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Abstract  

Aim : Inducible nitric oxide synthase (iNOS) is a key regulator of the innate immune system. The aim of the 

current study was to explore whether innate immune-mediated iNOS and reactive nitrogen species acutely 

perturb acinar cell physiology and calcium homeostasis of exocrine salivary tissues. 

Methods:  Innate immunity in the submandibular gland of C57BL/6 mice was locally activated via intraductal 

retrograde infusion of polyinosinic:polycytidylic acid (poly (I:C). Expressions of iNOS and the activity of the 

reactive nitrogen species peroxynitrite, were evaluated by immunohistochemistry. Mice were pre-treated with 

the selective iNOS inhibitor aminoguanidine in order to substantiate the injurious effect of the nitrosative signal 

on the key calcium regulator sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2b) and calcium 

signalling.  

Results: Challenging salivary gland innate immunity with poly (I:C) prompted upregulated expression of iNOS 

and the generation of peroxynitrite. Inhibition of iNOS/peroxynitrite revealed the role played by upregulated 

nitrosative signalling in: dysregulated expression of SERCA2b, perturbed calcium homeostasis and loss of 

saliva secretion. 

Conclusion: iNOS mediates disruption of exocrine calcium signalling causing secretory dysfunction following 

activation of innate immunity in a novel salivary gland injury model.   

 

Keywords: 3-Nitrotyrosine; calcium; inducible nitric oxide synthase; innate immunity; salivary gland; 

SERCA2b. 
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1. Introduction  

Saliva performs a number of important functions that are essential for the maintenance of oral health [1]. The 

key trigger for saliva secretion is initiated by parasympathetic nerve mediated stimuli and by the action of 

acetylcholine  on acinar cell muscarinic receptors inducing an increase in intracellular calcium [Ca2+] i [2]. 

Increased acinar cell [Ca2+] i leads to regulation of ion channel activities, secretion of electrolyte and generation 

of the appropriate osmotic gradient required to drive fluid secretion [3]. Termination of the autonomimetic 

signal requires pumping out of calcium by plasma-membrane-Ca2+-activated-ATPase, or PMCA [4] and Ca2+
 re-

uptake into the endoplasmic reticulum by the sarco-endoplasmic-reticulum-Ca2+-activated ATPase, or SERCA 

[5; 6]. 

 The most severe forms of long-lasting, irreversible dry mouth are seen in patients exposed to irradiation therapy 

of the head and neck and patients with the autoimmune disease Sjögren's syndrome [1]. Loss of saliva 

production in these patients severely affects their quality of life due to difficult with swallowing, rampant dental 

caries, oral mucosal lesions and fungal infections. The latest advances in elucidating the pathogenesis of primary 

Sjögren’s syndrome suggest that innate immune dysregulation drives the disease, with patients experiencing 

salivary hypofunction [7; 8] as well as aberrant Ca2+ signalling [3; 9]. However, the molecular links between 

these proposed mechanisms have not been previously elucidated.  

Inducible nitric oxide synthase (iNOS) is an inflammatory mediator, the expression of which is increased by a 

wide range of stimuli, such as microbial products and cytokines [10]. In contrast to the constitutive NOS 

isoforms (NOS1 or nNOS, produced by neurons; NOS3 or eNOS, produced by endothelial cells), which produce 

nitric oxide (NO) within seconds, with direct and short acting activities, iNOS produces very large, toxic 

amounts of NO in a sustained manner [11]. In addition, NO and superoxide formed during the inflammatory 

response react, yielding peroxynitrite (ONOO-) anion, which is a potent oxidant and nitrating agent [12]. iNOS-

derived NO and ONOO- have been implicated as potential mediators of exocrine gland damage in murine 

models of Sjögren's syndrome [13] and irradiation [14] and studies in vitro have indicated that nitric oxide 

donors can interfere wth acinar cell calcium signalling (Smith & Dawson) . However, the early physiologic 

responses of the SGs to acute iNOS and ONOO- induction have not been previously investigated. 

