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ABSTRACT 

BACKGROUND – Elastolysis and ineffective elastogenesis favor the accumulation of 

tropoelastin, rather than cross-linked elastin, in atherosclerotic plaques. We developed 

gadolinium-labeled tropoelastin-specific magnetic resonance contrast agents (Gd-TESMAs) for 

tropoelastin imaging in animal models.  

METHODS AND RESULTS – Two peptides, VVGSPSAQDEASPLS and YPDHVQYTHY were 

selected to target tropoelastin. In vitro binding, relaxivity, and biodistribution experiments 

enabled characterization of the probes and selecting the best candidate for in vivo MRI. MRI 

was performed in atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice and New Zealand 

white rabbits with stable and rupture-prone plaques using Gd-TESMA. Additionally, human 

carotid endarterectomy specimens were imaged ex vivo. The VVGSPSAQDEASPLS-based 

probe discriminated between tropoelastin and cross-linked elastin (64±7% vs 1±2%, P=0.001), 

had high in vitro relaxivity in solution (r1-free=11.7±0.6mM−1s−1, r1-bound to tropoelastin = 44±1mM-1s-1) 

and favorable pharmacokinetics. In vivo mice vascular enhancement (4wks=0.13±0.007mm2, 

8wks=0.22±0.01mm2, 12wks=0.33±0.01mm2, P<0.001) and R1 relaxation rate (4wks=0.90±0.01 

s-1, 8wks=1.40±0.03 s-1, 12wks=1.87±0.04s-1, P<0.001) increased with atherosclerosis 

progression after Gd-TESMA injection. Conversely, statin-treated (0.13±0.01mm2, R1 

=1.37±0.03s-1) and control (0.10±0.005mm2, R1 =0.87±0.05s-1) mice showed less enhancement. 

Rupture-prone rabbit plaques had higher R1 relaxation rate compared with stale plaques 

(R1=2.26±0.1s-1 vs R1=1.43±0.02s-1, P=0.001), after administration of Gd-TESMA that allowed 

detection of rupture-prone plaques with high sensitivity (84.4%) and specificity (92.3%). 

Increased vascular R1 relaxation rate was observed in carotid endarterectomy plaques after 

soaking (R1pre= 1.1±0.26 s-1 vs R1post= 3.0±0.1s-1, P=0.01). Ex vivo analyses confirmed the MRI 

findings and showed uptake of the contrast agent to be specific for tropoelastin. 
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CONCLUSIONS – MRI of tropoelastin provides a novel biomarker for atherosclerotic plaque 

progression and instability. 
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INTRODUCTION 

Cardiovascular disease (CVD) accounts for nearly one-third of sudden and premature deaths 

worldwide1. Despite improvements in the management of patients, CVD related deaths are 

projected to affect 12 million people by 20302. Atherosclerosis is the underlying cause of the 

majority of cardiovascular events. Atherosclerotic plaque progression involves the dynamic 

turnover of the extracellular matrix (ECM) protein, elastin, through elastolysis3,4 (degradation) 

and elastogenesis (de novo synthesis)5-8. Elastolysis3,4 induced by inflammatory processes that 

upregulate the expression of elastases9 has been considered the major pathway for elastin 

remodeling. Conversely, dysfunctional elastogenesis and its contribution to plaque progression 

and instability, is less understood5-8. 

Elastin is a highly abundant ECM protein found in the arterial wall that contributes to 

50% of its dry weight10. Mature elastin is an insoluble and hydrophobic polymer, with a very low 

turnover rate. Mature elastin is formed by cross-linking of tropoelastin, a 60-72 kDa soluble 

monomer 11, by lysyl oxidase (LOX). Mature elastin contains several tropoelastin molecules. 

Tropoelastin has two alternating domains: (1) hydrophilic, cross-linked, domains rich in Lys and 

Ala and (2) hydrophobic domains (responsible for elasticity) rich in Val, Pro, and Gly, which 

often occur in repeats of VPGVG or VGGVG11. Endothelial cells, vascular smooth muscle cells 

(VSMCs) and adventitial fibroblasts produce tropoelastin during the late fetal and early neonatal 

periods of life, after which elastogenesis ceases11. Secreted tropoelastin is “chaperoned” to the 

extracellular space by the elastin-binding protein (EBP)12,13 where tropoelastin is stabilized and 

aligned along microfibrils, that contain glycoproteins (e.g. fibrillins) and microfibril-associated 

glycoproteins (e.g., MAGP-1) prior to enzymatic cross-linking14,15. Thus, normal arteries contain 

cross-linked elastin but negligible amounts of tropoelastin. 

Dysfunctional ECM synthesis and degradation contribute to the initiation, progression 

and complication of arterial diseases including atherosclerosis6,16,17, abdominal aortic aneurysm 
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(AAA)18, supravalvular aortic stenosis19, in-stent restenosis20,21 and Marfan’s syndrome22. In 

atherosclerosis, VSMCs23,24 and macrophages6,8 resume production of tropoelastin that often 

fails to cross-link into elastic fibers as a result of the reduced expression or absence of LOX25-30, 

or any of the components of the microfibrillar scaffold required for fiber assembly31-33. 

Simultaneously, elastin degradation by elastases9 generates elastin-derived peptides, including 

the VGVAPG, that are chemotactic for inflammatory cells34, participate in lipoprotein retention, 

and upregulate matrix metalloproteinases10, all of which are involved in the progression and 

instability of a plaque.  

Over the past 10 years there have been significant developments in imaging of 

molecular components of the vessel wall in vivo. Imaging of vascular elastin has been achieved 

using the elastin-specific MRI contrast agent (ESMA)35 in preclinical models of atherosclerosis36-

38, AAA39, coronary artery injury40 and myocardial remodeling after infarction41,42. Collagen-

binding paramagnetic nanoparticles have also successfully been used to image collagen 

remodeling in murine atherosclerosis43; while in vivo optical analysis has been used to quantify 

changes in collagen and elastin after wall injury44.  

As elastogenesis and elastolysis favor the accumulation of tropoelastin, rather than fully 

processed cross-linked elastin, we hypothesized that tropoelastin may serve as a new imaging 

biomarker to detect atherosclerosis progression and lesion instability. Herein, we have 

developed, characterized and validated novel tropoelastin-specific MR contrast agents to image 

tropoelastin turnover in models of atherosclerosis and plaque instability and shown potential to 

bind to symptomatic plaques taken from patients undergoing carotid endarterectomy. 
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METHODS 

The data, analytic methods, and study materials will not be made available to other researchers 

for purposes of reproducing the results or replicating the procedure. 

