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Abstract 
Histone demethylases are involved in transcriptional regulation and have recently been 

implicated in human diseases including cancer. KDM5B belongs to the KDM5 family of 

histone demethylases, which catalyse the removal of the methyl group from the active 

tri-methyl mark, H3K4me3, thereby regulating transcription. KDM5B was first identified 

in our lab as being downregulated when HER2 was inhibited by Trastuzumab 

(Herceptin). KDM5B is widely expressed in breast cancer and other cancers, where it 

may act by repressing genes such as Caveolin1 (CAV1). Recent studies have implicated 

KDM5 proteins in resistance to targeted therapies and so considerable effort is being 

employed to develop KDM5 small molecule inhibitors. A role for KDM5B in mammary 

gland development has also been demonstrated. In the mouse model lacking 

demethylase activity (DARID mouse), KDM5B has been shown to repress CAV1 in the 

mid-pregnant mammary gland. Thus, suggesting similar pathways operate in the normal 

and malignant mammary gland.  

This PhD aimed to further understand the role of KDM5B in breast cancer and in the 

normal mammary gland. The first aim was to generate KDM5B knockout (KO) breast 

cancer cell line models using CRISPR-Cas9 technology and investigate the effect of this 

modulation on gene expression, proliferation and drug resistance. The second aim was 

to investigate the extent of CAV1 downregulation by KDM5B in breast cancer and, 

identify the cell types where this downregulation may occur in the developing mammary 

gland. 

KDM5B KO cell lines were generated in two HER2+ breast cancer cell lines, BT-474 and 

SKBr3. KDM5B KO significantly reduced cell proliferation of SKBr3, but not BT-474 cells 

in cell viability assays. Treatment of KDM5B KO cells with Herceptin and Lapatinib, 

showed increased sensitivity to Herceptin in BT-474. There was no significant increase 

in sensitivity to Lapatinib in the KDM5B KO cells. Microarray gene expression analysis 

in the SKBr3 KDM5B KO was used to elucidate targets of KDM5B and revealed the early 

response gene EGR1, in addition to CAV1 and MYC, to be amongst the top upregulated 

genes. Surprisingly, CAV1 was not upregulated in BT-474 KO cells. 

Immunohistochemistry analysis showed co-localisation of CAV1 and KDM5B in the 

myoepithelial and stromal cells, in the mid-pregnant mouse mammary gland.  

The data demonstrate a cell phenotype dependent role for the function of KDM5B and 

the importance of pre-clinical investigations for potential therapeutic targets. These cell 

line models can be used to identify novel mechanisms through which KDM5B promotes 

cancer progression and drug resistance in breast cancer. This will in turn enable 

interrogation of these mechanisms for the development of novel therapies. 
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1.1 The normal mammary gland: steroid hormones in 
development and tumorigenesis 

The adult breast is made up of branched, tree-like structures of ducts that are lined by 

two layers of epithelial cells and surrounded by fibroblasts and adipose tissue (reviewed 

by 1). The lobules, also known as terminal ductal lobular unit (TDLU), are the milk-

producing component of the breast. Maturation of lobules from alveolar buds into 

secretory sacs known as alveoli, occurs after menarche and becomes fully developed 

during pregnancy, when they expand in preparation for lactation. The lobules involute 

after lactation, resembling those in the non-pregnant gland, although the number of 

alveoli per lobule may increase over those seen before pregnancy. Alveoli consist of an 

inner layer of luminal epithelial and an outer basal, myoepithelial cell layer which contacts 

the basement membrane. Proliferation of epithelial cells occurs mainly in the luminal 

cells of the non-pregnant gland. Histopathologically, epithelial hyperplasia and 

carcinoma of the breast arise from the lobules.  

During normal human mammary gland development, the ovarian steroids estrogen and 

progesterone, play a crucial role 2. These hormones act through nuclear receptors found 

predominantly on female reproductive tissues, to exert their function. The estrogen 

receptor (ER) and progesterone receptor (PR) are found on luminal epithelial cells 3, 

where they regulate expression of specific genes when bound to their ligands. Discovery 

of a second ER gene 4, led to renaming the classic ER protein as ERa and the new 

receptor as ERb. In the normal breast, ERa expression is restricted to luminal epithelial 

cells, whereas ERb is more widely expressed, as it is also expressed in the myoepithelial, 

endothelial, stromal cells and lymphocytes 5. PR also has two isoforms namely PRA and 

PRB 6. Although both PRA and PRB are expressed at the same level and in the same 

cells 7, PRB appears to be the active PR 6.  

In the premenopausal breast, steroid hormones promote proliferation of approximately 

5% epithelial cells, which surprisingly do not express the gene encoding ER (ESRA)8. 

These cells are instead adjacent or in close proximity to cells that express ESRA, thus 

suggesting that proliferation of ERa-negative (ERa-) cells occurs through paracrine 

factors secreted by ERa-positive (ERa+) cells, in response to estrogen  (reviewed by 1). 

Indeed, several studies have reported that steroid receptor synthesis in the mammary 

epithelium is dissociated from cell proliferation 9–11. This dissociation is however 

dysregulated in the early stages of breast tumorigenesis, as observed by increased 

proliferating ERa+ cells 12, which are dependent on estrogen for their growth 12.  

Contrastingly, expression of ERb decreases in the transition from normal to malignant 

cells and correlates with reduced proliferation and pathological grade 13. ERb  expression 
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has been observed in approximately 70% of invasive breast cancers 14,15 and a subset 

of these tumours also express ERa 15. ERb is also expressed in a subset of ER- breast 

cancers 15, which are usually characterised by overexpression of genes encoding growth 

factor receptors such as human epidermal growth factor receptor 2 (HER2) 16. The role 

of ERb in ERa+ breast cancers however, has not yet been determined. ERb exerts an 

anti-proliferative function in ERa+ breast cancer cells 17 and is believed to negatively 

regulate ERa signalling. The exact role of ERb in breast cancer however, remains 

unclear. Currently, clinical decisions are based solely on expression of ERa, which is 

also the targeted receptor in breast cancer therapies.  

Alterations in PRA and PRB during breast tumorigenesis have also been observed, 

where PRA is the predominantly expressed isoform in atypical ductal hyperplasia, ductal 

carcinoma in situ (DCIS) and invasive tumours 7. PR expression is generally associated 

with good prognosis in invasive breast cancer 18.  
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1.2 Breast Cancer  
	

1.2.1 Epidemiology 
Breast cancer is the most common cancer and leading cause of cancer death in women 

worldwide, with an estimated 1.7 million cases and 521,900 deaths reported in 2012 19,20. 

In the United Kingdom (UK), breast cancer is the most common cancer and the second 

leading cause of cancer death in women, with 54,833 cases and 11,360 deaths reported 

in 2014 (Fig 1.1 and 1.2) 21. Of the total breast cancer cases in UK (2014), 389 (around 

1%) were reported in males. It is estimated that 1 in 8 women and 1 in 870 men, will be 

diagnosed with breast cancer in their lifetime. Although breast cancer incidence has 

increased since the early 1990s, mortality rates have decreased over time 22. This is 

mainly attributed to advances in medicine which have led to early detection of the 

disease and better treatment strategies, as discussed below. 	

 

 

Figure 1.1: Twenty most common cancers, UK (2014). Breast cancer is the most common 
cancer in UK. 
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Figure 1.2: Ten most common causes of cancer death in females, UK (2014). Breast cancer 
is the second most common cause of cancer death in females. 
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associate relative risk 23. Relative risk indicates the risk for an individual who is positive 

for a factor versus who is negative for that same factor. A relative risk of 1 denotes no 

increased risk, whereas a relative risk of 10 denotes a 10-fold increase in risk 23.   

 

 

 

 

 

 

 

22,052

2,036

2,166

2,183

2,342

2,577

4,128

4,391

7,337

11,360

16,332

0 5000 10000 15000 20000 25000

Other	sites

Liver

Uterus

Non-Hodgkin	Lymphoma

Brain

Oesophagus

Ovary

Pancreas

Bowel

Breast

Lung

Males Females

Number	of	deaths



	 24	

      Table 1.1: Risk factors associated with Breast Cancer 

*It has been suggested that these relative risks may overestimate the true risk associated with 

germline mutations in BRCA genes as they are subject to ascertainment bias38. 

 

Risk Factor Category at risk Comparison 
category 

Relative Risk 

Age 24 Women aged 65 and 
over 

Women aged less 
than 65  

5.8 

Reproductive Factors    
Age of menarche 25 Menses before age 

12  
Menses after age 
15  

1.3 

Age of menopause 25,26 Menopause after 55 
years 

Menopause before 
45 years 

1.2-1.5 

Age of first birth 27,28 Nulliparous or first 
child after 30 years 

First child after 20 
years 

1.7-1.9 

Lifestyle and 
Environmental Factors 

   

Alcohol consumption 29 2 drinks/day Non-drinker 1.2 
Body Mass Index 30 80th percentile, age 

55 
20th percentile 1.2 

Radiation exposure 31,32 Receiving radiation 
therapy for Hodgkin’s 
disease 
Having repeated 
fluoroscopy 

No exposure 
 

No exposure 

5.2 
 
1.6 

Genetic Factors    
Family history 33 First degree relative 

at ³50 years with 
postmenopausal 
breast cancer 
First degree relative 
with premenopausal 
breast cancer 
 
Second degree 
relative with breast 
cancer 
 
Two first degree 
relative with breast 
cancer 

No first or second 
degree relative with 
breast cancer 
No first or second 
degree relative with 
breast cancer 
No first or second 
degree relative with 
breast cancer 
No first or second 
degree relative with 
breast cancer 

1.8 
 
 
3.3 
 
 
1.5 
 
 
3.6 

Genetic mutations 34 Women aged <40 
years who are 
heterozygous for 
BRCA1 
Women aged 60-69 
who are 
heterozygous for 
BRCA1 

Not heterozygous 
for BRCA1 at age 
<40 
Not heterozygous 
for BRCA1 at age 
60-69 

200* 
 
15* 

Exogenous hormones    
Hormone replacement 
therapy with estrogen and 
progesterone 35 

Current user for at 
least 5 years 

Never used 1.3 

Past history of breast 
cancer 36,37 

Previous history of 
invasive breast 
carcinoma 

No history of 
invasive breast 
carcinoma 

6.8 
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1.2.3 Breast Cancer screening  

Population based screening of breast cancer is carried out using mammography. 

Mammography involves taking two radiographs of each breast to detect changes in 

breast tissue 39. In England, the National Health Service breast screening programme 

(NHSBSP) offers free breast screening for women aged 50-70, every three years 40. 

Women at a higher risk of developing breast cancer are however screened at an earlier 

age. Approximately 1300 lives are saved per year, as a result of mammography 

screening 41. 

 

1.2.4 Histological and Molecular classification of Breast Cancer 

For many years, breast cancer was considered a single disease with diverse 

histopathological features and a range of clinical behaviours. It was later determined that 

breast cancer could be divided into two groups, according to expression of ER. 

Traditionally, treatment strategies were based on clinicopathological features that had 

prognostic value such as, histological type, histological grade, lymph node metastasis 

and expression of predictive markers (ER, PR and HER2) (reviewed by 42). Advances in 

gene expression analysis using high throughput platforms, have demonstrated that 

breast cancer is a heterogeneous disease consisting of multiple subtypes with distinct 

histological patterns, biological features and clinical outcome 43,44.  

Perou and colleagues were the first to demonstrate that breast cancer can be classified 

into distinct molecular subtypes43. The authors revealed that ER+ and ER- breast 

cancers are molecularly distinct tumours, based on their expression of an ‘intrinsic gene 

subset’. Furthermore, clustering analysis identified four distinct molecular breast cancer 

subtypes namely luminal, HER2-positive (HER2+), basal-like and normal-like. Using a 

larger cohort, Sorlie and colleagues later confirmed this classification and found that the 

luminal subtype could be further divided into 2 groups namely luminal A and luminal B44 

(Table 1.2). The luminal subtype corresponds to ER+ tumours and their division into two 

subgroups is based on expression of proliferation-related genes. The HER2+ subtype 

consists of tumours that have HER2 amplification and generally express low levels of 

ER. HER2+ tumours that also express ER are classified under the luminal B subtype. 

Basal-like breast cancers are characterised by the absence or low levels of ER and ER 

related genes including PR, general lack of HER2 overexpression (i.e. triple negative), 

high expression of proliferation related genes and genes associated with basal epithelial 

cells (e.g. cytokeratin 5/6 and 17). The normal-like subtype was found to express high 

levels of genes associated with adipose tissue and normal breast tissue. Recent studies 
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have however demonstrated that tumours classified under the normal-like subtype, may 

be an artefact of having a high proportion of normal tissue in the tumour specimen 45.  

These molecular subtypes have also been shown to be clinically relevant, as observed 

by better disease-free and overall survival of luminal A tumours in comparison to the 

other subtypes 44. Luminal B tumours have an intermediate outcome, whereas basal-like 

and HER2+ subtypes displayed the shortest survival times (Table 1.2). To further 

evaluate the prognostic value of these ‘intrinsic subtypes’, a study by Parker and 

colleagues, developed a 50-gene prognostic model for node negative breast cancer, 

using the intrinsic subtypes and clinical information 45. The assay was termed ‘prediction 

analysis of microarray 50 (PAM 50)’, and demonstrated that intrinsic subtypes can be 

used to predict efficacy to neoadjuvant chemotherapy. Further validation is however still 

required before this assay can be used in the clinic.  

 

          Table 1.2: Molecular subtypes of breast cancer. 

Subtype Immunohistochemistry 
Status 

Outcome 

Basal-like ER-, PR-, HER2+/- Poor 

Luminal A ER+, PR+/-, HER2- Good 

Luminal B ER+, PR+/-, HER2+/- Intermediate 

HER2+ ER+/-, PR-, HER2+ Poor 

Normal-like ER+/-, PR+/-, HER2- Intermediate 

 

More recently, in an effort to further define breast cancer subtypes, an integrated analysis 

using genomic and transcriptomic data from 2000 breast tumours was used46. Through 

joint clustering of copy number and gene expression data, the authors identified 10 

integrative clusters/subgroups labelled as ‘IntClust 1-10’. These 10 subgroups were 

defined by their copy number profiles and showed distinct clinical outcomes. Surprisingly, 

a subgroup of ER+ tumours (IntClust 2) was found to be high risk, since they displayed 

poor clinical outcome. This work revealed novel subgroups and demonstrated the effect 

of copy number aberrations on gene expression, in breast cancer.  

Gene expression profiling has also been used to develop breast cancer prognostic 

signatures. These prognostic signatures are used to predict clinical outcome of individual 

patients and to identify patients requiring adjuvant chemotherapy. A prognostic signature 

that is currently approved in the NHS, is Oncotype DX. Oncotype Dx is a quantitative 

reverse transcriptase polymerase chain reaction (qRT-PCR)-based assay, that 

measures expression of 21 genes associated with ER and HER2 signalling and cell 
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proliferation 47. It is the most widely used assay for prognosis and prediction analysis, 

and has been suggested as a decision-making tool for adjuvant chemotherapy in ER 

positive, lymph node negative and HER2 negative early breast cancer 48. 

 

1.2.5 Breast Cancer Treatment  

The main standard treatments for breast cancer include, surgery, radiotherapy, 

chemotherapy, hormone/endocrine therapy and targeted therapy 49. Currently, breast 

cancer patients are often given a combination of standard treatments, as well as optional 

complementary treatments that range from acupuncture to diet management. Surgery 

and radiotherapy are used mainly to remove the primary breast tumour and any 

surrounding cancerous tissue. Chemotherapy and targeted therapies on the other hand, 

reduce tumour burden and also prevent, control or treat cancer metastasis and/or 

resistance (reviewed by 50). Hormone and targeted therapies are discussed in more 

detail below.  

 

1.2.5.1 Endocrine/Hormone therapy 

The majority of breast cancers (approximately 70%) are ER+ and so constitute the 

largest clinical group 43. Since these cancers are driven by the hormone estrogen, ER+ 

breast cancers are normally treated with endocrine therapy (ET) which can be given in 

the neo-adjuvant, adjuvant and metastatic setting. ET include selective estrogen 

modulators (SERMs) and aromatase inhibitors. Tamoxifen was the first SERM to be 

approved for the adjuvant treatment of ER+ breast cancer, and has reduced breast 

cancer recurrence by approximately 40-50% in women with early breast cancer 51. 

Overall, the use of Tamoxifen has reduced the yearly breast cancer mortality rate by one 

third 51. Tamoxifen has also been approved for the prevention of breast cancer in high 

risk pre-and post-menopausal women 52. Another SERM, Raloxifene has also been 

approved as a preventive treatment for post-menopausal women with osteoporosis or 

women at high risk of invasive breast cancer 53. Although Raloxifene is not as effective 

as Tamoxifen in preventing invasive breast cancer, it has fewer side effects and so might 

be preferred by some patients. Aromatase inhibitors such as anastrozole, exemestane 

and letrozole, are used to treat postmenopausal women with early ER+ breast cancer 49.  
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1.2.5.2 Targeted therapies 
	

1.2.5.2.1 PARP inhibitors 

Breast cancers that lack overexpression of HER2, ER and PR are referred to as triple 

negative breast cancer (TNBC). Approximately 20% of breast cancers are of the TNBC 

subtype 54, of which around 75% are characteristic of the basal-like molecular subtype 
55. TNBC represents the most aggressive phenotype of breast cancer 44,55 and currently, 

specific targeted therapies to TNBC are unavailable. Standard treatment for TNBC 

patients is chemotherapy, particularly anthracycline and taxanes (reviewed by 56).   

Although genetic predisposition to TNBC has not been widely studied, the frequency of 

TNBC in BRCA1 and BRCA2 mutation carriers was found to be 57% and 23%, 

respectively 57. Approximately 20% of TNBC cases harbour BRCA1 (15.6%) or BRCA2 

mutations (3.9%) 58. BRCA-related breast cancers are often characterised by genomic 

instability and an aberrant homologous recombination DNA repair pathway 59. Targeting 

these aberrations using agents such as Poly (ADP-ribose) polymerase (PARP) 

inhibitors, are potential therapeutic strategies. PARP enzymes are involved in single 

strand break DNA repair. Inactivation of the BRCA1 and/or BRCA2 genes allows for DNA 

repair via PARP enzymes, and so presents a mechanism through which cancer cells can 

continue to grow 60. Blocking PARP enzymes in BRCA1/2 mutated cells, blocks the only 

functioning DNA repair pathway and so results in tumour cell death, due to synthetic 

lethality 60. PARP inhibitors for the treatment of BRCA1 mutation carriers are currently 

being investigated in clinical trials (NCT00516373) and indeed Olaparib has been 

approved by the FDA and NICE for the treatment of advanced Ovarian cancer patients 

with germline BRCA mutations 61.  

 

1.2.5.2.2 Immunotherapy 

Breast cancer was considered a non-immunogenic disease for many years. Recently 

however, the HER2 and TNBC subtypes have been shown to be characterised by an 

immune infiltrate. The aim of immunotherapy is to activate the immune response so it 

recognises tumours as foreign entities, eventually killing them. Expression of 

programmed death ligand 1 (PDL-1) has been observed in breast cancer clinical 

samples, particularly in TNBC tumours and cell lines 62,63. PDL-1 is a ligand for the 

immune checkpoint receptor, programmed cell death-1 (PD-1) found on T cells, which 

negatively regulates their function, preventing autoimmunity and inflammatory response 
64. Thus, blocking PD-1 and PDL-1, should enhance antibody function in cancer patients. 

Currently, there are several clinical trials that are investigating the efficacy of inhibiting 
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the PD-1/PDL-1 axis with specific antibodies, for treatment of TNBC and HER2+ breast 

cancer (reviewed by 65,66). Several other immunotherapy modalities  are also currently 

being evaluated for their efficacy (reviewed by 66). 

 

1.2.5.2.3 HER2 targeted therapies 

Amplification of HER2 is observed in approximately 20% of breast carcinomas  and is 

associated with increased disease progression and poor prognosis67. HER2 is a 

transmembrane tyrosine kinase belonging to the EGF receptor (EGFR/HER) family 

(reviewed by 68). This family constitutes of four members (EGFR/HER1, HER2, HER3 

and HER4), which stimulate various signalling pathways (Fig 1.3). Of these four 

members, HER2 has a unique feature, in that it does not have a known ligand. HER2 is 

the favoured dimerization partner of the other EGFR/HER family members, with robust 

signalling activity observed between EGFR/HER2 and HER2/HER3 heterodimers. HER2 

can also form homodimers, which become functional upon overexpression of HER2.  

The first drug that was approved by the FDA for the treatment of HER2+ breast cancers 

was the monoclonal antibody, Trastuzumab (Herceptin)69,70. Although Herceptin 

treatment improved overall survival of HER2+ breast cancer patients with advanced 

disease, a subset of patients did not respond to treatment. Furthermore, most of the 

patients who initially responded, later acquired resistance 69,70. This therefore led to 

development of additional approaches of targeting HER2 which have included: 

development of antibodies that bind to different sites of HER2 compared to Herceptin 

such as Pertuzumab 71; HER2 tyrosine kinase inhibitors such as Lapatinib 72; and 

antibody-drug conjugates such as Trastuzumab emtansine (T-DM1) 73. Currently, five 

drugs have been approved for the treatment of HER2+ breast cancer: Trastuzumab 

(Herceptin), Pertuzumab, Trastuzumab emtansine (T-DM1), Lapatinib and Neratinib (Fig 
1.3). These HER2 targeted therapies are discussed below. 

 

1.2.5.2.3.1 Trastuzumab (Herceptin) 

Herceptin is a monoclonal antibody that binds to the extracellular domain IV of HER2 74. 

Herceptin is currently administered in combination with chemotherapy in the adjuvant 

setting, to early stage HER2+ breast cancer patients, for one year 49. This treatment 

regimen has proven to be beneficial, since it has resulted in 40% fewer cancer 

recurrences and 34% fewer deaths 75. Herceptin is also administered in combination with 

Pertuzumab and the chemotherapeutic agent docetaxel, in the neoadjuvant setting, for 

patients with advanced or early stage HER2+ breast cancer 49,76.  
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Different modes of action have been suggested for Herceptin which include suppression 

of downstream mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase 

(PI3K)/AKT/mammalian target of rapamycin (mTOR) signalling pathways 77,78, blocking 

ligand-independent HER2/HER3 heterodimerization 78 and antibody-dependent cellular 

cytotoxicity (ADCC) through engaging natural killer (NK) cells 79,80.  

 

1.2.5.2.3.2 Trastuzumab emtansine (T-DM1) 

T-DM1 is an antibody-drug conjugate where Trastuzumab is linked with the microtubule 

toxin, emtansine. Upon binding to HER2, the conjugate is internalized and emtansine is 

released into the cell, leading to cell death 81. T-DM1 is used for the treatment of 

advanced HER2+ breast cancer 82,83.  

 

1.2.5.2.3.3 Pertuzumab  

Pertuzumab is a monoclonal antibody that binds to the extracellular domain II of HER2, 

therefore inhibiting HER2 dimerization with other HER proteins, particularly HER3 71. Like 

Herceptin, Pertuzumab also activates ADCC with equivalent efficacy, resulting in cell 

death 84. As aforementioned, Pertuzumab is administered in the neo-adjuvant setting, in 

combination with Herceptin and docetaxel in advanced and early stage HER2+ breast 

cancer 49,76.  
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Figure 1.3: HER2 signalling pathway and targeted therapies. The human epidermal growth 
factor (EGF) receptor family (HER1, HER2, HER3, HER4), are receptor tyrosine kinases involved 
in signalling pathways that lead to biological processes such as cell cycle control and proliferation. 
The HER proteins are made up of an extracellular binding domain, a transmembrane domain and 
an intracellular tyrosine kinase domain (with the exception of HER3 which has no kinase activity). 
Upon binding of a ligand to the extracellular binding domain of a HER receptor, the receptor forms 
homodimers or heterodimers with other HER family members. HER2 is the only receptor that 
does not have a ligand and is the preferential dimerization partner of the other members of the 
HER family. Homo-and hetero-dimerization results in phosphorylation of the tyrosine kinase 
domain therefore activating downstream signalling pathways including the PI3K-AKT-mTOR and 
the MAPK (also known as RAS-RAF-MEK-ERK) pathways. These pathways are involved in cell 
cycle control, proliferation and apoptosis. Current HER2 targeted therapies for the treatment of 
HER2+ breast cancer includes: A) Trastuzumab, a monoclonal antibody that binds to extracellular 
domain IV of the HER2 receptor. Different modes of action of Trastuzumab have been suggested 
including inhibiting downstream signalling pathways such as PI3K/AKT pathway. B) T-DM1, an 
antibody-drug conjugate consisting of Trastuzumab and DM1(the highly potent antimitotic drug, 
emantansine), binds to the extracellular domain of HER2 and allowing for delivery of DM1 to the 
cell. C) Pertuzumab, a monoclonal antibody that binds to extracellular domain II of HER2 thereby 
inhibiting dimerization of HER2 with other HER family members, especially with HER3. D) 
Lapatinib is a dual tyrosine kinase inhibitor targeting HER1 and HER2 and has been shown to 
inhibit the PI3K/AKT pathway. E) Neratinib is a pan-HER tyrosine kinase inhibitor that inhibits 
downstream signalling. 

 

1.2.5.2.3.4 Lapatinib 

Lapatinib is a dual EGFR and HER2 tyrosine kinase inhibitor, used for the treatment of 

metastatic HER2+ breast cancer 49. Lapatinib has been shown to inhibit the activation of 

MAPK, PI3K-AKT and phospholipase C gamma 1 (PLCg1) pathways due to reduced 

phosphorylation of the targeted receptors 72, thus resulting in reduced cell proliferation, 

metastasis, migration and increased apoptosis. Lapatinib is usually given in combination 

with the chemotherapy agent capecitabine, to breast cancer patients who have 

previously been treated with Herceptin, anthracycline and taxane 85,86. Furthermore, 

when combined with the aromatase inhibitor letrozole, Lapatinib is used for the treatment 
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of  hormone receptor positive and HER2+ metastatic breast cancer 87. Combination of 

Lapatinib and Herceptin has also been shown to be more beneficial than single agents, 

in the neoadjuvant setting 88.  

 

1.2.5.2.3.5 Neratinib 

Neratinib is a pan-tyrosine kinase inhibitor of the EGFR/HER family, that binds to their 

kinase domain therefore inhibiting downstream signalling 89. In a phase III trial, HER2+ 

breast cancer patients that received Neratinib for 12 months following chemotherapy and 

Herceptin-based adjuvant therapy, showed improved 2-year invasive disease-free 

survival, compared to patients who did not receive Neratinib treatment 90. The results of 

this study, have led to Neratinib being approved by the FDA for treatment of early stage 

HER2+ breast cancer, following Herceptin-based adjuvant therapy 91.  

 

1.2.5.3 Mechanisms of resistance in HER2 targeted therapies 

Studies in this project were based on the HER2+ breast cancer subtype. Therefore, the 

mechanisms of resistance to HER2 targeted therapy will be discussed below.  

Although HER2 targeted therapies have improved patient survival, most patients acquire 

resistance or exhibit primary resistance to these therapies. Various mechanisms of 

resistance have been proposed which can be classified as factors associated with either 

HER2 receptor level or components of downstream signalling pathways. Recent studies 

have also shown a role for epigenetics in promoting resistance of HER2+ breast cancers.  

 

1.2.5.3.1 HER2 receptor  

Mutation of HER2 results in a truncated protein, p95HER2, that lacks the extracellular 

domain binds and so is unable to bind to Trastuzumab 92. The p95HER2 protein arises 

through extracellular domain shedding by a metalloprotease e.g. ADAM10 or by 

alternative translation of HER2 mRNA 93.  Expression of p95HER2 protein has been 

associated with Trastuzumab resistance 94,95. Since this protein still has constitutive 

kinase activity, HER2+ breast cancer cells expressing p95HER2 have been shown to be 

sensitive to the HER2 tyrosine kinase inhibitors Lapatinib 94.  

A HER2 splice variant (HER2D16 ) has been reported in breast cancer cell lines 96 and 

breast tumours 97. HER2D16 is characterised by a 16-amino acid exon that is deleted in 

the extracellular domain 96. The deleted exon was found to contain two cysteine residues 
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that were critical for HER2 transformation activity 96. HER2D16 expression is tumour 

specific and has been shown to confer Trastuzumab resistance in breast cancer cell lines 
98. These functions of HER2D16 were found to be mediated by Src kinase, since 

treatment with the tyrosine kinase inhibitor, dasatinib, inactivated Src, destabilised 

HER2D16 and inhibited tumorigenecity 98. A phase II clinical trial of dasatinib in advanced 

HER2+ and/or hormone receptor breast cancer patients however, only found one out of 

24 HER2+ patients previously treated with anti-HER2 therapies, showing a partial 

response 99.  

Hsp90 is a chaperone protein that activates several oncoproteins including HER2 100. 

Inhibition of Hsp90 has been shown to reduce the anti-tumour activity of Trastuzumab 

resistant and Trastuzumab sensitive xenografts and could potentially be a novel 

therapeutic strategy for the treatment of HER2+ breast cancers 101,102.  

Loss of HER2 amplification following neoadjuvant Herceptin-based therapy has also 

been observed in patients with residual disease 103 and so may contribute to resistance.  

 

1.2.5.3.2 Downstream signalling pathways 

Activation of the PI3K/AKT pathway due to decreased phosphatase and tensin homolog 

(PTEN) expression and oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-

Kinase Catalytic Subunit Alpha (PIK3CA), have been associated with Herceptin 

resistance in breast cancer cell lines and tumours 104. Similarly, loss of PTEN and 

PIK3CA mutations also confer Lapatinib resistance in breast cancer cell lines and 

xenograft models 105. A later study showed that inhibition of HER2 using Lapatinib 

conferred resistance in breast cancer xenograft models and patients, through 

upregulation of ER and the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) 106. 

Interestingly, the authors showed that 18% of tumours treated with Lapatinib in the 

neoadjuvant setting converted from ER- to ER+, thus providing an ER-dependent 

mechanism for survival.  

Crosstalk between HER2 and insulin like growth factor 1 receptor (IGF-1R), has also 

been shown to promote Herceptin resistance, since inhibition of IGF-1R kinase activity 

led to decreased HER2 phosphorylation in resistant cells and re-sensitised these cells 

to Herceptin 107. Additionally, Herceptin resistant breast cancer cells overexpress HER 

activating ligands, which lead to increased expression of EGFR and HER3 receptors. 

These receptors in turn form heterodimers with HER2, which are not inhibited with 

Herceptin, and so provide a mechanism for resistance through EGFR or HER3 signalling 
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pathways 108. This corresponds to a report showing that inhibition of HER2 reactivates 

HER3 in HER2+ breast cancer cell lines 109. 

 

1.2.5.3.3 A role for Epigenetics in resistance to HER2 targeted therapies  

Various epigenetic proteins have been implicated in resistance to HER2 targeted 

therapies. microRNAs (miRNAs) have been shown to confer resistance to HER2 

targeted therapies through various mechanisms including targeting PTEN and triggering 

nuclear factor–kB (NF-kB) signalling that in turn activates PI3K pathway 110. 

Hypermethylation of transforming-growth factor b1 (TGFb1), B- cell lymphoma 6 (BCL6), 

p53-regulated DNA replication inhibitor (KILLIN) and cathepsin Z (CTSZ) genes, were 

shown to be predictive biomarkers of Herceptin resistance in HER2+ breast cancer cells, 

since treatment with a demethylating agent restored their expression to similar levels 

with Herceptin sensitive cells 111. Histone deacetylases have also been implicated in 

resistance to HER2 targeted therapy. This is demonstrated by treatment of HER2+ 

breast cancer cells with histone deacetylase inhibitors (HDACi) increasing sensitivity to 

Herceptin and lapatinib 112,113, as well as, overcoming Herceptin resistance112. 

Overexpression of histone demethylases (e.g. KDM5 family of histone demethylases) 

have also recently been shown to promote resistance of HER2+ breast cancer cells to 

Herceptin 114 and Lapatinib 115.  These will be discussed in more detail in Section 1.8. 
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1.3 Epigenetics and gene expression 

Transcription is a fundamentally important process involving transfer of genetic 

information from DNA to messenger RNA (mRNA). Although this genetic material is the 

same in all cells of an organism, different cell types differ in their gene expression 

patterns, owing to their specific functions. For this reason, transcription is tightly 

regulated to ensure maintenance of gene expression patterns during mitotic cell division. 

This maintenance of gene expression patterns over many cell divisions, occurs through 

inherited information that is not encoded in the DNA sequence, and is known as 

epigenetic information (reviewed by 116).  

Epigenetics therefore describes heritable gene expression changes that occur without 

alterations in the DNA sequence. An additional definition of epigenetics however does 

not include the requirement for heritability. For instance, the US National Institute of 

Health roadmap epigenomics project (http://www.roadmapepigenomics.org) states that 

‘epigenetics refers to both heritable changes in gene activity and expression (in the 

progeny of cells or of individuals) and also stable, long-term, alterations in the 

transcriptional potential of a cell that are not necessarily heritable’. Regardless of 

definition, epigenetic processes that alter gene expression patterns are DNA 

methylation, post-translational modification (PTM) of histone proteins, chromatin 

remodelling and RNA based mechanisms 116. Collectively, epigenetic modifications are 

referred to as the ‘epigenome’. Since the epigenome plays an important role during 

cellular processes such as development and differentiation, inadequate maintenance 

can lead to development of diseases including cancer. Therefore, understanding 

molecular mechanisms driving epigenetic changes in cancer is imperative for the 

development of novel cancer therapies. This PhD thesis is based on a histone protein 

modification enzyme, and so this epigenetic process will be the focus of the discussions 

below. 