In a previous study, the innate immune stimulant poly (I:C) prompted TLR3-mediated SMG injury and loss of 

function, which paralleled extensive upregulation of acinar iNOS [15]. Aminoguanidine (AG), a selective 

inhibitor of iNOS, is a phenylhydrazine compound which has many biological effects with nontoxic function 
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[16]. In the present work, mice were pre-treated with AG to investigate the underlying mechanisms through 

which acute nitrosative stress signals can disrupt the SG physiology.  
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2. Materials and Methods 

2.1 Mice  

Female C57BL/6 mice weighing 18-21 grams (Harlan Labs Ltd., Loughborough, UK) and aged 10-12 weeks 

were housed in a temperature-controlled environment under a 12 h light–dark cycle, with free access to food and 

water. All procedures were approved by the local ethics committee and performed under general anaesthesia 

under a Home Office license. 

2.2 Poly (I:C) injury model and assessment of secretion 

The C57BL/6 mouse SMGs were cannulated as previously described [17]. For recovery experiments, mice were 

anaesthetised intraperitoneally (i.p.) with 0.1 ml of combined 5 mg Ketamine/1 mg Xylazine. Briefly, poly (I:C) 

(P1530-25MG, Sigma-Aldrich) was diluted in saline (4mg/ml) and pre-mixed with Trypan blue (T8154-

100ML-Sigma- Aldrich). Eighty micrograms of poly (I:C) in 20 µls were loaded into a 0.3 ml syringe (6134900, 

VWR International), attached to a glass cannula (Supelco, 25715, PA- USA) which was inserted into Wharton’s 

duct under a stereomicroscope. Poly (I:C) was injected slowly and constantly into the left SMG. The same 

volume of the vehicle was delivered to the right SMG as a contralateral negative control. For functional 

assessment, mice were anaesthetized with 150µl of Pentobarbital Sodium (Euthatal, Merial) 1 mg/ml (i.p.), 

followed by endotracheal intubation. SMG ducts were ventrally exposed and cut. Saliva was collected in pre-

weighed Eppendorf tubes. Saliva collection proceeded for 5 min following stimulation with pilocarpine 

(0.5mg/kg i.p.). The volume of saliva was calculated as 1mg = 1µl saliva and results were expressed as µl 

saliva/min. 

2.3 Aminoguanidine (AG) mouse model 

For short term inhibition, the selective iNOS Inhibitor; aminoguanidine Hydrochloride, 98+% (Sigma, 396494) 

was used (100mg/kg i.p. AG and 0.1 mg AG combined with poly (I:C)). For long term inhibition [18]: 2.5% AG 

in drinking water for 7 days and 0.1 mg AG combined with poly (I:C). While in short term experiments, saliva 

and tissues were collected after 9 hr of poly (I:C) injection, in long term experiments, sample collection took 

place after 24h. 

2.4 Western Blot 

Tissues stored in RNAlater® were retrieved, homogenized in cell lysis buffer (AA-LYS-10 ml- RayBiotech, 

Inc., Norcross, GA) plus protease inhibitor cocktail (1:10 dilution, Calbiochem, UK) using a FastPrep™ tissue 

homogenizer (MP Biomedicals Santa Ana, CA). Protein concentration was measured using the Qubit® protein 
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assay kit (Q33211, Invitrogen™, UK) and Qubit® 3.0 Fluorometer (Q33216, Invitrogen™, UK) and a total of 

15 µg /lane of the different lysates were separated by SDS-PAGE on a 4-12% Novex polyacrylamide gel 

(Invitrogen, UK). Electro-transfer of proteins was done for 1 hour to 0.2 µm pore–size nitrocellulose membrane 

(1620112, Bio-Rad, UK) according to standard protocol (Invitrogen, UK, Paisley), followed by membrane 

blocking with 5% bovine serum albumin. Membranes were incubated at 4°C overnight with an antibody to 

mouse monoclonal 3-nitrtyrosine (3-NT) (Millipore, 05-233, 1:1000) in blocking buffer then washed and 

incubated with the HRP conjugated anti-mouse secondary antibody in blocking buffer at room temperature for 1 

h. For signal development, an Enhanced Chemioluminescence substrate (ECL, GE Healthcare, UK) was 

prepared following the kit manufacturer's recommendations and applied over the membranes. Positive and 

negative protein expression was assessed and captured using ChemiDoc™ MP System (Bio-Rad, UK). 