 

Elastin and tropoelastin-binding probes.  The tropoelastin peptides were selected as 

described in the online Supplementary Methods. The probes, (DOTA)-VVGSPSAQDEASPLS 

and K(DOTA)YPDHVQYTHY, their corresponding scrambled versions DOTA-

GAESAPLVSSVQSPD (scrambled-V) and K(DOTA)-HQVYTYPHDY (scrambled-Y), as well as 

the rhodamine-labeled VVGSPSAQDEASPLS peptide derivative were custom synthesized by 

Peptide Synthetics Ltd. (Hampshire, UK). The DOTA-peptides were complexed in house with 

lanthanide ions: europium (Eu3+), lanthanum (La3+) or gadolinium (Gd3+) for in vitro binding 

assays, relaxivity and MRI experiments; or 64Cu2+ for biodistribution studies. The complexed 

(DOTA)-VVGSPSAQDEASPLS and K(DOTA)YPDHVQYTHY probes were denominated as 

tropoelastin-binding MR contrast-agents (TESMAs). The diethylenetriaminepentaacetic acid 

(DTPA)-based elastin-specific contrast agent was provided by Lantheus Medical Imaging (North 

Billerica, USA)35, either complexed to gadolinium, (Gd-ESMA; 856 Da) for relaxivity and MRI 

experiments or in its free form (ESMA), complexed in house with Eu3+ for in vitro binding assays. 

Eu3+ labeled DTPA solutions (Eu-DTPA) complexed in house were used as controls. 

 

Synthesis of the lanthanide(III) complexes, in vitro binding and relaxivity studies were 

performed as described in the online Supplementary Methods. 

 

Murine model of atherosclerosis progression. Male apolipoprotein E knockout (ApoE-/-) mice 

and wild-type (WT) C57BL/6J were purchased from Charles Rivers Laboratories (Edinburgh, 

UK). 8 week-old ApoE-/- mice were switched to a high-fat diet (HFD) containing 21% fat from 
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lard, and 0.15% (wt/wt) cholesterol (Special Diets Services, Witham, UK). ApoE-/- mice were 

imaged at 4, 8, and 12 weeks after HFD-feeding (n=10 per group). In the treatment group, 

ApoE-/- mice (n=10) received pravastatin (40mg/kg/day) (Kemprotec Ltd, Middlesborough, UK) 

administered in the drinking water simultaneously with the HFD for 12 weeks. 8 week-old WT 

mice (n=10) were fed a normal chow diet for 12 weeks and scanned at 20-weeks.  

Rabbit model of plaque instability. Six 3 month-old male New Zealand White rabbits (Harlan, 

Wyton, England; mean weight, 2.5 kg) were fed a 1% cholesterol diet (Special Diet Services, 

Witham, England) for 2 weeks before and 6 weeks after balloon injury of the abdominal aorta. 

This was followed by 4 weeks of normal chow diet as previously described37,45,46. Diseased 

rabbits received intraperitoneal administration of Russell’s viper venom (0.15 mg/kg; Enzyme 

Research Laboratories, Swansea, UK), a procoagulant factor, followed 30 minutes later by 

intravenous administration of histamine dihydrochloride (0.02 mg/kg; Sigma-Aldrich, Dorset, 

England), a vasoconstrictor in rabbits, to induce plaque disruption and thrombosis. This 

procedure was repeated twice within 4 hours.  All procedures were approved by the United 

Kingdom Home Office and were in accordance with institutional guidelines. 

 

Biodistribution of 64Cu-labeled tropoelastin probes. Biodistribution experiments are 

described in the Online Supplementary Methods. 

 

In vivo molecular imaging of tropoelastin at 3T. All imaging experiments were performed 

using a 3T Philips Achieva MR scanner (Philips Healthcare, Best, The Netherlands) equipped 

with a clinical gradient system (30mT m–1, 200mT/m/ms). 

Mice. Mice (n=10 per group) were imaged using a single–loop surface coil (diameter=23mm). 

The animals were placed in prone position and the brachiocephalic artery was imaged 30-40min 

post injection of the tropoelastin-binding contrast agent Gd-TESMA [(Gd-DOTA)-VVGS] 
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(0.2mmol/kg). A subgroup of animals (n=5 per group) was also scanned 1h (optimal time point) 

after injection of Gd-ESMA (0.2mmol/kg) on the previous day for comparison (Online 

Supplementary Data Figure 1A). Additionally, 12 weeks HFD-fed animals (n=3) were imaged 

30-40min after injection of the scrambled-VVGS probe (0.2mmol/kg), and another 2 mice were 

imaged with a 1:1 (Gd-TESMA + La-TESMA) cocktail for in vivo competition experiments. A 

detailed MRI acquisition protocol is described in the online Supplementary Methods. 

Rabbits. The abdominal aorta of diseased rabbits was scanned using a 32-channel cardiac coil. 

Rabbits received general anaesthesia and were imaged in a supine position twice before (pre) 

and one time after (post) pharmacological triggering (Online Supplementary Data 1B). The 

pre-trigger MR imaging included two separate scanning sessions; one before and after 

administration of Gd-ESMA and one before and after administration of Gd-TESMA. The second 

MRI session was performed two days after the first to allow vessel wall clearance of Gd-ESMA. 

During these sessions, native zoom T1-weighted black-blood (BB) and delayed-enhanced (DE) 

images and T1 maps were acquired 2h after administration of Gd-ESMA (0.2 mmol/kg) and 

40min after administration of Gd-TESMA (0.2 mmol/kg). After the second scan, the rabbits were 

triggered twice for plaque rupture and the final post-triggering MR imaging session was 

performed 8h later. The post-trigger MRI included acquisition of native zoom T1-weighted BB 

images to visualize thrombus. A detailed MRI acquisition protocol is described in the online 

Supplementary Methods. 

 

Ex vivo T1 mapping experiments using symptomatic plaques taken from patients 

undergoing carotid endarterectomy at 3T. Fresh symptomatic carotid endarterectomy 

specimens were imaged before and after soaking the in Gd-TESMA and subsequently in Gd-

ESMA (Online Supplementary Data Figure 1C). A detailed tissue handling and MRI 

acquisition protocol is described in the online Supplementary Methods. Collection and use of 
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human samples was approved by an institutional review committee and subjects gave informed 

consent. 

