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We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nan-
oclusters by analysing the performance of 2-body, 3-body and many-body kernel functions on a set of
19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates,
despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within
a ∼0.1 eV/Å average error even for small training datasets, and achieve high accuracy even on out-of-
sample, high temperature, structures. While training and testing on the same structure always provides
satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an
extrapolation problem. This can be cured using heterogeneous training on databases that contain more
than one structure, which results in a good trade-off between versatility and overall accuracy. Starting
from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows
accurate prediction of structural properties at finite temperatures, following a newly developed scheme
[Glielmo et al. PRB accepted (2018)]. We use this to assess the thermal stability of Ni19 nanoclusters
at a fractional cost of full ab initio calculations.

I. INTRODUCTION

Metallic nanoparticles have fascinating chemo-
physical properties, different from those of their
individual atomic constituents and their bulk
counterparts1–5. Because of the variety of isomers ac-
cessible at finite temperatures and the lack of transla-
tional symmetry, implying a non-trivial interplay be-
tween their geometric and electronic structure, a com-
prehensive understanding of metallic nanoclusters re-
mains challenging, despite their potential use in many
advanced applications6–16. Density Functional The-
ory (DFT) is the most common framework to investi-
gate the static and dynamical properties of nanoclus-
ters of few tens of atoms, for which standard classi-
cal force fields cannot systematically be relied upon
to provide sufficient accuracy. However, DFT-based
calculations are very expensive, and probing limited
timescales in first principles dynamical simulations
may lead to poor sampling of the nanoclusters’ con-
figuration space.

Machine Learning Force Fields (ML-FFs) may pro-
vide a solution to this problem, and the needed ac-
cess to the dynamical properties of nanoclusters, by
extending by several orders of magnitude the accessi-
ble time scale, while still describing sufficiently accu-
rately the interactions between the cluster atoms. The
ML-FFs of most widespread use in cluster science are
based on artificial neural networks17. In many works
aiming at investigating nanoclusters’ properties the
training databases were constructed from clusters of
several sizes, involving structures based on different
Bravais lattices and surfaces with different crystallo-
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graphic orientations18–23 . The ex novo production
of such databases requires many expensive quantum
calculations: while some redundancy is hard to avoid,
the neural network architecture, by means of multi-
ple layers and a high number of fitted parameters,
is usually able to extract the necessary information
and correctly predict energies and forces in specific
scenarios. The resulting trained force-field, although
versatile, can be however difficult to interpret because
of the inherent complexity of the algorithm.

Another commonly used class of ML-FFs is based
on Gaussian Process (GP) regression24,25, and has
recently been used to predict properties of both
bulk26,27 and molecular28–30 systems. While GPs have
been also applied to predict adsorption energies of
small molecules on NiGa and RhAu nanoclusters31,32,
they have never been used so far to estimate the finite-
temperature structural properties of a nanoparticle.
GPs are usually easier to interpret as they contain a
small number of physically meaningful hyperparam-
eters. Moreover, including symmetries such as the
translational invariance and rotational covariance of
forces25 or choosing simplifying approximations such
as selecting the n-body order of interaction between
atoms27,33–35 in the algorithm is straightforward in
the case of GPs, where these properties can be en-
coded the kernel function, enabling fast training and
high prediction accuracy.

In this work we systematically asses the GP force
estimates for a set of Ni19 nanocluster structures, as
obtained from 2-, 3-, and many-body kernels, and for
a number of training databases of different nature
and size. Consistent with the significant change of
physical properties occurring during the atom-to-bulk
transition, we find that a 2-body kernel generally
fails to correctly predict forces in small-sized Ni
nanoclusters, despite doing so for bulk Ni systems.
However, a 3-body kernel performs well, hinting to an
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increased significance of angular terms in the bonding.

The choice of training dataset is key to the per-
formance of any ML-FF. The search for an optimal
training dataset which may encompass all the relevant
structures while avoiding redundancy is therefore of
interest, to guarantee accuracy while limiting the need
to produce ad-hoc ab-initio databases. Consistent
with intuition, the GP accuracy decreases as the struc-
tural dissimilarity increases between the training and
testing morphologies, and the best accuracy is found
when using homogeneous training databases highly
similar to the target testing structure. However, het-
erogeneous training databases provide a just slightly
less good overall prediction performance, while the
trained kernels display a much higher degree of versa-
tility, predicting accurate forces also in out-of-sample
tests. Furthermore, 3-body ML-FFs trained on an
heterogeneous database accurately reproduce struc-
tural fingerprints such as pair distance distribution
functions at finite temperatures. Using this ML-FF
to derive a non parametric machine-learning mapped
force field (“M-FF”) via the procedure discussed in
Ref. [33] makes it possible to execute tens of ns long
simulations with a minimal computational effort, al-
lowing to assess the thermal stability of Ni19 nanoclus-
ters.

