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We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal
nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on
a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force
estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict
forces within an ∼0.1 eV/Å average error even for small training datasets and achieve high accuracy
even on out-of-sample, high temperature structures. While training and testing on the same structure
always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction
errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases
that contain more than one structure, which results in a good trade-off between versatility and overall
accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body
force field that allows accurate prediction of structural properties at finite temperatures, following a
newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess
the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations. Published
by AIP Publishing. https://doi.org/10.1063/1.5024558

I. INTRODUCTION

Metallic nanoparticles have fascinating chemo-physical
properties, different from those of their individual atomic
constituents and their bulk counterparts.1–5 Because of the
variety of isomers accessible at finite temperatures and the
lack of translational symmetry, implying a non-trivial inter-
play between their geometric and electronic structure, a com-
prehensive understanding of metallic nanoclusters remains
challenging, despite their potential use in many advanced
applications.6–16 Density Functional Theory (DFT) is the most
common framework to investigate the static and dynamical
properties of nanoclusters of few tens of atoms, for which
the standard classical force fields cannot systematically be
relied upon to provide sufficient accuracy. However, DFT-
based calculations are very expensive, and probing limited
time scales in first principles dynamical simulations may
lead to poor sampling of the nanoclusters’ configuration
space.

Machine Learning Force Fields (ML-FFs) may provide a
solution to this problem, and the needed access to the dynam-
ical properties of nanoclusters, by extending by several orders
of magnitude the accessible time scale, while still describ-
ing sufficiently accurately the interactions between the cluster
atoms. The ML-FFs of most widespread use in cluster sci-
ence are based on artificial neural networks.17 In many studies,
aiming at investigating nanoclusters’ properties, the training

a)Electronic mail: claudio.zeni@kcl.ac.uk
b)Electronic mail: kevin.rossi@kcl.ac.uk

databases were constructed from clusters of several sizes,
involving structures based on different Bravais lattices and
surfaces with different crystallographic orientations.18–23 The
ex novo production of such databases requires many expen-
sive quantum calculations: while some redundancy is hard to
avoid, the neural network architecture, by means of multi-
ple layers and a high number of fitted parameters, is usually
able to extract the necessary information and correctly pre-
dict energies and forces in specific scenarios. The resulting
trained force-field, although versatile, can be, however, dif-
ficult to interpret because of the inherent complexity of the
algorithm.

Another commonly used class of ML-FFs is based on
Gaussian Process (GP) regression24,25 and has recently been
used to predict the properties of both bulk26,27 and molecu-
lar28–30 systems. While GPs have been also applied to predict
adsorption energies of small molecules on NiGa and RhAu
nanoclusters,31,32 they have never been used so far to estimate
the finite-temperature structural properties of a nanoparticle.
GPs are usually easier to interpret as they contain a small
number of physically meaningful hyperparameters. More-
over, including symmetries such as the translational invariance
and rotational covariance of forces25 or choosing simplifying
approximations such as selecting the n-body order of interac-
tion between atoms27,33–35 in the algorithm is straightforward
in the case of GPs, where these properties can be encoded
the kernel function, enabling fast training and high prediction
accuracy.

In this work, we systematically asses the GP force esti-
mates for a set of Ni19 nanocluster structures, as obtained from

0021-9606/2018/148(24)/241739/9/$30.00 148, 241739-1 Published by AIP Publishing.
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2-, 3-, and many-body kernels, and for a number of training
databases of different nature and size. Consistent with the sig-
nificant change of physical properties occurring during the
atom-to-bulk transition, we find that a 2-body kernel generally
fails to correctly predict forces in small-sized Ni nanoclusters,
despite doing so for bulk Ni systems. However, a 3-body kernel
performs well, hinting to an increased significance of angular
terms in the bonding.

The choice of training dataset is key to the performance
of any ML-FF. The search for an optimal training dataset
which may encompass all the relevant structures while avoid-
ing redundancy is therefore of interest to guarantee accuracy,
while limiting the need to produce ad hoc ab initio databases.
Consistent with intuition, the GP accuracy decreases as the
structural dissimilarity increases between the training and test-
ing morphologies, and the best accuracy is found when using
homogeneous training databases highly similar to the target
testing structure. However, heterogeneous training databases
provide a just slightly less good overall prediction perfor-
mance, while the trained kernels display a much higher
degree of versatility, predicting accurate forces also in out-
of-sample tests. Furthermore, 3-body ML-FFs trained on an
heterogeneous database accurately reproduce structural fin-
gerprints such as pair distance distribution functions at finite
temperatures. Using this ML-FF to derive a non-parametric
machine-learning mapped force field (M-FF) via the pro-
cedure discussed in Ref. 33 makes it possible to execute
tens of ns long simulations with a minimal computational
effort, allowing the assessment of the thermal stability of Ni19