 

MRI image analysis. In mice, vessel wall area was calculated by manually segmenting the 

visually enhanced region of the vessel wall as seen on the DE-MRI images using OsiriX (OsiriX 

Foundation, Geneva, Switzerland). To ensure that the segmented area encompassed the 

vessel wall the DE-MRI images were co-registered and fused with the magnetic resonance 

angiography images. T1 values were computed on a pixel-by-pixel basis using a 3 parameter fit 

implemented in Matlab36. In rabbits, pre-trigger native T1w-BB images and contrast enhanced 

IR and T1 maps were used to assess the vascular remodelling. Post-trigger native T1w-BB 

images were only used to identify the presence or absence of thrombus as an endpoint for the 

classification of plaques as rupture-prone and stable, respectively. The T1 maps were 

automatically generated after the data acquisition using a 3-parameter fit model. The T1 maps 

were imported into Osirix and the vessel wall was manually segmented to calculate the R1. 

When segmenting the T1 maps the anatomical T1w-BB images were used to aid the 

identification of the vessel wall contours. The analysis was performed on anonymized datasets 

in all experiments. T1 maps of ex vivo carotid endarterectomy specimens were analyzed as 

described above for the rabbit images.  

 

Histology 

Mice. The aortic root, aortic arch, brachiocephalic and carotid arteries were removed en bloc, 

pinned down to maintain tissue morphology and fixed in 10% formaldehyde for 48h (n=4 per 

group). Tissues were embedded in paraffin and sectioned transversely (5-μm thick). Verhoeff-

Van Gieson elastin staining (HT25A-1KT, Sigma, Dorset, UK) and Trichrome Stain (Masson) Kit 

(HT15-1KT, Sigma, Dorset, UK) were used to investigate vessel wall morphology and elastin 
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and collagen fibres, respectively. Immunohistochemistry for tropoelastin was performed using 

an anti-mouse rabbit polyclonal antibody (1:100, Abcam, ab21600, Cambridge, MA, USA). 

Vessel wall area was calculated using the Verhoeff-Van Gieson images as [adventitia area−the 

luminal area (mm2)] using ImageJ (NIH). The immunopositive areas were segmented and 

expressed as normalized tropoelastin area (%tropoelastin= tropoelastin immunopositive 

area/vessel wall area) × 100. Fluorescent microscopy was performed using a custom 

synthesized rhodamine-labeled VVGS peptide derivative (rhod-VVGS). Sections were incubated 

with a 200nM solution for 24h at 4oC followed by nuclear counterstain using Hoechst 

(ThermoFischer 33342, 1:3000, for 15 min at room temperature). Slides were shielded from light 

at all times and mounted with a Mowiol containing 2.5% 1,4-diazobicyclo-[2.2.2]-octane 

(DABCO, Sigma, D2522) medium.  

 

Rabbits. Transverse cryosections (10μm thick) were collected throughout the length of each 

segment at 500μm intervals and stained with Verhoeff-Van Gieson to visualize the elastin fibres 

and calculate the total elastin content. Immunohistochemistry for tropoelastin was performed 

using an anti-mouse rabbit monoclonal antibody (1:100, NB100-2076, Novus Biologicals, 

Abingdon, UK). Computer-assisted colour image analysis (ImageJ) was used to quantify the 

percentage total elastin and tropoelastin content, using the Verhoeff-Van Gieson elastin and 

tropoelastin immunohistochemistry stainings, respectively. For registration of the in vivo MR 

images and histologic sections, the distance of the proximal end of each segment from the renal 

branches and iliac bifurcation, the gross morphology, and internal plaque and/or thrombus 

landmarks visible on both the MR and histologic images were used as references.  

 

Human carotid endarterectomy (CEA) specimens. After the imaging experiments, the 

plaques from endarterectomy were fixed in formalin, decalcified, embedded in paraffin, and 
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sectioned transversely at 5μm. Sections were stained for collagen using Masson’s trichrome, 

elastin with Verhoeff-Van Gieson and tropoelastin by immunohistochemistry (1:100, Abcam, 

ab21600, Cambridge, MA, USA).  

 

Western Blot experiments for quantification of vessel wall tropoelastin concentration are 

described in the online Supplementary Methods.  

 

Inductively coupled plasma mass spectrometry (ICP–MS) was used to quantify vessel wall 

gadolinium concentrations as described in the online Supplementary Methods.  

 

Statistical analyses. The detailed statistical methods are described in the online Supplemental 

Methods. P-values <0.05 were considered statistically significant.  

 

RESULTS 

Chemical structures and in vitro binding assays. The chemical structures and molecular 

weight of the gadolinium-labelled tropoelastin-binding probes are shown in Figures 1A-B.  

In vitro binding experiments showed that both K(Eu-DOTA)-YPDH and (Eu-DOTA)-VVGS 

probes have high selectivity towards tropoelastin compared with other proteins including 

collagen I, fibronectin, and human serum albumin (HSA) (Figure 1C). Importantly, the (Eu-

DOTA)-VVGS probe showed superior discrimination between tropoelastin and mature elastin 

(64±7% vs 1±2%, P=0.001) compared with K(Eu-DOTA)-YPDH (84± 4% vs 53±5%, P=0.009). 

Conversely, Eu-ESMA showed equal binding to tropoelastin and mature elastin (40±1% vs 

41±2%, P=NS). Additionally, both (Eu-DOTA)-VVGS and K(Eu-DOTA)-YPDH did not show 

binding to HSA, whereas Eu-ESMA has been reported to bind 15% to HSA [value included in 

Figure 1C40]. Finally, Eu-DTPA and complexes of the scrambled VVGS and YPDH probes 
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showed no binding to all proteins studied. The saturation binding plots (Figure 1D-E) showed 

that both probes bind to tropoelastin whereas no binding to HSA was observed. Finally, no 

binding of the scrambled probes to tropoelastin was observed. The KD values showed high 

affinity of the probes towards tropoelastin (Figure 1F). Further competition studies showed the 

specificity of the two probes (Online Data Supplement Figure 2).  

 

Relaxivity studies using Gd-labeled tropoelastin and elastin-binding contrast agents. 1H 

nuclear magnetic relaxation dispersion (NMRD) profiles obtained in PBS were characteristic of 

small-molecular weight complexes (Figure 2A-C). As expected, the relaxivity values of the new 

probes were higher (r1 =8.9±0.4 and 11.7±0.6mM−1s−1 for K(Gd-DOTA)-YPDH and (Gd-DOTA)-

VVGS, respectively, at 20MHz and 37°C) compared with non-peptide based contrast agents 

(e.g., Gd-DTPA=4.02mM-1s-1 at 20MHz, 37°C)47 (Figure 2D) due to the increased molecular 

weight (reducing the rotational correlation time), which also contributes to second- and outer-

sphere proton relaxation effects47. The relaxivity of Gd-ESMA was measured to be 4.9±0.3mM-

1s-1 (20MHz, 37°C). 

