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We formulate a general, arbitrary-order stochastic response formalism within the Full Configuration Inter-
action Quantum Monte Carlo framework. This modified stochastic dynamic allows for the exact response
properties of correlated multireference electronic systems to be systematically converged upon for systems far
out of reach of traditional exact treatments. This requires a simultaneous coupled evolution of a response
state alongside the zeroth-order state, which is shown to be stable, non-transient and unbiased. We demon-
strate this with application to the static dipole polarizability of molecular systems, and in doing so, resolve a
discrepancy between restricted and unrestricted high-level coupled-cluster linear response results which were
the high-accuracy benchmark in the literature.

I. INTRODUCTION

The change in a system due to a perturbation is at
the heart of experimental techniques to probe a range of
properties. Whilst energies are certainly of interest, most
properties of relevance can be defined as the response
of a wavefunction or its expectation value to a pertur-
bative change in the Hamiltonian defining the system.
These cover responses due to applied fields, changes in
the environment, or perturbative coupling of the Hamil-
tonian to a nuclear spin or neglected effects such as spin-
orbit coupling. Rather than computing this response as
a finite difference of properties between the perturbed
and unperturbed system, response theory has provided
a powerful framework to directly compute these quanti-
ties, defined as derivatives of expectation values of the
original Hamiltonian due to the perturbation1–4. The
success of this approach has greatly expanded the util-
ity and scope of ab initio quantum chemistry, and al-
lowed methods such as coupled-cluster and other corre-
lated methods to be applied to problems ranging from
the calculation of nuclear magnetic shielding constants
to circular dichromism, and much more between5–8. This
broad scope of application is now seen as essential to the
success of the field.

In contrast to quantum chemistry, projector quantum
Monte Carlo methods generally have had a more lim-
ited availability of response quantities, due mainly to the
fact that the perturbations do not in general commute
with the unperturbed Hamiltonian. This fact necessi-
tates the computation of pure expectation values, for
which projector quantum Monte Carlo techniques are not
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in general well suited9,10. Despite this, the computation
of response properties has been performed successfully
within diffusion quantum Monte Carlo via numerical fi-
nite difference11,12, or by integrating along a path in a
Berry-phase formalism13,14. Further advances in repta-
tion and forward-walking algorithms in QMC are now
beginning to be able to explore pure expectation values
and response functions10,15–21. However, it is clear that
these are exceptionally difficult quantities to compute in
general for these methods.

In this paper, we outline an approach for the direct and
stable computation of arbitrary order response properties
within the framework of Full Configuration Interaction
Quantum Monte Carlo method (FCIQMC), a projector
QMC approach. In contrast to related projector QMC
methods, this approach is constructed in a discrete basis
of antisymmetric, orthogonal Slater determinants22–25.
This approach for response properties inherits the ad-
vantages of the ground and excited state FCIQMC ap-
proach in being systematically improvable to exactness
(equivalent to FCI), in a non-transient fashion. The sign
problem in this approach is suppressed via a combination
of annihilation events between oppositely signed walkers
which sample the wavefunction amplitudes, along with
the initiator approximation which aids in promoting an-
nihilation events relative to spawning26,27.

Following the use of FCIQMC in calculating energies
of chemical and solid-state systems, this development al-
lows for the routine calculation of arbitrary analytic en-
ergy derivatives of interest within the same framework,
in a similarly systematically improvable fashion. This
is achieved via the simultaneous sampling of multiple
walker distributions, corresponding to these derivative
wavefunctions. These can then be used to accumulate
unbiased statistical estimates of response functions of ar-
bitrary order, which can be averaged over time. Dy-
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namic response functions have been considered previ-
ously within FCIQMC frameworks28,29, however those
algorithms have always led to transient estimates of these
response functions, which are avoided in the stable sam-
pling detailed in the following construction. In this work,
we restrict ourselves to static responses of the ground
state of chemical systems, and to only linear, first-order
response functions. However, we will detail a more gen-
eral procedure to obtain arbitrary-order response, and
future work will investigate the performance of the ap-
proach for higher-order response, including the response
of excited states, application to solid-state systems, and
extension to a stable, non-transient sampling of dynamic
response functions.

This work builds on a number of recent develop-
ments within the FCIQMC framework. The first is an
excited-state approach, where multiple walker distribu-
tions stochastically evolve to sample each state of inter-
est simultaneously30. This was achieved with a stochastic
orthogonalization procedure between the statistical sam-
pling of the different low-energy states. A key further
development has been the efficient sampling of reduced
density matrices (RDM), and their use in the calcula-
tion of pure (symmetric) expectation values and prop-
erties of chemical systems31,32. This contrasts with a
projected estimate which is generally used in the com-
putation of the energy, but can only be used for oper-
ators which commute with the Hamiltonian being sam-
pled. A central concept to allow for this was to ensure
that two, independent walker distributions were used to
sample the wavefunction of each state, so that unbiased
expectation values could be obtained. These unbiased
RDMs were shown to be able to compute essentially ex-
act nuclear forces and dipole moments as expectation val-
ues, while the polarizability was also computed by using
a finite field difference approach33. These RDMs have
also recently been extended to compute expectation val-
ues between any two sampled states via the construction
of distributed-memory transition density matrices34, and
much of this infrastructure will also be used within this
work.

In section II, we start by providing a brief overview of
the FCIQMC method, with details concerning the sam-
pling of transition density matrices between two simul-
taneously evolving walker distributions representing dif-
ferent sampled states of the system. In section III, we
derive a modified set of coupled master equations for the
stochastic dynamics within FCIQMC, to ensure that we
can sample arbitrary responses of walker distributions to
a perturbation. We further provide remarks on the im-
plementation involving the solution to the response equa-
tions and subsequent computation of the second order
properties through sampling respective transition RDMs.
Finally, in section IV we present results for different com-
ponents of the dipole polarizability for chemical systems,
demonstrating the applicability of our method, and in-
vestigate the convergence of both systematic and random
errors in the calculations.

II. THEORETICAL BACKGROUND

A. The FCIQMC Method

We provide here a brief overview of the underly-
ing framework of Full Configuration Interaction Quan-
tum Monte Carlo (FCIQMC) for sampling ground-state
wavefunctions22–24,35. FCIQMC is a stochastic method
to solve the imaginary-time Schrödinger equation, which
has the form:

∂

∂τ
|Ψ〉 = −Ĥ|Ψ〉. (1)

Starting with an initial state |Ψ(0)〉, which is not orthog-
onal to the true ground state, the propagation of Eq. 1
leads to a dynamic given by

|Ψ(τ)〉 = e−τĤ |Ψ(0)〉, (2)

which in the long-time limit, converges to a solution pro-
portional to the ground state of the electronic system,
|Ψ0〉,

|Ψ0〉 ∝ lim
τ→∞

e−τĤ |Ψ(0)〉. (3)

The numerical integration of the time-dependent
Schrödinger equation in Eq. 1 then follows stochastic
rules, with a discretized representation of the state at
each point in imaginary time. After sufficient time, the
aim is to sample from a distribution representing the
ground state, corresponding to the FCI wavefunction and
corresponding basis set correlation energy. Instead of
directly sampling the exponential propagator given in
Eq. 2, FCIQMC stochastically simulates the action of
a linearized propagator which gives the same long-time
solution, given by

|Ψ0〉 ∝ lim
n→∞

(1−∆τĤ)n|Ψ(0)〉, (4)

where ∆τ represents a small timestep, such that τ ∼
n∆τ . While this form can be considered a first-order Tay-
lor expansion of the exponential propagator, which will
result in different distributions at intermediate time, the
long-time distributions will be identical since the domi-
nant eigenvectors of the propagator coincide for a finite
basis set. We now expand the wavefunction parameter-
ization at any time as a linear combination of the com-
plete set of orthogonal N -electron Slater determinants
in the basis (the FCI expansion), with each determinant
denoted by |Di〉, resulting in

|Ψ(τ)〉 =
∑
i

Ci(τ)|Di〉. (5)

Substituting this form of |Ψ(τ)〉 in Eq. 1 we arrive at
the coupled master equations which govern the time-
evolution of the CI coefficients,

∂Ci
∂τ

= −
∑
j

(Hij − Sδij)Cj . (6)
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Here an ‘energy shift’, S, has been introduced to con-
trol the population dynamics of walkers which are used
to represent the CI coefficient in the FCIQMC simula-
tion, and is adjusted such that the norm of the result-
ing ground-state wavefunction is constant in the long-
time limit. An alternative derivation of the dynamics
without considering an imaginary-time propagation, can
be rationalized from the minimization of a Lagrangian
functional36 as

L[Ψ] = 〈Ψ|Ĥ|Ψ〉 − S(〈Ψ|Ψ〉 −A). (7)

The shift parameter, S, now takes the form of a Lagrange
multiplier, controlling the normalization of the wavefunc-
tion to the constant A. Taking a steepest-descent ap-
proach to the minimization with respect to the wavefunc-
tion amplitudes leads to a finite-difference approximation
to Eq. 6, as

∆Ci = −∆τ
∑
j

(Hij − Sδij)Cj , (8)

which defines the forward-iteration evolution of the am-
plitudes, and is entirely equivalent to the propagator
form of Eq. 4.

