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Abstract 

 
Neural induction is the earliest step in the formation of the human nervous system. 

However, the regulatory signals underlying neural induction are largely unknown due to 

ethical, technical and legal restrictions that limit access to live human cells during this 

stage. Dual SMAD inhibition induces ESC/iPSCs cells to acquire neural fate, providing an 

exceptional in vitro system to analyze neural induction. Transcriptome analyses enabled 

identification of sets of genes down-regulated during the initial 2 days of neural 

differentiation including pluripotency markers OCT4, NANOG and MYC. Subsequently, 

numerous genes are activated, including the neuroectodermal markers PAX6, ZEB2 and 

SOX11 and genes that have not being previously related with neural differentiation. Genes 

with similar expression profiles regulate biological processes such us cell-cell adhesion, 

required for the transition from pluripotency to neural competence. Statistical and 

mathematical approaches enable to infer time delay regulatory interactions of a set of 

transcription factors with high connectedness and model a gene regulatory network with 9 

principal hubs (JUN, MYC, FOS, PAX6, SP3, CDC6, SMAD2, HDAC6, and LEF1). The 

network modules regulate activation or inhibition of biological processes associated with 

neural induction, such us cell proliferation (MYC), cell cycle progression (CDC6) and 

regulation of CNS development (PAX6). Single cell RNASeq demonstrated that neural 

induction gave rise to a largely homogeneous neuro-ectodermal cells population. Inhibition 

of WNT signaling during neural induction leads to re-specification of neuroectodermal 

cells to a placodal fate, which subsequently differentiate into GnRH neurons. 

Transcriptome analysis revealed a unique set of genes activated and inhibited during neural 

induction in the presence of WNT inhibition, some of which may be essential for re-

specification to a placodal fate. These studies go some way to identifying genes and gene 

modules that pay a role during human neural induction thereby offering insight into a basic 

human developmental process and providing a foundation for understanding how specific 

genetic variations may give rise to neurodevelopmental disorders.   
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CHAPTER 1. General Introduction 
 

1.1. Neuroectoderm formation  

1.1.1. Differentiation of the inner cell mass 

Before implantation the early mammalian embryo undergoes a series of lineage segregation 

events that lead to the formation of trophectoderm (TE), primitive endoderm (PrE) and the 

epiblast (Epi). The TE and PrE give rise to extra-embryonic tissue responsible for the 

transmission of nutrients while the Epi forms the embryo proper. ESCs can be derived from 

the blastocyst and represent the Epi cell lineage (Schrode et al., 2013).  

The first lineages formed are the TE and the inner cell mass (ICM). Several studies suggest 

that cell position and polarization are implicated in the establishment of the two cell 

phenotypes. After fecundation the embryo undergoes a transition from transcriptional 

silence to embryonic genome activation (EGA). This process occurs at 2-cell stage in mice 

and from 4-8 cell stages in humans (Niakan & Eggan, 2012).  Re-localization of E-cadherin 

and β-catenin complexes during this period results in an increase of intracellular adhesion 

and compaction (morula stage). In parallel, intracellular components such as cytoskeletal 

elements, endosomes, microtubules, microvilli and EZRIN or aPKC/PAR protein 

complexes localize in the apical pole (Schrode et al., 2013). During the 8-16 and 16-32 

divisions, cells divide symmetrically in a perpendicular plane generating two polar cells, 

or asymmetrically in a parallel plane giving rise to one polar and one apolar cell. The polar 

cells are maintained in the outside and will specify into the TE, whereas apolar cells are 

directed to an inner position and will form the ICM around the 32 cells stage (Figure 1.1) 

(Lanner, 2011, Artus et al., 2014). The apolar/polar division frequency appears to be 

dependent on different factors such as the cell-to-cell contact, the nuclear size and the apical 
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domain size. The number of cells dividing with different mechanisms and the number of 

cells destined to become the ICM is compensated between the 8 cell division and the 16 

cell division (Chazaud & Yamanaka, 2016). It has been suggested that the cell division 

plane and consequent arrangement of polar and apolar blastomeres is related to the position 

of the cell in the morula. Other studies propose that down-regulation of polarity proteins 

such aPKC increase the cortical tension and directs the cells to an inner position and 

segregation of the prospective TE cells (Bruce & Goetz, 2010; Lanner et al., 2014). 

Additionally, recent studies suggest that the differential blastomeres contractility 

potentially results from asymmetric divisions. Apolar cells internalize as a consequence of 

their higher amplitude of contraction compared with polar cells (Menchero et al., 2016).   

 

 
 

Figure 1.1. Blastomeres asymmetrical division and trophectoderm, primitive endoderm and 

Epibalst differentiation, in pre-implantation mouse.  At 8 cells stage, the cells acquire polarity 

and divide asymmetrically in a perpendicular plane or symmetrically in a parallel plane. The polar 

cells (green) are maintained in the outside and give rise to the TE. The apolar cells are going to 

form the ICM, which later differentiate into the Epi (blue) or PE (red) (Bruce & Goetz, 2010).  

 

During the 3-3.5 days post-fertilization (dpf) in mice and 4-5 dpf in humans a fluid cavity 

called the blastocoel is formed as consequence of a continuous water and ion flux mediated 

by NA+/K+ ATPase and aquaporins (Artus et al., 2014). At this period the embryo 
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comprises the TE encapsulating the ICM and the blastocoel cavity (Niakan & Eggan, 2012). 

Besides polarity, the inner and outer blastomeres present differential gene expression 

patterns. Mutant mouse blastocyst lacking CDX2 failed to specify the TE, indicating that 

the transcription factor CDX2 is required for the formation and maintenance of the TE. 

Additionally, GATA3 and EOMES form part of the TE gene regulatory network. The ICM 

is marked by the expression of OCT4. It has been proposed that OCT4 and CDX2 interact 

by mutually repressing each other. For instance, studies with mouse ESC demonstrated that 

overexpression of Cdx2 leads to the reduction of Oct4, leading to differentiation towards a 

TE fate. Initially, zygotic OCT4 is expressed in all cells and becomes restricted to the ICM 

during the blastocyst formation (Lanner et al., 2014). OCT4 regulates expression of CDX2 

preventing cells from adopting a TE fate. In mouse, CDX2 is expressed in most 16 cells 

stage blastomeres. Later it is restricted to the outer cells prior to blastocyst formation and 

is necessary to repress OCT4 and NANOG expression (Schrode et al., 2013).  In the human 

embryo it remains unclear when OCT4 and CDX2 expression initiates. Human OCT4 

inhibition in the TE begins from 6-10dpf while in mouse it occurs at day 4.5dpf showing 

temporal species differences of transcription factor expression (Niakan & Eggan, 2012).  

 
Figure 1.2. Overview of the blastocyst differentiation in humans. Blastocyst lineage differentiation 

initiates with the segregation of the TE (CDX2 and GATA3) and the ICM (OCT4, NANOG and 

GATA6) at D6 dpf. In parallel, the TF GATA6 and OCT4 become mutually exclusive in a salt-and-

pepper manner in the ICM cells to give rise to the PrE and the Epi, respectively (adapted from Schrode 

et al., 2013). 
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Null TEAD4 mouse embryos lack expression of TE markers like CDX2 while ICM 

markers such OCT4 and NANOG are maintained. It has been shown that TED4 acts 

upstream to CDX2 possibly through interactions with the co-activators YAP and TAZ 

(Lanner et al., 2014). TED4 is expressed in all blastomeres but only promotes CDX2 

expression in the outer cells. The current model proposes that, in the ICM, YAP and TAZ 

are phosphorylated and degraded by the Hippo pathway affecting TEAD4 ability to activate 

its targets. In the outer cells the Hippo pathway is inactive allowing YAP/TAZ to bind 

TEAD4 and to activate target genes like CDX2 (Schrode et al, 2013). On the other hand, it 

has been suggested that nuclear exclusion of TEAD4 instead of YAP/TAZ in the ICM is 

responsable for ICM-TE patterning. However, Further experiments are necessary to 

confirm the model (Lanner et al., 2014). Null Tead4 embryos cultivated in low O2 generate 

TE suggesting that there might other signaling cascade or alternative YAP DNA-binding 

partners that compensate Tead4 function (Chazaud & Yamanaka, 2016).  

Besides transcription factor levels, TE and ICM patterning has being associated with 

differential TF kinetics. In the 8 cells stage mouse, Oct4 and Cdx2 exhibit differential 

nuclear fusion kinetics.  Cells with slow Oct4 kinetics undergo asymmetric division and 

therefore mainly contribute to the ICM, whereas cells with slower Cdx2 kinetics principally 

contribute to the TE. The disparities in fusion kinetics have being related to differences in 

the chromatin accessibility of the TE and ICM but the precise mechanisms remain unclear 

(Schrode et al., 2013; Lanner et al., 2014).  

1.1.2. Epiblast and primitive endoderm patterning 

The earliest event of ICM differentiation is the segregation of the PrE and the Epi. ICM 

cells lining the blastocoelic cavity will commit into the PrE (hypoblast) lineage, precursor 
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of the extra embryonic tissue (yolk sac), whereas the remaining ICM cells will form the 

pluripotent Epi (primitive ectoderm) with the potential to give rise to the three embryonic 

germ layers during gastrulation (Pelton et al., 2001, Roode et al, 2012).  

The PrE/Epi lineage determination was initially attributed to the position of the cells among 

the ICM. Later studies demonstrated that ICM cell fate is determined before the prospective 

PE lines the blastocyst cavity. Nanog and Gata6 are the core TF involved in differentiation 

of the Epi and PrE respectively. The PrE and Epi genetic programs start at the 8-cell stage 

where GATA6 and OCT4 are co-expressed in all blastomeres. Around the 20 cells stage 

the PrE and Epi markers are down-regulated in specific cells of the late morula and become 

mutually exclusive (Artus et al., 2014; Schroter et al., 2015). After the mid blastocyst, cells 

expressing GATA6 and OCT4 are distributed along the ICM in a salt-and-pepper manner. 

Later, the ICM cell population commits to specific linages as the prospective Epi express 

pluripotency genes such as Nanog and Sox2 required to maintain the pluripotency; and the 

PrE precursors express a series of TF including Sox17, Gata4, and Sox7 (Ohnishi et al., 

2013). It has been shown that the Nanog and Gata6 expression levels fluctuate among ICM 

cells leading the cells to specify at different rates. It has been proposed that cells expressing 

both TF represent a transient phenotype that balances between the PrE and Epi lineages. A 

recent model defines three stable states where cells express Gata6 or Nanog exclusively or 

express both TF. The mechanism of differentiation into a specific lineage might be related 

to reduction of mRNA transcripts rather than selective increase of transcription rates. 

However, chromatin immunoprecipitation studies demonstrated that Nanog and Gata6 

increase and maintain their own expression by a direct positive feedback and interact by 

repressing each other (Chazaud & Yamanaka, 2016).  
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It has been proposed that the fate choice between cells co-expressing Nanog/Gata6 is 

mediated by FGF/MAPK signaling. Specifically, Fgf4 modulates the PrE/Epi proportions 

by promoting Gata6 expression and inhibiting Nanog (Ohnishi et al., 2013; Schroter et al., 

2015).  Interestingly, Gata6 expression remains until the early blastocyst stage in Fgf4 

mutants, meaning that other genes are necessary to trigger initial expression of Gata6. Fgf, 

Nanog and Gata6 are the main components of a gene regulatory network (GRN) in which 

specific levels in individual cells drive the ICM specification process. A recently developed 

GRN mathematical model predicts that early Nanog expression in the ICM promotes Fgf4 

secretion. Neighbor cells with specific extracellular concentration of Fgf4 are induced to 

differentiate into Epi or PrE depending on the Fgf4 local abundances (Schroter et al., 2015). 

Heterogenic populations result from the differential propagation of Fgf4 paracrine 

signaling (Artus et al., 2014; Chazaud & Yamanaka, 2016). These studies indicate that 

Fgf4 is expressed in Nanog positive cells only for the establishment of the salt and pepper 

array. Subsequently, Epi cells insulate themselves from Fgf4 signaling by inhibition of the 

Fgfr2 (Fgf4 receptor). Additionally, FgF4 activates ERK to down-regulate Nanog in the 

prospective PrE (Figure 1.3) (Artus et al., 2014).  
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Figure 1.3. Differentiation of the primitive endoderm and epiblast from the inner 

cell mass salt and pepper array in mouse. At the 32-64 cell stage, the ICM Gata6 

and Nanog positive cells undergo a transition after which the prospective PrE cells 

(blue) express exclusively Gata6, whereas the prospective Epi cells (red) express 

exclusively Nanog. It has been proposed that inhibition of ERK induces Nanog 

expression in the Epi, which in turn induces Fgf4 expression and secretion to 

neighboring cells. Fgf4 induces ERK signaling, which inhibits Nanog expression in the 

PrE cells (Schrode et al., 2014).  

 
 
The first difference between ICM cells is differential expression of Fgf4.  Nevertheless, the 

initial events that promote heterogenic expression of the ICM cells remain unclear. Single 

cell studies have revealed gene expression heterogeneity at two cells stage before zygotic 

transcription in mouse. It is though that cell heterogeneity results from unequal distribution 

of mRNAs, which occurs during early cell division. However, this mRNA heterogeneity 

relation with differential expression has not been tested. Among the hypotheses that have 

not been rejected to explain the establishment of the salt and pepper pattern are: early cell 

division bias; stochastic gene expression and reduced phosphorylated ERK that induces 
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Nanog expression and promote FgF4 secretion (Chazaud & Yamanaka, 2016). In humans, 

exclusive expression of GATA and NANOG has being shown at the mid blastocyst stage.  

However, inhibition of FGF4 signaling in human embryos does not deeply impact the ICM 

patterning, highlighting possible regulatory differences between species. Potential 

candidates for driving ICM heterogeneity in humans are members of the transforming 

growth factor family TGFβ, which have been proved to maintain self-renewal in human TE 

stem cells. Nevertheless, the mechanisms of PrE derivation in humans and the alternative 

pathways involve in the ICM segregation remain unknown (Roode et al, 2012; Chazaud & 

Yamanaka, 2016).  

At the 64-cell stage PrE cells migrate and form a layer between the Epi and the blastocoel. 

The PrE cells that fail to locate within the PrE layer either change to an Epi fate or undergo 

apoptosis (Schroter et al., 2015). Prior to implantation in the uterus, the embryo exhibits 

three different linages resulting from different and sequential cell fate decisions: TE, PrE 

and Epi. The lineages have specific positions within the embryo, are molecularly distinct 

and have restricted differentiation potential (Artus et al., 2014).  

During the past few decades, several groups have extensively studied human development 

to the point of implantation at day 7 when the embryo must attach to the uterus to survive. 

In vitro studies have used mouse as a model to considerably increase the understanding of 

early post-implantation development but fail to uncover particular human development 

landmarks due to specie specific differences. Magdalena Zernicka-Goetz’s group has 

recently developed an outstanding technique that allows growth of human embryos until 

13dpf (Deglincerti et al., 2016; Morris, 2017). The study validates the expression of TE 

markers CDX2 and GATA3 and suggests GATA6 as a better marker for human TE due to 

its high level of nuclear expression. The Epi marker NANOG and the PrE marker GATA6 
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were shown to be exclusively expressed in a salt and pepper pattern at 6dpf, in contrast 

with mouse where PrE and Epi markers are sorted by the late blastocyst stage. Interestingly, 

the results depicted that hESCs closely resemble Epi cells at 10dpf rather than 6-8dpf as 

previously accepted. The next step in human central nervous system (CNS) development 

corresponds to the formation of the primitive streak, gastrulation and neurogenesis. 

Studying the human embryo in vitro is legally permitted until day 13 or until the formation 

of the primitive streak (Deglincerti et al., 2016; Shahbazi et al., 2016a). iPSCs genetically 

and phenotypically resemble to ESC in vivo. Thus, iPSCs provide a unique in vitro system 

to analyze the molecular events that regulate human development after this period (Lohle 

et al. 2012). 

1.1.3. Neuroectodermal induction by BMP, TGFβ and WNT antagonists  

During gastrulation the Epi cells initiate a complex developmental program that gives rise 

to the three germ layers of the mammalian embryo: the endoderm, mesoderm and ectoderm. 

In mouse E6.5 Epi cells located in the posterior side of the embryo undergo to epithelial 

mesenchymal transition and migrate through the primitive streak (PS). The cells that 

ingress through the PS to the interior of the embryo form the mesoderm and the endoderm. 

The Epi cells that are not recruited through the primitive streak differentiate into the 

ectoderm. Specific regions of the ectoderm differentiate into the epidermis, CNS cells, 

neural crest or placodes. In vertebrates the first event of neural differentiation is the 

ectoderm commitment into the NE. Differentiation of the NE depends on termination of 

the ESC transcription program, the initiation and maintenance of the NE transcription 

network and the suppression of other lineages fate. NE differentiation results from a series 

of regulatory events during the blastula and gastrula stages (Tresdell & LaBonne, 2006; 

Gaur et al., 2016).   
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The NE is formed in the dorsal region of the embryo in response to signaling from the 

adjacent mesoderm region called the “node” in chick, mouse and humans and the 

“organizer” in Xenopus. The node cells secrete small molecules that diffuse into the 

extracellular space of the adjacent ectoderm and bind BMP, TGFβ and Wnt ligands to 

inhibit them from occupy and activate their receptors. Ectodermal cells where BMP, TGFβ 

and Wnt have not being inhibited will adopt a non-neural ectodermal fate and subsequently 

an epidermal phenotype. Inhibition of BMP, TGFβ and Wnt allows expression of several 

dorsal ectoderm genes, which promote the induction of the NE and prevent the expression 

of non-neural genes. Additionally, signaling mediated by TGFβ family induces ectodermal 

cells to adopt a mesodermal fate (Andoniadou & Martinez-Barbera, 2013; Klein & Moody, 

2015). BMPs bind and activate type I and type II receptors and induce their hetero-

dimerization. Activation of BMP signaling induces phosphorylation of SMAD1, which in 

turn forms a complex with SMAD4b/SMAD4 and translocates to the nucleus to affect the 

expression of its gene targets. In the nucleus the complex binds to different transcription 

factors (TF) such as OAZ in in Xenopus to activate the epidermal transcription network. In 

the Xenopus embryo the BMP pathway is inhibited at an extracellular level by the secretion 

of several ligands that occupy BMP receptors; in the cytosol by Smad6 and Smad7 which 

prevent Smad4 from binding Smad1 and by Smurf1 and Smurf2, which target the Smad1-

Smad2 complex for degradation by the proteasome; and in the nucleus by the 

transcriptional repressor Ski (Figure 1.4) (Muñoz-Sanjuán & Brivanlou, 2002; Ozair et al., 

2013). Additionally, it has being demonstrated that in the chick ectoderm, BMP signaling 

is initially down-regulated at a transcriptional level and is further inhibited by BMP 

antagonists (Klein & Moody, 2015). 
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Figure 1.4. BMP pathway and SMAD inhibition. Molecules secreted from the 

node block extracellular BMP binding to type I/II receptors. In the cytosol, 

SMAD7/6 and Smurf1/2 prevent the formation of the SMAD complex. As a result 

of these interventions, SMADs cannot translocate to the nucleus to promote 

expression of their target genes (adapted from Ozair et al., 2012).  

 
 
 
In vitro, ESC and iPSCs can be induced to differentiate to neural precursors by inhibiting 

BMP signal with small molecule BMP antagonists or by diluting endogenous BMP 

signalling by growing cells at low density. Nevertheless, the mechanism of neural 

precursors differentiation and maintenance by BMP inhibition is not well understood in 

ESC or in the embryo. Hence, the resemblance of the molecular events that drive neuronal 

induction between ESC and the embryo is not clear (Moody et al., 2013).  
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The Xenopus default model suggests that BMP inhibition is sufficient to induce neural 

differentiation in the competent Epi. However, studies in the chick embryo indicate that 

BMP inhibition is necessary to suppress epidermal phenotype, but an additional signal 

might be required to induce a neural phenotype. Potential candidates are FGF family 

members whose expression is up-regulated in the ectoderm and then restricted to the NE 

(Delaume et al., 2005; Marchal et al., 2009). In humans 22 FGF members have being 

reported, 18 correspond to secreted proteins that interact with 4 receptors (FGFR). In 

Xenopus embryo, neural tissue differentiation is inhibited chemically by inhibiting FGF. 

However, it has been demonstrated that chemical inhibition of FGF signaling reduces 

dorsal mesoderm tissue formation and therefore reduces the BMP inhibitory signals 

secreted from it. Additionally, overexpression of dominant-negative FGFR1 and FGFR2 

receptors, which block FGF3 and FGF4 signals leads to loss of pan-neural markers in 

Xenopus neural ectoderm explants. Over expression of dominant-negative FGFR4α 

receptor blocks FGF8 signaling and prevents anterior neural marker expression. Posterior 

neural development is disrupted by inhibition of the FGF pathway through disruption of 

MAP kinase signaling but has no effect on anterior neural tissue formation (Stern, 2005; 

Rogers et al., 2009). In chick, FGF genes are required to inhibit expression of BMP genes 

and in Xenopus and zebrafish to inhibit BMP downstream signaling by phosphorylation 

and inactivation of Smad1. Several studies propose that FGF is necessary for anterior-

posterior patterning of the neural plate (NP) and for inhibition of BMP signaling but any 

FGF independent role to initiate the nervous system development remains in question 

(Delaume et al., 2005; Stern, 2005). It has been suggested that FGF facilitates neural 

induction through its downstream effector Churchill (Churc), which inhibits the expression 

of mesodermal genes and promotes the expression of neural genes (Lee et al., 2014).  
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Canonical WNT signalling has also being implicated in multiple mechanisms of embryonic 

development including anterior NE induction, NP patterning, and neural crest and placode 

differentiation (McDonnlad et al., 2009). During Xenopus early development, maternal 

Wnt/β-catenin directly induces the expression of the closely related activators Siamois (Sia) 

and Twin. These signals combined with zygotic Nodal and TGF-β in the dorsal region of 

the embryo induce expression of the organizer genes. In mammals the Sia/Twin homologue 

DUXO has being demonstrated to be required for formation of the organizer. 

Simultaneously, the organizer secretes BMP and TGFβ antagonists like Chordin, Noggin 

and Cerberus, which specify the embryonic dorso-ventral regions and NE formation; and 

the Wnt antagonists Dickkopf1 (Dkk1), Frizzled 1 (Frzb1), Crescent, and Cerberus (Ding 

et al., 2017).  

WNT zygotic expression in the ventro-lateral mesoderm generates a β-catenin gradient 

elevated in the posterior region where it activates regulatory signals that inhibit 

transcription of anterior NE genes or activity of the maternal NE activators and induce 

expression of genes encoding for the posterior NE. On the other hand, extracellular WNT 

antagonists in the anterior region inhibit NE posteriorization and induce expression of TF 

that promote anterior neural fate and will give rise to the forebrain (Range et al., 2013). For 

instance, inhibition of WNT in Xenopus ectoderm generates a significant increase in head 

size and up-regulation of the signals leads to microcephaly or loss of anterior structures. 

Thus, the ability of WNT signalling to induce anterior-posterior axis formation has being 

extensively demonstrated. However, there is not sufficient evidence to demonstrate a direct 

role of WNT in neural induction (Ciany & Salinas, 2005; Rogers et al., 2009).  
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Additionally, it has being suggested that the transcription the factor Zic1 stabilizes neuronal 

fate by sensitizing the ectoderm for neural induction, however the mechanism remains 

unknown (Lee et al., 2014). 

1.1.4. Transcription factors involved in neuroectodermal differentiation 

NE differentiation is orchestrated by sets of TFs that are sequentially activated or inhibited 

in a specific spatiotemporal manner. These TF maintain NE precursors and regulate their 

transition to NE cells that constitute the NP and then to neural progenitors (neural stem 

cells). Several TF are required during neural fate acquisition. However, the exact 

mechanisms and the GRNs that control neuronal development remains largely unknown 

(Moody et al., 2013).  

In Xenopus, activation of the organizer genes via Sia and Twin is necessary for the 

secretion of BMP and WNT inhibitors, and to directly up-regulate the expression of NE 

genes. Among the organizer the TFs, Sia, Twin, Goosecoid, and Foxa4 are expressed in 

organizer precursor cells in the dorsal blastula and later in the organizer proper. Other  TFs 

such as Hesx1, Lim1, Xnot, Otx2 and XlPOU2; and the genes Chordin, Noggin, Cerberus 

are expressed only once the organizer is formed. Ectopic expression experiments 

demonstrated that Sia and Twin directly activate expression of Foxd4 in the blastula before 

the organizer and NE are formed during gastrulation. Additionally, Sia and Twin directly 

induce expression of Geminin (Gmnn) and Zic2 in the blastula. Blocking Foxd4 translation 

in Xenopus blastomeres leads to inhibition of Sox11 expression, suggesting that Foxd4 

directly regulates Sox11expression. Foxd4 is widely expressed in NE precursor cells and 

later is restricted to the anterior and midline region of the NP comprised of NE cells. 