2.5 Immunohistochemistry and image analysis 

Three µm tissue sections were deparaffinized, rehydrated, and unmasked in a single step using Trilogy™ (Cell 

Marque, Rocklin, CA, 920P-06). To block endogenous peroxidase activity and non-specific background, 

sections were incubated in 3% hydrogen peroxide solution for 20-30 minutes. To block all epitopes on the tissue 

samples and prevent nonspecific antibody binding, sections were incubated with 1% BSA in 1X TBS, pH7.6 for 

5 minutes. Primary antibody (Table 1) was applied at the appropriate working dilution overnight at 4°C, 

followed by secondary antibody (Table 1) for 60 mins at room temperature. Colour was developed for 5 mins in 

DAB solution (Pierce™ 34002) and slides counterstained in Mayer haematoxylin and DPX-mounted for light 

microscopy. For semi-quantitative image analysis of SERCA2 immunoexpression, fifteen random high 

magnification fields (five from three independent experiments) were captured and colour images of 640 × 480 

pixel resolution were then analysed by semi-quantitative digitalized image analysis using ImageJ, NIH® [19]. 

Briefly, images were transformed by threshold mode to locate the positive immunostained area, then converted 

to 8-bit images in grey scale. Subsequently, the area percentage of SERCA2 positive immunostaining was 

calculated by the area fraction command within measuring mode which was expressed as the percentage of red 

pixels/SMG tissue section.  

2.6 Confocal microscopy 

Fluorescent images were captured on a Leica SP5 confocal microscope with an HCX PL APO CS 40× oil 

objective. 
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2.7 Acute Isolation of SMGs and intracellular Ca2+ measurement 

The protocol that was optimized and implemented to measure changes in intracellular Ca2+ concentrations, is 

detailed in [20]. Changes in resting and stimulated [Ca2+] i were determined in the acutely isolated SMG 

physiologic units adhered to 96-well black walled plates (Costar, Tewksbury, MA), using a Flexstation 3 

(Molecular Devices) multi-mode microplate reader. The units were loaded with Fura 2-AM and assays were 

carried out at 37 °C. Basal emission ratios with excitation wavelengths of 340 nm and 380 nm were measured 

and changes in dye emission ratio determined over 40 seconds after compound addition. 

2.8 Statistical analysis 

Results were shown as mean ± SD. For multiple comparisons, one-way ANOVA with Sidak’s (selected pairs) 

pairwise tests were used. The calculations were performed with the statistical software package GraphPad Prism 

(version 7). P values ≤ 0.05 were considered statistically significant. 

 

3. Results  

3.1 iNOS upregulation and peroxynitrite formation are early responses following innate immune 

stimulation. 

Western blot was conducted to investigate the expression of iNOS in the control and poly (I:C)-injected 

submandibular glands (SMGs). Results revealed that poly (I:C) induced upregulation of the iNOS protein (Fig. 

1a), which was intensely expressed in the acinar cells, as early as 4 hrs post poly (I:C) administration (Fig. 1b). 

Peroxynitrite reacts with tyrosine residues in proteins, leading to the formation of stable 3-nitrotyrosine (3-NT), 

which can be detected by immunohistochemistry [21]. Microscopic examination of the stained sections showed 

remarkable upregulation of 3-NT following poly (I:C)-injection with more intense staining noted near the basal 

surfaces of acinar cells (Fig. 1c). 

3.2 Extensive acinar iNOS upregulation triggered SMG dysfunction. 

It was important subsequently to investigate if iNOS/ONOO- have compromised the secretory machinery in the 

acutely infected glands. Short (9h) and long-term (24h) inhibitions of iNOS using AG, protected the SMG 

functions from the poly (I:C) induced secretory dysfunction (Fig. 2a).  
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3.3 Peroxynitrite-induced nitration of SMG proteins. 