nanoclusters.
In Sec. II, we introduce the necessary GP formalism

(Sec. II A), provide expressions for the kernels used through-
out the work (Sec. II B), and briefly explain the concept of
“mapped” force field33 (Sec. II C). We then describe a pro-
tocol for the validation of force predictions (Sec. III A) and
discuss the performance achieved by the three kernels when
tested on structures either very similar or morphologically
different from the ones present in the training database for
single-structure (Sec. III B) and multi-structure (Sec. III C)
training. The construction of the 3-body M-FF and its val-
idation are described (Sec. III D), while its application in
MD simulations investigating the behaviour of Ni19 clus-
ters in the 300-1200 K temperature range is described in
Sec. III E.

II. MACHINE LEARNING FORCE FIELDS
A. Gaussian process regression

A GP regression36 is a Bayesian method to learn a func-
tion from a finite database D of input-output pairs. As we are
interested in learning the local force acting on any given atom,
we construct such a training database by extracting (from a
DFT simulation) a set of local configurations ρi relative to
each atom and the corresponding forces f i on that atom. This
database D = {(ρi, f i)}Ni=1 is then partitioned into a training
set Dtr (with N tr entries) used for learning and a test set Dtest

(with N test entries) used for validation. As the space of forces
is three-dimensional, we here use the multi-output (vectorial)
version of GP regression,25,37,38 for which the learned function

f(ρ) takes the form

f(ρ) =
Ntr∑
d=1

K(ρ, ρd)αd , (1)

where K is a matrix-valued kernel function encoding the cor-
relation of the forces relative to any two atomic environments.

The coefficients αi in Eq. (1) can be written in closed form
as

αd =

Ntr∑
d′

[
K + Iλ

]−1

dd′
· fd′ , (2)

where K is the covariance matrix containing N tr × N tr block
entries Kdd′ = K(ρd , ρd′), I is the identity matrix, and λ is a
regularization hyperparameter that formally governs the uncer-
tainty associated with the training dataset outputs, which has
been kept fixed at a value of 10−5. The performance of a GP
is determined by the choice of the kernel function K and its
hyperparameters and by the choice of training set Dtr .

B. Kernel functions

The kernel function should be invariant with respect to
translation and permutation of identical atoms and covariant
(when predicting forces) with respect to rotation of the con-
figurations. Furthermore, the function K should have a spatial
resolution compatible with the features of the energy land-
scape encoded in the training dataset; this is taken care of by
optimizing the kernel hyperparameters. A useful property of
a kernel function for force or energy prediction is its order,
that is, the maximum number of simultaneously interacting
particles it can describe (see Ref. 33 for a formal defini-
tion). Here we will use 2-body, 3-body, and many-body force
kernels.25,27

1. 2-body

We assume that the force f acting on an atom located at
position ra is a sum of independent contributions associated
with every other atom in its local environment ρa. Each con-
figuration is expressed as a sum of Gaussian functions of width
σ representing individual atoms (“SOAP representation”39).
A natural way to obtain a rotation invariant scalar energy ker-
nel would be via integration over the group of rotations of the
space-integrated overlap of each couple of configurations.39

The covariance of predicted forces, a general property not
requiring the existence of an underlying invariant total energy
function, can also be obtained as an integral over rotations
from a suitable matrix-valued covariant integration expression,
as detailed in Ref. 25. For the 2-body kernel case, the inte-
gration can be carried out analytically, yielding the following
matrix-valued energy-conserving kernel:25

Ks
2(ρa, ρb) =

∑
i∈ρ
j∈ρ

φ(rai, rbj)r̂air̂
T
bj,

φ(rai, rbj) =
e−αij

γ2
ij

(γij cosh γij − sinh γij),

αij =
r2

ai + r2
bj

4σ2
,

γij =
rairbj

2σ2
,

(3)
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where rai expresses the position relative to the central atom of
its ith neighbour.