Subsequently, Foxd4 expression is restricted to a small region of the midbrain. Once the 
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organizer has differentiated during gastrulation it secretes factors that inhibit BMP and 

WNT from the adjacent mesoderm and ectoderm inhibiting reversion to a non-neural fate. 

In the gastrula stage Gmnn, Zic2 and Sox11 expression is facilitated through Foxd4 and 

other organizer TFs (Klein & Moody, 2015, Gaur et al., 2016) (Figure 1.5). Expressing the 

human homologous FOXD4 and FOXD4L1 in Xenopus blastomeres explants 

demonstrated that the human proteins affect neural gene expression similarly to Foxd4, 

indicating possible functional conservation (Gaur et al., 2016). In the mouse embryo, Gmnn 

and Sox2 expression initiates in the inner cell mass and is up-regulated in NE progenitors 

during gastrulation. By day E7.5-8 Gmnn and Sox2 are widely expressed in the NE together 

with Zic1 and Sox3 (Sankar et al., 2016). Foxd4, Gmnn, Zic2 and Sox11 block non-NE 

induction by inhibiting BMP/WNT pathway genes and their targets (Klein & Moody, 

2015).  

 

Figure 1.5. Sia and Twn induction to gene targets.  At blastula stage, in cells fated to give 

rise to the ectoderm and mesoderm express Sia and twin, which activate Foxd4, Gmnn and 

Zic2. At this stage, FoxD4 promotes activation of Sox11. Once the mesoderm and endoderm 

are formed during gastrulation, NE genes expression is maintained by factors secreted by the 

organizer and enhanced by FoxD4 (Klein & Moody, 2015).  



 
32 

Additionally, these TFs maintain the NE in a proliferative state by inducing NE 

progenitor’s genes facilitating NE expansion. Zic2 regulates ESC development by 

recruiting the co-factor Mbd3-NuRD to enhancer regions to regulate chromatin state and 

gene expression. Zic2 knockout in mouse ESCs cultured with N2B27 media to promote 

neuronal differentiation leads to cell death indicating the important role of Zic2 during 

neural differentiation (Luo et al., 2015). 

Sox11 is up-regulated during the transition from NE to neural progenitor, and hence has 

being implicated in maintenance of pan-neural neural progenitors. In mouse and chick 

embryo, Sox11 is only expressed in neuronal progenitor cells and in developing neurons 

(Klein & Moody, 2015). In contrast, Gmn, Zic2 and Foxd4 have being implicated in the 

temporary inhibition of bHLH neural differentiation genes NeuroG and NeuroD. For 

instance, Gmnn and Foxd4 are down-regulated during the transition of cells from a 

proliferative NE to neuronal progenitors (Moody et al., 2013; Lee et al., 2014).  

Gmnn interacts directly with TFs and with chromatin modifying complexes in a specific 

spatiotemporal manner to activate or repress genes expression. It has been proposed that 

Gmnn interacts with SWI/SNF and Polycomb chromatin modifying complexes to bind 

specific chromatin locations (Lim et al., 2011). Gmnn expression is required to maintain 

NE multipotency by promoting deposition of repressive histone modifications at neural 

genes. Additionally, during neural progenitor fate acquisition Gmnn facilitates the 

deposition of histone marks associated with open chromatin histone-activating marks in 

TFs gene targets in mouse ESCs promoting neuronal differentiation (Sankar et al., 2016). 

It has been demonstrated that Gmnn promotes acetylation of several genes involved in 

neuronal differentiation such as Bcl1, Pou6f1 and Pax4. Moreover, Gmnn could have a role 

in repressing mesodermal genes expression by enhancing Polycomb repressor complex. 
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Gmnn expression is also required earlier in development as Gmnn-/- mouse embryos fail 

to form ICM and generate TE in its place (Yellayoshyula et al., 2010; Caronna et al., 2011).  

The conversion from NE progenitors to NE cells and eventually to neural progenitors 

requires cells to leave cell cycle and initiate expression of bHLH TFs. To promote this 

transition a different set of genes is activated. In Xenopus, the TFs Sox1, Sox2 and Sox3 

are up-regulated downstream of Foxd4, Gmnn and Zic2. Sox1, Sox2 and Sox3 TF are 

members of the SoxB1 family and their expression is required to maintain self-renewing 

progenitors during the CNS development. High expression levels of SoxB TFs reduce the 

expression of bHLH neural TFs and inhibits neuronal differentiation. Thus, the transition 

of NE cells to differentiating neurons requires down-regulation of the SoxB family 

members (Holmberg et al., 2008) (Figure 1.6). SoxB TFs function in parallel to maintain 

cell proliferation and to establish spatial identity of neural cells at the same time and 

possibly in the same cells. The balance between SoxB1 TFs activity determines whether 

cells are maintained as progenitors or differentiate into neurons. The factor’s binding 

partner might determine SoxB1 regulatory function, but the exact mechanism of functional 

diversity is not well understood (Neriec & Desplan, 2014). Additionally, SoxB1 TFs 

maintain NE fate by inhibiting expression of Vent2, a BMP target necessary for epidermis 

differentiation and by down-regulating Foxd4 (Rogers et al., 2009; Lee et al., 2014). 
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Figure 1.6. Sets of transcription factors sequentially activated during early neuronal 

differentiation. NE precursors (green) express FoxD4, which directly induces the expression 

of Gmnn, Zic2 and Sox11 and transiently inhibits the expression of SoxB1 and neural 

progenitor genes. Neural plate stem cells (orange) differentiation requires down-regulation of 

FoXD4, Gmnn and Zic2 TF and high levels of expression of SoxB1 and Sox11 genes. The 

transition between neural progenitor stem cells (NPSC) and differentiating neuronal 

progenitors (blue) depends on the inhibition of Sox family members and up-regulation of Zic 

and Irx TF (Lee et al., 2014).  

 
 
SoxB1 binding results in bivalent chromatin remodeling, hence Sox proteins might play a 

role regulating the accessibility of subsequently expressed TFs. The proposed mechanism 

of regulation indicates that Sox members bind to target promoters/enhancers to deposit 

activate chromatin marks and prepare them for activation by another family member 

(Bergsland et al., 2011). In the mouse embryo and ESC cells Sox2, Sox3 and Sox11 bind 

to the promoters of the same target genes in a temporal sequence. Sox2 binds NE cells 

genes and marks the sites for latter Sox3 binding. Subsequently, Sox3 binds neuronal 

progenitor’s genes to mark Sox11 binding sites (Nishimura et al., 2012; Moody et al., 

2013). Sox2 expression initiates in the mouse ICM and is up-regulated during late 
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gastrulation. Sox2 expression inhibits activation of proneural genes and is down-regulated 

during the final cell cycle before neural differentiation proceeds (Wegner, M., 2011; Niu et 

al., 2015). Interestingly, Sox2 is part of the set of TFs capable of directing reprogramming 

of differentiated cells to pluripotent stem cells (Takahashi and Yamanaka, 2006). Sox3 and 

Sox1 are activated once mammalian cells have committed to a NE fate and overlap Sox2 

expression at stage E7.5-8. Sox2 and Sox3 share high homology and are expressed in 

overlapping domains. Furthermore, Sox3 activity is compensated during diencephalon 

development when the Sox3 (open reading frame) ORF is replaced with the Sox2 ORF 

suggesting that their expression is redundant (Graham et al., 2003; Niu et al., 2015). Sox2 

and Sox3 are necessary to maintain neuronal progenitors but not sufficient to induce 

neuronal differentiation whereas Sox1 has the ability to induce neuronal fate acquisition in 

Xenopus ectodermal explants and mouse ESCs. However, Sox1 knockdown in mouse 

showed mild phenotype defects, indicating functional compensation from other SoxB1 

members (Suter et al., 2009; Archer et al, 2011; Adikusuma et al., 2017). Sox1 is the 

earliest NE marker in mouse and its expression correlates with NP differentiation, thus it is 

broadly accepted that Sox1 plays a key role driving the transition from pluripotent cells to 

NE. However, it has been reported that Sox1 expression is not detected in the initial NE 

cells derived from human ESC revealing profound species-specific differences during NE 

differentiation (Zhang et al., 2010; Chung et al., 2012).  

Subsequently, the TF Zic1, Zic3, Irx1-3 are up-regulated upstream of early bHLH 

proneural TFs. Zic1/Zic3 are both required to maintain neural progenitors in a proliferative 

state and for temporarily inhibit neural differentiation genes. Additionally, Zic and Irx 

genes inhibit expression of FoxD4 allowing posterior expression of neural differentiating 

genes. In Mouse, Zic3 is activated in the early gastrula NE at E6.75-E7.0 and might play a 

role in the formation of the primitive streak. Zic1 is enriched in the NE at stage E7.5-7.8 
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overlapping Gmnn and Sox3. Zic1 promotes neural progenitor differentiation; possibly in 

collaboration with Gmn and stabilizes neural fate by attenuating BMP and WNT (Aruga & 

Mikoshiba, 2011; Moody et al., 2013; Sankar et al., 2016). However, the mechanism by 

which Zic1/Zic3 TF promote neural progenitor maintenance and differentiation is not well 

understood (Inoue et al., 2007; Lee et al., 2014). Likewise, Irx1, Irx2 and Irx3 are activated 

during Drosophila, Xenopus and mouse NE differentiation prior to the expression of bHLH 

genes. Irx genes share 95% of amino acid identity and are highly conserved among 

vertebrates leading to the suggestion that Irx functions are redundant. Irx genes are 

expressed in overlapping and also unique spatial-temporal patterns during the development 

of the CNS where they are necessary for regional specification and patterning of neural 

progenitors, possibly by directly repressing BMP4 signaling (Cohen et al., 2000). Irx loss 

of function assays in Xenopus, result in posterior displacement of the forebrain and 

reduction of the midbrain and hindbrain demonstrating their requirement for proper 

anterior-posterior and dorso-ventral regionalization later in development. Additionally, 

studies have revealed that Irx3 and Sox3 interact directly by mutually repressing each other. 

However, the precise function of Irx TFs during NE cells regionalization is not well 

understood (Gomez- Skarmeta & Modolell, 2002; Rodriguez- Seguel et al., 2009; Sankar 

et al, 2016).  

NE differentiation has been analysed in a reduced number of studies using mouse and 

Xenopus as animal models. However, limitations to acquire NE differentiating cells in vivo 

have prevented studing the NE development in humans. Hence, it has been demonstrated 

that the expression of regulatory markers such us PAX6, NESTIN, ZNF521 and N-cadherin 

is conserved between species during NE differentiation (Nandadasa et al., 2009; Park et 

al., 2010; Kamiya et al., 2011). However, specie specific differences in the temporary 

activation of these markers and regulatory signals unique for each species are largely 
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unknown. It has been shown that PAX6 and SOX1 are activated in a different temporal 

manner during NE differentiation between human and mouse. For instance,  in human, 

PAX6 is the earliest NE marker identified in ESCs undergoing neural induction, whereas 

in the mouse embryo the paired box TF Pax6 is expressed in specific NE regions only 

before the closure of the neural tube (NT) (Nat et al., 2007; Suter et al., 2009). In mouse, 

Sox1 is the principal candidate for NE formation and fate commitment while Pax6 plays a 

later role in differentiation of radial glial cells (Figure 1.7). Furthermore, PAX6 is sufficient 

and necessary for neural induction in human but not in mouse. PAX6 over-expression 

induces hESCs to adopt a NE fate whereas PAX6 knockdown fail to differentiate into NE 

even in the presence of dual SMAD inhibition (2i), conditions that favour neural 

differentiation. It has been suggested that the PAX6 neural inductive effect is achieved by 

repressing pluripotency genes such as OCT4, NANOG and MYC. However, OCT4, 

NANOG and SOX2 knockdown in ESC induces the cells to acquire trophoblastic fate. 

Hence, inhibition of pluripotency genes is a pre-requisite but not sufficient for NE 

differentiation. It has been proposed that the transition between ESC and NE cells is 

initiated by pluripotency inhibition and is potentiated by PAX6 activation of NE and 

neuronal progenitor genes including SIX3, LHX2, FGF8, NR2F2, TBR2 and WNT5b 

(Zhang et al., 2010; Blake & Ziman, 2014). In the mouse embryo, Pax6 and Sox2 occupy 

several common promoters including Nestin. Hence, these two TF possibly cooperate 

during neural induction of hESCs. Additionally, mouse studies have shown that PAX6 is 

required to maintain NP differentiation by inhibiting the expression of genes that promote 

mesodermal and endodermal differentiation such as Brachiury, Hnf1a and Myf (Thakurela 

et al., 2016). However, the transcriptional regulatory events involved in human NE 

commitment remain to be investigated.  



 
38 

 

Figure 1.7. Differential expression of PAX6 and SOX1 in human and mouse. In 

humans, PAX6 activated during NE differentiation from ESC (green) and is considered 

the earliest neural marker, whereas SOX1 is first detected in the neural tube in foetuses 

(Zhang et al., 2010). In the mouse embryo, SOX1 favours the formation and 

maintenance of the NE, whereas PAX6 is detected in the neural progenitors of the 

differencing forebrain before the closure of the NT (Suter et al., 2009).  

 

1.1.5. Additional neuroectodermal markers 

Nestin is an intermediate filament (IF) protein type IV that together with microtubules and 

microfilaments constitutes the cytoskeleton. During the development of the CNS different 

IF types are express in a cell specific manner, marking distinct differentiation steps. Nestin 

expression initiates during NE commitment and is dramatically reduced during the 

transition from neural progenitor cells to post-mitotic cells. Hence, Nestin has been widely 

employed as a NE marker (Wiese et al., 2004; Mahler & Driever, 2007). A recent study 

conducted with mouse neurospheres demonstrated that Nestin knockdown results in 

inhibition of cell proliferation and reduction of EGFR signalling, indicating that Nestin in 

collaboration with EGFR signalling regulate cell proliferation in mouse neurospheres (Hu 

et al., 2016). Furthermore, Nestin deficient mice show a reduction of the neural tube cell 

number caused by increased apoptosis and reduced self-renewal ability, leading to 

embryonic lethality. However, microarray data analyses depicted similar gene expression 

patterns between the mutants and controls. Additionally, in the mutant mouse the 
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microtubules, microfilaments and IF networks structure and integrity was not affected. 

Thus, Nestin may exert its regulatory effects through interactions with other non-structural 

proteins, rather than through its role in cytoskeleton maintenance. For instance, Nestin 

knockdown in rat neuronal progenitors induces Cdk5 mediated apoptosis under oxidative 

stress. Hence, it has been proposed that Nestin serves as a scaffold to directly bind and 

sequester Cdk5 to regulate its activity (Park et al., 2010).  

Another factor that plays a key role during NE differentiation is ZEB2, a member of the 

ZHFX1 family that directly interacts with activated SMAD 1-3 proteins, ZEB2 knockdown 

hESCs initially differentiate into NE cells but eventually fail to express early and late neural 

markers, whereas ZEB2 over expression enhances NE differentiation. Thus, ZEB2 is 

necessary for NE progression and maintenance but is not required to initiate NE 

commitment. Additionally, ZEB2 is required to maintain NE fate commitment over 

mesendoderm differentiation. ZEB2 antagonizes the expression of Activin/Nodal and BMP 

signaling by direct interaction with SMAD proteins (Conidi et al., 2012; Tang et al., 2015). 

Activin/Nodal signaling maintains pluripotency in mouse Epi and hESCs thought direct 

up-regulation of NANOG mediated by its intracellular effectors SMAD2/3. In return 

SMAD, NANOG and OCT4 inhibit expression of ZEB2 and prevent differentiation of 

hESCs. Concomitantly, ZEB2 is directly up-regulated by SOX2 during this stage. Thus, 

ZEB2 is in parallel up-regulated and inhibited at the same time, resulting in reduced levels 

of ZEB2 expression, which are sufficient to reduce ability of SMAD to induce 

mesendodermal fate. Moreover, studies have proposed that NE differentiation is triggered 

as Nodal, Lefty and Cerberus inhibit SMAD from the node in the embryo Epi reducing the 

expression of NANOG and OCT4, which results in an increase in expression of ZEB2 

(Chng et al., 2010). Another member of the Zeb family, the TF Zeb1 is up-regulated in 

proliferative neural progenitor cells and down-regulated in post-mitotic neurons. Zeb1 
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plays an important role during mesenchymal-ephitelial transition by repressing E-cadherin 

expression and concomitantly inhibiting epithelial markers (Zhang et al., 2015; Aiger et 

al., 2017). 

Likewise, the zinc-finger protein Znf521 is considered to play a role during NE 

differentiation as its expression pattern correlates with NE fate acquisition. In the mouse 

embryo, Znf521 is absent in the ICM and is strongly up-regulated at E7.0-E8.0 in the NE. 

As gastrulation proceeds Znf521 expression is preferentially located in the rostral neural 

tube. Overexpression assays in mESCs demonstrated that Znf521 is sufficient to induce 

expression of NE markers even in presence of BMP4, whereas Znf521 down-regulation 

resulted in sustained expression of Epi markers and lack of NE markers. NE development 

was rescued by Znf521 induced expression, demonstrating that Znf521 is necessary and 

sufficient for the Epi-NE transition (Kamiya et al., 2011; Shen et al., 2011). Furthermore, 

chromatin immunoprecipitation (ChIP) assays depicted enrichment of Znf521 factor in the 

DNA regions of Sox3, Sox1 and Pax6, indicating possible direct regulation of the NE 

markers by Znf521. Additionally, mouse and human fibroblast transfected with a Znf521 

expressing lentivirus have been successfully induced to adopt rostral NSC characteristics. 

The reprogramed cells express NE markers such as Sox1, Sox2 and Pax6, were stable up 

to 60 passages and have the ability to differentiate into neurons and astrocytes (Shahbazi et 

al., 2016b). Kamiya et al, reported lethality in Znf521 mouse deficient embryo. However, 

a different study indicated that the deficient embryos formed NE and developed a CNS, 

suggesting the possibility of functional compensation by another gene in vivo. However, 

the mice showed reduced number of Sox1 positive cells, schizophrenic like behaviour and 

die after 10 weeks of birth. Together these studies demonstrated that Znf521 is necessary 

for proper neuronal differentiation (Ohkubo et al., 2014).  
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Finally, N- cadherins are highly up-regulated at NE stage and are commonly used as NE 

markers. Cadherins are cell-cell adhesion molecules necessary for a number of 

development processes. Initially the ectoderm express E-cadherins and they are 

progressively replaced by N-cadherins during NE differentiation while the non-neural 

ectoderm retains E-cadherin expression. Trans-membrane N-cadherins attach to cortical 

actin on the cell to maintain adherent junctions necessary for intracellular adhesion in NE 

cells (Kadowaki et al., 2006; Nandadasa et al., 2009). Down-regulation of N-cadherin in 

mouse ESC-derived NE cells caused disruption of the normal architecture of the NE cells 

and inhibition of rosette like structure formation. In Xenopus neural progenitors N-cadherin 

down-regulation results in loss of movements of the neural folds. Hence, N-cadherin plays 

a pivotal role maintaining the normal cellular architecture and movement during NE 

development (Nandadasa et al., 2009; Su et al., 2013).  

1.1.6. Neuroectoderm specification  

Neuronal progenitors or neural stem cells are generated from NE and undergo a limited 

number of symmetrical divisions and then asymmetrical divisions during neural 

differentiation (Dhanesh et al., 2016). As development proceeds, neural progenitors acquire 

some glial features, and become elongated to form radial glial cells (RG) with the cell body 

at the ventricular surface of the neural tube and radial fibers extending to the pial surface 

around E9-E10 (Bergstrom & Forsberg-Nilsson, 2012; Okano & Temple, 2016). 

Multipotent RG divide asymmetrically generating one basal progenitor cell and an 

immature neuron (intermediate progenitor cell). Subsequently, immature neurons migrate 

along the radial fibers to the cortical zone and become deep layer and later superficial layer 

neurons. Basal progenitors constitute transit amplifying cells that continue producing 

neurons from the subventricular zone. After generation of neurons RG cell subsequently 
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give rise to oligodendrocytes, astrocytes and ependymal cells (Kageyama et al., 2014; 

Imayosgi et al., 2015) (Figure 1. 8).  

Members of the bHLH family, Hes1, Hes5, Ascl1, Neurog2, Olig1 and Olig2 play an 

important role in maintaining neural progenitors and regulating fate choices. Hes1 and 

Hes5 are transcriptional repressors that promote neural progenitor self-renewal and inhibit 

expression of proneural genes. Ascl1 and Neurog2 are the best-studied proneural activators 

that promote neural fate commitment and neuronal subtype specification. Additionally, 

Olig1 and Olig2 regulate oligodendrocyte differentiation (Imayosgi et al., 2015).  

 

  
 

Figure 1. 8. Differentiation of neuroectoderm cells in the embryonic brain. NE cells divide 

symmetrically to form the NP and thicken the NT. NE cells acquire regional identity and become neural 

progenitors that initially renew by symmetrical division. Neural progenitors from the ventricular zone 

elongate to the apical zone and differentiate into RG cells. RG cells divide asymmetrically to give rise 

to an immature neuron that migrates to the cortical zone and differentiate into a deep layer neuron and 

then subsequently generate superficial layer neurons and basal progenitors. Basal progenitors proliferate 

in the subventricular zone to generate more neurons.  Later dividing RG cells differentiate into 

oligodendrocytes, astrocytes and ependymal cells (Kageyama et al., 2014).   
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Hes1 and Hes5 are down-stream effectors of Notch, a trans-membrane protein that 

regulates neural progenitor cell self-renewal and inhibits neural differentiation. Proneural 

TF induce the expression of Notch ligands Delta and Jagged from neighboring 

differentiating neurons. After activation Notch undergoes several cleavages and releases its 

intracellular domain (ICD). The ICD is transported to the nucleus and binds Rbpj DNA 

binding protein and the co-activator Mam1. The complex activates the expression of Hes1 

and Hes5, which inhibits neural differentiation and maintains RG cells. Hence, Notch 

signalling regulates neural differentiation of neighboring cells trough cell-cell lateral 

inhibition (Kageyama et al., 2005; Dhanesh et al., 2016). Hes1 and Hes5 have a WRPW 

domain that interacts with the co-factor TLE/Groucho to recruit histone deacetylases and 

repress the expression of target proneural genes including Ascl1 and Neurog2. For instance, 

Hes1 binds to the Ascl1 promoter to directly inhibit its expression and regulates Ascl1 

activity by binding E47 an Ascl1 co-activator to inhibit their protein-protein interactions. 

Later in development Hes1 expression induces acquisition of astrocyte fate. In contrast, 

another bHLH family member Hes6 promotes neuronal differentiation by binding Hes1 

and inhibiting its activity. Proneural bHLH TFs antagonize Hes1 by activating Hes6 

expression (Kageyama et al., 2005; Imayosgi et al., 2015).  

The bHLH activator type TFs such as Ascl1 and Neurog2 control early and late 

neurogenesis by regulating expression of pan-neural genes and expression of genes 

involved in neuronal commitment (Kageyama et al., 2015). Proneural genes Ascl1 and 

Neurog2 form a heterodimer with the co-factor E47 to regulate the expression of target 

genes. Particularly, Ascl1 regulates the expression of several TFs involved in 

differentiation of neurons, including Sox4, Gli3 and Dlx2. Additionally, Ascl1 activates 

expression of genes involved in cell cycle arrest such as Fbxw7, Gadd45g and Ccng2 and 

cell cycle progression such as Cdk1, Cdk2, and Skp2. Thus, Ascl1 regulates opposing 
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functions, inducing both cell cycle exit and proliferation. Furthermore, Ascl1 is sufficient 

to induce mouse and human ESCs to differentiate into neurons and to reprogram human 

fibroblast to acquire neuronal characteristics (Chanda et al., 2014). Interestingly, Ascl1 

promotes chromatin accessibility to its own target genes regulating temporal progression 

of its transcriptional program (Castro et al., 2011; Raposo et al., 2015). Additionally, 

proneural genes inhibit the expression of glial specific genes such as GFAP by sequestering 

their activators Smad1-p300 complex from glial promoters (Kageyama et al., 2005).  

bHLH TFs are broadly expressed in the population of actively dividing neural progenitors, 

overlapping the expression of NE markers like Sox2. However, Sox2 is homogeneously 

expressed, whereas bHLH TFs expression is variable among the cells. Imayoshi and 

colleagues found that Hes1, Ascl1, Ngn2 and Olig2 are expressed in an oscillatory manner 

in early neural progenitors differentiated from mouse ESCs. Hes1 and Ascl1 proteins 

expression oscillate every 2-3h while Olig2 proteins oscillate in a 5-8h period. It has been 

proposed that Hes1 oscillations initiate as Notch is activated and induce up-regulation of 

Hes1. Subsequently, Hes1 binds and repress its promoter inhibiting its own expression. 