In the next section, we introduce the necessary GP
formalism (II A), provide expressions for the kernels
used throughout the work (II B) and briefly explain
the concept of “mapped” force field33 (II C). We then
describe a protocol for the validation of force predic-
tions (III A) and discuss the performance achieved
by the three kernels when tested on structures either
very similar or morphologically different from the ones
present in the training database for single-structure
(III B) and multi-structure (III C) training. The con-
struction of the 3-body M-FF and its validation are
described (III D), while its application in MD sim-
ulations investigating the behaviour of Ni19 clusters
in the 300-1200 K temperature range is described in
section III E.

II. MACHINE LEARNING
FORCE FIELDS

A. Gaussian process regression

A GP regression36 is a Bayesian method to learn
a function from a finite database D of input-output
pairs. As we are interested in learning the local force
acting on any given atom, we construct such train-
ing database by extracting (from a DFT simulation)
a set of local configurations ρi relative to each atom
and the corresponding forces fi on that atom. This
database D = {(ρi, fi)}Ni=1 is then partitioned into a
training set Dtr (with Ntr entries) used for learning,
and a test set Dtest (with Ntest entries) used for val-
idation. As the space of forces is three dimensional,
we here use the multi-output (vectorial) version of GP
regression25,37,38, for which the learned function f(ρ)

takes the form

f(ρ) =

Ntr∑
d=1

K(ρ, ρd)αd, (1)

where K is a matrix-valued kernel function encoding
the correlation of the forces relative to any two atomic
environments.

The coefficients αi in Eq. (1) can be written in
closed form as

αd =

Ntr∑
d′

[K + Iλ]−1dd′ · fd′ , (2)

where K is the covariance matrix containing Ntr×Ntr
block entries Kdd′ = K(ρd, ρd′), I is the identity ma-
trix and λ is a regularization hyperparameter that
formally governs the uncertainty associated with the
training dataset outputs , which has been kept fixed
at a value of 10−5. The performance of a GP is de-
termined by the choice of the kernel function K, its
hyperparameters and by the choice of training set Dtr.

B. Kernel functions

The kernel function should be invariant w.r.t.
translation and permutation of identical atoms, and
covariant (when predicting forces) w.r.t. rotation
of the configurations. Furthermore, the function K
should have a spatial resolution compatible with the
features of the energy landscape encoded in the train-
ing dataset; this is taken care of by optimizing the
kernel hyperparameters. A useful property of a kernel
function for force or energy prediction is its order ,
that is, the maximum number of simultaneously
interacting particles it can describe (see Ref.[33] for
a formal definition). Here we will use 2-body, 3-body
and many-body force kernels25,27.

a. 2-body. We assume that the force f acting on
an atom located at position ra is a sum of independent
contributions associated with every other atom in its
local environment ρa.

Each configuration is expressed as a sum of Gaus-
sian functions of width σ representing individual
atoms “SOAP representation”39). A natural way
to obtain a rotation invariant scalar energy kernel
would be via integration over the group of rota-
tions of the space-integrated overlap of each couple of
configurations39. The covariance of predicted forces, a
general property not requiring the existence of an un-
derlying invariant total energy function, can also be
obtained as an integral over rotations from a suitable
matrix-valued covariant integration expression, as de-
tailed in Ref.[25]. For the 2-body kernel case the in-
tegration can be carried out analytically, yielding the
following matrix-valued energy-conserving kernel25:
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Ks
2(ρa, ρb) =

∑
i∈ρ
j∈ρ

φ(rai, rbj)r̂air̂
T
bj , (3)

φ(rai, rbj) =
e−αij

γ2ij
(γij cosh γij − sinh γij),

αij =
r2ai + r2bj

4σ2
,

γij =
rairbj
2σ2

,

where rai expresses the position relative to the central
atom of its ith neighbour.

b. 3-body. A 3-body kernel allows to represent an
angular dependence on the force components. As de-
scribed in detail in Refs.[33, 40], a 3-body force kernel
can be built as a double derivative of a 3-body en-
ergy kernel with respect to the positions of the central
atoms of the configurations ρa and ρb:

