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A comparison of ultrasound with magnetic resonance 

imaging in the assessment of fetal biometry and weight 

in the second trimester of pregnancy:  An observer 

agreement and variability study.  

 Keywords  

‘Biometry’, ‘Fetal weight’, ‘Fetus’, ‘Observer variation’, ‘Magnetic Resonance 

Imaging’, ‘Ultrasonography’, ‘Pregnancy trimester, second’. 

Abstract 

Objective 

To compare the intra and interobserver variability of ultrasound (US) and magnetic 

resonance imaging (MRI) in the assessment of common fetal biometry and estimated 

fetal weight (EFW) in the second trimester. 

Methods 

Retrospective measurements on pre-selected image planes were performed 

independently by two pairs of observers for contemporaneous US and MRI studies of 

the same fetus.  Four common fetal measurements (BPD, HC, AC, FL) and an 

estimated fetal weight (EFW) were analysed for 44 ‘low risk’ cases. Comparisons 

included, intra class correlation coefficients (ICC), systematic error in the mean 

differences, and the random error. 

Results 

The US inter- and intraobserver agreement were good, except for intraobserver AC 

(ICC = 0.880), with a significant increase in error with larger AC sizes.  MRI 

produced excellent intraobserver agreement with higher ICCs than US. Good MRI 

interobserver agreement was comparable with US except for the BPD (ICC = 0.942, 

moderate). Systematic errors between modalities were seen for the BPD, FL and EFW 

(percentage error = +2.5%, -5.4% and -5.5% respectively, p<0.05). MRI had less 

random error than US for intraobserver HC, FL and EFW measures   (p<0.05), and 

more interobserver error for the FL and EFW (p<0.05). 

Conclusions 

US remains the modality of choice when estimating fetal weight, however with 

increasing application of fetal MRI a method of assessing fetal weight is desirable. 

Both methods are subject to random error and operator dependence.  Assessment of 

calliper placement variations, may be an objective method detecting larger than 

expected errors in fetal measurements. 
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 Introduction 
Accurate evaluation of fetal size and growth is essential for the delivery of good 

quality antenatal care, and ultrasound (US) measurements play a central role. When a 

US scan indicates that a fetus is appropriately grown this suggests good intrauterine 

health, thus is reassuring to the clinician and the parents. Additionally, an accurate 

antenatal detection of a growth abnormality may raise suspicions of a variety of fetal 

and maternal conditions which include; pre-eclampsia; fetal growth restriction, 

(FGR); gestational diabetes; macrosomia; infection; and syndromic or genetic 

conditions which are associated with changes in growth patterns (1,2). The 

information about fetal size is a marker of overall fetal health, and may act as a 

threshold for clinicians who, based on the findings, could offer further investigations 

such as Doppler US, blood tests, amniocentesis, or be used to plan the timing of 

delivery of a compromised fetus (3). However, ultrasound is known for its large 

random errors in fetal measurement and low sensitivity for detecting growth 

disturbances (2,4).  Furthermore, there is growing evidence that magnetic resonance 

imaging (MRI) can result in estimated fetal weight (EFW) with far less error than 

ultrasound, particularly when using volumetric methods (5-7).  Few studies have 

assessed the validity of MRI by radiologists for the measurement of fetal biometry 

compared to US by sonographers (8-10).  Furthermore, a literature search revealed no 

studies which had performed a comprehensive intra- and inter-rater agreement, 

variability and method comparison of US and MRI for fetal biometry and estimated 

fetal weight (EFW). Additionally, reporting standards of method comparison studies 

vary widely which limits their interpretation (11-14).  

Fetal MRI is a highly specialised modality for fetal diagnosis and is well established 

for fetal central nervous system (CNS) anomalies.  A systematic review of 13 peer 

reviewed articles, found that MRI provided supplementary information to US and 

resulted in a change in clinical management in 30% of cases, with referral indications 

being numerous but including; posterior fossa anomalies, corpus callosal anomalies, 

microcephaly or apparently isolated ventriculomegaly (15,16). However, MRI is also 

increasing in its remit for fetal evaluation of anomalies outside the CNS e.g. 