Hes1 protein and mRNA are highly unstable and rapidly disappear leading to another 

expression cycle (Shimojo et al., 2008).  Hes1 oscillatory pattern is in opposite phase to 

oscillations of Ascl1, Neurog2 and its ligand Delta-like1 (Dll1). Thus, is possible that Hes1 

induces Ascl1, Neurog2 and Dll1 oscillations by periodically inhibiting their expression. 

Subsequently, during neural differentiation one of the three bHLH TFs becomes expressed 

in a sustained manner while the others are down-regulated. Hence, multipotent actively 

dividing neural progenitors express various bHLH TFs in an oscillatory manner, while 

sustained expression of a specific factor drives commitment to a particular fate. It has been 

suggested that transient inhibition of Hes1 and transient up-regulation Ascl1 or Neurog2 

before cell division bias neural progenitors to acquire neuronal fate. Neuronal fate is then 
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determined by a sustained expression of Ascl1 or Neurog2 and down-regulation of Hes1. 

On the other hand, up-regulation of Hes1 and Olig2 bias the neural progenitors to commit 

into astrocytes and oligodendrocytes fate respectively (Kageyama et al., 2014; Imayosgi et 

al., 2015). 

1.1.7.  Formation of the neural border zone  

During gastrulation the ectoderm is regionalized into neural, non-neural ectoderm and the 

neural border zone (NBZ) between the two regions. Interactions among neural and non-

neural ectoderm and signals from the underlying mesoderm and endoderm induce the 

differentiation of the NBZ, which will give rise to the neural crest (NC) and the pre-

placodal ectoderm (PPE) (Saint-Jeannet & Moody, 2014; Shigetani et al., 2016). Members 

of the Dlx, Msx, Pax and Zic families and TFAP2α, Gata and Foxi1 genes are widely 

expressed in the non-NE and overlap the expression of NE TFs SoxB1 and Zic in 

prospective NBZ (Dincer et al., 2014; Moody & LaMantia, 2015; Shigetani et al., 2016). 

As the NE cells divide to form the NP, SoxB1 TFs become confined to the NP, Zic members 

are confined to the NP and the medial NBZ, Dlx, Gata, Foxi1 and TFAP2α are restricted 

to the non-NE and Msx1 and Pax3 are expressed only in the NBZ.  

Dlx genes are required to promote the expression of NC and PPE genes and to inhibit the 

expression of NE genes. Dlx TF interact with Msx TF by inhibiting each other’s expression. 

Differential expression of these genes bias cell fate towards NC when Msx is up-regulated 

and Dlx expression levels are low and towards PPE when Dls is up-regulated and Msx 

levels are low (Phillips et al., 2006; Moody & LaMantia, 2015). Dlx5 activates expression 

of the PPE marker Six1, while Msx1 represses it. Msx1 induces expression of Pax3 and 

Zic1, which interact to activate NC genes. Alternatively, lack of expression of Pax3 and 
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expression of Zic1 induce the differentiation of the PPE. Foxi1 and TFAP2α genes are also 

necessary for NBZ formation. In Xenopus explants, Foxi1 loss of function leads to 

reduction in expression of Dlx, Six1 and FoxD3 (NC marker) and expansion of the Sox2 

positive NP. Likewise, inhibition of TFAP2α results in down-regulation of Msx1, Pax3, 

FoxD3, Six1 and Eya1 (PPE marker). Thus, maintained expression and cross-regulation 

between Dlx, GATA, Foxi and TFAP2α are required for the formation of the NBZ, the PPE 

and the placodes (Sato et al., 2005; Leung et al., 2016 Moody & LaMantia, 2015) (Figure. 

1.9).  

        
 

Figure 1.9. Scheme of the genetic interactions during the formation of the ectoderm sub-

domains. During gastrula stage, inhibition of BMP signaling allows activation of NE genes such 

us SoxB1 TF. NE cells proliferate to form the NP (blue). High levels of BMP promote the 

expression of several NBZ genes like Msxl1, Dlx, Gata1/3, Pax, Zic, Tfap2 and Foxi1/3, which 

interact with each other to repress NE TF (red edges) and to activate and maintain the NBZ genes 

(black edges). Once the NBZ has been formed, BMP is down-regulated to allow expression of the 

NC and the PPE, whereas high levels of BMP are required for epidermis differentiation. 

Differential expression of NBZ genes bias NBZ to differentiate into NC or PPE. The PPE is 

specified by expression of Dlx, Zic1, Gata and Tfap2 TF and down-regulation of Msx1 and Pax3. 

Additionally, low levels of FGF signaling from the underlying mesoderm and inhibition of WNT 

are required for PPE formation. The NC is differentiated by expression of Msx1, Pax3, Zic1 and 

WNT signaling and requires down-regulation of Dlx (Moody & LaMantia, 2015). 
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1.1.8. Differentiation of the placodes 

Once the NBZ has been formed, the PPE regulators Six and Eya are activated. Additionally, 

low levels of FGF signaling from the underlying mesoderm are required for PPE formation. 

FGF signals inhibit expression of PPE repressing TFs and induce expression of PPE 

markers. However, the underlying mechanisms by which FGF genes regulate the 

expression of PPE inhibitors and markers remain to be elucidated. Similarly, BMP 

signaling is necessary for the differentiation of the NBZ and it must be reduced to permit 

formation of the PPE (Grocott et al., 2012; Moody & LaMantia, 2015; Shigetani et al., 

2016). Another signal that needs to be reduced to allow PPE differentiation is WNT, which 

directly represses genes that promote PPE fate. Hence, the PPE is restricted to the NBZ 

surrounding the anterior neural plate where WNT is inhibited (Leung et al., 2016). In chick, 

PPE genes are activated in the NBZ in presence of low Fgf8 signaling accompanied with 

low BMP and WNT levels, whereas if WNT signal persists NC markers are activated 

(Moody & LaMantia, 2015; Shigetani et al., 2016). Additionally, retinoid acid (RA) is 

expressed in a U-shaped area similar to the PPE in the anterior NBZ. Attenuation of RA 

signaling increases the posterior limit of the PPE, suggesting a role in the control of the 

PPE boundary possibly through regulation of RA target genes Tbx1 and Ripply3. In regions 

where both targets are expressed, PPE genes are inhibited, while if only Tbx1 is activated 

PPE genes are induced. Thus, RA might restrict the PPE limits by inducing the expression 

of both targets in the posterior ectoderm (Janesick et al., 2012; Moody & LaMantia, 2015).  

Six1, Six2 and Six4 are highly expressed in the PPE domains and have been implicated in 

differentiation of the PPE and placodes. Six1 plays a central role in PPE development, since 

loss of function studies have demonstrated reduction in the expression of other PPE 

markers in Xenopus and Drosophila. Six1 loss in mouse affects the formation of the 
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olfactory placode but has no effect on formation of the PPE, possibly due to compensation 

from another factor (Chen et al., 2009; Grocott et al., 2012; Moody & LaMantia, 2015). 

However, induction of Six1 expression is not sufficient to induce PPE markers outside of 

the NBZ. Additionally, Six2 and Six4 are widely used as PPE markers, but their regulatory 

mechanism has not yet been described. Six activities can be modulated by binding of co-

factors that lack a DNA binding domain (Moody & LaMantia, 2015).  

The TF Eya1 and Eya2 are among the best-studied Six co-factors. Eya1 and Eya2 

expression patterns resemble the expression of Six1 in Xenopus, suggesting that they 

possibly have roles driving the differentiation of the PPE and the placodes. Furthermore, 

Eya1 directly binds Six1 and possibly other TFs to translocate into the nucleus and regulate 

expression of PPE target genes. Eya loss of function in Xenopus leads to abnormalities in 

the placode derivatives but the effects on PPE formation have not been addressed. Six1 can 

also function as a repressor when it interacts with other TFs such as Groucho to inhibit 

expression of epidermal and NC genes (Silver et al., 2003; Chen et al 2009; Moody & 

LaMantia, 2015). Several other genes that might bind to Six1 during PPE and placode 

development have been identified, but their regulatory functions and interactions have not 

yet been delineated. PPE transcriptional regulators including Six and Eya genes set the 

transcriptional landscape for the development of the distinct placodes and maintain the 

boundaries between PPE and the adjacent NC and non-NE. However, the molecular 

pathways that establish and maintain the ectoderm sub-domains are not fully understood 

(Moody & LaMantia, 2015).  

 Initially, the PPE has the ability to differentiate into any placode and later acquires 

anterior-posterior (A-P) patterning in response to local signaling from the mesoderm and 

ectoderm. The anterior PPE will give rise to the adenohypophyseal, olfactory and lens 
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placodes, the middle PPE will become the trigeminal placode and the posterior PPE will 

differentiate into otic and epibranchial placodes. In vertebrates, the placodes will give rise 

to the majority of the peripheral sensory nervous system (Grocott et al., 2012).  It is 

generally accepted that BMP, FGF, WNT and RA contribute to specification of placode 

identity. Differential expression of Six TFs expression might also contribute to the 

formation of the A-P patterning. Additionally, the TF Otx and Gbx2 are differentially 

expressed in the A-P domains, respectively, and might play a role in the differentiation of 

the PPE (Steventon et al., 2012). As a result of the A-P regionalization, different Pax 

members are induced in specific regions. Pax6 is expressed in the anterior placodes, Pax3 

in the ophthalmic placode whereas Pax2 and Pax8 are activated in the posterior placodes. 

Additionally, genes broadly expressed in the PPE become restricted to specific areas: Six3, 

Six6, Pitx3 are expressed in the most anterior placodes and Dlx, Irx, Tbx, Foxi3 in the 

posterior placodes (Grocott et al., 2012; Moody & LaMantia, 2015). Subsequently, specific 

combinations of additional genes are activated in each placode such as Emx2 and Ebf2 in 

the olfactory placode. Furthermore, genes that were expressed in the PPE are segregated to 

specific areas. Pax6 and Dlx5 are restricted to mutually exclusive domains comprising cells 

fated to the lens placode and to the olfactory placode, respectively. The transcriptional 

networks implicated in the differentiation of each placode will subsequently drive 

differentiation of specific neurons such as GnRH, which are derived from the olfactory 

placode (OP) and subsequently migrate to the hypothalamus during early embryogenesis 

(Provenzano et al., 2010; Moody & LaMantia, 2015).  

 



 
50 

1.2. Induced pluripotent stem Cells  

The initial steps of mammalian development have been studied with detail up to the point 

of implantation primarily based on data obtained from the mouse model. A recent study 

has reported in vitro implantation platforms for mouse and human that allowed insight into 

human early development. Many key events of development were recapitulated in vitro and 

expression of cell-type specific markers for the ICM, Epi, PE and TE in pre and post 

implantation embryos were analyzed and compared with those occurring in mouse. The 

study ended at 14 dpf or before the initiation of the gastrulation according to the 

international bioethical guidelines (Bedzhov et al., 2015; Deglincerti et al., 2016). Such 

studies evidenced the profound differences in architecture, cell diversity and tissue 

organization between mouse and human, highlighting the necessity to develop an in vitro 

system to study human development. The earliest step of the human CNS differentiation is 

the segregation of the NE from non-NE during gastrulation. However, the inability to 

sample live human live cells during this developmental stage limits our knowledge about 

the key TFs and developmental programs that govern human NE fate acquisition and 

differentiation and early aberrant regulatory events that might be involved in 

neurodevelopmental disorders (Marchetto et al., 2010). 

Spemann and Mangold first discovered neural induction when they reported that NE was 

formed from non-NE cells exposed to signals from the dorsally specified mesoderm in the 

amphibian embryo. Over the subsequent decades the molecular interactions and TFs that 

drive transition from pluripotent Epi cells to NE fated cells have been investigated. The use 

of Xenopus and mouse systems has led to the identification of a number of TFs (Moody et 

al., 2013). However, the human and mouse brains have profound differences, most notably 

their size and complexity. Humans have a larger and more complex brain, which is 
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accompanied by an elongated period of brain development (van de Leemput et al., 2014). 

Disparities are also evident at a molecular level, such as the distinct times of expression of 

the NE markers Pax6 and Sox1 during NP differentiation (Suter et al., 2009). Hence, the 

gene regulatory events that drive fate decisions during early neuronal development and 

particular cues and cell types that might be unique to humans are not fully recapitulated in 

the mouse model (La Manno et al., 2016; Yao et al., 2017). Thus, the TFs and genetic 

pathways involved in the inhibition of the pluripotency gene network and the activation of 

the NE program in humans remains largely unknown.  

ESCs and iPSC provide powerful in vitro system to analyze the TF and regulatory events 

that orchestrate human development and have an enormous potential for therapeutic 

applications. ESCs are derived from the ICM of the blastocyst, have competency to 

differentiate into all cells from the three germ layers and are capable of indefinite 

replication (Takahashi & Yamanaka, 2006). Human ESCs are similar to EpiESCs in their 

developmental potential. ESCs have the ability to replicate the progression during neuronal 

development from pluripotency to functional neurons. Differentiating ESCs express 

dynamic genetic programs that regulate pluripotency maintenance networks and activation 

of the TFs required for differentiation into specific cell lineages (Ardhanareeswaran et al., 

2017). Loss and gain of function approaches have been widely used to analyze the role of 

particular TFs during directed ESC differentiation to a specific lineage. Hence, ESCs 

provide an opportunity to identify specific TF that might be involved in human embryonic 

development in vitro (Hong et al., 2016). However, embryos with known genetic defects 

are rarely accessible for the analyses of neurodevelopmental disorders and ESCs are not 

optimal for tissue transplantation in patients due to the possibility of rejection (Shi et al., 

2016). Importantly, the use of human embryos for research purposes has been the center of 

several ethical and political controversies. iPSCs are capable of differentiating into any cell 
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type desired, have unlimited capacity to replicate and overcome many of the ethical 

concerns associated with ESCs.  

In 2006, Takahashi and Yamanaka reported that somatic cells could be reprogramed to 

acquire gene expression profiles and differentiation potential similar than ESC by the 

introduction of Oct4, Sox2, Klf4 and Myc. The TF Oct4 and Sox2 were previously reported 

to play a role in the maintenance of pluripotency in the ICM and in ESCs Klf4 and Myc 

were thought to enhance ESC proliferation and to maintain their phenotype (Takahashi & 

Yamanaka, 2006). Yamanaka and colleagues used retroviral integration systems to 

reprogram mouse fibroblasts and a year later they reported the reprograming of human 

fibroblast. iPSCs technology has vastly improved since then, and in order to avoid 

integration, different delivery methods are widely used, including adenovirus, Seindai 

virus, small molecules and RNAs, among others. These advances make iPSC technology 

more suitable to analyze human development, to model diseases, to test drug toxicity and 

particularly for patient specific cell therapy (Suh, 2017).  

The use of iPSC technology makes possible to obtain large amounts of different relevant 

cells that were previously unavailable, such as cells in different developmental stages 

including iPSC-derived neuro-ectodermal stem cells (NESCs). iPSCs can be obtained from 

easily accessible somatic cell types and from individuals with different genetic background 

including patients with a known disease phenotype. Patient specific cells with a mutation 

or multiple mutations can be derived and differentiated into disease relevant cell types to 

identify the pathological mechanism and the disease etiology (Shi et al., 2016; Suh, 2017). 

Furthermore, the development of gene editing technologies such as CRISPR–Cas9 enables 

introduction of disease-causing mutations in control iPSC and to remove disease-associated 

mutations from patient’s derived iPSC. Comparing the mutated iPSC with their isogenic 
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controls allows determining the possible phenotypic effect of disease-associated genes (Shi 

et al., 2016) (Figure 1.10).  

 

Figure 1.10. Human disease modeling scheme.  Human somatic cells are harvested from patients 

and are reprogramed by specific TF.  An isogenic control is generated by CRISPR-Cas9 genome 

editing technology. Derived iPSCs are induced to differentiate into specific cell types. 

Differentiated cells are used to analyze and identify specific gene expression patterns and cell 

phenotypes relevant for the disease (Shi et al., 2016).  

 
 
iPSC reprograming is recognized as a major epigenetic remodeling process and it is 

necessary to adjust the epigenetic state of the parental cell to a state compatible with 

pluripotency (Gao et al., 2017). However, many epigenetic marks in iPSCs have being 

found to differ from those in ESCs. These differences represent epigenetic memory, which 

may have a negative effect in the reprograming efficiency and capacity to differentiate into 

specific lineages (O’Malley et al., 2013; Brix et al., 2015). However, minor epigenetic and 

transcriptional memory and unbiased differentiation potential have being shown by genome 
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wide analyses performed with iPSCs derived from different somatic tissues from multiple 

individuals (Gao et al., 2017). Such studies have also demonstrated that the major source 

of variability between iPSC lines is the donor’s genetic background. For instance, genetic 

and epigenetic variability between iPSC and ESC might reflect the differences in the 

genetic background of the individual donors. It has been reported that epigenetic memory 

effects on gene transcription are reduced over multiple passages. Hence, the major cause 

of heterogeneity among iPSCs is the genetic differences between the donors, while the 

epigenetic memory or intrinsic variability of the iPSC system have minimal contributions. 

For experimental procedures, the incorporation of iPSC derived from multiple individuals 

is recommended to average and separate the genetic background effect of each cell line 

from global transcription (Rouhani et al., 2014; Suh, 2017). Additionally, incomplete 

silencing of the reprograming TFs has being a concern about using the iPSC system to 

model development and disease. However, several gene expression analyses have indicated 

that the reprogramming transgenes are inactivated during propagation (Xia et al., 2007; 

Nakanishi & Otsu, 2012).  

Currently, iPSCs and ESCs are broadly used as in vitro systems to gain insight into human 

neuronal development and to study neurodevelopmental and neurodegenerative conditions 

such as autistic spectrum disorder, Rett syndrome, Alzheimer’s disease and Parkinson’s 

disease (Begum et al., 2015). Such studies aim to recapitulate the multistep process of 

neuronal differentiation to confirm the identity of the TFs and genes involved in normal 

and aberrant development and to reveal novel TF that might play a role during 

differentiation. ESC and iPSC neural induction can be achieved in monolayer cultures, 

which are a reproducible and efficient means of obtaining a large number of highly 

homogeneous neural progenitors cells. Neural progenitors can then be differentiated into 

various neuronal subtypes such us GABAergic, glutamatergic and dopaminergic neurons, 
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whose morphology is relatively easy to analyze in adherent cultures. For instance, RG cells 

derived from ESC and iPSC display molecular and morphological characteristics of human 

embryonic RG and follow the RG cell intrinsic mechanism to differentiate first into cortical 

neurons and subsequently into late progenitors that can potentially differentiate into 

astrocytes (Figure 1.11) (Neely et al., 2012; Duan et al., 2015; Ardhanareeswaran et al., 

2017).  

 

Figure 1.11. Human pluripotent stem cell differentiation to cortical neurons and astrocytes. 

Pluripotent stem cells are induced to differentiate into NE by treatment with 2i over 8 days. NE cells 

express Pax6, Foxg1, Sox2 and Nestin TF, which are commonly used as NE and forebrain markers. 

NE cells adopt RG characteristics and express BLBP, GFAP, Vimentin and Sox2 markers after 

approximately 12 days of culture without inhibitors. Depending on the culture conditions, RG cells 

differentiate into cortical neurons (CN) expressing Tbr1, Ctip2 and Satb2 TF around 45 days of 

differentiation. With further culture the remaining RG adopt late progenitor (LP) phenotype that 

generate astrocytes, positives for S100β and GFAP markers (adapted from Duan et al., 2015).  

 

In Xenopus, BMP and TGFβ inhibition via Noggin, Chordin and Follistatin from the node 

is necessary for neural differentiation. Studies have shown that inhibition of BMP and 

TGFβ pathways (2i) leads to highly efficient conversion of ESCs and iPSCs to neural 

progenitors in adherent cultures (Muratore et al., 2014; Ardhanareeswaran et al., 2017). 

SB431542 and LDN193189 small molecule inhibitors are widely used to inhibit TGFβ and 

BMP signaling respectively. SB431542 inhibits kinase activity of ALK4 ALK5 and ALK7 
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receptors, which are necessary for SMAD2 and SMAD3 phosphorylation whereas 

LDN193189 blocks SMAD1, SMAD5 and SMAD9 phosphorylation by inhibiting ALK1, 

ALK2, ALK3 and ALK6 receptors (van Caam et al., 2017). The potential mechanisms that 

contribute to the generation of highly pure neural progenitors population are the inhibition 

of trophoblast lineage that is otherwise promoted by BMP; suppression of mesodermal fate 

that requires NODAL/Activin and BMP signaling; and destabilization of NANOG-

pluripotency program mediated NODAL/Activin inhibition (Chambers et al., 2009; 

Muratore et al., 2014). Down-regulation of NANOG via SMAD2/3 inhibition leads to the 

up-regulation of ZEB2, which promotes acquisition of NE fate. Likewise, down-regulation 

of OCT4 promotes expression of NR2F2, which induces NE markers expression. 

Additionally, it has being proposed that BMP inhibition promotes the expression of cell 

intrinsic NE determinants (Ozair et al., 2012).  

iPSCs have similar gene expression patterns during neuronal differentiation as ESCs, with 

the same differentiation time and under the same cell culture conditions. In principle, ESCs 

and iPSCs differentiation programs resemble the embryo developmental program and 

underlying gene regulatory signals. Thus, the iPSCs model system is widely used to 

recapitulate the progression of neuronal development and to identify the transcriptional 

programs that govern neuronal differentiation (Hu et al., 2010).  
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1.3. Study aim and objectives  

The overall aim of the study is to discover the gene expression profiles and the GRN 

tranversed during neural induction of human iPSCs to NESCs. Ethical, legal and technical 

limitations prevent study of in vitro development of the human embryo after 13 dpf or the 

formation of the primitive streak. Following formation of the primitive streak, neural 

induction of the dorsal ectoderm during gastrulation is the first step in the formation of the 

CNS. However, restricted access to NE cells has limited the ability to obtain suitable 

transcriptome data to enable identification of genes and pathways that drive transition from 

pluripotency to neural competence. iPSCs due to their molecular, morphological and 

functional similarity to ESC in vivo provide a unique experimental system to analyze the 

molecular events and the lineage-biased states that regulate human development. Several 

molecules implicated in the ectoderm neural induction have been described in animal 

models but fail to uncover specific human development landmarks due to species-specific 

differences.  

Due to these limitations, a complete transcriptome analyses and a description of the GRNs 

that orchestrate NE differentiation in humans have not been reported. With this study we 

aim to provide a complete view of the genes that are differentially expressed during human 

NE induction from iPSCs. This approach allows us to validate previously described 

pathways and to detect novel genes with a potential role during NE differentiation. We 

aimed to use these data to construct a GRN, which topology would enable to identify the 

gene regulatory interactions at the initial stages of NE induction; and the potential 

biological processes that emerge from the specific gene expression patterns during this 

stage. In parallel, colleagues from the Price laboratory have reported the differentiation of 

cortical and GnRH neurons by using 2i and ‘2i plus WNT’ inhibition differentiation 
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protocols, respectively. We aimed to identify the early molecular differences that might 

bias iPSC neural induction to cortical and GnRH fates.  

The specific objectives of the project are:  

1. To use iPSCs as an in vitro system to uncover gene expression profiles activated 

during human neural induction.  

 

2. To identify the effect of WNT inhibition on gene expression profiles generated 

during neural induction. 

 

3. To derive a GRN that comprises the first gene regulatory interactions underlying 

NE fate commitment. 

 

4. To assess NESC heterogeneity thought single cell RNAseq analyses. 
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CHAPTER 2. General Materials and Methods 

2.1. Neural Induction 

For the experiments in this study 3 iPSC lines and 1 ESC line provided by the Price 

laboratory were used. iPSC lines were derived from keratinocytes from neurotypic males 

from an age ranging between 35 to 55 years. The cells lines CTR M3 36S, CTR M2 42, 

CTR M1 04 are referred as iPSC1, iPSC2 and iPSC3 respectively, whereas the ESC 

SA001++ is referred as ESC. The iPSC lines were reprogramed by introducing C-MYC, 

KLF4, OCT4 and SOX2 TF in a polycistronic excisable vector. CTR M2 42 and CTR M1 

04 lines were transformed with a Human STEMCCA Cre-Excisable Constitutive 

Polycistronic (OKSM) Lentivirus Reprogramming Kit (Millipore, SCR545) while CTR 

M3 36S line was transformed with CytoTune-iPS 2.0 Sendai Reprogramming Kit (Thermo 

Fisher, A16517). 

