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Background and aims: Acute ischemia is associated with myocardial endothelial damage and microvessel
formation, resulting in leakage of plasma albumin into the myocardial extravascular space. In this study,
we tested whether an albumin-binding intravascular contrast agent (gadofosveset) allows for improved
quantification of myocardial permeability compared to the conventional extracellular contrast agent Gd-
DTPA using late gadolinium enhancement (LGE) and T1 mapping in vivo.
Methods: MI was induced in C57BL/6 mice (n¼ 6) and cardiac magnetic resonance imaging (CMR) was
performed at 3, 10 and 21 days post-MI using Gd-DTPA and 24 h later using gadofosveset. Functional, LGE
and T1 mapping protocols were performed 45 min post-injection of the contrast agent.
Results: LGE images showed that both contrast agents provided similar measurements of infarct area at
all time points following MI. Importantly, the myocardial R1 measurements after administration of
gadofosveset were higher in the acute phase-day 3 (R1 [s�1]¼ 6.29± 0.29) compared to the maturation
phase-days 10 and 21 (R1 [s�1]¼ 4.76± 0.30 and 4.48± 0.14), suggesting that the uptake of this agent
could be used to stage myocardial remodeling. No differences in myocardial R1 were observed after
administration of Gd-DTPA at different time points post-MI (R1 [s�1]¼ 3d: 3.77± 0.37; 10d: 2.74± 0.06;
21d: 3.35± 0.26). The MRI results were validated by ex vivo histology that showed albumin leakage in the
myocardium in the acute phase and microvessel formation at later stages.
Conclusions: We demonstrate the merits of an albumin-binding contrast agent for monitoring changes in
myocardial permeability between acute ischemia and chronic post-MI myocardial remodeling.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Myocardial infarction (MI) remains the leading cause of heart
failure, morbidity and mortality in the Western societies [1]. Post-
MI remodeling is generally thought to be subdivided in two suc-
cessive and overlapping phases: an acute inflammatory stage and a
chronic maturation stage [2]. The first is characterized by the influx
of leukocytes (neutrophils and inflammatory monocytes) to release
inflammatory mediators and remove cellular debris [3] while the
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second is initiated by the influx of reparative monocytes that
orchestrate the healing response which includes the deposition of
collagen and elastin and the formation of microvessels to restore
blood supply [4]. These processes are regulated by a complex
signaling cascade leading to transcriptional, structural, electro-
physiological, and functional events occurring within the car-
diomyocytes [5]. Remodeling is therefore a dynamic and time-
dependent process, with changes occurring in both the necrotic
region and the adjacent non-infarcted remote myocardium [6,7].

The extent of myocardial damage and its locationwithin the left
ventricle (LV) directly affects the magnitude of LV remodeling [8].
The underlying mechanisms of LV remodeling are closely related to
the infarction itself, including cell death and loss of contractile
activity within the affected zone and secondary ventricular dilation
and remodeling in the LV regions remote to the infarct as a result of
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

set: A potential marker for permeability in myocardial infarction,
24

http://creativecommons.org/licenses/by/4.0/
mailto:begona.lavin_plaza@kcl.ac.uk
www.sciencedirect.com/science/journal/00219150
http://www.elsevier.com/locate/atherosclerosis
https://doi.org/10.1016/j.atherosclerosis.2018.04.024
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.atherosclerosis.2018.04.024
https://doi.org/10.1016/j.atherosclerosis.2018.04.024


B. Lavin et al. / Atherosclerosis xxx (2018) 1e92
increased hemodynamic burden [9]. It is well established that the
endothelium is significantly damaged during the acute stage of MI
[10,11] and associated with an increase in the intercellular junction
width [12,13]. Normal junctions allow the transport of small water-
soluble molecules up to a diameter of 2 nm [14] whereas breaks in
the tight junctions allows for the transport of molecules up to
20 nm diameter and more [15,16] facilitating the influx of serum
albumin (diameter of z6 nm). At the late stage of MI, gap junction
width seems to reverse to normal size based on electron micro-
scopy studies [17], thereby decreasing leakage of large molecules
into the diseased tissue [13].