To investigate the nitration of SMG proteins with peroxynitrite, western blot analysis was conducted. Tissue 

lysates of glands injected with the vehicle and poly (I:C) in presence or absence of AG were probed with an 

antibody to 3-NT. Results revealed excessive nitration of gland proteins, 9h following exposure to a single poly 

(I:C) dose.  In contrast, AG suppressed the peroxynitrite stress signal and the pattern and extent of 3-NT 

expression returned to near control levels (Fig. 2b).  

3.4 Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2b) co-localization with 3-

Nitrotyrosine. 

Peroxynitrite can severely damage the key regulator of cytosolic Ca2+ SERCA [22], which constitutively 

replenishes the endoplasmic reticulum (ER) Ca2+ stores [23].  To explore if the abundantly expressed 3-NT co-

localized with SERCA2b, immunohistochemistry was performed. Confocal microscopy displayed the co-

labelling of parenchymal cells with antibodies to 3-NT and SERCA2b, 9h after poly (I:C) retrograde injection. 

Following AG treatment, the iNOS inhibitor succeeded in blocking ONOO- formation and 3-NT co-localization 

with the calcium pump (Fig. 3a).  

3.5 Altered expression of SERCA2b in the SMGs in response to innate immune challenge. 

Immunolocalization confirmed distinct distribution of the SERCA2b isoform within the SMG parenchymal 

cells. In the normal SMGs, the granular cytoplasmic SERCA2b was ubiquitously expressed in every cell type 

(all ductal and acinar cells). In contrast, the poly (I:C)-injected glands revealed an extremely significant 

(p<0.0001) downregulation of SERCA2b expression, 9h following exposure to the innate immune stimulant. In 

the infected glands, SERCA2b expression was barely detectable in the acinar cells, with a patchy labelling 

pattern exhibited in the duct cells. Intriguingly, AG efficiently protected SERCA2b from the poly (I:C) 

deteriorating effect and maintained it at a level comparable to the control glands (Fig. 3b).  

3.6 iNOS-mediated disruption of calcium homeostasis. 

It was hypothesized that co-localization of nitrotyrosine with SERCA2b might result in inhibition of the latter.   

In order to test the hypothesis, carbachol stimulated Ca2+ release from the ER, basal cytosolic calcium and 

calcium levels in the intracellular stores in AG-treated and non-treated SMGs were measured. A novel protocol 

was optimized and implemented whereby changes of Ca2+ release from the ER was recorded using the  

muscarinic receptor agonist carbachol [20].  Fura-2 ratio (340/380) of fluorescence versus time was monitored 

for 60 seconds. Experiments conducted revealed that addition of carbachol [50µM] to the vehicle-injected SMG 

acinar units resulted in prompt [Ca2+] i mobilization from intracellular ER stores, that was reflected as a sharp 
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signal increase, followed by a plateau phase.  In the poly (I:C) treated glands, an overall decrease in the 

amplitude of [Ca2+] i release from the ER was detected, despite the supraphysiologic carbachol dose used. On the 

contrary, efficient preservation of the intracytoplasmic calcium [Ca2+] i levels was noted in the glands from AG 

treated animals, of suggesting that extensive iNOS upregulation had detrimental consequences for acinar 

calcium homeostasis (Fig. 4a and 4b). To investigate whether iNOS mediated a reduced carbachol response via 

depleting intracellular stores, we assessed the amount of [Ca2+]ER using ionomycin (an ionophore that, in the 

absence of external Ca2+, releases Ca2+ from the ER in a receptor-independent manner [24; 25]. These 

experiments demonstrated that in the calcium-free buffer, Ca2+ release from intracellular stores induced by 

ionomycin was significantly decreased in the poly (I:C) injected glands and that the AG-mediated conservation 

of the carbachol-stimulated calcium release, paralleled a relatively maintained [Ca2+]ER level (Fig. 4c). The 

Flexstation™ further permitted recording of the baseline calcium, prior to compound addition, which 

surprisingly revealed an extremely significant increase in Fura-2 340/380 ratio in the poly (I:C) injected glands 

compared to the control group.  