ESC and iPSC plated in 6 well Nunc treated multidishes (Thermo Scientific, 140675) were 

washed once 1ml/well of HBSS (Life technologies, 14170-070) at room temperature. Cells 

were incubated for 5 min at with 1ml of Versene (Lonza, BE17-711E) for dissociation. The 

Versene was removed and cells were detached with a cell lifter and suspended on 1ml of 

E8 media (Life technologies, A1517001). Cells were counted with a TC10 automated cell 

counted (Bio-rad) and approximately 3,000,000 cells per well were seeded on Nunc 

multidishes with 3ml of E8. The dishes were coated previously to seeding with 1ml of 2% 

Geltrex (Life technologies, A1413302) in DMEM: F12 (Sigma; D6421) for 4 hours at 

37°C. Cells were incubated at 37°C, 5% CO2 and 5% O2 for 48 hours. The cells were 

examined in a microscope for quality control and the media was replaced every 24 hours. 

After this period a cell monolayer reached approximately 90% confluence and media was 
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substituted with N2:B27 medium: 1:1 ratio of N2 supplement (Life Technologies, 17502-

048) 1X final concentration in DMEM Medium (Sigma; D6421) + B27 supplement (Life 

Technologies; 17504-044) 1X final concentration in Neurobasal Medium (Life 

Technologies; 21103-049). The N2:B27 was used as base media and was supplemented 

with TGFβ and BMP small molecules inhibitors (2i) for neural induction and a second 

treatment with 2i plus WNT inhibition. For the treatments, either SB431542 (Sigma-

Aldrich, S4317) 10µM and LDN193189 (Sigma-Aldrich, SML0559) 0.1µM or SB431542 

10µM; Dorsomorphin (Sigma-Aldrich, F5499) 1µM and XAV939 (Sigma-Aldrich, X3004) 

2µM were used. During neural induction cells were incubated at 37°C, 5% CO2 and 20% 

O2 and checked for quality control and media replacement every 24h for 8 days (Figure 

2.1).  

 

Figure 2.1. Scheme of neuroectoderm differentiation, RNA extraction and transcriptome 

analyses. iPSC and ESC lines were culture with 2i (SB431542, dorsomorphin and XAV939) or 2i-

WNT (SB431542 and LDN193) media for 8 days. RNA was extracted at time points d0, d1, d2, d3, 

d4, d6 and d8 and used for transcriptome analysis through RNAseq, Q-PCRs and to model a GRN.  
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2.2. RNA extraction 

RNA was extracted at 7-time points during the first 8 days of neural induction. The first 

time point was day 0 just before the addition of neural induction media. Subsequently, RNA 

was extracted at days 1, 2, 3, 4, 6 and 8 after neural induction.  The media was removed, 

and the RNA was harvested by adding 1ml of Trizol reagent (Life technologies, 15596026) 

at room temperature to each 6 well. Cells were dislodged with a cell scraper, transferred to 

1.5ml tubes and lysed by pipetting 15 times. The samples were stored at -80°C until RNA 

extraction.  

RNA was isolated from each sample by centrifugation (12000g, 5 minutes) with 200µl of 

100% Chloroform. The top aqueous layer was placed in new 1.5ml tube with 500µl of 

100% isopropanol. Samples were mixed 10 times by pipetting and incubated 15 minutes at 

room temperature. After incubation, the RNA was precipitated by centrifugation (12000g, 

15 minutes).  The supernatant was removed, and the pellet was suspended in 1ml of 75% 

ethanol followed by centrifugation (12000g, 5 minutes). The ethanol was removed, and the 

pellet was air dried for 15 minutes at room temperature. The RNA was dissolved in 100µl 

of nuclease free water and purified with a Qiaquick RNA purification kit (Qiagen, 28106) 

according to manufacturer’s specifications. RNA was quantified with a NanoDrop 1000 

Spectrophotometer (Thermo scientific). Quality control was assessed by analysing each 

sample with the Agilent RNA 6000 nano Kit (Agilent technologies, 5067-1511) in 

combination with the Agilent 2100 Bioanalyzer system according to the manufacturer 

protocol to obtain the RNA integrity number (RIN) (Figure 2.2).   
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Figure 2.2. Electropherogram of the RNA extraction from the iPSC1 line at the 

time point d0. This figure shows an example of the Electropherograms obtained 

through the bionalayser RNA analyses with a RIN number of 10. The main peaks 

represent the 18S (left) and 28S (right) ribosomal subunits. The small peaks observed 

at the left represent 5S ribosomal and tRNA. The presence of these peaks is indicative 

of a good quality sample with no degradation.  

 

2.3. RNAseq 

RNAseq libraries were prepared with the Truseq RNA Kit (standard methods by The 

Wellcome Trust Centre for Human Genetics of Oxford University). Briefly, mRNA 

fraction was purified from total RNA followed by cDNA synthesis. Subsequently, the 

cDNA was end-paired, A-tailed and custom indexing adapters were ligated. Samples were 

size selected and pooled for sequencing.  

Libraries were sequenced in collaboration with Larry Stanton and Steven Havlicek from 

the Genome Institute Singapore (GIS). Libraries were multiplexed at 8 samples per lane 

and sequenced in a Hiseq 2500 Sequencing System (Ilumina) to a depth of 20-30 million 

reads per sample. FASTQ files were aligned to a reference genome by our collaborators 
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Shankar Subramanian and Jun Min (UCSD). For additional statistical analyses I used the 

raw data obtained from our collaborators to identify differentially expressed genes and gene 

profiles through various “R” console programs and Prism platform. Detailed statistical 

analyses are described in the relevant chapters.  

2.4. Gene ontology 

Significantly DE genes that depicted ≥ 1 log2 fold changes between consecutive time 

points, between D0 versus D8 or between the two different neural induction treatments at 

any time point were used for gene ontology analyses (GO). Additionally, genes comprised 

in each of the gene expression profiles 22, 31, 32, 65 and 99 from a short time series 

expression miner (STEM) analyses were used for GO.  Gene sets were interrogated for 

enrichment of specific gene classes and functional terms using DAVID Gene Functional 

Classification Tool. DE gene lists were tested against a reference gene set comprised of all 

expressed genes between the conditions analyzed.  

2.5. cDNA synthesis 

A set of 14 primers was designed with Primer3Plus (v. 0.4.0) software. Gene sequences 

were extracted from the NCBI GenBank and the University of California and Santa Cruz 

(UCSC) genome and bioinformatics browser (Table 1). Genes were selected on the basis 

of their known role during neural induction.  

Complementary DNA (cDNA) was synthetized from 1µg of RNA using M-MLV Reverse 

Transcriptase enzyme (Promega, M1701) following manufacturer’s instructions. Briefly, 

RNA was incubated with Oligo (dT) primers (Promega, C1101) to a final concentration of 

0.02µg/µl for 5 minutes at 70oC and then cooled on ice. The following reagents were added: 
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M-MLV buffer to a final concentration of 1.5X; 0.75mM of dNTP mix (Promega, U1511); 

25 units of recombinant RNasin ribonuclease inhibitor (Promega, N2511); 200 units of M-

MLV reverse transcriptase and nuclease free water to a final volume of 20µl. Reactions 

were carried out at 50oC for 50 minutes. cDNA was diluted to a 1:5 ratio with nuclease free 

water.  

2.6. Real-time Polymerase Chain Reaction assays 

Real-time polymerase chain reaction (Q-PCR) assays were conducted by using 4µl of 

cDNA per reaction and adding the primers mix to a final concentration of 0.3µM and iQ 

Sybr Green supermix (Bio-rad, 178880) to a 1X final concentration. Amplifications were 

performed in a Bio-Rad PTC-200 Peltier thermal cycler detection system. Q-PCR reaction 

conditions were: 95oC for 15m for the initial denaturation and then 95oC for 30s, 60oC for 

30s and 72oC for 30s during 35 cycles. The melting curve analyses were performed from 

60oC to 95oC with readings every 1oC.  

The housekeeping gene GAPDH was used to normalize the genes expression levels 

between technical and biological samples. A number of housekeeping genes including 

ACTB, B2M, GAPDH, HMBS, HPRT1, RPL13A, SDHA, UBC and YWHAZ have been tested for 

efficiency and specificity in the iPSC lines by my colleagues at Price laboratory. The genes 

were assayed by determining the relative quantification of the genes expression between 

iPSC samples by Q-PCR to assess the gene stability. The gene GAPDH was select as 

reference gene since it shows low variability in expression levels between cells.  

Additionally, the RNAseq results indicated that the expression of this gene was maintained 

in similar levels during the 8 days of NESC differentiation and between the biological 

replicates (iPSC lines).  
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The Pfaffl comparative method of relative quantification was used to quantify gene relative 

expression of each sample at different time points.  

(Etarget) Ratio =   ∆CTtarget (control – sample) 
(Eref) 

∆CTref (control – sample)  

 ∆CTtarget = target gene cycle threshold 

 ∆CTref = mean of reference gene CTs  

E = PCR efficiency 

 

The Pfaffl method enables relative quantification of a target gene in comparison to an 

endogenous standard comprised of the reference genes. Neural induction and time course 

RNA extraction procedures were replicated 3 times for each cell line, which was considered 

a technical replicate. The technical replicates CT values were averaged and used to generate 

a biological replicate (iPSC line). The Q-PCR statistical analyses were performed with the 

averaged relative gene expression values of 3 biological replicates. The reference sample 

used to compare the gene expression of all cell lines was randomly designated as the time 

point 0 of the iPSC1 line. The means between samples were compared by a two-way 

ANOVA test with Bonferroni correction with 95% confidence interval with Prism package 

of GraphPad software.  
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Table 1. Table of primers used for Q-PCR. 

Gene  Primer Sense 3’-5’ Primer Antisense 5’-3’ 
CDH1 TCC TGG GCA GAG TGA ATT 

TT 
GGCGTAGACCAAGAAATGGA 

FGF8 CAG GTC CTG GCC AAC AAG CTC CTC GGA CTC GAA CTC TG 
 

GAPDH AGC CTC AAG ATC ATC AGC 
AA 

CTG TGG TCA TGA GTC CTT CC 

GnRH1 CTT CTG CCC AGT TTC CTC 
TTC 

TTG ATT GAT TCT TTC CAA 
GAG ATA GT 

HESX1 TGC TTT TAC TCA AAA CCA 
GAT TGA 

CCA AAT CTG GAT TCT GTC 
TTC C 

NESTIN AGG ACA CCA TGA GGA ACA 
GC 

GCC ATG TTC TTG CTC ACG TC 

NPTX1 GTG ATA GGG CGC CAA GTT 
CT   

ATC AAT GAC AAG GTG GCC 
AAG 

OCT4 TTG GGC TCG AGA AGG ATG 
TG 

GTG AAG TGA GGG CTC CCA 
TA 

PAX6 GCC AGA GCC AGC ATG CAG 
AAC A 

CCT GCA GAA TTC GGG AAA 
TGT CG  

SIX3 AGC AGA AGG ACC GAG TTC 
TG 

CAA GAA CAG GCT CCA GCA C 

SIX6 GCT GCA GCC AAG AAC AGA 
CT 

CTG GAC GTG ATG GAG ATG G 

SMARCA2 CGC TGA GAA ACT GTC ACC 
AA 

CTGTCGCCCTGAACTGTTTC 

SOX11 TAC AGC CCC ATC TCC AAC 
TC 

CTC CGA CTT CAC CAG AGA 
GC 

TFAP2C AGA TGG ACG AGG TGC AGA 
AT 

CAGGGACTGAGCAGAAGACC 

 

2.7. Immunofluorescence 

 Approximately 100,000 cells were plated on each well of Nunclon delta surface 96 well 

plates (Thermo Fisher148761) following the methods described in the section 2.1. After 

confluence, cells were induced with either or both neutralization media depending on the 

experiment. Cells cultures were fixed at different time points with 50µl/well of 4% 

paraformaldehyde (PFA) (Thermo Fisher, 28906) in PBS 1X for 15 minutes at room 

temperature. The PFA was removed and the wells were washed 3 times with 150µl/well of 

1X PBS.  The cells were permeabilized and blocked by incubation with 50µl/well of 4% 

normal donkey serum (Sigma Aldrich, D9663) in 1X PBST for 1h at room temperature in 
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a nutator. Cells were incubated with specific dilutions of mouse monoclonal and rabbit 

polyclonal primary antibodies together (Table 2) in 50µl/well of blocking buffer at 4oC 

overnight. Wells were washed three times with 100µl/well of 1x PBS. The dilution of the 

primary antibodies was determined by following the providers recommendations and 

references in published literature. 5 serial dilutions were performed based on the datasheet 

and literature recommendations for each antibody. The optimal dilution was determined by 

identifying the concentration that provided the best staining and lowest background.  

Validation of the antibodies binding specificity was assessed by replacing primary 

antibodies with the same dilution of purified mouse IgG (Merck Millipore, CS200621) or 

rabbit IgG as controls (Thermo Fisher, 02-6102). Immunoreactivity was imaged using 

Alexa Fluor 594 conjugated donkey anti-mouse IgG (Invitrogen, A-21203) and Alexa Fluor 

488 conjugated donkey anti-rabbit IgG (Invitrogen, R37118) both diluted to 1:250 ratio in 

50µl/well of blocking buffer.  The nuclei were stained by incubation with Hoechst 33342 

(Thermo Fisher, H3570) diluted to a final concentration of 5µg/ml in 50µl/well of 1x PBS 

for 3 minutes at room temperature. Stained cells were washed 3 more times with 150µl/well 

of 1x PBS.  

Images were acquired with a 20X objective with the Cell insight CX5 High Content Screen 

Platform (Thermo Fisher, CX51110). Expression was quantified using the bioapplication 

Cell Health Profiling from the iDev software package (Thermo Fisher). Hoechst staining 

was used to assess cell viability. Specific staining intensity, shape and size parameters were 

established to identify positive and negative labeled cells. A total of 3 wells were analyzed 

per primary antibody pair with 61 acquired fields per well. The means of the percentages 

of positive cells at each time point were statistically compared by a two-way ANOVA test 

with 95% confidence interval with Bonferroni correction with Prism package of GraphPad 

software.  
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Table 2. List of antibodies used for immunofluorescence. 

Antibody Type    Host Dilution Supplier Catalog 
Number 

LEF1 Monoclonal    Mouse 1:200 Millipore Cs200635 
NESTIN Monoclonal Mouse 1:500 R&D Systems MAB1259 
NR2F2 Monoclonal Mouse 1:100 R&D Systems PP-H7147-00 
OCT4 Monoclonal Mouse 1:200 Santa Cruz Sc5279 
PAX6 Polyclonal Rabbit 1:200 Proteintech  12323-1-AP 
REST Polyclonal Rabbit 1:200 Millipore Cs200555 
SOX11 Polyclonal Rabbit 1:50 Santa Cruz Sc20096 
ZEB1 Monoclonal Mouse 1:300 Atlas Antibodies AMAb90510 
ZEB2 Polyclonal Rabbit 1:150 Atlas Antibodies HPA003456 
ZNF521 Polyclonal Rabbit 1:100 Atlas Antibodies HPA023056 
ZO1 Polyclonal Rabbit 1:500 Thermo Fisher 40-2200 
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CHAPTER 3. Neuroectodermal differentiation of iPSC 
 
 

3.1. Introduction 

Human development initiates with the asymmetric division of the fertilized oocyte to 

generate an 8-cell blastula. Subsequently, cells divide symmetrically and asymmetrically 

and form the TE and the ICM, which ultimately segregates into the PrE and the Epi. 

Following implantation, gastrulation occurs with the Epi cells migrating through the PS 

and node (mouse E6-E7, humans 13-17 dpf) (Artus et al., 2014; Zirra et al., 2016). During 

gastrulation, cells that do not invaginate through the PS remain as the most exterior layer 

that will give rise to the ectoderm. The consecutive steps of neural development proceed 

with induction of the ectoderm to form the NP in response to inhibitory BMP, TGFβ and 

WNT signaling from the adjacent mesoderm. Subsequent cell proliferation increases the 

thickness of the NP, which then folds to form NT at approximately 21 dpf in the human 

embryo (Klein & Moody, 2015). The NT is later separated into spatially and functionally 

distinct regions in response to specific concentrations of signaling molecules. Depending 

on their location and exposure to morphogens, the NT progenitors ultimately differentiate 

into specific post mitotic neuronal subtypes or glial cells (Imayosgi et al., 2015).  

Due to legal constraints, the human embryo can be studied in vitro only until day 13 or the 

formation of the PS. Thus, our knowledge of neural induction in mammals is based on 

studies based in model organisms, largely on mouse. Analyses of mouse development have 

significantly contributed to the identification of genes and pathways activated during NE 

development that play important roles directing fate commitment. Importantly, mouse 

studies have enabled identification of developmental cues that can be used to manipulate 
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in vitro differentiation of human ESCs and iPSCs to relevant phenotypes (Klein & Moody, 

2015; Zirra et al., 2016).  

The neuronal differentiation protocol used in Price laboratory includes 8 days of neural 

induction with 2i inhibitors. Further differentiation leads to formation of rosette structures 

(d14) followed by differentiation of neuronal progenitors and acquisition of cortical 

neuronal phenotype (d50). Inclusion of WNT inhibitors during 2i (Dorsomorphin, 

SB431542 and XAV939) induction leads to NESCs specification toward gonadotropin 

releasing hormone (GnRH) neurons. Importantly, the only step that differs between 

differentiation of cortical and GnRH neurons is the initial 8 days of neural inhibition; all 

subsequent steps of cortical and GnRH neuronal induction are identical. This presents an 

ideal experimental system to identify the common and unique molecular events that 

underlie neural induction of NESC specified to distinct cortical and GnRH neurons.  

3.1.1 Human neuro-ectodermal and neural progenitors gene expression 

patterns  

Up-regulation of NE markers PAX6, SOX1, NCAM, ZIC1 and ZEB2, and loss of 

pluripotency/self-renewal markers OCT4, NANOG and KLF4 occurs at day 5-7 after 

hPSCs exposure to neural induction media (Hu et al., 2010; Kamiya et al., 2014; Leemput 

et al., 2014; Huang et al., 2016). Additionally, the mesodermal markers CD4, GATA, 

RUNX ant T and the endodermal marker SOX17 retain similar expression levels in ESC 

compared with NE derived cells. Thus, analyses of gene expression patterns in human NE 

cells suggest that several genes and pathways are conserved across animal models (Huang 

et al., 2016). Interestingly, it has being demonstrated that PAX6 expression precedes SOX1 

during neural development in humans. However, Chambers et al (2009) described SOX1 
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as the earliest NE marker in their hESCs 2i induced culture system. Direct regulation of 

SOX1 by SMAD signaling is a possible explanation for the differential expression of SOX1 

in specific culture conditions (Chambers et al., 2009). Additionally, SOX1 expression 

levels in neural progenitors might change in response to different concentrations of BMP 

inhibitors in the media (Neely et al., 2012).  

Recently, a microarray study by Huang et al (2016) revealed up-regulation of genes that 

have not been previously linked to neural differentiation, such as HEY1, BCL11A and SP8 

after 6 to 10 days of hESC neural induction. The authors speculated that the novel genes 

might have roles in less well-studied pathways implicated in neural differentiation. A 

number of genes involved in chromatin modifications such us TET2, KATB2 and SIRT1 

were differentially expressed after 6 and 10 days of neural induction. The dynamic 

expression of epigenetic modifiers might be related to gene expression changes during 

neural differentiation; however, the role of these genes and their regulatory interactions is 

unknown. Additionally, the study showed up-regulation of ZEB1 and SNAI2, TF that are 

necessary for epithelial mesenchymal transition (EMT), and down regulation of their 

epithelial gene targets including OCLN, CLDN7 and F11R, suggesting a potential role of 

EMT during neural differentiation. Likewise, ROR2 and WNT5B genes associated with 

WNT non-canonical pathway WNT/Ca2+ were up-regulated during neural progenitor 

differentiation. Inhibition of CaMKII a kinase down-stream WNT/Ca2+ pathway resulted 

in reduction of PAX6 expression and increased K18 epithelial marker expression. The 

authors suggest that WNT/Ca2+ pathway enhances neural differentiation through CaMKII 

phosphorylation by inhibiting epidermal fate acquisition (Huang et al., 2016).  

During chick and mouse development, NE cells adopt dorsal forebrain fate by default in 

absence of patterning signals, while maintaining potential to respond to morphogens and 
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differentiate into distinct regional types of neurons. Explant studies have shown that Wnt 

signaling plays a key-patterning role in inducing dorsal identity, whereas Shh defines 

ventral forebrain fate. Concomitantly, rostro-caudal patterning is orchestrated by WNT, 

retinoic acid (RA) and FGF signaling, which induce neural progenitors to adopt a posterior 

fate (Maden, 2007; Chi et al., 2016). Similarly, human and mouse PSCs induced to NE 

cells adopt a forebrain fate in absence of patterning morphogens. For instance, hPSCs 

derived NE cells induced by the 2i media express forebrain markers including PAX6, 

OTX2, HESX1, SIX3, RAX, LHX2 and FOXG1 at day 6 after induction (Huang et al., 

2016; Zirra et al., 2016). However, the progenitors preserve their potency and can be 

caudalized by addition of WNT or RA agonists to the media (Chi et al., 2016).  

As differentiation proceeds, NE cells derived from iPSCs and ESCs acquire cell polarity 

and reorganize to form rosette like structures that resemble a transverse section of the neural 

tube in the embryo. In humans, the rosette formation time line depends on the tissue culture 

conditions and generally ranges between 7 and 14 days after initiation of 2i induction. 

Studies have demonstrated that human and mouse progenitors express PLAGL1, DACH1 

and ZBTB16 rosette markers and pan neural progenitor markers including PAX6, NESTIN, 

SOX1 and SOX2, which are also expressed in the NT progenitors. Additionally, the rosette 

luminal cella express proteins such us N-CAD and ZO1 that are also present in the apical 

domain of embryonic NE cells in the NT (Elkabetz et al., 2008, Abranches et al., 2009). 

For instance, it has been shown that human neural progenitors within the rosettes represent 

RG with similar gene expression profiles and differentiation potential as neural progenitors 

from the NT, which are capable of differentiating into neurons, oligodendrocytes and 

astrocytes (Malchenko et al., 2014). The newly born neurons migrate to localize in the 

periphery of the rosette, resembling the differentiation of the NT neurons that localize 

outside of the proliferative ventricular zone (Abranches et al., 2009). Human early rosettes 
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derived from ESC are enriched in highly proliferative neural progenitors that exhibit a 

propensity for high self-replication and low differentiation. Later, these human neural 

progenitors progress to a mid RG rosette stage characterized by high propensity to 

differentiate into neurons and intermediate progenitors due to an increase in asymmetric 

division. Further culture leads to reduction of neural progenitors number and loss of the 

rosette integrity (Wilson & Stice, 2006; Ziv et al., 2015). Human RG progenitors derived 

from PSCs adopt a forebrain fate and differentiate into cortical neurons when induced in 

absence of morphogens by the default system. These neural progenitors predominately give 

rise to glutamatergic neurons but can also differentiate into inhibitory striatal medium spiny 

neurons (MSNs) and GABAergic neurons (Yuan et al., 2015; Chi et al., 2016).  Early and 

mid-radial glial rosette stages recapitulate many aspects of cortical radial glial development 

in the human embryo (Ziv et al., 2015). For instance, human PSCs derived RG cells 

differentiate into cortical neurons corresponding to deep and superficial cortical layers and 

subsequently adopt late progenitor phenotypes that give rise to astrocytes. Furthermore, 

human RG transplanted into mice lateral ventricles differentiate into neurons and astrocytes 

that migrate and integrate into the appropriate layers of the mouse cortex (Duan et al., 

2015).  

Subsequently, human neural progenitors differentiate into diverse cell types in response to 

concentration gradients of specific morphogens including WNT, RA, FGF, and SHH in 

vivo (Wilson & Stice, 2006; Ulloa & Briscoe, 2007). Accordingly, the patterning potential 

of these morphogens has been exploited to generate specific neuronal subtypes from human 

PSCs. For instance, treatment of hPSCs with SHH and RA at specific time points during 

neural development results in efficient induction of motor neurons (Hu et al., 2009; 

Chambers et al., 2009). Likewise, early exposure to SHH and FGF8 leads to generation of 
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functional dopaminergic neurons capable to integrate into mouse brain after transplantation 

(La Manno et al., 2016; Li et al., 2016).  

Accordingly, human PSCs have enormous potential and have been widely used to model 

diseases and to analyze development of neural progenitors to specific neuronal phenotypes. 

However, fewer attempts have been made to identify TFs and genes involved in NE 

differentiation. Hence, the molecular pathways and gene expression patterns that drive NE 

differentiation remain to be investigated. In this chapter, we report the first complete 

transcriptome analysis at different stages during iPSC NE differentiation. 