Animal models of MI are important in research to understand
the complex pathophysiology of ischemic heart disease [18] and are
essential for testing therapeutic approaches for the treatment of MI.
There are currently two widely used murine models of left anterior
descending (LAD) ligation to induce myocardial infarction: a per-
manent ligation of the LAD, as used in this study, and an ischemia
reperfusion injury model. Similar to human MI, interruption of
blood flow to the myocardial territory supplied by the LAD pro-
duces profound ischemia in the anterolateral territory of the heart
which then manifests as an acute MI. Both models have been
extensively used for the better understanding of the underlying
mechanisms of post-MI remodeling at the cellular and molecular
levels [19e22]. Briefly, permanent ligation of the LAD is associated
with ischemic necrosis and increased inflammation, whereas the
ischemia-reperfusion injury model is associated to cell death via
apoptosis and limited ischemic necrosis [23]. Additionally, these
models have been used to assess the changes in cardiac function at
different time points following injury using different imaging mo-
dalities. Both models lead to cardiac dysfunction including systolic
and diastolic dysfunction associated with adverse myocardial
remodeling that could lead to the development of heart failure
[24e26]. Albumin is the most abundant protein in human plasma,
accounting for half of all serum proteins [27]. Approximately 33% of
albumin can be found in the intravascular compartment, while the
remaining 67% is in the extravascular exchangeable and remote
compartments [28]. In diseases such as atherosclerosis [29] and
myocardial infarction [30], an increase in albumin leakage is
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expected due to acute endothelial damage and later microvessel
formation [31].

In order to investigate focal changes in myocardial permeability,
which may provide a non-invasive tool for the assessment of
ischemic endothelial damage in infarcted myocardium [32] and
microvessel formation, we used cardiac magnetic resonance im-
aging (CMR). Late gadolinium enhancement (LGE) MRI is the gold-
standard technique to estimate infarct area after injection of Gd-
DTPA (gadolinium diethylene triamine pentaacetic acid) [33e35].
We hypothesize that injection of the intravascular albumin-binding
contrast agent gadofosveset may provide a measure of infarct area
using LGE (similar to conventional Gd-DTPA) but also unveils
temporal changes in myocardial permeability in acute ischemia
using T1 mapping. To quantify gadofosveset uptake as a non-
invasive surrogate measure of permeability we performed T1
mapping of the myocardium in addition to high resolution LGE
imaging for direct infarct visualization. Gadofosveset, commercially
known as Ablavar®, is a clinically approved gadolinium-based blood
pool contrast agent that reversibly binds to serum albumin,
resulting in a prolonged vascular presence and a 5e10-fold increase
in relaxivity (r1) [36e38]. Gadofosveset may enter the interstitium
through leaky microvessels [39] and mechanically damaged
endothelium as we previously demonstrated in a mouse model of
atherosclerosis [39e43]. We sought to investigate whether
contrast-enhanced MRI using gadofosveset could provide infor-
mation on changes in myocardial permeability to differentiate be-
tween acute ischemia and chronic post-MI remodeling using LGE
and T1 mapping in vivo at high field.

2. Materials and methods

2.1. Animal model

In this longitudinal study, 6 female wild-type C57BL/6 mice
weighing 18e24 g were purchased from Harlan Laboratories
(Blackthorn, United Kingdom). Left coronary artery permanent
ligationwas used to inducemyocardial infarction (MI). The protocol
design is detailed in Fig. 1. Surgery was performed with 1.5%
 CMR 10 days 
post-MI

(n=6)

CMR 21 days 
post-MI

(n=6)