diaphragmatic hernia, pulmonary anomalies and twin to twin transfusion syndrome, 

particularly when US is limited by reduced amniotic fluid, maternal obesity or in the 

presence of equivocal US findings (16-19).  A survey conducted by the International 
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Society of Ultrasound in Obstetrics and Gynaecology (ISUOG), found that at least 1-2 

centres in 27 countries were performing fetal MRI with the quality of imaging, 

sequences used and operator experience varying widely.  In the UK, fetal MRI is 

offerd by some tertiary units who have a fetal medicine department (currently 

approximately 6 UK wide), and may involve outsourcing of image reporting to 

experienced specialists.  ISUOG also suggests that a standardised and complete 

assessment of fetal anatomy is feasible with MRI, however its current remit is to 

complement an expert US examination (16).   

As the use of clinical fetal MRI increases, modality specific biometric evaluation is 

becoming more important. Previous studies have almost exclusively focussed on fetal 

MRI late in gestation, however women may be referred for a fetal MRI scan soon 

after the 20 week anomaly US scan when anomalies are initially suspected (3,20).  

The aim of this study is to compare the intra and interobserver variability of US and 

MRI in the assessment of common fetal biometry and EFW in the second trimester. . 

Design and Methods  
The intelligent fetal imaging and diagnosis project (iFIND) is a large scale, single 

centre observational imaging and engineering project, whose aim is to use novel 

technologies to improve diagnosis and detection rates in the second trimester of 

pregnancy.  The project has been granted NHS Research and Development 

approval and ethics approval, NRES reference number = 14/LO/1806, (trial 

registry numbers: UKCRN ID = 18283, ISRCTN = 16542843).  All participants gave 

written and informed consent.   

The study is divided into iFIND-1 where 10, 000 clinical mid-trimester anomaly 

ultrasound scans are recorded for the purposes of machine learning and big data 

analysis, and iFIND-2 which involves further imaging on a smaller population in 

addition to the anomaly scan.   iFIND-2 includes a 2D and 3D US, as well as a MRI 

on each fetus, and these paired datasets are obtained within 0 to 3 days. The images 

were retrospectively and consecutively collected from the iFIND-2 datasets of fetuses 

with a normal anomaly scan result. The image planes pre-selected included the 

biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) 

and femur length (FL) (see figures 1-8 for example image planes and measurement 

criteria).  To calculate the EFW for each fetus (MRI and US) the Hadlock formula 
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including the HC, AC and FL measurements were used as recommended by the 

British Medical Ultrasound Society and ISUOG (20-22).  Whilst the BPD 

measurement is useful to assess head shape its variability in measurement suggests it 

should not be used in routine EFW calculation (23). 

The ultrasound system was a Philips Epiq (Philips Healthcare, Best, Netherlands) and 

the participants were examined by one of two operators (JM or CK), a Consortium for 

the Accreditation of Sonographic Education, CASE, accredited sonographer with 10 

years scanning experience and a UK trained fetal medicine specialist with 6 years’ 

experience respectively.  A 6-1 mHz matrix probe was used to scan all patients.  The 

MRI scanner used for all participants was a Philips Ingenia 1.5 Tesla system (Philips 

Healthcare, Best, Netherlands).  Motion corrected MRI slice to volume 

reconstructions of the fetal head were used to find a transventricular plane comparable 

to US imaging (24)..   An US and a MRI database of anonimysed paired scans was 

compiled using the Osirix image review software for off-line/remote review (version 

7.5, Geneva, Switzerland).  The databases were duplicated then the images reordered 

randomly, ready for a repeat review by the observers after 2.5 weeks, with the aim of 

reducing any recall bias.  All reviewers were provided with face to face training and 

guidance notes about; which views to be recorded; the use of the Osirix review 

platform; and optimal viewing conditions for the off-line review.  

Using both of the US databases, one sonographer (TF, a UK trained sonographer with 

3 years scanning experience) performed repeated measures (blinded to MRI and any 

previous measurements), this was used for US intraobserver calculations. The fetal 

medicine specialist (CK) independently performed one US reading from the first 

database, for interobserver calculations. Using both the MRI databases one radiologist 

(KP, 5 years fetal MRI clinical experience) performed repeated measures (blinded to 

the US and any previous measures) and a fetal imaging research radiographer (CM, 

10 years fetal MRI research experience) independently performed one MRI reading 

from the first database.  The observers also recorded a 3 scale image quality score for 

each image (1=poor, 2=satisfactory and 3=good).  Data was collected on an Excel 

spreadsheet and all supplementary materials and raw data was to be deposited at the 

University via a Research Data Management System on completion of analysis. 
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Figures 1 - 8: Image planes and measurement criteria 

Image plane selection and calliper placement criteria was obtained from the NHS fetal 

anomaly screen programme guideline (20). 