3.1.2. ESC/iPSC differentiation to GnRH neurons 

The developmental pathways that govern the development of the GnRH neurons in humans 

are poorly understood. However, Xenopus and mouse models and ESC studies have 

enabled insight into the molecular mechanism that drive formation of the NBZ, placodes, 

olfactory placodes and GnRH neurons (Ealy et al., 2016; Shigetani et al., 2016; Matsuoka 

et al., 2017). In Xenopus, expression of NBZ marker genes is promoted by BMP signaling. 

Interaction of these TFs markers leads to the formation of the NBZ and concomitant 

inhibition of neural factors. Subsequently, low levels of FGF family genes induce formation 

of the PPE fated to form placodes in the absence of WNT signaling, whereas, activation of 

WNT signaling during this stage leads to the formation of neural crest (Moody & LaMantia, 

2015; Shigetani et al., 2016).  Subsequently, different TFs become restricted to the anterior 

or posterior PPE. Possibly, these TFs interact with each other to promote the specification 

of placodal subtypes, which express different combination of these factors.  The olfactory 

placode (Emx2+ / Ebf2+) is derived from the anterior PPE and gives rise to GnRH cells that 
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migrate to the hypothalamus at around E.11 to E.16.5 in mouse (Wray, 2010; Moody & 

LaMantia, 2015).  

It has been recently reported that spatial temporal recapitulation of these developmental 

signals leads to the sequential generation of non-neural ectoderm and PPE in both human 

and mouse ESCs. Inhibition of TGFβ (using SB431542) increases the efficiency of 

induction of ectodermal derivatives, which in response to recombinant BMP4 and FGF2 

leads to the formation of non-neural ectoderm (DLX3+ /GATA3+ / AP2A+). Differentiation 

of PPE (EYA1+ /SIX4+) is achieved by subsequent inhibition of BMP and WNT signaling 

with small molecule inhibitors (Matsuoka et al., 2017). Different approaches used 

inhibition of TGFβ and WNT to derive non-ectoderm cells that acquire cranial placodal 

fate by addition of FGF (Ealy et al., 2016). Further differentiation with both protocols leads 

to acquisition of early otic neural progenitors (Dincer et al., 2013; Leung et al., 2013; Ealy 

et al., 2016).  However, induction of GnRH through PPE has not been reported. GnRH 

generation from ESC/iPSC was shown for the first time by inducing neural progenitors 

differentiation through 2i induction and subsequent treatment with FGF8 (Lund et al., 

2016; Poliandri et al., 2017). The transformation of neural progenitors to GnRH is directed 

by FGF8, however the molecular mechanism underlying this conversion remains to be 

elucidated. Overall, these studies demonstrate that placodal and GnRH neuronal 

differentiation both depend on the temporal modulation of WNT, BMP and FGF signaling.  

3.1.3. WNT signaling  

WNT signaling regulates a broad variety of biological processes during embryonic 

development and disease. Due to its critical importance in development WNT signaling is 

tightly spatiotemporally regulated. Deregulation of WNT leads to severe defects including 



 
76 

neurodegenerative diseases (Komiya & Haas, 2008; Munoz-Descalzo et al., 2015; 

Stanganello & Scholpp, 2016). There are 19 WNT glycoproteins in humans, which are 

modified in the endoplasmic reticulum and then transported and secreted into the 

extracellular milieu (Komiya & Habas, 2008; Huang et al., 2009a). A hallmark of WNT 

signaling is the formation of concentration gradients, which regulate fate by diffusing 

across cells that respond in a particular manner to specific WNT thresholds (Harrison 

&Pleasure, 2012; Stanganello & Scholpp, 2016). WNT morphogenetic activity regulates 

formation of distinct functional regions in the CNS such us regionalization of the PPE at 

the expense of neural crest with high WNT concentrations or ventralizing of forebrain 

progenitors (Harrison & Pleasure, 2012; Chi et al., 2016). Differentiation of distinct 

neuronal subtypes by regulating WNT concentrations has also been reported in in vitro. For 

instance, differentiation of ESCs in a chemically defined culture media without extrinsic 

signals leads to the generation of dorsal telencephalic glutamatergic and GABAergic 

neurons. However, the derived cells are ventralized and give raise to subpallial derivatives 

if exposed to WNT antagonist prior to terminal differentiation (Chi et al., 2016; Zirra et 

al., 2016).   

3.1.3.1.  WNT/ β-catenin canonical pathway 

WNT/ β-catenin signaling is involved in many processes during embryogenesis such us 

cell adhesion, neural patterning and cell proliferation. In the absence of WNT, β-catenin is 

anchored by the destruction complex comprised of APC, GSK-3β, PP2A, CK1 and AXIN. 

Within the complex, the scaffolding proteins CK1 and GSK-3β phosphorylate and target 

β-catenin for ubiquination and degradation in the proteasome. WNT signaling prevents 

formation of the β-catenin destruction complex and subsequent β-catenin degradation by 

sequestering AXIN and GSK-3β (Nuse, 2012; Peng et al., 2017). Signaling is activated as 
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WNT proteins bind the trans-membrane receptor Frizzled (FZD) and its co-receptors LRP6 

or LRP5. This complex recruits the scaffolding protein Dishevelled (DVL), which along 

with FZD regulate phosphorylation and activation of LRP6/LRP5 cytoplasmic tail. 

Subsequently, AXIN and GSK-3β are recruited to LRP6/LRP5 tail and translocated into 

the cell membrane. In the presence of WNT, stable β-catenin accumulates in the cytoplasm 

and migrates to the nucleus where it binds to TCF/LEF TFs to activate or inhibit expression 

of target genes (Heeg-Truesdell and LaBonne, 2006; McDonnlad et al., 2009) (Figure 3.1). 

 

  
 

Figure 3.1. Scheme of WNT canonical pathway. In the absence of WNT (left), the 

degradation complex recruits β-catenin in the cytoplasm.  β-catenin is phosphorylated 

by GSK3 and CK1 and then targeted for degradation. Binding of WNT proteins to the 

FZD receptor and LRP5/6 co-receptors leads to phosphorylation of DVL and 

recruitment of AXIN and GSK-3β to the membrane. Thereafter, β-catenin dissociates 

from the destruction complex, accumulates and localizes in the nucleus where it 

regulates expression of target genes (Komiya & Habas, 2008).  
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3.2. Methods 

Three iPSC1 lines and an ESC were culture with 2i and 2i-WNT media for 8 days according 

to the protocols described in section 2.1.  

RNA extraction and RNAseq methods were carried as described in sections 2.2 and 2.3 

respectively.  

3.2.1. RNAseq statistical analyses 

Principal component analyses (PCA) and a heatmap depicting the distance between the 

samples were produced by our collaborators Shankar Subramanian and Jun Min (UCSD) 

using DESeq2 and ggplot2 packages for effective clustering and comparison between 

multiple genes. Any gene with the total raw read counts of zero across all conditions were 

removed.  

For the following analyses I  used the raw data matrix provided from our collaborators 

(UCSD). I regularized-logarithm (rlog) the count data using DESeq2 in RStudio console.  

I preformed the differential expression analyses by using the iPSC lines rlog mean with the 

DESeq2 function DESeqDataSet (dds) in RStudio to extract the log2 fold changes and 

Wald test p value Benjamini and Hochberg corrected. I used Dds analyses to compare gene 

expression between consecutive time points during neural induction and between the time 

points D0 and D8. I create the Heatmaps with the rlog-transformed values using the 

package pheatmap and rcolourbrewer in RStudio.  

I generate the volcano plots with DE genes from the 2 neural induction protocols at time 

points D8 and D4 with the calibrate package in RStudio. I created the gene plots by using 
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the ggplot2 package in RStudio. I used the Dds to compare gene expression between the 2i 

and 2i-WNT treatments at each time point. These analyses demonstrated that 146 genes are 

significantly differentially expressed between the 2 neural induction treatments at time 

point D8. I obtained a mean RPKM value of the 3 iPSC for each gene at each time point. I 

plotted the RPKMs of the set of DE genes for cells induced either with 2i or 2i-WNT media 

at d8 at each time point to determine the stage when the expression of these genes starts to 

diverge between both treatments. I compared the RPKMs with Prism package of GraphPad 

software.   

Additionally, I plotted the mean of the RPKMs values from the three-iPSC lines with Prism 

package of GraphPad software for a number of selected genes.   

3.2.2. STEM clustering  

Sets of genes with similar temporal expression profiles were cluster with short time series 

expression miner (STEM) tool by our collaborator Jun Min (UCSD).  Briefly, the RNAseq 

count values were rlog normalized with the DESeq2 package in R and the resulting data 

were used as input for STEM. STEM identifies significant gene expression profiles and 

then, by a clustering algorithm assigns genes that match these profiles determined by a 

correlation coefficient cutoff of 0.9 with respect to the significant model profile. The 

profiles with statistically significant number of genes are identified with a permutation test 

with Bonferroni correction.  

3.2.3. Q-PCR assay 

Q-PCR assays were performed as described in section 2.8. The genes analyzed in this 

chapter were PAX6, NESTIN, OCT4, SOX1, SIX6, SIX3, HESX1, NPTX1 and FGF8 and 
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the housekeeping gene GAPDH was used for normalization. Gene primer sequences can 

be found in table 1.  

A Pearson’s correlation analysis was performed with the RPKMs obtained from the 

RNAseq data and the Q-PCR relative quantification values. For these analyses, the gene 

PAX6 was randomly designated as reference to obtain linear expression values of all genes 

with the Pfaffl comparative method.  The Pearson’s correlation was calculated with Prism 

package of GraphPad software. 

3.2.4. Immunofluorescence 

Immunofluorescence assays were carried out with the iPSC1 line differentiated with 2i. 

Cells were fixed at time points d0, d4 and d8. PAX6, NESTIN, OCT4, ZEB1, ZEB2, 

NR2F2, ZNF521, REST and LEF1 expression patterns were analyzed with the antibodies 

described in the Table 2. Statistical analyses were performed as described in section 2.8. 

3.2.5. Super TOPflash reporter assay 

A XAV939 (Sigma-Aldrich, X3004) dose-response curve was performed in collaboration 

with Dr. Richard Killick laboratory (King’s College London). We used Super TOPflash 

assay to monitor the expression levels of WNT signaling in cells cultured with different 

concentrations of XAV939. TOPflash is a luciferase expression plasmid that contains 2 sets 

of 3 copies of TCF binding regions. Cells transfected with the plasmid show increase of 

luciferase activity when Wnt-β-catenin signalling is active and binds to TCF binding 

regions. Colleagues from Price laboratory have previously found that inhibition of WNT/ 

β-catenin signaling during 2i induction leads to the differentiation of GnRH neurons at 

expenses of cortical neurons (Kathuria et al., 2017). Hence, this experimental procedure 
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enabled to determine the appropriate concentration of XAV939 (2µM) necessary to inhibit 

WNT/ β-catenin signaling and induce GnRH neuronal fate.  

HEK239A cells were plated in a 96 well plate until they reached around 80% confluence. 

A transfection reaction was prepared for each well by adding 0.3µl of FuGENE transfection 

reagent (Promega, E2311), 100ng of M50 Super TOPflash luciferase reporter (Addgene, 

12456) and 100ng of a (plasmid cytomegalovirus promoter DNA) pcDNA Wnt3A 

expression vector (Addgene, 35908) to 50µl Opti-MEM Reduced Serum Medium (Gibco, 

31985062). An empty vector, pcDNA3.1 (Addgene, 52535), was added instead of the 

Wnt3A plasmid as a negative control. The transfection reaction was incubated at room 

temperature for 15 minutes. 50 µl of the transfection reaction were added to each 96 well 

and HEK293A cells were incubated at 37oC with 5% CO2 and 20% O2. After 7-hour post 

transfection, media was changed with 100ul of DMEM/F-12 supplemented with different 

doses of XAV939 (1nM, 3nM, 10nM, 30nM, 100nM, 300nM, 1µM, 3µM, 10µM and 

30µM) and incubated at 37°C, 5% CO2 and 20% O2 for 12 hours. DMEM/F-12 media 

containing 0.01% dimethyl sulfoxide (DMSO) was used as XAV939 negative control. 

After incubation, 100µl of ONE-Glo luciferase assay system (Promega, E6110) were added 

to each well and incubated for 3 minutes at room temperature. Luciferase reporter gene 

activity was detected in a GloMax Navigator luminometer (Promega, GM2000). Luciferase 

activity means were obtained from 3 wells per XAV939 dose.  The empty vector control 

was used to normalize the luciferase activity values to 1 to obtain the fold increase of each 

XAV939 dose and the DMSO control.  
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3.3. Results 

3.3.1. Overall similarity between iPSC lines  

The scope of this chapter is to identify the gene expression patterns generated during NE 

differentiation of iPSC in humans. It has been shown that NE markers such us PAX6, SOX1 

and ZEB2 are actively transcribed after 8 days of 2i from iPSC (Hu et al., 2010; Kamiya et 

al., 2014; Leemput et al., 2014; Huang et al., 2016). Hence the experimental approaches 

were carried on during this differentiation period to uncover the molecular signals that 

initiate and maintained NE differentiation in humans. Further cell culture drives the 

formation of neural rosettes at D12 approximately and subsequent differentiation of GnRH 

(2i-WNT) or cortical neurons (2i) at around D50. The differentiation of human neural 

progenitors has been extensively studied using pluripotent stem cells as and foetal tissue. 

However, the molecular mechanisms that regulate the formation of NE cells is widely 

unknown in humans. Thus, analysing this developmental stage was the focus of this study.  

Accordingly, 3 iPSC lines derived from different individuals as biological replicates were 

used to ensure the robustness and reproducibility of the experiments and results. 

Additionally, transcriptome data from an ESC line was obtained to estimate the variation 

between the gene expression profiles of the iPSC and ESC lines during differentiation. To 

determine if the genetic background and technical variability represent main sources of 

gene expression variation among the samples, a principal component analyses (PCA) was 

performed with the samples from all time points, cell lines and both treatments (Figure 3.2). 

The PCA results depicted the formation of 7 clusters along the PC1 on the x-axis, which 

captures 59% of the variance across the samples. Each cluster predominantly comprises 

samples from the same time point including iPSC lines and the ESC line. Clusters on PC1 
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are organized according to developmental time during neural induction. Samples collected 

at the same time point are tightly clustered in the PCA map independently of the cell line 

and the induction treatment. The second principal component (PC2) in the y-axis accounts 

for 10% of the variance. PC2 appears to separate the samples according to their degree of 

differentiation; i.e. iPSCs and NESCs cluster together and are separated from their 

intermediates states.  

 

Figure 3.2. Principal component analyses of all samples at all time points.  PC1 represents 59% of 

the variance across all samples and is plotted in the axis-x while PC2 represents 10% of the variance 

and is plotted in the axis-y. Samples from individual PSCs are show with different symbols. The size of 

the symbol indicates the method used for differentiation while the time points used for RNA extraction 

during NESC differentiation are shown in different colours.  

 

The samples distance was calculated as another approach to assess the overall similarity 

and differences among the samples; the distance is visualized in a heatmap (Figure 3.3). 

The results indicate that the samples collected at time points d0, d1 and d2 have similar 
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gene expression patterns and are distant from the samples at time points d3, d4, d6 and d8, 

which form another cluster. For instance, the early samples (d0, d1 and d2) are tightly 

clustered with other samples from the same time point including the iPSC and ESC lines. 

Similarly, among the latter cluster (d3, d4, d6 and d8), samples from d3 and d4 are closer 

to each other and samples d6 and d8 are also close together. Among the clusters the samples 

are clustered by time point independently of the cell line or treatment.  

 

                  

Figure 3.3. Heatmap of sample-to-sample distances. On the heatmap the samples are located in the 

same order from the top to bottom as from left to right. According to the colour key and the scale the 

distance between identical samples is depicted by dark blue (0) whereas the distance between different 

samples is represented in white (200).  
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3.3.2. Validation of neuroectodermal fate  

Expression of known NE makers was analysed to validate differentiation of iPSCs to 

NESCs after 8 days of neural induction. iPSCs were treated either with 2i or 2i-WNT media 

to promote cortical or GnRH neuronal fate acquisition respectively. Analysis of GnRH 

differentiation in animal models have demonstrated that modulation of BMP, FGF2, TGFβ 

and WNT signals leads to the formation of PPE and GnRH neurons (Dincer et al., 2013; 

Leung et al., 2013; Ealy et al., 2016; Poliandri et al., 2017). For instance, colleagues in 

Price laboratory have shown that GnRH neurons can be derived from iPSC by the inhibition 

of WNT signalling during 2i (Kathuria et al., 2017). Interestingly, inhibition of WNT 

during the 8 days of 2i induction is the only step that differs between the differentiation of 

cortical and GnRH neurons. Hence, we aimed to identify common and unique regulatory 

signals that might prime cells during NE induction to acquire GnRH or cortical identity.  

Gene expression of NE and neural markers was represented in heatmaps for visualization 

(Figure 3.4). The results indicate that these markers depicted highly similar gene expression 

patterns between cells differentiated with 2i and 2i-WNT. The results indicate that WNT 

inhibition does not significantly alter the expression of neural markers during 2i NE 

induction. For both treatments, the potency/self-renewal markers POU5F1 (OCT4), 

NANOG and MYC are down-regulated whereas KLF4 is up-regulated. The genes FOXD4, 

GMNN and ZIC2 are considered early NE progenitors since their expression initiates in 

the inner cell mass and is up regulated during NE differentiation in mouse and Xenopus.  

The data show that these genes depict a peak of expression at d2 and d3. Subsequently, the 

TF IRX1, IRX2, IRX3, ZIC1 and ZIC3 are expressed up-stream bHLH pro-neural markers 

and are required for the maintenance of neural progenitor cells in a proliferative state in 

Xenopus. These early neural progenitor markers show a peak of expression at d2. Human 
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and mouse NE markers PAX6, NESTIN, SOX2, SOX11, CDH2, ZNF521, ZEB2 and 

NR2F2 are up-regulated between d3 to d8. The bHLH proneural TF NEUROG2 and 

ASCL1 are up-regulated at d6 and d8 and the neural inhibitors HES1 and HES5 are up-

regulated from d3 and d4 respectively. Conversely, OLIG1 and OLIG2 are expressed in 

iPSC and d1 and are subsequently down-regulated.   

                                                                                                                                                        

 

                            

Figure 3.4. Heatmap of neuroectoderm markers expression. The heatmap depicts 

expression of NE markers in iPSC cells induced with 2i (left) and 2i-WNT (right) 

media at the days d0, d1, d2, d3, d4, d6 and d8 during differentiation. The colour key 

is scaled from 2 to -2 by row, where 2 (dark red) represents high gene expression and 

-2 (dark blue) represents low expression relative to the mean of each gene.    
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3.3.3. RNAseq validation 

Several studies have demonstrated that RNAseq and Q-PCR techniques are accurate and 

reliable approaches for the quantification of gene expression. However, the sensitivity of 

RNAseq method might vary depending on the reads depth, whereas Q-PCR sensitivity can 

be affected by the quality of the mRNA, the amplification efficiency and the choice of 

internal control genes among others (Pombo et al., 2017). Hence, we validated the 

transcriptome results obtained through RNAseq by comparison with data from Q-PCRs 

analyses. The results show that the temporal expression patterns of the analysed genes are 

similar between the Q-PCR data and the RNAseq assay (RPKMs) for 2i and 2i-WNT 

treatments (Figure 3.5). The pluripotency gene OCT4 is down-regulated, whereas the NE 

makers PAX6, NESTIN, SOX1, SIX6, SIX3, HESX1, NPTX1 and FGF8 are all up-

regulated during induction similarly to the results from the RNAseq assay. Additionally, 

the Q-PCR data indicated that SIX6 depicted higher expression values for the time points 

D4, D6 and D8 compared with the values obtained through RNAseq analyses. SIX6 is 

among the genes that depicted low expression levels (< 20 PRKMs). The results might 

indicate that Q-PCR technique show higher sensitivity of the for genes with low expression 

levels such us SIX6, whereas the expression patterns of genes with high expression values 

like PAX6 closely resemble between both data sets.  
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           PAX6 

 

 

 

       

 

Figure 3.5. Comparison between real-time PCR and RNAseq data during 

neuroectoderm differentiation.  Q-PCR relative quantification data and RPKM values 

are shown in the Y-axis top and bottom respectively. The X-axis indicates the time point 

of RNA extraction. iPSCs induced with 2i treatment for Q-PCR and RNAseq assays are 

located on the left, whereas cells treated with 2i-WNT inhibitors are on the right. The 

statically significant differences are illustrated with letters to simplify visualization of the 

results. The difference between the means of the variables with the same letter is not 

significant. The variables with different letter are significantly different.  Details of the 

statistical test and p-values are included in the Appendix 3.1 (CD-ROM).   
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Figure 3.5. Continued 
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Figure 3.5. Continued 
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Figure 3.5. Continued 
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Figure 3.5. Continued 
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Additionally, values obtained from RNAseq data were compared with Q-PCR relative 

expression values through a Pearson’s correlation to determine the accuracy of the results 

from both methods. To obtain linear values in the same scale from the Q-PCR data, PAX6 

was randomly assigned as a reference gene to quantify the expression values for all genes 

through the Pfaffl method.  The Pearson correlation was calculated by comparing the Q-

PCR expression values of each gene and the RPKM values obtained through RNAseq of 

the same gene with Prism software. A significant positive correlation (R=0.9, p < 0.0001) 

was observed between the 2 data sets (Figure 3.6). The correlation results demonstrate that 

the gene expression patters obtained by RNAseq data are linearly significantly associated 

to the patterns obtained by Q-PCR. Importantly, the high validation between assays 

demonstrates the stability of gene expression patterns among the three biological replicates.  

 

 

Figure 3.6. Correlation between RNAseq data and real-time PCR values. 

Relative quantification and RPKMs values for each gene at each time point are 

depicted with circles and represent the mean of the three iPSC lines.  
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The principal mechanism of modulating protein synthesis is the regulation of mRNA 

transcripts. However, the mRNA levels might not mirror the protein amounts due to 

regulatory mechanism that modify the mRNA fate. Hence, immunofluorescence analyses 

were performed to demonstrate that changes in gene expression were accompanied by 

comparative changes in protein expression. The results indicate that the pluripotency 

marker OCT4 is highly expressed at d0 and is not detected at d4 and d8 (Figure 3.7). 

Additionally, the expression of the NE markers PAX6, ZNF521, NESTIN, ZEB2, ZEB1, 

NR2F2 and LEF1 increased during the 8 days of neural induction (Figure 3.7). The results 

indicated that the pluripotency and NE markers are heterogeneously expressed since they 

are not positively stained in all the cells of the population. Mouse and rabbit IgG at high 

concentrations (1:50) were used as negative control to detect non-specific binding of the 

secondary antibodies, for the immunofluorescence assay. The threshold for positive cells 

detection was set considerably above the background to ensure no false positive cells were 

accounted as positive. Similarly, for the images acquisition, the exposure time was reduced 

to eliminate the background. Due to the stringency of the assay, a number of positive cells 

with low staining intensity might have been considered negative. Accordingly, the 

heterogeneous expression of the cell population might have been accentuated due to this 

artifact. Additionally, it is possible that the cell population might include cells individual 

cells that are transversed in different stages of the differentiation trajectory or acquiring 

different phenotypes, which might lead to differential expression of these genes. 
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Figure 3.7. Immunofluorescence analyses. A. Expression of NE markers and OCT4 

pluripotency marker at d0, d4 and d8. The cells nuclei are stained with Hoescht 33342. B. Results 

of the immunofluorescence statistical analyses.  
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Figure 3.7. Continued 
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Figure 3.7. Continued 
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3.3.4. Differentially expressed genes and transcription factors  

Statistical analyses were performed to identify TF and genes differentially expressed 

between consecutive time points or between time points d0 and d8. Significantly 

differentially expressed (p < 0.05) genes were defined as those with > 1 log2 fold change 

expression levels between the 2 data sets. The analyses detected 4360 up-regulated genes 

and 4858 down-regulated genes during 2i NE induction. Among these genes, 459 correspond 

to TFs differentially expressed between consecutive time points and 108 unique TFs 

differentially expressed comparing d0 with d8. The identities of the differentially expressed 

TFs, time points, fold changes and p-values are described in the Appendix 3.2 (CD-ROM) 

for up-regulated and Appendix 3.3 (CD-ROM) for down-regulated genes.  

4650 up-regulated genes and 5180 down-regulated genes were identified during 

differentiation of iPSC with 2i-WNT. 434 TFs are included in the number of differentially 

expressed genes from sequential time points and 134 unique TF differentially expressed 

between d0 with d8. Statistical analyses are detailed in Appendix 3.4 (CD-ROM) for up-

regulated and Appendix 3.5 (CD-ROM) for down-regulated.  