A (n=6):
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isoflurane and a mix of O2/medical air at a flow rate of 2 l/min.
Animals underwent endotracheal intubation and were ventilated
using a dedicated small animal ventilator (Hugo Sacks Elektronic,
Germany). A lateral thoracotomy was made, the chest wall muscles
were incised and reflected, and the thorax opened in the fourth
intercostal space. The pericardium was removed to access the
epicardial surface. The left coronary artery was ligated using 8/
0 Ethilon suture, at a level between 1 and 2mm below the tip of the
left atrium. Successful ligationwas confirmed by regional blanching
of the left ventricle, extending to the apex. The chest wall was then
repaired in layers and the animals weaned from the ventilator. Mice
were recovered in a warmed chamber for at least 6 h. Perioperative
analgesia with buprenorphine (0.15mg/kg) intramuscularly and
flunixin (2.5mg/kg) subcutaneously was used. All procedures used
in these studies were performed in accordance with institutional
guidelines, following the European Communities Council Directive
2010/63/EU on the protection of animals used for scientific pur-
poses, and UK Home Office legislation (The Animals (Scientific
Procedures) Act 1986).

2.2. In vivo CMR at 7 T

In vivo CMR was performed in 6 mice using a 7 T horizontal MR
scanner (Agilent, Varian Inc., Palo Alto, CA) equipped with a
gradient coil with an inner diameter of 12 cm and gradient strength
and rise-time were 1000mT/m (100G/cm) and 120 ms, respectively.
A quadrature transmit/receive coil (RAPID Biomedical GmbH, Ger-
many) with an internal diameter of 39mmwas used. Six mice were
imaged prior to and at 3, 10 and 21 days post-MI after intraperi-
toneal (i.p.) injection of 0.75mmol/kg Gd-DTPA (Magnevist®, Bayer
Schering Pharma AG, Berlin-Wedding, Germany). Mice were
imaged in prone position at 30, 45, 60, 75 and 90min after Gd-DTPA
administration. After a washout period of 24 h, 0.75mmol/kg of
gadofosveset trisodium (Ablavar®, Lantheus Medical Imaging,
North Billerica, MA) was administered i.p. in the same mice and
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CMR was repeated at 30, 45, 60, 75 and 90min after Gadovosveset
administration. Anaesthesia was induced with 5% and maintained
with 1e2% isoflurane during the CMR session and the body tem-
perature was maintained at 37 �C using warm air fan (SA In-
struments, Stony Brook, NY). The electrocardiogram (ECG) was
monitored using twometallic needles placed subcutaneously in the
front paws. A pressure-transducer for respiratory gating was placed
on the abdomen of the mice. Following scout scans, multi slice
Cine-FLASH images were acquired to measure functional and
volumetric parameters with a FOV¼ 25� 25mm2, slide thick-
ness¼ 1mm, matrix size 128� 128, 9 to 10 frames/cycle, 9 slices,
flip angle¼ 40�, cardiac cycle¼ 120± 30ms, acquisition time
z8min. An ECG triggered, single slice, Look-Locker acquisitionwas
used for T1 mapping and to measure R1 values of the remote and
infarcted myocardium. The slice was selected based on the
maximum infarct extension detected on cine-FLASH images. T1
mapping was also employed to obtain R1 values for pharmacoki-
netic measurements. LGE images were obtained from one frame of
the T1 mapping sequence and used for the measurement of infarct
area. Imaging parameters included FOV¼ 25� 25mm2, slice
thickness¼ 1mm, matrix size¼ 128� 128, 3 phases/cycle, total of
30 phases, 1 slice, flip angle¼ 10�, TR¼ 2700ms, TReff z40ms
((cardiac cycle)/(3 phase/cycle)), TE¼ 2ms, BW¼ 10MHz, cardiac
cycle¼ 120± 20ms, number of averages¼ 1, acquisition
timez 13min.

2.3. CMR data analysis

Functional and volumetric parameters were calculated from
cine-FLASH images and areas of contrast-enhancement were
calculated using LGE images with a semi-automated in-house
developed computer software program (King's College London,
ClinicalVolumes). Ejection fraction (EF), left ventricular end-
diastolic volume (LVEDV), left ventricular end-systolic volume
(LVESV), stroke volume (SV), and left ventricular (LV) mass were
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measured to evaluate the effect of MI on cardiac function and
remodeling at all time points as previously reported [44].