 

1.3.1 Histone proteins and regulation of gene expression  

Transcription in eukaryotic cells takes place in chromatin. Chromatin is a complex made 

up of histone proteins and DNA. The basic unit of chromatin is the nucleosome which 

consists of 147 bp of DNA wrapped around an octamer of two copies of each of the four 

core histone proteins (H2A, H2B,H3 and H4) 117,118 (Fig 1.4). Nucleosomes are separated 

by a linker DNA of 10-60bp which associates with a linker histone, H1 117,118. The core 

histones H3 and H4 contain amino-terminal tails that protrude from the nucleosome core 

and undergo PTM at specific amino acid residues. These histone PTM include: 

• Phosphorylation (at serine and threonine residues) 
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• Acetylation (at lysine side chains) 

• Methylation (at lysine and arginine residues) 

• Ubiquitination (at lysine residues) 

• Sumoylation (at lysine residues) 

• ADP ribosylation (at glutamic acid residues)  

Of these histone PTMs, the best characterised are methylation, phosphorylation and 

acetylation 116. Histone PTMs are carried out by specific enzymes known as ‘writers’ and 

are inherited through cell division (reviewed by 119) (Fig 1.4). This epigenetic information 

encoded within histone tails can be read by proteins known as ‘readers’, which in turn 

use this information to alter chromatin structure, thereby regulating transcription (Fig 
1.4). Additionally, there are enzymes that remove these modifications and are so known 

as ‘erasers’ (Fig 1.4). Aberrations in these histone modification factors (writers, readers 

and erases) can contribute to development of diseases such as cancer. This PhD thesis, 

investigates the role of a specific eraser protein (histone lysine demethylase 5B 

(KDM5B)) in breast cancer, and so this group of proteins will be discussed below.  

 

Figure 1.4: Epigenetic modifications in chromatin. The nucleosome, which is the basic unit of 
chromatin consists of a 147 bp of DNA sequence wrapped around an octamer of two copies of 
each of the four core histone proteins (H2A, H2B, H3 and H4). Epigenetic modifications (yellow 
circles) on DNA and histones regulate chromatin accessibility to transcription machinery. These 
epigenetic marks are established by ‘writers’ such as histone lysine methyltransferases (KMT), 
histone acetyltransferases (HATs) and DNA methyltransferases (DNMTs). The marks are in turn 
interpreted by ‘readers’. Epigenetic modifications are reversible, a process mediated by a group 
of enzymes known as ‘erasers’ which include histone demethylases (KDMs), histone 
deacetylases (HDACs) and by the ten-eleven translocation (TET) family of 5-methylcytosine 
oxidases. Epigenetic proteins are important in regulating transcription and establishing and 
maintaining cellular identity. PHD, plant homeodomain. Modified image from120. 
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1.3.2 Histone methylation  

Histone methylation plays important roles in cellular processes such as transcription and 

genomic stability. Histones can become methylated on arginine or lysine residues by 

enzymes known as histone methyltransferases, which are responsible for catalysing this 

modification (reviewed by 121). These proteins catalyse methylation by adding methyl 

groups to histones using the methyl donor S-adenosylmethionine (SAM). There are three 

families of histone methyltransferases namely protein arginine methyltransferases 

(PRMTs) 122–126 and histone lysine methyltransferases (KMTs) which are divided into two 

groups: SU(VAR)3-9, Enhancer of zeste and Trithorax (SET)-domain methyltransferases 
127,128 and the non-SET domain proteins DOT1 and DOT1-like (DOT1L) 129,130.  

Histones can become mono (me1)-, di (me2)- or tri (me3)- methylated on specific lysine 

residues in histone H3 and H4 proteins, whereas arginine residues can become 

monomethylated (me1), symmetrically dimethylated (me2s) or asymmetrically 

dimethylated (me2a) 131. These modified histones have been shown to associate with 

different chromatin states thereby regulating transcription for example; H3K4me3, 

H3K36me3 and H3K79me3 are associated with active transcription, whereas H3K9me3 

and H3K27me3 are associated with gene silencing 132,133.  

 

1.3.3 Histone demethylases 

Prior to the discovery of lysine specific demethylase 1 (LSD1) 134, histone methylation 

was considered an irreversible epigenetic modification, believed to only be erased upon 

histone exchange or DNA replication. Subsequent studies identified a second family of 

LSD demethylases containing a Jumonji C (JmjC) domain 135–137. Consequently, 

demethylating enzymes of most methylated lysines have now been characterized 138, 

showing histone lysine methylation as a dynamic process regulating individual genes 

through recruitment of methyltransferases and demethylases.  

 

1.3.3.1 	The LSD family of histone demethylases 

LSD1 belongs to the LSD family of histone demethylases which is composed of two 

members: LSD1 (also known as KDM1A, AOF2, BHC110 or KIAA0601) 134 and LSD2 

(also known as KDM1B or AOF1) 139. The LSD proteins contain an amine oxidase-like 

domain (AOL) of catalytic activity and a SWIRM (SWI3, RSC8 and Moira) domain, found 

only in chromatin associated proteins 119. LSD enzymes can only catalyse the 

demethylation of me1 and me2 but not me3 on lysine residues, via an oxidation 

mechanism involving the flavine adenine dinucleotide (FAD) cofactor 140.  
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1.3.3.2 The JmjC domain containing histone demethylases 

The JmjC family contains a catalytic Jumonji domain, present in 32 human proteins, 22 

of which are histone demethylases (Table 1.3) 141. Clustering of these proteins based on 

homology and structural similarities, divides them into seven subfamilies. The catalytic 

mechanism of these enzymes involves an oxidative reaction that requires two cofactors: 

Fe(II) and a-ketoglutarate. This reaction forms an oxoferryl (Fe(iv)=O) intermediate that 

hydrolyxylates the methyl group resulting in an unstable carbinolamine that breaks down, 

to form an unmethylated peptide and formaldehyde (Fig 1.5) 142. This mechanism allows 

JmjC demethylases to demethylate all three methylation states (me1, me2 and me3) on 

histone lysines at H3K4, H3K9, H3K27 and H3K36 135,137,143–146. A prominent group 

among the JmjC histone demethylases, is the KDM5 (JARID1) protein family, whose 

members are involved in development, transcriptional regulation, genomic instability and 

have recently been implicated in progression and drug resistance of numerous cancers.  

 

	

Figure 1.5: The catalytic mechanism of JmjC domain containing histone demethylases. 
This mechanism involves an oxidative reaction that is dependent on Fe(II) and a-ketoglutarate 
co-factors. The KDM5 family specifically demethylate H3K4me3/me2.  

 

1.4 KDM5 histone demethylases 

The KDM5 (also known as Jumonji AT-rich interactive domain (JARID1)) family of 

histone demethylases consist of four members: KDM5A (JARID1A/RBP2), KDM5B 

(JARID1B/PLU-1), KDM5C (JARID1C/SMCX) and KDM5D (JARID1D/SMCY). Single 

orthologues of the KDM5 family exist across species including Drosophila melanogaster 

(Little imaginal disks (Lid)) 147, Caenorhabditis elegans (RBR-2) and Saccharomyces 

cerevisiae (Jhd2p/Yjr119Cp) 148, where they have similar functions as transcriptional 

regulators and chromatin modifiers.  

KDM5 proteins are capable of catalysing the demethylation of di- and tri-methyl 

states/marks on lysine 4 of histone H3 (H3K4me2/me3), thereby repressing transcription 
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of target genes 146,149–151. KDM5A and KDM5B have also been shown to catalyse the 

demethylation of the mono-methylated mark at the same site (H3K4me1), in vivo 145,146. 

Table 1.3: Protein domain and histone substrate of the JmjC histone demethylases  

 

 

** This is not an exhaustive list of aliases. *The PHD3 of KDM5A and KDM5B bind to H3K4me3 
substrate. Modified image from 152. 

 

1.4.1 Structural organisation of KDM5 histone demethylases 

KDM5 histone demethylases have a highly conserved multi-domain structure consisting 

of an N-terminal Jumonji (JmjN) domain, an AT-rich interactive (ARID) domain, a JmjC 

domain, a C5HC2 zinc-finger, and two to three plant homeodomain (PHD) fingers (Fig 
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1.6). Despite the conserved sequence homology, the KDM5 proteins have distinct 

structural features, in that KDM5A and KDM5B have two PHD fingers in their C-terminal 

region, whereas KDM5C and KDM5D only have one PHD finger in this region (Fig 1.6).  

 

Among the Jumonji domain containing histone demethylases, the KDM5 family is unique 

in that, their catalytic domain is separated into two subunits (JmjN and JmjC) by insertion 

of the ARID and PHD1 domains (Table 1.3). However, Horton and colleagues have 

shown using a crystal structure, that the two Jumonji subunits (JmjN and JmjC) are linked 

through internal folding, and together with the C-terminal region of the C5HC2 zinc finger 

domain are required for enzymatic activity153. The ARID domain was first identified in the 

mouse B cell specific transcription factor, Bright 154 and the Dead ringer protein (Dri) of 

Drosophila melanogaster 155, as a domain that bound AT-rich sequences. In KDM5B, the 

ARID domain was also found to bind to a GCACA/C consensus sequence 156,157. PHD1 

and PHD3 fingers (numbering of PHD fingers starts from N terminal side of the protein) 

are required for histone tail recognition. PHD1 domain of KDM5A and KDM5B bind to 

unmethylated H3K4 histone tail (H3K4me0) 158,159. In KDM5A, binding of PHD1 to 

H3K4me0 stimulates demethylation of the adjacent H3K4me3 mark, suggesting a model 

for spreading demethylation on chromatin through a positive feedback mechanism 

between the reader and catalytic domains 158. PHD3 of KDM5A and KDM5B specifically 

binds to H3K4me3/me2 marks 159,160. Conservation of structural domains is evident 

amongst the KDM5 homologs present in Drosophila melanogaster (Lid), Caenorhabditis 

elegans (RBR-2) and Saccharomyces cerevisiae (Jhd2p/Yjr119Cp) as observed by 

separated catalytic domains (Fig 1.6).  

 

 

 
Figure 1.6: Domain structure of JARID1 histone demethylases. The domain structure of 
KDM5 proteins are conserved across species and consist of a JmjN, ARID, JmjC and C5HC2-
zinc finger, and 2-3 PHD finger domains with the exception of the yeast, which only has one PHD 
finger and does not have a C5HC2 zinc-finger domain. JmjN: N-terminal Jumonji, ARID: AT-rich 
interactive, JmjC: C-terminal Jumonji, PHD: plant homeodomain finger.  
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1.4.2 KDM5 Histone Demethylase Function  

The following section will discuss the function of KDM5A, KDM5C and KDM5D in normal 

development and cancer. The functions of KDM5B will be discussed separately in 

section 1.5. 

 

1.4.2.1 KDM5 proteins in normal development 

KDM5A, was first identified as a retinoblastoma binding protein (pRb) in a cDNA 

expression library 161. A later report showed that KDM5A together with the transcription 

factor E2F4, enhanced Rb’s transcriptional repression of target genes, during embryonic 

stem cell (ESC) differentiation 162. Significantly, KDM5A-/- mice are viable and fertile but 

display behavioural abnormalities 145. Surprisingly, deletion of KDM5A did not alter global 

H3K4me3 levels in mouse embryonic fibroblasts 145, probably due to redundancy of the 

other KDM5 proteins. During embryogenesis both KDM5A and KDM5B demethylate 

broad H3K4me3 domains found in mouse oocytes, which is required for normal 

activation of the zygotic genome and is important for early embryonic development 163. 

 

KDM5C, encoded by the SMCX gene located on the X chromosome, was identified as 

an X-linked gene which during embryogenesis, is able to escape X-inactivation 164. In 

human adult tissue, KDM5C shows strong expression in the brain, lung and skeletal 

muscle; and a moderate to low expression in the pancreas and heart 165. Mutations, as 

well as loss of function of KDM5C are associated with X-linked mental retardation 165,166. 

In mice, KDM5C null mutations were found to be embryonic lethal 167.  

 

KDM5D, encoded by the SMCY gene is only expressed in males being located on the Y 

chromosome, and was reported to be a candidate for the male specific minor 

histocompatibility antigen H-Y 168. KDM5D is moderately expressed in the brain, 

pancreas, skeletal muscle and lung 165 and in spermatogenesis. KDM5D is the least 

studied member of the KDM5 family. 

 

1.4.2.2 KDM5 proteins in Cancer 

KDM5A is overexpressed in gastric and cervical cancer cells, and its depletion leads to 

senescence and growth arrest, possibly due to increased expression of cyclin dependent 

kinase (CDK) inhibitors such as p21 169. Amplification of KDM5A has been reported in 

breast and head and neck cancers170,171. In breast cancer, in vivo studies have shown 
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that KDM5A promotes metastasis to the lungs, through positively regulating metastasis 

related genes such as tenascin C (TNC) 172. Additionally, increased expression of 

KDM5A was found to promote cell proliferation of basal breast cancer cell lines, possibly 

through repressing CDK inhibitors and apoptosis related genes 170. An oncogenic 

translocation between PHD3 of KDM5A and nucleoporin-98 (NUP98), has been shown 

to induce acute myelogenous leukemia (AML) in mice, thereby demonstrating a role of 

KDM5A in oncogenesis of AML 160.  

 

KDM5C acts in a complex with the viral protein E2 to suppress the expression of viral 

oncoproteins E6 and E7 in human papilloma virus-associated cancers 173. In clear cell 

renal carcinoma (ccRCC) 3% of tumours were found to harbour truncating KDM5C 

mutations 174, which can trigger genomic instability 175. On the other hand, 

overexpression of KDM5C has been observed in hepatocellular carcinoma cells, where 

it promotes migration, invasion and metastasis by repressing the bone morphogenetic 

protein 7 (BMP7) 176. KDM5C also promotes cell migration, metastasis and invasion in 

breast cancer by repressing the breast cancer metastasis suppressor 1 (BRSM1) 177. In 

prostate cancer, KDM5C knockdown was found to inhibit proliferation of prostate cancer 

cells 178. Furthermore, nuclear expression of KDM5C was associated with reduced 

prostate-specific antigen relapse free survival, and was proposed to be a prognostic 

marker 178.  

KDM5D was initially reported by Perinchery and colleagues as a gene associated with 

prostate cancer, since it’s deletion was observed in 52% of cases179. Recently, KDM5D 

was shown to be mutated or frequently deleted in metastatic prostate cancer, and that 

low levels were associated with poor prognosis180. Moreover, KDM5D suppresses 

invasion of prostate cancer cells both in vivo and in vitro, by repressing expression of 

invasion associated genes, through its enzymatic activity180. Another study has shown 

that KDM5D physically interacts with the androgen receptor (AR) in the nucleus, and 

regulates AR signalling by repressing AR target genes 181. Similar to KDM5C, KDM5D 

has also been implicated in ccRCC as it was found to be downregulated due to loss of 

chromosome Y 182. Further analysis showed that KDM5D reduced cell viability of renal 

cancer cells and thus its deletion may contribute to renal cancer progression 182. 
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1.5 KDM5B 

KDM5B is a 176kDa protein encoded by a gene located on chromosome 1q32.1. KDM5B 

was first identified in a cDNA library screen as a gene whose expression was down-

regulated upon inhibition of the tyrosine kinase, HER2, with Herceptin 183. Following the 

identification of KDM5B, other splice variants have also been reported namely, RBP2-

H1 184 and RBP2-H1A 185. RPB2-H1 was identified as a gene whose expression was 

frequently down-regulated in melanoma 184. Although there is high homology between 

the cDNA sequences of these splice variants, RBP2-H1 contains an extra exon that 

encodes a region with strong homology to chromosomal ALU repeats 184. Among the 

splice variants, PLU-1 (KDM5B) is the most widely studied and most abundant in a panel 

of breast cancer and melanoma cell lines examined 186.  

 

1.5.1 KDM5B Expression 

In normal human adult tissues, high KDM5B mRNA expression is restricted to testis, with 

moderate expression in the placenta and ovary 183. Recently using an in-house antibody, 

we have shown expression of KDM5B on lymphoid cells within tonsil (Steven Catchpole 

personal communication). In the adult mouse, high KDM5b mRNA expression is 

restricted to testes with moderate expression in the ovary, prostate and eye 187. Analysis 

of KDM5b mRNA expression during the different stages of mouse mammary gland 

differentiation, showed that KDM5b is expressed in the virgin (non-pregnant) gland, 

increased during pregnancy, decreased at lactation and re-expressed at involution 187–

189. In the mouse embryo, KDM5b is expressed in ESCs 190,191, neural progenitors 192 and 

embryonic mammary bud187. 

 

1.5.2 The Function of KDM5B 

Consistent with the ability of KDM5 proteins to demethylate the active H3K4me3 mark, 

many studies have described them as transcriptional repressors, that act directly or in 

association with repressive complexes, to regulate gene expression. So far studies have 

demonstrated a role of KDM5B in biological processes such as, normal development, 

differentiation/cell fate, cell cycle, genome stability and mammary gland development.  

 

1.5.2.1 Normal development and differentiation 

KDM5B regulates H3K4 methylation marks close to promoters and enhancers of ESCs, 

thus affecting the balance between differentiation and self-renewal 193. Indeed, Dey and 
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colleagues demonstrated that KDM5B bound on promoters of cell fate modulators early 

growth response gene 1 (Egr1), p27 and BMI1, repressing their expression through its 

demethylase activity 190, thus enhancing cell proliferation. Furthermore, during ESC-self-

renewal KDM5B has been reported to  catalyse the demethylation of H3K4me3 on 

intragenic regions, thus repressing cryptic transcription during expression of self-renewal 

genes 191.  

The importance of KDM5b in regulating gene expression during early development is 

demonstrated by embryonic 188 and neonatal 194 lethality upon knockout of the gene, with 

the latter displaying neuronal defects such as disorganized cranial nerves, defective eye 

development and increased exencephaly 194. Zou and colleagues however, successfully 

developed a KDM5b-/- mouse strain that remained viable beyond the embryonic and 

neonatal stages195. This mouse strain however, displayed phenotypic defects such as, 

delayed mammary gland development, reduced mammary epithelial cell proliferation 

and premature mortality 195. The phenotype of the KOs from Zou and colleagues 

corresponded with those of a mouse strain with a deleted ΔARID domain (ΔARID mouse) 

that was developed in our laboratory 188. The ΔARID mice were viable and fertile but also 

displayed developmental abnormalities in the mammary gland such as delayed 

development of the terminal end bud and side branching in early pregnancy and at 

puberty 188. The differences observed in the KDM5b-/- mouse models may be related to 

colony maintenance, since different phenotypes were observed in mice with the same 

genetic background (C57BL/6).  

 

1.5.2.2 Mammary gland development  

KDM5B was found to be critical for the expression of mammary gland development 

regulators such as FOXA1, HER2, STAT5a and ESR1, since they were downregulated 

upon loss of KDM5B in mammary epithelial cells 195. In the ΔARID mouse mammary 

gland, decreased phosphorylated STAT5 196 and increased Caveolin-1 (CAV1) (Steven 

Catchpole personal communication), an inhibitor of phosphorylated STAT5 (pSTAT5), 

was observed at mid-pregnancy day 12.5.	Thus, showing the requirement of KDM5B in 

regulating the janus kinase 2 (JAK2)/signal transducers and activators of transcription 

5a (STAT5a) signalling pathway, during mammary gland development. Taken together 

with the observation that KDM5B interacts with ERa 188 and that loss of KDM5B reduces 

serum estrogen level 195, this demonstrates a role of KDM5B in luminal epithelial cell 

proliferation of the mammary gland. Thus, may explain the delayed side branching and 

terminal end bud in the mammary gland in KDM5b mouse models195188.  
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1.5.2.3 Cell cycle progression 

A role of KDM5B in positively regulating the cell cycle has been demonstrated. In ESCs, 

KDM5B was found to promote G1-S progression through direct repression of the growth 

arrest-promoting proteins Egr1 and p27190,197. Consistently, KDM5B was also found to 

promote G1-S progression in MCF-7 breast cancer cells,  as demonstrated by 

accumulation of cells at G1 phase and delay in cell cycle exit upon its knockdown 146. 

Scibetta and colleagues further showed that in breast cancer cells, KDM5B positively 

regulated genes involved in control of spindle checkpoint, chromatin condensation and 

G2/M checkpoint, therefore implicating it in cell cycle checkpoint regulation156.  

 

1.5.2.4 Genome stability 

KDM5B has been described as a key regulator of genome stability, since its depletion 

promoted DNA damage and sensitised osteosarcoma and breast cancer cells to 

genotoxic insult198. KDM5B was shown to be essential for the recruitment of Ku70 and 

BRCA1, to sites of DNA damage and subsequent repair of DNA double strand break 

(DSB) via non-homologous end joining (NHEJ) and homologous recombination (HR) 198. 

KDM5B demethylase activity was found to be important for its DSB repair function, since 

H3K4me3 demethylation by KDM5B triggered recruitment of BRCA1 to sites of DNA 

damage198. 

 

1.5.2.5 Interaction of KDM5B with other repressor proteins 

KDM5B interacts with the developmental transcription factors brain factor -1 (BF1) and 

paired box 9 (PAX-9), via their conserved sequence motif (Ala-X-Ala-Ala-X-Val-Pro-X4-

Val-Pro-X8-Pro) termed the VP motif in the transcription factors 199. KDM5B was found 

to act as a transcriptional co-repressor of BF-1 and PAX9 as co-expression of KDM5B 

with either transcription factors enhanced their repression activity 199. Since BF-1 is part 

of the Groucho repressive complex, the authors suggested that KDM5B may be involved 

in groucho-mediated transcriptional repression 199. Furthermore, since PAX-9 mRNA 

was found to be elevated in breast cancer, it is possible that the KDM5B-BF-1-PAX9 

interaction may be important in the development of breast cancer 186.  KDM5B also 

cooperates with the polycomb repressive complex 2 (PRC2) through the SUZ12 

component of PRC2, where it acts as a co-activator of retinoic acid (RA) signalling 200.  

An association between KDM5B and HDACs has been reported. KDM5B associates with 

HDAC4 by binding to the N-terminal half of HDAC4 which contains the myocyte enhancer 
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factor 2 (MEF2)-binding domain189. This interaction was found to be dependent on two 

PHD domains of KDM5B 189. KDM5B and HDAC4 were found to be co-expressed in the 

pregnant mouse mammary gland, as well as, in breast cancer, thus suggesting an 

important of KDM5B in these processes 189. Co-localisation of KDM5B with two catalytic 

subunits of the nucleosome remodelling and deacetylase (NuRD) complex: HDAC1 and 

chromodomain helicase DNA binding protein 4 (CHD4) has also been reported159. Since 

both subunits are important in regulating gene expression and chromatin remodelling, 

KDM5B may cooperate with HDAC1 and CHD4 in transcriptional repression. These 

interactions between KDM5B and different complexes/proteins may depend on the cell 

phenotype. 

 

1.5.3 KDM5B in Cancer 

Of the KDM5 proteins, the role of KDM5B in cancer progression is the most studied. 

Overexpression of KDM5B has been reported in various cancers including breast, 

melanoma, prostate and lung, where it has been regarded as an oncogene, as it 

appeared to be essential for the growth and survival of these cancers (reviewed by 201).  

 

1.5.3.1 Breast Cancer 

KDM5B has been most widely studied in breast cancer. Upon discovery of KDM5B as a 

gene regulated by HER2 signalling (See section 1.5), high expression of the gene was 

also reported in breast cancer tissue and cell lines 183. Knockdown of KDM5B in the MCF-

7 ER+ breast cancer cell line reduced cell proliferation, colony formation and tumour 

formation in a mouse mammary tumour model 146. It was later shown that KDM5B 

promoted estrogen dependent tumour growth of MCF-7 cells in immune suppressed 

mice188. Thus, these findings demonstrated the importance of KDM5B in the MCF-7 ER+ 

breast cancer cells. Indeed, KDM5B has been described as a ‘luminal lineage driving 

oncogene’ in breast cancer202. The authors showed that KDM5B was amplified and 

overexpressed in luminal breast cancers, and that KDM5B was enriched on promoters 

and enhancers of the luminal genes ER, GATA3, FOXA1 and TFAP2C in luminal cells 
202. Other KDM5B target genes in MCF-7 ER+ cells include BRCA1, CAV1 and 

metallothionein genes (MT1H, MT1F and MT1X), where KDM5B was shown to bind their 

promoters repressing their expression via its demethylase activity 146,156. Additionally, 

high KDM5B activity in ER+ tumours was associated with poor outcome and endocrine 

resistance 202, suggesting KDM5B as a potential therapeutic target in ER+ breast cancer.  
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In the triple negative breast cancer subtype, KDM5B expression was downregulated in 

both tumours and cell lines 159. Genome-wide gene expression analysis of MDA-MB-231 

cells, showed that KDM5B knockdown increased expression of genes involved in cell 

proliferation, migration and inflammatory response 159. Indeed, overexpression of 

KDM5B was shown to suppress migration and invasion of this cell line 159. This 

corresponds with findings showing suppression of metastasis and angiogenesis by 

KDM5B, in MDA-MB-231 cells203. Thus, in triple negative breast cancer cells KDM5B 

may have a different function which can lead to tumour inhibition.  

 

1.5.3.2 Melanoma 

A sub-population of slow-cycling melanoma cells were found to express high levels of 

KDM5B (KDM5Bhigh), which was required for their continuous growth 204. Depletion of 

KDM5B in KDM5Bhigh cells, initially accelerated tumour growth but was followed by 

exhaustion, suggesting that KDM5B confers a stem cell-like function in melanoma cells 
204. Thus, in melanoma cells, KDM5B seems to be required for the maintenance of 

continuous growth rather than initiation of tumours 204.  

 

1.5.3.3 Prostate Cancer 

Bioinformatics analysis using the Oncomine Cancer database revealed upregulation of 

KDM5B in prostate cancer, particularly in metastatic prostate cancer 205. KDM5B was 

shown to associate with and regulate the transcriptional activity of the androgen receptor 
205. Inhibiting the expression of KDM5B via binding of microRNA-29a in the 3’-

untranslated region of KDM5B, significantly reduced prostate cancer cell proliferation 

and induced apoptosis206.  

 

1.5.3.4 Other cancers 

Overexpression of KDM5B has been reported in bladder and lung cancer, where it was 

shown to promote proliferation, survival and/or invasion of these cells 207,208. In gastric 

cancer, KDM5B is upregulated and promotes cell growth and metastasis through 

activation of the AKT pathway209. Increased expression of KDM5B in hepatocellular 

carcinoma (HCC) correlated with tumour size and was associated with poor prognosis. 

Consistently, knockdown of KDM5B significantly suppressed HCC cell proliferation210. 

KDM5B knockdown in oral squamous cell carcinoma (OSCC) cells, reduced stemness, 

migration, invasion and increased radiation sensitivity 211. Similarly, silencing of KDM5B 
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in neuroblastoma cell lines downregulated Notch/Jaggged signalling, thus demonstrating 

that KDM5B promotes a stemness in these cell lines 212 

In general, it is evident that KDM5B is mostly upregulated in cancer where it acts to 

promote tumour progression. However, target gene identification analyses have also 

revealed a cell-type specific function of KDM5B, that needs to be considered when 

targeting KDM5B for cancer therapy.  

 

1.6 Genes regulated by KDM5B in the normal and malignant 
mammary gland: CAV1 

Genome-wide expression analysis performed to identify KDM5B target genes, revealed 

a number of genes that were either up- or down-regulated in  the ER+ breast cancer cell 

line, MCF-7 146,156,202. From the genes that are down-regulated by KDM5B, CAV1 is of 

particular interest in this project. Recent data from our laboratory using a mouse model 

lacking KDM5B demethylase activity, termed ΔARID, showed upregulation of CAV1 in 

the mid-pregnant mammary gland (Steven Catchpole personal communication). These 

findings suggest that KDM5B regulates CAV1 expression in the normal and malignant 

mammary gland, and so indicates that similar networks may be operative in normal and 

cancer cells. Therefore, the extent of CAV1 regulation by KDM5B needs to be studied 

further to understand its importance in normal development, as well as, in cancer. 

 

1.6.1 CAV1 

Caveolins, the main components of caveolae-enriched plasma membranes, are a protein 

family consisting of three proteins, caveolin 1, 2 and 3 213–215. Caveolin proteins organise 

and concentrate lipids (i.e. cholesterol and glycosphingolipids) 216–218 and signalling 

molecules 213 within caveolar membranes and are thought to act as scaffolding proteins. 

CAV1 is abundantly expressed in myoepithelial, endothelial, adipocytes and fibroblast 

cells 219,220 and is co-expressed with CAV2 214,221, whereas CAV3 is expressed in muscle 

cells215. CAV1 maps to chromosome 7q31.1, which is a fragile region that is frequently 

deleted in many cancers including breast cancer 222. Proteins that interact with CAV1 

such as EGFR, G protein and G-protein coupled receptors, HER2 and H-ras, bind to a 

cytoplasmic region of CAV1 that is proximal to the membrane, known as caveolin 

scaffolding domain (CSD) 213,223–225. Functionally, CAV1 is involved in controlling 

signalling, which can lead to effects on various cellular processes such as, cell growth226, 

lipid transport and signal transduction 227.  
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1.6.2 CAV1 in the normal mammary gland 

Documentation of CAV1 protein expression during mouse mammary gland development, 

showed that it  steadily declines during mid to late pregnancy remaining downregulated 

during lactation, only re-emerging during weaning and being restored to non-pregnant 

levels, at involution228.  

The JAK2/STAT5 pathway is required for alveologenesis (development of alveoli 

structures in the mammary gland) 229 and lactogenesis (milk production) 230, during 

pregnancy. Interestingly, a CAV1 knockout mouse model showed extensive proliferation 

of the mammary gland and hyperphosphorylation of STAT5a231. Therefore, CAV1 was 

characterised as a negative regulator of the Prl-R/JAK2/STA5a signalling pathway231. 

Indeed, in the ΔARID mouse, phosphorylated STAT5 was found to be downregulated 196 

and this correlated with upregulation of CAV1 (Steven Catchpole personal 

communication), in the mid-pregnant mammary gland.  

 

1.6.3 CAV1 in Breast Cancer 

In breast cancer, CAV1 expression is generally low232 in tumours that are hormone 

receptor positive (ER and PR) and express luminal cytokeratins 233. Thus, in these breast 

cancers, CAV1 may act as a tumour suppressor gene, since its overexpression in ER+ 

breast cancer cell lines, results in reduction of tumour growth234, migration and epidermal 

growth factor (EGF)-stimulated lamellipod extension235. Contrastingly, overexpression of 

CAV1 is often observed in aggressive breast cancers such as basal-like and triple 

negative breast cancers233,236. These differences in CAV1 expression in different 

subtypes of breast cancer, have been shown to be due to promoter methylation 237, 

thereby demonstrating epigenetic regulation of CAV1 expression in breast cancer. 

Nevertheless, CAV1 expression in breast cancer cells is not associated with patient 

survival238,239. However, recently CAV1 was identified as a marker for Herceptin 

resistance in HER2+ breast cancer 240,241. 

On the other hand, CAV1 expression in breast cancer stroma is associated with good 

clinical outcome. High CAV1 expression in breast cancer-associated fibroblasts, is 

associated with good clinical outcome 242. This also includes triple negative breast 

cancers, where stromal CAV1 expression predicts good overall survival238,239 and so is a 

prognostic marker238. Taken together, these findings suggest a multifaceted and cell-

type specific role of CAV1 in breast cancer.  

The studies from KDM5B KD in breast cancer cell lines such as MCF-7, indicate that 

KDM5B can normally downregulate CAV1 expression. Similarly, studies in the KDM5B 
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demethylase null mouse model also indicate that KDM5B can downregulate CAV1, in 

the normal mouse mammary gland. It will be important to know just how general the 

regulation of CAV1 by KDM5B is in different cell phenotypes, and this question will be 

addressed in this thesis in chapter 4, focusing on HER2 positive cell lines.  

 

1.7 KDM5 proteins in drug resistance 

The KDM5 proteins have been implicated in drug resistance of several cancers and are 

therefore potential therapeutic targets. During their investigations in modelling response 

to anti-cancer drugs, Sharma and colleagues observed a small subpopulation of 

reversible ‘drug tolerant’ cells that maintained viability 243. Using lung cancer cell lines, 

the authors investigated the underlying mechanisms of the reversibility of drug tolerant 

cells, and identified KDM5A as a gene that was upregulated in these cells. Indeed, 

knockdown of KDM5A in PC9 lung cancer cells significantly reduced the emergence of 

drug tolerant cells and likewise, transient expression of KDM5A in PC9 cells decreased 

sensitivity to anti-cancer drugs 243. Chronic drug exposure to a prostate cancer cell line 

also resulted in drug tolerant cells that had high expression of KDM5A 244. Amplification 

and increased expression of KDM5A in breast cancer, has also been shown to promote 

resistance to the EGFR inhibitor, erlotinib, since its knockdown significantly reduced the 

number of drug-tolerant cells170. A recent study by 245, demonstrated that expression of 

KDM5A was upregulated in gliobastoma resistant cells, and that inactivating or 

overexpressing KDM5A resulted in increased sensitivity or resistance, to the DNA 

alkylating agent temozolomide.  

Cytotoxic treatment of melanoma cells resulted in enrichment of therapy resistant cells 

that had high KDM5B expression 246. These observations were also seen in vivo, and it 

was demonstrated that knockdown of KDM5B increased sensitivity to anti-melanoma 

treatment 246. In neuroblastoma, KDM5B expression was found to correlate with 

sensitivity to chemotherapy, since cell lines with a higher KDM5B expression were more 

resistant to doxorubicin, etoposide and cisplatin 212. Indeed, KDM5B silencing led to 

increased sensitivity to cisplatin 212. KDM5D has recently been implicated in resistance 

of prostate cancer cell lines to docetaxel. RNA-seq analysis of two prostate cancer cell 

lines, identified KDM5D as a gene that mediated docetaxel sensitivity 181. Indeed, 

silencing KDM5D in a sensitive cell line led to docetaxel resistance. This corresponded 

to the observation that KDM5D was deleted in a castration resistant prostate cancer 

(CRPC) cell line, which was insensitive to docetaxel 181. The authors demonstrated that 

interaction of KDM5D with the androgen receptor was necessary for docetaxel 

sensitivity. 
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1.8 KDM5B as a target for cancer therapy 

Accumulating evidence showing dysregulated histone demethylases in human cancers, 

has led to the development of small molecule inhibitors that target the demethylase 

activity of these proteins, for anti-cancer therapy. As discussed herein, KDM5 

demethylases are upregulated in various cancers where they promote tumour growth 

and drug resistance. Thus, there have been major efforts within academia and industry 

to develop compounds targeting the demethylase activity of KDM5 proteins. To date, 

several KDM5 small molecule inhibitors have been reported however, some lack 

cytotoxicity or selectively between KDM4 and KDM5 histone demethylases114,115,247–256.  