476 common TFs are differentially expressed in 2i media versus with 2i-WNT media. TFs 

expression patterns from d0 to d8 are depicted in a heatmap (Figure 3.8). The heatmaps show 

that several TFs highly expressed during the initial 2 days of differentiation are subsequently 

down-regulated, whereas initially low expressed TF are up-regulated after the initial 2 days 

of induction. Additionally, a smaller number of TF have a peak of expression at d2, d3 and 

d4. Names of individual TF were omitted from the heatmaps due to the large number of 

genes contained in each data set. 
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Figure 3.8. Heatmap of transcription factors differentially expressed during neuroectoderm 

differentiation with 2i and 2i-WNT media. The heatmaps illustrate gene expression patterns of 

TF differentially expressed during neural induction at d0, d1, d2, d3, d4, d6 and d8 with 2i and 

2i-WNT induction media. Due to the large number of differentially expressed genes, the names 

of individual TF have been omitted. Gene names and statistical analyses details can be found in 

the appendix 3.2. to 3.5 (CD-ROM) . The key colour scale indicates high 2 (dark red) or low -2 

(dark blue) expression levels compared with each gene mean.  

 

Significantly up-regulated TFs with > 1.5 log2 fold changes between consecutive time 

points and > 1 RPKM values are depicted in heatmaps to facilitate visualization of their 

expression patterns. TFs that depicted peaks of expression during the different stages of 
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differentiation are represented in the Figure 3.9. Among these TFs are NE progenitor 

markers such as IRX2, IRX3, IRX5, ZIC1 and HESX1. TFs whose expression levels 

increase between consecutive time points to d8, are shown in a separate heatmap (Figure 

3.10) and comprise NE markers such as NESTIN, ZNF521, SOX1, SIX3, LEF1, NR2F2 

and forebrain progenitor markers including PAX6, OTX1, RAX, LHX2 and FOXG1.  

                     

 

              
 
Figure 3.9. Heatmaps of transcription factors differentially up-regulated with > 1.5 log2 fold 

changes between consecutive time points that show peak of expression levels during 

neuroectoderm differentiation. The heatmap illustrates the expression of 49 up-regulated TF during 

neural induction with both 2i and 2i-WNT induction media. The key colour scale indicates high 2 (dark 

red) or low -2 (dark blue) expression levels compared with each gene mean.  
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Figure 3.10. Heatmaps of transcription factors differentially up-regulated with > 1.5 log2 

fold changes from consecutive time points. The heatmap illustrates expression of 73 TFs 

up-regulated during neural induction with 2i induction media and 59 TFs induced with 2i-

WNT media. The key colour scale is the same as described in the heatmaps above. 
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Several TF depict reduction in gene expression between consecutive time points but are 

significantly differentially expressed between d0 and d8. These TF (not included in the 

consecutive time points data) are illustrated in a heatmap (Figure 3.11) and include the NE 

markers SOX2, SOX11 SIX6 and HES5 TF.                                                                                                                               

                                                  

 
                                                                               

                         
Figure 3.11. Heatmaps of transcription factors differentially up-regulated with more than 

1.5 log2 fold changes from time points d0 to d8. The heatmap illustrates the expression of 54 

and 64 TF up-regulated during neural induction with 2i and 2i-WNT media respectively. The 

key colour scale is the same as described in the heatmaps above.  
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Transcription factors significantly down-regulated between consecutive time points with > 

1.5 log2 fold changes and > 1 RPKM values are represented in a heatmap (Figure 3.12) and 

include the pluripotency/ self-renewal markers NANOG and MYC.  

 

                        

 
                         
                 

Figure 3.12. Heatmaps of transcription factors differentially down-regulated with > 1.5 log2 

fold changes between consecutive time points. The heatmap shows the expression of 77 and 80 

down-regulated TF during neural induction with 2i and 2i-WNT induction media respectively. 

The key colour scale is the same as described in the heatmaps above. 
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Down-regulated TFs, whose expression does not change between consecutive time points 

but are nevertheless significantly differentially expressed between d0 and d8, are represented 

in a heatmap (Figure 3.13). The pluripotency marker OCT4 (POU5F1) is included in this 

map.   

                                                                                

                                                         
                           

                 

Figure 3.13. Heatmaps of transcription factors differentially down-regulated with > 1.5 log2 fold 

changes from time points d0 to d8. The heatmap illustrates expression of 54 TFs down-regulated 

during neural induction with 2i induction media and 71 TF with 2i-WNT media. The key colour scale 

is the same as described in the heatmaps above.  
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3.3.5. Gene ontology of differentially expressed genes 

The differentially up-regulated genes with > 1 log2 fold changes in expression between 

consecutive time points or between time points d0 and d8 were interrogated for enrichment 

of specific biological process. Gene ontology (GO) analyses were carried out with the 

complete list of genes and TFs significantly up-regulated during differentiation with 2i 

(4360 genes) and 2i-WNT (4650 genes) induction media. Biological process annotations 

are depicted in Figure 3.14. Consistent with previously described results, GO analyses show 

significant enrichment (fold enrichment > 1.7, p = < 0.05) of the biological process: 

“diencephalon development”, "forebrain development”, “telencephalon development”, 

“nervous system development”, and “neurogenesis and tube development”. The biological 

process terms, fold enrichment and p-values are similar between NESC differentiated with 

2i and 2i-WNT induction media. The sub-ontologies, p-values, number of genes for the 

corresponding term, fold enrichment and false discovery rate are described in the Appendix 

3.6 and Appendix 3.7. 
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Figure 3.14. Gene ontology of genes differentially up-regulated during 

neuroectodermal induction. GO terms enrichment of genes up-regulated during 

NE differentiation with 2i (top) and 2i-WNT (bottom) induction media. The key 

colour scale indicates the log10-adjusted p-value, where the lower p-value is 

represented in dark red. 

 
 
 

Similarly, GO analyses were carried out to interrogate the biological process enrichment in 
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WNT (5180 genes) induction media (Figure 3.15). GO analyses showed significant 
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“mesenchyme development”, “cell motility”, “MAPK cascade” and “epithelium 

development”. Details of GO results are described in the Appendix 3.8 and Appendix 3.9. 

 

 

  
                 
 
 

Figure 3.15. Gene ontology of the genes differentially down-regulated during 

neuroectodermal induction.  GO terms enrichment of genes down-regulated during 

NE differentiation with 2i (top) and 2i-WNT (bottom) induction media. The key 

colour scale indicates the log10 adjusted p-value. The not significant terms are 

denoted as NS.  
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3.3.6. Short time series expression miner (STEM) analyses  

The STEM analyses generated 100 gene expression profiles with a minimum of 2-fold 

difference between at least 2-time points, including 18 profiles with significant number of 

assigned genes (Figure 3.16). The profile 65 showing up-regulation (850 genes), profile 31 

down-regulation (1315 genes) and the profile 99 depicting biphasic expression (75 genes) 

were considered of interest since they might include genes necessary for pluripotency, 

neural differentiation or for coupling of these stages. Additionally, profile 22 was selected 

due to the high significance (359 genes) matched with this profile. 

 

 

Figure 3.16. Gene expression profiles generated by STEM for 2i and 2i-WNT treatments. The 

profiles are ordered from top left to bottom right by the number of genes in the profile. The significant 

profiles are depicted with colour.  
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3.3.7. Gene ontology of selected STEM profiles  

Genes comprising STEM genes expression profiles 22, 31, 32, 65 and 95 were interrogated 

for biological process enrichment (Figure 3.17). Gene ontology analyses of profiles 22, 32 

and 99, which have a reduced number of genes assigned (<75), did not show significant 

enrichment for any biological process.  1315 genes were assigned to the STEM profile 31 

during NE differentiation with 2i media and 1447 with 2i-WNT media. GO analyses show 

significant enrichment (fold enrichment > 1.3, p = < 0.05) for the biological processes 

“transport”, “regulation of cell proliferation”, “defense response”, “angiogenesis”, 

“regulation of cell adhesion” and “hypoxia” (Figure 3.19\8). The biological process terms 

that are common to 2i and 2i-WNT neural induction show similar fold enrichment (with 

differences in respective p-values).  The GO term ‘response to hypoxia’ appears to be 

specific to cells induced with 2i-WNT, since it does not appear enriched in profile 31 in 

cells induced with 2i media. The sub-ontologies, p-values, number of genes for the 

corresponding term, fold enrichment and false discovery rate are described in Appendix 

3.10 and Appendix 3.11. 

 

 
 

Figure 3.17. Selected gene expression profiles. Gene expression profiles of 5 

significant gene clusters selected for gene ontology analyses.  
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Figure 3.18. Gene ontology of the genes assigned to STEM profile 31. GO terms 

enrichment of genes that matched the profile 31 during NE differentiation with 2i 

(top) and 2i-WNT (bottom) induction media. The key colour scale indicates the 

log10-adjusted p-value, where the lower p-value is represented in dark red. The 

terms that are not significant are denoted with NS.  

 
 
 

STEM profile 61 matched the gene expression levels of 850 genes during neural induction 

with 2i and 950 genes with 2i-WNT. GO analyses identified significant enrichment (fold 

enrichment > 2, p = < 0.05) for the biological processes “brain”, “forebrain” and 

“telencephalon development”, “synapse organization” and “neural precursor cell 

proliferation” (Figure 3.19). GO terms and fold changes are similar between cells 
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differentiated with both neural induction protocols. GO analyses details are described in 

the Appendix 3.12 and Appendix 3.13. 

  

 

               
 

Figure 3.19. Gene ontology of genes assigned to the STEM significant profile 65. 

GO terms enriched during NE differentiation with 2i (top) and 2i-WNT (bottom) 

induction media are shown. The key colour scale is the same as above.   

 
 

3.3.8. Gene expression profiles  

We examined the expression levels of mesoderm, endoderm and non-neural ectoderm 

markers, to determine if they are actively expressed in the iPSC cells acquiring NE fate. 

(Figure 3.20). NBZ markers were analysed since in the mouse embryo, inhibition of WNT 
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signalling in the region between the neural and non-neural ectoderm leads to the 

differentiation of the NBZ, which subsequently forms the PPC that gives rises to the GnRH 

neurons. Hence, NBZ markers expression was examined to determine if the differentiating 

cells depicted NBZ characteristics.  

The genes markers were selected since they are expressed in the different germinal layers 

of the embryo and in the NBZ. However, the function of these sets of genes during the 

formation, maintenance and regionalization of the mesoderm, endoderm, non-neural 

ectoderm and NBZ greatly differs. Hence, the selected genes might not be adequate to 

determine the formation of the 3 germ layers and the NBZ. For instance, the mesodermal 

markers T, MIXL1 and MESP1 are expressed during the initial stages of mesodermal 

differentiation from human ESC (Evseenko et al., 2010). Whereas, RUNX1 and GATA2 

are expressed in the later mesoderm and play a role as endothelial and hematopoietic 

promoters in human embryoid bodies (Shi et al., 2014). Furthermore, the regulatory 

function of several genes is context dependent. In fact, the mesodermal marker T is also 

able to induce the expression of endodermal markers FOXA2 and SOX17 if activated along 

with SMAD2/3 (Faial et al., 2015). The endodermal markers Gata4 and Foxd3 promote 

endodermal differentiation of ES in mouse, whereas Sox7, Sox17, Afp and Foxa2 are 

expressed at latter stages of endodermal formation (Zaret & Carroll., 2011; Wang et al., 

2013b; Kinoshita et al., 2015). The genes Tfap2a, Gata3, Msx2 and dlx3 are rapidly 

activated in mouse ESC induced to acquire a non-neural ectoderm fate by the inhibition of 

Wnt and Tgfβ and are among the genes that promote the separation of the non-neural 

ectoderm and the NE (Ealy et al., 2016). The NBZ markers were described in Xenopus and 

Tfap2a, Msx1 and Pax3 have been validated in human NBZ lines induced from iPSC/ESC, 

whereas Foxi1 and Dlx6 have been validated in chick and might depict differences with the 

expression in the human NBZ cells (Leung et al., 2016; Shigetani et al., 2016).  
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Expression of the selected number of genes activated in specific germ layers or NBZ were 

plotted to depict their gene expression patterns. Since the expression of these genes was 

similar between cells induced with 2i and 2i-WNT media, the expression showed is an 

average of the RPKMs results from the 3-iPSC induced with 2i and 2i-WNT media. The 

results indicated that the gene expression of the majority of the genes analysed was 

maintained at low levels (< 1 RPKM) during the time course of NESC differentiation, 

which might indicate that the majority of these genes are not expressed in the cells or are 

expressed in a reduces number of cells in the population. However, the endodermal markers 

FOXD3 and AFP show an initial expression higher than 2 RPKM at d0 , but the expression 

levels was rapidly subsequently down-regulated during NESC induction.  

 

      

 

Figure 3.20. Gene expression profiles of mesoderm, endoderm, non-neural ectoderm and 

neural border zone markers. Expression of each gene (RPKM) is represented with a 

different colour.  
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Similarly, the expression levels of genes that are activated in cell undergoing apical-basal 

polarity, rosettes, radial glia cells and cells acquiring forebrain fate were analysed to 

determine if these TF were precociously expressed during NESC induction (Figure 3.21).  

Gene expression profiling studies have demonstrated that a group of genes including 

PLAG1, DACH1, MMRN1, DMRT3, ZBTB16, LIX1 and LMO3 genes are highly 

expressed in rosettes derived from human iPSC/ESC, embryoid bodies and ESC in mouse 

(Elkabetz et al., 2008; Abranches et al., 2009; Koch et al., 2009; Lukovic et al., 2017). 

However, the function that some of these factors play during rosette formation is not well 

understood. For instance, LIX1 gene has been implicated in motor neuron survival in 

felines and proliferation of stomach mesenchymal progenitors in the chick embryo, but its 

function in neural rosettes has not been defined (Fife et al., 2010; McKey et al., 2016). 

Hence, mechanism  and stages in which these genes regulate rosette formation and their 

expression levels in rosettes might vary,  indicating that they are not ideal rosette markers. 

The profile analyses of rosette gens indicated that DACH1, ZBTB16, LMO3 showed an 

increase on their expression from day 2 to day 8 after neural induction.  Particularly, the 

gene LIX1 is highly up-regulated after day 2. Expression of these genes during NESC might 

indicate that they play a role this early stage of neural development or that a reduced 

subpopulation of cells might be precociously acquiring rosette identity. However, higher 

quantities of these markers might be necessary to induce rosette formation in the 

population. Neural differentiation of iPSC/ESC initiates with the formation of NESC that 

subsequently acquire cell polarity and reorganize to give rise to rosette like structures 

(Kageyama et al., 2014; Marchenco et al., 2014). The genes PARD6B and CDC42 form 

part of apical polarity complexes responsible for the apico-basal axis formation and 

construction and maintenance of apical junctions, whereas CRB2 localizes in the apical 

side of rosettes and interact with these apical-basal complexes and stabilise them. 
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Experiments in human ESC demonstrated that these genes are necessary for the 

differentiation of neural rosettes, since knowing down PARD6B, CDC42 and CRB2 leads 

to the disruption of rosette formation (Boroviak & Rashbass, 2011; Harding et al., 2014; 

Kedziora et al., 2016; Deglincerti et al., 2017). Similarly, studies have suggested that 

Uspx9 is necessary for embryonic progenitors in the mouse embryo, since ablation of the 

genes resulted in transient disruption of cell adhesion and apico-basal polarity 

(Premarathne et al., 2017). Our analyses indicated that the majority of these cell polarity 

markers are down-regulated during NESC induction, suggesting that the differencing 

NESC are not undergoing apical-basal polarization during this early stage. During rosette 

formation, neuro-ectodermal cells acquire glial features and become RG cells, which are 

able to form neurons, ependymal cells, astrocytes and oligodendrocytes (Kageyama et al., 

2014; Marchenco et al., 2014). The expression of FABP7 and SLC1A3 is required for the 

formation, proliferation and migration of RG cells and are widely used as RG markers (De 

Rose et al., 2012; Pollen et al., 2016).  The genes TNC and S100B were selected as a RG 

marker since its expression is detected in RG cells of the mouse neural tube (Hachem et 

al., 2007; Brozzi et al., 2009; Faissner & Reinhard, 2015).  The expression of Hes1 and 

Hes5 was analysed since these factors play a role in neural progenitors self-renewal and 

inhibition of proneural genes (Kageyama et al., 2005; Dhanesh et al., 2016).  The results 

indicated that the genes FABP7, HES1, HES5 and TNC are up-regulated during different 

stages of NESC induction. Importantly, cell polarization, formation of the neural rosettes 

and radial glia differentiation are mechanism that are tightly regulated during neural 

development. Hence, the heterogeneous expression of the selected markers during NESC 

differentiation, reflected the variability in the functions that these genes play during cell 

polarization and rosette and radial glia formation. Thus, heterogeneous expression  of the 
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selected genes, indicates thatthey are not optimal markers for these neural developmental 

stages. 

 The expression of forebrain markers during neural induction was analysed to validate 

previous observations that indicated that NESC are primed to acquire forebrain fate during 

early stages of neural development. We analysed the expression of OTX1, OTX2, HESX1, 

SIX3, RAX, LHX2, FOXG1 and EMX2. The results indicate that most forebrain markers 

are highly up-regulated after d2 and the TFs HESX1 and SIX3 depicted a peak of 

expression at d3. The selected markers play different roles during the formation and 

regionalization of the forebrain. For instance, OTX1 and OTX2 regulate the differentiation 

of the caudal forebrain, whereas FOXG1 is required for the differentiation of the ventral 

telencephalon (Larsen et al., 2010; Manuel et al., 2010). Hence, the high variability in the 

expression of these markers during NESC induction is expected.  

 

  

 

Figure 3.21. Gene expression profiles of rosette, polarity, radial glial and forebrain markers. 

Expression of each gene (RPKM) is represented with a different colour.  
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A recent microarray study reported up-regulation of the EMT marker ZEB1 and down-

regulation of its epithelial targets OCLN, F11R, MARVELD2, PPL, DSG2, EPPK1, 

SH3YL1, DMKN, TMEM30B and MAL2s during neural induction of hESCs (Huang et 

al., 2016). Hence, expression of EMT markers and ZEB1 targets is depicted in Figure 3.22. 

The results show that ZEB1 ad N-cadherin (CDH2) are highly up-regulated after d3, 

whereas E-cadherin (CDH1) is down-regulated. Additionally, ZEB1 epithelial targets 

DMKN, F11R, MAL2, CDH3, DSG2, OCLN, PPL, SH3YL1, MARVELD2, EPPK1, 

SYTL1, PKP3, SFN, TMEM30B are down-regulated and its mesenchymal targets FN1, 

COL4A1ID1, ID2 and VIM are up-regulated.  
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Figure 3.22. Gene expression profiles of cadherins, epithelial mesenchymal transition 

and ZEB1 epithelial and mesenchymal targets. The expression of each gene (RPKMs) is 

represented with a different colour. 

 
 
 
Additionally, Huang et al., 2016 microarray study reported that the expression levels of 

genes WNT5B and RAR2, which are part of WNT/Ca2+ signalling, were up-regulated 

during neural differentiation of human ESC.  Likewise, the study shows significant changes 

in the expression of a number of DNA and histone modifiers. The authors suggested a 

potential role of WNT/Ca2+ signalling and the analysed epigenetic modifiers during 

neuronal differentiation of ESC. However, the mechanism in which these WNT/Ca2+ 
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signalling and modifiers regulate neural differentiation remained to be studied. We 

analysed the expression of these genes to determine if it reflected the results reported by 

Huang et al, 2016.  The results indicated that WNT5B and RAR2 are up-regulated during 

the course of NESC differentiation and that the epigenetic modifiers depicted similar 

changes in expression of those previously reported, validating Huang et al., 2016 data. 

Additionally, the gene expression profiles of the NE markers PAX6 and SOX1 were plotted 

(Figure 3. 23).  

 

 

   

Figure 3.23. Gene expression profiles of epigenetic modifiers, WNT/Ca2+ genes and 

PAX6 and SOX1. The expression of each gene is represented with a different colour. 

 

3.3.9. Dose response of XAV939 WNT signalling inhibition  
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inhibitor XAV939 blocks tankyrase 1 and tankyrase 2 enzymes that interact with the axin 

conserved domain and target it for ubiquitination. Hence, XAV939 selectively inhibits of 

β-catenin by stabilizing axin, which is the concentration-limiting component of the 

destruction complex (Huang et al, 2009a). A dose response curve was performed with 10 

different concentrations of XAV939 ranging from 1nM to 10uM, to determine the optimal 

concentration of the small molecule that most effectively inhibits WNT signalling. 

HEK939 cells were transfected with a WNT expression plasmid and a luciferase reporter 

TOPflash vector, which contains TCF binding regions. As a negative control, cells were 

transfected with an empty plasmid and TOPflash. The negative control and WNT 

transfected cells were tested with 10 different doses of XAV939 inhibitor during 24h. 

Additionally, WNT transfected cells were tested in the absence of WNT inhibition as a 

positive control. The results indicate that the negative control does not induce any change 

in luciferase activity, whereas the positive control shows elevated levels of activity.  

Importantly, luciferase activity is reduced in WNT transfected cells with increasing 

concentrations of XAV939 doses so for instance, luciferase activity is not detected in cells 

treated with doses ≥ 2uM of XAV939 (Figure 3.24).  
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Figure 3.24. Luciferase activity in HEK939 cells transfected with a WNT 

expression plasmid and a TOPflash vector. From left to right, the negative 

control (-CTR) shows low levels of luciferase activity and the positive control 

(WNT) shows high levels of activity. WNT transfected cell luciferase activity 

is reduced in response to XAV939 doses from 1nM to 10µM.  

 

3.3.10. Differential gene expression between iPSC derived NESC induced with 

2i and 2i-WNT inhibitors.  

Differential gene expression analyses were carried out to compare expression of all genes 

between iPSC induced with 2i and 2i-WNT at each time point during NESC differentiation. 

The results show that no genes were significantly differentially expressed (p-value < 0.05) 

and >1 log2 fold changes between the 2 treatments at time points d1, d2, d3 and d6. We 

identified 3 genes differentially up-regulated for the cells induced with 2i and 1 gene 

differentially up-regulated for cells induced with 2i-WNT media at time point d4 

(Figure.3.25). The identities of the differentially expressed TF, fold changes and p-values 

are described in the Appendix 3.14 (CD-ROM) for 2i up-regulated and Appendix 3.15 (CD-

ROM) for 2i-WNT up-regulated.   
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Figure 3.25. Volcano plot of the differential expression of genes induced with 2i and 2i-

WNT neutralization media at time point d4. The X axis depicts the log2 fold change and the 

Y axis the –log10 p-value. The significantly DE genes with more than 1 log2 fold changes 

between conditions are represented with red dots. Genes with more than 1 log2 fold changes 

that do not reach significance (p-value < 0.05) between conditions are represented with orange 

dots. Genes whose expression levels are not significantly DE and have < 1 log2 fold changes 

in expression between the 2 treatments are shown with black dots. Genes that are up-regulated 

when differentiated with 2i media are located on the left and those that are up-regulated with 

2i-WNT are shown on the right.  

 
Additionally, 148 genes were differentially expressed (>1 log2 fold; p-value < 0.05) at d8. 

Among these genes (excluding TFs), 79 were up-regulated in cells induced with 2i media 

and 39 in cells induced with 2i-WNT media. To determine if the 2i-WNT up-regulated 

genes has been previously related with WNT signalling, enrichment for “pathways”, 

“protein domain” and “protein-protein iteraction” was determined through GO analyses. 
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The results indicated that the genes up-regulated in NESC induced with 2i-WNT media, 

have not been previously associated with WNT signalling. The DE genes are depicted in 

the Figure 3.26. TF are show in a different figure to facilitate visualization of the gene 

names. Only the name of the most significant differentially expressed genes with higher 

fold changes is included in the figure to facilitate their visualization. Names of the entire 

set of genes and statistical analyses details are included in the Appendix 3.14 (CD-ROM) 

for 2i up-regulated and Appendix 3.15 (CD-ROM) for 2i-WNT up-regulated. 

 

 

Figure 3.26. Volcano plot of differentially expressed genes (no TFs included) induced with 2i 

and 2i-WNT neutralization media at time point d8. The volcano plot is organized as described 

above.  
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Additionally, we aimed to identify the sets of TF included in the list of DE genes between 

2i and 2i-WNT induced cells. For this, the ensemble gene ID of the genes DE was changed 

to Entrez ID with the "biomaRt" package in Rstudio. The list of DE genes was compared 

with a list of human TFs obtained from “http://www.tfcheckpoint.org” using the 

“VLOOKUP” formula in Microsoft Excel to identify TF.  The data comprising only TF 

was separated from the data containing all genes sets and the TF volcano plots were 

generated with “calibrate” package in Rstudio. However, the curated list of TF included in 

tfcheckpoint database might include genes are not TFs, such us BMP4 and WNT8B, which 

are incorrectly included in the TF volcano plots generated in this study. Among the genes 

differentially expressed at d8, 29 TFs are included. 24 TFs are differentially up-regulated 

in cells induced with 2i media and 5 TFs in cells induced with 2i-WNT media (Figure 3.27). 