Ks
3(ρa, ρb) =

∂2ks3(ρa, ρb)

∂ra∂rTb
. (4)

The 3-body energy kernel ks3 compares triplets of
atoms that include the central atom across the two
configurations. This kernel is intrinsically invariant
under permutation, rotation and translation of the
atoms in ρa and ρb, avoiding the need of any inte-
gration over SO(3). Each triplet is associated with a
vector qaij containing the three atomic distances i.e.,
qaij = (rai, raj , rij)

T . Apart from a normalisation
factor, the 3-body kernel reads:

ks3(ρa, ρb) =
∑
i,j∈ρa
k,l∈ρb

∑
P∈Pc

e−‖qaij−Pqbkl‖2/2σ2

, (5)

where Pc (|Pc| = 3) is the set of cyclic permutations
of three elements, and σ is the single required
lengthscale hyperparameter. Summing over the per-
mutation group is needed to guarantee permutation
symmetry of the energy. No i 6= j or k 6= l restriction
is however imposed in the external sum, making the
overall expression not limited to the case of three
distinct atoms, so that the kernel also includes the
2-body case as a subset. We note that permutation
invariance in 3-body kernels could also be obtained
using permutation invariant descriptors, as done in
Ref.[27]

c. Many-body. Describing arbitrarily complex in-
teractions requires a many-body kernel function such
that force prediction becomes dependent on the full lo-
cal atomic environment ρa, and is no more the result
of summing independent pairwise (or triplet) contri-
butions. A way to obtain a many body kernel kMB

(see Ref.[33]) is to take the exponential of a scalar
2-body kernel k2:

kMB(ρa, ρb) = ek2(ρa,ρb)/θ
2

, (6)

where

k2(ρa, ρb) =
∑
i∈ρa
j∈ρb

e−‖rai−rbj‖2/2σ2

. (7)

To impose rotational force covariance we should per-
form an integration over the SO(3) manifold of
rotations25. Unfortunately the integration over SO(3)
of the many-body kernel in Eq.(6) cannot be done an-
alytically, while numeric integration is computation-
ally heavy. We hence resort to restricting the sum-
mation to a discrete symmetry group R of rotations
(and reflections) whose elements R are represented by
orthogonal matrices R:

Kds
MB(ρa, ρb) =

1

|R|
∑
R∈R

R kMB(ρa,Rρb). (8)

The optimal choice of rotation group is system-
dependent: in FCC and BCC bulk environments a
natural choice is to sum over all elements of the
Oh point group. The resulting many-body kernel
can be made arbitrarily accurate if given a large
enough training set33,41 while the predicted force field
will not be conservative (make zero work on closed
loops to numerical accuracy) by construction. How-
ever, to the extent that force errors are small, the
energy-conserving character of the reference Hamilto-
nian forces will be approximately reproduced.

C. Mapped force field (M-FF)

Once the 3-body GP has been trained, the “map-
ping” technique described in Ref.[33] can be used to
build a non-parametric 3-body force field (a M-FF)
which retains the accuracy of the original GP while
typically increasing its computational speed by a fac-
tor 103− 104. This procedure is effectively equivalent
to storing the energies predicted by the kernel (5) for
a three-dimensional grid of values of the triplet of dis-
tances (rai, raj , rij) occurring in a three atom system.
In a more complex structure, the contributions from
every triplet and atom pair are calculated by spline
interpolation over the stored GP predictions of the
energy values. Analytic differentiation of the spline
expression produces an energy conserving force field
practically indistinguishable from the predictions of
the 3-body GP used to build it, while independent of
the number of configurations Ntr used for GP train-
ing. This M-FF could be seen as a classical n-body
force field, as simple to physically interpret and fast
to compute as a standard parametrised 3-body force
field, whose systematic non-parametric construction
requires no ad-hoc parameter choice and fine-tuning.
This enables simulation times which would not be
achievable by standard direct GP force prediction or
by first-principles molecular dynamics based on the
reference DFT Hamiltonian.