Selective and potent KDM5 inhibitors that have been shown to prevent drug tolerance in 

various cancer cell lines include CPI-455 115, YUKA1 114, KDOAM-25 254 (Table 1.4). CPI-

455 is a pan-KDM5 inhibitor with a 200-fold selectivity for KDM5 enzymes over KDM4 

demethylases, and a >500-fold selectivity over other JmjC-containing demethylases. 

Treatment of lung, melanoma, colon and breast cancer cell lines with CPI-455 in 

combination with targeted therapies, reduced the number of drug tolerant cells 

demonstrating that the demethylase activity of KDM5 proteins is required for drug 

resistance 115. YUKA1 is a KDM5A and KDM5C inhibitor with an IC50 of 2.66µM and 

7.12µM for KDM5A and KDM5C respectively. An EGFR-mutant lung cancer cell line and 

a HER2+ breast cancer cell line treated with gefitinib and Herceptin respectively, in 

combination with YUKA1, reduced the number of drug tolerant cells 114. These findings 

also demonstrated that requirement of the demethylase activity of KDM5A/C in 

promoting drug resistance of these cell lines. KDOAM-25 is a pan-KDM5 inhibitor with 

potencies of <100nM for KDM5 enzymes, but has a higher potency for KDM5B (19nM). 

KDOAM-25 was shown to reduce cell proliferation of a multiple myeloma cell line 254. The 

authors did not investigate the effect of this inhibitor on drug tolerance. Recently, a 

potent, selective and orally bioavailable KDM5 inhibitor, that showed high potency for 

KDM5B (IC50 4.7nM) and KDM5C (IC50 65.5nM) in vivo, was developed247. This 

compound known as 48, can now be used to study KDM5 functions in vivo.  

Since KDM5 demethylases have been shown to downregulate tumour suppressor genes 

via their demethylase activity, the use of demethylase inhibitors can be viewed as a 

means of suppressing tumour growth 152. This therefore requires a comprehensive 

analysis of target genes for specific KDM5 enzymes. However, since member specific 

KDM5 demethylase inhibitors are currently unavailable, gene editing techniques such as 

CRISPR, can be used to identify genes regulated by individual KDM5 demethylases, and 

to further study their function in cancer cell lines 152.  
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Table 1.4: Small molecule inhibitors targeting KDM5 histone demethylases 

Inhibitor Specificity Effects 

CPI-455 115 Selectively inhibits demethylase 
activity of the four KDM5 proteins 

Prevents drug tolerance in 
multiple cancer cell line 
models including breast and 
lung 

YUKA1  
114 

Selectively inhibits demethylase 
activity of KDM5A and KDM5C 
proteins 

Prevents drug tolerance in 
breast and lung cancer cell 
lines 

KDOAM-25 
254 

Selectively inhibits demethylase 
activity of KDM5B with a higher 
potency, than KDM5A and KDM5C 
proteins 

Inhibits cell growth of the 
MM1S multiple myeloma cell 
line 

48 
(Liang et al. 2016) 

Potent inhibitor to KDM5B and 
KDM5C 

Oral dosage given twice a day 
in mice shows unbound 
maximal plasma concentration 
(Cmax) >15-fold over its cell 
EC50 

 

1.9 Gene editing technologies in drug target validation  

According to data analysis from pharmaceutical companies, a major factor contributing 

to the failure of drug candidates at the late stages of clinical development, is lack of 

efficacy attributed to erroneous hypotheses about the linkage of the drug target to 

disease257.  Thus, the need to better understand the role of drug targets in disease 

biology is important, to ensure success during drug development. Genome editing 

technology has currently gained momentum as one of the methods to study gene 

function in human disease, since it allows precise modification of genes257.  

Genome editing using customized nucleases provides a system through which targeted 

deletions, insertions or specific sequence changes can be induced in organisms and cell 

types 258. The first step in genome editing is the creation of a DNA DSB at a desired 

genomic locus, followed by repair of the DSB via homology directed repair (HDR) or 

NHEJ 258. HDR is used for precise genome editing, where a DNA fragment with a 

complementary sequence to the target site is used to repair DSBs via homologous 

recombination 259. This DNA fragment can harbour any alteration, therefore allowing 

integration of any desired DNA sequence at the target site 259. NHEJ is an error-prone 

repair mechanism which introduces insertions or deletions (indels) of varying lengths 

which can cause frameshifts, altering the gene product and abolishing gene function 259. 

A number of genome editing tools such as zinc-finger nucleases (ZFN), transcription 

activator-like effector nucleases (TALENs) have been used extensively over the years 

however, they have remained a niche technology. ZFNs and TALENs utilise the same 

principle: fusion of a sequence-specific DNA binding domain to the nuclease domain of 

Fok1 restriction enzyme 258,259. Contrastingly, the recently developed clustered, regularly 
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interspaced, short palindromic repeat-CRISPR associated (CRISPR-Cas), has resulted 

in widespread adoption of nuclease based genome editing, owing to its simplicity, high-

throughput capabilities  and ability to target multiple genomic sites 259. CRISPR-Cas is 

an RNA-guided system, that utilises Watson-Crick base pairing between an engineered 

RNA and the target DNA sequence 258,260. CRISPR-Cas is a prokaryotic adaptive immune 

system that has been manipulated for genome editing. This technique has been 

simplified to consist of a single guide RNA (sgRNA) and a Cas9 endonuclease. The 

sgRNA directs the Cas9 endonuclease to induce DNA DSBs at homologous sites, which 

are then repaired via NHEJ or HDR leading to introduction of insertions or deletions 

(indels) or precise gene editing, respectively (Fig 1.7).  

 

 

Figure 1.7: CRISPR-Cas9 technology. A single gRNA (sgRNA) guides the Cas9 nuclease to a 
target site with a complementary DNA sequence. Cas9 then cleaves the DNA inducing a double 
strand break (DSB). The DSB is repaired via non-homologous end joining (NHEJ) leading to 
introduction of mutations, insertions or deletions. Repair can also occur through homology 
directed repair (HDR) when a short DNA sequence that is complementary to the target site is 
inserted, thus allowing precise gene editing 259.  

 

1.9.1 CRISPR-Cas9 for drug target validation 

Advances in DNA sequencing technologies have provided insight into the genetic 

variation among patients in human disease, thus enabling improvement in treatment 

strategies 261.  These advances have therefore driven the need for personalised or 

precision medicine, where a patient’s information is combined with their genetic data, to 

inform on individual treatment regimens 261. However, hypotheses generated from these 

studies require testing using specific genetic models. CRISPR-Cas technology has 

enabled the study of gene function in disease relevant cell types, through development 

Cas9 induces DNA DSB

NHEJ creates random mutations HDR inserts desired target sequence leading 
to precise gene editing

gRNA guides 
Cas9 to target 
sequence

DNA sequence complementary 
to target site

DNA DSB repair

NHEJ HDR
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of cell line and animal models 262. These models have been used to evaluate drug targets 

and model drug resistance. CRISPR-Cas has also been simplified for use in genome-

wide screens. CRISPR screens study phenotypes produced upon gene knockout, with 

the aim of identifying genes involved in metabolic or pathogenetic processes 261. CRISPR 

screens have been used to identify candidate drug targets in cancer and human 

pathogens 261. Thus, the adoption of CRISPR-Cas technology in cancer research for 

example, should enable acceleration of drug discovery and development of more 

effective cancer therapies 262.  
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1.10 	Overview of PhD project 
	

1.10.1 Rationale 

Breast cancer is the most common cancer in women in the UK, and high incidence rates 

have been reported worldwide. Recent advances in treatment strategies owing to 

improved molecular characterisation of breast cancer, as well as, early detection of the 

disease, has increased survival rates of breast cancer patients. However, breast cancer 

still remains the second most common cause of cancer death in women, in the UK. One 

of the major factors contributing to the high mortality rate is resistance (de novo or 

acquired) to administered treatments.  

A role for epigenetics in contributing to drug resistance, stems from observing 

development of drug tolerance and the reversibility of this tolerance by epigenetic 

manipulation. The reversible nature of drug tolerance by epigenetic factors has led to the 

development of epigenetic-based therapies, some of which (e.g. histone deacetylase 

inhibitors) have been approved for cancer treatment. However, targeting the epigenome, 

can be challenging due to the wide involvement of epigenetic factors in biological 

processes 263. Recent technological advances such as gene editing, may allow further 

characterisation of these genes in specific cell-types thus, fine-tuning their function. Such 

insights will allow better drug design, thereby enabling further exploration of the utility of 

epigenetic drugs, as well as, investigating their potential in improving the effects of 

current drugs 263.  

KDM5B is a histone demethylase that is overexpressed in a majority of breast cancers, 

particularly those belonging to the ER+ and HER2+ molecular subtypes 202. KDM5B is 

considered a promising target for a number of reasons. First, KDM5B is overexpressed 

in many malignancies. Second, KDM5B promotes drug resistance in a number of 

cancers, by maintaining the growth of a sub-population of cancer cells, that serve to 

initiate therapeutic relapse. Third, since KDM5B regulates expression of genes involved 

in biological processes such as, cell cycle, DNA repair and development, its aberrant 

expression can result in dysregulation of these processes and eventually disease 

development or progression.  

Based on the above, KDM5B is a possible target for anti-cancer therapy. Although there 

have been advances towards development of small molecule inhibitors targeting 

KDM5B, these inhibitors lack specificity since they also target other members of the 

KDM5 family114,115,247,254. Thus, understanding the function of KDM5B in normal and 

cancer cells, could provide to the knowledge required to develop specific KDM5B 

inhibitors, since multiple enzymes can demethylate the H3K4me2/me3 marks, thereby 

regulating various networks 152.  
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1.10.2 Hypothesis 

The aim of this project was to further investigate the role of KDM5B in the normal and 

malignant mammary gland. KDM5B has been widely studied in ER+ breast cancer, with 

a few studies being done in triple negative breast cancer cells. However, the function of 

KDM5B in HER2+ breast cancer cells, has not been widely investigated. Furthermore, 

although KDM5B has been shown to promote resistance to anti-cancer drugs in various 

malignancies, its involvement in breast cancer drug resistance, particularly in HER2 

targeted therapy, has not yet been demonstrated.   

KDM5B has been shown to downregulate CAV1 in the normal mammary gland at mid 

pregnancy and in ER+ breast cancers. Thus, suggesting similar networks are operative 

in development of the normal gland and in breast cancer. However, it is not clear how 

widespread the downregulation of CAV1 by KDM5B is seen in different breast cancer 

cell lines, nor is it clear, which cell types in the developing mammary gland (luminal, 

myoepithelial and fat cells), could be responsible for the downregulation of CAV1 by 

KDM5B. Given the above, this PhD project was directed towards testing the following 

hypotheses: 

1. Since KDM5B can enhance signalling by the ERα and HER2 receptors operative 

in some cancer cells, knockout of KDM5B will reduce cell growth, increase 

efficacy of therapeutic targeting of the HER2 receptor and impede development 

of drug resistance. 

 

2. Since KDM5B can downregulate expression of CAV1, which when expressed in 

stromal tissue is inhibitory to breast cancer growth, they may be expressed in the 

same cell types and their expression could be inversely correlated. Thus, 

targeting KDM5B could restore levels of CAV1, therefore inhibiting other 

signalling pathways regulated by paracrine signalling.  
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1.10.3 Aims  
	

The specific aims of this thesis were to: 

1) Develop KDM5B KOs in two HER2+ breast cancer cell lines using CRISPR-Cas9 

technology 

 

2) Investigate the molecular effect of KDM5B KO by performing transcriptomic analysis, 

in a HER2+ breast cancer cell line 

 

3) Investigate phenotypic effects of KDM5B KO on cell growth and drug resistance, in 

two HER2+ breast cancer cell lines 

 

4) Investigate KDM5B regulation of CAV1 by examining their expression levels in a) 

parental and KDM5B KO HER2+ breast cancer cells and b) normal and breast 

cancer-associated fibroblast cells. Furthermore, the cellular localisation of KDM5B 

and CAV1 will be examined in the mouse mammary gland, to decipher the cell types 

responsible for CAV1 downregulation by KDM5B.  
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2 : Materials and Methods 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 59	

2.1 Cell culture and conditions 
	

2.1.1 Cell culture Reagents  
	

Table 2.1: Cell culture reagents 

Reagent Supplier 
Trypsin (2.5%), no phenol red Life Technologies 

Trypan blue solution 0.4% Sigma-Aldrich 

Penicillin-Streptomycin/Glutamine 100X Life Technologies 

Insulin solution human Sigma-Aldrich 

Fetal Bovine Serum (FBS) Life Technologies 

Dulbecco’s Modified Eagle’s Medium (DMEM) VWR International 
Roswell Park Memorial Institute 1640 (RPMI) VWR International 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 

Trastuzumab (Herceptin) Kindly provided by the Breast 
Clinic at Guy’s Hospital, London 

Lapatinib Selleckchem 

 

 

2.1.2 Cell culture media 
 

Table 2.2 Cell culture media 

Media Reagents Concentration 
DMEM (500ml) FBS 10% (v/v) 

Penicillin-Streptomycin/Glutamine 1% (v/v) 

RPMI (500ml) FBS 10% (v/v) 

Penicillin-Streptomycin/Glutamine 1% (v/v) 

Insulin 10µg/mL 

DMEM 
Conditioned 
media 

Fresh complete media 
Conditioned media                                    
Penicillin- Streptomycin/Glutamine 

70% 
30% 
1% 

RPMI 
Conditioned 
media 

Fresh complete media 
Conditioned media                                    
Penicillin- Streptomycin/Glutamine 
Insulin 

70% 
30% 
1% 
10µg/mL 

 

 

2.1.3 Cell culture maintenance 

The breast cancer cell lines BT- 474, HCC1143 and T47D were maintained in RPMI 

medium. MCF-7, MDA-MB-231 and SKBr3 cell lines were maintained in DMEM medium. 

BT-474 and SKBr3 Herceptin resistant cells were maintained using the same medium 

as the parental cells, with further addition of 40µg/ml Herceptin. BT-474 and SKBr3 
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KDM5B knockout cell lines were maintained using the same conditions as the parental 

cells. The normal breast fibroblast line, HMFU19 and the breast cancer-associated 

fibroblast lines, LS11-045 and LS11-088 were maintained in DMEM medium. All cells 

were incubated at 37°C with 5% CO2. The characteristics of these cell lines are shown 

in Table 2.3 264. All cell lines were authenticated using short-tandem repeat (STR) 

profiling. To maintain the cells’ authenticity a master cell bank was created. Cells were 

kept in culture for no more than 10 weeks and were regularly checked for mycoplasma 

contamination using the MycoAlert Mycoplasma Detection Kit (Lonza).  

 

Table 2.3: Description of cell lines.   

Name Immunoprofile Subtype Source 

BT-474 ER+/ PR+/-/HER2+ Luminal B CRUK Cell  
Service laboratory 

HCC1143 ER-/HER2-/PR- Basal  ATCC 

MCF-7 ER+/PR+/-/HER2- Luminal A ATCC 

MDA-MB-231 ER-/HER2-/PR- Basal ATCC 

SKBr3 ER-/PR-/HER2+ HER2+ Memorial Sloan  
Kettering Cancer Centre 

T47D ER+/PR+/-/HER2- Luminal A Kindly provided by the Keydar group 

BT-474  
Herceptin  
resistant  

ER+/ PR+/-/HER2+ Luminal B Kindly provided by Professor 
Anthony Kong, University of Oxford, 
UK 

SKBr3  
Herceptin  
resistant  

ER-/PR-/HER2+ HER2+ Kindly provided by Professor 
Anthony Kong, University of Oxford, 
UK 

HMFU19  
Normal breast 
fibroblast line 

  Kindly provided by Professor Valerie 
Speirs, University of Leeds, UK 

LS11-045 and 
LS11-088 
breast cancer-
associated 
fibroblast lines 

  Kindly provided by Professor Valerie 
Speirs, University of Leeds, UK 
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2.2 CRISPR-Cas9 Gene Editing 
	

2.2.1 Reagents 
	

  Table 2.4: Reagents used for CRISPR gene editing 

 

 

2.2.2 Plasmids  
  

    Table 2.5: Plasmids used for CRISPR gene editing  

 

 

 

Figure 2.1: U6-gRNA PX458 plasmid map. KDM5B gRNAs were inserted into the BbsI site. U6 
promoter is shown as a black arrow head. The gRNA scaffold (blue rectangle) is a sequence 
required for Cas9 binding. 	

gRNA	scaffoldU6

U6-gRNA	(PX458)
4,420	bp

BbsI

Reagent  Supplier 

T4 ligase buffer Thermo Fisher Scientific 

T4 DNA ligase Thermo Fisher Scientific 

Fast digestion buffer New England Biolabs 

BbsI New England Biolabs 

SOC media Thermo Fisher Scientific 

Ammonium buffer Amplicon 

MgCl2 Amplicon 

dNTP mix Amplicon 

TEMPase Hot Start DNA polymerase Amplicon 

Plasmid Name Source 

U6-gRNA PX458 Asst. Prof. Eric Bennett, Copenhagen 
Centre for Glycomics, University of 
Copenhagen 

Cas9-2A-GFP pBKS Asst. Prof. Eric Bennett, Copenhagen 
Centre for Glycomics, University of 
Copenhagen 
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Figure 2.2: Cas9-2AGFP pBKS plasmid map. Plasmid map showing features of the Cas9-
2AGFP pBKS plasmid. Cas9 endonuclease is driven by the chicken beta actin (cba) promoter. 
The Green fluorescent protein (GFP) reporter gene was used to allow isolation of transfected 
cells. The 2A peptide sequence (2A) allows simultaneous expression of Cas9 and GFP genes.  

	

2.2.3 KDM5B PCR primers 
	

  Table 2.6: KDM5B Primers to Exons 1, 4, 5 and 6 

For – Forward; Rev – Reverse. The forward primer has a FAMF target sequence extension 
(red). 

 

2.2.4 Design of candidate KDM5B gRNAs 

gRNAs targeting four exons of KDM5B were selected (Table 2.7) using a Cas9/gRNA 

target prediction tool (https://chopchop.rc.fas.harvard.edu/).	 Chopchop ranks gRNA 

sequences according to specific parameters including 1) number of off-targets and 

mismatches 2) GC content (gRNAs are most effective when they have a GC content of 

between 40-70%) and 3) location of gRNA within the gene (5’ (best) and 3’ (worst)). 

KDM5B gRNAs were tested for their cutting efficiency, and a suitable guide was chosen 

to develop KDM5B KO cell lines.  

 

 

 

 

Cas9 GFP2A
Cba

Cas9-2A-GFP	 (pBKS)
8,984	bp

Target Primer Sequence 

6-FAM 5’-labelled 
(FamF)  

5’-GAGCTGACCGGCAGCAAAATTG-3’ 

KDM5B Exon 1 For: 5’-GAGCTGACCGGCAGCAAAATTGGTACAACTCGGACTTGCTGTTGCTC-3’ 
Rev: 5’-CTCAACTCCGACCTTCTAGGC-3’ 

KDM5B Exon 4 For: 5’-GAGCTGACCGGCAGCAAAATTGCAGAAGAAGGTGGATTTGCAGTTGT-3’ 
Rev: 5’-CAAGGTCTTCCAAACACAATCAAGG-3’ 

KDM5B Exon 5 For: 5’-GAGCTGACCGGCAGCAAAATTGGTGCAGCCTCTGGAAGTAGATCAAA-
3’ 
Rev: 5’-ACATGAGAGAAATCCAGTGCCAGAC-3’ 

KDM5B Exon 6 For: 5’-GAGCTGACCGGCAGCAAAATTGAAGGCCATGAATATTAAAATAGAAC-3’ 
Rev: 5’-CAAAGCCCAACCCAGTGACTACT-3’ 
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Table 2.7: KDM5B gRNA target sequences with corresponding target exon. 

KDMB gRNA sequence Targeted Exon 

CGGCCCATAGCCGAGCAGACTGG 1 

GTTTGCTCCTGGCAAAGCAGTGG 4 

CCCAGAGGCAGTCTGTGCAGCCT 5 

TCATAATCTGAGACGTCGAATGG 6 

PAM sequence is highlighted in red. 

 

2.2.5 Generation of KDM5B gRNA expression plasmid 

For each gRNA targeting one of the four exons of KDM5B, a 25-base pair (bp) sequence 

was synthesised as two complementary oligonucleotides (Table 2.8). The 

oligonucleotides were annealed and inserted into the U6-gRNA plasmid (Fig 2.1) which 

was cut with BbsI, to generate single KDM5B gRNA expression constructs, as described 

below. 

Table 2.8: KDM5B gRNA oligonucleotide sequences 

KDM5B Targeted Exon Sequence 

1 For: 5’-CACCGCGGCCCATAGCCGAGCAGAC-3’ 

Rev: 5’-AAACGTCTGCTCGGCTATGGGCCGC-3’ 

4 For: 5’-CACCGGTTTGCTCCTGGCAAAGCAG-3’ 

Rev: 5’-AAACCTGCTTTGCCAGGAGCAAACC-3’ 

5 For: 5’-CACCGAGGCTGCACAGACTGCCTCT-3’ 

Rev: 5’-AAACAGAGGCAGTCTGTGCAGCCTC-3’ 

6 For: 5’-CACCGTCATAATCTGAGACGTCGAA-3’ 

Rev: 5’-AAACTTCGACGTCTCAGATTATGAC-3’ 

For – Forward    Rev – Reverse. The selected guide RNA sequences are underlined.  

 

2.2.5.1 Oligonucleotide annealing 

Forward and reverse oligonucleotide (oligo) gRNA sequences targeting exons 1, 4, 5 or 

6 of KDM5B (Table 2.8), were first annealed together to form a double stranded DNA 

molecule. Oligonucleotides were mixed with the appropriate buffer (Table 2.9) and 

annealed in a thermocycler using the following conditions: 95°C for 5 minutes followed 

by a ramp down to 25°C at 5°C/minute.  
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Table 2.9: Components of oligo annealing reaction 

Reagent  Final Concentration Volume 

100µM Oligonucleotide (Forward) 10µM 1µl 

100µM Oligonucleotide (Reverse) 10µM 1µl 

10X T4 ligase buffer 1X 1µl 

ddH2O Make up to 10µl 7µl 
 

 

2.2.5.2 Digestion of U6-gRNA expression plasmid 

The U6-gRNA plasmid was digested with the BbsI restriction enzyme (Table 2.10) and 

incubated for 1 hour at 37°C.  

 Table 2.10: Components of U6-gRNA expression plasmid digest 

 

 

2.2.5.3 Ligation of annealed oligonucleotides with the U6-gRNA plasmid 

The annealed KDM5B gRNA oligonucleotides were mixed directly with the digested U6-

gRNA plasmid in a ligation reaction (Table 2.11) and incubated at 16°C overnight. This 

allowed insertion of the KDM5B gRNA oligonucleotides into the BbsI site of the U6-gRNA 

plasmid (Fig 2.1).  

 Table 2.11: Components of ligation reaction  

 

 

 

Reagent  Final Concentration Volume 

10X Fast digestion buffer 1X 0.8 µl 

U6-gRNA plasmid 300ng 6.7 µl 

10U BbsI 0.625U 0.5 µl 

Reagent  Final Concentration Volume 

10µM Annealed oligonucleotides 50nM 0.5µl 

BbsI digested U6-gRNA plasmid 300ng 8 µl 

10X T4 ligase buffer 1X 1 µl 

5U/µl T4 DNA ligase 0.3U 0.6µl 
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2.2.5.4 Transformation of competent cells 

15µl of Top 10 chemically competent E. coli cells (Thermo Fisher Scientific) were 

transformed with 1µl of the ligation mixture. Reaction was incubated on ice for 30 

minutes, followed by heat shock at 42°C for 60 seconds and immediate incubation on 

ice for 2 minutes. 90µl of super optimal broth with catabolite repression (SOC) media 

(Thermo Fisher Scientific) was added and cells incubated at 37°C for 30 minutes with 

shaking. Thereafter, cells were spread on Lysogeny broth (LB) agar plates containing 

ampicillin and incubated at 37°C overnight, to allow for the growth of antibiotic-resistant 

clones.  

 

2.2.6 Hot PCR Screen   

To check whether the gRNAs had been inserted correctly in the U6-gRNA plasmid, a few 

colonies were picked and lysed in 5µl of 0.5µM sodium hydroxide (NaOH) for 2 minutes, 

neutralised with 10µl of 1M Tris pH 8.0 and diluted in 100µl H2O. 1µl of the lysed cells 

was used in a 12.5µl PCR reaction utilising primers outlined in Table 2.6. 1µl of 10ng/µl 

positive (correct vector – B4GALT7; provided by Asst. Prof. Eric Benett) and negative 

(empty vector - PX458) controls were also included in the PCR reaction (Table 2.12) 

using thermocycling conditions shown in Table 2.13.  

Positive colonies containing the correct sized inserts, were identified by fragment 

analysis using the ABI3010 DNA Analyzer (ABI/Life Technologies) according to 

manufacturer’s instructions. 1µl PCR product was mixed with 0.3µl of GeneScan-LIZ600 

standard (ABI/Life Technologies) and 10µl Hi-Di Formamide (Thermo Fisher Scientific), 

incubated at 90°C for 2 minutes then subjected to fragment analysis. Analysis of raw 

data was performed on the Peak Scanner Software (ABI/Life Technologies). Positive 

colonies with correct sized inserts were purified using the Qiagen Miniprep Kit according 

to manufacturer’s instructions and DNA concentration was measured using the 

NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific). Positive colonies were 

also validated by Sanger sequencing, which confirmed correct orientation of inserts. For 

this purpose, 5µl DNA (100ng/µl stock) and 5µl forward primer (5µM stock) were mixed 

and sent for sequencing (BGI Europe, Denmark).  
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Table 2.12: Tri-primer PCR Reaction 

  

Table 2.13: Tri-primer PCR thermocycling conditions 

*Touchdown 72°C to 1°C per cycle 

 

2.2.7 Screening of KDM5B gRNAs 
	

2.2.7.1 Transfection and fluorescence-activated cell sorting (FACS)  

To examine the cutting efficiency of the KDM5B gRNAs, positive gRNA sequences 

prepared by Miniprep were co-transfected with the Cas9-2AGFP pBKS plasmid (Fig 2.2), 

into SKBr3 cells. Plasmid DNA was delivered into the cells by nucleofection using 

AMAXA solution kit C (Lonza), and program E-09 on the AMAXA Cell Nucleofector 2b 

device. 1x106 cells were harvested and nucleofected with 2µg U6-KDM5B gRNA and 

2µg Cas9-2AGFP plasmid DNA. Cells were incubated for 72 hours at 37°C with 5% CO2 

and thereafter subjected to FACS analysis to identify cells with high GFP expression 

(intensity between >104) (Chapter 3 Section 3.2.4). 1x104 parental and bulk sorted 

PCR component Volume (µl) Final concentration 

10x Ammonium buffer 1.25 1x 

MgCl2 (25mM) 0.7 2.5mM 

dNTP (25mM) 0.1 200µM 

TEMPase Hot Start DNA 

Polymerase 

0.12 0.5 

FamF primer (25µM) 0.125 0.25µM 

Forward primer (2.5µM) 0.125 0.025µM 

Reverse primer (25µM) 0.125 0.25µM 

H2O  8.955  

Template  1  

Temperature Time  Number of cycles 

95°C 15 minutes  

95°C 30 seconds X15 

72°C 30 seconds 

72°C* 30 seconds 

95°C 30 seconds X25 

58°C 30 seconds 

72°C 30 seconds 

72°C 7 minutes  

4°C Forever  
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KDM5B KO cells were subjected to DNA extraction using the Quick Extract DNA solution 

kit (Epicentre) according to manufacturer’s instructions. The cells were centrifuged for 5 

minutes at 200 x g and supernatant discarded. Cell pellet was re-suspended in 30µl 

Quick Extract DNA solution and cells incubated at 72°C for 20 min then 90°C for 10 min. 

DNA was amplified by PCR as described below.  

 

2.2.7.2 Identification of indels using Indel detection by amplicon 
analysis (IDAA)  

For the identification of gRNAs that generated indels with Cas9, indel detection by 

amplicon analysis (IDAA) was used. This techniques was recently developed by265,266 

(Fig 2.3). Tri-primer amplification was used to fluorescently label amplicons through the 

use of a universal 6-FAM 5’-labelled primer (FamF), whose sequence was 

complementary to the 5’ overhang sequence of the forward primer and, the forward (F) 

and reverse (R) primers that flanked the gene editing target site. The assay primers are 

shown on Table 2.6. A PCR tri-primer ratio of 10:1:10 (FamF:F:R) was previously 

suggested as the ratio that produces optimal amplicon yields265. PCR was performed on 

the extracted DNA in a 12.5µl reaction using the recipe shown on Table 2.12 and a 

touchdown thermocycling profile as shown on Table 2.13. Thereafter, 1µl of the PCR 

reaction was mixed with 0.3µl of GeneScan-LIZ600 standard (ABI/Life Technologies) 

and 10µl Hi-Di Formamide (Thermo Fisher Scientific), incubated at 90°C for 2 minutes 

then subjected to fragment analysis on the 3730xl DNA Analyzer (ABI/Life Technologies) 

according to manufacturer’s instructions. Analysis of raw data was performed on the 

Peak Scanner Software (ABI/Life Technologies).  

 

2.2.8 Development of KDM5B knockout cells 
	

2.2.8.1 Selection of KDM5B gRNA 

The gRNA targeting KDM5B exon 4, was the only gRNA that produced edited cells 

(Chapter 3 section 3.2.4.2), and so was used to develop KDM5B knockout (KO) cells 

in BT-474 and SKBr3 cell lines.  

 

2.2.8.2  Transfection, FACS and cell cloning 

To generate KDM5B KO cells, cells were co-transfected with the U6-gRNA expression 

plasmid targeting KDM5B exon 4 and the Cas9-2AGFP pBKS plasmid, as described in 
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Section 2.2.7.1. 72 hours post transfection, cells with a GFP intensity of between 103-

104 were isolated by FACS (Chapter 3 Section 3.2.5.1) and either 3 cells per well or 10 

cells per well were seeded into 96 well plates. Cells were maintained with the appropriate 

media conditioned on WT cells (RPMI for BT-474 cells and DMEM for SKBr3 cells; Table 
2.2) at 37°C and 5% CO2. Only wells with single colonies were selected and expanded 

into 24 well plates and thereafter subjected to IDAA analysis to identify KDM5B KO 

clones.  

 

2.2.8.3 IDAA screening of KDM5B edited clones 

DNA from single colonies growing in 24 well plates was extracted using the Quick Extract 

DNA solution as described in Section 2.2.7.1. DNA was PCR amplified and PCR 

products were subjected to IDAA as described in Section 2.2.7.2. A total of 17 BT-474 

and 29 SKBr3 KDM5B edited clones were screened by IDAA (Chapter 3 Section 
3.2.5.2). Selected KDM5B KO clones were further validated by Sanger sequencing, 

western blot and RT-qPCR as described in the sections below.  

 

 

Figure 2.3: Schematic representation of the IDAA technique. (a) Precise gene editing creates 
DSBs that are repaired by NHEJ, thus introducing indels at the target site. (b) Amplification occurs 
through tri-primer PCR, using primers flanking the target region (Forward (F)/Reverse (R)) and a 
universal 5’-FAM labelled primer (FAMF) that is complementary to the 5’ overhang sequence 
attached to the forward primer. This results in fluorescently labelled amplicons. (c) Fragment 
analysis detects indels produced in fluorescently labelled amplicons. Y axis represents 
fluorescent intensity (FI) and X axis represents amplicon size in base pairs (bp).  
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2.2.9 Sanger sequencing of KDM5B KO clones 
	

2.2.9.1 Purification of PCR Product  

PCR products of KDM5B KO clones generated in Section 2.2.8.3, were purified using 

the ExoSAP-ITä PCR product cleanup reagent (Thermo Fisher Scientific), according to 

manufacturer’s instructions. 5µl PCR product was mixed with 2µl ExoSAP-ITä reagent 

and incubated at 37°C for 15 minutes, to degrade any remaining primers and 

nucleotides. The reaction was then incubated at 80°C for 15 minutes to inactivate the 

ExoSAP-ITä reagent. Purified PCR products were subjected to Sanger sequencing or 

stored at -20°C for later analysis.  

 

2.2.9.2 Sanger Sequencing 

DNA sequencing of KDM5B KO clones was performed using the BigDye terminator v3.1 

Cycle Sequencing kit (Thermo Fisher Scientific) with either the forward or reverse primer 

targeting KDM5B Exon 4 (Table 2.6). The sequencing reaction was set up in a 96 well 

plate as shown in Table 2.14.  

 

Table 2.14: Sequencing reaction components 

 

 

 

The plate was sealed, vortexed for 5 seconds and spun briefly for 30 seconds at 300 x 

g, to collect contents. The sequencing reaction was then run in a thermal cycler with 

conditions outlined on Table 2.15. The sequencing reaction was then purified by 

ethanol/sodium acetate (NaOAc) precipitation. 26µl of precipitation solution (50ml 100% 

ethanol and 2ml 3M NaOAc) was added to the sequencing reaction, vortexed gently for 

2-3 seconds and incubated for 10 minutes at room temperature. The plate was sealed 

and centrifuged at 600 x g for 10 minutes. The plate was then centrifuged uncovered, 

upside down, at 13 x g for 5 seconds and air-dried upright and protected from light for 

10-15 minutes at room temperature or stored at -20°C. Dried samples were re-

suspended in 10µl Hi-Di Formamide (Thermo Fisher Scientific) and incubated at 90°C 

for 2 minutes. Plate was run on the ABI3730xl DNA analyzer (ABI/Life Technologies), in 

the NIHR BRC Genomics Laboratory at Guy’s Hospital, London. Sanger sequencing 

Reagent Amount (µL) 
Sequencing buffer 1.25 
BigDye 3.1 0.25 
F or R primer 0.25-0.50  
ExoSAP-cleaned PCR product 3.5 
Total 5.25-5.5  
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analysis was performed on the CodonCode Aligner software.  Sequences of KDM5B KO 

clones were determined by the assistance of Dr Zhang Yang, Copenhagen Centre for 

Glycomics, University of Copenhagen.  

 

Table 2.15: Sequencing reaction conditions 

 

	

 

 

2.3 Copy number and Gene expression analysis of breast 
tumours 

The two largest publicly available breast cancer datasets with both genomic and 

transcriptomic data namely, Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) were used. 