2. 3-body

A 3-body kernel allows us to represent an angular depen-
dence on the force components. As described in detail in
Refs. 33 and 40, a 3-body force kernel can be built as a dou-
ble derivative of a 3-body energy kernel with respect to the
positions of the central atoms of the configurations ρa and ρb,

Ks
3(ρa, ρb) =

∂2ks
3(ρa, ρb)

∂ra∂rT
b

. (4)

The 3-body energy kernel ks
3 compares triplets of atoms

that include the central atom across the two configurations.
This kernel is intrinsically invariant under permutation, rota-
tion, and translation of the atoms in ρa and ρb, avoiding the
need of any integration over SO(3). Each triplet is associated
with a vector qaij containing the three atomic distances, i.e.,
qaij = (rai, raj, rij)T . Apart from a normalisation factor, the
3-body kernel reads

ks
3(ρa, ρb) =

∑
i,j∈ρa
k,l∈ρb

∑
P∈Pc

e−‖qaij−Pqbkl ‖
2/2σ2

, (5)

where Pc (|Pc | = 3) is the set of cyclic permutations of three
elements and σ is the single required length scale hyperpa-
rameter. Summing over the permutation group is needed to
guarantee permutation symmetry of the energy. No i , j or
k , l restriction is, however, imposed in the external sum,
making the overall expression not limited to the case of three
distinct atoms so that the kernel also includes the 2-body case
as a subset. We note that permutation invariance in 3-body
kernels could also be obtained using permutation invariant
descriptors, as done in Ref. 27.

3. Many-body

Describing arbitrarily complex interactions requires a
many-body kernel function such that force prediction becomes
dependent on the full local atomic environment ρa and is
no more the result of summing independent pairwise (or
triplet) contributions. A way to obtain a many-body kernel
kMB (see Ref. 33) is to take the exponential of a scalar 2-body
kernel k2,

kMB(ρa, ρb) = ek2(ρa,ρb)/θ2
, (6)

where
k2(ρa, ρb) =

∑
i∈ρa
j∈ρb

e−‖rai−rbj ‖
2/2σ2

. (7)

To impose rotational force covariance, we should perform an
integration over the SO(3) manifold of rotations.25 Unfortu-
nately the integration over SO(3) of the many-body kernel in
Eq. (6) cannot be done analytically, while numeric integration
is computationally heavy. We hence resort to restricting the
summation to a discrete symmetry group R of rotations (and
reflections) whose elements R are represented by orthogonal
matrices R,

Kds
MB(ρa, ρb) =

1
|R|

∑
R∈R

R kMB(ρa,Rρb). (8)

The optimal choice of the rotation group is system-dependent:
in FCC and BCC bulk environments, a natural choice is to
sum over all elements of the Oh point group. The resulting
many-body kernel can be made arbitrarily accurate if given a
large enough training set,33,41 while the predicted force field
will not be conservative (make zero work on closed loops to
numerical accuracy) by construction. However, to the extent
that force errors are small, the energy-conserving character
of the reference Hamiltonian forces will be approximately
reproduced.

C. Mapped force field (M-FF)

Once the 3-body GP has been trained, the “mapping”
technique described in Ref. 33 can be used to build a non-
parametric 3-body force field (a M-FF) which retains the
accuracy of the original GP, while typically increasing its com-
putational speed by a factor 103–104. This procedure is effec-
tively equivalent to storing the energies predicted by the kernel
(5) for a three-dimensional grid of values of the triplet of dis-
tances (rai, raj, rij) occurring in a three atom system. In a more
complex structure, the contributions from every triplet and
atom pair are calculated by spline interpolation over the stored
GP predictions of the energy values. Analytic differentiation
of the spline expression produces an energy conserving force
field practically indistinguishable from the predictions of the
3-body GP used to build it, while independent of the number
of configurations N tr used for GP training. This M-FF could
be seen as a classical n-body force field, as simple to physi-
cally interpret and fast to compute as a standard parametrised
3-body force field, whose systematic non-parametric construc-
tion requires no ad hoc parameter choice and fine-tuning. This
enables simulation times which would not be achievable by
the standard direct GP force prediction or by first-principles
molecular dynamics based on the reference DFT Hamiltonian.

III. RESULTS

We consider Ni nanoclusters of 19 atoms and gather data
from Born-Oppenheimer molecular dynamics (BOMD) sim-
ulations at 300 K, 600 K, and 900 K, from five different initial
structures, represented in Fig. 1: a hcp motif of three layers
(3HCP), a double icosahedron (DIH), a bipyramid (BIP), a four
stacked hcp layer (4HCP) structure, and a structure obtained by
displacing two five-fold arranged vertexes of a double icosa-
hedron to form two six-fold rings, also known as a “rosette”
defect42 (dDIH). The first three motifs are the most ener-
getically favourable at the PBE (Perdew-Burke-Ernzerhof)
exchange correlation DFT level,43 and the other two were
found with a metadynamics sampling procedure13,14 and are
included here to introduce low symmetry morphologies in the

FIG. 1. Five Ni-19 structures ordered, from left to right, according to an
energetic criterion, with the first one being the global minimum.
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database set. The BOMD simulation details are provided in
the supplementary material.