Look-Locker T1 mapping resulted in 30 images (3 per cardiac
cycle) fromwhich R1 values of blood, infarcted, remote and healthy
myocardium were calculated using an exponential 3 parameter fit
(A-B*exp (-TI/T1*)) with subsequent T1 correction (OriginLab Cor-
poration, Wellesley, USA). The inversion delays (TI) ranged from
120 ms to 1364 ms for a mouse with a heart rate of 400 bpm
(RR ¼ 120 ms). A flip angle correction was introduced to determine
the T1 values as follows [45]:

T1 ¼ T*1 ðB=A� 1Þ [1]

For T1mapping and LGE analysis, images were segmented at the
end-diastolic phase due to the better contrast between the
enhanced and remote areas compared to other time points during
the cardiac cycle.

Contrast-to-noise ratio (CNR) between infarcted and remote
myocardium was calculated using the following equation:

CNRinfarct=remote ¼
SIinfarct � SIremote

SDnoise
[2]

No dedicated noise scan was used. Noise was measured in air,
outside of the mouse. No Rayleigh correction was applied.
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2.4. Histological analysis

At the end of the CMR scans, mice (n¼ 6) were culled by cervical
dislocation and the hearts were harvested. An additional 3 hearts
were used for histology at 3 and 10 days post-MI. Hearts were
perfused with saline, harvested and immersed in 10% formalin for
48 h at 4 �C. Hearts were then embedded in paraffin and sectioned
into 5 mm-thick transverse slices. Sections were stained with Mas-
son's trichrome (Sigma-Aldrich, Dorset, UK) to assess tissue
morphology and visualize the infarct, CD31 immunohistochemistry
to detect endothelial cells and microvessels, and albumin immu-
nohistochemistry for intraventricular albumin detection.

For CD31 immunohistochemistry, sections were immersed in 3%
H2O2 in methanol to block endogenous peroxidase. Sections were
then immersed in 0.01M citrate buffer, pH 6.0, and boiled for 3min,
washed and blocked for 1 h with 10% donkey serum and then
incubated overnight with the primary antibody [rabbit anti-mouse
CD31 (1:50; Abcam, Cambridge, UK)]. Sections were washed and
incubated with anti-rabbit HRP Polymer [X-Cell Plus Universal
Polymer HRP detection kit (Biocare LLC, Concord, CA)] followed by
peroxidase substrate to detect the signal (Vector® SG Peroxidase
substrate; Vector Laboratories, Burlingame, CA). Sections were
counterstained with nuclear fast red. For albumin immunohisto-
chemistry, the same protocol was performed and samples were
incubated overnight with the primary antibody [goat anti-mouse
serum albumin (1:5000; Abcam, Cambridge, UK)]. Sections were
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washed and incubated with secondary antibody [donkey anti-goat
biotinylated antibody (1:200; Abcam, Cambridge, UK)] followed by
streptavidin-peroxidase complex to amplify the signal (ABC Vec-
tastain® kit; Vector Laboratories, Peterborough, UK), and dia-
minobenzidine/H2O2 solution to detect the signal (DAB peroxidase
substrate kit; Vector Laboratories, Burlingame, CA). Sections were
counterstained with hematoxylin. Negative control sections were
incubated without the primary antibody.
2.5. Statistical analysis

Results are expressed as mean± SEM. Statistical differences
were determined using GraphPad Prism 5.0 (GraphPad software,
Inc., La Jolla, California, USA). Differences between time points and
contrast agents were analyzed using 1 way ANOVA followed by a
Dunns post hoc multiple comparison test. Bland-Altman method
was used to test the agreement between the two contrast agents. P-
values < 0.05 were used to define statistical significance.
3. Results