In order to dually assess the impact of extracellular calcium and iNOS inhibition on resting calcium levels in the 

control and poly (I:C) injected glands, two sets of experiments were conducted, whereby the physiologic units 

were distinctly incubated in two buffers, one containing 1M EGTA to chelate calcium and the other was EGTA- 

free and contained CaCl2. Baseline recording of calcium revealed some interesting findings that can be 

summarized as follows: (i) removal of calcium from the buffer and addition of a chelator, did not change 

baseline calcium levels in all the vehicle-injected control glands of the tested groups. In the poly (I:C)-injected 

group (ii) the extremely significant increase (p<0.0001) in baseline calcium of the poly (I:C) injected glands 

(52% more than the vehicle-injected control glands), was extremely reduced (p<0.00001) when calcium was 

removed from the incubation buffer. (iii) Even in the absence of extracellular calcium, acinar units of the poly 

(I:C) injected glands showed an extremely significant increase in basal calcium compared to the vehicle injected 

control (p=0.0004). In the AG-treated group: (iv) although poly (I:C) still induced an extremely significant 

increase in basal calcium (p<0.0001), the percentage increase represented only 13%, compared to the 

contralateral vehicle-injected control gland. (v) when the physiologic units were incubated in a calcium-free 

buffer, the resting [Ca2+] i nearly paralleled the reference levels recorded in the control gland (Fig. 4d).            

3.7 AG inhibited lysosomal discharge  

The persistent increase in baseline [Ca2+] i in the poly (I:C)-injected glands despite calcium removal from the 

extracellular medium, directed us towards assuming leakage of an intracellular Ca2+-rich organelle. Lysosomes 
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contain up to 600 mM calcium [26; 27], nearly matching the concentration described for ER, the classic calcium 

storage organelle [28]. To assess whether poly (I:C) induced lysosomal membrane breach and consequential 

release of the organelle contents, we assessed the basal immunoexpression of the lysosomal protease cathepsin-

B, in the control SMGs, following poly (I:C) injection and treatment with AG-. In the control vehicle injected 

glands, cathepsin B was exclusively seen in the perinuclear regions of the SMG duct cells. Following intraductal 

infusion of poly (I:C), cathepsin B was depleted from the peri-nuclear, ductal confinement and showed faint, 

widespread immunostaining. In contrast, in response to AG priming, the SMGs showed maintained efficient 

preservation of lysosomal membrane integrity and perinuclear Cathepsin B immunolocalization (Fig. 5). 

 

4. Discussion  

In the current study, the physiological responses of the mouse SMG to acute induction of nitrosative stress 

signals were comprehensively characterized. iNOS upregulation and ONOO- overproduction, which were 

prompted following innate immune activation of the SGs, impaired saliva secretion via dysregulation of Ca2+ 

homeostasis (Fig. 6). One important finding in the present study, is the demonstrated ability of SG epithelial 

cells to overexpress iNOS and the reactive nitrogen species ONOO-. By expressing these mediators as early as 4 

to 6h after injection of an inflammagen, the parenchymal cells clearly demonstrate their central role in releasing 

the first inflammatory signals in response to extraneous injuries, independent of the bystander role assigned to  

infiltrating immune cells [17].  

To investigate the injurious role played by iNOS/ONOO- in innate immune-mediated hyposalivation, mice were 

systemically pre-treated with aminoguanidine hydrochloride, a selective iNOS inhibitor [29; 30]. Since pilot 

experiments revealed that a single i.p. dose of AG was only sufficient to inhibit iNOS for up to 9h post poly 

(I:C) retrograde injection, we employed a longer-term inhibition protocol to acquire sufficient iNOS retraction, 

24h post poly (I:C) introduction [18], which was mandatory to conduct the calcium experiments. Functional 

analysis of the AG-treated model revealed remarkable recovery of the poly (I:C) injected glands, at 9h and 24h 

post infection, compared to the non-treated animals. 