A. Validation methodology

It is evident from Eqs. (1) and (2) that the predictions of
a GP will depend on how the training dataset Dtr is chosen.
To assess the errors incurred by the three kernels while used
in interpolation and (putative) extrapolation regimes, we next
systematically analyze the GP predictions on test databases
containing contributions from all five structures, while training
is carried out on different combinations of structures. This pro-
cedure allows us to introduce a novel strategy to measure the
similarity between cluster geometries, based on the relative GP
errors made, while training and testing on two different struc-
tures. In our practical implementation, for all the GP trainings,
we choose N test = 400 for each of our five cluster structures,
yielding a total pool of 2000 testing points.

Every test is repeated five times to estimate a standard
deviation for the Mean Absolute Error on Forces (MAEFs),
defined as the average error done by the GP on the force vector,

MAEF =
1

Ntest

Ntest∑
d=1

√√√ 3∑
c=1

(
fd,c − f ′d,c

)2
, (9)

where f and f ′ are the reference and predicted forces act-
ing on an atom, respectively, and c indicates the Cartesian
component. Our tests can be separated into three categories:
self-training, cross-training, and mixed-training, depending
on which databases were used to build the training sets and
which subset of the testing pool is used. In the self-training,
the configurations used to build the Dtr and Dtest are asso-
ciated with the same cluster structure. In the cross-training,
the database from a structure morphology is used for training,
and testing occurs on configurations associated with the other
four structures. In both of the above, the database is homo-
geneous; that is, it contains configurations relative to a single
morphology. For the mixed-training, we build and test all pos-
sible heterogeneous training sets Dtr that contain inputs from
two, three, and all five morphologies (here as in self-training,
no data point present in Dtr is allowed to be in Dtest).

B. Self- and cross-training

We first discuss the results for self-training. Figure 2
reports a learning curve (MAEF against N tr) for the case of a
3HCP cluster structure. The 2-body kernel achieves its max-
imum accuracy for N tr > 50; similarly, the 3-body MAEF
decreases with N tr until N tr > 100 and an accuracy plateau is
reached. The accuracy of the many-body kernel, on the other
hand, keeps increasing with the number of training set points,
as expected for a universal approximator kernel.33,41 The learn-
ing curves for the other structures show the same qualitative
trends (see the supplementary material). Figure 3 shows the
converged MAEF achieved by self-training GPs for each of
the five morphologies when using 2-, 3-, and many-body ker-
nels. The left-hand histogram reveals that modeling the atomic
interactions between Ni atoms in terms of a 2-body potential
yields a MAEF larger than the target accuracy of 0.15 eV/Å
for all morphologies, with higher values for the low symmetry
ones (4HCP and dDIH). We note that this is not the case for

FIG. 2. Learning curves for the paradigmatic example of training and testing
on a 3HCP morphology. The kernel n-body order is color coded, with 2-body
represented by cyan, 3-body by blue, and many-body by orange.

FCC bulk Ni systems, where 2-body kernels were found to be
surprisingly accurate.25 The central and right-hand histograms
in Fig. 3 reveal that both 3- and many-body kernels achieve
a suitably accurate force prediction for all cluster structures
if the training dataset used contains 200+ points. For com-
parison, the calculated MAEF of a state-of-the-art classical
parametric potential for Ni44 is 0.59 ± 0.39 eV/Å. The rela-
tive importance of n-body contributions to the forces in the
five Ni19 cluster morphologies can be appreciated by looking
at the accuracy of the n-body kernels. For instance, the accu-
racy of 2-body and 3-body forces is very similar for the 3HCP
morphology, indicating that the angular dependence of forces
is not crucial in this motif, while it is more significant for the
other structures. We note that comparing n-body kernel pre-
dictions could be more generally used as a way to characterize
the nature of the bonding occurring in complex systems such
as metal nanoclusters or grain boundaries and to reveal and
quantify (dis)similarities between these systems or relative to
reference bulk structures.