The wavefunction is now discretized into an ensemble
of Nw signed walkers, each of which is assigned to a par-
ticular Slater determinant. In the long-time, large-walker
number limit of the simulated dynamics, the distribution
of walkers will be proportional to the FCI coefficients in
Eq. 5. The population of walkers evolves in every time
interval, ∆τ , according to the propagation of Eq. 8, fol-
lowing three stochastic steps:

1. Spawning step: Each walker selects a new deter-
minant, |Dj〉, connected to its current determi-

nant, |Di〉, by a single application of Ĥ. This
selection is made with a normalized probability
pgen(j|i). Following this selection, a new walker
is spawned on |Dj〉 with a signed probability of
ps = −∆τHij/pgen(j|i).

2. Death step: Each occupied determinant, |Di〉, at-
tempts to modify its amplitude with a probability
pd = ∆τ(Hii − S)Ci.

3. Annihilation step: In the final step, newly-created
walkers are combined with existing ones, either
adding up or cancelling out, depending on their re-
spective signs.

The energy of the system can be obtained from a pro-
jected estimate,

E(τ) =
〈ΨT |Ĥ|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

, (9)

where |ΨT 〉 is a deterministic trial wave function with
a non-zero overlap with |Ψ0〉. This will give the ex-
act energy when |Ψ(τ)〉 represents an eigenstate of the

system37. However, the energy can alternatively be cal-
culated from the reduced density matrices (RDMs) as a
trace with the Hamiltonian matrix32,38, corresponding to
a pure (symmetric), variational estimate of the ground-
state energy. The sampling of unbiased RDMs via two
independent ‘replica’ simulations running in parallel is
discussed in more detail in section II B.

Further advancements in the FCIQMC algorithm have
dramatically improved the efficiency of the method com-
pared to the native algorithm described above. The two
main developments in this regard is the addition of the
‘initiator’ approximation23,39, and the semi-stochastic
adaptation32,37,40. The initiator approximation adapts
the spawning criteria with the additional requirement
for a successful spawning event to an unoccupied deter-
minant conditional on |Ni| > na, where |Ni| is the to-
tal number of walkers on the parent determinant, and
na is the initiator parameter, generally set to 3. This
will bias the simulation for low walker populations, but
results in convergence to the exact result in the limit
of increasing population. In the semi-stochastic adapta-
tion, a small number of significant determinants are cho-
sen, and their amplitudes propagated exactly according
to Eq. 4. This substantially reduces the random errors
associated with the dynamic, and reduces the time re-
quired to converge the result to a given accuracy. This
also allows for a finer resolution of probability ampli-
tudes, with real amplitudes used until they are too low,
at which point a stochastic rounding of the total determi-
nant weight occurs to maintain a sparse representation
of the state. Without exception, these adaptations are
performed for all calculations in this work, and entirely
equivalent changes are made for the response dynamic.

B. Reduced Density Matrices within FCIQMC

In this section, we describe the stochastic accumula-
tion of the RDMs in more detail, since it represents a key
step in the sampling of the response properties. These
have previously been used for the computation of molec-
ular properties such as (transition) dipole moments34,
analytic nuclear forces33 and explicitly correlated correc-
tions to the wavefunction31, in addition to calculating a
variational energy estimate within FCIQMC. A general
two-body reduced density matrix is defined as

Γmnpq,rs = 〈Ψm|a†pa†qasar|Ψn〉, (10)

where p, q, r and s index spin-orbital degrees of freedom.
The definition here also allows for the construction of
the (transition) RDM between two potentially different
states, m and n. The one body reduced density matrix
is connected to its two body counterparts through its
definition as

γmnp,q = 〈Ψm|a†paq|Ψn〉

=
1

N − 1

∑
a

Γmnpa,qa. (11)
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The FCIQMC coefficients Cni , are used to obtain the
reduced density matrix as

Γmnpq,rs =
∑
ij

E[Cmi ]E[Cnj ]〈Di|a†pa†qasar|Dj〉, (12)

where E[. . . ] denotes an expectation value, which can be
estimated by an average over the simulation, after con-
vergence has been reached. The difficulty in a naive sam-
pling of Eq. 12 is that access to the elements of E[Cni ] is
not possible without an undesirable histogramming of the
sampled wavefunction over time. Furthermore, it is not
possible to average the samples of the full RDM without
introducing a systematic bias at finite walker numbers,
since the average of the product E[Cmi × Cnj ] will have
biased mean, due to the fact that correlations exist be-
tween the sampling of the two terms at each point in
time.

This problem is solved with replica sampling in the
FCIQMC calculation32. With replica sampling, an ad-
ditional, independent sampling of the same state is per-
formed concurrently. As these two simulations for all
desired states are performed independently, the random
variables Cmi and Cnj will be uncorrelated, with zero
(co-)variance between the sampled amplitudes. Since ex-
pectation values are always quadratic functions of the
amplitudes, only two replicas of each state are required,
denoted by C1,m

i and C2,m
i for the amplitude on config-

uration i, state m, and replica 1 and 2 respectively. This
allows for two statistically independent and unbiased es-
timates of each RDM to be expressed in a bilinear form41,
without bias, as

Γmnpq,rs = E

[∑
ij

C1,m
i C2,n

j 〈Di|a†pa†qasar|Dj〉
]
, (13)

and

Γmnpq,rs = E

[∑
ij

C2,m
i C1,n

j 〈Di|a†pa†qasar|Dj〉
]
. (14)

Expectation values can be averaged from these two esti-
mates due to their independence, resulting in a reduction
of the resultant stochastic errors, offsetting the additional
cost of propagation of this second walker distribution.

The definitions of the general RDMs in Eqs. 13 and 14
will result in an unnormalized density matrix, due to the
fact that the FCIQMC wavefunction itself is not normal-
ized. Whilst normalization of symmetric RDMs can be
performed by enforcing known trace relations of the ma-
trices, this is more difficult for transition RDMs, where
the trace of each density matrix should be zero. Instead,
using the definition of normalized FCIQMC wavefunc-
tion as 1

AR,mE[|ΨR,m〉] for replica R and state m, the
normalization of the general 2-body RDM is made with
the following scheme34,

Γmnpq,rs[1] =
A1,mA2,n

√
A1,mA2,mA1,nA2,n

Γmnpq,rs (15)

Γmnpq,rs[2] =
A2,mA1,n

√
A1,mA2,mA1,nA2,n

Γmnpq,rs, (16)

which is correct under the assumption that the normal-
ization of the two replicas for each state is equal.