Head Circumference (HC), transventricular view  

Figure 1: US HC plane    Figure 2: MRI SVR HC plane 

[place figure 1 here]     [place figure 2 here] 

 

 

In the transventricular view, the image plane was at the level of the cavum septum 

pellucidum anteriorly (*) and the lateral ventricular horn posterior containing the 

choroid plexus (^).  The falx cerebri was mid-line (“) and the head an oval shape.  The 

ellipse tool was used to measure around the outer table of the skull, being careful not 

to include any subcutaneous fat.  The MRI transventricular view was carefully 

selected from slice to volume reconstructions (SVR) (24) obtained from T2 dynamic 

sequences (TR/TE = Longest/80, slice Th/gap = Volume/-1.25) which were 

manipulated in Osirix using the multiplanar reconstruction (MPR) mode.  

 

Biparietal Diameter (BPD), transventricular view 

Figure 3: US BPD plane    Figure 4: MRI SVR BPD plane 

[place figure 3 here]     [place figure 4 here] 

 

 

In the same image plane as the for the HC measurement, the BPD was measured from 

the outer table of the skull to the outer table of the skull at the widest part for both 

MRI and US. 
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Abdominal Circumference (AC) 

Figure 5: US AC plane    Figure 6: MRI AC plane 

 

[place figure 5 here]     [place figure 6 here] 

 

 

The AC measurement was obtained with an ellipse tracing. The image plane was at a 

level including the part of the fetal liver (*), the fetal stomach (^), the portal sinus of 

the umbilical vein (“), 3 bony points of a vertebra in cross section (+), a circular 

abdominal appearance, circular aorta (>) and with a short length of a rib, i.e. 

‘unbroken’ (‘).  The MRI sequence most commonly selected with the correct plane, 

was a T2 fast spin echo sequence of the transverse uterus (TR/TE = 920/90, slice 

Th/gap = 4/0), followed by the single shot fast spin echo. 

 

Femur Length (FL) 

Figure 7: US FL plane    Figure 8: MRI FL plane 

[place figure 7 here]     [place figure 8 here] 

 

 

The FL was measured by placing the callipers at the end of the diaphysis in a view 

where the femur does not appear foreshortened (solid line). Care was taken to avoid 

measuring the cartilaginous epiphysis at either end of the femur and also to avoid the 

greater trochanter which otherwise would falsely elongate the measurement. The MRI 

sequence most commonly found to have a clear view of the femur in the correct plane 

was a DWI sequence in the B0 field i.e. before the diffusion weighting was applied, 

(TR/TE = 4000/89, slice Th/gap = 5/0).  Some MRI femur views were well visualised 

using a gradient echo echoplanar imaging sequence. 
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Statistical analysis 

The data was analysed using the statistical packages, SPSS (version 23, SPSS Inc, 

Chicago, Ill, USA) and Excel, (version 14.4.7, Microsoft Corp. Redmond, 

Washington, USA).  The EFW was calculated using the Hadlock formula (25).  A 

power calculation determined that a sample size of 31 was required to give a power of 

80% for an error of 5% to detect an effect size of 1 mm difference (assuming a 

standard deviation of 8mm).  Normality testing was performed to ensure assumptions 

were met for statistical analysis and to identify any obvious outliers. 

To assess systematic error between the modalities, the mean difference in 

measurement from the two observers per modality was compared for each parameter 

(BPD, HC, AC, FL, and EFW).  A two tailed paired t-test was performed to compare 

the means. 

To test the intra and interobserver agreement, the average measures intra class 

correlation coefficient, ICC was used.  Suggested cut off limits proposed in the 

literature for fetal studies guided interpretation (26). 

Bland Altman plots were used to graphically assess the mean difference and the limits 

of agreement, LoA. A linear regression coefficient was used to determine if there was 

a statistically significant proportional bias in the error as the size increased.   

