for each gene including
all variants annotated as protein-altering (nonsynonymous,
stop-gain and essential splice site) and having MAF below a
fixed threshold. These combined tests comprised the GRANVIL
(69) (burden) test and SKAT (30) (variance component) test,
using MAF thresholds of both 0.01 and 0.05. To correct for
exome-wide testing, we used a Bonferroni-corrected threshold
of 0.05/20,000¼ 2.5� 10�6 to classify genes as significantly associ-
ated with psoriasis susceptibility. Since RAREMETALWORKER and
rareMETALS2 also provide single marker association test results
we confirmed that meta-analysis P-values and effect sizes gener-
ated in this way are consistent with our primary results obtained
as described above (Supplementary Material, Fig. S4 and Table S4).

ORs were estimated for gene-based tests by collapsing all in-
cluded rare variants across each gene into a single genotype,
and performing logistic regression in PLINK and meta-analysis
using the R ‘meta’ package as for single marker association test-
ing (described above).

Since both genes achieving exome-wide significance fell
within established psoriasis susceptibility loci for which
exome-wide significant single variants were identified by our
earlier analysis, we tested for gene-level association signal that
could be attributed to rare variants independently of these
known single variants. This was done by repeating the gene-
level association tests and conditioning on the associated single
variants, using the conditional analysis function implemented
in rareMETALS2 (and excluding from the set of variants to be ag-
gregated any associated single variants with sufficiently low
MAF to be otherwise included).

We further investigated genes in all established psoriasis
susceptibility loci. Our data included rare or low-frequency pro-
tein-altering variants in 412 genes located within 250 kb of a
previously or newly reported single variant association. We
checked these genes for GRANVIL and SKAT test P-values below
a threshold of 0.05/412¼ 1.214� 10�4.
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Variant effect

We predicted variant effects using three in silico tools. We con-
sider SIFT (70) scores below 0.05, PolyPhen-2 (71) estimated
false-positive rate below 0.05 and scaled CADD (72) scores above
20 to indicate a predicted functional effect. For all variants,
scores for all three prediction tools were generated via
wANNOVAR (73). All amino acid substitutions described refer to
the canonical protein sequence as defined by UniProt (74).

Exome array coverage

We collated variants included in the original exome array de-
sign from the online documentation (http://genome.sph.umich.
edu/wiki/Exome_Chip_Design; date last accessed August 15,
2017). Variants subsequently included on each of the genotyp-
ing arrays used were obtained from the relevant manufacturer
(Illumina or Affymetrix; Supplementary Material, Table S1).

To estimate the coverage of protein-altering variants by the
genotyping arrays we downloaded annotated ExAC variants (re-
lease 0.3.1) (75). Biallelic SNVs were extracted which included an
annotation of moderate or high impact to at least one protein-
coding transcript. We further filtered these variants to those
with non-zero alternative allele count in 33 370 European sam-
ples based on variant calls for at least 10 000 chromosomes.
After excluding SNVs on non-autosomal chromosomes and
those within the MHC region this resulted in 1 655 908 SNVs,
of which 14 123 were common (MAF� 0.05), 9957 were low-
frequency (0.01�MAF< 0.05), 32 029 were rare but not very rare
(0.001�MAF< 0.01). The majority (1 599 799) had MAF below
0.001.

To assess coverage of potential causal variants in estab-
lished non-MHC psoriasis susceptibility loci, we searched for
variants in 1000 Genomes European samples that are in moder-
ate LD (r2� 0.2) with a previously reported association, as de-
scribed above. This resulted in 17 215 SNVs in total. To identify
candidate exonic variants we extracted those which included a
SIFT, PolyPhen or CADD annotation predicting impaired protein
function.

Supplementary Material
Supplementary Material is available at HMG online.
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Gyulai, R. (2014) Genetic risk and protective factors of
TNFSF15 gene variants detected using single nucleotide
polymorphisms in Hungarians with psoriasis and psoriatic
arthritis. Hum. Immunol., 75, 159–162.

30. Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011)
Rare-variant association testing for sequencing data with
the sequence kernel association test. Am. J. Hum. Genet., 89,
82–93.

31. Li, Y., Liao, W., Cargill, M., Chang, M., Matsunami, N., Feng,
B.J., Poon, A., Callis-Duffin, K.P., Catanese, J.J., Bowcock, A.M.
et al. (2010) Carriers of rare missense variants in IFIH1 are
protected from psoriasis. J. Invest. Dermatol., 130, 2768–2772.

4311Human Molecular Genetics, 2017, Vol. 26, No. 21 |

Downloaded from https://academic.oup.com/hmg/article-abstract/26/21/4301/4093722
by King's College London user
on 06 June 2018



32. Babon, J.J., Lucet, I.S., Murphy, J.M., Nicola, N.A. and
Varghese, L.N. (2014) The molecular regulation of Janus ki-
nase (JAK) activation. Biochem. J., 462, 1–13.

33. Loo, Y.M. and Gale, M. Jr. (2011) Immune signalling by
RIG-I-like receptors. Immunity, 34, 680–692.
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