The sampling of Eqs. 13 and 14 each iteration appears
as a double sum over all walkers. However, this can be
avoided by a statistical sample of the estimates each it-
eration. During the course of each spawning event, de-
terminants connected via single and double excitations
are generated, and these are used as a sample of the
full set of terms required in the RDM sampling, after an
appropriate unbiasing for the possibility of their gener-
ation. It should be noted that the statistical sampling
of the RDMs is only included between successful spawn-
ing events, and as such, it is important that all double
excitations that need to be included in the sampling of
the RDMs are connected via a non-zero matrix element
of the operator which they are sampled from (in the case
of the ground-state, this is the Hamiltonian). To mini-
mize this impact, it is ensured that all terms within the
deterministic space of the semi-stochastic adaptation are
also included, which is designed to include obvious edge
cases such as the effect of Brillouins theorem on ensuring
that single excitations of the Hartree–Fock determinant
are zero. In addition to this stochastic sampling of the
off-diagonal determinant connections, the diagonal part
of the RDMs are sampled exactly, each time a determi-
nant becomes unoccupied. If these cases are taken into
account, it has been shown that the statistical sampling
of terms is practically unbiased, and the algorithm there-
fore allows for the RDM estimators to be computed with
relatively little overhead or penalty to the parallelism of
the method32,34.

III. THEORY

A. Linear response formalism

The formalism of response theory allows for the ana-
lytic solution to changes in expectation values of a sys-
tem in terms of a perturbative expansion in the applied
perturbation, V̂ . We briefly review the formalism here
mostly in the context of a static perturbation, though
more thorough and general expositions are available in
Refs. 1, 3, and 4. Under the assumption of an arbi-
trary static perturbation which couples linearly to the
zeroth-order Hamiltonian with strength λ, we can write
the Hamiltonian as

Ĥ(λ) = Ĥ0 + λV̂ . (17)

The energy of this system can be written as

E(λ) = 〈Ψ(λ)|Ĥ0 + λV̂ |Ψ(λ)〉. (18)

As a specific example, a perturbation can be considered
as the application of a static electric field, which un-
der the dipole approximation couples linearly with the
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strength of the field, (λ = ε), with the perturbation be-

ing the dipole moment operator (V̂ = µ̂). The dipole mo-
ment can then be decomposed into a permanent dipole

(µ
(0)
x ), and field-induced dipole contributions, each cor-

responding to a higher-order response of the system to
the field strength ε, as

µx = µ(0)
x +

∑
y

αxyεy + . . . , (19)

where αxy is the static dipole polarizability of the system.
With a Taylor expansion argument, each moment can
also be equated to a derivative of the energy of the system
with respect to the applied field, as

µ(0)
x = − ∂E

∂εx

∣∣∣∣
∀ε=0

, (20)

αxy = − ∂2E

∂εx∂εy

∣∣∣∣
∀ε=0

. (21)

Analogous perturbative expansions can be set up for
other applied fields or expansions of other perturba-
tive contributions to the Hamiltonian. Furthermore,
the time-dependent case can be constructed analogously,
whereby a monochromatic time-dependent perturbation
of frequency ω can be written as

V̂ (t) = V̂ (e−iωt + e+iωt). (22)

This allows for the construction of a quasi-energy eigen-
value equation, which can again be expanded in powers,
and which reduces to the static limit as ω → 0. We will
leave the construction of dynamic response functions for
future work, while we will focus in this work on the static
case.

In order to compute the response quantities allowing
for generalization of Eqs. 20 and 21, we can differentiate
Eq. 18, which (for real wavefunctions) gives

dE

dλ
= 2

〈
∂Ψ

∂λ

∣∣∣∣ (Ĥ0 + λV̂ )|Ψ〉+ 〈Ψ|V̂ |Ψ〉 (23)

and taking the perturbation strength to zero gives

dE

dλ

∣∣∣∣
λ=0

= 2

〈
∂Ψ

∂λ

∣∣∣∣ Ĥ0|Ψ0〉+ 〈Ψ0|V̂ |Ψ0〉, (24)

where Ψ0 is the solution to the unperturbed problem. We
can write derivatives of the wavefunction with respect to
the perturbation strength as

∂Ψ

∂λ
=
∑
i

∂Ψ

∂Ci

∂Ci
∂λ

(25)

and

∂2Ψ

∂λ2
=
∑
ij

∂2Ψ

∂Cj∂Ci

∂Cj
∂λ

∂Ci
∂λ

+
∑
i

∂2Ci
∂λ2

∂Ψ

∂Ci
, (26)

where Ci denotes the wavefunction parameters associated
with Ψ, which in the case of the FCIQMC parameteriza-
tion are given in Eq. 5. Collecting these parameters in a
vector C for compactness, we can then write Eq. 24 as

dE

dλ

∣∣∣∣
λ=0

= 2
∂C

∂λ

〈
∂Ψ

∂C

∣∣∣∣ Ĥ0|Ψ0〉+ 〈Ψ0|V̂ |Ψ0〉. (27)

Since the FCIQMC approach aims to minimize the un-
perturbed energy with respect to all coefficients, at least
in an averaged sense, we can use the stationarity of the
unperturbed wavefunction to assert that

∂E

∂C

∣∣∣∣
λ=0

= 2

〈
∂Ψ

∂C

∣∣∣∣ Ĥ0 + λV̂ |Ψ〉
∣∣∣∣
λ=0

(28)

= 2

〈
∂Ψ

∂C

∣∣∣∣ Ĥ0|Ψ0〉 = 0. (29)

Using Eqs. 29 and 27 gives the familiar expression for the
first-order response of the energy to a perturbation as

dE

dλ

∣∣∣∣
λ=0

= 〈Ψ0|V̂ |Ψ0〉, (30)

which for the example of the applied electric field, gives
the permanent dipole moment in Eq. 20.

For the second-derivative properties, we can differenti-
ate Eq. 23 once more, to give

d2E

dλ2
=2
〈
∂2Ψ
∂λ2

∣∣∣ Ĥ0 + λV̂ |Ψ〉+ 2
〈
∂Ψ
∂λ

∣∣ Ĥ + λV̂
∣∣∂Ψ
∂λ

〉
+ 2

〈
∂Ψ
∂λ

∣∣ V̂ |Ψ〉, (31)

which in the limit of vanishing perturbation strength,
gives

d2E

dλ2

∣∣∣∣
λ=0

=2
〈
∂2Ψ
∂λ2

∣∣∣ Ĥ0|Ψ0〉+ 2
〈
∂Ψ
∂λ

∣∣ Ĥ0

∣∣∂Ψ
∂λ

〉
+ 2

〈
∂Ψ
∂λ

∣∣ V̂ |Ψ0〉. (32)

Using Eq. 26, the above equation can be written in terms
of variation in the wavefunction parameters, giving

d2E

dλ2

∣∣∣∣
λ=0

= 2∂
2C
∂λ2

〈
∂Ψ
∂C

∣∣ Ĥ0|Ψ0〉+ 2
(
∂C
∂λ

)2 〈 ∂2Ψ
∂C2

∣∣∣ Ĥ0|Ψ0〉

+ 2
〈
∂Ψ
∂λ

∣∣ Ĥ0

∣∣∂Ψ
∂λ

〉
+ 4

〈
∂Ψ
∂λ

∣∣ V̂ |Ψ0〉. (33)

This can now be simplified as in the first-order re-
sponse case, by returning to the stationarity conditions
of Eqs. 28 and 29. Differentiating Eq. 28 with respect to
λ gives an expression which must also equal zero due to
stationarity,

∂
∂λ

〈
∂Ψ
∂C

∣∣ Ĥ0 + λV̂ |Ψ〉
∣∣∣
λ=0

=
(
∂C
∂λ

) 〈
∂2Ψ
∂C2

∣∣∣ Ĥ0|Ψ0〉

+
〈
∂Ψ
∂C

∣∣ V̂ |Ψ0〉+
(
∂C
∂λ

) 〈
∂Ψ
∂C

∣∣ Ĥ0

∣∣ ∂Ψ
∂C

〉
= 0. (34)

Combining Eqs. 29 and 34 into Eq. 33, results in the
expression for second-order properties as

d2E

dλ2

∣∣∣∣
λ=0

= 2

〈
∂Ψ

∂λ

∣∣∣∣ V̂ |Ψ0〉. (35)



6

For the example of the polarizability given in Eq. 21, this
then results in

αij = −2

〈
∂Ψ

∂εi

∣∣∣∣ µ̂j |Ψ0〉. (36)