Peroxynitrite is believed to be responsible for the harmful effects of iNOS-derived NO during inflammation 

[31]. It is a powerful oxidant formed in vivo, that can directly react with different biomolecules [32]. An 

important aspect of peroxynitrite-mediated toxicity is its capability of promoting tyrosine nitration in proteins 

(substitution of a hydrogen by a nitro group (-NO2) in the position 3 of the phenolic ring), with  3-NT being the 

end product [33]. Indeed, protein 3-NT is established as a biomarker of oxidative stress in vivo, being revealed 
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as a strong biomarker and predictor of disease onset and progression [32]. We showed that decreased nitration 

of the SMG proteins and retracted 3-NT expression was accompanied by improved SG function. The reduced 

expression of 3-NT in response to iNOS inhibition is in accordance with the previous demonstration that 

production of reactive nitrogen species in mice is completely dependent upon  NO derived from iNOS [34].  

SERCA exists as three isoforms: SERCA2a, SERCA2b and SERCA 3 [35]. While SERCA2a is mainly 

expressed in excitable cells and smooth muscles, SERCA2b is preferentially localized in the ER of non-

excitable cells [36]. SERCA2b, which has been shown to be present in salivary gland cells [37],  plays a major 

role in the rate-limiting replenishing of intracellular calcium stores after secretagouge-stimulated calcium 

release [38; 39; 40; 41].  The present model revealed acute reduction in SERCA2b expression in the 

submandibular gland following local treatment with poly (I:C). Previous studies have shown NO-mediated 

downregulation of SERCA2b expression [42], presumably through interfering with binding of transcription 

factors to the SERCA2 promoter [12]. In addition, the poly (I:C)-injected glands exhibited extensive co-

localization of 3-NT and SERCA2b.  Given the observed decrease in SERCA2b expression and its vicinity to a 

potent oxidant, it was surmised that would be a reduction in SERCA2b activity, and loss of its tight control on 

ER and cytosolic calcium levels. Our hypothesis was validated by the dramatic changes in acinar Ca2+ signalling 

measured 24h after poly (I:C) introduction. Disruptions were in the form of reduced release of Ca2+ from the 

ER, evoked by either carbachol or ionomycin in Ca2+-free medium, as well as elevated resting [Ca2+] i levels 

prior to compound applications.  

The reduction in magnitude of Ca2+ release from the ER independent of activation of IP3R; i.e. with ionomycin, 

suggested that [Ca2+]ER content was diminished and this was reflected in the impairment of carbachol-stimulated 

Ca2+ release. The reduced expression and physical co-localization of SERCA2b and peroxynitrite may explain 

the inability of the pump to replenish [Ca2+]ER, accounting for the reduced Ca2+ content in the intracellular store. 

Importantly, the prevention of ONOO- accumulation by AG, preserved the calcium response to carbachol and 

ionomycin stimulation, which highlights the involvement of upregulated iNOS and peroxynitrite in the 

impairment of acinar cells following innate immune challenge. Future experiments to verify the inhibition of 

SERCA2b and other calcium pumps and channels in response to excessive iNOS production can provide 

valuable insights into the mechanisms of SG dysfunction associated with disrupted redox status in response to 

proinflammatory stimuli. Resting [Ca2+] i showed an extremely significant elevation in the poly (I:C)-injected 

glands, prior to secretagogue stimulation. Removal of calcium from the extracellular buffer as well as treatment 

of the mice with AG, remarkably retrieved the basal [Ca2+] i levels, suggesting that iNOS mediated a breach of 
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the plasma membranes in the poly (I:C) injected SMGs.   Interestingly, in the current model, 

immunohistochemical staining revealed the preferential localization of 3-NT in the acinar and duct cell 

membranes, which may suggesting that peroxynitrite-induced damage of plasma membranes would occur 

resulting in loss of cellular  Ca2+ [43; 44] and sequential changes in membrane permeability and fluidity [45]. 