In the presence of tropoelastin (TE), the relaxivity of the bound fraction was calculated 

taking into account the KD and a stoichiometry of 1:2 tropoelastin:probe as determined by the 

fluorescence studies (Figure 1F) and was plotted as a function of the magnetic field strength 

(Figure 2A-C). These NMRD profiles correspond to slow tumbling systems with a typical high 

field peak around 20-40MHz showing overall higher relaxivity for the tropoelastin-bound fraction: 

36±1, 44±1 and 25±1mM-1s-1 for TE-[K(Gd-DOTA)-YPDH)], TE-[(Gd-DOTA)-VVGS)], and TE-

[(Gd-ESMA)], respectively.  

 To investigate the metabolic stability of all Gd-probes we measured the R1 relaxation rates 

of 1mM solution of the probes incubated with murine and human blood and plasma every 30min, 

up to 4h at 3T. These data showed that the probes were stable in solution for up to 4h as the 
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changes in the R1 relaxation rate were not statistically significant (data not shown). 

 

Biodistribution of 64Cu-labeled tropoelastin probes. Biodistribution studies showed favorable 

pharmacokinetics with high renal clearance for both probes and some liver uptake for the 

K(64Cu-DOTA)-YPDH (Online Data Supplement Figure 3). 

 

In vivo comparison of vessel wall enhancement by MRI using the elastin (ESMA) and 

tropoelastin binding (TESMA) contrast agent. Considering that (Gd-DOTA)-VVGS was 

superior in differentiating tropoelastin from cross-linked elastin and had less liver uptake 

compared to the K(DOTA)-YPDH imaging probe, the (Gd-DOTA)-VVGS, denominated as Gd-

TESMA, was selected as the best candidate for in vivo molecular imaging of tropoelastin by MRI. 

For initial in vivo MRI experiments, control and atherosclerotic ApoE-/- mice were scanned, after 

the administration of Gd-ESMA, and 24h later, after the administration of Gd-TESMA (Figure 3). 

Pilot studies showed clearance of Gd-ESMA from both the blood and vessel wall after 24h (data 

not shown). Fused maximum intensity projection (MIP) MRA and delayed-enhanced (DE) 

images after injection of Gd-TESMA showed focal uptake in the brachiocephalic artery (BCA) of 

an atherosclerotic mouse (Figure 3A). DE-MRI images of the BCA acquired from a control 

animal after injection of Gd-ESMA showed vessel wall enhancement (Figure 3B-C), as Gd-

ESMA binds to endogenously found cross-linked elastin, present in non-diseased arteries. 

Conversely, there was no enhancement of the control vessel wall after injection of Gd-TESMA 

due to the lack of tropoelastin in the absence of disease (Figure 3D-E). However, two different 

atherosclerotic mice, showed enhancement of the vessel wall after administration of both Gd-

ESMA and Gd-TESMA (Figure 3F-M). DE-MRI showed a larger area of enhancement after 

administration of Gd-ESMA compared with Gd-TESMA as the diseased vessel wall contains a 

mixture of cross-linked elastin and tropoelastin and Gd-ESMA binds to both fractions whereas 
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Gd-TESMA only binds to tropoelastin (also see Figure 1C & online Data Supplement Figure 

4A-B). 

 

In vivo molecular MRI of tropoelastin shows accumulation of tropoelastin during 

atherosclerosis progression in mice. DE-MRI (Figure 4A1-D1 & 4A2-D2) and R1 maps (Figure 

4A3-D3) acquired after administration of Gd-TESMA showed progressive enhancement and 

increased vessel wall R1 relaxation rate of the BCA in ApoE-/- mice exposed to a HFD compared 

with wild-type mice. Statin-treated ApoE-/- mice showed significantly less enhancement and 

lower relaxation rate compared with untreated ApoE-/- mice (Figure 4E1-3). The uptake of Gd-

TESMA by DE-MRI and R1 mapping paralleled the growth of atherosclerotic lesions (Figure 

4A4-E4) as seen by Van Gieson elastin staining and the deposition of tropoelastin fibers as seen 

by immunostaining (Figure 4A5-E5, Figure 4A6-E6 and Figure 4A7-E7). The higher magnification 

images (Figure 4A6-E6) of tropoelastin immunopositive areas (black signal) show that the 

antibody does not bind to endogenously and cross-linked elastin found in the media of control 

arteries and even in tissues from animals fed with a HFD for 4 weeks. However, as the disease 

progresses and new tropoelastin fibers are deposited within the growing intima, and also as 

media elastin becomes fragmented by elastases, the immunopositive areas increase in both of 

these layers of the vessel wall.  ApoE-/- mice fed a HFD for 12 weeks showed less vessel wall 

enhancement after administration of the scrambled peptide probe (DOTA-

GAESAPLVSSVQSPD) compared with those injected with the non-scrambled probe (Figure 

4F1-F3). In vivo competition experiments showed displacement of the (Gd-DOTA)-VVGS probe 

by the (La-DOTA)-VVGS probe in the brachiocephalic artery of atherosclerotic mice (on line 

Data Supplement Figure 5). Ex vivo fluorescent microscopy experiments showed fluorescent 

signal originating from the rhodamine-labeled VVGS peptide derivative within tropoelastin-rich 

areas of diseased vessels as identified by corresponding immunohistochemistry. Conversely, 
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fluorescent signal originating from the probe was found to be nearly non-existent in the regions 

containing mature/crosslink elastin-rich and collagen in diseased vessels (on line Data 

Supplement Figure 6).  