3.1. Cardiac functional and volumetric parameters post-MI

Cine-FLASH images were used to assess ejection fraction, left
ventricular (LV) volumes and mass (n¼ 6). Representative dia-
stolic and systolic short-axis images of control, 3, 10 and 21 days
post-MI hearts showed a significant enlargement of the LV and
myocardial wall thinning at the later stages of infarction (Fig. 2A;
arrows). Functional and volumetric analysis revealed a decrease
in the contractile function of the heart measured as ejection
fraction (%EF) from 10 days post-MI onwards (Fig. 2B). A
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continuous increase in LV end-diastolic volume (LVEDV) and LV
end-systolic volume (LVESV) were detected over time, corrobo-
rating the enlargement of the LV (Fig. 2C and D, respectively) and
an increase of stroke volume and mass of the heart 21 days after
MI (Fig. 2E and F).
3.2. Pharmacokinetics of Gd-DTPA and gadofosveset at 3 days post-
MI

Pharmacokinetics of Gd-DTPA and gadofosveset (n¼ 6) were
investigated at 3 days post-MI to determine the optimum imaging
time point for MI imaging. The relaxation rate (R1) of both the
ischemic myocardium and blood peaked at 30min and was main-
tained for at least 90min after administration of either Gd-DTPA or
gadofosveset. However, gadofosveset showed increased R1 values
compared to Gd-DTPA in the ischemic myocardium and blood
(Fig. 3A and B) owing to its higher relaxivity upon binding to al-
bumin. Based on the pharmacokinetic curves, subsequent CMR
scans were performed at 45min after injection of either contrast
agent due to the bigger difference between ischemic myocardium
and blood at this time point (Fig. 3B).
3.3. LGE assessment of ischemic area using Gd-DTPA and
gadofosveset

Infarct area was similar as measured by LGE MRI after admin-
istration of either Gd-DTPA or gadofosveset (Fig. 3C). Sharper im-
ages and therefore easier delineation of the ischemic myocardium
were achieved using gadofosveset at 3 days post-MI compared to
corresponding Gd-DTPA images. However, at later time points the
delineation of the ischemic area became more challenging due to
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0

2

4

6

8 Gd-DTPA Gadofosveset

In
fa

rc
te

d
m

yo
ca

rd
iu

m
R

el
a x

at
i o

n
R

at
e

R
1

(s
- 1

)

**

**

** **

B

0

50

100

150
Gd-DTPA Gadofosveset

3 days 10 days 21 days

C
N

R
(In

fa
rc

tv
s

R
e m

ot
e ) *

*

E

Infarct

10 days 21 days

*
*

** **

adofosveset in the infarcted area over time.
e when using gadofosveset compared to Gd-DTPA (n¼ 6). Significant differences are
eset (D) (n¼ 6). In addition, gadofosveset uptake shows significant differences between
ssel formation at later stages (D). (E) Increased contrast-to-noise ratio (CNR) is detected

set: A potential marker for permeability in myocardial infarction,
24



B. Lavin et al. / Atherosclerosis xxx (2018) 1e96
the thinning of the ventricular wall irrespective of which contrast
agent was used (Fig. 3A and C). Contrast-enhanced ischemic areas
were similar at all time points post-MI as measured with both
contrast agents (Fig. 3C). The agreement between the delayed-
enhanced MRI area measured with Gd-DTPA or gadofosveset was
also confirmed by using the Bland-Altman analysis (Fig. 3D), sug-
gesting a role of gadofosveset as an alternative to Gd-DTPA for the
assessment of area at risk.
3.4. In-vivo quantification of contrast agent uptake during MI
remodeling using T1 mapping after Gd-DTPA and gadofosveset
administration

Measurement of the relaxation rate (R1) in situ allows quantifi-
cation of gadolinium uptake in the ischemic and remote myocar-
dium. The analysis showed significantly higher R1 values in both
the remote (Fig. 4A) and ischemic myocardium (Fig. 4B) after in-
jection of gadofosveset compared to Gd-DTPA at all time points
post-MI. The R1 values of the ischemic myocardium were higher
compared to the remote myocardium after administration of both
Gd-DTPA and gadofosveset at all time points post-MI (Fig. 4C and
D). However, the R1 values of the ischemic myocardium showed
significant differences between the acute phase (3 days post-MI)
and the maturation phase (10 and 21 days post-MI) only after
administration of gadofosveset (Fig. 4D). Finally, increased
contrast-to-noise ratio (CNR) between remote and ischemic
myocardiumwas observed at 3 and 10 days post-MI after injection
of gadofosveset compared with Gd-DTPA. No differences were
detected at 21 days (Fig. 4E). These results suggest that R1 mea-
surements are a more sensitive method compared to CNR and can
provide additional information about the evolution of MI.
Control 3 daysA