To solve these equations requires the explicit compu-
tation of the response vector, ∂Ψ

∂λ . To achieve this, we
can return to Eq. 34, written as(〈

∂2Ψ
∂C2

∣∣∣ Ĥ0|Ψ0〉+
〈
∂Ψ
∂C

∣∣ Ĥ0

∣∣ ∂Ψ
∂C

〉) (
∂C
∂λ

)
= −

〈
∂Ψ
∂C

∣∣ V̂ |Ψ0〉. (37)

Eq. 37 represents a set of linear equations to solve for
the response vector, and its stochastic numerical solu-
tion for a sparse representation of the response vector is
the central objective of this work. However, it should be
stressed that this is a more general problem, also applica-
ble to higher-order response. For higher order response,
it is often necessary to solve for the higher-order response
vector. Following a similar derivation as the one out-
lined for the second-order response, an analogous linear

system can be formulated for the response vector ∂2C
∂λ2 ,

where the right-hand side of the linear system now de-
pends on −

〈
∂Ψ0

∂C

∣∣ V̂ ∣∣∂Ψ0

∂λ

〉
, which can be obtained from

the solution to the first-order response vector equation.
This sets up a hierarchy of linear response equations,
which can all be solved simultaneously within the frame-
work described below. Wigner’s ‘(2n+ 1)’ rule stipulates
that in order to calculate the energy response up to order
2n+ 1, the response vector up to order n is required3,42.
In this work, we will not numerically demonstrate beyond
the first-order response vector (required for up to third-
order energy derivatives), but leave this investigation for
future work.

B. Sampling Response Properties in FCIQMC

We now turn to the numerical stochastic solution to the
response equations within the framework of FCIQMC.
We consider the response of the FCIQMC state in the
large walker limit, meaning that any residual initiator
error in the description of the zeroth order state is ne-
glected. This means that the response may differ from
the finite field value for small walker numbers, but be-
come increasingly accurate to exactness as the number
of walkers increases. Due to the difficulty in formulating
the initiator approximation as a strict constraint on the
wave function ansatz, it is easier, and correct in the large
walker limit, to simply formulate the response in the ab-
sence of initiator error, allowing us to follow on directly
from Eq. 37. As this requires the solution to a linear
equation, rather than an extremal eigenvalue/vector pair
of a matrix as required for the ground-state algorithm,
changes are required of the stochastic rules governing the
walker propagation. However, similar modifications to
stochastic algorithms have been performed before, in the

context of Multi-State Quantum Monte Carlo43, and a
perturbative coupling within FCIQMC44. In order to
define the response vector within FCIQMC, we start by
writing the corresponding wavefunction in presence of the
perturbation as

|Ψ〉 = |Ψ(0)〉+ λ|Ψ(1)〉+
1

2
λ2|Ψ(2)〉+ · · ·

=
∑
i

Ci|Di〉, (38)

where the linear amplitudes can also be expanded in per-
turbative orders as

Ci = C
(0)
i + λC

(1)
i +

1

2
λ2C

(2)
i + · · · . (39)

With this definition, the first-order response of the wave-
function can now be written as

|Ψ(1)〉 =
∂Ψ

∂λ

∣∣∣∣
λ=0

=
∑
i

∂Ci
∂λ

∂Ψ

∂Ci
=
∑
i

Ci|Di〉 (40)

Substituting this linear parameterization for the wave-
function forms of both the zeroth-order and the response
state into Eq. 37 results in

(Ĥ0 − E0)|Ψ(1)〉 = −Q̂V̂ |Ψ(0)〉, (41)

where the first term of Eq. 37 is zero due to the linear-
ity of the wavefunction. Two additional terms have been
introduced to enforce the desired intermediate normal-
ization of the response functions. Q̂ is a projection oper-
ator, defined as Q̂ = 1 − |Ψ(0)〉〈Ψ(0)|, ensuring that the
response vector is orthogonal to the zeroth-order wave-
function by projecting it out from the response. Fur-
thermore, the E0 contribution of Eq. 41 is also included
to ensure that the expression in Eq. 18 is appropriately
normalized. In order to derive an iterative scheme to
solve these equations, we define a modified Lagrangian,
which will result in the solution to Eq. 41 as its mini-
mum, analogous to the approach taken for Eq. 7. This
can be achieved with the form

L[Ψ(1); Ψ(0)] =
1

2
〈Ψ(1)|Ĥ0 − S|Ψ(1)〉 − 〈Ψ(1)|V̂ |Ψ(0)〉,

(42)
where S is the same energy shift used to define the zeroth-
order energy. It is simple to show that the (unique) global
minimum of this equation will give the |Ψ(1)〉 defined in
Eq. 41. In order to define an iterative scheme, we again
apply a steepest-descent approach to minimize Eq. 42
with respect to the amplitudes of Eq. 40, as

∆|Ψ(1)〉 = −∆τ∇L[Ψ(1); Ψ(0)] (43)

= −∆τ(Ĥ − S)|Ψ(1)〉 − αV̂ |Ψ(0)〉, (44)

where α is a scalar term introduced to allow for control
over the normalization of the sampled response vector,
which will be discussed later. Note that this equation
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is valid for any choice of V̂ . The final forward-iteration
scheme in component form can then be written as

∆C
(1)
i = −∆τ

∑
j

(Hij − Sδij)C(1)
j︸ ︷︷ ︸

‘Hamiltonian′dynamics

− ∆ταVijC
(0)
j︸ ︷︷ ︸

‘Perturbation′dynamics

.

(45)
In order to construct the stochastic algorithm, it is

necessary to discretize both the C(0) and C(1) ampli-
tudes into a sparse walker representation. It should be
noted that the dynamics have only a linear dependence
on each walker distribution, so that the modification of
the wavefunction amplitudes into random variables will
not introduce bias in their solution. In defining these dis-
crete, signed walkers, we can simulate the convergence
of the dynamics of the zeroth-order state according to
Eq. 8 and the response state according to Eq. 45 at
the same time. While the dynamics of the zeroth-order
state walker distribution are entirely independent from
the response state dynamics, an interaction between the
two walker ensembles takes place via the second term
of Eq. 45, which modifies the dynamics of the response
state walkers. The rules for the response state walker
dynamics are therefore as follows:

1. ‘Hamiltonian’ spawning step: For each response-
state walker on each occupied determinant, |Di〉, a
spawning step is made equivalently to the dynamics
of the zeroth-order state, to a randomly chosen de-
terminant |Dj〉, updating the response-state walker
distribution.

2. ‘Perturbation’ spawning step: For each walker in
the zeroth-order walker ensemble residing on an
occupied determinant, |Di〉, a random determi-
nant is chosen, |Dk〉, which is connected via the

rank and symmetry of the perturbation operator V̂ ,
with a normalized generation probability pVgen(k|i).
A walker is semi-stochastically generated in the
response-state walker ensemble with a signed prob-
ability of −∆ταVik/p

V
gen(k|i).

3. ‘Hamiltonian’ death step: Equivalently to the
zeroth-order dynamics, each occupied response de-
terminant, residing on |Di〉, semi-stochastically al-
ters its cumulative signed weight according to a

probability pd = ∆τ(Hii − S)C
(1)
i .

4. ‘Perturbation’ death step: On each occupied zeroth-
order state determinant, response-state walkers are
semi-stochastically created on |Di〉 with a signed

probability of −∆ταViiC
(0)
i .

5. Annihilation step: Separately, the walkers on each
state are collected and cancelled, depending on
their respective signs.

The algorithm for the above steps is more efficient if
the occupied determinants of both states are stored to-
gether, with more details of optimal datastructures found

in Ref. 45. In practice, this is achieved with the hash-
ing algorithm, and then running through the occupied
determinants of both states is simple, and allows for ef-
ficient annihilation and merging of the walker lists. Fur-
thermore, it should be noted that following the semi-
stochastic algorithm detailed in Ref. 40, we allow for the
exact propagation of these rules within a chosen ‘deter-
ministic’ subspace of the determinant space to reduce
stochastic errors. In this work, this space is chosen to
simply be the single and double excitation space of the
Hartree–Fock determinant.