The MAEFs obtained for cross-testing are reported in
Fig. 4. In this case, the 2-body kernels MAEFs are consistently
larger than 0.15 eV/Å and often twice as large. Comparing the

FIG. 3. MAEF for GP force prediction for the 5 clusters in Fig. 1 and for 3
kernels, with the standard deviation obtained from 5 tests. For all tests, N test
= 400 and N tr = 500 (2- and 3-body kernels) or N tr = 1000 (many-body
kernel).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-040891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-040891


241739-5 Zeni et al. J. Chem. Phys. 148, 241739 (2018)

FIG. 4. From top to bottom, we report the MAEF and its standard deviation
for the 2- (N tr = 500), 3- (N tr = 500), and the many- (N tr = 1000) body kernels
trained and tested on different Ni-19 datasets at 300 K.

3- and many-body kernels reveals the accuracy achieved by
the 3-body kernel strongly depends on the training database,
while the many-body kernel displays more consistent errors
over different structures. This could be rationalised by consid-
ering that a many-body kernel is capable of learning high-n
interaction terms whose contributions are effectively sampled
in any morphology, even, e.g., in structures in which they are
quantitatively less important. These terms help maintaining a
good prediction accuracy even on “partially unknown” new
morphologies where higher order interactions come more into
effect. The 3-body kernel is instead intrinsically restricted
to 3-body interactions, and if the reference forces include
(say) a 4-body interaction contribution, incorporating this by

machine learning based on a lower-dimensional feature space
may achieve some success only in self-training (interpolation)
mode, but will not correctly extrapolate to new structures. This
suggests that the accuracy that a 3-body kernel achieves on
a target structure is to a significant extent conditional to the
presence of database entries representative of that structure in
the training database used. Consistently, for this kernel, the
training databases comprising the low-symmetry morpholo-
gies (4HCP and dDIH) that have the most varied repertoires
of atomic environments are those which work best in cross-
testing. We also note how the cross-testing error incurred by
training over 4HCP and testing on its higher-symmetry coun-
terpart 3HCP is 0.18 eV/Å, while the reversed test yields a sig-
nificantly larger 0.26 eV/Å MAEF. The same effect becomes
even more apparent by examining the dDIH (low symme-
try) and DIH (high symmetry) pair of structures, yielding
0.14 eV/Å and 0.31 eV/Å errors in the direct and reversed
tests, respectively.

Further analysis of the GP predictions allows some quali-
tative understanding of why using different training databases
leads to stronger or weaker performances over the available
testing sets. We first examine the case of training on each
of the five structures and testing on the dDIH structure. Fig-
ure 5 is a visual representation of the MAEFs committed at
the testing stage by our three kernels after they were trained
on the five single-structure training databases. As expected
from Fig. 4, the 2-body kernel is associated with large errors
for all training sets but the dDIH one—the only one here in the
self-training regime. In the case of 3-body kernel, training on
a 4HCP database yields the best overall cross-training perfor-
mance (while as expected, self-training on a dDIH database
offers better results). This provides good accuracy on most
atoms, falling short only around the rosette defect, a pecu-
liar distortion absent in the 4HCP structure. The MAEFs
incurred by training on the DIH database are also very low
for the lowermost 5-fold cap of the dDIH cluster. This is
expected since these local environments are very similar in
these two morphologies. On the other hand, cross-training
on the BIP and 3HCP datasets fails to predict forces around

FIG. 5. MAEF incurred by the 2- (top), 3- (central), and many-body (bottom)
kernels on each dDIH atoms when trained on (left to right) 3HCP, DIH, BIP,
4HCP, and dDIH. Color coding ranges from 0.12 eV/Å (blue) to 0.5 eV/Å
(red).
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the icosahedral centres and the rosette defect of the dDIH.
These results hold true even in the case of the many-body ker-
nel, for which the DIH is the best performing cross-training
morphology.

We next compare the pair-distance function (PDF) and
the bond angular distribution function (BADF) for the five
morphologies as obtained from BOMD simulations at 300 K,
reported in Fig. 6. These reveal structural differences between
the morphologies. For instance, the PDF peak close to 3.3 Å in
the 3HCP, 4HCP, and BIP morphologies is absent in the DIH
and dDIH structures. Also, the BADF in the bottom panel
displays a broadened distribution for 4HCP and dDIH and
much more peaked ones for 3HCP, DIH, and BIP.