Statistical analyses details are included in the Appendix 3.14 (CD-ROM) for 2i up-

regulated and Appendix 3.15 (CD-ROM) for 2i-WNT up-regulated. 
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Figure 3.27. Differential expression of transcription factors induced with 2i and 2i-

WNT neural induction media at time point d8. The volcano plot is organized as 

described above.  

  

 

3.11. Bulk expression analyses of the genes differentially expressed between 

cells induced with 2i and 2i-WNT media.  

The expression of all differentially up-regulated genes for the cells induced with 2i media 

were compared with the same genes expressed in cells induced with 2i-WNT media to 

identify any divergence in expression at earlier time points (Figure 3.28). Similar analyses 
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where performed for genes differentially up-regulated in cells induced with 2i-WNT 

compared with 2i media.  The results indicate that differences in gene expression emerge 

after d2.  

 

    

Figure 3.28. Bulk expression patterns of the genes differentially expressed in cells induced 

with 2i and 2i-WNT neural induction media. The gene expression profiles of cells induced 

with 2i media are shown in red and those of genes of cells induced with 2i-WNT media are 

depicted in black.  

 

3.12. Gene otology of the genes differentially express between cells induced 

with 2i and 2i-WNT media.  

The differentially up-regulated genes with > 1 log2 fold changes in expression between cell 

differentiated with 2i and 2i-WNT induction media were interrogated for enrichment of 

specific biological process. Gene ontology (GO) analyses were carried out separately for 

the up-regulated genes for each condition including 103 genes for 2i and 44 genes 2i-WNT 

conditions. Biological process annotations are depicted in Figure 3.29. GO analyses of 

genes up-regulated for 2i treatment show significant enrichment (fold enrichment > 2, p = 

< 0.05) of the biological process: “anatomical morphogenesis”, “tissue development”, 

“organ development” and “system development”. The p-values, number of genes for the 
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corresponding term, fold enrichment and false discovery rate are described in Appendix 

3.16 GO analyses of genes up-regulated in cells induced with 2i-WNT showed no 

significant enrichment for any term.  

 

 

  

                    
 

Figure 3.29. Gene ontology of genes differentially up-regulated in cells 

induced with 2i media compared with cells induced 2i-WNT media. The 

key colour scale indicates the log10-adjusted p-value, the lower p-value is 

represented in dark red. 

 
 

3.13. Expression profiles of placode and olfactory placode markers 

During the development of the embryo, the olfactory placode originates from the NBZ 

formed around the NP during gastrulation as a result of interactions of neural ectoderm 

with non-neural ectoderm. GnRH cells develop from the olfactory placodes and latter 

migrate to the hypothalamus. The canonical WNT signalling has been associated with the 

regionalization of the NBZ. For instance, absence of WNT in the NBZ leads to the 

formation of the PPE that gives rise to the olfactory placode, at expenses of the neural crest. 

We analysed the expression of NBZ and placode markers to determine if inhibition of WNT 
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signalling during NESC differentiation induces the differentiation NBZ and placodes like 

cells, which give rise to GnRH neurons at day 50 after neural induction. The expression of 

NBZ and placodal markers was analysed in cells induced with 2i and 2i-WNT neural 

induction media (Figure 3.30). The results indicate that the gene expression profiles of 

these markers are very similar between cells induced with both neural induction media.  

 

  

   

Figure 3.30. Temporal profiles of placodal marker expression. The expression of each gene is 

represented with a different colour. Profiles on the left represent gene expression patterns of cells 

differentiated with 2i media, whereas profiles on the right show the patterns in cells induced with 

2i-WNT media.   
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3.4. Discussion  

3.4.1. Gene expression patterns underlying neuro-ectoderm stem cells 

differentiation 

The implementation of iPSC and RNAseq technologies enable study of in vitro 

differentiation of a number of human cell types of the CNS. For instance, several studies 

have analyzed the molecular events that drive the development of NE cells to neural 

progenitors and to specific neuronal subtypes. However, the events underlying human 

neural induction, which constitutes the initial step of CNS development, is largely 

unknown. This study provides a unique insight into the initial molecular events that 

underlie the transition of PSCs to NESCs and contributes to the knowledge of gene 

expression patterns and signalling pathways accompanying neural induction. 

For this study, we used 3 iPSC lines generated from different individuals and 1 ESC line 

to account for the technical and genetic background differences among cell lines. PCA 

analyses revealed that the genetic background of each cell line and means of neural 

induction do not account for a significant component of the transcriptome variation during 

neural induction (Figure 3.2). The largest principal component of variance is correlated 

with the state of differentiation across all cell lines, indicating high reproducibility of the 

induction system and robustness of the expression levels among biological replicates. For 

instance, changes in gene expression patterns are smaller between consecutive time points 

than between distal time points. During the initial 48h of NE induction, changes in the 

expression patterns tend to be small and are clustered together (Figure 3.3). This period is 

succeeded by profound gene expression changes that continue throughout the remainder of 

neural induction. Gene product abundances and gene regulatory interactions, which are 
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reflected in the mRNA transcripts levels, control the biological processes occurring in the 

cell at specific stages of differentiation. Possibly, these gene expressions changes are 

associated with inhibition of pluripotency after d2 of induction and activation of the NE 

pathways that underlie the progressive restrictions in cell fate that drive neuronal 

differentiation.  

Several genes have been identified during neural development in animal models and in 

ESC studies, including PAX6, NESTIN, SOX11, CDH2, ZNF521, ZEB2 and NR2F2, 

which are considered the main markers and drivers of neural differentiation. We report that 

the expression of these markers is first evident at d2 after 2i neural induction and 

progressively increases until d8. Whereas, expression of NANOG, OCT4 and MYC, which 

are associated with maintenance of pluripotency and self-renewal in PSCs, is down-

regulated after d2 of induction (Figure 3.4). In animal models BMP and TGFβ inhibition 

by antagonists secreted from the node drive ectodermal cells to acquire NE fate. Following 

the developmental cues initiated by inhibition of BMP and TGFβ signaling leads to down-

regulation of pluripotency/self-renewal markers after 2 days and subsequent activation of 

NE markers, validating previous ESC/iPSC studies that have demonstrated the same 

outcome. These results suggest that neural induction in iPSCs occurs in a similar manner 

to that described in animal models, highlighting the utility of iPSCs system to gain insight 

into early human development. However, it is important to recognize that 2i induction 

directs iPSC to acquire NE fate without evidence of prior formation of dorsal ectoderm. 

Hence, 2i differentiation of NESCs does not entirely recapitulate neural induction in vivo.  
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Animal models have enable to identify genes and pathways that regulate neural and 

neuronal differentiation. Particularly, studies in mouse model are highly relevant since they 

provide an insight into the regulatory mechanism that drive the transition from pluripotency 

to neural fate in humans. However, only a reduce number of studies have focussed in 

identifying the gene expression patterns transverse during the early stages of neural 

differentiation in mammals. For instance, the majority of information about the genes 

activated during NE and their interactions comes from studies has carried on with the 

Xenopus embryo. These, analyses have considerably increase the knowledge of the 

mechanism that drive neural differentiation in vertebrates but are not an ideal system for 

understanding the neural development in mammals. A number of genome wide analyses 

acquisition in vivo in mouse and in vitro in mouse and human, have analysed the molecular 

mechanism that regulate the differentiation of neural progenitors.  However, there is a lack 

of information about the regulatory mechanism that orchestrate NE induction in mammals.  

Klein et al demonstrated that expression of FOXD4, GMNN and ZIC2 NE precursor 

markers is necessary to directly activate the transcription of early-actin genes required for 

neural induction in Xenopus. FOXD4 expression initiates at blastula stage and is 

maintained during early NE development to inhibit BMP signalling and enhance GMNN 

and ZIC2 expression. FOXD4 is subsequently repressed during early neural plate formation 

to enable transition from NE precursors to mature NE (Lee et al., 2014; Klein & Moody, 

2015). A recent study with ESC suggested that Foxd4 might play an important role during 

the transition from pluripotent cells to neural cells in mouse.  Foxd4 is transiently expressed 

after neural induction in mouse ESC, depicting a peak in NESC (Gaur et al., 2016, Sherman 

et al., 2017). Foxd4 knowdown in mouse ESC lead to an increase in the expressing of 

pluripotency markers, whereas its overexpression down-regulated the expression of these 

markers, suggesting that Foxd4 might enhance neural fate acquisition by inhibiting 
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pluripotency. Additionally, ectopic expression of Foxd4 in the ventral epidermis of the 

mouse embryo leads to the expression of Gmnn, Zic2 and a decrease in the expression of 

Sox11. The study suggest that Foxd4 regulate the acquisition of neural competence in 

ectodermal cells, similarly than is counterpart in Xenopus (Sherman et al., 2017). Similarly, 

Gmm plays an essential role in early mouse embryogenesis since Gmm-nule mouse embryo 

are early lethal (Lim et al., 2011). ChIPseq analyses enabled to demonstrate that Gmnn 

promotes histone acetylation in neural genes promoters such as Sall3 and Hoxa2. 

Additionally, Gmnn and Zic1 have associated chromatin locations and might cooperatively 

activate the expression genes that regulate neuronal development in mouse, including 

Ascl1, Pax7 and Irx3 (Sankar et al., 2016). Consistent with these reports, we show that 

GMNN and ZIC2 have a high peak of expression at d2 and are subsequently down-

regulated but remain expressed until d8 (Figure 3.4). However, the RPKM values of the 

factor FOXD4 (< 1 RPKM) indicated that the factor is either expressed at low levels or 

restricted to a subpopulation of cells. Perhaps, the expression of FOXD4 in human iPSC is 

not necessary for activation of ZIC2 and GMNN. Additionally, expression of FOXD4 

might be necessary in vivo to promote the transition from pluripotent cells to a neural fate 

but might not be required for iPSC in vitro since inhibition of BMP and TGFβ signalling is 

sufficient to promote neural-ectoderma induction. However, more studies are necessary to 

analyse the role of FOXD4 during neural induction in humans.  

Subsequently, down-regulation of Foxd4, Gmnn and Zic2  and overlapped activation of 

SOXB1 and SOX11 factors leads to the acquisition of NE phenotype in Xenopus (Lee et 

al., 2014). Similarly, in chick and mouse Soxb1 are expressed in NE precursors and in the 

cells of the neural plate. Overexpression of these genes prevents neural precursors to 

differentiate into neurons, suggesting that these factors are necessary to maintain 

pluripotency in NE cells. In mouse Sox2 and Sox3 are widely expressed in the neural plate, 
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whereas Sox11 activated latter during neural progenitors stage and differentiating neurons 

(Bergsland et al., 2011; Lee et al., 2014). We demonstrated that SOX2, and SOX11 are 

highly up-regulated after d3 and SOX3 is up-regulated at d6 and d8, in a similar manner to 

the chronological activation order described in Xenopus. As NE cells differentiate into 

neural progenitors, expression of the precursor markers IRX1, IRX2, IRX3, ZIC1 and ZIC3 

is up-regulated just prior to expression of bHLH factors (Moody et al, 2013; Lee et al., 

2014). Our results reveal that IRX1, IRX3 and ZIC1 expression is low during NE 

differentiation (<1 RPKM), whereas, the markers IRX2 and ZIC3 factors are up-regulated 

during d1, d2 and d3, overlapping expression of GMNN and ZIC2. Possibly, the role of 

IRX, ZIC1 and ZIC3 factors differ between humans and Xenopus during iPSC neural  

development due to amphibian- mammal’s differences. Furthermore, the expression of 

these genes could be related with particular development landmarks in humans, which 

might differ from mouse and Xenopus. Additionally, differentiation of NESC in vitro, does 

not entirely recapitulate the multistep process of neural differentiation in vivo.  For instance, 

the differentiating neural cells do not acquire endodermal phenotype previously to 

differentiating in neuro-ectodermal cells. Thus, the divergence in the expression of these 

genes could be related with differences in the neural differentiation program in vivo and in 

vitro. Overall, our results indicate for the first time that the temporal expression patterns of 

GMNN, ZIC2, SOX2, SOX3 and SOX11 factors previously described Xenopus model 

closely resemble their expression during human iPSC neural induction, whereas FOXD4, 

IRX, ZIC1 and ZIC3 factors are expressed in a different manner.  

Subsequently, activation of bHLH family factors is required for transition of NE cells to 

neural progenitors. ASCL1 and NEUROG2 promote expression of target genes involved 

in neuronal differentiation and cell cycle arrest, whereas OLIG1 and OLIG2 promote 

oligodendrocyte differentiation and HES1 and HES5 maintain RG stage by inhibiting 
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neural differentiation (Kageyama et al., 2005; Dhanesh et al., 2016). The results indicated 

that ASCL1, NEUROG2 and HES5 are up-regulated and OLIG1 and OLIG2 are down-

regulated during the 8 days of neural induction carried out in this study.  However, RNAseq 

data show a reduced expression value for these genes (<1 RPKM), indicating that the genes 

are either expressed in a reduced number of cells of the population or that the population 

express low levels of the genes, which might not be biologically significant. Reduced 

expression of pro-neural markers after 8 days of 2i induction suggest that the majority of 

derived iPSC maintain a NESC phenotype and have not acquired neural progenitor’s 

identity during this period. Interestingly, HES1 is highly up-regulated after d3 suggesting 

a potential function during NESC development. Possibly, high levels of HES1 are required 

to inhibit the premature expression of proneural markers as described during early RG 

stage. 

Additionally, we identify a large number of differentially up-regulated genes during 

specific stages of NE induction, including many TFs that could be used as novel NESC 

markers. Among these genes, a number of TFs such as HESX1, IRX5, HES3, POU3F4, 

KDM4B, IHX4, FOS, SORBS2, RGS9, CITED1, HES4, SOX6, OTX1, FOXA1, 

DMRTA2, LEF1, RAX, SOX21, GLIS3, MEIS1, VAX1, FEZF2, TOX3, ATOH8, 

SMAD6 and GLI3 play important roles during later stages in development of the CNS 

(Figures 3.9, 3.10 and 3.11). Other differentially up-regulated factors have not been related 

previously to the development of the CNS including FANK1, MECOM, KAT2B, TRIM24 

and ELF3. Activation of these TFs during NESC differentiation suggests potential roles for 

the maintenance of the neural transcriptional program or inhibition of genes and pathways 

that lead to differentiation of other lineages. Identification of these factors and their 

temporal expression pattern facilitates future studies to determine their precise role during 

early NE differentiation. The GO annotations of the entire set of up-regulated genes were 
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particularly enriched in terms related to development of the CNS including “diencephalon”, 

“telencephalon”, “forebrain”, “neuronal development” and “tube morphogenesis” (Figure 

3.14). Likewise, we identified a set of up-regulated genes with a similar expression pattern 

(profile 65) using STEM software (Figure 3.16). This approach enabled clustering, 

comparison, and visualization of sets of genes correlated with a gene expression profile. 

The profile 65 was selected since it comprises genes that are highly up-regulated from day 

0 to day 8 after neural induction. Hence, activation of these genes might be required for the 

transition of iPSC to a neural fate. Profile 65 was interrogated for enrichment of biological 

functions trough GO enrichment terms. Similar to the differentially up-regulated genes, GO 

analyses identified terms enriched for “brain”, “forebrain” and “telencephalon 

development”, “synapse organization” and “neural precursor cell proliferation” (Figure 

3.18). Individual genes and gene modules are often present in several GO terms reflecting 

their multiple roles in different biological processes. For instance, GO subcategories such 

as “neuron projection guidance” and “synapse formation” comprise modules of genes that 

coordinate structural changes in the actin filaments and microtubules, a biological process 

that also occurs during NE differentiation. Hence, genes present in GO terms associated 

with later developmental stages might also be involved in novel biological functions during 

NE induction.  

Additionally, we identified sets of down-regulated genes that form part of the ESC/iPSC 

transcriptional network, including the TFs ETV4, SKIL, ONECUT1, OVOL2 and HEY2 

(Figures 3.12 and 3.13). Other down-regulated TFs such us GLI1, VAV1, BARX1 and 

BNC2 have not been previously implicated in pluripotency. GO analyses indicated that the 

down-regulated factors are enriched for the terms “vascular development”, “ion transport”, 

“mesenchyme development”, “cell motility”, “MAPK cascade” and “epithelium 

development” (Figure 3.15). Likewise, STEM analyses generated an expression profile 
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(profile 31) comprising genes that are highly expressed in iPSC and are down-regulated 

during different stages of neural induction. Thus, the profile 31 was selected for further 

analyses since it might contain genes necessary for pluripotency maintenance but not for 

neural differentiation. The profile 31 was interrogated for cell biological functions 

enrichment by GO analyses. The analyses were enriched for the terms “transport”, “defence 

response” “angiogenesis” “regulation of cell proliferation” “response to hypoxia” and 

“cell-cell adhesion”. Genes and gene modules involved in these biological functions might 

play a role in the regulation of the pluripotency program. For instance, hypoxia conditions 

promote the activation of hypoxia inducible factors HIFs, including HIF1 and HIF2, which 

are necessary to initiate the metabolic switch from oxidative to glycolytic metabolism, 

which promotes the pluripotency program. For instance, HIF2 has been shown to regulate 

expression of pluripotency/self-renewal TFs, such as OCT4, enhancing pluripotency. 

Hence, hypoxic conditions improve the reprograming efficiency and iPSCs maintenance 

(Yoshida et al., 2009; Mathieu et al., 2014; Saito et al., 2015). Therefore, iPSC lines are 

maintained in hypoxic conditions until confluence is achieved and subsequently, the 

oxygen levels are incremented during NE induction to promote differentiation. Possibly, 

increase in oxygen levels is accompanied by down-regulation of “hypoxic response” genes 

included in the GO term. Additionally, cell-cell adhesion molecules such us E-cadherin 

contribute to the maintenance of pluripotency and cell survival in PSCs (Li et al., 2014; 

Pieters et al., 2014). Subsequent down-regulation of E-cadherin and up-regulation of N-

cadherin promotes neural differentiation and rosette formation.  Hence, the GO term “cell-

cell adhesion” comprising down-regulated genes is consistent with these reports. A number 

of genes included in the GO terms have known functions in pluripotent cells, whereas 

others are related to different developmental stages and cells functions. Additional studies 

will enable identification of the function of these genes during pluripotency. Interestingly, 
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the terms ‘angiogenesis’ and ‘response to hypoxia’ are only significantly enriched for the 

2i-WNT induced cells. However, genes enriched in these terms are also down-regulated 

during NE differentiation with 2i, but the number of genes highly correlated (R=0.9) to the 

profile was reduced and consequently these terms are not significant for cells undergoing 

2i neural induction. These differences are likely to be driven by WNT inhibition, however 

the differential expression of these genes between treatments at each time point is not 

significant and the biological meaning of them remains unknown.  

3.4.2. Gene expression patterns  

Analyses of gene expression pathways relevant during differentiation demonstrated low 

expression levels of mesoderm, endoderm, non-neural ectoderm and NBZ markers, 

suggesting that the majority of the cells are acquiring NE fate (Figure 3.20). Additionally, 

we report that the neural rosette and radial glial markers are first up-regulated after d2 of 

induction (Figure 3.21). However, the expression of cell polarity markers does not increase 

during the time course of neural induction suggesting that NESCs are not acquiring rosette 

morphology or RG phenotype, as validated by ZO1 immunofluorescence analyses at d8 

(Appendix 3.16). The precociously expressed rosette and RG markers might play a novel 

role during NE differentiation that has not been studied to date, or perhaps, higher levels of 

the markers or the expression of other gene products are necessary to trigger rosette 

formation and RG conversion. Animal and ESC studies have demonstrated that absence of 

patterning molecules during differentiation bias NE cells to acquire forebrain fate (Huang 

et al., 2016; Zirra et al., 2016). We report that the majority of analysed forebrain markers 

are highly express and continuously up-regulated after time point d3 of 2i differentiation, 

validating previous findings.  
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3.4.3. Neuroectodermal stem cells expression patterns described by Huang et 

al (2016) 

In a recent study, Huang et al (2016) demonstrated that the EMT marker ZEB1 was up-

regulated after 6 to 8 days of ESC NE differentiation, while ZEB1 epithelial targets were 

down-regulated, suggesting a novel potential role for EMT during neural differentiation. 

ZEB1, TWIST1, TWIST2, SNAIL1 and SNAIL2 TFs promote EMT by directly repressing 

expression of epithelial differentiation regulators and inducing expression of mesenchymal 

markers (Aigner et al., 2007; Kim et al., 2014; Lamouille et al., 2014). Our analyses show 

that ZEB1 expression is up-regulated from d3 of neural induction, whereas ZEB1 epithelial 

targets and mesenchymal targets are subsequently down-regulated and up-regulated, 

respectively. During EMT, E-cadherin expression is inhibited leading to the disruption of 

cell-cell contacts (Taube et al., 2010; Kim et al., 2014; Lamouille et al., 2014). Activation 

of N-cadherin, which is required to maintain NE cells architecture and for proper formation 

of the neural rosettes during neural induction, is also necessary for EMT (Nandadasa et al., 

2009). Hence, concomitant down-regulation of E-cadherin and up-regulation of N-cadherin 

are a hallmark of EMT. Our results show that E-cadherin is down-regulated at time point 

d3 whereas N-cadherin is up-regulated after this period. The results validate the data 

presented by Huang suggesting a potential role of EMT during neural induction (Figure 

3.22).  

Neural induction is accompanied by chromatin structural changes that modulate the 

accessibility of TFs to specific loci (Broccoli et al., 2015; Tang et al., 2015; Quiao et al., 

2016) but the epigenetic mechanisms that regulate neural induction are largely unknown. 

Huang et al (2016) reported significant changes in the expression of DNA and histone 

modifiers. Our results resemble the expression patterns of the modifiers, validating the data 
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(Figure 3.23). Mapping chromatin accessible sequences and regions enriched for specific 

histone modification would enable identification of the role of these modifiers. ROR2 and 

WNT5B were also up-regulated at d6 and d8 after differentiation (Huang et al., 2016). 

These genes are part of the WNT/Ca2+ signaling up-stream of CaMKII kinase and since 

inhibition of CaMKII caused down-regulation of PAX6 and up-regulation of the epithelial 

marker K18, then this suggests that WNT/Ca2+ signaling might play a role during neural 

induction by inhibiting epidermal fate. Our results validate these data showing that ROR2 

and WNT5B are up-regulated after d2 of neural induction. 

3.4.4. PAX6 and SOX1 expression 

Previous studies have suggested that PAX6 expression precedes SOX1 during human 

neural induction (Pankratz et al., 2007; Suter et al., 2009; Zhang et al., 2010). However, 

Chambers et al reported that SOX1 was activated and up-regulated after 24h of ESCs neural 

induction before PAX6 activation. Neely et al (2012) suggested that SOX1 expression 

variability is related to the concentration of BMP inhibitors used in the induction protocol, 

demonstrating that higher concentrations of DMH1 or Noggin lead to higher expression of 

SOX1. We show that SOX1 and PAX6 are both significantly up-regulated after d2 of 2i 

induction (Figure 3.23). Subsequently, PAX6 expression increases rapidly after this stage 

whereas SOX1 expression is down-regulated and remains low throughout neural induction. 

We are not able to relate these findings to the directly to the concentration of BMP inhibitor 

since the other studies used different small molecule SMAD signaling inhibitors. However, 

we show a novel expression pattern for SOX1, which depicts a peak of expression after d2 

of induction. These results highlight the importance of determining the factors that underlay 

SOX1 expression variability and their potential effect during neural differentiation in 

humans.  
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3.4.5. Differential expression between genes induced with 2i and 2i-WNT  

Embryonic generation of GnRH neurons depends on the sequential formation of the non-

neural ectoderm, NBZ, PPE and olfactory placodes, which subsequently gives rise to 

GnRH neurons that migrate to the hypothalamus. In vitro and in vivo studies demonstrated 

that modulation of WNT, BMP, TGFβ and FGF signals leads to the formation of PPE. 

However, the PPE cells subsequently acquire otic placode fate at expenses of olfactory 

placode. Hence, to date, PPE have not been effectively differentiated into olfactory 

placodes that can be induced to GnRH neurons. In the Price laboratory, generation of GnRH 

neurons is achieved by inducing iPSC/ESC lines with 2i induction media and WNT 

inhibitors. Since the only difference in the generation of cortical and GnRH neurons resides 

in the initial 8 days of neural induction, we hypothesize that during this period cells induced 

with WNT inhibitor are specified to acquire GnRH fate. 

The results indicate that there are 44 genes including 5 TF differentially up-regulated at d4 

and d8 in 2i-WNT compared with 2i induced cells (Figures 3.25, 3.26 and 3.27). Among 

the DE genes the factors PAX8, MAF, PDE6B, NPASS3, ZIC4 and PTN have been 

connected with different process of CNS development but not specifically with 

differentiation of GnRH neurons. Other genes are related to functions such as transport, 

proliferation and morphogenesis but GO analyses show that these genes are not enriched 

for any biological function term. Similarly, there are 103 genes, including 24 TFs 

differentially up-regulated in cells induced with 2i media compared with 2i-WNT media. 