B C

D E

Fig. 5. Increase albumin extravasation correlates with microvessel formation in the infarct
(A) Representative trichrome images prior to and at 3, 10 and 21 days post-MI where the
nohistochemistry (brown signal) suggested higher levels of albumin in the infarcted area 3
post-MI show that albumin distribution is located mainly in the infarcted area. (F and G) Rep
Representative images of microvessels with different size and maturation state formed in t
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3.5. Ex vivo histological findings

Ex vivo histological analysis corroborated the in vivo MRI find-
ings. Representative trichrome staining of hearts prior to and 3, 10
and 21 days post-MI showed the morphological changes (arrows)
after MI, which were primarily characterized by a significant in-
crease in collagen deposition (blue) in the ischemic area by day 21
(Fig. 5A). Albumin immunohistochemistry (albumin: brown signal,
nuclei: purple) was used to detect leakage of blood albumin into the
myocardium. In control animals, low albumin leakage was detected
(Fig. 5B). However, significant albumin immunopositive areas in
and throughout the area at risk were detected at 3 days after MI
(Fig. 5C), confirming the increased leakage of albumin in the acute
stage after MI as seen byMRI. At 10 and 21 days post-MI, a decrease
in albumin staining compared to 3 days was detected. However,
albumin staining was higher than in the control group and mainly
located in ischemic myocardium (Fig. 5D and Fig. E, respectively).
The remote myocardium showed similar albumin staining as
compared to control mice (data not shown). CD31 staining (CD31:
black signal, nuclei: pink signal) allowed visualization of micro-
vessels. A representative image of the control (Fig. 5F) showed low
number of vessels (Fig. 5G). Increased density of microvessels with
different sizes and maturation phases were detected in the
ischemic myocardium at 21 days post-MI. Representative images
are presented in Fig. 5HeK, suggesting that this increase in
microvessels could contribute to the elevated myocardial perme-
ability of the infarcted area at later stages following MI as seen by
MRI.
4. Discussion

Noninvasive assessment of cardiac permeability after MI can
10 days 21 days

F G

H
I J

K

ed area over time.
infarcted area can be identified (arrows). Visual assessment of serum albumin immu-
days after MI (C), when compared to the control (B). Images at 10 (D) and 21 (E) days
resentative CD31 immunohistochemistry (black signal) in healthy myocardium. (HeK)
he ischemic area 21 days post-MI.
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provide important diagnostic information not only on the extent of
the ischemia, but also on the extravasation and distribution of
macromolecules within the injured myocardium allowing the
staging of different phases post-MI. In this study, we demonstrate
that [1] measurements of LGE areas using gadofosveset are com-
parable to the gold-standard, Gd-DTPA. Importantly, gadofosveset
shows higher signal intensity which makes visualization and
delineation of the ischemic area easier. [2] Increased permeability
measured by T1 mapping shows increased R1 relaxation rates 3
days post-MI, due to the acute endothelial damage that is main-
tained at later time points of MI due tomicrovessel formation in the
infarcted myocardium. In vivo MRI analysis was validated using
ex vivo measurements of permeability and microvessel formation
using albumin and CD31 immunohistochemistry, respectively. We
proposed that uptake of gadofosveset into the ischemic area
measured by T1 mapping may help to differentiate between acute
ischemia and chronic remodeling post-MI.