METABRIC contains genomic and transcriptomic information for 2509 breast tumours 

whereas, TCGA information data for 825 breast tumours. These data were downloaded 

from the cBioportal platform. Plots were generated on GraphPad Prism® 7 software.  

 

 

 

 

 

 

 

 

 

 

 

Time Temperature 

30 seconds 96°C 
15 seconds 50°C 
60 seconds 60°C  
Hold 4°C 

X 30 cycles 
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2.4 Protein Analysis 
	

2.4.1 Whole cell lysate extraction of proteins 

Confluent T75cm2 flask was trypsinised and cell pellet collected by centrifugation at 200 

x g for 5 minutes. The cell pellet was re-suspended in appropriate media, counted and 

1x106 cells transferred to a 1.5ml Eppendorf tube. Cells were centrifuged at 200 x g for 

5 minutes to collect the cell pellet, which was subsequently lysed in 100µl 1X Laemmli 

sample buffer (0.01% (w/v) bromophenol blue, 2% SDS, 60mM Tris-HCl pH 6.8, 10% 

(w/v) glycerol) containing 5% β-mercaptoethanol. Protein lysates were heated at 95°C 

for 3 minutes and passed through a 25-gauge needle to shear the DNA. Protein lysates 

were either stored at -20°C for later analysis or subjected immediately to sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot, as described 

below.  

 

2.4.2 Histone protein extraction 

Confluent T75cm2 flask was trypsinised and cell pellet collected by centrifugation at 200 

x g for 5 minutes. The cell pellet was re-suspended in appropriate media, counted and 

2x106 cells transferred to a 1.5ml Eppendorf tube. Histone proteins were then extracted 

according to the Abcam histone extraction protocol 

http://www.abcam.com/ps/pdf/protocols/histone%20extraction%20protocol.pdf. The cell 

pellet was washed twice in ice-cold PBS by centrifugation at 200 x g for 5 minutes. Cells 

were re-suspended in 200µl Triton Extraction buffer (TEB) (PBS containing: 0.5% Triton 

X-100, 2mM phenylmethylsulfonyl fluoride (PMSF), 0.02% Sodium Azide (NaN3)) and 

lysed on ice for 10 minutes with gentle mixing. Following lysis, cells were centrifuged at 

200 x g for 10 minutes at 4°C and supernatant discarded. Cells were washed in 100µl 

TEB and centrifuged at 200 x g for 10 minutes at 4°C. Pellet was re-suspended in 50µl 

0.2M hydrochloric acid (HCl) and incubated at 4°C overnight, with gentle rotation to acid 

extract histones. The following day, samples were centrifuged at 200 x g for 10 minutes 

at 4°C and supernatant was transferred to a fresh 1.5ml Eppendorf tube. Concentration 

of histone protein lysate was determined using the Nanodrop One spectrophotometer 

(ThermoFisher Scientific) on the Protein A280 setting. Histone lysates were stored at -

20°C for later analysis or subjected immediately to SDS-PAGE and western blot, as 

described below. 
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2.4.3 SDS-PAGE Gel and Western blot 

10µl of protein lysate was separated on either a 7.5% or 12.5% SDS-PAGE gel according 

to their molecular weight using SDS-PAGE running buffer. 5µg of histone protein lysate 

was separated on a 15% SDS-PAGE gel. Samples were run on the Mini-PROTEAN 

Tetra Cell system (Bio-Rad) at 150V for approximately 60-75 minutes. 

Proteins were transferred onto an Amersham Protran 0.45µm nitrocellulose membrane 

(GE Healthcare Life Sciences) using the Mini-transfer blot system (Biorad) in 1X Transfer 

buffer at 30V, overnight at 4°C. Alternatively, proteins were transferred using the 

TransBlotÒ Turboä Transfer System (Bio-Rad) for 30 minutes. Membranes were 

incubated in blocking buffer (5% non-fat milk powder, 0.1% Tween-20 in TBS or 5% 

bovine serum albumin (BSA), 0.1% Tween-20 in tris-buffered saline (TBS)) for 1 hour at 

room temperature, with gentle shaking. Blots were incubated in appropriate primary 

antibodies (Table 2.16) diluted in binding buffer (1% non-fat milk powder, 0.1% Tween-

20 in TBS or 1% BSA, 0.1% Tween-20 in TBS). Following primary antibody incubation, 

membranes were washed three times in 0.1% Tween-20 in TBS at room temperature, 

for 10 minutes per wash. Membranes were then incubated with appropriate secondary 

antibody diluted in binding buffer (Table 2.17) for 1 hour at room temperature, with gentle 

shaking. Membranes were washed three times in 0.1% Tween-20 in TBS at room 

temperature, for 10 minutes per wash. Immune-complexes bound to the membrane were 

detected using enhanced chemiluminescence (ECL) (Pierce) and visualised using the 

GeneGnome XRQ chemiluminescence imaging system (SYNGENE) or, on 

autoradiography film (GE Healthcare) after developing the film on an X-ray developer. 

Blots were quantified using the ImageJ software.  

 

2.4.4 Stripping membranes 

To remove membrane bound antibodies, the stripping buffer (62.5mM Tris-HCl, pH6.7, 

2% SDS, 100mM 2-Mercaptoethanol) was heated to 50°C in a water bath or in the 

microwave for 15 seconds. Membranes were incubated in stripping buffer for 15 minutes 

with shaking, in the fume hood. Membranes were washed in several washes of PBS, 

and the removal of antibodies was confirmed by visualisation on the GeneGnome XRQ 

chemiluminescence imaging system (SYNGENE) or, on autoradiography film (GE 

Healthcare), after ECL detection. 
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2.4.5 Antibodies and Buffers used for Protein Analysis 
	

 Table 2.16: Primary antibodies used in western blot analysis 

 

Primary 
Antibody 

Immunogen Dilution Diluent Source 

CAV1 
Rabbit polyclonal 
to Caveolin-1 
(ab2910) 

Synthetic peptide 
corresponding to 
Human 
Caveolin-1 aa 1-
17 
 

1:1000 1% non-fat milk 
powder, 0.1% 
Tween-20 in TBS 

Abcam 

KDM5A 
Rabbit polyclonal  
A300-897A 

Synthetic peptide 
corresponding to 
Human KDM5A 
aa 1640-1690 
 

1:2000 1% non-fat milk 
powder, 0.1% 
Tween-20 in TBS 

Bethyl 

Laboratories 

KDM5B LC03 
Rabbit polyclonal 

Raised against 
the C-terminus 
domain of 
human KDM5B 
corresponding to 
aa 1283-1473  

1:1500 1% non-fat milk 
powder, 0.1% 
Tween-20 in TBS 

In-house 

KDM5C 
JARID1C (D29B9) 
Rabbit 
monoclonal 

Synthetic peptide 
corresponding to 
residues 
surrounding 
Leu830 of 
human JARID1C 
protein. 
 

1:1000 1% BSA, 0.1% 
Tween-20 in TBS 

Cell Signaling 

Technology 

Histone H3, C-
terminal 
Rabbit polyclonal 

Raised against a 
C-terminal 
peptide of 
histone H3 

1:5000 1% BSA, 0.1% 
Tween-20 in TBS 

Active Motif 

H3K4me3 
Mouse 
monoclonal Anti-
histone H3 (tri-
methyl K4) 
(ab1012) 

Synthetic peptide 
corresponding to 
Human Histone 
H3 aa 1-100 (tri 
methyl K4) 
 

1:1000 1% BSA, 0.1% 
Tween-20 in TBS 

Abcam 

HER2 
Rabbit 
monoclonal 
29D8 

Synthetic peptide 
corresponding to 
residues 
surrounding 
tyrosine 1248 of 
HER2 protein 

1:1000 1% BSA, 0.1% 
Tween-20 in TBS 

Cell Signaling 

Technology 

Phospho-HER2 
(Tyr 1221/1222) 
Rabbit polyclonal 

Synthetic peptide 
corresponding to 
residues 
surrounding 
tyrosine 
1221/1222 of 
HER2 protein 

1:1000 1% BSA, 0.1% 
Tween-20 in TBS 

Cell Signaling 

Technology 

HSC70 
Mouse 
monoclonal 
Sc-7298 

Synthetic peptide 
corresponding to 
human HSC70 
aa 583-601 

1:10,000 1% non-fat milk 
powder, 0.1% 
Tween-20 in TBS 

Santa Cruz 
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Table 2.17: Secondary antibodies used in western blot analysis 

 

 

 

 

Buffer recipes used for western blot are as listed below. All chemicals were purchased 

from Sigma Aldrich unless otherwise stated.   

1x SDS-PAGE running buffer 

1. 25mM Tris pH8.3  

2. 192mM Glycine  

3. 0.1% SDS 

1x Transfer buffer 

1. 25mM Tris pH 8.3  

2. 192mM Glycine  

3. 20% methanol (Thermo Fisher Scientific) 

1x Tris-buffered saline-Tween (TBST) buffer 

1. 20mM Tris pH 7.6 

2. 150mM NaCl 

3. 0.1% Tween-20  

Blocking buffer 

1. TBST buffer 

2. 5% skimmed milk powder (Oxoid) or 5% Bovine Serum Albumin (BSA)  

 

 

 

 

 

Secondary 
Antibody 

Dilution Source 

Swine-anti Rabbit 
HRP 

1:1000 DAKO 

Goat anti-Mouse 
HRP 

1:1000 DAKO 
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2.5 Histology 
	

2.5.1 Tissue Fixation 

Thoracic mammary glands of 12.5 day pregnant mice were dissected by Dr Gianfranco 

Picco. Once excised, mammary glands were formalin-fixed in 10% neutral buffered 

formalin (Sigma-Aldrich), overnight at room temperature. Fixed mammary glands were 

subsequently paraffin embedded by the King’s Health Partners (KHP) Cancer Biobank 

group at Guy’s Hospital, London. Paraffin-embedded glands were stored at room 

temperature until required for tissue sectioning.  

 

2.5.2 Tissue sectioning 

Paraffin-embedded mammary glands were chilled on ice block before sectioning. The 

block was first trimmed at a thickness of 10µm to expose the tissue surface. Thereafter, 

tissue sections were cut at a thickness of 3µm to produce a ribbon of sections. The ribbon 

of sections was placed on the surface of the water of a 35°C water bath to flatten them 

out. Consecutive sections were separated using tweezers and mounted onto a 

microscope slide. Mounted sections were placed on a slide rack and allowed to dry 

overnight in a 37°C oven. Sections can then be stored at 4°C or immediately subjected 

to immunohistochemistry.  

 

2.5.3 Immunohistochemistry 

Tissue sections were baked at 60°C for 2 hours and de-waxed by incubating in two 

changes of xylene for 2 minutes each. To hydrate the sections, they were incubated in 

two changes of absolute ethanol for 2 minutes per incubation and thereafter in one 

change of 70% ethanol for 2 minutes. The sections were washed in water and subjected 

to antigen retrieval for 20 minutes in 10mM sodium citrate buffer pH6.0 in the pressure 

cooker. Whilst still in the racks, sections were placed in slow running water to allow them 

to cool for 10 minutes. Sections were incubated in blocking buffer (50% FBS in 

phosphate buffered saline (PBS)) for 30 minutes. Following blocking, sections were 

incubated with appropriate primary antibody (Table 2.18) diluted in blocking buffer, for 

60 minutes at room temperature. The sections were washed in three changes of PBS for 

3 minutes per wash and incubated with the appropriate secondary antibody (Table 2.18) 

for 60 minutes at room temperature. The sections were washed in three changes of PBS 

for 3 minutes per wash and incubated in 3,3’-Diaminobenzidine (DAB) (DAKO) for 
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horseradish peroxidase (HRP) antibodies for 3 minutes or in liquid permanent red 

(DAKO) for alkaline phosphatase for 10 minutes. Sections were placed on a slide rack 

and washed once in distilled water. The sections were then counterstained with Mayer’s 

Haematoxylin (Sigma-Aldrich) for 5 minutes, placed in a tray of running water to wash 

off the haematoxylin and then incubated in 1% acid alcohol for 5 seconds. Sections were 

serially dehydrated in 70% ethanol for 5 seconds and incubated in two changes of 100% 

ethanol for 1 minute per incubation. Following dehydrations, sections were incubated in 

xylene for 2 minutes to remove the alcohol. Slides were mounted onto a coverslip and 

left to dry. Immunostaining of sections was visually inspected using the Olympus BX50 

microscope (Olympus). Slides were scanned using the Hamamatsu NanoZoomer 

(Hamamatsu Photonics) by Patryjca Gazinska from the Breast Cancer Now Unit at Guy’s 

Cancer Centre, London. Images were viewed with the Hamamatsu NDP.view2 software.   

 

Table 2.18: Antibodies and reagents used for immunohistochemistry 

 Caveolin-1 KDM5B SMA 

Primary antibody Rabbit polyclonal to 
Caveolin-1 
(ab2910) 

Rabbit 3 antibody. 
Rabbit polyclonal 
to KDM5B 

Smooth muscle actin 
monoclonal mouse 
anti-human clone 1A4 
(M0851) 

Immunogen Synthetic peptide 
corresponding to 
Human Caveolin-1 
aa 1-17 
 

Raised against 
the C-terminus 
domain of human 
KDM5B 
corresponding to 
aa 1283-1473  

N-terminal synthetic 
decapeptide of α-
smooth muscle actin 
(4) 
 

Supplier Abcam In-house DAKO 

Dilution 1:100 1:700 1:500 

Primary antibody  

diluent 

2% FBS/PBS 2% FBS/PBS 2% FBS/PBS 

Secondary antibody Swine anti-rabbit 
HRP  
(P021702-2) 

Swine anti-rabbit 
HRP  
(P021702-2) 

Goat anti-mouse 
alkaline phosphatase 
(ab7069) 

Supplier DAKO DAKO Abcam 

Dilution  1:100 1:100 1:300 

Secondary antibody 

diluent 

2% FBS/PBS 2% FBS/PBS 2% FBS/PBS 

Detection substrate Liquid DAB+ 
(K3468) 

Liquid DAB+ 
(K3468) 

Liquid permanent red 
(K064011-2) 

Supplier DAKO DAKO DAKO 

Wash buffer PBS PBS PBS 

Blocking buffer 50% FBS/PBS 50% FBS/PBS 50% FBS/PBS 

HRP: Horseradish peroxidase; PBS: phosphate buffered saline 
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2.6 Gene Expression  
	

2.6.1 RNA Extraction 

RNA was extracted from WT and KDM5B KO cells of BT-474 and SKBr3, using the 

RNeasy mini kit (Qiagen) according to manufacturer’s instructions. 2x105 WT and 

KDM5B KO cells of BT-474 or SKBr3, were seeded in a well of a 6-well plate, and 

incubated at 37°C and 5% CO2 for three days. Media was aspirated from wells and cells 

were lysed directly in the well using 350µl of lysis buffer supplied. Cells were scraped 

using a cell scraper and lysate was transferred into an Eppendorf tube and vortexed for 

a one minute to homogenize the lysate. 1 volume (350µl) of 70% ethanol was added to 

the homogenized lysate and mixed by pipetting. 700µl of the sample was transferred into 

an RNeasy spin column (made of silica membrane that binds RNA) placed inside a 2ml 

collection tube. Samples were centrifuged for 15 seconds at ³8000 x g and the flow-

through discarded. To wash the membrane of the spin column, 700µl of the supplied 

wash buffer was added to the RNeasy spin column and centrifuged for 15 seconds at 

³8000 x g and flow-through discarded. The membrane was washed again using 500µl 

of a second wash buffer, centrifuged for 15 seconds at ³8000 x g and flow-through 

discarded. The membrane was washed a second time with 500µl wash buffer and 

centrifuged for 2 minutes at ³8000 x g. The spin column was placed in a fresh collection 

tube and spun for 1 minute at full speed to prevent any carryover of wash buffer. The 

spin column was then placed in a new 1.5ml Eppendorf tube and 42µl RNase free water 

(Thermo Fisher Scientific) was added directly onto the spin column membrane. Samples 

were centrifuged for 1 minute at ³8000 x g to elute RNA. RNA was stored at -80°C. RNA 

concentration was measured using the Nanodrop One spectrophotometer (Thermo 

Fisher Scientific) on the RNA setting.  

 

2.6.2 Bioanalyzer analysis of RNA samples 

The Agilent 2100 Bioanalyzer on-chip electrophoresis platform, was used to further 

check the quality and quantity of RNA. RNA samples were run on the Agilent RNA 6000 

Nano chip according to manufacturer’s instructions. RNA integrity was expressed using 

the RNA integrity number (RIN). Good quality, non-degraded RNA was demonstrated by 

a RIN greater than 7, as well as, the presence of distinct bands of 18S and 28S rRNA in 

the gel image and their corresponding peaks on the electropherogram (Figure 2.4). RNA 

concentration was expressed as pg/µl.  
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Figure 2.4: Electropherogram trace and gel image from the Agilent 2100 Bioanalyzer. An 
example of electropherogram and corresponding gel image of the SKBr3 wild-type (WT) RNA 
sample with a RIN number of 8.2.  

 

2.6.3 cDNA synthesis for RT-qPCR analysis 

Complementary DNA (cDNA) was generated from the isolated total RNA using the 

qScript cDNA Supermix kit (Quantabio), according to manufacturer’s instructions. A 20µl 

reaction consisting of 1µg of total RNA, 1X qScript cDNA supermix and RNase free water 

(where appropriate), was gently mixed by vortexing and briefly centrifuged to collect 

contents. The mixture was then incubated as follows to generate cDNA: 

• 25°C for 5 minutes 

• 42°C for 30 minutes 

• 85°C for 5 minutes 

Samples were then stored at -20°C.   

 

2.6.4 RT-qPCR analysis 

Relative quantification of genes was determined using the Precision qPCR SYBR green 

Master mix (Primer Design) and Quantitect primers (Qiagen) according to manufacturer’s 

instructions. The primers used in the RT-qPCR reactions are listed in Table 2.19. PUM1 

primer (Eurofins) was used as the reference gene. cDNA was diluted to 5ng/µl and a 

total of 25ng was used for each qPCR reaction. A master mix of each individual primer 

and the qPCR mastermix was prepared (Tables 2.20 and 2.21) and pipetted into 

triplicate wells of a 96 well plate. 5µl of cDNA (5ng/µl) was then added to each well and 

mixed well by pipetting. Plate was sealed and spun at 300 x g for 2 minutes prior to 

running on the Opticon 2 continuous fluorescence detector (MJ Research). The PCR 

28S ribosomal peak

18S ribosomal peak

Marker

28S

18S

Marker

Electropherogram Gel image
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cycle conditions for all primers listed in Table 2.19 were: 95°C for 5 minutes, then 40 

cycles at 95°C for 15 seconds, 60°C for 30 seconds, 72°C for 30 seconds.  

Data values were averaged prior to further analysis. Cycle threshold (Ct) was set above 

the background but within the linear phase of amplification for all samples. Data was 

normalised to the PUM1 expression and subsequently analysed using the comparative 

2-DDCt method: ΔΔCT = ΔCT (target gene) − ΔCT(reference gene) 267.  

 

              Table 2.19: Primers used in RT-qPCR reactions 

Target gene ID and Source 

ABCC2 Hs_ABCC2_1_SG QuantiTect Primer Assay 

(QT00056294; Qiagen) 

EGR1 Hs_EGR1_1_SG QuantiTect Primer Assay 

(QT00218505; Qiagen) 

FOS Hs_FOS_1_SG QuantiTect Primer Assay 

(QT00007070; Qiagen) 

KDM5B Hs_KDM5B_1_SG QuantiTect Primer Assay 

(QT00060648; Qiagen) 

LCN2 Hs_LCN2_1_SG QuantiTect Primer Assay 

(QT00028098; Qiagen) 

MYC Forward: 5’- GCC ACG TCT CCA CAC ATC AG-3’ 

Reverse: 5’- TCT TGG CAG CAG GAT AGT CCT-3’ 

(Eurofins Genomics) 

PUM1 Forward: 5’- GAT TAT TCA GGC ACG CAG GT -3’ 

Reverse: 5’- AGC AGC GCT GAT GAT GTA TG -3’ 

(Eurofins Genomics) 

SLC40A1 Hs_SLC40A1_1_SG QuantiTect Primer Assay 

(QT00094843: Qiagen) 

 

            Table 2.20: RT-qPCR master mix components for each reaction using QuantiTect 
             Primers 
 

 1X Master mix  
(per reaction) 

2X Precision qPCR  
SYBR green Master mix  
(PrimerDesign) 

10µl 

10X QuantiTect primers 2µl 

cDNA (5ng/µl) 5µl 

RNase free water 3µl 

Total 20µl 
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     Table 2.21: RT-qPCR master mix components for each reaction using PUM1 or 

            MYC primers 
 

 1X Master mix  
(per reaction) 

2X Precision qPCR  
SYBR green Master mix  
(PrimerDesign) 

10µl 

2µM PUM1 or MYC primer 5µl 

cDNA (5ng/µl) 5µl 

Total 20µl 

 

 

2.7 Microarray Gene Expression analysis  
	

2.7.1 cDNA synthesis and amplification 

The Ovationâ PicoSL WTA system V2 kit (NuGEN Technologies) was used to prepare 

cDNA for gene expression analysis, following cDNA amplification with the Ribo-Single 

Isotheral Amplification (Ribo-SPIA) technology, according to manufacturer’s instructions. 

The Ribo-SPIA technology was used to amplify SKBr3 WT and KDM5B KO cDNA using 

three main steps (Fig 2.5):   

1) The first strand of cDNA is generated using reverse transcriptase producing a 

cDNA/mRNA hybrid molecule with an RNA tag sequence (SPIA tag), at the 5’ 

end of the cDNA strand. 

2) Heat induced fragmentation of mRNA within the cDNA/mRNA complex then 

creates priming sites that allow for second strand synthesis of cDNA by DNA 

polymerase. DNA complementary to the 5’ SPIA tag sequence is also 

synthesized. This generates double stranded cDNA with a DNA/RNA 

heteroduplex that corresponds to the SPIA tag. 

3) Addition of RNase H results in removal of the RNA portion of the SPIA tag 

sequence allowing binding of the SPIA primer (DNA/RNA chimeric primer). cDNA 

synthesis by DNA polymerase at the 3’ end of the SPIA primer displaces the 

forward strand, producing a DNA/RNA heteroduplex. This results in subsequent 

removal of the RNA portion of the SPIA primer by RNase H, and so initiates the 

next round of cDNA synthesis. This process results in rapid cDNA amplification 

producing 2-5µg of cDNA from 500 picograms of RNA.  
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Following amplification, cDNA purification was performed using the MinElute Reaction 

Cleanup kit (Qiagen) according to manufacturer’s instructions. Purity of the amplified 

cDNA samples were run on the 2100 Bioanalyzer platform using the Agilent RNA 6000 

Nano chip. cDNA yield was determined using the NanoDrop 1000 spectrophotometer 

(Thermo Scientific) on the single-stranded DNA setting.  

 

Figure 2.5: Ribo-SPIA process for synthesizing single stranded cDNA. Modified image 
from 268. 

 

2.7.2 Biotinylation of amplified cDNA 

Amplified cDNA was biotinylated using the Encore BiotinIL Module (NuGEN) according 

to manufacturer’s instructions. Removal of the uracil base incorporated during the 

amplification process was achieved through addition of the uracil-DNA glycosylase 

(UNG) enzyme, which resulted in creation of abasic sites in the cDNA strand. 

Subsequent chemical attachment of a biotin moiety onto the abasic site, resulted in 

labelling of the cDNA. Biotin labelled cDNA was purified using the MinElute Reaction 

Cleanup kit (Qiagen) according to manufacturer’s instructions and concentration of 

eluted cDNA (10µl) was determined using the NanoDrop 1000 spectrophotometer 

(Thermo Fisher Scientific) on the single-stranded DNA setting. The labelled cDNA was 
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diluted with RNase-free water or concentrated using the Vacufuge vacuum concentrator 

(Eppendorf) to a final concentration of 150ng/µl in a total volume of 5µl.  

 

2.7.3 Hybridisation of biotin-labelled cDNA on Microarray 

One biological repeat of SKBr3 WT and KDM5B KO was analysed by microarray. The 

Illumina HumanHT-12 v4 Expression BeadChip array (Illumina) which targets more than 

47,000 genes, was used. Hybridisation of biotin labelled cDNA on to this array was 

performed by the NIHR BRC Genomics Facility at Guy’s Hospital, London. Scanning of 

the BeadChip was done on the iScan system (Illumina) using GenomeStudio software 

(Illumina). Data analysis was done by Dr Paul Lavender, who used the Partek Genomics 

Suite software (Partek Incorporated) using the 2 way-ANOVA model. Genes were 

considered to be differentially expressed if they had a ³1.5-fold difference in expression. 

Differentially expressed genes that had a fold change  ³1.5 were analysed for enriched 

biological processes using the ToppGene Suite bioinformatics tool 269. Gene Ontology 

(GO) terms were considered to be statistically significant by using the Benjamini-

Hochberg (BH) false discovery rate (FDR) model for multiple test adjustment.  
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2.8 Cell Viability Assays 
	

2.8.1 MTT cell growth assay 

1x104 cells of SKBr3 parental and KDM5B KO cells, were seeded in duplicate in 24 well 

plates and cell growth determined at day 1, 4 and 7 using the thiazolyl blue tetrazolium 

bromide (MTT) (Sigma-Aldrich) assay according to manufacturer’s instructions. At the 

end of each time point, 5µg/ml MTT was added to each well and incubated for 3 hours 

at 37°C with 5% CO2. Cell viability was subsequently determined by measuring 

absorbance at 595nm on the FLUOstar Omega plate reader (BMG Labtech). All optical 

density (OD) values were corrected by subtraction of background values generated using 

the media alone control.  

 

2.8.2 Methylene Blue Assay 

1x104 cells of WT and KDM5B KO cells of BT-474 or SKBr3, were seeded in duplicate in 

24 well plates and cells left to adhere overnight at 37°C with 5% CO2. The following day, 

cells were treated with control (DMSO or PBS), Herceptin (10µg/ml), Lapatinib (100nM) 

or Herceptin/Lapatinib (10µg/ml and 100nM respectively) combination for 0,3 and 6 days. 

Media and control or drug was changed every three days. At the end of each time point, 

media was aspirated from wells and cells were fixed with 4% glutaraldehyde (Sigma-

Aldrich) for 20 minutes at room temperature. Cells were washed twice with PBS and 

subsequently stained with 0.05% Methylene Blue (Sigma-Aldrich) for 20 minutes at room 

temperature, with gentle shaking. Cells were washed three times in a tray of running 

water then air-dried upside down, overnight at room temperature. The following day, 

methylene blue dye was extracted by addition of 3% HCl and incubation for 30 minutes 

with gentle shaking, at room temperature. Cell viability was determined by measuring 

absorbance at 655nm on the FLUOstar Omega plate reader (BMG Labtech). All OD 

values were corrected by subtraction of background values generated using the media 

alone control.  

For the analysis of BT-474 parental and KDM5B KO cell growth, cells were seeded in 

duplicate in 24 well plates and cell growth was determined at day 1, 4 and 7. At the end 

of each time point, the methylene blue assay was performed as aforementioned.  
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2.8.3 Crystal violet assay 

2.5x103 WT and KDM5B KO cells of BT-474 or SKBr3, were seeded in duplicate onto 6-

well plates and 5µg/ml Herceptin was immediately added to the wells. Cells were 

incubated for 14 days at 37°C with 5% CO2, with media and Herceptin changes every 

three to four days. At the end of the 14-day period, media was aspirated from wells and 

cells were fixed with 4% glutaraldehyde (Sigma-Aldrich) for 20 minutes at room 

temperature. Cells were washed twice with PBS and subsequently stained with 0.05% 

Crystal Violet (Sigma-Aldrich) for 20 minutes at room temperature, with gentle shaking. 

Cells were washed three times in a tray of running water then air-dried upside down, 

overnight at room temperature. The following day, the crystal violet dye was extracted 

by addition of 10% acetic acid and incubation for 30 minutes with gentle shaking, at room 

temperature. Cell viability was determined by measuring absorbance at 570nm on the 

FLUOstar Omega plate reader (BMG Labtech). Viability was calculated as: 

 

!"#$%&'"	$)*+,)$-." = average	OD	of	treated
average	OD	of	control  

 

 

2.9 Statistical Analysis 

Unpaired two-sided Student t-test was used to determine whether the means of the 

parental and KDM5B KO cells were significantly different. ANOVA with Sidak multiple 

comparisons test, was used to determine whether there were any statistically significant 

differences between three or more groups. Results were considered statistically 

significant if p<0.05. All statistical analysis was performed using GraphPad Prism® 7 

software. Experiments were performed at least twice to confirm observations.  
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3 : Development of KDM5B KO in HER2+ 
Breast Cancer Cell Lines using CRISPR-
Cas9 technology  
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3.1 Introduction 

To begin studies in understanding the role of KDM5B in HER2+ breast cancer, gene 

editing was employed to knock out KDM5B. Genome editing using endonucleases that 

target specific genomic sequences, have become powerful tools for biological research, 

allowing genetic manipulation of a wide range of organisms and cell types. Here, the 

selected gene editing tool CRISPR-Cas9 was used to develop KDM5B KO cells and so 

will be discussed in more detail below.  

 

3.1.1 CRISPR-Cas system in prokaryotes 

CRISPR-Cas is a prokaryotic adaptive immune system, that uses RNA-guided 

nucleases to destroy invading nucleic acids such as viruses and plasmids 270–272. To date, 

two main classes of CRISPR-Cas systems exist, which are classified according to the 

occurrence of the CRISPR-associated (Cas) proteins. These classes are divided into six 

types (I-VI) and multiple subtypes, of which type I-III and V, have been well 

characterized.  Class 1 CRISPR-Cas systems consist of type I, III and IV and utilise a 

multi-protein effector complex whereas, class 2 systems (type II, V and VI) use one 

effector protein (Fig 3.1) (reviewed by 259. In this work, the type II CRISPR system was 

used and so will be the main system discussed hereafter. The mechanism of the 

CRISPR-Cas system can be divided into three main stages: 1) Protospacer acquisition 

2) CRISPR RNA (crRNA) biogenesis and 3) crRNA guided interference.  
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Figure 3.1: CRISPR-Cas immune systems in bacteria. Upon viral or phage infection, a 
sequence of foreign DNA (protospacer), the Cas1-Cas2 complex incorporates the DNA into the 
CRISPR array. The CRISPR array consists of identical repeat sequences (black rectangles) 
interspersed by phage-derived spacers (coloured rectangles) and is flanked by the cas genes 
(blue). To acquire immunity, the CRISPR array is transcribed into a long precursor CRISPR RNA 
(pre-crRNA) which is subsequently processed into short mature CRISPR RNA (crRNA). Type II 
systems, require Cas9, RNase III and tracrRNA for pre-crRNA processing. During interference, 
Cas9, RNase III and tracrRNA:crRNA duplex target and cleave invading DNA. Red triangles 
represent cleavage sites of the interference machinery. Modified image from 259. 

 

3.1.1.1 Protospacer acquisition 

In this stage, invading DNA known as protospacers, are incorporated in-between 

CRISPR repeat sequences (20-50 base pairs), thereby generating a CRISPR array 
273,274. CRISPR arrays are flanked by cas genes that encode Cas proteins, and are 

preceded by an AT-rich leader sequence. Protospacers are usually integrated at the 

leader end of the CRISPR array and for each integrated protospacer, the first CRISPR 

repeat sequence is duplicated, to maintain the repeat-spacer-repeat architecture 273,274. 

Selection of protospacers is dependent on the protospacer adjacent motif (PAM); a short 

sequence located directly next to the protospacer 275,276. In the type II-A system, it has 

been demonstrated that protospacer selection, occurs through the PAM-recognizing 

domain of the Cas9 protein 277,278. Following protospacer selection, Cas9 is thought to 

recruit Cas1, Cas2 and possibly Csn2, for integration of the protospacer into the CRISPR 

array 259.  

Cas9 induces DNA DSB

NHEJ creates random mutations HDR inserts desired target sequence leading 
to precise gene editing

gRNA guides 
Cas9 to target 
sequence

DNA sequence complementary 
to target site

DNA DSB repair

NHEJ HDR

Cas9

tracrRNA
RNase III

crRNA maturation

Interference
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3.1.1.2 crRNA biogenesis 

The second stage of the CRISPR-Cas adaptive immune system, involves acquisition of 

immunity. This involves the transcription of the CRISPR array into a long precursor 

crRNA (pre-crRNA), followed by processing into short guide crRNAs, which requires the 

trans activating CRISPR RNA (tracrRNA) 279. tracrRNA is a 24-nucleotide sequence that 

is complementary to the CRISPR repeat 279. tracrRNA and pre-crRNA form an RNA-

duplex, which is stabilized by Cas9 and processed by the host RNase III, resulting in an 

intermediate crRNA that is further processed to a mature small guide crRNA 279. These 

guide crRNAs contain protospacer sequences required for adaptive immune response.  

 

3.1.1.3 crRNA guided interference 

The third stage of CRISPR-Cas adaptive immunity involves crRNA guided interference 

of invading nucleic acids. crRNAs guide the Cas9 effector protein to invading nucleic 

acids, which are identified through complementary base-pairing 280. Cas9 subsequently 

cleaves the invading DNA through introduction of a DSB 280. Cleavage by Cas9 occurs if 

the invading sequence is adjacent to a PAM sequence, thus preventing self-targeting.  

 

3.1.2 Applications of CRISPR-Cas9 technology 

CRISPR-Cas9 has been exploited in different fields of biological research and medicine, 

to introduce precise gene modifications in cells or organisms. In this context, the type II 

CRISPR system from Streptococcus pyogenes has been simplified to consist of two 

components: Cas9 nuclease protein and a guide RNA (gRNA), which is a hybrid of the 

crRNA: tracrRNA duplex 280. The gRNA, a 20-nucleotide (nt) sequence, directs Cas9 to 

a specific complementary DNA sequence where Cas9 induces a DSB (see Fig 1.7 in 
Chapter 1 section 1.9). The gRNA must lie upstream of a PAM sequence to allow 

cleavage of the target DNA by Cas9. PAM sequences in S. pyogenes are in the form 5’-

NGG, thus any DNA sequence in the form N20-NGG can be targeted by Cas9, by altering 

the 20-nt gRNA sequence to correspond to a target of interest. Type II CRISPR systems 

from other bacterial species that have different crRNA and tracrRNA sequences and 

recognise different PAM sequences, have also been used 281,282. However, the S. 

pyogenes is the most commonly used and well characterised type II CRISPR system. 