Random error was compared between modalities using the LoA (+/-1.96SD of the 

mean) as a marker of intra and interobserver variability and a two tailed paired t-test 

was performed. 

Finally, to allow the clinical significance to be interpreted more readily, the 

proportion of cases falling outside of a calliper placement error threshold was 

calculated.  Arbitrary thresholds were determined by previous examples of expected 

error in the literature (4).  In addition, a standard deviation (SD) threshold for each 

parameter was determined using 1SD of the US intraobserver measurements 

observed. A number and percentage of cases falling outside of the threshold ranges 

were tabulated and compared between MRI and US. 

Results 

53 consecutive iFIND-2 participants were recruited between November 2015 and 

April 2016 and had their fetal imaging studies reviewed for inclusion.  44 participants 
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(83%) had fully paired datasets, and of these 25 (47%) had complete datasets and 19 

(36%) were partially complete. Nine cases were excluded from the study because: 

four did not attend both scans; two had no transventricular US scan plane available; 

two had failed or poor quality MRI head SVRs; and two had missing US images. 

The gestational age, (GA), was a mean of 23.5 weeks (range 20.3 – 25.7).  The BMI 

was a mean of 26.3kg/cm (range 22.2 – 38.4kg/cm), with 3 cases above 30kg/cm 

(clinically obese).  68% of US and MRI scans were on the same day, 4% had a 2 day 

interval and 24% had a 3 day interval. 84% of the US scans had a satisfactory mean 

image score and 16% had a good score.  For MRI, 8% had a poor mean score, 80% 

had a satisfactory score and 12% had a good score.   

Table 1: Difference in the mean US and MRI biometric measurements and EFW 
 

 

Table 1 demonstrates that MRI systematically measured the BPD larger than US 

(mean percentage error = 2.5%, or 1.5mm, p = 0.001), and the FL smaller than US 

(mean percentage error = -5.4%, or -2.2mm, p = 0.001).  MRI systematically 

measured the EFW smaller than US, (mean percentage error = -5.5%, or -34.8g, 

p<0.05). The mean measurements of the HC and AC compared well between 

modalities.  

After normality testing, two outliers were removed from the dataset for the 

subsequent analysis. One was an obvious data input error for the MRI BPD (case 6) 

and one was a significant measurement error due poor image quality of a T2 sequence 

for bone (case 18).  Only one other outlier was identified for US AC, however it was 

Measurement n US, Mean, 

mm  

MRIbiom, 

Mean, mm  

Absolute 

difference, 

mm (95% 

CI) 

Percentage 

difference, 

% 

Paired 

t-test 

(p-

value) 

BPD 30 58.8 

 

60.2  

 

-1.5   

(-2.2 - -0.8) 

-2.5 <0.001 

HC 30 215.5 

 

215.4  

 

0.6 

(-1.4 - 1.5) 

0.3 0.9 

AC 42 191.4 

 

190.3  

 

1.1 

(-2.3 – 4.5) 

0.6 0.5 

FL 33 42.0  

 

39.7  

 

2.2 

(1.0 – 3.7) 

5.4 0.001 

EFW, g  25 647.1 

 

593.3 

 

53.8 

(19-89) 

8.7 <0.05 
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unclear if this was a data input error or a true observer measurement so was kept for 

the remaining analysis (case 41, see figure 13). 

Table 2: Intraobserver and interobserver agreement, ICC 

Fetal 

Measurement 

(n) 

US ICC (95% CI) MRI ICC (95%CI) 

Intraobserver 

 BPD (28)  0.982, good, (0.959 - 0.992)  

 

0.995, excellent, (0.988 - 0.997)  

 

HC (28) 0.952, good, (0.580 - 0.986) 0.997, excellent, (0.994 - 0.999) 

AC (40) 0.880, poor, (0.772 -0.937) 

Significant proportional 

bias, p <0.05  

0.994, excellent, (0.988 - 0.997) 

 

FL (31) 0.978, good, (0.944- 0.990) 

 

0.989, good, (0.975 -0.995) 

 

EFW (23) 0.972, good, (0.547 - 0.993) 0.983, good, (0.961 – 0.993) 