III. RESULTS

We consider Ni nanoclusters of 19 atoms and gather
data from Born-Oppenheimer molecular dynamics
(BOMD) simulations at 300K, 600K, and 900K, from
five different initial structures, represented in Figure
1: a hcp motif of three layers (3HCP), a double icosa-
hedron (DIH), a bipyramid (BIP), a four stacked hcp
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FIG. 1. Five Ni 19 structures ordered, from left to right,
according to an energetic criterion, with the first one being
the global minimum.

layer (4HCP) structure, and a structure obtained by
displacing two five-fold arranged vertexes of a dou-
ble icosahedron to form two six-fold rings, also known
as a “rosette” defect42 (dDIH). The first three motifs
are the most energetically favourable at PBE DFT
level43, the other two were found with a metadynam-
ics sampling procedure13,14 and are included here to
introduce low symmetry morphologies in the database
set. The BOMD simulation details are provided in the
supplementary material.

A. Validation methodology

It is evident from Eq. (1) and (2) that the pre-
dictions of a GP will depend on how the training
dataset Dtr is chosen. To assess the errors incurred
by the three kernels while used in interpolation and
(putative) extrapolation regimes, we next systemat-
ically analyse the GP predictions on test databases
containing contributions from all five structures while
training is carried out on different combinations of
structures. This procedure allows us to introduce a
novel strategy to measure the similarity between clus-
ter geometries, based on the relative GP errors made
while training and testing on two different structures.
In our practical implementation, for all the GP train-
ings, we choose Ntest = 400 for each of our five cluster
structures, yielding a total pool of 2000 testing points.

Every test is repeated five times to estimate a stan-
dard deviation for the Mean Absolute Error on Forces
(MAEF), defined as the average error done by the GP
on the force vector:

MAEF =
1

Ntest

Ntest∑
d=1

√√√√ 3∑
c=1

(
fd,c − f ′d,c

)2
, (9)

where f and f ′ are the reference and predicted forces
acting on an atom, respectively, and c indicates the
Cartesian component. Our tests can be separated
into three categories: self-training, cross-training and
mixed-training, depending on which databases was
used to build the training sets and which subset of the
testing pool is used. In the self-training, the configu-
rations used to build the Dtr and Dtest are associated
with the same cluster structure. In the cross-training,
the database from a structure morphology is used for
training, and testing occurs on configurations associ-
ated with the other four structures. In both of the
above, the database is homogeneous, that is it con-
tains configurations relative to a single morphology.
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FIG. 2. Learning curves for the paradigmatic example of
training and testing on a 3HCP morphology. The k ernel
n-body order is colour coded, with 2-body represented in
cyan, 3-body in blue, and many-body in orange.
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in Figure 1 and for 3 kernels, with standard deviation ob-
tained from 5 tests. For all tests, Ntest = 400 and Ntr =
500 (2- and 3-body kernels) or Ntr = 1000 (many-body
kernel).

For the mixed-training we build and test all possible
heterogeneous training sets Dtr that contain inputs
from two, three, and all five morphologies (here as in
self-training, no data point present in Dtr is allowed
to be in Dtest).

B. Self- and cross-training

We first discuss the results for self-training. Fig-
ure 2 reports a learning curve (MAEF against Ntr)
for the case of a 3HCP cluster structure. The 2-body
kernel achieves its maximum accuracy for Ntr > 50;
similarly, the 3-body MAEF decreases with Ntr until
Ntr > 100 and an accuracy plateau is reached. The
accuracy of the many-body kernel, on the other hand,
keeps increasing with the number of training set point,
as expected for an universal approximator kernel33,41.
The learning curves for the other structures show the
same qualitative trends (see supplementary material).
Figure 3 shows the converged MAEF achieved by self-
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training GPs for each of the five morphologies when
using 2-, 3-, and many-body kernels. The left-hand
histogram reveals that modeling the atomic interac-
tions between Ni atoms in terms of a 2-body poten-
tial yields a MAEF larger than the target accuracy of
0.15 eV/Å for all morphologies, with higher values for
low symmetry ones (4HCP and dDIH). We note that
this is not the case for FCC bulk Ni systems, where 2-
body kernels were found to be suprisingly accurate25.
The central and right-hand histograms in Fig. 3 reveal
that both 3- and many-body kernels achieve a suitably
accurate force prediction for all cluster structures if
the training dataset used contains 200+ points. For
comparison, the calculated MAEF of a state-of-the-
art classical parametric potential for Ni44 is 0.59 ±
0.39 eV/Å. The relative importance of n-body contri-
butions to the forces in the five Ni19 cluster morpholo-
gies can be appreciated by looking at the accuracy of
the n-body kernels. For instance, the accuracy of 2-
body and 3-body forces is very similar for the 3HCP
morphology, indicating that the angular dependence
of forces is not crucial in this motif, while it is more
significant for the other structures. We note that com-
paring n-body kernel predictions could be more gen-
erally used as a way to characterize the nature of the
bonding occurring in complex systems such as metal
nanoclusters or grain boundaries, and to reveal and
quantify (dis)similarities between these systems or rel-
ative to reference bulk structures.