Genome editing using the CRISPR-Cas9 system takes advantage of eukaryotic DNA 

repair mechanisms, to repair Cas9-induced DSB by NHEJ. NHEJ is an error-prone 

mechanism that results in the introduction of deletions, insertions, point mutations or 
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frameshifts, that can alter the gene product leading to loss of function 283. This loss of 

gene function is what is termed as genetic knockout (KO), and is the desired outcome of 

CRISPR-Cas9 targeting. For precise gene editing, homology directed repair (HDR) 

pathway is used. This is achieved by using, a DNA sequence that shares sequence 

homology with the target site, to repair the Cas9-induced DSB via homologous 

recombination. The DNA sequence can contain any alteration e.g. insertion or deletion, 

thus allowing precise editing of the target sequence 284,285. 

CRISPR-Cas9 has also been used to regulate gene transcription by mutating the 

nuclease domain of Cas9 thus resulting in a nuclease ‘dead’ protein (dCas9) (reviewed 

by 259). Targeting a gene’s promoter region or open reading frame using dCas9 prevents 

binding of RNA polymerase and inhibits mRNA elongation. Alternatively, dCas9 can be 

fused to a transcriptional activator or repressor thus allowing gene expression or 

inhibition, respectively. CRISPR-Cas9 has also been utilised in genome-wide screens 

through reverse genetics, whereby the resultant phenotype from a gene knockout, is 

used to study the function of the gene.  

 

 

3.1.3 Aims 

In this Chapter, development of KDM5B KO in HER2+ breast cancer cell lines using 

CRISPR-Cas9, is documented. This was achieved by: 

1) Examining expression of KDM5B in breast tumours and cell lines. This was to 

enable selection of suitable cell lines for KDM5B gene editing 

2) Investigating expression of KDM5B in Herceptin sensitive and resistant cell lines 

3) Selection of suitable guide RNAs for KDM5B gene editing 

4) Co-transfection of selected gRNA and Cas9 in HER2+ breast cancer cell lines, 

followed by single cell cloning 

5) Screening and selection of KDM5B KO clones using indel analysis, followed by 

validation of KDM5B KO in selected cones  
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3.2 Results 
 
3.2.1 KDM5B expression is upregulated in Luminal A and HER2+ 

breast tumours and cell lines 
	

3.2.1.1 Copy number and gene expression analysis of KDM5B in breast 
cancer 

Upon discovery of KDM5B,183 first showed that KDM5B mRNA expression was 

upregulated in breast cancer cell lines. Later, studies using Single Nucleotide 

Polymorphism (SNP) array analysis, identified KDM5B as a gene with copy number gain 

in breast cancer 286. More recently, it was demonstrated that increased KDM5B mRNA 

expression is associated with copy number gain 202. To confirm these observations, two 

published breast cancer databases containing copy number (CN) and gene expression 

(GE) data were used.  

The first database, Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) contains CN and GE profiles of 2509 tumours 46,287. The second, The 

Cancer Genome Atlas (TCGA), contains CN and GE profiles of 825 breast tumours 288. 

These datasets were downloaded from the cBioPortal platform 289,290. Increased KDM5B 

mRNA expression was found to be associated with copy number gain or amplification in 

both datasets (Fig 3.2A). It was further investigated whether KDM5B expression was 

associated with breast cancer subtypes (luminal A, luminal B, HER2-enriched, basal-like 

and normal-like), as classified by the PAM50 gene classifier 45. KDM5B mRNA 

expression was significantly higher in the HER2+ tumours compared to the other 

subtypes in the METABRIC dataset (Fig 3.2B), thus corresponding with previous 

observations 202. In the TCGA dataset, there was no significant difference in KDM5B 

expression between HER2+ and luminal A subtypes. These findings suggest that 

KDM5B may play an important role in luminal A and HER2+ breast cancers. Indeed, 

KDM5B has been shown to be an oncogenic driver of the luminal lineage in breast cancer 
202. Here, the role of KDM5B in HER2+ breast cancer is further examined.  
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Figure 3.2: KDM5B expression is upregulated in luminal A and HER2 breast cancer. A) 
Increased KDM5B mRNA expression is associated with copy number gain or amplification in the 
METABRIC and TCGA datasets. Sample numbers are indicated below each copy number 
alteration. B) KDM5B mRNA expression is significantly upregulated in luminal A and HER2+ 
breast tumours. Sample numbers are indicated below each PAM50 subtype. METABRIC and 
TCGA data was downloaded from the cBioportal platform. Asterisks indicate significance where 
*=p£0.05, **=p£0.01, ***=p£0.001, ****=p£0.0001. n.s = not significant. Statistical significance 
was calculated using One-way ANOVA with Sidak correction. 
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3.2.1.2 KDM5B protein expression in breast cancer cell lines 

The expression of KDM5B was then examined in a panel of breast cancer cell lines. 

These cell lines are representative of the PAM50 breast cancer subtypes. KDM5B 

protein levels were high in ER+ (luminal) and HER2+ (HER2-enriched) cell lines, and 

low in the triple negative (TN; basal-like) cells (Fig 3.3), agreeing with the gene 

expression analysis in primary breast tumours (Fig 3.2B). BT-474 and SKBr3 were the 

two chosen HER2+ breast cancer cell lines used in this project.  

 

     

 

 

                  

Figure 3.3: Protein expression of KDM5B in breast cancer cell lines. A) Whole cell lysates of 
six breast cancer cell lines were subjected to western blot and probed with KDM5B antibody. 
HSC70 was used as a loading control. B) Blots were quantified using ImageJ. Values represent 
means ± s.e.m. Blots are representative of three independent experiments.  
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3.2.2 Expression of KDM5B in Herceptin resistance breast cancer 
cell lines 

To begin studies in understanding the role of KDM5B in resistance of HER2+ breast 

cancer, protein expression of KDM5B was examined in Herceptin sensitive and 

Herceptin resistant cell lines.  

Treatment of SKBr3 cells with 20nM Herceptin for 48 hours, resulted in down-regulation 

of KDM5B expression (Fig 3.4). Similarly, a 48-hour treatment with 100nM Lapatinib, a 

dual EGFR/HER2 tyrosine kinase inhibitor, also down-regulated KDM5B expression (Fig 
3.4). These findings confirm observations by 183, who showed that KDM5B is 

downregulated by Herceptin treatment, suggesting involvement of KDM5B in HER2 

signalling. Interestingly, phosphorylated HER2 (pHER2) was downregulated by 

Lapatinib, but not by Herceptin (Fig 3.4). This corresponds with previous data showing 

no effect on HER2 phosphorylation following Herceptin treatment, in SKBr3 cells 291.  

Next, KDM5B expression was examined in Herceptin resistant cells, that had been 

developed by weekly treatment with 40µg/ml Herceptin, for 8 months 109. KDM5B protein 

levels in both BT-474 and SKBr3 Herceptin resistant cell lines (BT-474-HR and SKBr3-

HR respectively) did not change, in comparison to WT cells (Fig 3.5), suggesting that 

KDM5B may play a role in Herceptin resistance.  

Interestingly, SKBr3-HR cells did not express detectable pHER2 (Fig 3.5) and HER2 

(data not shown). Loss of HER2 amplification and overexpression has been observed in 

a BT-474 Herceptin resistant clone, and in patients who have undergone Herceptin-

based neoadjuvant therapy 103, suggesting a mechanism of resistance operating through 

enhancement of other signalling pathways. HER2 protein expression was undetected in 

3 out of 4 independent experiments and because of this inconsistency, this result could 

be an effect of culturing conditions. Therefore, it is important to regularly assess HER2 

status of HR cells, to ensure that the phenotype is the same in all experiments. 
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Figure 3.4: Herceptin and Lapatinib treatment reduces KDM5B expression in SKBr3 cells. 
Whole cell lysates of SKBr3 cells treated with vehicle, 100nM Lapatinib or 20nM Herceptin were 
subjected to western blot and probed with KDM5B and pHER2 antibodies. Lamin B was used as 
a loading control. Blots were quantified on image J software. Values show relative expression to 
vehicle control after normalising to Lamin B. Blots represent one experiment.  

          

 

 

 

 

Figure 3.5: KDM5B expression in Herceptin resistant breast cancer cell lines. Whole cell 
lysates of parental and Herceptin resistant BT-474 and SKBr3 cells were subjected to western 
blot and probed with KDM5B and pHER2 antibodies. HSC70 was used as a loading control. Blots 
represent three independent experiments. 
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3.2.3 Generating KDM5B knockout breast cancer cell lines using the 
CRISPR-Cas9 gene editing technique 
 

3.2.3.1 CRISPR Workflow 

To examine the function of KDM5B in HER2+ breast cancer, KDM5B was knocked out 

in BT-474 and SKBr3 HER2+ cell lines, using CRISPR-Cas9 technology. The CRISPR 

workflow used to develop KDM5B KO cell lines is shown in Figure 3.6, with each being 

illustrated in more detail. 

 

 

Figure 3.6: CRISPR workflow. Cells are transfected with Cas9 and KDM5B gRNAs, the day 
after seeding. Three days post transfection, cells are subjected to FACS to sort for cells with a 
specific GFP intensity. Sorted cells are single cell cloned into 96-well plates for approximately 5-
8 weeks. Single cell clones are identified, picked and expanded in 24-well plates. Once confluent, 
DNA is extracted from cells using the Quick extract DNA solution. DNA samples are subsequently 
amplified by tri-primer PCR using forward (F) and reverse (R) primers that flank the targeted 
gRNA site, and a FAM labelled primer. Fluorescently labelled amplicons are analysed by capillary 
electrophoresis to identify indels produced. KO clones are selected, expanded and confirmed by 
various methods such as sanger sequencing, western blot and qPCR.  
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3.2.3.2 Design and construction of CRISPR-Cas9 KDM5B gRNAs 

Four gRNA sequences targeting KDM5B (Table 3.1) were selected using the CRISPR-

Cas9 target site selection tool CHOPCHOP (https://chopchop.rc.fas.harvard.edu/). 

gRNAs were targeted to exons 1, 4, 5 and 6 of KDM5B as shown in Figure 3.7. The 

gRNA sequences were cloned into the PX458 vector which was co-transfected with the 

Cas9 vector into breast cancer cell lines as described in Chapter 2.  

Table 3.1: KDM5B gRNA target sequence.  

gRNA Target sequence PAM Exon Strand 

1 CGGCCCATAGCCGAGCAGAC TGG 1 + 

2 GTTTGCTCCTGGCAAAGCAG TGG 4 + 

3 AGGCTGCACAGACTGCCTCT GGG 5 - 

4 TCATAATCTGAGACGTCGAA TGG 6 + 

List of KDM5B target sequences, PAM sequences, targeted exons and strand orientation of 
gRNAs. gRNA 1 (green) targets exon 1, gRNA 2 (blue) targets exon 4, gRNA 3 (red) targets exon 
5 and gRNA 4 (purple) targets exon 6. 

 

 

Figure 3.7: Schematic structure of KDM5B showing gRNA targeted exons and the corresponding 
position of the exons on the KDM5B protein. 

 

 

3.2.4 Experimental selection of KDM5B gRNA 
	

3.2.4.1 FACS Analysis of Cas9 and KDM5B gRNAs transfected in SKBr3 
cells 

Plasmids containing the four gRNAs targeting KDM5B, were individually co-transfected 

with the Cas9 plasmid into SKBr3 cells by nucleofection. 72 hours post transfection, cells 

were subjected to fluorescence activated cell sorting (FACS), to select fluorescent GFP 

expressing cells. All of the gRNAs tested had a transfection efficiency of approximately 

50-60% of the total population, as detected by GFP expression in the Cas9 plasmid. 12-

15% of these cells had a high GFP intensity (>104) (Fig 3.8) and were therefore sorted 

and subjected to indel analysis as described in the following section.  
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Figure 3.8: FACS analysis of SKBr3 cells transfected with KDM5B gRNAs and Cas9. 
Transfection efficiency of all gRNAs was approximately 60%, of which 12-15% of this population 
was selected for sorting as they had a high GFP intensity. A) gRNA targeting exon 1 B) gRNA 
targeting exon 4 C) gRNA targeting exon 5 and D) gRNA targeting exon 6. 

 

 

3.2.4.2 Screening of KDM5B gRNAs cutting efficiency using indel 
detection by amplicon analysis (IDAA) 

Bulk sorted SKBr3 cells were validated by IDAA as described in Chapter 2. DNA was 

extracted from cells and amplified by tri-primer PCR. Fluorescently labelled PCR 

amplicons were subsequently analysed by capillary electrophoresis. Fragment analysis 

showed induction of indels with gRNA 2, that was targeting exon 4 (Fig 3.9A). This gRNA 

produced various indels i.e. 1, 2, 3, 4, 5, 6 and 7bp deletions and a 1bp insertion. gRNAs 

3 and 4 that were targeting exons 5 and 6 respectively, did not produce any indels (Fig 
3.9B and C). No data was available for samples targeted with gRNA 1, due to technical 

issues. gRNA 2 was therefore selected and used to develop KDM5B knockout cell lines. 
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Figure 3.9: IDAA screening of KDM5B gRNAs cutting efficiency. SKBr3 cells transfected with 
Cas9 and KDM5B gRNA targeting exons 1, 4, 5 and 6 were bulk sorted and analysed by Indel 
Detection by Amplicon Analysis (IDAA). A) gRNA 2 targeting exon 4 successfully induced indels 
in the KDM5B gene. Deletions denoted as -1, -2, -3, -4, -5, -6 and -7 correspond to the number 
of deleted base pairs. Insertions are denoted as +1, corresponding to the number of base pairs 
inserted. B) gRNA 3 and C) gRNA 4 targeting exon 5 and 6 respectively, did not induce any indels 
in the KDM5B gene. Analysis was done on the Peak Scanner Software. 

 

3.2.5 Development of KDM5B Knockout cell lines 
	

3.2.5.1 FACS analysis of CRISPR targeted KDM5B in BT-474 and SKBr3 
cells 

The selected gRNA 2 (targeting exon 4 of KDM5B) and Cas9 plasmids were co-

transfected into BT-474 and SKBr3 cells, by nucleofection. 72 hours post transfection, 

cells were subjected to FACS analysis. For this experiment, cells with a GFP intensity of 

between 103-104 were selected, to reduce the selection of clones with potential off target 

site, which can occur with high Cas9 transfection. The sorted population was 1% and 

13.3% for BT-474 and SKBr3 cells, respectively (Fig 3.10). These cells were 

subsequently single cell sorted into 96-well plates.  
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Figure 3.10: FACS analysis of BT-474 and SKBr3 cells transfected with KDM5B gRNA 2 
and Cas9 plasmids. Gating of transfected cells with specific GFP fluorescent intensity levels. 
Values indicate percentage of cells in the selected gate. Cells were analysed on the FACS Aria II 
instrument.  

 

 

3.2.5.2 IDAA screening of CRISPR-Cas9 targeted KDM5B single cell 
clones in BT-474 and SKBr3 cells  

CRISPR-Cas9 targeted KDM5B single cell clones were cultured for approximately 8 

weeks prior to IDAA, to obtain sufficient number of cells to split allowing half to be used 

for IDAA. In total, 17 single cell clones were analysed in BT-474 cells (Fig 3.11) and 29 

single cell clones in SKBr3 cells (Fig 3.12).  
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                                               Amplicon size (bp) 

Figure 3.11: IDAA screening of CRISPR targeted KDM5B single cell clones in BT-474 cells. 
DNA was extracted from single cell clones and amplified by tri-primer PCR. Fluorescently labelled 
amplicons were run on a capillary electrophoresis sequencer and thereafter data was analysed 
on the Peak Scanner software. The selected KDM5B KO clones, B113C and G113C are shown 
in a red box.  
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Figure 3.11: IDAA screening of CRISPR targeted KDM5B single cell cline in BT-474 cells 
(continued). 
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Figure 3.11: IDAA screening of CRISPR targeted KDM5B single cell clones in BT-474 cells 
(continued). 
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Figure 3.12: IDAA screening of CRISPR targeted KDM5B single cell clones in SKBr3 cells. 
DNA was extracted from single cell colonies and amplified by tri-primer PCR. Fluorescently 
labelled amplicons were run on a capillary electrophoresis sequencer and thereafter data was 
analysed on the Peak Scanner software. The selected KDM5B KO clone, F113E, is shown in a 
red box.  
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Figure 3.12: IDAA screening of CRISPR targeted KDM5B clones in SKBr3 cells 
(continued). 
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Figure 3.12: IDAA screening of CRISPR targeted KDM5B clones in SKBr3 cells 
(continued). 
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Figure 3.12: IDAA screening of CRISPR targeted KDM5B single cell clones in SKBr3 cells 
(continued).  
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Clones were selected as potential KOs if they did not have the parental allele or in-frame 

indels. Furthermore, the growth rate was also a determining factor in selecting KDM5B 

KO clones, as clones that did not grow very well were not selected. In BT-474, this 

resulted in 10 clones being selected as potential KOs. These clones were subsequently 

screened by western blot for KDM5B expression, which identified B113C and G113C 

clones as KDM5B KOs, since they did not have any detectable KDM5B protein (Fig 
3.13). In SKBr3 cells, 2 clones (D910B and F113E) were selected as potential KOs and 

screened by western blot. The D910B clone showed expression of KDM5B, whereas the 

F113E did not have any detectable KDM5B and so was selected as a KDM5B KO (Fig 
3.14).  

 

 

Figure 3.13: Screening of KDM5B CRISPR targeted clones in BT-474. Whole cell lysates of 
BT-474 WT and KDM5B CRISPR targeted clones were subjected to western blot and probed with 
a KDM5B antibody. HSC70 was used as a loading control. Blots represent one independent 
experiment. 

 

 

 

Figure 3.14: Screening of KDM5B CRISPR targeted clones in SKBr3. Whole cell lysates of 
SKBr3 WT and KDM5B CRISPR targeted clones were subjected to western blot and probed with 
a KDM5B antibody. HSC70 was used as a loading control. Blots represent one independent 
experiment. 
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3.2.5.3 Validation of CRISPR-Cas9 targeted KDM5B KO clones by Sanger 
Sequencing 

To confirm the presence of the indels identified in the CRISPR targeted KDM5B clones 

(BT-474 B113C, BT-474 G113C and SKBr3 F113E), DNA of the targeted site (Exon 4) 

was PCR amplified and sequenced. Sanger sequencing data was analysed using the 

CodonCode Aligner software and was in agreement with IDAA, as the sequences 

identified in each of the clones had the exact indels shown by IDAA. Two sequences 

were identified in the BT-474 B113C clone, 3 sequences in the BT-474 G113C clone and 

4 sequences in the SKBr3 F113E clone. The sequences and their corresponding indels 

are shown in (Fig 3.15), and were identified with the assistance of Dr. Zhang Yang, 

University of Copenhagen. Furthermore, the number of sequences identified in BT-474 

G113C and in SKBr3 F113E correspond to KDM5B copy number in these cell lines, 

where the copy number of KDM5B is three in BT-474 and four in SKBr3, as analysed in 

the cancer cell line encyclopedia (CCLE) 292. However, since only two sequences were 

identified in the BT-474 B113C clone, it suggests that this clone may not be a complete 

KO. 
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B

 

 

Figure 3.15: Sanger sequencing of CRISPR targeted KDM5B clones. A) Sequencing traces 
of Parental and CRISPR targeted KDM5B clones showing KDM5B gene disruption in the clones. 
B) Sequences of CRISPR targeted KDM5B clones with their respective indels. Red: gRNA 2 
target sequence and PAM sequence; Bold red uppercase: Inserted bases; dashed line: deleted 
bases. The position of Cas9 cutting site is indicated with an orange arrow. Sequences were 
analysed on the CodonCode Aligner software.  
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3.2.5.4 Validation of CRISPR-Cas9 targeted KDM5B clones by western 
blot and RT-qPCR 

KDM5B KO clones were further validated by western blot and RT-qPCR. KDM5B protein 

was not detected in the BT-474 and SKBr3 KO clones by western blot analysis (Fig 3.16 
and 3.17). Protein expression of KDM5A and KDM5C were also examined to determine 

whether they compensated for KDM5B KO. Expression levels of KDM5A and KDM5C 

did not change in the KDM5B KO clones in comparison to parental cells (Fig 3.16 and 
Fig 3.17). KDM5D was not examined as being located on the Y chromosome168 it is not 

expressed in females.  

KDM5B mRNA expression by RT-qPCR in the KO clones showed a fold change of 0.28 

in BT-474 B113C, 0.07 in BT-474 G113C and 0.13 in the SKBr3 F113E clones (Fig 
3.18A and 3.18B). Taken together, these findings confirm complete KDM5B KO in the 

SKBr3 F113E clone and BT-474 G113C clone. Whereas, the low KDM5B mRNA 

expression in the BT-474 B113C clone, suggests a partial/incomplete KO. Thus, further 

studies utilizing this clone needs to consider this low mRNA expression, when making 

conclusions on any molecular and/or phenotypic observations. These clones will 

hereafter be referred to as BT-474 KO1* (B113C), BT-474 KO2 (G113C) and SKBr3 KO 

(F113E).  

A 

 

 
Figure 3.16: Validation of KDM5B KO in BT-474 cells by western blot. A) Western blot 
analysis showing no detectable KDM5B protein in the KO clones. Expression of KDM5A and 
KDM5C was not changed in the KDM5B KO clones. HSC70 was used as a loading control. Blots 
are representative of 3 independent experiments. B) Quantification of blots on imageJ software. 
Error bars indicate s.e.m of 3 independent experiments. Asterisks show significance where **** = 
p£0.0001 and n.s=not significant. Statistical significance was calculated using unpaired Student’s 
t-test. 
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A 

 

 

 

Figure 3.17: Validation of KDM5B KO in SKBr3 cells by western blot. A) Western blot analysis 
showing no detectable KDM5B protein in the KO clones. Expression of KDM5A and KDM5C was 
not changed in the KDM5B KO clones. HSC70 was used as a loading control. Blots are 
representative of 3 independent experiments. B) Quantification of blots on imageJ software. Error 
bars indicate s.e.m of 3 independent experiments. Asterisks show significance where **** = 
p£0.0001 and n.s=not significant. Statistical significance was calculated using unpaired Student’s 
t-test. 

 

 

 

 

Figure 3.18: Validation of KDM5B KO clones by RT-qPCR. Expression of KDM5B in the KO 
clones was quantitated relative to parental cells. Cells were normalised to expression of the 
housekeeping gene PUM1. Values are fold changes ± s.e.m. of 3 independent experiments. 
Asterisks show significance where * = p£0.05, *** = p£0.001 and **** = p£0.0001. Statistical 
significance was calculated using unpaired Student’s t-test. 
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3.3 Discussion 

In this Chapter, upregulation of KDM5B in breast tumours is shown and this increased 

expression was found to be associated with copy number gain and/or amplification. 

Furthermore, KDM5B was found to be particularly increased in HER2+ and ER+ breast 

tumours and cell lines, suggesting it may play an important role in these tumours. Since 

KDM5B has been implicated in drug resistance of various cancers 204,212, its expression 

was examined in Herceptin resistant HER2+ breast cancer cells. KDM5B protein levels 

in BT-474 and SKBr3 Herceptin resistant cells was similar to WT cells. This is in contrast 

to its downregulation in SKBr3 Herceptin sensitive cells, thus suggesting that KDM5B 

may play a role in Herceptin resistance in these cells.  

The study of gene function in various biological processes, has been accelerated by the 

development of genome editing tools such as CRISPR-Cas9. To understand the role of 

KDM5B in HER2+ breast cancer cells including drug resistance, CRISPR-Cas9 was 

employed to develop KDM5B KO breast cancer cell lines. KDM5B KO was successfully 

achieved in BT-474 and SKBr3 cells. Confirmation of gene inactivation by RT-qPCR 

revealed substantial reduction of KDM5B in the KO cell lines, which could be due to 

degradation of nonsense mRNAs via the nonsense-mediated decay (NMD) pathway 293. 

However, in the BT-474 KO1* cells there is still some mRNA expression. The difference 

between BT-474 KO1* and BT-474 KO2 cells could relate to the number of targeted 

alleles, i.e. two versus three alleles, respectively, as observed by IDAA. Since KDM5B 

has a copy number of three in BT-474 cells, it suggests that one of the alleles was not 

targeted in the BT-474 KO1* cells. Since KDM5B protein in the BT-474 KO1* cells was 

not detected on western blot, this may be a reflection on the sensitivity of the assay 

therefore, it is important to consider the mRNA expression in any differences observed 

between the two clones in future experiments.  

In this first round of targeting KDM5B using CRISPR-Cas9, only one KDM5B KO clone 

was developed in SKBr3 cells. It would have been ideal to have a second KDM5B KO 

clone, to enable validation of any phenotypes observed in these cells. Although the 

D910B was a potential KO as visualised by IDAA, western blot analysis showed the 

presence of KDM5B protein. Re-targeting of nuclease edited cells has been shown to 

increase editing efficiency 294. Thus, this clone could be re-targeted to assess whether 

complete KDM5B KO can eventually be achieved. Unfortunately, the other potential KO 

clones B63A, D33B, E43D, E113D and G53B were discarded as it was initially thought 

that they were not KOs, therefore they cannot be further analysed or re-targeted. These 

KDM5B KO cell lines will now be used to study the function of KDM5B in gene expression 

and response to HER2 targeted therapies in HER2+ breast cancer cell lines.   
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4 : KDM5B regulation of Caveolin1 in the 
normal and malignant mammary gland 
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4.1 Introduction 
Genome-wide analyses looking at KDM5B occupancy, have revealed its association with 

transcriptional start sites, where it binds at the regions containing the H3K4me3 mark on 

promoters of target genes 146,202. Clearly demonstrating that KDM5B can repress target 

genes via its demethylase activity. One of the target genes that was found to have 

increased expression upon KDM5B KD which correlated with increased H3K4me3 levels 

in the MCF-7 breast cancer cell line, is CAV1 146. Understanding KDM5B regulation of 

CAV1 is of particular interest because, recent data from our laboratory using a mouse 

model suggests that CAV1 may normally be downregulated by KDM5B, during normal 

mammary gland development. 

In the mouse mammary gland, CAV1 negatively regulates STAT5a expression since its 

knockout resulted in hyperactivation of JAK2/STAT5 signalling 231. Interestingly, in the 

mid-pregnant mammary gland of the ΔARID mouse which lacks KDM5B demethylase 

activity, pSTAT5 is downregulated 196 and this correlates with upregulation of CAV1 

(Steven Catchpole personal communication). Therefore, KDM5B could play a role in 

downregulating CAV1 expression, thus enabling activation of the JAK2/STAT5 signalling 

pathway and in turn alveologenesis.  

CAV1 expression is generally downregulated in breast cancer 232,233, where it may act as 

a tumour suppressor 234. However, in the aggressive basal-like and triple negative breast 

cancers CAV1 expression has been reported to be upregulated 233,236. In contrast, high 

expression of CAV1 in breast cancer associated fibroblasts has been found to be 

associated with good prognosis 239,242. More recently, stromal CAV1 expression in TNBC 

was shown to predict better overall survival in Asian women 238. Taken together, these 

findings suggest a multifaceted and cell-type specific role of CAV1 in breast cancer.  
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4.1.1 Aims 

Data from previous studies, suggest a possible role for KDM5B in repression of CAV1 

expression, during normal mammary gland development and in some breast cancer cell 

lines. However, it is not clear how widespread the downregulation of CAV1 by KDM5B 

is seen in different breast cancer cell lines, nor is it clear, which cell types in the 

developing mammary gland (luminal, myoepithelial and fat cells), could be responsible 

for downregulation of CAV1 by KDM5B. This chapter aims to further understand KDM5B 

regulation of CAV1 in mammary gland development and breast cancer by examining:  

1) Expression and copy number of CAV1 in breast tumours  

2) Expression of CAV1 and KDM5B in breast tumours and cell lines 

3) CAV1 expression in KDM5B KO breast cancer cell lines 

4) Expression of CAV1 and KDM5B in normal breast fibroblasts and breast 

cancer-associated fibroblasts 

5) Cellular distribution of CAV1 and KDM5B in the mouse mammary gland 

during mid-pregnancy 
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4.2 Results 
	

4.2.1 CAV1 expression in breast tumours and cell lines 
	

4.2.1.1 Copy number and gene expression analysis of CAV1 in breast 
tumours 

CAV1 is downregulated in a majority of breast cancers and cell lines 232,237, with the 

exception of aggressive subtypes such as basal-like and triple negative 233,236. To confirm 

these observations and to determine whether CAV1 expression was driven by copy 

number aberrations, the METABRIC breast cancer database was used. Decreased 

CAV1 mRNA expression was found to be associated with copy number deletion in a 

fraction of breast cancers (186 out of 1903) (Fig 4.1A). However, since a majority of the 

tumours were diploid (1478 out of 1903), it suggests that other factors may be driving 

downregulation of CAV1. It was further investigated whether CAV1 expression was 

associated with breast cancer molecular subtypes (luminal A (LumA), luminal B (LumB), 

HER2+ (HER2+), basal-like and normal-like), as classified by the PAM50 gene classifier 
45. CAV1 expression was found to be downregulated in all breast cancer subtypes, in 

comparison to the normal-like subtype (Fig 4.1B). CAV1 expression was however 

significantly lower in the basal-like, HER2+ and LumB subtypes in comparison to the 

LumA subtype (Fig 4.1B).  

 

 

Figure 4.1: CAV1 expression is downregulated in breast cancers. A) Decreased CAV1 mRNA 
expression is associated with copy number deletion in the METABRIC dataset. Sample numbers 
are indicated below each copy number alteration. B) CAV1 mRNA expression is significantly 
downregulated in breast cancer tumours. Sample numbers are indicated below each PAM50 
subtype. METABRIC data was downloaded from the cBioportal platform. Asterisks indicate 
significance where, ****=p£0.0001. ns=not significant. Statistical significance was calculated 
using One-way ANOVA with Sidak correction. 
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4.2.1.2 CAV1 and KDM5B expression in breast cancer 
 

In order to determine whether CAV1 and KDM5B expression correlate in breast cancer, 

their expression was examined in breast tumours and a panel of breast cancer cell lines. 

Further analysis using the METABRIC dataset to validate whether CAV1 and KDM5B 

genes are inversely correlated in breast cancers, showed a weak negative correlation 

between the two proteins (Fig 4.2A). CAV1 expression was examined in six breast 

cancer cell lines that were representative of the breast cancer molecular subtypes. CAV1 

was abundantly expressed in the triple negative cells (TN; most TN are associated with 

the basal-like subtype) (MDA-MB-231 and HCC1143), moderately expressed in the ER+ 

(luminal) cell line (MCF-7), but not in the ER+ T47D cell line (Fig 4.2B). Very low 

expression was observed in the HER2+ cell lines (BT-474 and SKBr3) (Fig 4.2B). 

Interestingly, expression of CAV1 was generally inversely correlated with KDM5B 

expression in these cells lines. In particular, the TN cells had very low levels of KDM5B, 

whereas the HER2+ cells had moderate to high levels of KDM5B expression (Figure 
3.3A section 3.2.1.2). The difference in the level of CAV1 expression in the two ER+ cell 

lines, indicates that even within a subtype, phenotypic variation is seen.  

 

 

Figure 4.2: KDM5B and CAV1 expression in breast cancer. A) Correlation between CAV1 and 
KDM5B mRNA expression in breast tumours from the METABRIC dataset. N=1904 pairs. B) 
Whole cell lysates of breast cancer cell lines were subjected to western blot and probed for CAV1. 
HSC70 was used as a loading control. Blots are representative of two independent experiments 
for CAV1. Statistical significance and the correlation coefficient r, was calculated using Pearson 
correlation. 
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4.2.2 Global H3K4me3 expression in KDM5B KO breast cancer cell 
lines 

Transcriptional repression by KDM5B on its target genes, has been shown to occur 

through its demethylase activity acting on the active H3K4me3 mark, found on the 

promoters of these genes 146. Thus, prior to examining CAV1 expression in the KDM5B 

KO cells, global H3K4me3 levels were examined in these cells.  H3K4me3 levels was 

high in BT-474 KO2 cells and moderately increased in the BT-474 KO1* cells, in 

comparison to WT cells (Fig 4.3A). Contrastingly, KDM5B KO in SKBr3 cells did not alter 

global H3K4me3 levels (Fig 4.3B). Lack of increased global H3K4me3 levels upon 

KDM5B silencing has previously been observed in MCF-7 cells 146. The authors did 

however observe increased H3K4me3 levels on the promoters of KDM5B target genes 

including CAV1, and this was related to their increased expression.  

 

	

 

Figure 4.3: Global H3K4me3 expression in KDM5B KO cells. Acid extracted histone proteins 
from wildtype (WT) and KDM5B KO cells of A) BT-474 and B) SKBr3 cells, were subjected to 
western blot and probed with the H3K4me3 antibody. Histone H3 was used as a loading control.  
C) and D) Quantification of blots was done on imageJ software. Blots were normalised to histone 
H3 and thereafter to WT cells. Error bars indicate s.e.m of two independent experiments. Blots 
are representative of two independent experiments. 
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4.2.3 KDM5B transcriptionally represses CAV1 expression in SKBr3 
cells 

Since silencing of KDM5B activates CAV1 expression in MCF-7 breast cancer cells 
146,156, CAV1 expression was examined in the BT-474 and SKBr3 KDM5B KO cells, to 

determine whether KDM5B regulates its expression in these cell lines. CAV1 was 

markedly upregulated upon KDM5B KO in SKBr3 cells (Fig 4.4A). Interestingly, KDM5B 

KO did not alter CAV1 expression in BT-474 cells (Fig 4.4B). This data demonstrates 

that KDM5B regulates CAV1 in a cell phenotype dependent manner since, BT-474 being 

an ER+/HER2+ cell line, has different signalling pathways in comparison to SKBr3, an 

ER-/HER2+ cell line. 

	

	

	

	

Fig 4.4: CAV1 expression upon KDM5B KO in SKBr3 and BT-474 cells. Whole cell lysates of 
A) BT-474 WT KO1* and KO2 cells and B) SKBr3 WT and KO cells were subjected to western 
blot and probed with CAV1 antibody. HSC70 was used as a loading control. Blots represent three 
independent experiments. 
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could be involved in downregulation of CAV1 expression in breast fibroblasts. Thus, 

inhibiting KDM5B in breast CAFs that have a low CAV1 expression, could potentially be 

beneficial in the clinic.  