In our study, all mice showed progressive LV dilation that was
accompanied with a reduction in global contractile function
(ejection fraction around 40%) after MI. In addition, stroke volume
and mass were significantly increased at later time points sug-
gesting alteration of the heart. These measurements are in good
agreement with other studies that evaluated cardiac function in
this animal model using different imaging modalities [46,47].
Different Gd-based contrast agents are routinely used in the clinic
for the assessment of scar size and % transmurality in patients after
MI [48,49]. LGE imaging is usually performed using the extracel-
lular contrast agent Gd-DTPA. Several cases of nephrogenic sys-
temic fibrosis (NSF) in patients with renal failure have been
reported after the administration of Gd-DTPA [50]. As an alterna-
tive, cyclic chelates such as Gd-DOTA (e.g. Gadobutrol) that are
classified as low-risk media and have higher relaxivity compared to
Gd-DTPA (Magnevist): r1¼3.9mmol�1s�1; Gd-DOTA (Gadobu-
trol): r1¼4.7mmol�1s�1) at 1.5 T are currently used in the clinic
[51]. Although these contrast agents provide valuable information
about scar and fibrosis, they provide little information about bio-
logical processes that can critically contribute to the outcome of
patients post-MI. Gadofosveset is an albumin-binding blood pool
contrast agent that has been used to prolong the acquisition win-
dow to enable steady state high resolution angiography and to
improve the delineation of the vasculature [52]. Experimentally, it
has also been used in patients with carotid [39] and coronary [53]
atherosclerosis for imaging the vessel wall. Gadofosveset is char-
acterized by its significantly higher relaxivity when bound to al-
bumin (r1¼18-20mmol�1s�1 at 1.5 T) [36e38]. The r1 relaxivity of
unbound gadofosveset in PBS is r1free z6.5mmol/l compared to
5mmol/L for Gd-DTPA and gadobutrol due to its higher molecular
weight. The free fraction (unbound) was measured by simply
diluting gadofosveset in PBS in the absence of albumin in solution
[36e38]. When gadofosveset was incubated with murine plasma
60% binds to plasma albumin and 40% remains as a free fraction.
Thus in vivo, both free and bound fractions of gadofosveset are
present and both can leak through the disrupted endothelium of
the coronary arteries or enter the myocardium through leaky
neovessels. However, to which percentage the free and the found
fraction enter the myocardium remains unknown. We suggest that
three possible mechanisms may lead to gadofosveset uptake in the
myocardium: [1] unbound gadofosveset leaks into the myocar-
dium; [2] unbound gadofosveset leaks into the myocardium and
binds to intra-myocardial albumin; and [3] bound gadofosveset
leaks into the myocardium. Gadofosveset also has longer blood half
life time due to its interaction with albumin allowing for a longer
imaging window and enabling acquisitions during the steady-state.
In the present study, we demonstrate that imaging with gado-
fosveset provides similar LGE areas as compared to Gd-DTPA but
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with higher signal intensity which facilitates scar visualization and
delineation. At high field (7 T), the relaxivity of Gd-DTPA and
gadofosveset are significantly lower compared with that at lower
magnetic field strength (3.48mmol�1s�1 and 4.56mmol�1s�1,
respectively) [54,55]. At lower, and clinically relevant, magnetic
field strength gadofosveset would have even higher relaxivities and
differentiation between the albumin-bound and free fraction of the
agent would be possible using T1 mapping. This effect may further
aid detection and analysis of the ischemic area.