As a possible quantitative indicator of how well a PDF
“samples” another one, we calculate their Kullback-Leibler
(KL) divergence. For a discrete probability distribution, this is
calculated as

KL(P | |Q) =
∑

i

P(i) log
P(i)
Q(i)

. (10)

This (asymmetric) quantity measures the information “lost”
when a function Q is used to approximate another function
P, returning a 0 value when P = Q and increasing posi-
tive values as P grows dissimilar from Q. In the present

FIG. 6. Pair-distance (top) and bond angle (bottom) distribution functions for
the five cluster structures, averaged over 2 ps from 300 K BOMD simulations
(in color) and M-FF MD simulations (black dashed line).

FIG. 7. Normalised scatter plot highlighting the correlation between the KL
divergence calculated on ordered pairs of PDFs from Fig. 6 and the cross-
training MAEFs incurred for the corresponding pairs of cluster structures
(see the text for more details).

context, Q and P are the PDFs associated with the training
set and testing set, respectively. Figure 7 contains a normal-
ized scatter plot comparing the KL divergence relative to each
ordered pair of PDFs taken from Fig. 6 with the corresponding
cross-training MAEF incurred by the 2-body kernel (see the
supplementary material for details on how these two quanti-
ties were normalized). The graph reveals a striking correlation
between the two dissimilarity measures, generally highlight-
ing the importance of the presence of database entries which
contain pairs of atoms at distance values relevant for the test-
ing dataset. Moreover, since the PDF can be assumed to be
an unique structural descriptor in the case of monometallic
nanoparticles,45–48 the correlation indicates that the 2-body
cross-training error is non-trivially linked to properties that go
beyond 2-body descriptors. Thus, the KL divergence between
PDFs could be used as an a priori indicator of extrapolating
performance of the 2-body kernel in cross-training. Similar
tests for the 3-body kernel also display a positive correlation,
although of smaller statistical significance (see the supplemen-
tary material). The results above suggest that evaluating the
KL divergence for other functions than the PDFs could pro-
vide more dissimilarity estimators. This could be used to guide
the extraction of informed, minimally sized training databases
from a “general” database too large to be used in full for GP
regression.

C. Heterogeneous training and training
set optimisation

We next examine the mixed-training strategy, to learn how
a small training database Dtr which still encompasses a suf-
ficiently varied repertoire of atomic distances and bond angle
values could be built. For this, we test the accuracy of training
on mixed datasets containing entries from two, three, and all
five different cluster morphologies. Our results indicate that the
MAEF incurred by the 3-body kernel is fairly homogeneous
in the various mixed-training and testing scenarios, staying
the same within a 0.03 eV/Å standard deviation, contrary to
what was generally found for self-training. This suggests that
introducing even a modest amount of variety in the train-
ing configuration pool is sufficient to achieve a reasonably
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complete training of a 3-body kernel, avoiding “local” over-
fitting causing extrapolation errors. Consistently, the MAEF
incurred by a kernel not restricted to just a 3-dimensional
feature space and thus much harder to completely train, such
as the many-body kernel, is found to have a higher standard
deviation (0.05 eV/Å) when trained and tested in the same sce-
narios. For all kernels, we find that mixed-training yields errors
comprising between those incurred by self-training and cross-
training, with MAEFs slightly higher than those produced
by self-training but appreciably smaller than those associated
with cross-training.

Figure 8 illustrates the performance of the 3-body ker-
nel trained on our “best” single-structure database (4HCP,
see Sec. III B), the best choice of two- and three-structure
mixed databases, the full 5-structure database (“penta”), and
a (“mixed T”) training database containing 1000 DFT config-
urations extracted from simulations at 300, 600, and 900 K.
The results are good for all training scenarios, and notably, the
5-structure “penta” databases achieve the same performance
of all the other database choices which needed to be identi-
fied as the best restricted ones. To investigate the performance
stability of a given, simple database construction recipe, we
generated 100 independent “penta”Dtr training sets, each con-
taining 100 randomly chosen configurations for each cluster
structure. Training 3-body kernels on the low temperature Dtr

of Fig. 8 and testing on a fixed database also comprising con-
figurations from all five structures yield an average MAEF of
0.14 ± 0.07 eV/Å. The small 0.004 eV/Å difference we find
between the MAEF incurred by the best-performing low-
temperature GP and the average MAEF suggests that the
accuracy gain which might be obtained by a “best training
set choice” procedure is practically negligible. To further
analyze this issue, we performed Metropolis Monte Carlo
simulations to optimize the dataset training points and again
found no significant accuracy gain (see the supplementary
material). An overall better performance was instead achieved
when using the “mixed T” database which included higher T
configurations for all cluster morphologies.