 

Quantitative MRI, histology and western blot measurements of murine vessel wall 

tropoelastin. Quantification of the MR data showed that the DE-MRI area (Figure 5A, 

control=0.10±0.005, 4wks=0.13±0.01, 8wks=0.22±0.01, 12wks=0.33±0.01mm2, P<0.001) and 

the vessel wall R1 (Figure 5B, control=0.87±0.05, 4wks=0.90±0.01, 8wks=1.40±0.03, 

12wks=1.87±0.04s-1, P<0.001) significantly increased with disease progression and decreased 

with statin-treatment (DE-MRI treated=0.13±0.01mm2, R1 treated=1.37±0.03s-1). Less uptake 

was found in 12wk-old HFD-fed ApoE-/- mice injected with a scrambled peptide of VVGS 

(0.13±0.01mm2 vs 0.33±0.01, P=0.001) and lower R1 (0.91±0.06 vs 1.87±0.04, P=0.01) 

compared with animals injected with the non-scrambled Gd-TESMA peptide. Segmentation of 

the tropoelastin immunopositive areas showed a significant accumulation of tropoelastin fibers 

during atherosclerosis progression and reduction of tropoelastin in the statin-treated ApoE-/- 

mice (% tropoelastin, control mice=3.8±0.50, 4wks HFD =3.74±0.60, 8wks HFD =12.10±0.52, 

12wks HFD =18.54±0.30, statin-treated at 12wks with HFD =11.41±0.35, P=0.002) (Figure 5C). 

Quantification of the vessel wall gadolinium concentration by ICP-MS showed similar trends 

(control=176±50, 4wks=165±38, 8wks=244±52, 12wks=303±38, statin-treated at 

12wks=207±23 nmol/gr tissue, P=0.007) (Figure 5D). There was a significant correlation 

between the vessel wall R1 and gadolinium concentration [r=0.97, P=0.004, 95% CI (0.69-0.99)]. 

A linear regression analysis of average R1 and average [Gd] per time point of disease 

progression revealed an in vivo bound relaxivity of r1=7.15 mM-1s-1 (Figure 5E).   

 We found a significant correlation between the DE-MRI plaque area and vessel wall R1 

measured after administration of Gd-TESMA (r=0.58, P<0.001, 95% CI=0.46-0.69) (Figure 5F). 
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There were also strong positive correlations between plaque % tropoelastin (measure 

immunohistochemically) and both the in vivo DE-MRI area (r=0.76, P<0.001, 95% CI=0.47-0.89) 

(Figure 5G) and vessel wall R1 (r=0.93, P<0.001, 95% CI=0.76-0.96) (Figure 5H) suggesting 

that the increased MRI signal observed in this model reflects the histological accumulation of 

tropoelastin fibers within the growing lesion. 

In addition to the quantification of tropoelastin by immunohistochemistry (Figure 5C), the 

modulation of the protein levels during atherosclerosis progression and in response to treatment 

were also measured by western blotting. Dilutions of recombinant tropoelastin were used to 

generate a standard curve for the quantification of the tropoelastin concentration from tissue 

lysates (Figure 5I). Western blotting of purified cross-linked elastin and soluble tropoelastin 

showed that the cross-linked polymer gives a high molecular weight band (>250kDa) whereas 

the tropoelastin monomer has a molecular weight of 70kDa (Figure 5J). Western blotting of 

tropoelastin extracted from the vessel wall showed negligible amounts in control arteries and 

increased deposition during atherosclerosis progression in ApoE−/− mice. Tropoelastin content 

was decreased in statin-treated ApoE−/− mice (Figure 5J). Quantification of tropoelastin 

concentration in control and diseased arteries is shown in Figure 5K (control=0.62±0.04, 

4wks=0.86±0.05, 8wks=1.52±0.06, 12wks=1.99±0.15, statin-treated at 12wks=1.17±0.09 mg/ gr 

tissue, P<0.001).   

 

In vivo molecular MRI of tropoelastin allows detection of rupture-prone rabbit plaque. To 

test the ability of molecular MRI of tropoelastin in discriminating between stable and rupture-

prone plaques we used a rabbit model of atherosclerosis and controlled plaque rupture.  

Atherosclerosis was observed at 12-weeks in all 6 injured and cholesterol-fed rabbits, and 

thrombosis occurred in 5 (83%) animals at rates similar to those previously reported37,45,46,48. 

Figure 6 shows corresponding native T1wBB, delayed-enhanced images and T1 maps after 
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administration of Gd-ESMA and Gd-TESMA acquired at 12 weeks and before triggering for 

plaque rupture and native T1wBB images acquired after triggering for plaque rupture. 

Representative pre-trigger T1wBB images of a stable (Figure 6A-E) and rupture-prone plaques 

(Figure 6G-K) show the anatomy of the vessel wall and the location of the plaque. The delayed-

enhanced images show an enhancement of the vessel wall and shortening of the T1 relaxation 

time both after the administration of Gd-ESMA and also after the administration of Gd-TESMA.  

The corresponding T1wBB images acquired after triggering show the lack of thrombus at the 

level of the stable plaque and the presence of thrombus at the location of the rupture-prone 

lesion (Figure 6F and 6L). Although both Gd-ESMA and Gd-TESMA lead to vessel wall 

enhancement, quantitative assessment of the R1 relaxation rate showed that the uptake of 

contrast agent was significantly different between stable and rupture-prone lesions only after 

administration of Gd-TESMA (Figure 6M). Rupture-prone plaques uptake significantly more Gd-

TESMA compared with stable plaques (R1=2.26±0.1 vs R1=1.43±0.02, P=0.001) whereas the 

uptake of Gd-ESMA was similar between stable and rupture-prone plaques (R1=2.14±0.05 vs 

R1=2.44±0.07, P=NS). The sensitivity, specificity, positive predictive value and negative 

predictive value of the quantitative assessment of vascular elastin and tropoelastin (R1) after 

administration of Gd-ESMA and Gd-TESMA, respectively in detecting the rupture-prone plaque 

are tabulated in Figure 6N. These measurements suggest that quantitative assessment of 

vessel wall contrast uptake using T1 mapping after administration of Gd-TESMA allows better in 

vivo detection of rupture-prone plaques.  

 

Histological analyses show accumulation of tropoelastin in rabbit rupture-prone 

compared with stable plaque. Histological analyses of rabbit sections using Van Gieson 

elastin showed multiple elastin lamellae consisting of mature, cross-linked elastin in control 

arteries (Figure 7A; black stain) but no corresponding immunopositive tropoelastin fibers 
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suggesting the antibody is specific for monomeric tropoelastin (Figure 7B and 7C).  