Despite removal of Ca2+ from the prepared buffers, the baseline calcium level was not completely restored in the 

poly (I:C) injected glands, which suggested leakage from an intracellular source. Immunostaining of the tissue 

sections from poly (I:C) injected SMGs  verified lysosomal membrane permeabilization (LMP) and the 

consequent release of cathepsin B, the most abundant protease [46]. Interestingly, cathepsin B may constitute an 

amplifying feedback loop, in which a small amount of released cathepsin B triggers more extensive LMP from 

outside the lysosome [47; 48]. Several mechanisms can disrupt the integrity of the lysosomal membrane [49]. 

The exact trigger for disruption of lysosomes in the current model has not been comprehensively investigated 

but the rapid involvement of iNOS-dependant mechanisms has been verified. Further studies will be conducted 

to investigate the pathological consequences of cathepsin B release, given its capability to proteolytically 

modify molecules implicated in cell death pathways [49]. 

Acute depletion of [Ca2+]ER is an upstream prerequisite in the pathophysiology of many diseases [50]. The 

present study has identified iNOS as a key mediator that disrupts acinar cell calcium signalling leading to 

impaired exocrine secretion following activation of innate immunity in an acute salivary gland injury model.    
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Tables 

     Table 1. List of antibodies used in immunohistochemical and western blot analysis 

 

  

Antibody 
Source & Catalogue Number Host Working 

Dilution 

iNOS Novus Biologicals, USA, NB300-

605 

Rabbit 1:1000 

3-Nitrotyrosine Millipore, 05-233 Mouse 1:1000 

SERCA2 ATPase Novus Biologicals, NBP2-20305 Rabbit 1:1000 

Cathepsin B (S-12) Santa Cruz Biotechnology, sc-

6493 

Goat 1:1000 

Polyclonal Goat Anti-Rabbit 

Immunoglobulins-HRP 

Dako, P0448 Goat 1:200 

Polyclonal Goat Anti-Mouse 

Immunoglobulins- HRP 

Dako, P0447 Goat 1:100 

Goat anti-Mouse IgG (H+L) 

Secondary Antibody, Alexa Fluor® 

594 conjugate 

Thermo Fisher Scientific, A-

11005   

Goat 1:1000 

Donkey anti-Rabbit IgG (H+L) 

Secondary Antibody, Alexa Fluor 

488 

Thermo Fisher Scientific, A-

21206   

Donkey 1:1000 
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Figure Legends: 

Figure 1: iNOS and Peroxynitrite expression in the SMGs. A: Western blot analysis of the upregulated 

protein levels of iNOS, in response to poly (I:C) injection (P-PIC), compared to the control, vehicle-injected 

group (V-C). The data are representative of results from three independent experiments. B: Photomicrographs 

showing negative expression of iNOS in the vehicle injected SMGs, compared to the early and intense 

immunolabelling of acini (yellow outlines) following poly (I:C). C: Upregulated expression of the peroxynitrite 

marker 3-nitrotyrosine (3-NT) was noted in the ducts (red outline) as well as the basal surfaces of acinar cells 

(black arrows) following poly (I:C). Original magnification=40x. 

Figure 2: Salivary gland function and peroxynitrite activity.  A: Functional analysis following poly (I:C) 

and the selective iNOS inhibitor, aminoguanidine. Enhancement of SMG secretory function from mice 

treated with aminoguanidine (AG+PIC), compared to glands from mice which received poly (I:C) only (PIC). 

Minimum n=3 mice per group, maximum n=6. B: Western blot of the peroxynitrite marker; 3-

Nitrotyrosine.  Poly (I:C) prompted nitroxidative stress in the SMGs following poly (I:C) introduction (9h P-

PIC): a plethora of SMG proteins exhibited tyrosine nitration compared to the control (V-C), which was 

markedly reduced upon aminoguanidine treatment (AG+9h P-PIC). Representative data from three independent 

experiments. 