Interobserver 

 BPD (28) 0.974, good, (0.808 - 0.992) 

 

0.942, moderate, (0.860 – 0.974)  

 

HC (28) 0.971, good, (0.938 - 0.987) 

 

0.983, good, (0.963 -0.992) 

 

AC (40) 0.967, good, (0.896 -0.982) 

 

0.973, good, (0.949 -0.986) 

 

FL (31) 0.990, good, (0.979 -0.995) 

 

0.978, good, (0.955 -0.990)  

 

EFW (23) 0.988, good, (0.965 - 0.995)  

 

0.964, good, (0.905 -0.986) 

 

   

Table 2 shows that MRI had excellent intraobserver agreement for BPD, HC, AC, 

EFW and good FL agreement, with all ICC results scoring higher than US.  Only the 

intraobserver FL and EFW had overlapping confidence intervals between modalities 

suggesting significant differences in agreement for the remaining biometry. US had 

good intraobserver agreement for all parameters except AC which scored poorly (ICC 

= 0.880).   In addition, there was significantly less agreement for the US AC 

intraobserver measurement as the AC absolute size increased (p < 0.05).   

For interobserver agreement US and MRI both had good agreement for all parameters 

except for the MRI BPD (moderate ICC = 0.942), however all parameters had 

overlapping 95% confidence intervals, suggesting no significant difference.  
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Figure 9-18:  Bland Altman Plots of US compared to MRI, showing mean absolute error, 

mm, and limits of agreement, LoA, (+/- 1.96 SD) above and below the mean.                                                  

US = blue circles, o and solid lines            , MRI = green crosses, x and dashed line  --------  

Figure 9 Intraobserver BPD    Figure 10 Interobserver BPD 

 

 

[place figure 9 here]     [place figure 10 here] 

 

 

Figure 11 Intraobserver HC     Figure 12 Interobserver HC 

 

 

[place figure 11 here]     [place figure 12 here] 

 

 

Figure 13 Intraobserver AC    Figure 14 Interobserver AC 

 

 

[place figure 13 here]     [place figure 14 here] 
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Figure 15 Intraobserver FL    Figure 15 Interobserver FL  

 

 

[place figure 15 here]     [place figure 16 here] 

 

 

 

Figure 17 Intraobserver EFW    Figure 18 Interobserver EFW 

 

[place figure 17 here]     [place figure 18 here] 

 

 

 

The Bland Altman plots in Figures 9-18 shows the absolute difference in millimeters 

between two measurements for each individual case. The MRI and US differences are 

overlaid on the same plot with a central mean difference line and a limits of 

agreement line above and below to represent 95% of the variance.  Only intraobserver 

AC showed an increase in variation with size, with a marginal increased seen with 

intraobserver FL that was not significant.   The LoA varied between parameters, with 

a tendency for MRI LoA to be narrower than US for intraobserver measures and 

wider for interobserver measures.   

In table 3, the LoA (random error) are explored further, and demonstrates that 

statistically significant differences were observed for the intraobserver LoA for HC, 

FL and EFW, with MRI having less variation than US (P<0.05).  There were 

significant differences in the interobserver LoA for AC and FL, with MRI having 
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more variation than US (p <0.05).  Parameters where the mean variation was above an 

arbitrary 5% percentage error threshold, included the intraobserver US measures of 

AC, FL and EFW (8.7%, 5.0% and 6.6% respectively) and MRI EFW (6.2%).  For 

interobserver measures, the parameters for MRI with a mean percentage error above 

5% include BPD, AC, FL and EFW (5.0%, 5.5%, 6.9% and 10.1% respectively) .  For 

US, only interobserver EFW had and a mean percentage error of more than 5% 

(6.2%). 