 

Figure 4.5: Expression of CAV1 and KDM5B in the normal breast fibroblast and breast 
cancer-associated fibroblasts. Whole cell lysates of the normal breast fibroblast line HMFU19 
and breast CAFs were subjected to western blot and probed with KDM5B and CAV1 antibodies. 
HSC70 was used as a loading control. Blots are from one experiment. 
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subsequent production of milk at lactation. It follows therefore that signals from CAV1, 

which controls the JAK/STAT5 pathway, occurs in a paracrine fashion.  

 

Figure 4.6: Cellular distribution of CAV1 and KDM5B in the mouse mammary gland at 
pregnancy day 12.5. (A-C) Consecutive sections showing staining of lobules. A) KDM5B 
expression in luminal (arrow heads), myoepithelial and fat cells (black arrows). B) a-SMA 
expression in myoepithelial cells (black arrow) and C) Secondary antibody control. (D-F) 
Consecutive sections showing staining of ducts. D) KDM5B expression in luminal (arrow heads), 
myoepithelial and fat cells (black arrows). E) a-SMA expression in myoepithelial cells (black 
arrow) and F) Secondary antibody control. (G-I) Consecutive sections showing G) CAV1 
expression in myoepithelial and fat cells (black arrows) and lack of staining in luminal cells (arrow 
heads). H) a-SMA expression in myoepithelial cells (black arrow) and I) Secondary antibody 
control. Representative images taken from mammary glands of 2 mice.  
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4.3 Discussion 

The aim of this chapter was to further understand KDM5B regulation of CAV1 in the 

normal and malignant mammary gland, by looking at their cellular distribution in the mid-

pregnant mammary gland and their expression in different breast cancer cell types (i.e. 

epithelial and fibroblasts), respectively.  

 

4.3.1 CAV1 expression in breast tumours 

Studies on the expression of CAV1 and KDM5B in breast tumours using the METABRIC 

dataset revealed that, CAV1 gene expression is downregulated in HER2+ and luminal B 

breast cancer subtypes (see Fig 4.1). However, CAV1 mRNA expression in the 

METABRIC dataset was unexpectedly low in the basal-like subtype, which can also 

include triple negative breast cancers. However, it has previously been suggested that 

analysis using expression arrays such as METABRIC, should be interpreted with caution. 

This is because, samples constituting the normal-like subtype may have been derived 

from cell types expressing high CAV1 (adipocytes, fibroblasts and endothelial cells), and 

so may distort analysis 233. Therefore, to precisely measure CAV1 mRNA, Elsheikh and 

colleagues, suggested the use of microdissection or in situ methods 233. It was observed 

that expression of CAV1 in the luminal A subtype, was not as downregulated as in the 

other subtypes. This difference particularly between luminal A (ER+/HER2-) and, HER2+ 

(ER-/HER2+) and luminal B (ER+/HER2+ or ER+/HER2-) subtypes, may be attributed 

to HER2 expression, as CAV1 has been shown to negatively associate with HER2 232.  

Given that CAV1 is located in a region that is frequently deleted in many malignancies 

including breast cancer 295, it was investigated whether CAV1 gene deletion was the 

underlying mechanism driving CAV1 downregulation. CAV1 was significantly deleted in 

186 out of 1903 (9.8%) breast tumours, suggesting that CAV1 expression is driven by 

copy number deletion in a fraction of breast cancers. Since the majority of breast cancers 

were diploid for CAV1 expression, it suggests that other factors such as epigenetics as 

discussed below, may be driving CAV1 expression in breast cancer.  

 

4.3.2 CAV1 expression in breast cancer cell lines is subtype specific 

CAV1 expression in breast cancer cell lines, appeared to be subtype specific. These 

differences in CAV1 expression between different breast cancer subtypes (high in TN 

and moderate to low in ER+ and HER2+ cells), has previously been explained to be due 

to methylation of CpG Islands (CGI) shores on the CAV1 promoter 237. CGI shores are 

regions that flank CGI with less CG-density. The authors demonstrated that 
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hypermethylation of CAV1 CGI shores, is mostly observed in cell lines that have low 

CAV1 expression and is characteristic of some luminal breast cancer cell lines. 

Contrastingly, hypomethylation of CAV1 CGI shore is characteristic of the basal-like 

subtype and is hypothesized as contributing to the enhanced aggressiveness of some 

cancers in this subtype. To investigate whether the CGI and CGI shores chromatin 

environment influenced CAV1 gene expression, the authors performed chromatin 

immunoprecipitation sequencing (ChIP-seq) analysis of histone modifications in MCF-7 

cells. Although the H3K4me2 active mark, a substrate of KDM5B was tested, only 

minimal enrichment at CGI shores was observed and so it was concluded that this mark 

was not sufficient to activate CAV1 expression. This is in agreement with the observation 

that CAV1 expression is controlled by the H3K4me3 mark and not H3K4me2 or H3Kme1 
146. Thus, it is not known whether the H3K4me3 mark is enriched at these CGI shores 

thereby regulating CAV1 expression. If so, this may also implicate KDM5B at these 

regions, since KDM5B and H3K4me3 bind at the same regions 146,202.   

 

4.3.3 KDM5B regulates CAV1 in SKBr3 cells 

In breast tumours, there was a weak inverse correlation between CAV1 and KDM5B 

expression. However, in breast cancer cell lines, there was an indication that KDM5B 

may regulate CAV1, since cell lines with a high KDM5B expression, had a very low CAV1 

expression. Indeed, I now find that KDM5B regulates CAV1 expression in SKBr3 cells, 

as demonstrated by its increased expression upon KDM5B KO. This is the first study to 

show that KDM5B can regulate CAV1 in a HER2+ breast cancer cell line, since previous 

studies have used the ER+ cell line, MCF-7 146,156. Although global H3K4me3 levels did 

not change in SKBr3 KO cells, the increased CAV1 expression implies increased 

H3K4me3 levels on the CAV1 promoter, due to the absence of KDM5B. Further work 

using ChIP-PCR assays should confirm this.  

Surprisingly, CAV1 expression did not change in BT-474 KDM5B KO cells. BT-474 cells 

have a high KDM5B expression, and so its KO is expected to result in gene expression 

changes of target genes. Thus, the lack of a change in CAV1 expression in BT-474 cells, 

reflects the cell phenotype. Being an ER+/HER2+ cell line, BT-474 has both the ER and 

HER2 pathways active, and this allows for molecular cross-talk between the two 

pathways, which in turn influences gene expression amongst other cellular behaviours 
296. In contrast, in the ER-/HER2+ SKBr3 cell line, the HER2 signalling pathway may 

dominate and so knockout of KDM5B can result in more dramatic changes of target 

genes.  
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4.3.4 KDM5B may regulate CAV1 in normal and breast cancer-
associated fibroblasts 

In breast cancer-associated fibroblasts, CAV1 upregulation is often associated with good 

clinical outcome 239,242. However, the underlying mechanism of CAV1 expression is not 

known. Similar to breast cancer epithelial cells, an inverse correlation between CAV1 

and KDM5B expression was observed in the breast fibroblast and CAF lines. This 

suggests that CAV1 in breast cancer fibroblasts, may be epigenetically regulated by 

KDM5B. Therefore, targeting KDM5B in breast CAFS that have low CAV1 expression, 

could improve clinical outcome of patients. Given more time, I would have confirmed this 

hypothesis by gene editing of KDM5B in breast fibroblast lines. 

 

4.3.5 KDM5B may regulate CAV1 in myoepithelial and/or fat cells in 
the mouse mammary gland 

To elucidate the CAV1 and KDM5B axis in breast cancer, an understanding of their 

association in the normal mammary gland needs to be examined. A mouse model lacking 

KDM5B demethylase activity, showed upregulation of CAV1 in the mammary gland 

during mid-pregnancy (Steven Catchpole personal communication). Investigations into 

the cellular distribution of CAV1 and KDM5B in the mouse mammary gland, revealed 

expression of both proteins in fat and myoepithelial cells at mid pregnancy. This suggests 

that KDM5B regulates CAV1 through its demethylase activity, in one or both of these cell 

types. The fact that CAV1 is not expressed in the luminal epithelial cells is in agreement 

with previous data 220, and coincides with the notion that CAV1 may be regulating 

signalling pathways in mammary epithelial cells through the stroma, in a paracrine 

fashion. Indeed, observations in our laboratory show that phosphorylation of STAT5, 

which is inhibited by CAV1 231, is expressed in the luminal epithelial cells 196, which are 

involved in alveologenesis and lactation. Therefore, during mid-pregnancy KDM5B may 

be downregulating CAV1 expression in the fat and/or myoepithelial cells, which in turn 

results in activation of the STAT5a signalling pathway, in luminal cells. The importance 

of this pathway has been demonstrated by accelerated mammary gland development 

and premature lactation during pregnancy, as a result of CAV1 knockout 231.  

 

4.3.6 Conclusion 

In conclusion, the data presented here suggests that, downregulation of CAV1 in breast 

cancer cell lines can be mediated by KDM5B in a cell phenotype dependent manner. It 

is also possible that this regulation is extended to normal fibroblast and breast cancer-
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associated fibroblasts. Furthermore, during normal mammary gland development as 

demonstrated in the mouse, KDM5B could regulate CAV1 in the myoepithelial and fat 

cells. Thus, the regulation of CAV1 by KDM5B seems to span across different cell types, 

in the normal and malignant mammary gland. Elucidating this molecular axis may enable 

us to understand the opposite roles of CAV1 in different breast cancer phenotypes and 

may in turn, lead to development of novel therapies.   
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5 : Molecular Effects of KDM5B KO in 
HER2+ Breast Cancer Cells 
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5.1 Introduction 
Previous studies looking at KDM5B-induced gene expression changes in ER+ or triple 

negative breast cancer cell lines, have used knockdown (KD) cells for their analysis 
146,156,159,202. These functional studies which aimed to identify KDM5B target genes in 

breast cancer cells, have shown that KDM5B regulates genes involved in various 

processes such as proliferation, mitotic cell cycle and immune response 146,156,159. Some 

of KDM5B target genes identified in the ER+ breast cancer cell line MCF-7, include 

BRCA1, CAV1 and HOXA5 146,156. These studies have shown that KDM5B regulates 

these target genes, through its demethylase activity. Furthermore, global gene 

expression analysis of KDM5B knockdown in luminal and basal-like breast cancer cells, 

resulted in specific gene expression changes associated with the luminal lineage 

showing that KDM5B can drive specific lineage-associated gene expression patterns 202. 

To date, global gene expression changes induced by KDM5B in HER2+ breast cancer 

cells, has not yet been reported.  

 

5.1.1 Aims 
KDM5B was first identified as a gene that was downregulated upon inhibition of HER2 

signalling 183. This suggests that KDM5B is positively regulated by HER2 signalling and 

may therefore be involved in HER2 tumorigenesis in the breast. It is therefore 

hypothesized that, loss of KDM5B function in HER2+ breast cancer cells will result in 

global gene expression changes. These gene expression changes may in turn lead to 

inhibition of hallmarks of cancer such as, uncontrolled cell growth.  

In Chapter 4, it was shown that KDM5B regulates its target gene CAV1, in the HER2+ 

breast cancer cell line SKBr3, but not in BT-474 cells. This demonstrates that KDM5B 

may regulate target genes in a cell phenotype dependent manner, even within HER2+ 

cell lines, possibly by forming different biological complexes. This chapter aimed to 1) 

identify KDM5B target genes in HER2+ breast cancer cells and 2) determine whether 

HER2+ breast cancer cell lines have common genes regulated by KDM5B. These aims 

were investigated by: 

1) Performing transcriptomic analysis on SKBr3 WT and KDM5B KO cells 

2) Validating expression array analysis in selected KDM5B target genes by RT-qPCR 

3) Examining expression of selected target genes in BT-474 WT and KDM5B KO cells 

by RT-qPCR 

4) Performing gene ontology analysis in SKBr3 KDM5B KO cells to identify enriched 

biological processes of differentially expressed genes  
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5.2 Results 
	

5.2.1 Genome wide expression profiling of KDM5B KO cells by 
microarray analysis 

	

5.2.1.1 KDM5B-induced gene expression changes in SKBr3 cells 

Whole genome expression profile was assessed in one biological repeat of SKBr3 

parental and KDM5B KO cells, using the Illumina Human HT-12 v4 Expression BeadChip 

array, as described in Chapter 2. Comparison of SKBr3 parental and KDM5B KO cells, 

identified 99 upregulated genes and 105 downregulated genes, that showed expression 

differences of 1.5-fold or greater (Fig 5.1) in the KO cells. These findings show that 

KDM5B is involved in both gene activation and repression, in SKBr3 cells. Importantly, 

these differentially expressed genes are constitutive changes, since KDM5B is 

constitutively knocked out in the SKBR3 KO cell line.  
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Figure 5.1: Differentially expressed genes upon KDM5B KO in SKBr3 cells. Differentially 
expressed genes with their respective fold changes (only fold changes ³1.5 or ³-1.5 are shown). 
Comparison of SKBr3 WT cells with KDM5B KO cells (n=1 per group) identified 99 upregulated 
genes (red) and 105 downregulated genes (blue). Data analysis was performed in Partek 
Genomics Suite software using a 2-way ANOVA model.  
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5.2.1.2 RT-qPCR validation of microarray analysis 

To confirm the microarray analysis, RT-qPCR was performed on three upregulated 

genes, EGR1 (fold change = 3), FOS (fold change = 1.27) and MYC (fold change = 1.5) 

and one downregulated gene, SLC40A1 (fold change = -1.8). Early response gene 1 

(EGR1) was selected as it was the top upregulated gene, and has previously been shown 

to be a KDM5B target gene in mouse embryonic stem cells (mESCs) 190. FOS was 

selected since it is also an early response gene and is co-regulated with EGR1 297, 

although its fold change was below 1.5. MYC was selected as it has previously been 

shown to exist in a transcriptional repressor complex with KDM5B 298. Solute carrier 

family 40 member 1 (SLC40A1) was one of the downregulated genes chosen to confirm 

results.  

Total RNA was isolated from cells and processed as described in Chapter 2. RT-qPCR 

analysis of the genes confirmed upregulation of EGR1, FOS and MYC (Fig 5.2A, B, C) 

however, due to large variations between experiments, particularly in the two early 

response genes (EGR1 and FOS), the upregulation was not statistically significant (Fig 
5.2A, B). SLC40A1 showed a trend towards downregulation by RT-qPCR (Fig 5.2D). 

KDM5B KO was confirmed in the KO cells (Fig 5.2E).  

 

 

 

 

 

 

 



	 131	

 

 

   

Figure 5.2: RT-qPCR validation of microarray analysis. RNA extracted from SKBr3 WT and 
KO cells was reverse transcribed, and A) EGR1, B) FOS, C) MYC, D) SLC40A1 and E) KDM5B 
genes examined using Qiagen Quantitect primers. Samples were run in triplicate in each 
experiment. Data represents three independent experiments. Errors bars denote standard error 
of the mean (s.e.m). Asterisks show significance where ****= p£0.0001. Statistical significance 
was calculated using unpaired Student’s t-test. 
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5.2.1.3 Expression of selected microarray genes in BT-474 cells 

To determine whether the genes selected above (i.e. EGR1, FOS, MYC and SLC40A1) 

are regulated by KDM5B in another HER2+ cell line, their expression in BT-474 WT and 

KDM5B KO cells was examined by RT-qPCR.  

EGR1, FOS and MYC expression were upregulated in the BT-474 KO2 cells, in 

comparison to WT cells (Fig 5.3A, B, C), with EGR1 and MYC showing statistical 

significance. However, due to large variations between experiments, the increased 

expression in FOS was not statistically significant, although a clear trend can be 

observed. These genes were however not upregulated in the BT-474 KO1* cells, in 

comparison to WT cells (Fig 5.3A, B, C). Comparison of SKBr3 KO and BT-474 KO2 

cells, suggest that KDM5B can be a transcriptional repressor of EGR1, FOS and MYC, 

in these two phenotypically different cell types. 

SLC40A1 was downregulated in both BT-474 KO cells in comparison to WT cells 

however, downregulation was only significant in the BT-474 KO1* cells (Fig 5.3D). This 

data suggests that KDM5B can be a transcriptional activator of SLC40A1 in BT-474 and 

SKBr3 cells. KDM5B KO was confirmed in the BT-474 KO cell lines (Fig 5.3E). 

The differences observed between BT-474 KO1* and KO2 are likely to be due to the 

higher KDM5B mRNA expression in the former. For genes where KDM5B appears to be 

acting as an activator (i.e. they are downregulated in the knockouts), the influence of the 

low level of KDM5B mRNA still present in the BT-474 KO1* cells, could be expanded 

through indirect activation or repression of other factors influencing SLC40A1 

expression. However, it cannot be ruled out that these differences may also be attributed 

to a clonal effect. Taken together, these data suggest that KDM5B can regulate EGR1, 

FOS, MYC and SLC40A1 in BT-474 and SKBr3 cells. However, further validation using 

additional clones in both cell lines is required. 
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Figure 5.3: Expression of selected microarray genes in BT-474 cells. RNA extracted from 
BT-474 WT, KO1* and KO2 cells was reverse transcribed and A) EGR1, B) FOS, C) MYC, D) 
SLC40A1 and E) KDM5B genes examined, using Qiagen Quantitect primers. Samples were run 
in triplicate in each experiment. Data represents three independent experiments. Errors bars 
denote standard error of the mean (s.e.m). Only significant differences are shown. Asterisks show 
significance where *= p£0.05, ***= p£0.001, ****= p£0.0001. Statistical significance was 
calculated using unpaired Student’s t-test. 
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5.2.2 Cell culture methods can affect expression of early response 
genes  

EGR1 and FOS are early response genes that are normally expressed in response to 

stress stimuli 299. Since large variations were observed particularly in EGR1 and/or FOS 

expression in SKBr3 KO and BT-474 KO2 cells, it suggested that cell culture methods 

could be affecting their expression. Indeed, a previous study by Yang and colleagues, 

found that EGR1 expression was rapidly induced when cells were rinsed with PBS or 

media, prior to cell lysis 300. Upon closer observation of EGR1 expression from two 

independent RT-qPCR experiments of BT-474 WT cells for example, it was noticed that 

the cycle threshold (Ct) values differed (i.e. 19.3 and 24.2 in experiment 1 and 

experiment 2 respectively). Ct values are inversely correlated to the amount of RNA in 

the sample. Lower Ct values indicate high amounts of targeted gene, whereas higher Ct 

values indicate low amounts of targeted gene. It was thus hypothesized that these 

differences in Ct values, may be attributed to the method of cell lysis used for RNA 

preparation. This is because in experiment 1, cell lysis was performed on a cell pellet 

after trypsinisation, whereas in experiment 2, cells were directly lysed on the plate by 

scraping. Therefore, these two methods of cell lysis (trypsin and scraping), were re-

examined in BT-474 WT cells, to validate the initial observations. Figure 5.4 shows the 

Ct values of EGR1 and the control gene PUM1 in the two experiments. 

EGR1 was detected at lower cycles in the trypsinised samples (Fig 5.4). Contrastingly, 

in the scraped samples, EGR1 expression was detected at higher cycles (Fig 5.4). Thus, 

demonstrating induction of EGR1 expression when cells are trypsinised. Expression of 

the housekeeping gene PUM1 was detected at relatively similar cycles in both the 

trypsinised and scraped samples (Fig 5.4). This suggests that, trypsinising cells prior to 

lysis, can induce expression of early response genes such as EGR1. Therefore, care 

should be taken in manipulating cells when working with early response genes. The 

microarray and RT-qPCR data shown in Figures 5.1, 5.2 and 5.3, were performed on 

samples that were lysed using the cell scraping method. Thus, the reported gene 

expression data are constitutive changes, and not a response to stress stimuli.  
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Figure 5.4: Cell culture methods can affect expression of early response genes. 
Comparison of two cell lysis methods (trypsin or scraping) on EGR1 expression in BT-474 WT 
cells. Graph shows detection of EGR1 in lower cycle numbers in trypsinised samples, in 
comparison to scraped samples. In contrast, PUM1 was detected at similar cycle numbers in 
trypsinised and scraped samples. Data represents two independent experiments. Errors bars 
denote standard error of the mean (s.e.m). 

 

 

5.2.3 Gene ontology of differentially expressed genes in SKBr3 KDM5B 
KO cells 

Further analysis on the differentially expressed genes (Fig 5.1) was performed using the 

ToppGene Suite tool to identify enriched biological processes. Interestingly, gene 

ontology showed that upregulated genes were enriched for the biological process 

‘response to drug’ (Fig 5.5). Closer examination of the 12 genes identified in this group, 

revealed that 5 of the genes i.e. ATP binding cassette (ABC) transporter (ABCC2), 

Annexin A1 (ANXA1), CAV1, MYC and Lipocalin 2 (LCN2), promote resistance to 

Herceptin or Lapatinib 240,301–303.  

The downregulated genes in the SKBr3 KDM5B KO cells were enriched for various 

biological processes including mammary gland epithelial cell proliferation (Fig 5.6). 

These genes included inhibitor of differentiation 2 (ID2) and STAT6, which belong to the 

transforming growth factor-beta (TGFb) and JAK/STAT pathways respectively. A full list 

of biological processes enriched in differentially expressed genes in SKBr3 KO cells is 

shown in Appendix Tables 8.1 and 8.2.  
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Fig 5.5: Gene ontology of upregulated genes in SKBr3 KDM5B KO cells. Representative 
enriched biological processes in upregulated genes upon KDM5B KO in SKBr3 cells, as reported 
by ToppGene. P-values are log transformed (−log10(p value)) and were corrected by the 
Benjamini-Hochberg (B&H) false discovery rate (FDR) method. 

 

 

 

Figure 5.6: Gene ontology of downregulated genes in SKBr3 KDM5B KO cells. 
Representative enriched biological processes in upregulated genes upon KDM5B KO in SKBr3 
cells, as reported by ToppGene. P-values are log transformed (−log10(p value)) and were 
corrected by the Benjamini-Hochberg (B&H) false discovery rate (FDR) method. 
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5.3 DISCUSSION 

Since its discovery, studies have shown that KDM5B is a transcriptional regulator that is 

overexpressed in breast cancers. To further understand its function in this disease, 

different studies have aimed to identify genes that are regulated by KDM5B. Identification 

of KDM5B target genes and their specific roles, has enabled identification of biological 

processes involving this enzyme. To date, KDM5B target genes have been identified in 

either ER+ or triple negative breast cancer cell lines 146,156,159,202. These studies have 

mainly used RNAi to silence KDM5B expression and subsequently study its function. 

This is the first study to my knowledge, to use KDM5B KO cells to identify KDM5B target 

genes on a whole genome level, in the SKBr3 HER2+ breast cancer cells. 

 

5.3.1 KDM5B-induced gene expression changes in SKBr3 and BT-
474 HER2+ breast cancer cells 

A total of 204 genes were differentially expressed upon KDM5B KO (99 upregulated and 

105 downregulated genes) in the SKBr3 HER2+ cells. From the selected genes used to 

validate the microarray, EGR1, FOS, and MYC have previously been associated with 

KDM5B in different cell types 146,156,190,195,298. Furthermore, assessment of these genes in 

BT-474 KO cells, revealed a similar expression pattern to SKBr3 KO cells for BT-474 

KO2 cells, but not BT-474 KO1* cells. The difference between the two BT-474 KO cells 

supports the interpretation that the BT-474 KO1* cells are not a complete KO, retaining 

expression of a low amount of KDM5B mRNA.  

EGR1 is an early response gene encoding for a zinc finger transcription factor, and is 

expressed in response to various stimuli 297. EGR1 is transcriptionally repressed by 

KDM5B through its demethylase activity, in mESCs 190. The authors demonstrated that 

by overexpressing KDM5B or silencing by siRNA, KDM5B directly inhibits EGR1 

expression. They showed that binding of KDM5B led to decreased levels of H3K4me3 

at the EGR1 promoter, thereby decreasing EGR1 expression. Furthermore, of the three 

cell lineage markers examined (EGR1, p27 and BMI1), EGR1 was the only gene found 

to be affected by inhibition of KDM5B, emphasising a crucial role for KDM5B in 

downregulating this gene 190.  

In breast cancer, expression of EGR1 is decreased at the RNA and protein levels 

compared to normal mammary epithelial cells, as well as, in breast tumours 304,305. 

Overexpression of EGR1 suppresses breast cancer cell proliferation, by arresting cell 

cycle progression at the G0/G1 phase 304. The data reported in this chapter indicates that 

KDM5B normally represses EGR1 expression in SKBr3 cells, and so contributes to their 

proliferation (See Chapter 6).  
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FOS is an immediate early response gene and is co-regulated with EGR1 during growth 

and differentiation 297. FOS is part of the activator protein 1 (AP-1) complex and acts as 

a transcription factor. Knockout of KDM5b in mouse mammary epithelial cells (MECs), 

showed that fos expression did not change in comparison to wildtype MECs 195. This 

suggests that the function of KDM5B in regulating FOS may differ in normal and tumour 

cells, since FOS was upregulated upon KDM5B KO in BT-474 and SKBr3 breast cancer 

cells. Furthermore, regulation of FOS by KDM5B in human and mouse mammary cells 

may also differ.  

MYC is a protooncogene involved in many signal transduction pathways that promote 

cell growth, cell cycle and adhesion 306. Not surprisingly, abnormal expression of MYC is 

often observed in cancers, including breast cancer 307. Using the MCF-7 breast cancer 

cell line, MYC was found to exist in a complex with KDM5B and the transcription factor 

AP-2 gamma (TFAP2C)  298. This KDM5B-MYC-TFAP2C complex was shown to repress 

the cell cycle inhibitor p21, and it was proposed that this complex might promote cell 

cycle progression in breast cancer. In glioblastoma cells, MYC expression was found to 

correlate with H3K4me3 abundance on its locus, suggesting epigenetic regulation of 

MYC 308. An RT-PCR screen showed a moderate association between KDM5B and 

H3K4me3 expression on the Myc locus. Thus, the upregulation of MYC observed here 

in SKBr3 KO and BT-474 KO2 cells, suggests that KDM5B could regulate MYC 

expression via its demethylase activity.  

An association of KDM5B with SLC40A1 has not yet been documented. SLC40A1 

(Ferroportin) is an iron exporter that is decreased in some breast cancer cells and tissues 
309,310. Since SLC40A1 was downregulated in KDM5B KO cells, it implies that it is 

normally upregulated in BT-474 and SKBr3 cells. The expression of SLC40A1 still needs 

validating, as the RT-qPCR only showed a slight trend in reduction in BT-474 and SKBr3 

KO cells. 

 

5.3.2 KDM5B normally represses genes associated with Herceptin 
or Lapatinib resistance in SKBr3 cells 

Knock out of KDM5B in SKBr3 cells resulted in upregulation of CAV1, ABCC2, ANXA1, 

LCN2 and MYC, all of which have been implicated in Herceptin or Lapatinib resistance. 

This suggests that KDM5B normally represses these genes and so knocking out KDM5B 

in SKBr3 cells, may not be a good therapeutic target in these cells since expression of 

these genes upon loss of KDM5B function may not enhance sensitivity to HER2 targeted 

therapies (see Chapter 6). 
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CAV1 was recently identified as a gene that promotes Herceptin resistance 240. Sekhaar 

and colleagues, had previously shown that CAV1 contributes to Herceptin resistance by 

mediating endocytosis of HER2241. The authors proposed that endocytosis of HER2 

contributed to Herceptin resistance by attenuating antibody dependent cellular 

cytotoxicity (ADCC). Increased ABCC2 expression promotes resistance of gastric cancer 

cells to Trastuzumab emtansine (TDM1), since its inhibition sensitized cells to TDM1 and 

reduced cell viability 301. LCN2, a chaperone protein, was identified as a gene 

upregulated in the Herceptin resistant cell line HCC1954, and so is associated with 

Herceptin resistance 240. Upregulation of ANXA1 was found to confer resistance to 

Herceptin in HER2+ breast cancer cells as well as, HER2+ breast cancer patients who 

had received adjuvant Herceptin-based therapy 303. Thus, ANXA1 was identified as a 

predictive marker of Herceptin treatment response.  

MYC has previously been implicated in Lapatinib resistance since activation of the 

FOXO/c-Myc axis via the MLL2 protein, reduced sensitivity to Lapatinib302. Indeed, 

inhibition of this axis using an inhibitor to the chromatin associating protein BRD4, re-

sensitized cells to Lapatinib302.  

 

5.3.3 KDM5B normally activates genes associated with the TGFb 
and JAK/STAT pathways in SKBr3 cells 

The JAK/STAT and TGFb pathways consists of diverse proteins that regulate cell 

proliferation and differentiation. Constitutive activation of these pathways is correlated 

with tumour development and/or progression including breast cancer. Downregulation of 

STAT6 and ID2 which belong to the JAK/STAT and TGFb pathways, respectively, in 

SKBr3 KO cells, suggests that KDM5B normally activates their expression. This 

corresponds to data showing decreased TGFb pathway activity in siKDM5B basal-like 

breast cancer cells 202. Therefore, downregulation of members of the JAK/STAT and 

TGFb could result in reduced proliferation of SKBr3 cells (See Chapter 6). Contrastingly 

however, KDM5B knockdown in luminal breast cancer cells, led to upregulation of genes 

associated with the TGFb pathway 202. These findings show the importance of cell 

phenotype on KDM5B function.   

 

5.3.4 Conclusion 

Global gene expression profiling in SKBr3 parental and KDM5B KO cells has revealed 

that, KDM5B may contribute to proliferation of SKBr3 cells. It is possible that these 

functions of KDM5B extends to BT-474 cells, since at least EGR1, FOS and MYC were 
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also upregulated upon KDM5B KO in this cell line. Thus, the effect of KDM5B KO in 

proliferation in BT-474 and SKBr3 cells, was examined (see Chapter 6). Furthermore, 

KDM5B may mediate proliferation of SKBr3 cells through activation of the JAK/STAT 

and TGFb pathways however, the underlying mechanisms need to be experimentally 

determined. Additionally, knocking out KDM5B in SKBr3 revealed that KDM5B normally 

represses genes implicated in Herceptin or Lapatinib resistance and so suggests that 

this loss of KDM5B function may not increase sensitivity to HER2 targeted therapies in 

SKBr3 cells (see chapter 6).  

In order to understand whether KDM5B regulates similar genes in HER2+ breast cancer 

cells, genome wide expression analysis needs to be performed in WT and KDM5B KO 

of BT-474 and other HER2+ breast cancer cell lines. Additionally, it would be important 

to determine whether KDM5B regulates its target genes via its demethylase activity. 

Such information will enable us to determine whether the demethylase activity is the 

prominent mechanism through which KDM5B downregulates gene expression. This 

information will have bearing on the use of KDM5B small molecule inhibitors in the clinic, 

since these inhibitors target the demethylase domain.  
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6 : Phenotypic Effects of KDM5B KO in 
HER2+ Breast Cancer Cells 
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6.1 Introduction 
The KDM5 family of histone demethylases have increasingly gained the spotlight as 

novel targets for anti-cancer therapy. Their attractiveness comes from studies showing 

their genetic amplification, aberrant expression, promotion of tumour growth and of drug 

resistance in various cancers. Since the KDM5 proteins are well characterised for their 

H3K4me3 demethylase activity, there are currently major efforts aimed at developing 

small molecules which inhibit their enzymatic activity for application to cancer therapy. 

These inhibitors can also be used to study the biological function of this activity. 

Identifying whether these proteins are involved in drug resistance could lead to the 

development of novel therapeutic strategies.  

 

6.1.1 Role of KDM5B in promoting cell proliferation of cancers 

Studies have shown that KDM5B promotes proliferation of various cancers, since its 

downregulation can lead to reduced cell growth. For example, silencing of KDM5B has 

been shown to reduce cell growth of bladder and lung cancer cell lines 208. The authors 

proposed that KDM5B silencing may be inducing apoptosis of bladder and lung cancer 

cells, since most of the cells were in the sub-G1 phase. Further analysis using microarray 

expression data, showed that KDM5B could be regulating cell cycle progression of 

bladder and lung cancer cell lines via activation of the E2F/RB pathway 208. Similarly, 

knockdown of KDM5B in hepatocellular carcinoma cells (HCC) inhibited cell proliferation 

and colony formation 210. Reduced tumour growth of HCC upon KDM5B knockdown was 

also observed in vivo 210. In melanoma cells, KDM5B expression in a sub-population of 

slow-cycling cells was found to be necessary for maintenance of tumour growth 204.  

In breast cancer, KDM5B has been shown to promote proliferation of the MCF-7 ER+ 

cells 146,188,202. Yamamoto and colleagues demonstrated that reduction of cell proliferation 

in KDM5B knockdown MCF-7 cells, was due to activation of the TGFb signalling 

pathway202. KDM5B knockdown in the ER-/HER2+ breast cancer cell line, UACC812, 

has also been shown to result in reduced cell growth 253.  

 

6.1.2 KDM5B and drug resistance in cancer 

A role for epigenetic factors in promoting drug resistance is emerging, implicating various 

epigenetic modifiers including KDM5B. High KDM5B expression in a subpopulation of 

melanoma cells was found to confer resistance to various anti-cancer drugs 246. Similarly, 

MYCN amplified neuroblastoma cells with a high KDM5B expression, were resistant to 

chemotherapy drugs 212. Although a role for KDM5B in breast cancer drug resistance has 
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not yet been determined experimentally, using gene expression and copy number data 

from public databases, it has been shown that positive KDM5B activity in patients with 

ER+ tumours, was associated with poor outcome and endocrine resistance202.  

 

6.1.3 Aims 

In Chapter 5 (Section 5.2.3), gene expression analysis in SKBr3 KO cells revealed that 

downregulated genes were enriched for genes associated with cell proliferation. 