It should be noted that the above algorithm and equa-
tions are missing one step, which is that the projection
operator, Q̂ is missing from Eq. 45, and the algorithm
above. This is exactly remedied, via a semi-stochastic
application of the Gram-Schmidt algorithm, which has
previously been successfully employed to ensure orthog-
onality between states for excited eigenstate calculations
within FCIQMC30. Even though the zeroth-order state
is only known stochastically at any one iteration, this
projection operator can still be constructed and applied
in a practically unbiased fashion. This necessitates a final
step each iteration:

6. Orthogonalization step: By running over the occu-
pied states for both walker distributions, a Gram-
Schmidt step can be used to semi-stochastically or-
thogonalize the response state walker distribution
with respect to the zeroth-order state walker distri-
bution. This leaves the zeroth-order state walkers
unchanged.

The response due to perturbation operators which are
not totally symmetric are also often desired, and these
perturbations may even break spin or particle number
symmetry. In these cases, the perturbation will connect
the zeroth-order state symmetry sector to another sector,
and therefore the response walkers will live in an entirely
different symmetry sector to the zeroth-order state walk-
ers. In this case, both the orthogonalization step and the
perturbation death step are unnecessary, as the states
will always be orthogonal by symmetry, and the death
step will also be zero, as there will be no diagonal part
to the perturbation operator.

The perturbation spawning steps require an excitation
generation algorithm which corresponds to the random
excitation between determinants, constrained by the rank
and symmetry of the perturbation applied. If the pertur-
bation is totally symmetric and no more than two par-
ticle, it is possible to simply reuse the excitation gen-
erators used for the Hamiltonian sampling45. However,
for many perturbations, it is possible to have a signifi-
cantly more efficient algorithm. For the one-body per-
turbation operators used in this work, we can devise an
‘exact’ random perturbation excitation generation algo-
rithm. In this, excitations are randomly generated with
a probability exactly given by the modulus of the pertur-
bation matrix element between the two excitations. This
is simply obtained by precomputing a normalized cumu-
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lative distribution function for each orbital, as given by
the modulus of the perturbation operator. This is then
used for the picking of the electrons and holes in a given
determinant to excite from/to respectively. This max-
imises the efficiency of the sampling of the perturbation
spawning step, with no additional cost during the run
and minimal overhead in initialization.

The response simulation is initialized without any
walkers, and the zeroth-order state walker distribution
initialized as normal (generally with a single walker
placed at the reference determinant). This allows the
response state occupation to arise due to the ‘pertur-
bation’ spawning/death steps. Unlike the zeroth-order
state dynamics where the normalization of the walkers is
controlled by the shifting of the Hamiltonian operator,
no analogous shifting can be used for the normalization
of the response walkers, since its normalization is fixed by
the choice of zeroth-order normalization. This is impor-
tant to manage computational resources, and control the
effort expended in sampling the response state wavefunc-
tion distribution. We achieve this by scaling the magni-
tude of the perturbation operator with the α parameter
introduced in Eq. 44. This will scale the normalization
of the response state, but also the response expectation
values, and therefore needs to be taken into account in
the evaluation of all response properties. We allow for

the number of response walkers (N
(1)
w ) to be some mul-

tiple of the number of zeroth-order state walkers, such
that

N
(1)
w

N
(0)
w

= f (1). (46)

This is achieved by every update cycle (25 or so itera-
tions), updating α as

α =
N

(0)
w f (1)

N
(1)
w

, (47)

and then fixing it when walker numbers have stabilized
and statistics are being accumulated. It would be possi-
ble (and probably reasonable) to choose a different num-
ber of walkers to sample the zeroth-order state and re-
sponse state distribution, however in this initial work, we
choose f (1) = 1, ensuring that we have the same numbers
of walkers sampling the two state distributions.

Unbiased higher-order response vectors can also be
simulated in the algorithm detailed above, as well as the
response of a stochastically sampled excited state, where
the zeroth-order state is not the ground state walker dis-
tribution. The ability to sample excited states is detailed
in Ref. 30, where multiple walker distributions are set
up and orthogonalized against each other to allow for
a pure-state sampling of low-lying eigenstates. An ad-
ditional walker distribution can be used to sample the
response of any of these desired states, by ensuring that
the zeroth-order state in the above equations denote in-
stead the excited state walker distribution to which the

perturbation is applied to. Furthermore, a stochastic hi-
erarchy of higher-order response states can be set up by
introducing additional walker distributions. To sample
the nth-order response vector will involve the perturba-
tion in Eq. 45 no longer acting on the zeroth-order state,
but instead on the (n − 1)th-order response walkers. It
should be noted in this case that the S value and orthog-
onalization should still be applied with respect to the
zeroth-order state. Investigations of these higher-order
response quantities will be reserved for future work.

Finally, it is important to be able to compute sym-
metric and asymmetric expectation values between the
response and pure state walker distributions, as required
to evaluate e.g. Eq. 36. These are computed via the
accumulation and long-time average of the reduced den-
sity matrices and/or transition reduced density matrices
(tRDMs) between the different states, as detailed analo-
gously for eigenstate walker distributions in Ref. 34 and
briefly reviewed in section II B. In this, the sampling
of the RDMs occurs ‘through’ an operator. By this, we
mean that the choice of determinants to include in the
sampling of Eqs. 13 and 14 are given by the ‘spawning’
steps of the walker dynamic algorithm, in order to effi-
ciently compute these quantities.

In the response sampling, we now have additional
spawning steps, which can be used to increase the number
of samples of each desired RDM, by including sampling of
states connected via the V̂ in the ‘perturbation’ spawn-
ing. This is essential for perturbations which are not
totally symmetric, where the transition RDM required
connects states of different symmetry, and therefore the
Hamiltonian spawning will never result in contributions
between the two states. For the results in this paper, for
totally symmetric perturbations, we sample the required
tRDMs only through the Hamiltonian sampling, while
for non-symmetric perturbations, these are sampled en-
tirely through the perturbation sampling. In the future,
efficiency gains are likely for symmetric perturbations
by sampling the tRDMs through all possible stochastic
spawning steps with the same symmetry as the pertur-
bation.

As with the ground-state (t)RDMs, there is the po-
tential for a bias to result in the averaging of the RDMs
due to their quadratic dependence on the random vari-
ables and neglect of the (co)variances which result if only
one walker distribution is used for each state. These are
likely to be far reduced for transition RDMs as required
for second-order response quantities, since there is no
squared single determinant weights required in their com-
putation. However, there are still formally correlations
between the walker distributions due to their interaction
via the perturbation. It can be ensured that this po-
tential bias is formally eliminated by using two walker
replicas for both the ground-state sampling and response
states. In section IV we will investigate the necessity for
two replicas for each state to avoid this potential bias.

Transition RDMs are then evaluated as described in
Eqs. 15 and 16. For the example of polarizabilities given
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in Eq. 36, response properties can therefore be calculated
as

αxy = −1

2

∑
pq

[
x̂pqγ

y
p,q + ŷpqγ

x
p,q

]
, (48)

with the γyp,q obtained as

γypq =
∑
pq

1

(N − 1)

∑
a

[
1

α1
Γ(0)(1)
pa,qa [1] +

1

α2
Γ(0)(1)
pa,qa [2]

]
.

(49)
Here we have explicitly summed the resulting tRDMs
between both the replica pairs (if used) connecting the
zeroth-order and response states as defined in Eqs. 13
and 14. α1 and α2 correspond to the α values for each
respective response replicas, and the response perturba-
tion in the computation of the tRDMs in Eq. 49 is taken
to be the ŷ operator.