Table 3: Differences in random error between US and MRI fetal measurements and 

biometry derived EFW (paired t-test) 

Fetal 

measurement 

(n) 

Intraobserver Interobserver 

 US MRI  p-value US MRI  p-value 

Absolute error, mm, (+/- 1.96 SD)  

BPD (28) 1.4 1.1  0.3 1.3 3.1 0.8 

HC (28) 7.1 2.5 <0.05 7.9 6.2 0.6 

AC (40) 18.0 5.1 0.09 8.7  10.3 <0.05 

FL (31) 2.1 1.6 <0.05 1.6 2.6 0.99 

EFW, g (23) 45.6 73.2 0.1 43.0 54.2 0.6 

Percentage error, %, (+/- 1.96 SD)  

BPD (28) 2.4% 1.8% 0.3 2.2% 5.0% 0.9 

HC (28) 3.2% 1.2% <0.05 3.6% 2.8% 0.6 

AC (40) 8.7% 2.7% 0.1 4.6% 5.5% <0.05 

FL (31) 5.0% 4.2% <0.05 3.8% 6.9% 0.97 

EFW, g (23) 6.5% 13.6% 0.2 6.3% 8.9% 0.8 

 

Table 4:  Differences in proportion of US and MRI cases falling outside of arbitrary error 

threshold  

Arbitary cut off Intraobserver > threshold Interobserver > threshold 

Parameter  Total 

cases 

 

Threshold 

values. 

Intra/inter 

(mm) 

US = 

n (%) 

MRI   

n (%) 

US 

n (%) 

MRI  

n (%) 

BPD  28 1.4/2.2  1 (4) 1 (4) 0 (0) 6 (21) 

HC 28 5.2/8.0  11 (39) 0 (0) 2 (7) 1 (4) 

AC  40 7.9/11.0  16 (15) 0 (0) 1 (3) 3 (8) 

FL  31 2.1/2.5  3 (10) 0 (0) 0 (0) 2 (6) 

EFW  23 66.1g (10%) 2 (13) 3 (0) 0 (0) 0 (0) 

Total number of cases measures of 

range (n=150) 

33 (22) 4 (3) 3 (2) 12 (8) 
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Table 5:  Differences in proportion of US and MRI cases falling outside of 1 SD error 

threshold  

 

1 SD cut off Intraobserver > threshold Interobserver > threshold 

Parameter  Total 

cases 

 

Threshold 

values. mm 

US = 

n (%) 

MRI   

n (%) 

US 

n (%) 

MRI  

n (%) 

BPD  28 0.6  13 (46) 8 (29) 16 (57) 17 (61) 

HC 28 2.8 15 (54) 1 (4) 10 (36) 6 (21) 

AC  40 3.3 19 (48) 8 (20) 21 (53) 17 (43) 

FL  31 1.1 7 (23) 6 (19) 5 (16) 9 (29) 

EFW  23 33.1g (5%) 8 (35) 10 (43) 4 (17) 6 (26) 

Total number of measures out of 

range (n = 150) 

62 (41) 33 (22) 56 (37) 55 (37) 

 

Table 4 demonstrates that more US cases that fell outside of the anticipated error 

range when compared to MRI (32 US cases versus 1 case for MRI), with MRI 

performing equal to, or better than, US for all parameters.  For interobserver error 15 

MRI cases and 3 US cases fell outside the expected threshold for error, with US 

performing better than MRI for BPD, AC, FL and EFW.    

Table 5, with narrower thresholds (based on intraobserver US SDs), demonstrated 

MRI measurements that consistently had less cases falling out of range compared to 

US for intraobserver measures (62 US cases versus 33 MRI cases).  For interobserver 

cases there were 56 US cases and 55 MRI cases in total with larger error.  For 

intraobserver EFW with SD thresholds, the MRI measurements appeared to perform 

better than US with less cases with large variations i.e. >5% (8 cases or 35%, versus, 

2 cases or 9%). 

Discussion  

This study sought to comprehensively compare the intra- and interobserver variability 

between MRI and US for fetal measurements and EFW.  The calliper placement error 

for both US and MRI were found to be small (less than 5%), however the random 

errors observed were expected to be smaller than in clinical practice because of the 

highly controlled conditions (one image plane selected per participant and low risk 

fetuses), thus should be interpreted with caution. US was more susceptible to 

intraobserver variability, whereas MRI was more susceptible to interobserver 
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variability, both having cases falling outside of previously published error thresholds 

for fetal measurements (4).   The causes of random errors in the US measurements 

that are used to calculate EFW, are multifactorial in origin and include; fetal position; 

maternal adiposity; sonographer experience; equipment specification; and reduced 

amniotic fluid which could limit the view (4,27,28).  Observer variation, is known to 

have a major impact on the precision of US fetal measurements, with electronic 

calliper placement on an image, accounting for 58-80% of the error, having more 

impact than maternal adiposity or fetal position (4,5). This highlights the need for 

thorough operator training and audit but also the need for technological development 

of more quantifiable and less subjective assessments (29).   