After MI, the ischemic tissue undergoes severe changes in
cellular and extracellular matrix composition leading to an increase
in the extracellular volume [56,57]. Acute myocardial injury,
defined by cardiomyocyte death and endothelial damage, leads to
increased leakage of plasma macromolecules [58]. Gadofosveset
has been recently used to assess focal changes in vascular perme-
ability and remodeling in animal models of atherosclerosis and
patients with cardiovascular disease, as its extravasation occurs
mainly though damaged endothelium or microvessels [39e43]. In
this study, the highest permeability occurred 3 days post-MI which
was reflected by a significant increase in the R1 values in the infarct
after injection of gadofosveset. This is most likely due to the acute
damage of the cardiac endothelium, which allows non-restricted
leakage of macromolecules, such as albumin, from the blood into
the ventricular wall, leading to a higher permeability that it is not
associated with ventricular remodeling. This result is in good
agreement with the ex vivo histological validation where highest
and diffused albumin extravasation is present 3 days post-MI. At
later time points (10 and 21 days post-MI), increased R1 values after
gadofosveset administrationwhere observed in areas of the LV wall
with increased microvessel formation. In contrast, R1 values
measured after Gd-DTPA administration did not change between 3
and 21 days, thus providing limited information about LV remod-
eling post-MI. Moreover, both Gd-DTPA and gadofosveset led to
higher R1 values in infarcted tissue compared to remote myocar-
dium, demonstrating that both contrast agents preferentially
extravasate into injured tissues. Similarly to our results, Saed et al.
demonstrated the presence and distribution of abnormal micro-
vascular hyperpermeability in a rat model of ischemia-reperfusion
using a different albumin-binding MR contrast agent (albumin-
(biotin)10-(Gd-DTPA)25) [30].

Gd-DTPA and gadofosveset have been also compared in other
animal models and man. Using a canine model of ischemia reper-
fusion, Gd-DTPA showed better characteristics for myocardial scar
visualization compared with Gd-BOPTA (MultiHance) and gado-
fosveset. However, a single imaging session 90min after reperfu-
sion of the hearts was performed in these studies and a thus the
temporal changes of contrast uptake within the remodeled
myocardiumwas not investigated [59]. In patients with chronic MI,
the number of segments and the transmurality of scar were
underestimated by gadofosveset as compared to Gd-DTPA [35].
However, the accuracy of LGE images with gadofosveset was higher
compared with those reported for Gd-DTPA. Additionally, in these
studies only LGE MRI was used and no T1 mapping quantification
was performed. In our study, we implemented LGE and also T1
mapping protocols that allowed quantification of not only the LGE
area but also myocardial relaxation rate that allows for more
quantitative assessment of contrast agent uptake.

The noninvasive assessment of cardiac permeability and neo-
vascularization in the infarctedmyocardiummay be a useful tool to
characterize ventricular remodeling after MI and may lead to a
more accurate diagnosis and treatment guidance by differentiating
the acute for the maturation phase of the myocardial remodeling
process. This study demonstrates that gadofosveset has the po-
tential to visualize and quantify microvascular changes associated
with post infarction healing, allowing the differentiation between
set: A potential marker for permeability in myocardial infarction,
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the acute and maturation phases post-MI. This approach could
provide new valuable information for the stratification of patients
in order to use a more targeted therapeutic intervention.

4.1. Limitations

One of the limitations of our study is the high dose of contrast
agent used (10 fold compared to the clinically approved dose) due
to low signal intensity obtained at the 7 T pre-clinical scanner and
probably because of the use of intraperitoneal injection as opposed
to the clinical standard intravenous injection, also resulting in a
prolonged washout period. Therefore, additional studies are
needed to investigate the optimal contrast agent dose administered
at lower field strength (e.g. 3 T). In addition, to obtain better im-
aging quality of the ischemic myocardium, a wash out period of
gadofosveset from blood is required, which would delay the im-
aging protocol. An additional limitation is the use of a permanent
ligation animal model of MI. Additional studies using an ischemia-
reperfusion model could potentially increase the clinical applica-
bility of this study. In addition, because of the limited number of
animals used in this study we did not have enough specimens to
quantify the increase in albumin/CD31 staining by complimentary
ex vivomethods. Our aimwas to provide a proof of principle on the
potential mechanism underlying the uptake of contrast agent into
the myocardium but not to perform an extensive ex vivo quantifi-
cation of the changes in albumin or neovessels density.

4.2. Conclusion

We demonstrate that both Gd-DTPA and gadofosveset provide
comparable measurements of ischemic area. Additionally, the
combination of LGE and T1 mapping after administration of
gadofosveset allowed for the detection of changes in myocardial
permeability differentiating acute and chronic phases followingMI.
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