D. Building and validating a 3-body M-FF

To perform computationally inexpensive MD simula-
tions with near-ab initio accuracy, we map the ML-FF

FIG. 8. MAEFs for four 3-body kernels trained on 300 K databases contain-
ing 500 configurations representative of one, two, three, and all five cluster
morphologies, and a “mixed T” database of 1000 DFT configurations extracted
from 300, 600, and 900 K simulations including all cluster morphologies.

corresponding to the two best performing 3-body kernels
(“penta” and “mixed T”) onto two non-parametric M-FFs,
following the procedure described in Sec. III C.

We first assess their accuracy on configurations extracted
from 600 K to 900 K BOMD simulations started from
3HCP and DIH initial structures, respectively. Both sys-
tems undergo several structural changes along their trajec-
tory. The computed MAEFs for the “penta” M-FF are 0.26
± 0.24 eV/Å for 3HCP at 600 K and 0.25 ± 0.17 eV/Å for
DIH at 900 K, indicating that the M-FF retains an accept-
able accuracy level, while visiting configurations not rep-
resented in the “penta” training database. (Also note that
higher errors should be expected for high-temperature sam-
ples, where forces have a larger modulus.) The MAEFs
associated with the “mixed T” M-FF is 0.25 ± 0.46 eV/Å
for 3HCP at 600 K and 0.17 ± 0.09 eV/Å for DIH at
900 K.

The M-FFs described so far are appropriate for simu-
lating dynamical runs as they contain data gathered from
BOMD DFT simulations only. Testing their accuracy on min-
imized 0 K structures reveals a 0.10 ± 0.02 eV/Å MAEF
for the “penta” training set and a 0.06 ± 0.02 eV/Å MAEF
for the “mixed T” training set. The inclusion of configura-
tions collected during structural relaxation in the training set
reduces the MAEF to 0.04 ± 0.02 eV/Å, while using a many-
body kernel with 4000 training points yields a further reduced
0.02 ± 0.01 eV/Å MAEF.

To further test the accuracy of our 3-body “penta” M-FF in
a dynamical setting, we run three 200 ps-long 300 K MD sim-
ulations (see the supplementary material) for each of the five
geometries and compare the PDFs and BADFs with the refer-
ence ones extracted from equally long BOMD simulations of
the same structures kept at the same temperatures. The excel-
lent overlap obtained for both PDFs and BADFs, visible in
Fig. 6, provides some further validation of the ability of the
M-FF to track the reference DFT forces. The errors averaged
over our five 300 K structures incurred by the M-FFs, while
predicting energies are 16± 10 meV/atom and 9± 7 meV/atom
for the “penta” and the more comprehensive“mixed T” training
sets, respectively. A scatter plot of the energy error incurred
at 900 K by the M-FF trained on the “mixed T” database is
provided in the supplementary material.

E. Assessing the thermal behaviour of Ni19

To probe whether results potentially yielding novel phys-
ical insights into the nanocluster behaviour can be obtained
by using a M-FF, we finally investigate the kinetic behaviour
of Ni19 to explore the extent of shape fluctuations occurring
in the nanocluster.48–52 To do so, we carry out MD runs at
50 K-spaced temperatures comprising between 300 K and
1200 K. We perform four 480-ps long simulations for each
temperature for each of the five morphologies considered in
this work (380 simulations in total). The computational speed-
up factor associated with carrying out a M-FF rather than a
BOMD simulation in these systems is ∼105. The root mean
bond fluctuation (RMBF) is a quantity describing the average
bond length oscillation at a given temperature, often used to
characterize phase changes in nanoscale systems,6–11 defined
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FIG. 9. RMBF value against the nominal simulation temperature for two
training datasets; the error bars show the standard deviation over 20 repe-
titions. Blue, yellow, and red regions highlight the characteristic values for
nanosolids, slushes, and nanoliquids.

as

RMBF =
2

M(M − 1)

∑
i<j

√
〈r2

ij〉 − 〈rij〉
2

〈rij〉
, (11)

where M is the number of atoms and the averages are taken
over the simulation (excluding the first 5 ps to allow for thermal
equilibration) for each atom pair. Figure 9 shows the RMBF
value averaged over 20 simulations for each temperature value
(four repeated simulations for each of the five structures) as a
function of temperature for both the “penta” and the “mixed
T” M-FFs. The first M-FF was trained on the low tempera-
ture “penta” database and was thus expected to be operating
in a largely extrapolatory regime. This force field predicted a
“slush” transition region rather than abrupt melting (cf. Fig. 9,
green symbols). The second M-FF was trained on the “mixed
T” database including configurations at 600 K and 900 K not
available in the previous “penta” database and more directly
relevant to the morphologies visited by the system along the
temperature ramp. MD simulations using this M-FF also pre-
dicted a “slush” transition region (cf. Fig. 9, orange symbols),
consistent with the earlier result.