In both stable and ruptured plaques there was deposition of elastin in the intima (Figure 7D, 

7G) and in ruptured plaques there was also additional disintegration and fragmentation of the 

media elastin as seen by Van Gieson elastin. Immunohistochemistry for tropoelastin (brown 

stain) showed deposition of tropoelastin in the intima of stable plaque (Figure 7E-F) and a more 

extensive network of tropoelastin in the intima of ruptured plaque (7H-I). In addition, there were 

immunopositive tropoelastin areas in the media of ruptured plaques that could be due to either 

deposition of new tropoelastin fibers or exposure of the tropoelastin epitope when mature elastin 

fibers become fragmented by elastases. Quantification of total elastin and tropoelastin (Figure 

7J-7K) showed that measuring the tropoelastin accumulation in the vessel wall allowed a better 

discrimination between stable and ruptured plaques (16.6±3.14 vs 42.2±4.0, P=0.001) 

compared with measuring the net increase of elastin (28.8±3.0 vs 44.35±4.83 %, P=0.03) that 

includes both the cross-linked and non cross-linked elastin fibers. Only negligible amounts of 

tropoelastin (7.3±1.45%) were found in control vessel wall segments compared with elastin 

(26.3±0.9%). 

 

Ex vivo molecular MRI of tropoelastin in human carotid endarterectomy samples. To test 

the translational value of the tropoelastin contrast agent we performed ex vivo T1 mapping 

experiments after soaking the tissues in Gd-TESMA. The MRI results showed retention of Gd-

TESMA and significant increase in the R1 relaxation rate of carotid plaques (R1 pre= 1.1±0.26s-1 

vs R1 post= 3.0±0.1s-1, P=0.01) (Figure 8A-E) and the histological analyses showed upregulation 

of tropoelastin in the lesion (Figure 8F-H). 
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DISCUSSION 

Elastolysis and ineffective elastogenesis favor the accumulation of tropoelastin, rather than 

mature cross-linked elastin fibers, in atherosclerosis and may trigger plaque progression and 

instability (6). We have identified tropoelastin-binding peptides and developed a novel 

gadolinium-based tropoelastin-binding contrast agent that can be used for MR imaging of 

tropoelastin turnover in atherosclerosis. We demonstrate that the newly developed Gd-TESMA 

probe (Gd-DOTA)-VVGS: (i) has high selectivity for tropoelastin, (ii) discriminates between 

tropoelastin and cross-linked elastin, (iii) has high in vitro relaxivity (r1) that increases upon 

binding to tropoelastin in solution, and (iv) has favorable pharmacokinetics with blood clearance 

within 1h via renal excretion. Using (Gd-DOTA)-VVGS, we demonstrate, for the first time, the 

feasibility of in vivo imaging of tropoelastin turnover in a murine model of atherosclerotic plaque 

progression and response to treatment and in a rabbit model of plaque instability. In addition, 

we show the potential for this novel contrast agent to bind to symptomatic plaques taken from 

patients undergoing carotid endarterectomy. Molecular imaging of tropoelastin in mice showed 

increased vessel wall enhancement and R1 relaxation rates during plaque progression 

compared with statin-treated and control animals. Histology and western blotting confirmed the 

accumulation of tropoelastin within the growing lesion and ICP-MS confirmed the accumulation 

of gadolinium in the vessel wall. Molecular imaging of tropoelastin in rabbits showed significantly 

higher R1 relaxation rates in rupture-prone compared with stable lesions showing potential for 

the detection of high-risk plaques with high sensitivity and specificity. Finally, molecular imaging 

of human carotid endarterectomy specimens showed detection of intra-plaque tropoelastin after 

soaking the tissues in Gd-TESMA suggesting that this contrast agent has potential in man. Non-

invasive quantification of dysfunctional tropoelastin turnover, that fails to cross-link into mature 

elastin fibres, using a newly developed tropoelastin-binding MR contrast agent may therefore 

have diagnostic value in detecting not only plaque progression and response to treatment but 
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also detection of unstable atherosclerotic lesions prior to plaque rupture. 

The main targeted Gd-based low molecular weight contrast agents that have been 

developed bind to proteins including fibrin (EP-1873 and EP-2104R)49, collagen (EP-3533 and 

EP-3600)50,51, and elastin (BMS 753951 and LMI 1174)35,41,47 that are highly abundant and thus 

amenable for MR imaging. Most of these agents were initially developed as DTPA chelates and 

then modified to DOTA chelates, to increase their thermodynamic and kinetic stability49, and all 

are clear from blood within 1-2h after injection. Compared to these agents, our new tropoelastin 

agent with a single Gd-DOTA conjugated to the N-terminal of the 15 amino-acid peptide (2kDa), 

showed comparable affinity (KD≈µM), relaxivities and pharmacokinetics to these agents35,36,40,49-

51.  

Previous studies have shown that the VVGS12,13,52 probe is expected to bind to all 

sequences that follow the GXXPG and XGXPG motif (where X is a hydrophobic amino acid) 

that repeats multiple times in the tropoelastin molecule. In murine tropoelastin, these commonly 

repeated sequences represent 21% of the entire molecule53 that may explain our observation of 

higher vessel wall ICP-MS gadolinium measurements compared with the tropoelastin 

concentration as measured by western blotting. The in vivo vessel wall bound relativity of (Gd-

DOTA)-VVGS was 7.15 mM-1s-1 and the image acquisition window lasted up to 1.5h post-

injection. As some of the binding sites of tropoelastin might be masked and the amount of water 

is lower within the atherosclerotic lesion this could explain why the in vivo bound relaxivity was 

lower compared with the relaxivity in solution. Future improvements of the chemical properties 

of the agent, e.g., by chelating more Gd3+ per peptide, or conjugating the peptide to a different 

chelate unit that enables two water molecules in the inner coordination sphere of Gd3+ could 

increase the relaxivity of the free, but more importantly of the bound fraction of the agent, and 

also prolong the imaging acquisition window to allow better detection of vascular tropoelastin 

and imaging of larger vascular segments.  
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Our finding that tropoelastin accumulates within the growing lesion and reduces with 

statin-treatment (using immunohistochemistry and western blotting) in ApoE-/- mice is in 

agreement with a previous study36. Using western blotting we found that tropoelastin 

accumulation is up to 4-fold increased in the murine plaque, compared with control tissue, and 

reaches a concentration of about 2mg/gr of tissue. Although statins directly reduce plaque 

burden through a lipid-lower mechanism, they were also shown to abolish the down-regulation 

of LOX produced by tumour necrosis factor-α (TNFα) and LDL particles through a RhoA/Rho 

kinase-dependent mechanism27. Normalization of LOX could promote cross-linking of the newly 

synthesized tropoelastin leading to an overall reduction of tropoelastin, as seen in our study.  