IV. RESULTS AND DISCUSSION

The stochastic response algorithm described was im-
plemented within the NECI codebase46, where inte-
grals for the electronic Hamiltonian and perturbation
were obtained in a Hartree–Fock basis from the PySCF
program47. In this work, we compute the static polariz-
ability tensor of the ground state as an example response
property, following the expressions in Eqs. 36 and 48. We
test the performance of the method on all the x̂, ŷ and ẑ
components of the perturbation for a range of heteronu-
clear diatomic test systems. This will ensure that both
symmetric (ẑ) and non-symmetric (x̂ and ŷ) perturba-
tions are considered within the C2v molecular point group
employed, as these require differing sampling procedures
for the tRDMs as detailed above. Beyond ensuring the
correctness of the algorithm, we aim to focus this initial
investigation on three areas:

1. Convergence with sampling time

An important convergence criteria is the number of
iterations required to sample the response proper-
ties to reach acceptable random error bars. While
the uncertainty in Monte Carlo should follow a
∼ 1√

Niter
decay of the random errors, this cost

is also heavily influenced by the autocorrelation
lengths of the simulation, and therefore this con-
vergence will be considered in section IV A.

2. Convergence with walker number

The number of walkers required to converge de-
sired values is a good proxy for the computational
effort of the calculation, with the computational ef-
fort scaling linearly with the number of walkers45.
In section IV B we investigate how the different
components of the polarizability converge with this
number in order to saturate the initiator error in
the results and systematically converge to ‘exact’
FCI accuracy.

3. Comparison of sampling schemes

In section IV C, we investigate potential biases aris-
ing from different sampling algorithms of the re-
sponse values. Comparison will be made between
two schemes. In the first, the tRDMs are accumu-
lated over the course of the full simulation, and con-
tracted at the end to calculate the response proper-
ties. In order to calculate error bars associated with
this property, multiple independent simulations are
run with different seeds to compute random error
bars from entirely independent runs, in a fully un-
correlated way.

In the second scheme, we contract short-time sam-
pled tRDMs to provide running on-the-fly esti-
mates of the response property directly during the
course of a single calculation. While these esti-
mates are serially correlated with each other, a
blocking procedure48 can be run to estimate the
true error bar from these correlated estimates. This
scheme is advantageous since only a single simula-
tion is required and the convergence of the final
property can be monitored during the calculation.
We will check that these two schemes are equiva-
lent and do not lead to a bias in the averaged result.
Furthermore, we will investigate whether two repli-
cas are required in the algorithm, and determine
whether correlations between the zeroth-order state
and response walker distributions are small enough
to avoid this additional replica cost to eliminate
all potential non-linear biases when computing re-
sponse quantities.

4. Application to CN and NO and comparison to high-
level coupled-cluster

Finally, in section IV D we apply the approach to
compute the polarizability tensor for the CN and
NO radical systems in a d-aug-cc-pVDZ basis set,
far beyond those which can be treated by exact FCI
approaches. We also compare to high-level coupled-
cluster results for the polarizability of these sys-
tems, and resolve a source of disagreement between
UHF and ROHF-based high-level coupled-cluster
linear response approaches for these systems.

A. Convergence with sampling time

In this section we analyze the convergence of the
response properties with respect to the number of it-
erations spent accumulating the transition RDMs be-
tween the response and zeroth-order states. We con-
sider the all-electron heteronuclear diatomics LiH and
BH as simple test systems, determining all compo-
nents of the polarizability (spanning totally symmetric
and non-symmetric irreps within C2v point group) in
aug-cc-pVXZ (X=D,T,Q) basis sets. All FCIQMC cal-
culations are run with 106 walkers, up to a maximum
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FIG. 1. Convergence of diago-
nal components of the polarizabil-
ity for LiH and BH in aug-cc-pVXZ
(X=D,T,Q) basis sets as the num-
ber of sampling iterations is in-
creased at fixed walker number (106

walkers). The polarizabilities are
presented as a deviation to the cor-
responding values after 105 sam-
pling iterations.

number of RDM sampling iterations of 105, resulting in
small random error bars in this long-time limit. These
random errors were found via a blocking analysis of po-
larizabilities sampled every 10000 iterations from the in-
termediate tRDMs throughout the simulation, and two
replica distributions are used for each state. Fig. 1 shows
the convergence of these values as the number of sam-
pling iterations (Niter) is increased at fixed walker num-
ber, along with a ‘best’ value from the longest sampling
time as a guide for the eye.

Random errors of the polarizability decay with the an-
ticipated 1√

Niter
dependence. However, the size of the

random errors increase with basis/system size, reflecting
the higher sample variance from this distribution, due to
the increased autocorrelation times and smaller timestep
required for the same sampling quality. There is also not
a large difference between the size of the random errors
arising from different components of the perturbation,
despite the fact that the αzz estimate sampling was per-
formed via the Hamiltonian spawning steps, while the
αyy and αxx components were sampled via the pertur-
bation spawning steps. This is perhaps not too surpris-
ing given that these will both have the same number of
spawning attempts (and therefore attempted tRDM sam-

ples) as there are the same number of walkers in each
distribution. The αxx and αyy values should be identi-
cal by symmetry arguments, and while their trajectories
are distinct, it is also reassuring that we find their values
to be in agreement with each other within their random
error bars.

B. Convergence with walker number

In this section, we consider the more important conver-
gence with respect to walker number. While increasing
walker number will decrease the random errors in the
sampling of expectation values, it is also important to
converge the systematic initiator errors which manifest
at lower walker numbers. The rate of convergence of this
error is key for the success of the approach, as only in
the large walker limit does it reach the exact response of
the system within the given basis set. The convergence
with respect to walker number is therefore a measure
of the ‘initiator’ systematic error in the sampling of the
zeroth-order and response states, assuming that we are
converged with respect to sampling time.

It has been found previously that this initiator er-
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FIG. 2. Convergence of the system-
atic initiator error for the parallel
(α||) and perpendicular (α⊥) com-
ponents of the static polarizability
for LiH and BH in aug-cc-pVXZ
(X=D,T,Q) basis sets as the num-
ber of walkers used in the simu-
lations are increased. Results are
shifted relative to the value, la-
belled here as the best value, which
correspond to the calculations us-
ing the highest number of walk-
ers involved in each of the calcu-
lations. The best results obtained
from Coupled Cluster (CC) linear
response calculations are also pre-
sented. For molecules in an aug-
cc-pVDZ basis, these are CCSDTQ
results, whereas for the rest of the
systems these are CCSDT results.

ror when applied to energy and property estimators
are larger for excited states compared to analogous
ground-state expectation values30,34. This is because ex-
cited states (at least when represented in the canonical
Hartree–Fock basis) have a far smaller degree of sparsity
in their wavefunction, which makes their discretization
in terms of a walker distribution more difficult. Each
snapshot in time for a given number of walkers for an
excited state will likely give a far worse overall descrip-
tion of the state compared to the analogous ground-state
description, and this has ramifications for the severity of
the initiator approximation. It is our anticipation that
the response states will perform similarly to the conver-
gence of excited states, due to their character as a linear
combination of excited state components, but that this
can still lead to significant savings compared to many
deterministic techniques.

In Fig. 2, we again consider the LiH and BH systems
in the aug-cc-pVXZ basis sets as in the previous section.
Despite being relatively small systems, the Hilbert space
size in these large basis sets is over 109 determinants,
and therefore for the larger systems we cannot compare
to exact FCI response results. Therefore, for a meaning-
ful comparison, we compare to high-level coupled cluster

linear response values of the polarizability, with up to full
quadruple iterative excitations (CCSDTQ) for the aug-
cc-pVDZ basis sets, and CCSDT in the larger basis sets
due to computational cost. All coupled cluster calcula-
tions for these systems are computed using the General
Contraction Code (GeCCo), which consists of a general
framework for calculating arbitrary order response prop-
erties of coupled cluster methods49. Within these coupled
cluster results, only the LiH/aug-cc-pVDZ system will be
strictly exact and equal to FCI. Furthermore, since the
αxx and αyy values are identical in these systems by sym-
metry, we simply average these values and report the par-
allel (α||) and perpendicular (α⊥ = αzz) diagonal polar-
izabilities with respect to the main axis of the molecule.
The aug-cc-pVDZ and aug-cc-pVTZ estimators are ac-
cumulated for 105 iterations, while for the aug-cc-pVQZ
basis they are accumulated for 5× 104 iterations. These
are sufficient sampling iterations to converge the random
errors to allow for statistically significant deviations from
the high-level coupled cluster values to be found.