The MAEFs obtained for cross-testing are reported
in Figure 4. In these case, the 2-body kernels MAEFs
are consistently larger than 0.15 eV/Å and often twice
as large. Comparing the 3- and many-body ker-
nels reveals the accuracy achieved by the 3-body ker-
nel strongly depends on the training database, while
the many-body kernel displays more consistent er-
rors over different structures. This could be ratio-
nalised by considering that a many-body kernel is ca-
pable of learning high-n interaction terms whose con-
tributions are effectively sampled in any morphology,
even e.g., in structures in which they are quantita-
tively less important. These terms help maintain-
ing a good prediction accuracy even on “partially un-
known” new morphologies where higher order inter-
actions come more into effect. The 3-body kernel is
instead intrinsically restricted to 3-body interactions,
and if the reference forces include (say) a 4-body in-
teraction contribution, incorporating this by machine
learning based on a lower-dimensional feature space
may achieve some success only in self-training (in-
terpolation) mode, but won’t correctly extrapolate
to new structures. This suggests that the accuracy
that a 3-body kernel achieves on a target structure is
to a significant extent conditional to the presence of
database entries representative of that structure in the
training database used. Consistently, for this kernel,
the training databases comprising the low-symmetry
morphologies (4HCP and dDIH) that have the most
varied repertoires of atomic environments are those
which work best in cross-testing. We also note how
the cross-testing error incurred by training over 4HCP
and testing on its higher-symmetry counterpart 3HCP
is 0.18 eV/Å, while the reversed test yields a signifi-
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FIG. 4. From top to bottom we report the MAEF and
its standard deviation for the 2- (Ntr = 500), 3- (Ntr =
500) and the many- (Ntr = 1000) body kernels trained and
tested on different Ni-19 datasets at 300 K.

cantly larger 0.26 eV/Å MAEF. The same effect be-
comes even more apparent by examining the dDIH
(low symmetry) and DIH (high symmetry) pair of
structures, yielding 0.14 eV/Å and 0.31 eV/Å errors
in the direct and reversed tests, respectively.

Further analysis of the GP predictions allows some
qualitative understanding of why using different train-
ing databases leads to stronger or weaker perfor-
mances over the available testing sets. We first exam-
ine the case of training on each of the five structures
and testing on the dDIH structure. Figure 5 is a visual
representation of the MAEFs committed at the test-
ing stage by our three kernels after they were trained
on the five single-structure training databases. As ex-
pected from Figure 4, the 2-body kernel is associated
with large errors for all training sets but the dDIH
one - the only one here in the self-training regime.
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trained on (left to right): 3HCP, DIH, BIP, 4HCP, dDIH.
Color coding ranges from 0.12 eV/Å (blue) to 0.5 eV/Å
(red).

In the case of 3-body kernel, training on a 4HCP
database yields the best overall cross-training perfor-
mance (while as expected, self-training on a dDIH
database offers better results). This provides good
accuracy on most atoms, falling short only around
the rosette defect, a peculiar distortion absent in the
4HCP structure. The MAEFs incurred by training
on the DIH database are also very low for the lower-
most 5-fold cap of the dDIH cluster. This is expected
since these local environments are very similar in these
two morphologies. On the other hand, cross-training
on the BIP and 3HCP datasets fails to predict forces
around the icosahedral centres and the rosette defect
of the dDIH. These results hold true even in the case
of the many-body kernel, for which the DIH is the
best performing cross-training morphology.

We next compare the pair-distance function (PDF)
and the bond angular distribution function (BADF)
for the five morphologies as obtained from BOMD
simulations at 300 K, reported in Figure 6. These
reveal structural differences between the morpholo-
gies. For instance, the PDF peak close to 3.3 Å in
the 3HCP, 4HCP, and BIP morphologies is absent in
the DIH and dDIH structures. Also, the BADF in
the bottom panel displays a broadened distribution
for 4HCP and dDIH and much more peaked ones for
3HCP, DIH, and BIP.