Sarris et al in 2012, investigated fetal biometry variation in 175 cases with three 

experienced sonographer observers, and found intraobserver variation to be 

consistently smaller than intraobserver variation. The poorer US intraobserver 

measurements (compared to inter- variation)  observed in this study was surprising, 

and highlights the need for objective measurement audits in departments on an 

individual basis because this has a direct impact clinically when serial scans are 

performed often by different operators.  For MRI, the wider interobserver error was 

expected as these fetal measurements are rarely measured routinely and the operator 

experience thus limited.  Fetal MRI staff not experienced in performing these 

measurements will need more training in the future and there is a case for objective 

validation and also for US and MRI specialists to work across disciplines, developing 

practice that compliment one another. MRI currently has no universally agreed 

modality specific growth charts validated for clinical use, largely because; MRI is a 

relatively new tool with less reference data available; most fetal MRI examinations 

are for the brain or spine where the technique is better established, and; there is an 

assumption that the routinely utilised US reference data and growth charts are suitable 

to use across the two modalities (9,30). 

The larger US intraobserver variation and increased variation with increased size for 

the AC measurements, from which the EFW formulae are based, suggests a 

measurement that should be closely monitored.  Previous studies have supported the 

finding that AC measurements have less variation than EFW and therefore be a better 

predictor of size at term (31), however here we demonstrate that the role of the 
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operator is still very important.  A tool to assess calliper placementt, monitoring 

groups of ultrasound operators, could use z-scores or relative percentage error to 

assess departmental and individual variance across time or as a training tool (4).   

Whether using US or MRI, operator dependence in obtaining fetal biometry reaffirms 

the importance of quality training and audit to reduce random errors and 

recommendations have been published in the literature for sonographers (28,32-34).  

The EFW variability suggests that the random errors in fetal measurements will often 

compound the systematic errors of the mathematical equation, whether using US or 

MRI (35).  Indeed, Khel et al, 2012 suggests that the current accuracy of EFW has 

reached its limits, and that novel approaches to US technology must be considered to 

reduce clinical errors. 3D US volumes of a part of a fetusus’ limb, which incorporates 

soft tissue, has been used in EFW calculations, with some success, to improve 

accuracy, however as yet, there is a paucity of diagnostic accuracy tests to validate its 

use clinically (27,36-38), and reductions in post processing time is needed to make 

this a useful tool in the future (1,2).  Significant variation in EFW calculations has 

clinical implications because currently US is not recommended to screen the low risk 

population for growth disturbances due to poor sensitivity and specificity (39).  

Additionally, errors in the formula occurs at the extremes of the weight range, due to 

changes in the soft tissue fat/muscle ratio of a compromised fetus, and may result in 

an overestimation of weight in small babies and an underestimation of weight in large 

babies when accurate depiction is most clinically important (40).   

There is growing evidence that volumetric magnetic resonance imaging (MRI) can 

result in EFWs compared to birthweight with less random error than US, reported as 

low as 1-3% versus up to 7% for US (5,9,41,42).  MRI is well established as a 

multiplanar reconstruction (MPR) imaging technique which means that two-

dimensional images from a 3D volume of data can be reconstructed and viewed in 

any orientation, thus theoretically reducing measurement errors caused by an oblique 

or off centre plane.  Moreover, MRI can negate some of US’s technical drawbacks 

because maternal size, amniotic fluid and fetal position are less of a problem due to 

MRIs increased field of view.  Still, fetal movements in MRI can cause image 

degradation, particularly at earlier gestations when the fetus is more active, and 

results in a poorer signal-to-noise ratio. However, MRI has superior soft tissue 
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contrast and improved boundary definition when placing electronic callipers for 

measurement or when outlining segments of the fetal body to calculate a volume.  