In more detail, for temperatures below 700 K, all clusters
remain solid for both M-FFs, as indicated by the small (<0.1)
RMBF. In this region, the “mixed T” M-FF alone displays
a non-zero RMBF, hinting at small geometrical changes for
some of the starting morphologies. A RMBF > 0.3, character-
istic of nanoliquids,53 is observed above 900 K in simulations
using the “penta” M-FF and similarly above ∼975 K in simu-
lations using the“mixed T” M-FF. In the intermediate, approx-
imately 700-900 K range, our Ni19 system is predicted to be
associated with a RMBF intermediate between the nanosolid
and nanoliquid regimes. The agreement between the RMBFs
of the two M-FFs in Fig. 9 implies that training on low temper-
ature structures is sufficient to predict this qualitative feature
of the dynamical behaviour of the present system. The predic-
tion is also consistent with the high probability of geometrical
rearrangements, corresponding to slush structures, which have
been discussed in detail for Al systems.53 Several detailed
geometrical interconversion processes are observed during our
M-FF simulations, whose in-depth characterization is ongoing
and will be provided in future work.

IV. CONCLUSIONS

We investigated the accuracy of a Gaussian process-based
machine learning approach to the prediction of interatomic
forces in metallic nanoclusters. In particular, we assessed the
ability of different n-body kernels to correctly model the inter-
actions between atoms in the Ni19 system and probed how
the prediction accuracy is affected by ML training carried
out on single-structure and multi-structure (heterogeneous)
databases. We find that, at variance with the case of bulk Ni, a
2-body kernel is not sufficiently accurate, while a 3-body ker-
nel is able to accurately reproduce the reference DFT forces.
Restricting the training databases to configurations derived
from a single structure yields excellent interpolation accuracy
so that a 3-body kernel can be safely used in a “self-training”
regime. However, we find that “cross-training” the kernel is not
equally successful. Using training databases comprising con-
figurations derived from different cluster structures is therefore
necessary to enable extrapolation, whenever this is deemed to
occur, e.g., by evaluation of a Kullback-Leibler asymmetric
indicator.

Our results suggest that mixing configurations from as
few as two different structures is sufficient to train a 3-body
kernel capable of robust extrapolation and thus accurate force
prediction for all the structures considered. This in turn sug-
gests that a 3-body kernel can achieve a very good compromise
between representation power (which increases with the n-
body kernel order) and speed of convergence with respect to
database size (which instead decreases with n), provided that
heterogeneous training databases are used. This result could
be particularly useful for practical applications, since the force
field predicted by a 3-body GP kernel can be mapped onto
an exactly equivalent non-parametric “M-FF” force field.33

Such mapping yields a very significant efficiency gain, for
all practical purposes aligning the M-FF speed of execution
with that of any equivalent (e.g., 3-body) parametrised classi-
cal force field, while retaining the accuracy and ease of training
of the underlying machine learning scheme. As a simple fea-
sibility test, we investigated the thermal behaviour of Ni19

between 300 K and 1200 K. To address the thermal behaviour
of clusters, we carried out MD simulations, using a M-FF
trained on 300 K structures and a second M-FF trained on
300, 600, and 900 K structures, adding up to an ∼400 ns
total simulated time. Both M-FFs predict the occurrence of
three distinct physical regimes, with similar estimates for the
temperature boundaries separating them so that, in particu-
lar, dynamical states of the cluster, intermediate between the
solid and liquid phases, are predicted to occur between 700 K
and 900 K.

SUPPLEMENTARY MATERIAL

See supplementary material for details on the BOMD
and M-FF simulations, the learning curve graphs for DIH,
BIP, 4HCP, and dDIH cluster structures, more information
about the Kullback-Liebler divergence method, the complete
set of graphs for the MAEFS incurred by the 3- and many-
body kernels while mixed-training, a description of the Monte
Carlo Metropolis simulations performed, and the scatter plot
of energy predictions for the “mixed T” M-FF on 1500
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configurations extracted from DFT BOMD simulations at
900 K.
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40A. P. Bartók and G. Csányi, Int. J. Quantum Chem. 115, 1051 (2015).
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