As a possible quantitative indicator of how well
a PDF “samples” another one we calculate their
Kullback−Leibler (KL) divergence. For a discrete
probability distribution this is calculated as:

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
. (10)

This (asymmetric) quantity measures the information
“lost” when a function Q is used to approximate an-
other function P , returning a 0 value when P = Q,
and increasing positive values as P grows dissimilar
from Q. In the present context, Q and P are the

PDFs associated with the training set and testing set,
respectively. Figure 7 contains a normalized scatter
plot comparing the KL divergence relative to each or-
dered pair of PDFs taken from Figure 6 with the cor-
responding cross-training MAEF incurred by the 2-
body kernel (see supplementary material for details on
how these two quantities were normalized). The graph
reveals a striking correlation between the two dissimi-
larity measures, generally highlighting the importance
of the presence of database entries which contain pairs
of atoms at distance values relevant for the testing
dataset. Moreover, since the PDF can be assumed
to be an unique structural descriptor in the case of
monometallic nanoparticles45–48, the correlation in-
dicates that the 2-body cross-training error is non-
trivially linked to properties that go beyond 2-body
descriptors. Thus, the KL divergence between PDFs
could be used as an a priori indicator of extrapolat-
ing performance of the 2-body kernel in cross-training.
Similar tests for the 3-body kernel also display a pos-
itive correlation, although of smaller statistical sig-
nificance (see supplementary material). The results
above suggest that evaluating the KL divergence for
other functions than the PDFs could provide more
dissimilarity estimators. This could be used to guide
the extraction of informed, minimally sized training
databases from a “general” database too large to be
used in full for GP regression.

C. Heterogeneous training and training set
optimisation

We next examine the mixed-training strategy, to
learn how a small training database Dtr which still
encompasses a sufficiently varied repertoire of atomic
distances and bond angle values could be built. For
this, we test the accuracy of training on mixed
datasets containing entries from two, three, and all
five different cluster morphologies. Our results indi-
cate that the MAEF incurred by the 3-body kernel is
fairly homogeneous in the various mixed-training and
testing scenarios, staying the same within a 0.03 eV/Å
standard deviation, contrary to what was generally
found for self-training. This suggests that introduc-
ing even a modest amount of variety in the training
configuration pool is sufficient to achieve a reasonably
complete training of a 3-body kernel, avoiding “lo-
cal” overfitting causing extrapolation errors. Consis-
tently, the MAEF incurred by a kernel not restricted
to just a 3-dimensional feature space and thus much
harder to completely train, such as the many-body
kernel, is found to have a higher standard deviation (
0.05 eV/Å) when trained and tested in the same sce-
narios. For all kernels, we find that mixed-training
yields errors comprised between those incurred by
self-training and cross-training, with MAEFs slightly
higher than those produced by self-training but ap-
preciably smaller than those associated with cross-
training.

Figure 8 illustrates the performance of the 3-
body kernel trained on our “best” single-structure
database (4HCP, see section III B), the best choice
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FIG. 6. Pair-distance (top) and bond angle (bottom) dis-
tribution functions for the five cluster structures, averaged
over 2 ps from 300 K BOMD simulations (in colour) and
M-FF MD simulations (black dashed).
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FIG. 7. Normalised scatter plot highlighting the corre-
lation between the KL divergence calculated on ordered
pairs of PDFs from Figure 6 and the cross-training MAEFs
incurred for the corresponding pairs of cluster structures
(see text for more details).

of two- and three-structure mixed databases, the full
5-structure database (“penta”), and a (“mixed T”)
training database containing 1000 DFT configurations
extracted from simulations at 300, 600 and 900 K.
The results are good for all training scenarios and no-
tably, the 5-structure “penta” databases achieves the

4HCP 4HCP+dDIH BIP+4HCP+dDIH Penta Mixed T
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training Database

M
AE

F 
[e

V/
Å]

Tes�ng Dataset
3HCP
DIH
BIP
4HCP
dDIH

FIG. 8. MAEFs for four 3-body kernels trained on 300 K
databases containing 500 configurations representative of
one, two, three and all five cluster morphologies, and a
“mixed T” database of 1000 DFT configurations extracted
from 300, 600 and 900 K simulations including all cluster
morphologies.

same performance of all the other database choices
which needed to be identified as the best restricted
ones. To investigate the performance stability of a
given, simple database construction recipe, we gen-
erated 100 independent “penta” Dtr training sets,
each containing 100 randomly chosen configurations
for each cluster structure. Training 3-body kernels on
the low temperature Dtr of Figure 8 and testing on
a fixed database also comprising configurations from
all five structures yields an average MAEF of 0.14 ±
0.07 eV/Å. The small 0.004 eV/Å difference we find
between the MAEF incurred by the best-performing
low-temperature GP and the average MAEF suggests
that the accuracy gain which might be obtained by
a “best training set choice” procedure is practically
negligible. To further analyse this issue we performed
Metropolis Monte Carlo simulations to optimize the
dataset training points, and again found no signifi-
cant accuracy gain (see supplementary material). An
overall better performance was instead achieved when
using the “mixed T” database which included higher
T configurations for all cluster morphologies.