Whereas upregulated genes were enriched for genes involved in Herceptin or Lapatinib 

resistance. The aim of this chapter was therefore to investigate the effect of KDM5B KO 

on cell proliferation of SKBr3 and BT-474 cells. Furthermore, it was also determined 

whether KDM5B KO affected drug sensitivity to HER2 targeted therapies (Herceptin and 

Lapatinib) in SKBr3, as well as, BT-474 cells. These aims were achieved by examining: 

1) Cell proliferation of BT-474 and SKBr3 WT and KDM5B KO cells, at different time 

points  

2) Cell viability of BT-474 and SKBr3 WT and KDM5B KO cells, following treatment with 

Herceptin or Lapatinib alone, or in combination, at different time points. The effect of 

KDM5B KO on the emergence of drug tolerant cells following long-term treatment 

with Herceptin, was also evaluated. 
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6.2 Results 
	

6.2.1 Effect of KDM5B KO on cell proliferation of BT-474 and SKBr3 cells 
Studies utilising RNA interference (RNAi) technology, have shown that KDM5B promotes 

cell proliferation of the ER+ breast cancer cells, MCF-7 146,188,202. In the experiment 

described below, KDM5B KO cell lines that were developed using CRISPR (Chapter 3 
Section 3.2.5), were used to investigate the role of KDM5B in proliferation of HER2+ 

breast cancer cells. It was observed that KDM5B KO did not compromise cell 

proliferation of BT-474 cells (Fig 6.1A). In contrast, KDM5B KO significantly reduced 

proliferation of SKBr3 cells (Fig 6.1B). Thus, suggesting that KDM5B can promote 

proliferation of some but not all, HER2+ breast cancer cell lines. It is should be noted 

however, the differences observed in cell proliferation between the two cell lines, may be 

a reflection of the different methodologies used and so requires further validation using 

the same assay.  

 

 

 

Figure 6.1: Effect of KDM5B KO on cell proliferation of BT-474 and SKBr3 HER2+ breast 
cancer cells. A) Methylene blue cell viability assay of BT-474 WT, KDM5B KO1* and KO2 cells 
and B) MTT cell viability assay of SKBr3 WT and KDM5B KO cells. Cell viability was assessed at 
days 1, 4 and 7. Absorbance was read at 595nm for the MTT assay and 655nm for the methylene 
blue assay. Data shows the mean from three independent experiments and error bars standard 
error of the mean (± s.e.m). Asterisks indicate significance where **P=0.01 and ****P=0.0001. 
Statistical significance was calculated using 2-way ANOVA with Sidak correction. 
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6.2.2 Effect of KDM5B KO on response to HER2 targeted therapies  
The effect of KDM5B KO on response to the HER2 targeted therapies Herceptin and 

Lapatinib, was examined. 1x104 WT and KDM5B KO cells of BT-474 or SKBr3, were 

seeded in 24-well plates and 24 hours later after adhesion to the wells, cells were treated 

with control (PBS or DMSO), Herceptin (10µg/ml) or Lapatinib (100nM) alone, or in 

combination. Cell viability was then examined using the methylene blue assay at day 0, 

3 and 6.  

BT-474 KO2 cells were significantly more sensitive to Herceptin in comparison to WT 

cells, as seen at day 6 (Fig 6.2A). However, BT-474 KO1* cells did not show enhanced 

Herceptin sensitivity at the dose and time tested, in comparison to WT cells (Fig 6.2A). 
Interestingly, KDM5B KO did not enhance sensitivity to Lapatinib alone in BT-474 cells 

(Fig 6.2B). However, enhanced sensitivity was observed in BT-474 KO2 cells in 

comparison to WT cells, upon combined Herceptin and Lapatinib treatment (Fig 6.2C), 

probably because of the increased sensitivity observed with Herceptin treatment. BT-

474 KO1* cells did not show enhanced sensitivity upon combined Herceptin and 

Lapatinib treatment, in comparison to WT cells (Fig 6.2C), supporting the suggestion 

that KDM5B is not completely knocked out in these cells. 

In contrast, KDM5B KO in SKBr3 cells did not show enhanced sensitivity to either 

Herceptin (Fig 6.3A) or Lapatinib (Fig 6.3B) alone, or in combination (Fig 6.3C), at the 

dose and time tested. These data suggest that features of the cell phenotype other than 

HER2 expression, are determining factors in response to Herceptin treatment, in the 

HER2+ breast cancer subtype.  
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BT-474 

 

 

 

 

 

 

Figure 6.2: KDM5B KO increases sensitivity to HER2 targeted therapies in BT-474 cells. 
BT-474 parental, KDM5B KO1* and KDM5B KO2 cells were treated with A) 10µg/ml Herceptin B) 
100nM Lapatinib or C) 10µg/ml Herceptin and 100nM Lapatinib for 0, 3 and 6 days. PBS and 
DMSO were used as controls. Bars denote mean from three independent experiments and errors 
bars standard error of the mean (± s.e.m.). Statistical significance was calculated using unpaired 
Student’s t-test. Asterisks indicate significance where, *=p<0.05 and ns=not significant. 
Significance was only observed at day 6. 
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SKBr3 

 

 

 
 

 
 

Figure 6.3: KDM5B KO does not affect response to HER2 targeted therapies in SKBr3 
cells. SKBr3 parental and KDM5B KO cells were treated with A) 10µg/ml Herceptin B) 100nM 
Lapatinib or C) 10ug/ml Herceptin and 100nM Lapatinib for 0, 3 and 6 days. PBS and DMSO 
were used as controls. Bars denote mean from three independent experiments and errors bars 
standard error of the mean (± s.e.m.).  
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6.2.3 Effect of KDM5B KO on emergence of drug tolerant cells in BT-474 
and SKBr3 cells 

Since increased sensitivity to Herceptin was observed in BT-474 KO2 cells and not 

SKBr3 KO cells, it suggested that KDM5B may be contributing to the survival of drug 

tolerant cells in BT-474 cells. To evaluate this observation, low numbers (2.5x103) of WT 

and KDM5B KO cells of BT-474 or SKBr3, were seeded onto 6-well plates and 

immediately treated with a low dose of Herceptin (5µg/ml) for 14 days. Media and 

Herceptin or PBS control, was changed every three to four days. After 14 days, cells 

were fixed and stained with crystal violet and absorbance read at 595nm, following 

extraction of the dye with 10% acetic acid. 

BT-474 KO2 cells were significantly more sensitive to Herceptin after the 14-day 

treatment, in comparison to WT cells (Fig 6.4A). In contrast, there was no difference in 

Herceptin sensitivity between BT-474 WT and KO1* cells (Fig 6.4A). Similarly, no 

difference in Herceptin sensitivity was observed between SKBr3 WT and KO cells (Fig 
6.4B). These experiments provide the first evidence that KDM5B can contribute to 

emergence of drug tolerance to Herceptin in BT-474 cells.  

 

Figure 6.4: Effect of KDM5B KO on emergence of drug tolerant cells in BT-474 and SKBr3 
cells. A) 2.5x103 BT-474 WT, KDM5B KO1* and KDM5B KO2 cells and B) 2.5x103 SKBr3 WT 
and KDM5B KO cells, were seeded in 6-well plates and treated with PBS (blue bars) or 5µg/ml 
Herceptin (red bars) for 14 days. Bars denote mean from three independent experiments and 
errors bars show standard error of the mean (± s.e.m.). Asterisks indicate significance where 
**P=0.01 and ns=not significant. Statistical significance was calculated using 2-way ANOVA, with 
Sidak correction. 
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6.2.4 Dosage effect of Herceptin on cell viability of SKBr3 WT and KDM5B 
KO cells 

As enhanced sensitivity was not observed in SKBr3 KDM5B KO cells treated with either 

5µg/ml or 10µg/ml Herceptin, it was determined whether increasing Herceptin 

concentration would increase sensitivity. To this end, both SKBr3 WT and KO cells were 

treated with control (PBS), 40µg/ml, 100µg/ml or 200µg/ml Herceptin for 3 and 6 days. 

As shown in figure 6.5, treatment with Herceptin at the indicated doses did not enhance 

sensitivity in SKBr3 KO cells, in comparison to WT cells. Thus, suggesting that the 

maximum dose that induced a response had been reached.  

 

 

Figure 6.5: Dosage effect of Herceptin on cell viability of SKBr3 WT and KDM5B KO cells. 
SKBr3 parental and KO cells were treated with PBS control or Herceptin at the indicated doses 
for 3 and 6 days. Bars denote mean from three independent experiments and errors bars 
standard error of the mean (± s.e.m.). 
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6.2.5 KDM5B represses genes associated with drug response in SKBr3 
cells  

Gene expression studies have shown association between expression of particular 

genes and Herceptin response 240. In Chapter 5, gene ontology analysis revealed that 

some upregulated genes (CAV1, ABCC2, ANXA1, LCN2 and MYC) are involved in 

resistance to Herceptin or Lapatinib (Chapter 5 Section 5.2.3). To determine whether 

gene expression profile could explain the differences observed in Herceptin sensitivity 

between SKBr3 KO and BT-474 KO2 cells, mRNA expression of these genes was 

examined in these cells.  

Upregulation of ABCC2 and LCN2 mRNA expression in SKBr3 KO cells was confirmed 

by RT-qPCR (Fig 6.6A and B). Upregulation of CAV1 and MYC in SKBr3 KO cells has 

previously been confirmed by western blot and RT-qPCR, as shown in Chapters 4 
Section 4.2.3 and Chapter 5 Section 5.2.1.2, respectively.  

In BT-474 KO2 cells, LCN2 mRNA expression (Fig 6.6B) and CAV1 protein expression 

(Chapter 4 Section 4.2.3) did not change in comparison to WT cells. However, ABCC2 

(Fig 6.6A) and MYC mRNA expression (Chapter 5 Section 5.2.1.3) were upregulated 

in BT-474 KO2 cells but to a lesser extent than in SKBr3 KO cells. These results suggest 

that gene expression/cell phenotype could determine KDM5B function in conferring 

Herceptin resistance in HER2+ breast cancer cell lines. Further functional experiments 

are required to test this hypothesis.  

 

 

Figure 6.6: Expression of ABCC2 and LCN2 in SKBr3 and BT-474 WT and KDM5B KO cells. 
RNA extracted from SKBr3 WT and KO cells and BT-474 WT and KO2 cells was reverse 
transcribed and ABCC2 and LCN2 genes examined, using Qiagen Quantitect primers. Samples 
were run in triplicate in each experiment. Data represents three independent experiments. Errors 
bars denote standard error of the mean (s.e.m). 	
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6.3 Discussion 

In this chapter, the phenotypic effects of KDM5B KO on 1) cell proliferation and 2) 

sensitivity to the HER2 targeted therapies, Herceptin and Lapatinib was investigated. 

The findings show that KO of KDM5B inhibits cell growth of the ER-/HER2+ SKBr3 cells 

and reveals a potential novel role for KDM5B in promoting resistance to Herceptin, in the 

ER+/HER2+ BT-474 cells. These results demonstrate that KDM5B functions in a 

phenotypic specific manner.  

 

6.3.1 KDM5B promotes cell proliferation of SKBr3 cells 

The finding that KDM5B KO results in reduced proliferation of SKBr3 cells, confirms 

Gene Ontology analysis showing involvement of some of the downregulated genes in 

mammary epithelial cell proliferation (Chapter 5 Section 5.2.3). These genes included 

ID2 and STAT6 which are part of the TGFb and JAK-STAT signalling pathways, 

respectively. Both of these pathways are involved in promoting cell proliferation, 

suggesting that KDM5B normally activates these genes potentially leading to increased 

cell growth. This is in contrast to the finding that KDM5B knockdown activated the TGF 

pathway in the ER+ cell line, MCF-7202. Thus, these data demonstrate that KDM5B 

function is dependent on cell phenotype.  

Furthermore, the result that KDM5B KO reduces cell proliferation of SKBr3 cells, 

demonstrates the advantages of the CRISPR/Cas9 gene editing technology in functional 

studies. A KDM5B shRNA screen for cellular viability in a panel of breast cancer cell 

lines, that included BT-474 and SKBr3, showed that the growth of these cells was not 

inhibited by KDM5B knockdown 202. Using CRISPR it is now evident that KDM5B KO 

reduces the growth of SKBr3 cells, and thus shows the limitations of RNAi technology, 

which only partially silences genes that may still therefore have residual functionality. 

This observation however, needs to be validated using another clone or by performing 

rescue experiments to confirm that observations are not a clonal effect. 

Although KDM5B is highly expressed in BT-474 cells, it was surprising that its knockout 

did not have an effect on cell growth. Furthermore, since BT-474 is an ER+/HER2+ cell 

line and KDM5B has been shown to control cell growth of ER+ cells 188,202, this lack of 

reduced cell growth was surprising. However, these results are in agreement with those 

of Gale and colleagues who found that treatment of BT-474 cells with a small molecule 

inhibitor to KDM5A and KDM5C, did not affect cell proliferation114. Thus, taken together 

these findings suggest that KDM5B and indeed other KDM5 family members, may not 

have a direct role in controlling the growth of BT-474 cells.  
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6.3.2 A role for KDM5B in Herceptin resistance of BT-474 cells 

This is the first study to demonstrate a role for KDM5B in Herceptin resistance of BT-474 

breast cancer cells. Increased sensitivity to Herceptin in BT-474 KO2 cells was also 

observed in a long-term assay (Fig 6.4), where fewer drug tolerant cells were seen after 

14-day Herceptin treatment. Herceptin has previously been shown to enhance apoptotic 

cell death induced by Lapatinib 311,312. The data shown here is in agreement with these 

studies, since cell viability was further reduced when BT-474 KO2 cells were treated with 

a combination of Herceptin and Lapatinib. Taken together it is clear that multiple targeting 

is important in achieving enhanced therapeutic response and that determination of 

tumour phenotype is vital. 

Surprisingly, KDM5B KO did not increase efficacy to Herceptin in SKBr3 cells but gene 

ontology analysis revealed that upregulated genes in SKBr3 KO cells, were enriched for 

genes involved in Herceptin resistance (see Chapter 5 Section 5.2.3), thus 

demonstrating that KDM5B normally represses expression of these genes. Interestingly, 

expression of CAV1 and LCN2 which have previously been associated with Herceptin 

resistance, were not upregulated in BT-474 KO2 cells, whereas ABCC2 was marginally 

upregulated in these cells. Therefore, the difference in Herceptin sensitivity observed 

between BT-474 and SKBr3 KDM5B KO cells could be explained by cell phenotype, 

since KDM5B represses some resistance associated genes in SKBr3 cells but not in BT-

474 cells. 

 

6.3.3 KDM5B KO does not enhance sensitivity to Lapatinib 

KDM5B KO in both BT-474 and SKBr3 cells did not enhance sensitivity to Lapatinib. 

Lapatinib influences cell proliferation by 1) slowing down cycling cells and 2) driving cells 

into quiescence through apoptosis 312. This phenomenon was observed here, where 

Lapatinib had an initial cytotoxic effect at day 3 resulting in reduced cell viability, which 

was later cytostatic by day 6, in both BT-474 and SKBr3 cells. Although BT-474 KO2 

cells seemed to be slightly more sensitive to Lapatinib, this response was not significant. 

Thus, other factors which could include other KDM5 family members, may be influencing 

Lapatinib sensitivity. Indeed, a recent study has shown that treatment of SKBr3 cells with 

Lapatinib in combination with a pan-KDM5 small molecule inhibitor significantly reduced 

survival of drug tolerant cells 115. Thus, inhibition of other KDM5 enzymes, perhaps 

coupled with other therapies, may be required to overcome drug tolerance to Lapatinib 

in this cell line. 

Furthermore, the lack of increased sensitivity to Lapatinib could be explained by 

upregulation of MYC which has been shown to confer resistance to Lapatinib 302. Since 
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MYC expression was also upregulated in both SKBr3 KO and BT-474 KO2 cells, this 

could explain why both cell lines did not show enhanced sensitivity to Lapatinib. 

Therefore, this increased expression of MYC upon KDM5B KO, may be contributing to 

the maintenance of Lapatinib resistance at day 6, in BT-474 and SKBr3 cells (Fig 6.2 
and 6.3 respectively). Inhibition of MYC may therefore re-sensitise these cells to 

Lapatinib however, this needs to be experimentally tested.  

 

6.3.4 Conclusion 

The data shown here, demonstrate a novel observation that KDM5B promotes 

proliferation of SKBr3 cells which had not been previously shown using RNAi. This effect 

in proliferation is not universal in HER2+ breast cancer cells, since BT-474 cell growth 

was not affected by KDM5B KO. Gene expression profiling of SKBr3 KO cells, showed 

that KDM5B normally activates genes involved in the TGFb (i.e. ID2) and JAK-STAT (i.e. 

STAT6) pathways, in this ER-/HER2+ cell line. Thus, it remains to be experimentally 

tested whether KDM5B may be promoting cell proliferation of SKBr3 cells through these 

signalling pathways. Furthermore, it remains to be determined whether KDM5B 

regulation of these genes depends on its demethylase activity, since in contrast to gene 

repression which has been shown to occur mainly via KDM5B demethylase function, the 

mechanism through which KDM5B activates gene expression is not known.  

One of the hypotheses of this PhD was that, loss of KDM5B could increase efficacy to 

HER2 targeted therapies. This is the first study to show that KDM5B can promote 

resistance to Herceptin in BT-474 cells, and thus this finding warrants further validation 

by testing KDM5B KO in other HER2+/ER+ cell lines. Surprisingly, in SKBr3 cells, 

KDM5B appears to have the opposite effect in that, it represses genes associated with 

drug resistance and so KO does not therefore increase efficacy to HER2 targeted 

therapies, and could in fact increase drug resistance. Given the increasing interest in the 

clinical potential of KDM5 small molecule inhibitors, it is crucial that these results be 

validated. The findings demonstrate the importance of cell phenotype when investigating 

function of KDM5B. As discussed in the introduction, considerable effort is being focused 

on the development of small molecule inhibitors of KDM5B as cancer therapeutics. If 

these are to be translated into the clinic, the data here suggests that patient stratification 

would be vital. Therefore, pending in vivo validation, it is possible that the recently 

developed KDM5B small molecule inhibitor, KDOAM-25 254 can indeed find utility in the 

clinical setting, for the treatment of some HER2+ breast cancers, providing careful 

patient selection is carried out. 
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7 : General Discussion 
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7.1 Overview of PhD project 
KDM5B is regulated by HER2 signalling 183 however, its function in HER2+ breast cancer 

has not been widely studied. One of the aims of this PhD thesis, was to investigate the 

role of KDM5B in HER2+ breast cancer cells by developing KDM5B KO cells and 

examining their effect on, 1) gene expression levels 2) cell proliferation and 3) response 

to Herceptin or Lapatinib, alone or in combination. The second aim was to investigate 

CAV1 regulation by KDM5B in normal and malignant breast cancer cells, as well as the 

cellular distribution of CAV1 and KDM5B in the developing mammary gland. Beyond ER+ 

cells it is not known how widespread KDM5B downregulation of CAV1 is in breast cancer. 

This is of importance as CAV1 expression in the stroma of breast cancers is associated 

with a good prognosis 238,239,242. Additionally, in the normal gland it is not clear in which 

cells downregulation of CAV1 by KDM5B can occur. 

During this PhD, I have: 

• Developed the first reported KDM5B knockout cell lines produced by gene 

editing. 

• Shown that the early response genes EGR1 and FOS are down-regulated by 

KDM5B. 

• Demonstrated that KDM5B enhances the growth of the HER2+ SKBr3 cell line. 

• Shown for the first time that KDM5B can promote resistance to Herceptin, adding 

to the evidence that KDM5B may be a suitable therapeutic target. However, this 

effect was cell phenotype dependent and in the SKBr3 cell line where KDM5B 

knockout did not increase Herceptin sensitivity, KDM5B appears to downregulate 

genes involved in drug resistance in the parental SKBr3 cells. It is crucial that 

these results be extended and validated in other cell lines, if inhibitors of KDM5B 

are to enter the clinic.  

•  Shown that the down-regulation of CAV1 by KDM5B in breast cancer cells lines 

is phenotype dependent.  

• Identified in the mouse mammary gland the cellular distribution of KDM5b and 

CAV1. 

The specific phenotypes of the KDM5B KO cells in BT-474 and SKBr3 are shown in 

Table 7.1.  
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Table 7.1: Summary of observed phenotypes in KDM5B KO cells 

 BT-474 KDM5B 

KO1* 

BT-474 KDM5B 

KO2 

SKBr3 KDM5B 

KO 

Global H3K4me3 levels Not changed Not changed Increased 

Gene Expression 

1. CAV1 

2. Early response 

genes (EGR1 

and FOS) 

3. MYC 

 

1. Not changed 

2. Not changed 

 

3. Not changed 

 

 

1. Not changed 

2. Increased 
 

3. Increased 

 
1. Increased 
2. Increased 
 
 
3. Increased 

Cell growth Not changed Not changed Reduced growth 

Drug resistance No increase in 

sensitivity to 

Herceptin or 

Lapatinib alone, or 

in combination. 

Increased 
sensitivity to 
Herceptin alone or 
in combination 
with Lapatinib, but 
not to Lapatinib 
alone.  

No increase in 

sensitivity to 

Herceptin or 

Lapatinib alone, 

or in combination. 

Herceptin resistant genes 

(i.e. ABCC2 and LCN2) 

Not tested No change in 

expression 

Increased 
expression 

 

 

7.2 Genes controlled by KDM5B 
Disruption of KDM5B function was achieved by using a gRNA targeting exon 4 of 

KDM5B. This resulted in development of KDM5B KO cell lines in BT-474 and SKBr3. An 

additional cell line BT-474 KO1* did express low levels of KDM5B mRNA as determined 

by RT-qPCR. As discussed in chapter 3, in the IDAA analysis only two indels were 

detected for this clone in contrast to BT474 KO2 that showed three indels, and this was 

confirmed by sequencing. As BT474 has three copies of KDM5B this may suggest that 

a single copy of KDM5B is being transcribed. This may explain the differing results 

obtained with BT474 KO1* and BT474 KO2 in the sensitivity of these cells to Herceptin, 

and its contribution to resistance where BT474 KO1* is acting more like wild-type cells. 

Although the possibility of the effects being due to clonal variation cannot be ruled out, 

given that EGR1, FOS and MYC are upregulated in both the SKBr3 KO and BT474 KO2 

but not in BT473 KO1*, the most likely explanation for the phenotype of the BT474 KO1* 

is that it is not a full knockout.  
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7.2.1 KDM5B regulation of early response genes 
The global gene expression analysis of the SKBr3 KO showed that KDM5B down 

regulates the early response genes EGR1 and FOS. This was also observed in BT474 

KO2. Early response genes are typically induced transiently and rapidly when cells are 

exposed to external stimuli 299 such as mitogens, for example EGF and platelet-derived 

growth factor (PDGF). Using 14 breast cancer datasets Li and colleagues showed that 

EGR1 and FOS are down-regulated in breast cancer 313. It is tempting to speculate that 

this is the result of KDM5B expression by these breast cancers.  

Analyses of published papers looking at global gene expression analysis after 

knockdown of KDM5B in breast cancer cell lines do not reveal EGR1 to be a target of 

KDM5B 156,159,202. However, the work of Dey and colleagues in mouse embryonic stem 

cells also shows that KDM5B suppresses the expression of EGR1, thus inhibiting 

differentiation 190. It is interesting to note the discordance between gene expression 

profiles of KDM5B knock-downs which is seen between different groups of investigators 

using the same breast cancer cell line (in many cases MCF-7). While this could be due 

to a drift in the cell phenotype it may also be due to the variation in levels of KDM5B that 

are seen in RNAi or short hairpin RNA (shRNA) knockdowns and illustrates the 

advantage of using a gene editing technique such as CRISPR/Cas9. 

 

7.2.2 KDM5B regulation of CAV1 expression  
The precise role of CAV1 in breast cancer is currently under much debate. Although 

there have been numerous reports examining CAV1 expression in breast cancer tissues 

and cell lines, there is no consensus regarding how CAV1 expression in tumour cells 

relates to prognosis 314. Furthermore, whilst some studies suggest that CAV1 is a tumour 

suppressor in breast cancer, others report an oncogenic function of CAV1 in breast 

cancer 232,315,236,295. Taken together with controversial reports on the CAV1 P132L 

mutation316–318, progress in understanding the specific role of CAV1 in different breast 

cancer subtypes has been confounded. There is however consensus that expression of 

CAV1 in breast cancer stromal fibroblasts is associated with a good prognosis 238,239,242. 

Thus, CAV1 function is highly dependent on the context of the cell. 

The data obtained from the KO clones of two HER2+ cell lines, and on CAV1 and KDM5B 

expression in breast cancer fibroblasts, are relevant to these issues. CAV1 protein 

expression varied in cell lines obtained from different breast cancer subtypes, and 

regulation of CAV1 expression by KDM5B was seen in SKBr3 KO cells but not, BT-474 

KO cells. These data demonstrate that KDM5B regulates CAV1 expression in a cell 

phenotype dependent manner, in HER2+ breast cancer cells. Others have shown that 
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CAV1 is also transcriptionally repressed by KDM5B in ER+ breast cancer cells 146,156, 

indicating that regulation of CAV1 is operating in different pathways in different breast 

cancer subtypes.  

In the two strains of cancer associated fibroblasts that were examined here, high CAV1 

and low KDM5B expression was observed in comparison to normal breast fibroblast 

cells. An inverse correlation was also observed in breast cancer cell lines. Nevertheless, 

the inverse ratio does not necessarily indicate that KDM5B is regulating gene expression 

as the knockouts of BT474 and SKBr3 showed. Indeed, although both wild-type cells 

show low levels of CAV1, knocking out KDM5B increased CAV1 expression only in the 

SKBr3KO cells.  

Studies in mice have provided data relating to the role of CAV1 in normal mammary 

gland. CAV1 has been found to inhibit the proliferation and extension of the mouse 

luminal epithelial cells in pregnancy, and this inhibition relates to CAV1 inhibition of 

phosphorylated STAT5 signalling231. Data from an analysis of mice that are null for 

KDM5b demethylase activity showed an increase in CAV1 expression in the mid-

pregnant mammary gland (Steven Catchpole personal communication). The data 

reported here showed that in the mouse mammary gland at mid-pregnancy, CAV1 and 

KDM5B are both expressed in the myoepithelial and fat cells, allowing the interpretation 

that KDM5B may be regulating CAV1 in one or both of these cells. However, the 

increased proliferation of the mammary luminal epithelial cells (where CAV1 is not 

expressed) at mid pregnancy is driven by the STAT5 signalling pathway 231, and 

activation of STAT5 was found to be inhibited in the KDM5B demethylase null mouse at 

mid pregnancy 196. Thus, if CAV1 is normally downregulated by KDM5B in stromal or 

myoepithelial cells, any effects of CAV1 on mammary epithelial cell proliferation driven 

by pSTAT5, would have to be regulated in a paracrine fashion.  

These findings in the normal mouse mammary gland could relate to the effect of high 

levels of CAV1 expression in breast cancer fibroblasts correlating with good prognosis. 

Thus, CAV1 effects on tumour proliferation may also be operating through a paracrine 

mechanism. Constitutive activation of STAT5a has been reported in many malignancies 

including breast cancer, and this could be due to KDM5B down-regulation of CAV1. 

However, this hypothesis needs to be tested. Using the gRNA we have identified for 

CRISPR gene editing, it should be possible to develop KDM5B KOs from strains of 

breast cancer fibroblasts, to determine whether KDM5B regulates CAV1 expression in 

these cells. Demonstration of downregulation of CAV1 by KDM5B would add to the 

argument for inhibitor targeting of this demethylase.    
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7.2.3 KDM5B regulation of MYC expression  
In Drosophila the homologue of KDM5- Lid, was found to interact with dmyc and was 

required for activation of mitochondrial genes by Myc; a function which was independent 

of KDM5 demethylase activity 319. This connection with Myc has not been reported in 

mammalian KDM5 proteins. However, upregulation in enzymes of mitochondrial 

oxidative-ATP-synthesis (oxidative phosphorylation) have been found in long-term 

tumor-maintaining melanoma cells with high KDM5B expression 246. Moreover, using the 

MCF-7 breast cancer cell line, MYC was found to exist in a complex with KDM5B and 

TFAP2C 298. This KDM5B-MYC-TFAP2C complex was shown to repress the cell cycle 

inhibitor p21, and it was proposed that this complex might promote cell cycle progression 

in breast cancer. In this thesis, knocking out KDM5B in two HER2 expressing breast 

cancer cell lines, induced increased expression of MYC (Chapter 5), suggesting that 

KDM5B normally downregulates MYC in these cells. It will be important to investigate 

the relevance of effects of KDM5 proteins and the role of MYC on mitochondrial gene 

expression in the context of targeting KDM5 demethylases.  

 

7.3 The role of KDM5B in sensitivity to HER2 targeted 
therapies  

The epigenetic changes that are induced by HER2 signalling are dramatic 320 altering the 

chromatin state and changing the global profile of genes expressed. Thus, targeting 

elements of epigenetic change, for example the methyl mark (H3K4me3) removed by 

KDM5B, could affect multiple pathways including those reported to be involved in the 

development of resistance to HER2 targeting. In order to examine the phenotypic effects 

of KDM5B KO, its role in cell proliferation and drug resistance was investigated. KDM5B 

KO in SKBr3 cells reduced cell proliferation, but did not increase sensitivity to Herceptin 

or Lapatinib alone or in combination. In contrast, whereas KDM5B KO in BT-474 cells 

did not compromise their proliferation, sensitivity to Herceptin alone or in combination 

with Lapatinib, was increased in BT-474 KO2 cells. Furthermore, treatment of BT-474 

KO2 cells with Herceptin in a long-term assay, resulted in reduction of drug tolerant cells. 

To my knowledge, this is the first report showing a role of KDM5B in drug resistance of 

BT-474 cells.  

Interestingly, in SKBr3, knockout of KDM5B increased the expression of some genes 

involved in drug resistance including ABCC2, CAV1 and LCN2. ABCC2, CAV1 and LCN2 

were validated by qPCR or western blot and shown to be elevated in SKBr3 KO. 

Although, ABCC2 was elevated to a much lesser extent in BT474 KO2 knockout, CAV1 

and LCN2 levels did not change in this cell line. ABCC2 is involved in the efflux of 
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chemicals from the cells such as the chemotherapeutics doxorubicin and cisplatin. While 

it is hard to see an association with the ABCC2 expression and resistance to Herceptin, 

LCN2 has been associated with resistance to Herceptin. LCN2 is a chaperone protein 

that is upregulated during the unfolded protein response (UPR). It has been associated 

with drug resistance in a number of systems and is highly expressed in the intrinsically 

Herceptin resistant line HCC1954 240, and there is evidence to suggest that LCN2 can 

override Herceptin inhibition of HER2 321. The upregulation of ABCC2, CAV1 and LCN2 

in the SKBr3 KO but not in the BT474 KO2, correlates with the observation that KDM5B 

silencing does not enhance sensitivity to Herceptin in SKBr3, but does in BT474. 

Owing to its various reported roles in tumorigenesis and drug resistance, KDM5B has 

been proposed to be a suitable target for cancer therapy. Although considerable effort 

has been made to develop small molecule inhibitors to KDM5B to study its clinical utility, 

currently none of these inhibitors are specific to KDM5B. To enable validation and 

application of these inhibitors, a proper understanding of the tumorigenic function of 

KDM5B is required. The knockout lines developed in this thesis can now be used to 

further characterise and fine-tune the function of KDM5B in HER2+ breast cancer. 

Furthermore, they can be used to complement work using small molecule inhibitors, to 

investigate the importance of the KDM5B demethylase activity in drug resistance. 

Indeed, this strategy has been used to validate the effect of a KDM5A/C inhibitor on cell 

proliferation 114. The authors compared the effect of inhibiting the demethylase activity of 

KDM5A with knockout of KDM5A. Both strategies showed reduced proliferation of HeLa 

cells but minimal effect on MCF-7 cells, thus demonstrating that KDM5A promotes 

proliferation of KDM5A-dependent cells, through its demethylase activity 114. Adopting 

similar strategies will therefore enable better drug design and thus improve success of 

these inhibitors in the clinic. The unexpected result that in SKBr3 cells KDM5B appears 

to downregulate genes encoding proteins involved in drug resistance needs to be 

extended and validated to other HER2+/ER- cell lines, if small molecule inhibitors of 

KDM5B are to be introduced to the clinic. Moreover, the involvement of the demethylase 

activity of KDM5B in repressing these genes needs to be established. These results 

emphasise the importance of performing extensive preclinical studies before phase I 

trials are initiated. 

 

7.4 Future work 
The interest in developing small molecular weight inhibitors of the demethylase activity 

of KDM5B proteins, stems from the fact that these proteins are often elevated in many 

cancers, and that they can change the profile of genes transcribed by a cell by 

demethylating the active H3K4me3/2 marks. Although some inhibitors have been 
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developed that specifically inhibit the KDM5 family of demethylases, as yet inhibitors 

showing reliable specificity for inhibiting a specific KDM5 member have yet to be 

developed, although inhibitors with some preferences for individual family members have 

been reported 114,254. Without such inhibitor specificity, investigating the effects of an 

individual KDM5 protein on the phenotype of cells from different tissues and cancers and 

the role of the demethylase activity can be approached through gene editing.  

 

7.4.1 KDM5B  
In this thesis, we have taken the first step in examining how deleting the KDM5B gene in 

two cell lines from the subtype of HER2+ breast cancers, affects cell phenotype. To 

pursue the validation of KDM5B affecting cell proliferation and upregulation of genes 

associated with drug resistance, in the HER2+/ER- cell line SKBr3, another KO clone 

should be developed. KDM5B KO in other HER2+/ER- cell lines should also be 

developed with the gRNA used here, to investigate the extent of these observations.  A 

similar approach should be taken to validate the increased Herceptin sensitivity induced 

by knocking out KDM5B in BT474 cells (i.e. isolate another KO clone and delete KDM5B 

in other HER2+/ER+ cell lines). Furthermore, RNA-seq can be performed to analyse 

global gene expression changes induced upon KDM5B KO. The importance of the 

demethylase activity in these effects can be addressed by gene mutation, rather than 

deleting the KDM5B gene, for example replacing the WT gene with a demethylase null 

mutant. Additionally, rescue experiments should be performed to demonstrate that the 

phenotype of the knockout clones is dependent on KDM5B loss. Furthermore, functional 

testing through knockdown of genes involved in Herceptin resistance (e.g. ABC22 and 

LCN2), is required to make conclusions about the mechanisms behind any effects of 

KDM5B.  