 When compared with the Gd-ESMA, the new tropoelastin-agent resulted in a smaller area 

of contrast uptake at the same time points by MRI in atherosclerotic ApoE-/- mice. A previous 

study also reported a higher uptake of (153Gd-DTPA)-ESMA compared with (64Cu –DOTA)-

VVGS (13.2 vs. 7.2 %ID/g)41. As shown in this and other studies36-38,40 Gd-ESMA binds equally 

to cross-linked elastin and tropoelastin. For this reason, enhancement of endogenous cross-

linked elastin in non-diseased arteries was also observed in both mice and rabbits. To this end, 

Gd-ESMA allows measurement of total elastin content and the percentage increase that occurs 

from the control to the diseased condition by MRI.  

 In our current study, we found that quantitative assessment of vessel wall contrast uptake 

using T1 mapping after administration of Gd-TESMA improved the detection of rupture-prone 

plaques compared with Gd-ESMA. Rabbit rupture-prone plaques uptake significantly more Gd-

TESMA (higher vessel wall R1) compared with stable plaques whereas the uptake of Gd-ESMA 

was similar between the two groups (similar R1 values). The elimination of signal from 

endogenously present cross-linked elastin, and detection of only immature tropoelastin, using 

the Gd-TESMA, agent allowed a stronger discrimination between rupture-prone and stable 

rabbit plaques and high prediction of unstable lesions compared with Gd-ESMA. In our previous 
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study using the same rabbit model37, we showed that administration of Gd-ESMA allowed 

measurement of plaque burden, that was significantly increased in diseased vessel walls 

(higher R1) compared with control vessels and also improved the assessment of positive 

vascular remodeling that predicted rupture-prone plaques. Finally, to determine whether 

tropoelastin could be imaged in human tissue we carried out ex vivo T1 mapping experiments in 

carotid plaque samples obtained from endarterectomy and soaked in Gd-TESMA. The MRI 

results showed retention of the agent in carotid plaques and the histological analyses revealed 

increased levels of tropoelastin in these plaques. Our findings are in agreement with studies 

demonstrating that synthetic VSCMs24,54 and macrophages6,8 secrete tropoelastin in rabbit 

atherosclerotic plaque and human carotid atheroma.  

In conclusion, this study shows that the accumulation of tropoelastin is associated with 

plaque progression and instability in atherosclerotic models. In addition, the novel contrast 

agent is able to demonstrate the presence in tropoelastin in symptomatic plaques taken from 

patients supporting a potential role for this novel contrast agent in man. 

 

STUDY LIMITATIONS 

Our findings on the value of tropoelastin as a marker of plaque burden and instability relies on 

the use of animal models of atherosclerosis that reflect, only partly, the complex composition of 

human atherosclerotic plaques and their evolution towards rupture. Although a small 

intermediate step of using ex vivo human endarterectomy specimens was used to show the 

translational potential of our work, future studies including larger numbers of human samples 

will be needed. In addition, the ability of molecular imaging of tropoelastin to detect rupture-

prone plaques was based on a relatively small a number of rabbits, larger animal studies will be 

need to confirm these findings.   
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A potential limitation of our study is that an independent black-blood (e.g., double inversion 

recovery) sequence for the entire vessel wall anatomy was not acquired for the murine 

experiments. Instead, we implemented a flow-independent delayed-enhancement MR imaging 

protocol that was clinically established for myocardial infarction and coronary vessel wall 

imaging in humans instead of a flow–dependent black-blood (BB) MR imaging. Another 

limitation our study was the lack of an automated/semi-automated software for region-of-interest 

analysis (ROI) analysis, which was performed manually for all experiments. Future 

implementation of threshold-based segmentation algorithms may improve vessel wall 

segmentation and reduce observer bias. Despite the initial potential of using the tropoelastin 

agent for imaging human plaques further optimisation and extensive safety checks will be 

needed prior to using this agent for in vivo imaging of tropoelastin in man.  

 

CONCLUSIONS 

We demonstrate the development of a new tropoelastin-binding contrast agent and the first in 

vivo implementation of molecular imaging of tropoelastin in animal models of plaque 

progression and in stability, and show uptake of the agent human carotid plaques ex vivo. 

Tropoelastin may represent a new imaging biomarker for plaque progression and instability and 

for the monitoring of the effectiveness of therapeutic interventions. 

 
 
CLINICAL PERSPECTIVES 
 

A tropoelastin-binding peptide labeled with gadolinium is a novel probe for molecular imaging of 

dysfunctional elastogenesis by in vivo MRI. Our new probe combined with quantitative T1 

mapping may be used as a new imaging biomarker to quantify ineffective elastogenesis related 

to plaque progression and instability and identify plaques that may be susceptible to rupture. 
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Molecular imaging of tropoelastin using our presented imaging approach may provide 

information on plaque progression and instability and for monitoring the effectiveness of 

established and novel interventions in different animal models and human tissue. We showed 

that statins, a widely used intervention, reduced tropoelastin accumulation in atherosclerotic 

plaques but the long term effects on plaque stability remains to be elucidated. Similarly, the 

effectiveness of novel interventions, that specifically aim elastin remodeling, can be and remain 

to be investigated using this contrast agent. Importantly, in our work we implemented MRI 

protocols that have already been used in the clinical setting enabling translation of our current 

findings in bigger animal models of coronary atherosclerosis to identify plaques that may be 

susceptible to rupture. 
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FIGURE LEGENDS  

Figure 1: Chemical structures and in vitro binding experiments of the tropoelastin-

binding probes. A, B, Chemical structures of the probes. C, In vitro binding show superior 

discrimination between tropoelastin and mature elastin for the (Eu-DOTA)-VVGS compared with 

K(Eu-DOTA)-YPDH whereas Eu-ESMA binds equally to tropoelastin and mature elastin. The 

new probes show less binding towards other proteins compared with tropoelastin whereas the 

scrambled peptides do not bind to tropoelastin. Eu-DTPA shows little binding to tropoelastin, 

collagen I and human serum albumin. D-E, The saturation binding plots show that both probes 

bind to tropoelastin whereas no binding to HSA was observed. Finally, no binding of the 

scrambled probes to tropoelastin was observed. F, The KD values showed that the probes have 

high affinity for tropoelastin. Statistical differences between Kd values are shown.  

No binding signifies that the data could not be fit, and lines indicate that the assay was not 

performed (n=2 for elastin, n=3 for all other proteins). Eu: europium(III), ESMA: elastin-specific 

MR contrast agent.  