D. Building and validating a 3-body M-FF

To perform computationally inexpensive MD sim-
ulations with near-ab initio accuracy we map the
ML-FF corresponding to the two best performing 3-
body kernel s (“penta” and “mixed T onto two non-
parametric M-FFs, following the procedure described
in Section III C.

We first assess their accuracy on configurations ex-
tracted from 600 K and 900 K BOMD simulations
started from 3HCP and DIH initial structures, re-
spectively. Both systems undergo several structural
changes along their trajectory. The computed MAEFs
for the ”penta” M-FF are 0.26 ± 0.24 eV/Å for 3HCP
at 600 K and 0.25 ± 0.17 eV/Å for DIH at 900 K, indi-
cating that the M-FF retains an acceptable accuracy
level while visiting configurations not represented in
the “penta” training database. (Also note that higher
errors should be expected for high-temperature sam-
ples, where forces have a larger modulus).
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The MAEFs associated with the “mixed T” M-FF
is 0.25 ± 0.46 eV/Å for 3HCP at 600 K, and 0.17 ±
0.09 eV/Å for DIH at 900 K.

The M-FFs described so far are appropriate for sim-
ulating dynamical runs as they contain data gathered
from BOMD DFT simulations only. Testing their ac-
curacy on minimized 0 K structures reveals a 0.10 ±
0.02 eV/Å MAEF for the “penta” training set and a
0.06 ± 0.02 eV/Å MAEF for the “mixed T” train-
ing set. The inclusion of configurations collected dur-
ing structural relaxation in the training set reduces
the MAEF to 0.04 ± 0.02 eV/Å, while using a many-
body kernel with 4000 training points yields a further
reduced 0.02 ± 0.01 eV/Å MAEF.

To further test the accuracy of our 3-body “penta”
M-FF in a dynamical setting, we run three 200 ps-long
300 K MD simulations (see supplementary material)
for each of the five geometries, and compare the PDFs
and BADFs with the reference ones extracted from
equally long BOMD simulations of the same struc-
tures kept at the same temperatures. The excellent
overlap obtained for both PDFs and BADFs, visible
in Figure 6, provides some further validation of the
ability of the M-FF to track the reference DFT forces.
The errors averaged over our five 300 K structures in-
curred by the M-FFs while predicting energies are 16
± 10 meV/atom and 9 ± 7 meV/atom for the “penta”
and the more comprehensive“mixed T” training sets,
respectively. A scatter plot of the energy error in-
curred at 900 K by the M-FF trained on the “mixed
T” database is provided in the Supplementary Mate-
rial section.

E. Assessing the thermal behaviour of Ni19

To probe whether results potentially yielding novel
physical insights into the nanocluster behaviour can
be obtained by using a M-FF, we finally investigate
the kinetic behaviour of Ni19, to explore the extent of
shape fluctuations occurring in the nanocluster48–52.
To do so, we carry out MD runs at 50 K-spaced tem-
peratures comprised between 300 K and 1200 K. We

perform four 480 ps-long simulations for each tem-
perature for each of the five morphologies considered
in this work (380 simulations in total). The com-
putational speed-up factor associated with carrying
out a M-FF rather than a BOMD simulation in these
systems is ∼ 105. The root mean bond fluctuation
(RMBF) is a quantity describing the average bond
length oscillation at a given temperature, often used to
characterize phase changes in nanoscale systems6–11,
defined as:

RMBF =
2

M(M − 1)

∑
i<j

√
〈r2ij〉 − 〈rij〉2

〈rij〉
, (11)

where M is the number of atoms and the averages are
taken over the simulation (excluding the first 5 ps to
allow for thermal equilibration) for each atom pair.
Figure 9 shows the RMBF value averaged over 20
simulations for each temperature value (four repeated
simulations for each of the five structures) as a func-
tion of temperature for both the “penta” and the
“mixed T” M-FFs.