It should be first noted that for the LiH/aug-cc-
pVDZ system where the CCSDTQ benchmark is exact,
all components of the polarizability converge exactly to
the CCSDTQ values (to within ∼0.0002% of the exact
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TABLE I. Final converged estimates for energy, dipole moment and different components of electrical polarizability tensor,
calculated for LiH and BH molecules using aug-cc-pVXZ (X=D,T,Q) basis set. The calculations using the aug-cc-pVDZ,
aug-cc-pVTZ and aug-cc-pVQZ basis sets are done with 106, 3× 106 and 5× 106 number of walkers, respectively. All estimates
are obtained after sampling RDMs for 105 iterations for the aug-cc-pVDZ and aug-cc-pVTZ basis, and for 5×104 iterations for
the aug-cc-pVQZ basis. Three different schemes are used here to get the energy and property estimators in FCIQMC, details
of which are given in the text. The best CC results for aug-cc-pVDZ are given by CCSDTQ, while for the other systems they
are obtained from CCSDT linear response values.

Properties Averaged over multiple runs Averaged within a single run Without replica/Single run Best CC results

LiH/aug-cc-pVDZ

Energy -8.02122538(3) -8.02122539(3) -8.02122809(4) -8.02122537
µz 2.328395(2) 2.328394(1) 2.328397(2) 2.328396
αxx 30.26148(3) 30.2615(1) 30.26121(9) 30.261381
αyy 30.26139(7) 30.2611(1) 30.26146(9) 30.261381
αzz 26.10366(5) 26.1036(1) 26.10354(8) 26.103569

LiH/aug-cc-pVTZ

Energy -8.03886622(4) -8.0388662(1) -8.0388884(1) -8.03886596
µz 2.309894 (6) 2.309898(3) 2.309876(4) 2.309899
αxx 30.0059(1) 30.0057(5) 30.0047(5) 30.008131
αyy 30.0061(2) 30.0064(3) 30.0064(6) 30.008131
αzz 26.1871(2) 26.1871(3) 26.1872(3) 26.188907

LiH/aug-cc-pVQZ

Energy -8.0449978(2) -8.0449976(2) -8.0450286(2) -8.04499753
µz 2.305100 (7) 2.30510(1) 2.30495(2) 2.305101
αxx 29.811(3) 29.807(1) 29.8090(9) 29.811040
αyy 29.811(1) 29.811(1) 29.807(2) 29.811040
αzz 25.963 (2) 25.962(1) 25.9640(6) 25.963916

BH/aug-cc-pVDZ

Energy -25.2197069(7) -25.2197065(6) -25.219699(1) -25.21970721
µz 0.50478(2) 0.50479(2) 0.50469(4) 0.504772
αxx 20.2902(2) 20.2900(8) 20.2891(3) 20.289994
αyy 20.2905(4) 20.2899(6) 20.2872(3) 20.289994
αzz 23.9767(2) 23.9765(4) 23.9761(3) 23.976487

BH/aug-cc-pVTZ

Energy -25.243206 (1) -25.243205(2) -25.242261(2) -25.24310758
µz 0.52294(2) 0.52298(2) 0.52278(5) 0.523788
αxx 20.7238(8) 20.7225(5) 20.7203(9) 20.737067
αyy 20.7251(5) 20.7244(4) 20.7222(9) 20.737067
αzz 23.7294(6) 23.7303(4) 23.720(1) 23.712503

BH/aug-cc-pVQZ

Energy -25.245606(3) -25.245609(3) -25.237506(9) -25.25993075
µz 0.52656(3) 0.52654(5) 0.5259(2) 0.527200
αxx 20.759(1) 20.761(2) 20.724(3) 20.766279
αyy 20.759(3) 20.758(2) 20.7234(7) 20.766279
αzz 23.650(1) 23.648(2) 23.625(4) 23.635628

value, and within extremely small random errors), giv-
ing confidence in the accuracy of the implementation.
While the CCSDTQ value is not necessarily exact for the
BH/aug-cc-pVDZ system, it also does not have a statisti-
cally significant deviation from the FCIQMC converged
values. As the basis sets increase in size, the effect of
the initiator approximation and its resultant error at low
walker numbers becomes evident. The FCIQMC values
requires ∼ 106 walkers to converge the aug-cc-pVTZ ba-

sis for both systems to within ∼ 10−3 a.u. of the exact
value, and ∼ 3 × 106 walkers to converge the aug-cc-
pVQZ basis for both systems. It also appears that the
α|| = αzz component converges to the exact value slightly
slower than the perpendicular component. This is likely
to be due to the fact that the the perpendicular compo-
nents response wavefunction span a disjoint Hilbert space
to the ground-state wavefunction, and therefore does not
require the stochastic orthogonalization procedure.
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The accuracy of the CCSDT linear response values can
also be assessed. These are approximately the same be-
tween the aug-cc-pVTZ and aug-cc-pVQZ basis sets, but
the errors of the parallel and perpendicular components
are very different between the LiH and BH systems. The
relative error in the BH system is ∼ 5 times larger than
the LiH system. Furthermore, the parallel and perpen-
dicular component errors are of opposite signs in the
BH system, while of the same sign in the LiH system.
The relative error of CCSDT compared to the converged
FCIQMC value is 0.05% in each direction in the BH sys-
tem, while only 0.01% for the LiH system.

C. Comparison of sampling schemes

As a final check, we consider the various schemes to
obtain averaged response properties from an FCIQMC
calculation. Computing averages from random variables
requires care, as only averages of linear functions of ran-
dom variables are free from bias (such as the projected
energy estimator in FCIQMC). To check against non-
linear effects biasing the response property estimator, we
consider two approaches to average the quantity over the
course of the simulation. In the first, we consider the
accumulation of the tRDM over the course of the entire
simulation, and then a contraction with the perturbation
operator at the end in order to obtain the final response
value according to Eq. 49. In order to obtain error bars
on this quantity, separate calculations were performed
with different random number seeds, and averages and
standard errors were obtained between these entirely un-
correlated quantities.

In the second scheme, we consider short periods of ac-
cumulation of the tRDMs, before contraction to an inter-
mediate value of the response property on-the-fly. This
allows a large number of polarizability estimates to be av-
eraged from a single run. However, the values obtained
are serially correlated with each other, requiring a block-
ing analysis to be performed to obtain an unbiased esti-
mate of the error bar on the averaged value48. Despite
this, this approach is preferred, since only a single cal-
culation is required, and it is not necessary to perform
multiple equilibrations of separate calculations. Since the
response property is a linear function of the response vec-
tor (see Eq. 36), this approach should not introduce ad-
ditional bias into the value obtained.

A final alternative is to only consider a single replica
distribution of walkers for each of the zeroth-order and
response states. While the bilinear form of the polariz-
ability in Eq. 36 is only explicitly linear in the zeroth-
order and response states, these states are in fact corre-
lated with each other through the perturbation spawning
and orthogonalization steps seen in Eq. 45. To remove
these correlations, the replica trick is used. However, this
increases the computational cost of the calculation by a
factor of two, and so we also quantify the bias introduced
if only a single replica is used in order to compute the

various expectation values. To test these three schemes,
we once more consider the LiH and BH systems, and
present in Table I the energy (variational energy from the
ground-state density matrix), dipole moment and com-
ponents of the polarizability tensor. For the systems in
aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ basis sets,
the numbers of walkers used are 1 × 106, 3 × 106 and
5× 106, respectively.

From Table I, we can see that as expected, the averaged
values of the polarizability are statistically indistinguish-
able between those averaged and blocked over the course
of a single simulation, and those obtained via the aver-
aging over independent calculations. This validates the
simulation protocol used in the previous sections. How-
ever, there is a statistically significant bias which can
arise in the larger systems when only a single walker
replica is used, compared to two independent replicas
of each state. This bias is particularly noticable in the
largest BH/aug-cc-pVQZ system, where the non-linear
bias due to the use of only a single replica gives a rela-
tive error of ∼0.1-0.2%. Intriguingly, this polarizability
is always underestimated with a single replica. This error
is similar in magnitude to that of the non-linear bias in
the dipole moment, an expectation value arising from the
symmetric RDM, rather than the transition RDM. This
indicates that the two replica simulations are required for
high accuracy calculations of response properties within
FCIQMC.