 

To further understand the role of KDM5B in drug resistance, the effect of KDM5B loss 

with and without HER2 targeted therapies, on apoptosis, metastasis, migration, stem cell 

activities and in vivo tumour growth, should be examined. These studies will enable 

identification of specific mechanisms and in turn, genetic targets that can be further 

explored for therapy. To make these observations more clinically relevant, similar 

experiments should be performed using patient-derived organoids/xenografts.  

 

 

7.4.2 Other Cell types and other KDM5 family members  
The epigenome defines cell phenotype and specific epigenetic factors are expressed 

and regulated differently in different cell types. The KDM5 family members form 
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complexes regulating transcription which can vary with cell phenotype. We have focused 

on the effects of one KDM5 protein in two cell lines which represent two HER2+ subtypes 

of breast cancer. With the guide RNA already established, the effects of silencing 

KDM5B can readily be examined in cell lines derived from different cancers and different 

breast cancer subtypes. It will be important to knockout KDM5B in strains of breast 

cancer fibroblasts to determine whether CAV1 expression is regulated by KDM5B. These 

studies would give a picture of the importance of this family member in regulating 

phenotype in different cancers and could guide the choice of cancers to be targeted in 

the clinic- should specific inhibitors become available. However, in many cells of female 

origin KDM5 A, B and C can be expressed, and all four members can be expressed in 

males. Depending on which family members are expressed, gene editing can be used 

to silence the other family members both individually and consecutively if necessary. 

Thus, extensive pre-clinical testing of the importance of the individual family members in 

regulation of cell phenotype in different cancers should ideally be carried out before 

moving to the clinic.  

 

7.4.3 Use of current inhibitors  
It is not clear whether KDM5B promotes cell proliferation in SKBr3 cells or Herceptin 

resistance in BT-474 cells through its demethylase activity. While knocking in DJmjC 

KDM5B into the KO cells, could resolve this issue, comparing the effect of total KDM5B 

KO with the effect of the inhibitor KDOAM-25 (has higher potency for inhibiting KDM5B 

demethylase activity but is not completely specific for KDM5B) 254 on cell phenotype 

would also be informative. The KDM5B KO cells will lose any important functions 

governed by other domains and unrelated to the demethylase activity, and these could 

be important for the phenotypic changes seen in the KO. This should indicate whether 

the effect on increased sensitivity seen in the KO is dependent or independent of the 

demethylase activity. Moreover, to investigate whether KDM5B is the prominent KDM5 

protein in SKBr3 and/or BT474 cells, the KDM5A/C inhibitor, YUKA1 114, can be used to 

study the effects on cell proliferation, regulation of target genes and drug resistance.  

These findings can then be compared to the effects seen with the KDM5B KO and the 

pan-KDM5 inhibitor, KDOAM-25. Taken together, these investigations could provide an 

analysis of KDM5B function in the two breast cancer cell lines and the utility of the 

currently available small molecule inhibitors. Gathering information on the effects of 

silencing individual KDM5 family members in different cell types (using gene editing 

techniques) and analysing whether the effects on phenotype are attributable to, or 

independent of, the demethylase activity will be a crucial and necessary preclinical 

activity. These studies will also expand the basic knowledge relating to the regulatory 
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activity of this family of demethylases, which may relate to the potential importance of 

other domains in the proteins.    

 

7.5 Conclusion  
The results presented in this PhD thesis demonstrate a cell phenotype dependent 

function of KDM5B in HER2+ breast cancer cell lines, where KDM5B KO can result in 

either reduced proliferation in HER2+/ER- cells or increased sensitivity to Herceptin in 

HER2+/ER+ cells. Thus, it is very important to investigate whether this data will predict 

the same phenotypes in other HER2+/ER- and HER2+/ER+ breast cancer cell lines. The 

data shown in this thesis suggests that KDM5B could be a potential therapeutic target in 

HER2+ breast cancers however, patient stratification would be vital and ER positivity 

could be used as a predictive marker for response to HER2 targeted therapies. 

Therefore, it is imperative to investigate further and validate the function of KDM5B in 

HER2+ breast cancer.  
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8 : Appendix 
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DNA sequence of U6-gRNA (PX458) and Cas9-2AGFP-pBKS 
plasmids 

 

U6-gRNA (PX458) plasmid sequence 

gagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgttagagagataattggaattaatttgactgtaa
acacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaat
ggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtggaaaggacgaaacaccgggtctt
cgagaagacctgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccga
gtcggtgcttttttgttttagagctagaaatagcaagttaaaataaggctagtccgtttttagcgcgtgcgccaattctgcagac
aaatggctctagaggtacccgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccatt
gacgtcaatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagt
acatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattgtgcccagta
catgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtcgaggtgagccccacgtt
ctgcttcactctccccatctcccccccctccccacccccaattttgtatttatttattttttaattattttgtgcagcgatgggggcgg
ggggggggggggggcgcgcgccaggcggggcggggcggggcgaggggcggggcggggcgaggcggagaggt
gcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataa
aaagcgaagcgcgcggcgggcgggagtcgctgcgacgctgccttcgccccgtgccccgctccgccgccgcctcgcg
ccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaatt
agctgagcaagaggtaagggtttaagggatggttggttggtggggtattaatgtttaattacctggagcacctgcctgaaat
cactttttttcaggttggaccggtgccaccatggactataaggaccacgacggagactacaaggatcatgatattgattac
aaagacgatgacgataagatggccccaaagaagaagcggaaggtcggtatccacggagtcccagcagccaaaag
gccggcggccacgaaaaaggccggccaggcaaaaaagaaaaaggaattcggcagtggagaattctaactagagct
cgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtg
ccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtgggg
tggggcaggacagcaagggggaggattgggaagagaatagcaggcatgctggggagcggccgcaggaaccccta
gtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgg
gctttgcccgggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgcctgatgcggtattttctccttacg
catctgtgcggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcggg
tgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgcc
acgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccc
caaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtcca
cgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattcttttgatttataagggattttgc
cgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttt
atggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcg
ccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggtttt
caccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatgg
tttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatc
cgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgc
ccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagtt
gggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttcc
aatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgc
atacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagaga
attatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggag
ctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccatacca
aacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactc
tagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggct
ggctggtttattgctgataaatctggagccggtgagcgtggaagccgcggtatcattgcagcactggggccagatggtaa
gccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagata
ggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaattta
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aaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagac
cccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgct
accagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagatacc
aaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaa
tcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagata
cctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcag
ggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccac
ctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttac
ggttcctggccttttgctggccttttgctcacatgt  

 

Cas9-2AGFP-pBKS plasmid sequence 

ORIGIN 

        1 gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt atttttctaa atacattcaa 

       61 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 

      121 agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 

      181 ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 

      241 gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 

      301 gccccgaaga acgttttcca atgatgagca cttttaaagt tctgctatgt ggcgcggtat 

      361 tatcccgtat tgacgccggg caagagcaac tcggtcgccg catacactat tctcagaatg 

      421 acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 

      481 aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 

      541 cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catgggggat catgtaactc 

      601 gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 

      661 cgatgcctgt agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 

      721 tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 

      781 tgcgctcggc ccttccggct ggctggttta ttgctgataa atctggagcc ggtgagcgtg 

      841 ggtctcgcgg tatcattgca gcactggggc cagatggtaa gccctcccgt atcgtagtta 

      901 tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 

      961 gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 

     1021 ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc 

     1081 tcatgaccaa aatcccttaa cgtgagtttt cgttccactg agcgtcagac cccgtagaaa 
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     1141 agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 

     1201 aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 

     1261 cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 

     1321 agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 

     1381 tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 

     1441 gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 

     1501 gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 

     1561 ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 

     1621 gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 

     1681 ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 

     1741 ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 

     1801 acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 

     1861 gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 

     1921 cggaagagcg cccaatacgc aaaccgcctc tccccgcgcg ttggccgatt cattaatgca 

     1981 gctggcacga caggtttccc gactggaaag cgggcagtga gcgcaacgca attaatgtga 

     2041 gttagctcac tcattaggca ccccaggctt tacactttat gcttccggct cgtatgttgt 

     2101 gtggaattgt gagcggataa caatttcaca caggaaacag ctatgaccat gattacgcca 

     2161 agctcgaaat taaccctcac taaagggaac aaaagctggg tacccgttac ataacttacg 

     2221 gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc aatagtaacg 

     2281 ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg 

     2341 gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa 

     2401 tggcccgcct ggcattgtgc ccagtacatg accttatggg actttcctac ttggcagtac 

     2461 atctacgtat tagtcatcgc tattaccatg gtcgaggtga gccccacgtt ctgcttcact 

     2521 ctccccatct cccccccctc cccaccccca attttgtatt tatttatttt ttaattattt 

     2581 tgtgcagcga tgggggcggg gggggggggg gggcgcgcgc caggcggggc ggggcggggc 

     2641 gaggggcggg gcggggcgag gcggagaggt gcggcggcag ccaatcagag cggcgcgctc 

     2701 cgaaagtttc cttttatggc gaggcggcgg cggcggcggc cctataaaaa gcgaagcgcg 
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     2761 cggcgggcgg gagtcgctgc gacgctgcct tcgccccgtg ccccgctccg ccgccgcctc 

     2821 gcgccgcccg ccccggctct gactgaccgc gttactccca caggtgagcg ggcgggacgg 

     2881 cccttctcct ccgggctgta attagctgag caagaggtaa gggtttaagg gatggttggt 

     2941 tggtggggta ttaatgttta attacctgga gcacctgcct gaaatcactt tttttcaggt 

     3001 tggaccggtg ccaccatgga ctataaggac cacgacggag actacaagga tcatgatatt 

     3061 gattacaaag acgatgacga taagatggcc ccaaagaaga agcggaaggt cggtatccac 

     3121 ggagtcccag cagccgacaa gaagtacagc atcggcctgg acatcggcac caactctgtg 

     3181 ggctgggccg tgatcaccga cgagtacaag gtgcccagca agaaattcaa ggtgctgggc 

     3241 aacaccgacc ggcacagcat caagaagaac ctgatcggag ccctgctgtt cgacagcggc 

     3301 gaaacagccg aggccacccg gctgaagaga accgccagaa gaagatacac cagacggaag 

     3361 aaccggatct gctatctgca agagatcttc agcaacgaga tggccaaggt ggacgacagc 

     3421 ttcttccaca gactggaaga gtccttcctg gtggaagagg ataagaagca cgagcggcac 

     3481 cccatcttcg gcaacatcgt ggacgaggtg gcctaccacg agaagtaccc caccatctac 

     3541 cacctgagaa agaaactggt ggacagcacc gacaaggccg acctgcggct gatctatctg 

     3601 gccctggccc acatgatcaa gttccggggc cacttcctga tcgagggcga cctgaacccc 

     3661 gacaacagcg acgtggacaa gctgttcatc cagctggtgc agacctacaa ccagctgttc 

     3721 gaggaaaacc ccatcaacgc cagcggcgtg gacgccaagg ccatcctgtc tgccagactg 

     3781 agcaagagca gacggctgga aaatctgatc gcccagctgc ccggcgagaa gaagaatggc 

     3841 ctgttcggaa acctgattgc cctgagcctg ggcctgaccc ccaacttcaa gagcaacttc 

     3901 gacctggccg aggatgccaa actgcagctg agcaaggaca cctacgacga cgacctggac 

     3961 aacctgctgg cccagatcgg cgaccagtac gccgacctgt ttctggccgc caagaacctg 

     4021 tccgacgcca tcctgctgag cgacatcctg agagtgaaca ccgagatcac caaggccccc 

     4081 ctgagcgcct ctatgatcaa gagatacgac gagcaccacc aggacctgac cctgctgaaa 

     4141 gctctcgtgc ggcagcagct gcctgagaag tacaaagaga ttttcttcga ccagagcaag 

     4201 aacggctacg ccggctacat tgacggcgga gccagccagg aagagttcta caagttcatc 

     4261 aagcccatcc tggaaaagat ggacggcacc gaggaactgc tcgtgaagct gaacagagag 

     4321 gacctgctgc ggaagcagcg gaccttcgac aacggcagca tcccccacca gatccacctg 
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     4381 ggagagctgc acgccattct gcggcggcag gaagattttt acccattcct gaaggacaac 

     4441 cgggaaaaga tcgagaagat cctgaccttc cgcatcccct actacgtggg ccctctggcc 

     4501 aggggaaaca gcagattcgc ctggatgacc agaaagagcg aggaaaccat caccccctgg 

     4561 aacttcgagg aagtggtgga caagggcgct tccgcccaga gcttcatcga gcggatgacc 

     4621 aacttcgata agaacctgcc caacgagaag gtgctgccca agcacagcct gctgtacgag 

     4681 tacttcaccg tgtataacga gctgaccaaa gtgaaatacg tgaccgaggg aatgagaaag 

     4741 cccgccttcc tgagcggcga gcagaaaaag gccatcgtgg acctgctgtt caagaccaac 

     4801 cggaaagtga ccgtgaagca gctgaaagag gactacttca agaaaatcga gtgcttcgac 

     4861 tccgtggaaa tctccggcgt ggaagatcgg ttcaacgcct ccctgggcac ataccacgat 

     4921 ctgctgaaaa ttatcaagga caaggacttc ctggacaatg aggaaaacga ggacattctg 

     4981 gaagatatcg tgctgaccct gacactgttt gaggacagag agatgatcga ggaacggctg 

     5041 aaaacctatg cccacctgtt cgacgacaaa gtgatgaagc agctgaagcg gcggagatac 

     5101 accggctggg gcaggctgag ccggaagctg atcaacggca tccgggacaa gcagtccggc 

     5161 aagacaatcc tggatttcct gaagtccgac ggcttcgcca acagaaactt catgcagctg 

     5221 atccacgacg acagcctgac ctttaaagag gacatccaga aagcccaggt gtccggccag 

     5281 ggcgatagcc tgcacgagca cattgccaat ctggccggca gccccgccat taagaagggc 

     5341 atcctgcaga cagtgaaggt ggtggacgag ctcgtgaaag tgatgggccg gcacaagccc 

     5401 gagaacatcg tgatcgaaat ggccagagag aaccagacca cccagaaggg acagaagaac 

     5461 agccgcgaga gaatgaagcg gatcgaagag ggcatcaaag agctgggcag ccagatcctg 

     5521 aaagaacacc ccgtggaaaa cacccagctg cagaacgaga agctgtacct gtactacctg 

     5581 cagaatgggc gggatatgta cgtggaccag gaactggaca tcaaccggct gtccgactac 

     5641 gatgtggacc atatcgtgcc tcagagcttt ctgaaggacg actccatcga caacaaggtg 

     5701 ctgaccagaa gcgacaagaa ccggggcaag agcgacaacg tgccctccga agaggtcgtg 

     5761 aagaagatga agaactactg gcggcagctg ctgaacgcca agctgattac ccagagaaag 

     5821 ttcgacaatc tgaccaaggc cgagagaggc ggcctgagcg aactggataa ggccggcttc 

     5881 atcaagagac agctggtgga aacccggcag atcacaaagc acgtggcaca gatcctggac 

     5941 tcccggatga acactaagta cgacgagaat gacaagctga tccgggaagt gaaagtgatc 
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     6001 accctgaagt ccaagctggt gtccgatttc cggaaggatt tccagtttta caaagtgcgc 

     6061 gagatcaaca actaccacca cgcccacgac gcctacctga acgccgtcgt gggaaccgcc 

     6121 ctgatcaaaa agtaccctaa gctggaaagc gagttcgtgt acggcgacta caaggtgtac 

     6181 gacgtgcgga agatgatcgc caagagcgag caggaaatcg gcaaggctac cgccaagtac 

     6241 ttcttctaca gcaacatcat gaactttttc aagaccgaga ttaccctggc caacggcgag 

     6301 atccggaagc ggcctctgat cgagacaaac ggcgaaaccg gggagatcgt gtgggataag 

     6361 ggccgggatt ttgccaccgt gcggaaagtg ctgagcatgc cccaagtgaa tatcgtgaaa 

     6421 aagaccgagg tgcagacagg cggcttcagc aaagagtcta tcctgcccaa gaggaacagc 

     6481 gataagctga tcgccagaaa gaaggactgg gaccctaaga agtacggcgg cttcgacagc 

     6541 cccaccgtgg cctattctgt gctggtggtg gccaaagtgg aaaagggcaa gtccaagaaa 

     6601 ctgaagagtg tgaaagagct gctggggatc accatcatgg aaagaagcag cttcgagaag 

     6661 aatcccatcg actttctgga agccaagggc tacaaagaag tgaaaaagga cctgatcatc 

     6721 aagctgccta agtactccct gttcgagctg gaaaacggcc ggaagagaat gctggcctct 

     6781 gccggcgaac tgcagaaggg aaacgaactg gccctgccct ccaaatatgt gaacttcctg 

     6841 tacctggcca gccactatga gaagctgaag ggctcccccg aggataatga gcagaaacag 

     6901 ctgtttgtgg aacagcacaa gcactacctg gacgagatca tcgagcagat cagcgagttc 

     6961 tccaagagag tgatcctggc cgacgctaat ctggacaaag tgctgtccgc ctacaacaag 

     7021 caccgggata agcccatcag agagcaggcc gagaatatca tccacctgtt taccctgacc 

     7081 aatctgggag cccctgccgc cttcaagtac tttgacacca ccatcgaccg gaagaggtac 

     7141 accagcacca aagaggtgct ggacgccacc ctgatccacc agagcatcac cggcctgtac 

     7201 gagacacgga tcgacctgtc tcagctggga ggcgacaaaa ggccggcggc cacgaaaaag 

     7261 gccggccagg caaaaaagaa aaaggaattc ggcagtggag agggcagagg aagtctgcta 

     7321 acatgcggtg acgtcgagga gaatcctggc ccagtgagca agggcgagga gctgttcacc 

     7381 ggggtggtgc ccatcctggt cgagctggac ggcgacgtaa acggccacaa gttcagcgtg 

     7441 tccggcgagg gcgagggcga tgccacctac ggcaagctga ccctgaagtt catctgcacc 

     7501 accggcaagc tgcccgtgcc ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag 

     7561 tgcttcagcc gctaccccga ccacatgaag cagcacgact tcttcaagtc cgccatgccc 
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     7621 gaaggctacg tccaggagcg caccatcttc ttcaaggacg acggcaacta caagacccgc 

     7681 gccgaggtga agttcgaggg cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac 

     7741 ttcaaggagg acggcaacat cctggggcac aagctggagt acaactacaa cagccacaac 

     7801 gtctatatca tggccgacaa gcagaagaac ggcatcaagg tgaacttcaa gatccgccac 

     7861 aacatcgagg acggcagcgt gcagctcgcc gaccactacc agcagaacac ccccatcggc 

     7921 gacggccccg tgctgctgcc cgacaaccac tacctgagca cccagtccgc cctgagcaaa 

     7981 gaccccaacg agaagcgcga tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc 

     8041 actctcggca tggacgagct gtacaaggaa ttctaactag agctcgctga tcagcctcga 

     8101 ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccgtgcct tccttgaccc 

     8161 tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc 

     8221 tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt 

     8281 gggaagagaa tagcaggcat gctggggagc ggccgccacc gcggtggagc tccaattcgc 

     8341 cctatagtga gtcgtattac aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa 

     8401 accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta 

     8461 atagcgaaga ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat 

     8521 gggacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 

     8581 ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 

     8641 ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat 

     8701 ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 

     8761 ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata 

     8821 gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt 

     8881 tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat 

     8941 ttaacgcgaa ttttaacaaa atattaacgc ttacaattta ggtg 
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              Table 8.1: ToppGene Gene Ontology analysis of upregulated genes in SKBr3 KDM5B KO cells  

Category ID Name Source p-value q-value 
Bonferroni 

q-value 
FDR B&H 

q-value 
FDR B&Y 

Hit Count 
in Query 
List 

Hit Count in 
Genome 

Hit in Query List 

GO: 
Biological 
Process 

GO:0042493 response to 
drug 

 1.89E-08 4.78E-05 4.78E-05 4.02E-04 12 481 MYC,CYP1A1,ANXA1,SRD5A1,CAV1,LCN2,SLC1A3,GAL,M
GMT,MGST1, CCL2,ABCC2 

GO: 
Biological 
Process 

GO:0009636 response to 
toxic substance 

 1.18E-07 2.97E-04 1.48E-04 1.25E-03 9 269 CYP1A1,SRD5A1,GPX3,LCN2,SLC1A3,S100A9,MGMT,MGS
T1,CCL2 

GO: 
Biological 
Process 

GO:1901700 response to 
oxygen-
containing 
compound 

 8.06E-07 2.03E-03 4.74E-04 3.99E-03 18 1614 CYP1A1,ANXA1,SRD5A1,GPX3,GBP2,CAV1,LCN2,SLC1A3,
OLR1,ADM,S100A8,GAL,MGMT,IGFBP5,MGST1,EGR1,CCL
2, ABCC2 

GO: 
Biological 
Process 

GO:0009611 response to 
wounding 

 8.95E-07 2.26E-03 4.74E-04 3.99E-03 14 967 MYC,CYP1A1,ANXA1,CAV1,PAPSS2,SLC1A3,FABP5,ADM,S
100A8,S100A9,IER3,FGB,CCL2,GPRC5B 

GO: 
Biological 
Process 

GO:0043207 response to 
external biotic 
stimulus 

 1.13E-06 2.85E-03 4.74E-04 3.99E-03 14 986 CYP1A1,ANXA3,GBP2,CAV1,LCN2,SLC1A3,PLAC8,ADM,S1
00A8,S100A9,MGST1,IER3,FGB,CCL2 

GO: 
Biological 
Process 

GO:0051707 response to 
other organism 

 1.13E-06 2.85E-03 4.74E-04 3.99E-03 14 986 CYP1A1,ANXA3,GBP2,CAV1,LCN2,SLC1A3,PLAC8,ADM,S1
00A8,S100A9,MGST1,IER3,FGB,CCL2 

GO: 
Biological 
Process 

GO:0009617 response to 
bacterium 

 1.44E-06 3.64E-03 5.01E-04 4.21E-03 11 590 CYP1A1,ANXA3,GBP2,CAV1,PLAC8,ADM,S100A8,S100A9,
MGST1,FGB,CCL2 

GO: 
Biological 
Process 

GO:0010243 response to 
organonitrogen 
compound 

 1.59E-06 4.01E-03 5.01E-04 4.21E-03 13 866 MYC,ANXA1,SRD5A1,CAV1,SLC1A3,ADM,GAL,MGMT,IGFB
P5,MGST1,EGR1,CCL2,ABCC2 

GO: 
Biological 
Process 

GO:0009607 response to 
biotic stimulus 

 1.83E-06 4.61E-03 5.12E-04 4.30E-03 14 1027 CYP1A1,ANXA3,GBP2,CAV1,LCN2,SLC1A3,PLAC8,ADM,S1
00A8,S100A9,MGST1,IER3,FGB,CCL2 

GO: 
Biological 
Process 

GO:0043065 positive 
regulation of 
apoptotic 
process 

 3.63E-06 9.15E-03 9.08E-04 7.64E-03 11 649 MYC,BIN1,ANXA1,UBE2M,CAV1,ADM,S100A8,S100A9,GAL,
EGR1,FGD3 

GO: 
Biological 
Process 

GO:0043068 positive 
regulation of 
programmed 
cell death 

 3.96E-06 9.99E-03 9.08E-04 7.64E-03 11 655 MYC,BIN1,ANXA1,UBE2M,CAV1,ADM,S100A8,S100A9,GAL,
EGR1,FGD3 

GO: 
Biological 
Process 

GO:0006952 defense 
response 

 5.34E-06 1.35E-02 1.12E-03 9.43E-03 17 1651 ANXA1,ANXA3,GBP2,CAV1,LCN2,SLC1A3,OLR1,PLAC8,AD
M,S100A8,S100A9,GAL,EGR1,IER3,FGB,CCL2,GPRC5B 

GO: 
Biological 
Process 

GO:1901698 response to 
nitrogen 
compound 

 6.25E-06 1.58E-02 1.21E-03 1.02E-02 13 981 MYC,ANXA1,SRD5A1,CAV1,SLC1A3,ADM,GAL,MGMT,IGFB
P5,MGST1,EGR1,CCL2,ABCC2 

GO: 
Biological 
Process 

GO:0010942 positive 
regulation of 
cell death 

 6.96E-06 1.76E-02 1.22E-03 1.03E-02 11 695 MYC,BIN1,ANXA1,UBE2M,CAV1,ADM,S100A8,S100A9,GAL,
EGR1,FGD3 
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GO: 
Biological 
Process 

GO:0046916 cellular 
transition metal 
ion 
homeostasis 

 7.25E-06 1.83E-02 1.22E-03 1.03E-02 5 88 MYC,CP,LCN2,S100A8,S100A9 

GO: 
Biological 
Process 

GO:0042981 regulation of 
apoptotic 
process 

 8.23E-06 2.08E-02 1.23E-03 1.04E-02 16 1519 MYC,BIN1,ANXA1,UBE2M,CAV1,PLAC8,ADM,S100A8,S100
A9,GAL,MGMT,EGR1,ER3,FGB,CCL2,FGD3 
 
 

GO: 
Biological 
Process 

GO:0010212 response to 
ionizing 
radiation 

 8.30E-06 2.09E-02 1.23E-03 1.04E-02 6 157 MYC,ANXA1,CAV1,MGMT,EGR1,CCL2 

GO: 
Biological 
Process 

GO:0043067 regulation of 
programmed 
cell death 

 9.47E-06 2.39E-02 1.33E-03 1.12E-02 16 1536 MYC,BIN1,ANXA1,UBE2M,CAV1,PLAC8,ADM,S100A8,S100
A9,GAL,MGMT,EGR1,IER3,FGB,CCL2,FGD3 

GO: 
Biological 
Process 

GO:0002523 leukocyte 
migration 
involved in 
inflammatory 
response 

 1.21E-05 3.04E-02 1.48E-03 1.25E-02 3 15 S100A8,S100A9,CCL2 

GO: 
Biological 
Process 

GO:1903034 regulation of 
response to 
wounding 

 1.22E-05 3.08E-02 1.48E-03 1.25E-02 9 472 MYC,ANXA1,CAV1,S100A8,S100A9,IER3,FGB,CCL2, 
GPRC5B 

GO: 
Biological 
Process 

GO:0014070 response to 
organic cyclic 
compound 

 1.24E-05 3.11E-02 1.48E-03 1.25E-02 13 1045 CYP1A1,ANXA1,ANXA3,SRD5A1,CAV1,ADM,GAL,MGMT,IG
FBP5, EGR1,SLC16A1,CCL2,ABCC2 

GO: 
Biological 
Process 

GO:0006873 cellular ion 
homeostasis 

 1.36E-05 3.44E-02 1.56E-03 1.31E-02 10 607 MYC,CP,CAV1,LCN2,CKB,ADM,S100A8,S100A9,CCL2, 
ABCC2 

GO: 
Biological 
Process 

GO:0051384 response to 
glucocorticoid 

 1.64E-05 4.15E-02 1.80E-03 1.52E-02 6 177 ANXA1,ANXA3,SRD5A1,CAV1,ADM,CCL2 

GO: 
Biological 
Process 

GO:0042742 defense 
response to 
bacterium 

 1.86E-05 4.69E-02 1.95E-03 1.64E-02 7 272 ANXA3,GBP2,PLAC8,ADM,S100A8,S100A9,FGB 
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Table 8.2: Table ToppGene Gene Ontology analysis of downregulated genes in SKBr3 KDM5B KO cells  

Category ID Name Source p-value q-value 
Bonferroni 

q-value 
FDR 
B&H 

q-value 
FDR 
B&Y 

Hit 
Count 
in 
Query 
List 

Hit 
Count 
in 
Genome 

Hit in Query List 

GO: 
Biological 
Process 

GO:0060337 type I 

interferon 

signaling 

pathway 

 4.9E-14 8.9E-11 5.1E-11 4.1E-10 11 81 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27, 

IFIT1,IRF9,ISG15,BST2,IFI6 

GO: 
Biological 
Process 

GO:0071357 cellular 

response to 

type I 

interferon 

 5.7E-14 1.0E-10 5.1E-11 4.1E-10 11 82 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27,IFIT1 

,IRF9,ISG15,BST2,IFI6 

GO: 
Biological 
Process 

GO:0034340 response to 

type I 

interferon 

 9.8E-14 1.8E-10 5.9E-11 4.7E-10 11 86 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27,IFIT1, 

IRF9,ISG15,BST2,IFI6 

GO: 
Biological 
Process 

GO:0045071 negative 

regulation of 

viral genome 

replication 

 2.6E-09 4.6E-06 1.2E-06 9.4E-06 7 52 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0045069 regulation of 

viral genome 

replication 

 5.6E-08 1.0E-04 2.0E-05 1.6E-04 7 80 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:1903901 negative 

regulation of 

viral life cycle 

 1.5E-07 2.6E-04 4.4E-05 3.6E-04 7 92 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 
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GO: 
Biological 
Process 

GO:0048525 negative 

regulation of 

viral process 

 1.8E-07 3.3E-04 4.7E-05 3.8E-04 7 95 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0051607 defense 

response to 

virus 

 2.7E-07 4.9E-04 6.0E-05 4.8E-04 11 343 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFIT1,IFIH1, 

IRF9,ISG15,BST2,DNAJC3 

GO: 
Biological 
Process 

GO:0019079 viral genome 

replication 

 3.0E-07 5.4E-04 6.0E-05 4.8E-04 7 102 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0009615 response to 

virus 

 2.4E-06 4.3E-03 4.3E-04 3.4E-03 11 428 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFIT1,IFIH1, 

IRF9,ISG15,BST2,DNAJC3 

GO: 
Biological 
Process 

GO:0035455 response to 

interferon-

alpha 

 2.8E-06 5.0E-03 4.5E-04 3.6E-03 4 23 IFITM1,OAS1,IFITM2,BST2 

GO: 
Biological 
Process 

GO:0045087 innate 

immune 

response 

 3.2E-06 5.7E-03 4.7E-04 3.8E-03 15 846 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27,SP110, 

IFIT1,IFIH1,IRF9,RFTN1,ISG15,BST2,HERC6,IFI6 

GO: 
Biological 
Process 

GO:0019221 cytokine-

mediated 

signaling 

pathway 

 4.6E-06 8.2E-03 6.3E-04 5.1E-03 12 553 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27,IFIT1, 

STAT6,IRF9,ISG15,BST2,IFI6 

GO: 
Biological 
Process 

GO:0034341 response to 

interferon-

gamma 

 7.0E-06 1.3E-02 9.0E-04 7.2E-03 7 163 IFITM1,OAS1,OAS2,OAS3,IFITM2,IRF9,BST2 

GO: 
Biological 
Process 

GO:0043901 negative 

regulation of 

multi-

organism 

process 

 7.9E-06 1.4E-02 9.4E-04 7.6E-03 7 166 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 
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GO: 
Biological 
Process 

GO:1903900 regulation of 

viral life cycle 

 1.2E-05 2.1E-02 1.3E-03 1.0E-02 7 176 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0050792 regulation of 

viral process 

 1.8E-05 3.3E-02 1.9E-03 1.6E-02 7 189 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0043903 regulation of 

symbiosis, 

encompassing 

mutualism 

through 

parasitism 

 4.8E-05 8.7E-02 4.8E-03 3.9E-02 7 220 IFITM1,OAS1,OAS3,IFITM2,IFIT1,ISG15,BST2 

GO: 
Biological 
Process 

GO:0071345 cellular 

response to 

cytokine 

stimulus 

 5.7E-05 1.0E-01 5.4E-03 4.3E-02 12 713 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27,I 

FIT1,STAT6,IRF9,ISG15,BST2,IFI6 

GO: 
Biological 
Process 

GO:0098542 defense 

response to 

other 

organism 

 6.4E-05 1.1E-01 5.7E-03 4.6E-02 11 609 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFIT1, 

IFIH1,IRF9,ISG15,BST2,DNAJC3 

GO: 
Biological 
Process 

GO:0002252 immune 

effector 

process 

 7.3E-05 1.3E-01 6.2E-03 5.0E-02 13 851 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFIT1, 

STAT6,IFIH1,IRF9,RFTN1,ISG15,BST2,DNAJC3 

GO: 
Biological 
Process 

GO:0032606 type I 

interferon 

production 

 1.7E-04 3.1E-01 1.4E-02 1.1E-01 5 119 POLR3GL,STAT6,IFIH1,IRF9,ISG15 

GO: 
Biological 
Process 

GO:0034097 response to 

cytokine 

 2.2E-04 4.0E-01 1.7E-02 1.4E-01 12 825 IFITM1,OAS1,OAS2,OAS3,IFITM2,IFI27, 

IFIT1,STAT6,IRF9,ISG15,BST2,IFI6 
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GO: 
Biological 
Process 

GO:0060700 regulation of 

ribonuclease 

activity 

 2.8E-04 5.0E-01 2.1E-02 1.7E-01 2 6 OAS1,OAS3 

GO: 
Biological 
Process 

GO:0035456 response to 

interferon-

beta 

 3.0E-04 5.3E-01 2.1E-02 1.7E-01 3 30 IFITM1,IFITM2,BST2 

GO: 
Biological 
Process 

GO:0033598 mammary 

gland 

epithelial cell 

proliferation 

 3.3E-04 5.9E-01 2.3E-02 1.8E-01 3 31 KDM5B,ID2,STAT6 

GO: 
Biological 
Process 

GO:0060333 interferon-

gamma-

mediated 

signaling 

pathway 

 5.1E-04 9.3E-01 3.4E-02 2.8E-01 4 85 OAS1,OAS2,OAS3,IRF9 

GO: 
Biological 
Process 

GO:0006952 defense 

response 

 6.4E-04 1.0E+00 4.0E-02 3.2E-01 17 1651 IFITM1,OAS1,OAS2,OAS3,IFITM2, 

IFI27,SP110,IFIT1,TFF3,IFIH1,IRF9, 

RFTN1,ISG15,BST2,HERC6,IFI6,DNAJC3 

GO: 
Biological 
Process 

GO:0045646 regulation of 

erythrocyte 

differentiation 

 6.5E-04 1.0E+00 4.0E-02 3.2E-01 3 39 ID2,P4HTM,ISG15 

GO: 
Biological 
Process 

GO:0033629 negative 

regulation of 

cell adhesion 

mediated by 

integrin 

 6.6E-04 1.0E+00 4.0E-02 3.2E-01 2 9 CYP1B1,MUC1 
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