The first M-FF was trained on the low temperature
“penta” database, and was thus expected to be op-
erating in a largely extrapolatory regime. This force
field predicted a “slush” transition region rather than
abrupt melting (cf. Fig 9, green symbols). The second
M-FF was trained on the “mixed T” database includ-
ing configurations at 600 K and 900 K not available in
the previus “penta” database and more directly rele-
vant to the morphologies visited by the system along
the temperature ramp. MD simulations using this M-
FF also predicted a “slush” transition region (cf. Fig
9, orange symbols), consistent with the earlier result.

In more detail, for temperatures below 700 K, all
clusters remain solid for both M-FFs, as indicated by
the small (< 0.1) RMBF. In this region, the “mixed
T” M-FF alone displays a non-zero RMBF, hinting
at small geometrical changes for some of the starting
morphologies.

A RMBF > 0.3, characteristic of nanoliquids53, is
observed above 900 K in simulations using the “penta”
M-FF, and similarly above ∼975 K in simulations us-
ing the“mixed T” M-FF. In the intermediate, approx-
imately 700-900 K range, our Ni19 system is predicted
to be associated with a RMBF intermediate between
the nanosolid and nanoliquid regimes. The agreement
between the RMBFs of the two M-FFs in figure 9 im-
plies that training on low temperature structures is
sufficient to predict this qualitative feature of the dy-
namical behaviour of the present system. The pre-
diction is also consistent with the high probability
of geometrical rearrangements, corresponding to slush
structures, that have been discussed in details for Al
systems53.

Several detailed geometrical interconversion pro-
cesses are observed during our M-FF simulations,
whose in-depth characterization is ongoing and will
be provided in a future work.
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IV. CONCLUSIONS

We investigated the accuracy of a Gaussian Process-
based machine learning approach to the prediction of
interatomic forces in metallic nanoclusters. In par-
ticular, we assessed the ability of different n-body
kernels to correctly model the interactions between
atoms in the Ni19 system, and probed how the pre-
diction accuracy is affected by ML training carried
out on single-structure and multi-structure (hetero-
geneous) databases. We find that, at variance with
the case of bulk Ni, a 2-body kernel is not sufficiently
accurate, while a 3-body kernel is able to accurately
reproduce the reference DFT forces. Restricting the
training databases to configurations derived from a
single structure yields excellent interpolation accu-
racy, so that a 3-body kernel can be safely used in a
“self-training” regime. However, we find that “cross-
training” the kernel is not equally successful. Using
training databases comprising configurations derived
from different cluster structures is therefore necessary
to enable extrapolation, whenever this is deemed to
occur e.g., by evaluation of a Kullback−Leibler asym-
metric indicator.

Our results suggest that mixing configurations from
as few as two different structures is sufficient to train
a 3-body kernel capable of robust extrapolation and
thus accurate force prediction for all the structures
considered. This in turn suggests that a 3-body ker-
nel can achieve a very good compromise between rep-
resentation power (which increases with the n-body
kernel order), and speed of convergence with respect
to database size (which instead decreases with n),
provided that heterogeneous training databases are
used. This result could be particularly useful for
practical applications, since the force field predicted
by a 3-body GP kernel can be mapped onto an ex-
actly equivalent non parametric “M-FF” force field33.
Such mapping yields a very significant efficiency gain,
for all practical purposes aligning the M-FF speed of
execution with that of any equivalent (e.g., 3-body)
parametrised classical force field, while retaining the
accuracy and ease of training of the underlying ma-
chine learning scheme. As a simple feasibility test, we
investigated the thermal behaviour of Ni19 between
300 K and 1200 K. To address the cluster’s thermal
behaviour, we carried out MD simulations, using a M-
FF trained on 300 K structures and a second M-FF
trained on 300, 600, and 900 K structures, adding up
to a ∼400 ns total simulated time. Both M-FFs pre-
dict the occurrence of three distinct physical regimes,
with similar estimates for the temperature boundaries
separating them so that in particular dynamical states
of the cluster, intermediate between the solid and liq-
uid phases, are predicted to occur between 700 K and
900 K.

SUPPLEMENTARY MATERIAL

See supplementary material for details on the
BOMD and M-FF simulations, the learning curve
graphs for DIH, BIP, 4HCP and dDIH cluster struc-

tures, more informations about the Kullback−Liebler
divergence method, the complete set of graphs for
the MAEFS incurred by the 3- and many-body ker-
nels while mixed-training, a description of the Monte
Carlo Metropolis simulations performed, and the scat-
ter plot of energy predictions for the “mixed T” M-FF
on 1500 configurations extracted from DFT BOMD
simulations at 900 K.
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