D. Polarizability of CN and NO

As a final study, we consider the extension to larger
systems, and consider the polarizability of the doublet
ground states of the CN and NO radicals, with 13 and
15 electrons respectively and a partially occupied bond-
ing orbital in each. Electrical response quantities are ex-
tremely sensitive to both the correlation treatment and
basis description of the diffuse, long-ranged part of the or-
bitals, as these are significantly occupied in the response
wavefunction. As a result, we consider the polarizabil-
ity components in the doubly-augmented d-aug-cc-pVDZ
basis, containing 64 orbitals for this system. The values
of polarizability are obtained after freezing 1s orbitals of
all constituent atoms for both CN and NO. The Hilbert
space for each state, therefore, spans ∼ 1012 functions for
the CN, and ∼ 1014 functions for the NO systems – well
beyond traditional FCI treatments.

Hammond et al. studied the polarizability of these
systems using the linear response formalism for both
CCSD and CCSDT methods within a restricted open-
shell (ROHF) and unrestricted (UHF) formalism50. For
CN, additional calculations were also performed at the
CCSDTQ level of theory by Kállay et al., using an unre-
stricted basis51. These benchmark studies demonstrated
the importance of triple and quadruple excitations in the
calculations, but presented an unresolved discrepancy be-
tween the UHF and ROHF values at the CCSDT level
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TABLE II. Parallel (α||) and perpendicular (α⊥) components of polarizability in atomic units for the doublet ground states

of the CN and NO radicals at a bond length of 1.1718Å, and obtained using d-aug-cc-pVDZ basis set. Results are obtained
without correlating 1s electrons of C, N and O. The final results from FCIQMC are obtained using 5 × 107 number of walkers
and an ROHF basis.

ROHF reference UHF reference

Molecule Components CCSDa CCSDTa CCSDb CCSDTb CCSDTQc Experimentd FCIQMC

CN α|| 26.398 26.349 25.587 26.267 26.432 26.345(5)

α⊥ 16.319 16.304 15.878 16.211 16.327 16.279(4)

NO α|| 15.546 15.408 15.521 15.406 15.539 15.649(4)

α⊥ 9.844 9.892 9.835 9.891 9.844 9.868(2)

a Ref. 50.
b Results for CN and NO are obtained from Ref. 51 and Ref. 50, respectively.
c Ref. 51.
d Ref. 52.

which are in significant disagreement for the CN radical,
but relatively similar for the NO system.

We use two replicas for each state, and an ROHF basis
for our FCIQMC simulations, though this choice should
not change results since FCIQMC at convergence is in-
variant to the choice of basis (as the complete space is
always spanned) and all states should be free from spin-
contamination. The components of the polarizability
tensor are presented as α|| = αzz and α⊥ = 1

2 (αxx+αyy),

with z being the bond-axis, at a bond length of 1.1718Å.
Convergence of α|| and α⊥ for both CN and NO with
an increasing number of walkers is shown in Fig. 3. We
estimate that by 50 million walkers, we have converged
all polarizability components for both systems to ∼0.01-
0.02 a.u., or between 0.05-0.1% error in the polarizabil-
ity components. This allows for statistically significant
determination of the errors in the coupled-cluster linear
response values. While the absolute convergence of these
response quantities is relatively slow compared to quanti-
ties which depend solely on the ground-state walker dis-
tribution (such as the energy and dipole moment), the
rate of convergence is similar. The analogous walker con-
vergence of these systems for the ground-state energy and
dipole moment are shown explicitly in the Supplementary
Information for comparison53.

The CCSDT ROHF-reference linear response polariz-
ability values are also shown for comparison in Fig. 3
and are generally in good agreement with the FCIQMC
values, with the notable exception of the parallel com-
ponent of the NO radical, which is in error by ∼1.5%.
These values are further analyzed, and compared to their
UHF counterparts in Table II. This error in α|| for
NO arises despite good agreement between the UHF
and ROHF CCSDT values, and good agreement with
FCIQMC for α⊥. While not conclusive, further evidence
of the error comes from comparison to experimental re-
sults, which are in good agreement with FCIQMC, and
the α⊥ CCSDT values, but again in significant error for

α|| where it appears that beyond-triples contributions
are required, regardless of reference state. However, full
agreement between FCIQMC and experiment would only
be expected in the complete basis set limit, and with ap-
propriate consideration of vibrational corrections.

For the CN system, we find that the ROHF-CCSDT
linear response values are in good agreement with
FCIQMC, however the UHF-based values are also in
significant error, which are not corrected even via the
inclusion of quadruple excitations. Indeed, the ROHF-
CCSDT values for α|| and α⊥ are found to be substan-
tially more accurate compared to FCIQMC than both
the UHF-CCSDT and UHF-CCSDTQ values. This in-
dicates that the error introduced by the additional spin
contamination is too severe for the UHF-based coupled
cluster results for the polarizability of this system to be
corrected even by the inclusion of quadruple excitations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a general formu-
lation of arbitrary-order response theory for FCIQMC.
We limited the scope of our numerical study to static,
linear-response properties, and therefore the sampling
of the frequency-independent first-order response vector.
This response vector was sampled via a modified set of
stochastic master equations which aimed to solve a cou-
pled set of linear equations rather than the traditional
zeroth-order state eigenvalue problem. It was necessary
for the zeroth-order state walker distribution to evolve
stochastically alongside the walkers representing the re-
sponse function, and the two walker distributions were
coupled via a spawning dynamic from the zeroth-order
state walkers into the response. In an unbiased fashion,
we found that it was possible to stochastically sample
both these two states, and the resultant response prop-
erties via a contraction of the transition RDM, using the
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FIG. 3. Convergence of the initiator errors for parallel (α||)
and perpendicular (α⊥) components of dipole polarizability
for CN and NO in a d-aug-cc-pVDZ basis set as the number
of walkers used for sampling the wave functions is increased.
Results are obtained without correlating 1s electrons of C, N
and O. Results are shifted relative to the value, stated here as
the best value, corresponding to the highest walker popula-
tions involved in the respective studies. The CCSDT results
are obtained from Ref. 50. The polarizability component α||
is the same as the αzz, whereas results for the component α⊥
are obtained by averaging over the αxx and αyy.

replica approach that has been developed previously for
first-order properties34. The initiator criterion was triv-
ially applied to the sampling of the response dynamics,
which led to a convergence of the response property with
respect to increasing walker number towards the exact
response properties.

We demonstrated the approach by computing the
static electric dipole polarizability for a set of diatomic
molecules, taking care to consider convergence with sam-
pling time, walker number and any potential non-linear
bias which may result from the sampling. We moved to
the larger NO and CN radical systems, where stronger
correlation effects have shown a requirement of triple
and quadruple excitations to compute the polarizabil-

ity. Converging these values with walker number, we
were able to shed light on the discrepancies between the
UHF and ROHF values for these systems when com-
paring to the previous existing best estimates, obtained
from high-level coupled cluster up to full quadruple ex-
citations. From this, we found the UHF-based values to
be significantly in error compared to their ROHF-based
counterparts.

Although applied only to relatively small systems in
this work, this response theory within the FCIQMC
stochastic framework paves the way to use FCIQMC for
calculating a variety of linear as well as higher-order re-
sponse properties with very high accuracy, as well as
an extension to dynamic quantities. It will also be
important to investigate schemes to improve upon the
rate of convergence of these response functions as the
walker number is increased. This will consider the use
of optimized basis sets to maximize sparsity in the re-
sponse wavefunction54, as well as relaxed density ma-
trices to take into account frozen core electrons or an
active-space construction55, and investigations into addi-
tional approximations and modifications of the stochastic
rules to accelerate convergence. These have recently been
formulated for the ground state problem via perturba-
tive corrections and size-consistency modifications to the
algorithms56,57. Finally, it will be considered whether
a similar approach for non-linear parameterizations of
wavefunction forms will also be amenable within this
framework36.
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