Figure 3: Immunohistochemistry of SERCA2 ATPase and peroxynitrite activity. A: Microphotographs of 

multi-colour confocal microscopy analysis confirming co-localized expression of SERCA2 ATPase and 3-

NT and. In the normal SMGs, negative 3-NT expression and intense ductal and mild acinar clustering of the 

SERCA2. 9h Post infection with poly (I:C), abundant co-localization of the upregulated 3-NT staining with 

down-regulated SERCA2 staining. AG-treated SMGs revealed the obvious decline of 3-NT expression and the 

regular SERCA2 labelling of the SMG cells. B: Immunohistochemistry and digital image analysis of 

SERCA2b ATPase in the control and poly (I:C)-injected glands from the AG treated and non-treated 

mice. In the control glands, SERCA2 was intensely immunoexpressed in the basal domains of striated ducts, as 

well as in the form of peri-nuclear cytoplasmic granules in the acinar cells. After poly (I:C) retrograde infusion, 

an overall retraction in the SERCA2 expression was perceived, which was efficiently reversed when mice were 

primed with the iNOS inhibitor, aminoguanidine (AG). SERCA2b immunostaining area percentage: *p= 0.0235 

and ****p<0.0001. Representative data from three independent experiments. 
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Figure 4: Changes in intracellular Ca2+ in poly (I:C) treated SMGs in response to AG pre-treatment. A 

and B: Fura-2-detected fluorescent signals in SMGs, in response to stimulation with 50 µM carbachol. 

SMGs from mice treated or not treated with AG as well as the relevant vehicle injected controls were used. The 

cholinergic agonist carbachol was added to detect the [Ca2+] i response in the acinar units. Stimulated Ca2+ 

response graph represents the ∆340/380 (maximal [Ca2+] i increase after carbachol application minus its basal 

expression prior to stimulation). Poly (I:C) triggered 91% reduction in the [Ca2+] i, which was reduced to only 

13% in the glands from AG-treated animals, compared to the glands which received the vehicle only. C: 

Ionomycin-induced Ca2+ release from the intracellular stores. Isolated acinar cells of vehicle and poly (I:C) 

injected SMGs from AG treated and non-treated animals were incubated in Ca-free medium. Poly (I:C) reduced 

ionomycin-stimulated Ca2+ release from the internal stores by 70%, whereas in the presence of AG, only 36% 

reduction was perceived. D: Baseline 340/380 ratio in the SMGs treated or not treated with AG. Differential 

changes in baseline calcium among the tested physiologic units as explained in the text. Ca: Calcium-containing 

buffer, NCa: Incubation buffer free of CaCl2 and containing 1M EGTA.  

Figure 5: Cathepsin B immunoexpression in the SMGs. Photomicrographs showing the characteristic fine 

perinuclear granules of cathepsin B in the control SMG ducts, consistent with its lysosomal localization. 24h 

post its intraductal infusion (24h P-PIC), poly (I:C) induced extra-lysosomal cathepsin B release into the SMG 

tissues. AG treatment (AG+24h P-PIC) caused the efficient retention of the peri-nuclear lysosomal protease in 

the ducts of the infected glands, similar to its immunolocalization in the control tissues. Original magnification= 

40x. 

Figure 6: Illustration summarising the impact of innate immune-mediated iNOS overexpression on the 

exocrine salivary gland secretory machinery. Parenchyma-expressed iNOS/ONOO- disrupted the expression 

and possibly the activity of the SERCA2b, which tightly controls the cytoplasmic as well as the endoplasmic 

reticulum calcium levels. Physiological saliva production is entirely dependent on the integrity of intracellular 

calcium signalling, the interruption of which interfered with the ability of the submandibular glands to secrete 

normally.      
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Highlights 

• Innate immune stimulant poly (I:C) induced prompted the upregulated expression of iNOS 

and 3-Nitrotyrosine in the C57BL/6 submandibular glands. 

• Aminoguanidine, a selective iNOS inhibitor blocked the nitrosative signal in vivo and 

protected the SMG secretory machinery. 

• iNOS/peroxynitrite interfered with the SMG secretory ability via dysregulating the 

expression of SERCA2b and perturbing calcium homeostasis. 

 