 

Figure 2: Relaxivity studies and nuclear magnetic relaxation dispersion (NMRD) profiles 

of Gd-labeled tropoelastin and elastin-binding contrast agents at 20MHz and 37°C. A-C,  

1H-NMRD in the absence (open circles) and presence (black circles) of tropoelastin. The profiles 

obtained in PBS (open circles) are characteristic of small-molecular weight complexes. In the 

presence of tropoelastin (black circles), the relaxivity increases suggesting binding of the probes 

to the protein. The relaxivity increase was more evident for both (Gd-DOTA)-VVGS and K(Gd-

DOTA)-YPDH, compared with Gd-ESMA. D, Summary of the relaxivity values, (n=3 for all 

studies). 

 



 
 
 

27 

Figure 3: In vivo MRI comparison of vessel wall enhancement using the elastin (ESMA) 

and tropoelastin (TESMA) binding contrast agents in mice. A, Fused MIP reconstructed 

MRA and DE-MRI images after administration of Gd-TESMA show focal uptake of Gd-TESMA 

in the BCA of an atherosclerotic ApoE-/- mouse. B-E, MRI images of the BCA acquired from a 

control animal, scanned 24h apart, showed vessel wall uptake of Gd-ESMA (B, C) but no 

uptake of Gd-TESMA (D, E) due to the lack of tropoelastin in the absence of disease. F-M, MRI 

images of the BCA acquired from two different diseased animals showed enhancement of the 

vessel wall after administration of both agents due to the presence of both cross-linked elastin 

and tropoelastin in the atherosclerotic lesion.  MIP: maximum intensity projection, BCA: 

brachiocephalic artery. L.: left, Ao: aortic, (n=5 per group). 

 

Figure 4: Molecular in vivo MRI of tropoelastin in atherosclerotic mice.  

A1-E1 & A2-E2 & A3-E3, DE-MRI images and R1 relaxation rate maps after injection of Gd-

TESMA show progressive enhancement of the brachiocephalic artery and vessel wall relaxation 

rate with disease progression compared with control and statin-treated mice. F1-F3, DE-MRI and 

R1 maps after injecting the scrambled peptide (DOTA-GAESAPLVSSVQSPD) shows less 

vessel wall enhancement and relaxation rate. A4-E4, Van Gieson elastin staining shows the 

development of atherosclerotic lesions. A5-E5, A6-E6 and A7-E7, Immunohistochemistry shows 

accumulation of tropoelastin molecules (dark purple staining) in the lesion (n=10 per group). 

DE-MRI: delayed-enhanced MRI, TESMA: tropoelastin-specific MR contrast agent, HFD: high-

fat diet. 

 

Figure 5: Quantitative MRI, histology and western blotting of murine vessel wall 

tropoelastin. A-B, DE-MRI area and vessel wall R1 measured after administration of Gd-

TESMA increase with disease progression and decrease with statin-treatment (n=10 per group). 
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C, Tropoelastin accumulates during atherosclerosis progression and reduces in statin-treated 

mice (n=4 per group). D, Vessel wall gadolinium concentration increases with disease 

progression (n=4 per group). E, The measured in vivo bound relaxivity of TESMA is r1=7.15 mM-

1s-1. F, DE-MRI area correlates with vessel wall R1 measured after administration of Gd-TESMA 

(n=10 per group). G-H, The tropoelastin content measured histologically correlates with both the 

DE-MRI (G) and vessel wall R1 relaxation rate (H) measured by MRI after administration of Gd-

TESMA (n=4 per group). I, Dilutions of recombinant human tropoelastin were used to generate 

a standard curve for the quantification of the tropoelastin concentration from tissue lysates using 

western blotting. J, Western blotting of purified elastin showed that cross-linked elastin is an 

insoluble polymer with a high molecular band (>250kDa) whereas soluble tropoelastin has a 

molecular weight at 70kDa. Western blotting for tropoelastin extracted from the vessel wall (n=3 

per group) showed negligible amounts in control arteries and increased deposition of the protein 

during atherosclerosis progression in ApoE−/− mice. Tropoelastin content was decreased in the 

statin-treated ApoE−/− mice.  K, Quantification of tropoelastin concentration in control and 

diseased arteries as measured by western blotting. 

 

Figure 6: In vivo molecular MRI of tropoelastin allows detection of rupture-prone rabbit 

plaque. Pre-trigger and post-trigger MRI images of rabbit stable (A-F) and rupture-prone (G-L) 

plaques. A,G, Pre-trigger native zoom T1wBB images show the plaque. B, H, C, I, Delayed-

enhanced inversion recovery images and T1 maps after administration of Gd-ESMA show a 

strong enhancement of the aortic wall and shortening of the T1 relaxation time in both stable and 

rupture-prone plaque. D, J, E, K, Corresponding delayed-enhanced inversion recovery images 

after administration of Gd-TESMA show vessel wall enhancement and lower T1 values in 

ruptured-prone compared with stable plaque. F, L, Corresponding native zoom T1wBB post-

trigger images show the presence of thrombus only at the side of the ruptured plaque. M, 
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Quantification of vessel wall R1 relaxation rate show a significantly higher R1 value in rupture-

prone compared with stable plaque only after administration of Gd-TESMA.  

 

Figure 7: Histological analyses show accumulation of tropoelastin in rabbit rupture-

prone compared with stable plaque. A, D, G, Van Gieson elastin staining (dark purple 

indicates elastin fibers) shows the presence of organized elastin fibers in the media of control 

tissue and a net accumulation of elastin fibers in the intima of stable and rupture-prone plaque. 

B-C, E-F, H-I, Corresponding immunohistochemistry for tropoelastin (brown staining) shows 

lack of tropoelastin positive fibers in control aortas, upregulation in stable and deposition of a 

dense network of tropoelastin fibers in rupture-prone plaque. J-K, Quantification of total elastin 

and tropoelastin shows significantly higher tropoelastin in ruptured compared with stable plaque.   

 

Figure 8: Ex vivo T1 mapping experiments using human carotid endarterectomy 

specimens at 3T. A, Ex vivo photograph of an excised left carotid artery. B-C, A T2w image 

shows the plaque in the internal carotid artery (B) and a corresponding T1 map shows the 

baseline relaxation values (C). D, A repeated T1 mapping experiment after soaking the 

specimen in Gd-TESMA shows a reduction of the T1 values. E, Quantification of the changes 

shows a significant uptake of Gd-TESMA in human carotid plaques. F-G, Corresponding 

histology shows the lesion (F-G) and the deposition of tropoelastin (dark purple staining) (H).   
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