Although MRI is underused as an antenatal tool compared to US, it is increasing its 

remit within fetal imaging for complex or equivocal cases due to improvements in 

post processing and faster scan sequences that reduce the issues of fetal movement 

MRI, and it is based on non-ionising radiation and is considered safe to use in 

pregnancy (43,44).  Nonetheless, the use of MRI is limited by its expense, lack of 

expertise and scanner availability, as well as the limited evidence base of MRI’s 

advantages over obstetric US for non-central nervous system anomalies.Differences 

in the imaging physics of each method are likely to account for the systematic error in 

the mean measurement between modalities (9,11).  For example, the use of T2 

weighted MRI images could mean the anatomical landmarks are slightly different to 

US, e.g. more subcutaneous scalp tissue may have been included due to the poorer 

bone definition.  Distortion effects of the echoplanar imaging sequences used to select 

a FL plane on MRI may have resulted in the smaller FL measured. Technical 

refinement of MRI sequences may be necessary for a comparable and representative 

assessment of fetal anatomy  

A major strength of the study was the adherence to current literature on reliability and 

agreement studies, the use of recommended statistics and guidance on interpretation, 

thus avoiding some of the heterogenous methods used in previous publications (11-

13,26). As a retrospective study, limitations in the sample size occured due to the 

availability applicable of datasets, the short timeframe for the study, and lack of 

control over image quality was an issue.  Also, a prospective study would mean real 

time US (as in clinical practice) could reveal the true variability. Furthermore, US was 

used as the reference standard to compare MRI – however it is well documented that 

the technique is prone to errors   Due to the small numbers no statistical assessment of 

confounders (e.g. BMI, or fetal position) could be attempted.  Furthermore, it may 

have been helpful to report the findings in terms of gestational age to aid easy 

interpretation by the clinician. 

Future research should investigate the role of whole fetal body volume segmentation 

by MRI (or US) in the assessment of fetal weight as the technology continues to 

develop at a rapid pace (5,27,36).  Methods to assess measurement variability as part 



 17 

of individual and departmental audit should also be investigated as part of audit or 

training programmes, with the aim of providing much needed objective quality 

assurance. 

Conclusion 
US remains the modality of choice when assessing biometry and estimating fetal 

weight. However with increasing applications of fetal MRI, a method of assessing 

fetal growth and weight is desirable. Both methods are subject to random error and 

operator dependence, with US being more operator dependant and MRI being an 

immature modality for common biometry.  Since, EFW is affected by the variability 

of 2D measures, novel approaches, such as 3D volumetric methods in MRI, need 

further investigation if clinical errors are to be reduced in the future.  The assessment 

of calliper placement variations, may be an objective method detecting larger than 

expected errors in fetal measurements. 
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 Appendix: Reporting Checklist 

GRRAS checklist for reporting of studies of reliability and agreement  

  
Version based on Table I in: Kottner J, Audigé L, Brorson S, Donner A, Gajeweski BJ, 

Hróbjartsson A, Robersts C, Shoukri M, Streiner DL. Guidelines for reporting reliability and 

agreement studies (GRRAS) were proposed. J Clin Epidemiol.  2011;64(1):96-106  

  

Section  Item 

#  
Checklist item  Reported 

on page 

#  

Title/Abstract  1  Identify in title or abstract that 

interrater/intrarater reliability or agreement 

was investigated.  

 

Introduction  2  Name and describe the diagnostic or 

measurement device of interest explicitly.  
 

  3  Specify the subject population of interest.   

  4  Specify the rater population of interest (if 

applicable).  
 

  5  Describe what is already known about 

reliability and agreement and provide a 

rationale for the study (if applicable).  

 

Methods  6  Explain how the sample size was chosen. 

State the determined number of raters, 

subjects/objects, and replicate observations.  

 

  7  Describe the sampling method.   

  8  Describe the measurement/rating process 

(e.g. time interval between repeated 

measurements, availability of clinical 

information, blinding).  

 

  9  State whether measurements/ratings were 

conducted independently.  
 

  10  Describe the statistical analysis.   

Results  11  State the actual number of raters and 

subjects/objects which were included and the 

number of replicate observations which were 

conducted.  

 

  12  Describe the sample characteristics of raters 

and subjects (e.g. training, experience).  
 

  13  Report estimates of reliability and agreement 

including measures of statistical uncertainty.  
 

Discussion  14  Discuss the practical relevance of results.   

Auxiliary 

material  
15  Provide detailed results if possible (e.g. 

online).  
 

  

 