Among these, POU3F2, ARX, LAMB1, FGFR2, DMRTA2, RARB, SALL3, CCK, 

CDH23, PLK2, SAG1and OTX1 play a role in brain development and other genes 

participate in distinct biological functions. GO analyses of this set of genes shows 

enrichment for broad terms such as “system development”, which include genes related to 
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several biological processes (Figure 3.29). Possibly the expression of these genes is 

necessary for the differentiation of cortical cells but not for the generation of GnRH 

neurons. However, due to the pleitropy associated with many of these genes, it is difficult 

to determine which biological process might trigger the acquisition of different neuronal 

phenotypes. GnRH neuronal differentiation has only recently been achieved in vitro; hence 

the regulatory interactions underlying different stages of development are largely unknown. 

Inhibition of WNT signalling during neural induction is sufficient to trigger the progressive 

transcriptional changes that re-specify NESC to differentiate into GnRH neurons. Early 

activation of the genes exclusively differentially up-regulated in 2i-WNT induced cells 

possibly prime NESCs to acquire GnRH neuronal fate. However, the molecular mechanism 

and gene interactions by which these genes drive early GnRH neuronal fate acquisition 

remain unclear.  

3.4.6. Limitations  

ESC and iPSC have huge potential for elucidating fundamental aspects of early human 

development even though some specific molecular events might differ from those 

occurring in the embryo. For example, Shin et al (2007) highlight these differences during 

neuronal differentiation by demonstrating that neural progenitors derived from hESCs and 

progenitors isolated form a foetal ventricular zone are accompanied by differential 

expression of a number of genes. Hence, the gene expression patterns obtained in this study 

give us an insight of the molecular events that underlay human neural induction but might 

not completely recapitulate all the events that drive development in the embryo. 

Importantly, it is critical to repeat the experimental procedures in different micro-

environmental conditions to validate transcriptome data presented in this study. It has been 
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demonstrated that ESC/iPSC respond differently to their microenvironment generating 

transcriptional signatures associated with the laboratories from where the data were 

derived. These differences might be related to the reprograming process, the stem cell 

culture conditions, the progenitors or the handling of the cells (Newman & Cooper, 2010). 

Hence, repeating the experiment in different laboratories would enable detection of the 

degree of variance in the gene expression patterns among laboratories and accurately 

identify the expression signatures traversed during neural induction.  

3.5. Conclusions 

The experimental approaches described here enabled capture of the complete transcriptome 

at different time points and unwrap the global expression patterns generated during NE 

differentiation. Accordingly, it appears that the plutipotency program is down-regulated 

during the initial 2 days of induction, followed by activation of the neural induction 

program. We demonstrated that the initial steps underlying neural induction are 

accompanied by activation of thousands of genes including NE markers that have been 

described in animal and ESC/iPSC studies and several genes and TFs that have not been 

previously related with neural induction or CNS differentiation. Hence, we have identified 

sets of genes and TFs that may orchestrate the molecular mechanisms that drive different 

stages of neural induction in humans. Importantly, we provide sufficient transcriptome data 

to be of use in future studies to infer specific signaling pathways involved in neural 

induction. Additionally, the results indicate that the molecular mechanisms that drive 

NESC specification to GnRH neurons are activated by d8 during neural induction and are 

accompanied by specific activation of 44 genes and down-regulation of 103 genes 

compared with NESCs fated to become cortical neurons. However, we did not identify 

specific gene modules that provided insight into how this specification occurs.  
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CHAPTER 4. Gene Regulatory Networks  

4.1 Introduction  

During neural induction, the gene products encoded by the genome coordinate different 

cell biological functions such as maintaining proliferative state, driving neural commitment 

and determining neuronal differentiation (Qin et al., 2015; Ardhanareeswaran et al., 2017). 

The transition between cell states depends on changes of gene product abundances at 

specific developmental times, which are coordinated by various gene regulatory events. 

Amongst the cell mechanisms of regulation, the most common and best-studied gene 

regulators are TFs. TFs are proteins with a DNA binding domain that bind to regulatory 

sequences (enhancers or promoters) of target genes to stimulate or repress their 

transcription (Qin et al., 2015; Yu et al., 2017). TFs orchestrate neural induction by 

activating and stabilizing expression of sets of genes that initiate and maintain neural fate 

whilst down-regulating expression of genes involved in pluripotency or differentiation 

toward alternative fates (Sankar et al., 2016).  

Recent implementation of high-throughput technologies facilitates determination of TF 

DNA binding sites by ChIP, ChIP-chip or ChIPseq analyses (Wang et al., 2015). 

Additionally, RNAseq analyses allows quantification of changes in expression of a large 

number of genes at specific time points, enabling determination of the identity of genes and 

TFs activated or inhibited during specific stages of differentiation (Hecker et al., 2009; 

MacNaeil & Walhout, 2009). The global transcriptome data obtained from these 

approaches enables prediction of TF gene targets based on a binding site preference and to 

infer potential regulatory interactions between them through various statistical and 

mathematical analyses (MacNaeil & Walhout, 2009; Kordmahalleh et al., 2017). The gene 



 
144 

regulatory interactions inferred are often captured in a gene regulatory network (GRN), 

which provides a mechanistic view of how these molecular regulatory events orchestrate 

the different biological processes required at specific stages during cell fate commitment 

(Li & Davidson, 2009; Vashishtha et al., 2015; Peter & Davidson, 2017). However, the 

regulatory interactions between genes are not always simultaneous and can occur with 

temporal changes in gene expression. Time delay interactions can be caused by differences 

in the transcription and translation completion kinetics related with the gene size and 

differences in gene product stability. Hence, several methods have being proposed to 

incorporate time delay in GRN modeling (Xu et al., 2007; Kordmahalleh et al., 2017).  

The GRN comprises nodes that represent genes (TFs can be specifically selected) and edges 

that represent the regulatory interactions between nodes. Genes that have large number of 

connections with other genes are named hubs and are frequently TFs that control expression 

of numerous targets (Blais & Dynlacht, 2005; Yu et al., 2017).  The sets of genes expressed 

in the same cells conditions and connected to a common TF can be considered as subunits 

of the GRN and are referred to as modules. For practical reasons modules are analyzed as 

autonomous units and are frequently associated with a specific cell regulatory function 

(Peter & Davidson, 2017; Charney et al., 2017; Yu et al., 2017). It has been proposed that 

the distinct biological processes carried out by the cell might require a level of 

compartmentalization, which is associated with a reduced number of direct connections 

between the modules in the GRN. Since not all the regulatory functions of the cell are 

required at all times, the activity of the modules and interconnectivity of the network 

(topology) changes over time during development (Blais & Dynlacht, 2005). The 

interactions between genes within the modules ultimately determine cell phenotype and 

behaviour. Hence, identification of the GRN and the modules that are active during specific 

developmental stages provides a systematic understanding of the different steps and 
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molecular mechanisms that underlie neural induction (Vashishtha et al., 2015; Yu et al., 

2017). 

As development proceeds, gene expression patterns continuously change in response to 

different regulatory signals. Changes in gene expression patterns are translated into changes 

in GRN topology. The gene expression patterns captured at a specific time point in the 

GRN constitute network states (Huang et al., 2009b; Gomez et al., 2012). During cell fate 

acquisition, cells traverse the network state space until they reach a state where the gene 

product interactions are stable (Figure 4.1.) (Huang et al., 2009b; Choi et al., 2012). The 

cell morphology, function and behaviour (phenotype) emerge as a property of these stable 

molecular interactions within the cell (Huang et al., 2009b; Vashishtha et al., 2015). The 

stable state is robust to changes in expression levels of individual genes of the GRN. 

However, perturbations such as mutations can generate genome-wide changes 

compromising the stable interactions between nodes and driving the cells to different state 

and therefore a different phenotype (Huang et al., 2009b; Ghaffarizadeh et al., 2017). Thus, 

the GRN inferred relations can be validated by testing the network predictions using 

specific intervention including small molecule inhibitors, gene knock-down and gene 

editing (Blais & Dynlacht, 2005; Olsen et al., 2014; Olsen et al., 2015). 
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Figure 4.1. Representation of the regulatory interaction between 2 genes. The genes A and 

B interact by inhibiting each other expression, forming 4 possible gene expression profiles. 

When both genes are equally express the interactions are not stable due to mutual inhibition. 

When one gene express higher levels inhibits the other gene expression and forms a stable 

expression pattern. The cell phenotype emerges from the stable pattern (attractor state). The 

gene expression patterns are often represented as a point in a Waddington epigenetic landscape. 

Elevation in the landscape represents stability, thus unstable transient states during 

differentiation are shown as high points, whereas stable regulatory interactions between the 

genes are represented as basins (Huang et al., 2009b).  

 

GRNs enable visualization of the gene regulatory interactions inferred from high-

throughput analyses and provide systematic interpretation of the global expression patterns 

that emerge from these interactions. Furthermore, GRNs modeled from time course 

analyses allow identification of the consecutive gene expression patterns or states that the 

cell occupies during its trajectory between distinct cell states (Charney et al., 2017; Yu et 

al., 2017). Hence, the GRN can be interrogated to identify TFs that are potentially 

responsible for the expression of target genes, the active modules potentially related to a 

particular cell biological process and to predict GRN outputs due to specific interventions 

of the network topology (Bisguas & Acharyya, 2016). Such information is essential to 

understand the regulatory interactions that direct human development, the molecular events 
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underlying aberrant cell phenotypes and to identify potential therapeutic strategies for 

treating diseases (Choi et al., 2012; Lopes et al., 2012).  

4.2. Methods 

4.2.1. Gene regulatory network 

The different experimental approaches that I performed during this study enabled to obtain 

a large amount of transcriptomic data during different stages of NESC differentiation from 

iPSC trough RNAseq analyses. I used this data to generate differential expression analyses, 

co-relation analyses, PCAs, STEM profiling, genes expression heatmaps, gene expression 

profile and volcano plots. Additionally, the raw data generated from the iPSC1 line induced 

with 2i media was used by our collaborator Jun Min (UCSD) to model the gene regulatory 

network. I contribute with the GRN refinement by suggesting the exclusion of several genes 

with low expression levels (RPKMs) from the initial network, since these genes might not 

be biologically relevant. However, the GRN was entirely model by our collaborator. 

Briefly, Jun Ming used the DESeq2 function dds to rlog-transformed the data and 

performed differential expression analyses. A number of TFs differentially expressed at 

time points d1, d2 and d3 with respect to d0 were identified. A set of TF were selected due 

to high number or interactions with other genes determined from TRANSFAC database. If 

the TF was differentially expressed between more than one time points, the earliest time 

point of differential expression was selected for further analyses. The set of selected TFs 

were correlated (Pearson correlation R=0.95) to a subset of potential targets or interacting 

proteins, which were also differentially expressed at the same time point or with 1, 2 or 3 

days time delay. In parallel, our collaborator derived an interactome from the RNAseq data 

and compared these interactions with the potential interactions of the highly correlated TFs 
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and targets. Common TF-target or protein-protein interactions from the time delay 

correlation and the interactome were plotted in a GRN for visualization with GraphViz 

software and Cytoscape software (Figure 4.2).  

I interrogated the genes comprising the GRN for GO terms enrichment with DAVID as 

described in section 2.4 (Figure 4.5). 

Additionally, I plotted the gene expression counts with ggplot2 packages in R (figure 4.6).  

 

 
 

Figure 4.2. Scheme of the gene regulatory network modeling. TFs (blue) differentially expressed 

(complete circle) from d0 (yellow) at d1, d2 or d3 after NE induction were identified and the earliest 

time point of differential expression was selected (red). The gene targets (green) are mapped to the TF 

only if their expression is correlated (arrows) at the same time (d1) or with 1, 2, or 3 days time delay 

(d2, d3, d4) and if the targets are differentially regulated (complete circle) at the correlation time point.  

 
 

4.2.2. MYC inhibition assay 

Approximately 100,000 iPSCs were plated on each well of Nunclon delta surface 96 well 

plates (Thermo Scientific, 167008) with similar conditions as described in the section 2.1. 

Cells were grown for 24 hours with E8 media until they reached confluence. Confluent 

iPSCs were treated with doses of 30µM or 10µM final concentrations of the MYC small 
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molecule inhibitor 10058-F4 (Sigma Aldrich, F3680) or 0.01% of dimethyl sulfoxide 

(DMSO) in E8 media for 24 hours. After incubation, cells were observed for quality control 

and survival.  

In parallel, 100,000 iPSCs were plated in Nunclon 96 well plates and grown for 24 hours 

in E8 media until they reached confluence. Confluent cells were treated with 30µM or 

10µM of 10058-F4 or 0.01% DMSO in 2i neural induction media, which was changed 

every 24 hours. After 24, 48 and 72 hours of MYC inhibition treatment, a set of cells was 

fixed with 4% paraformaldehyde and used for immunocytochemistry analyses following 

procedures detailed in the section 2.8.   

Additionally, 1,500,000 iPSCs were plated in Nunc 6 well multidishes and incubated in E8 

media for 24 hours until they reached confluence. Confluent cells were treated with 2i 

induction media and 30µM or 10µM of 10058-F4 or 0.01% DMSO. Cells were checked for 

quality control and media was changed every 24 hours.  RNA was extracted from 2i-

induced cells treated with each dose of 10058-F4 or DMSO after 24, 48 and 72 hours. RNA 

extraction was as described in section 2.2. cDNA was synthesized from purified RNA and 

was used to analyze relative expression of SMARTA, CDH1 and TFAP2C through Q-PCR 

analyses as described in section 2.7. The reference sample was provided by the DMSO 

treatment at d1. 

4.3. Results 

4.3.1.  Gene regulatory network 

The GRN genes are depicted as nodes and their regulatory interaction as edges. Gene 

interactions can be DNA-protein or protein-protein. Selected TFs and genes from the 

TRANSFAC database are represented in green and their targets in yellow. Lines represent 
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bidirectional protein-protein interaction and lines with arrows TF-gene target interactions. 

Blue lines indicate negative correlation, whereas red lines show positive correlation. 

Regulatory interactions without time delay are represented with solid lines. Longer dashed 

lines and shorter dashed lines show time delay of 1 and 2 days, respectively. Dotted lines 

show time delay of 3 days with respect of the selected TF (Figure 4.3).  

 

 

Figure 4.3. PAX6 gene module shows: selected TF and genes (green) and targets or interacting 

proteins (yellow) with positively (red) or negatively (blue) correlations and their protein-protein 

interactions (lines with arrows) or TF-target regulatory interactions (lines with arrows) with time 

delay correlation of 0 (solid lines), 1 (long dashes), 2 (short dashes) and 3 days (dotted lines) between 

them.   

 
 
The GRN comprises 9 highly connected nodes (hubs) including MYC (40), JUN (32), 

SP3 (21), SMAD2 (19), FOS (16), CD6 (14), LEF1 (11), PAX6 (8) and HDAC6 (6)  - 

connectedness is shown in parenthesis (Figure 4.4). A full-size image of the GRN has 

been included in the Appendix 4.1 (CD-ROM). 
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The genes comprised in the GRN were interrogated for GO enrichment for biological 

process terms. The results show that the genes were enriched for “localization”, “response 

to stimulus”, “biological adhesion” and “locomotion” (Figure 4.5). Sub-ontologies, p-

values, number of genes for the corresponding term, fold enrichment and false discovery 

rate are described in the Appendix 4. 2. 

 

 

Figure 4.4. Gene regulatory network from d0 to d6 during neural induction. The GRN 

comprises 9 principal hubs (highlighted with a red circle) highly connected to TFs and genes. 
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Figure 4.5. Gene Ontology of the genes comprising the gene regulatory network. 

GO terms enrichment of the GRN genes. The key colour scale indicates the log10-

adjusted p-value, where the lower p-value is represented in dark red.  

 
 
Counts of MYC, PAX6, SMAD2 and DCD6 hubs show the expression patterns of these 

genes among the 3-iPSC lines (Figure 4.6). DE analyses indicate that MYC expression is 

significantly down-regulated at d1 while PAX6 expression is significantly up-regulated at 

d2 and expression of SMAD and CDC6 is significantly up-regulated at d3 and d2, 

respectively.  

    

Figure 4.6. MYC, PAX6, SMAD2 and CDC6 counts from time point d0 to d8. 

Expression patterns of iPSC1 (blue), iPSC2 (red) and iPSC3 (green) during 8 days of 

neural induction.  
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Figure 4.6. Continued 
 
 
 

The main hubs and genes directly connected to them in the GRN were interrogated for 

enrichment of GO terms (Figure 4.7). The hubs SP3, HDAC6, FOS, JUN and LEF1 did not 

present significant enrichment for any biological function term. The MYC hub and 

associated targets were significantly enriched for the terms “programmed cell death”, “cell 

proliferation” and “regulation of response to stress”. PAX6 and associated gene targets in 

the GRN were enriched for the terms “regulation of RNA biosynthetic process”, 

“regulation of transcription, DNA template”, “central nervous system development”, 

“sensory organ development”, “neural tube development” and “dorso-ventral pattern 

formation”. SMAD6 hub and GRN targets were enriched for “regulation of gene 

expression”, “regulation of RNA metabolic process”, “regulation of RNA biosynthetic 

process” and “regulation of transcription, DNA-templated”. The hub CDC6 and its 

interacting genes were enriched for the terms “regulation of cell cycle process”, “cell cycle 

phase transition”, “G1/S transition” and “DNA replication”. Sub-ontologies, p-values, 

number of genes for the corresponding term, fold enrichment and false discovery rate are 
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described in the Appendix 4.3 for MYC network, Appendix 4.4 for PAX6, Appendix 4.5 

for SMAD6 and Appendix 4.6 for CDC6.  

 

 

                  
 
 

 

                     
 

Figure 4.7. Gene Ontology of the genes interacting with MYC, PAX6, SMAD2 and 

CDC6 in the gene regulatory network. The key colour scale indicates the log10-adjusted 

p-value, where the lower p-value is represented in dark red. 
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Figure 4.7. Continued 
 
 

4.3.2.  MYC inhibition assay 

The GRN comprising the hub MYC and interacting genes is depicted on Figure 4.8. 

Importantly, several genes that are not connected directly with MYC in the GRN have been 

removed to facilitate visualization. Inferred gene interaction of the GRN can be validated 

by testing the predictions of the model to a specific interference. Intervention of the network 

can be achieved by different strategies such us CRISPRi, CRISPa and small molecule 

inhibitors, been the later the most affordable and relatively simpler technique. We selected 

the MYC hub to test the GNR predictions due to the availability of a small molecule 
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inhibitor (10058-F) that targets MYC-MAX interaction, preventing the regulation of MYC 

targets.  MYC hub is highly connected with several nodes of the GRN. Hence, inhibition 

of MYC might affect the expression of the genes directly connected to the hub in the 

network.  

 

Figure 4.8. Gene regulatory network of MYC target genes or interacting proteins. The majority of 

MYC targets or interactive proteins are positively correlated (red edges) with the hub. 40 MYC 

interactions (both DNA-protein and protein-protein) can be seen.  

 
 
 
Cells undergoing 2i neural induction were treated with 30µM or 10µM 10058-F MYC 

inhibitor or with DMSO and were fixed after d1, d2 and d3. The expression of pluripotency 

markers was analyzed by immunofluorescence for the pluripotency proteins, OCT4 and 

NANOG and for the NE markers, SOX11 and ZNF521. The results demonstrated that 

inhibition of MYC during d1, d2 and d3 of differentiation does not significantly change 

expression of OCT4, NANOG, SOX11 and ZNF521, as shown in Figures 4.9, 4.10, 4.11 

and 4.12. 
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Figure 4.9. OCT4 immunofluorescence analyses. A. Expression of pluripotency marker OCT4 

at d1, d2 and d3 after 2i neural induction with 30µM, 10µM 10058-F or DMSO treatment. Cell 

nuclei are stained with Hoescht 33342. B. Statistical analysis of immunofluorescence. The error 

bars represent the standard deviation among 3 technical replicates.  
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Figure 4.10. NANOG immunofluorescence analyses. A. Expression of pluripotency marker 

NANOG at d1, d2 and d3 of 2i neural induction with 30µM, 10µM 10058-F or DMSO treatment. 

Cell nuclei are stained with Hoescht 33342. B. Statistical analysis of immunofluorescence. The 

error bars represent the standard deviation among 3 technical replicates.  
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Figure 4.11. SOX11 immunofluorescence analyses. A. Expression of NE marker SOX11 at d1, 

d2 and d3 of 2i neural induction with 30µM, 10µM 10058-F or DMSO treatment. Cell nuclei are 

stained with Hoescht 33342. B. Statistical analysis of immunofluorescence. The error bars 

represent the standard deviation among 3 technical replicates. 
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Figure 4.12. ZNF521 immunofluorescence analyses. A. Expression of NE marker ZNF521 at 

d1, d2 and d3 of 2i neural induction with 30µM, 10µM 10058-F or DMSO treatment. Cell nuclei 

are stained with Hoescht 33342. B. Statistical analysis of immunofluorescence. The error bars 

represent the standard deviation among 3 technical replicates. 
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The genes SMARCA2, CDH1 and TFAP2C are positively correlated to the hub MYC in 

the GRN. MYC and SMARCA2 are first differentially down-regulated at d1 with no time 

delay, whereas CDH1 and TFAP2C are first down-regulated at d3 with 2 days time delay 

compared with MYC. Q-PCR analyzes of these genes expression after 2i neural induction 

in the presence of 30µM or 10µM of the MYC inhibitor F10058-F or DMSO indicated that 

CDH1 and TFAP2C are significantly more highly expressed in cells treated with 10µM 

10058-F compared with 30µM and DMSO at d1. SMARCA2, CDH1 and TFAP2C are 

significantly more highly expressed at in cells treated with 30µM 10058-F compared with 

10µM or with DMSO at d2. CDH1 is significantly more highly expressed in cells treated 

with 30µM 10058-F compared with 10µM and DMSO at d3 (Figure 4.13). Statistical 

analyses details are included in the Appendix 4.8 (CD-ROM).   

 

              

 

Figure 4.13. Real-time PCR analyses of SMARCA2, CDH1 and TFAP2C. Expression of 

SMARCA2, CDH1 and TFAP2C was quantified by Q-PCR at d1, d2 and d3 of neural induction 

in the presence of 10µM or 30µM F10058-F or DMSO.  
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4.4. Discussion  

4.4.1. Gene regulatory network modules 

We report for the first time a GRN comprising the gene regulatory interactions transversed 

during the differentiation of NESC from iPSC. A number of activated and down-regulated 

genes during different stages of NESC differentiation have been previously described in 

mammals, particularly using mouse as a model. However, interactions between these 

factors have not been deeply explored either in human or in mouse. The GRN generated by 

our collaborator Jun Ming GRN enables visualization of potential protein-protein and TF-

target interactions among selected TFs that are differentially expressed during early neural 

induction (d1, d2 and d3) and a sub-subset of correlated genes that are differentially 

expressed at the same day or with 1, 2 or 3 days delay. To identify the potential biological 

functions regulated by the genes comprising the GRN I interrogated them for enrichment 

of GO terms. The results indicated that the biological processes “localization”, “response 

to stimulus”, “biological adhesion” and “locomotion” or genes included in these terms 

might play a role during neural induction.  

I identify 9 hubs with high connectedness among the GRN that are considered modules. 7 

modules highly interact with each other and include MYC, FOS and JUN, possibly 

generating feedback circuitry. Expression of these modules might regulate specific or 

multiple biological functions required by the cell at particular developmental stages. MYC 

interacts with 44 genes forming the largest module. 40 genes are positively correlated with 

MYC, reflecting that their expression is also down-regulated during NESC differentiation. 

MYC and correlated genes such us MTA1 and ENO1 are rapidly down-regulated at d1 after 

neural induction, whereas others are down-regulated at d2 and d3. GO analyses of the MYC 
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module indicate that the biological processes “programed cell death”, “cell proliferation” 

and “regulation of response to stress” are enriched for genes comprised in the module. 

These biological processes play important roles during different developmental stages, 

including neural induction. Perhaps, the genes involved in these terms are necessary for the 

maintenance of the pluripotency state in iPSCs but are subsequently down-regulated during 

neural induction. A GRN study conducted during the tumorigenic transformation of human 

primary cells, show that activation of MYC induces the expression of several gene modules, 

which regulate the biological processes that drive the cell to a cancerous phenotype, 

including rRNA synthesis and chromatin remodelling (Malysheva et al. 2016). Among this 

GRN, MYC is connected with several genes including SMARCA2 and SMAD7, which are 

also connected to the MYC hub in our GRN. However, no other genes and hubs are 

common between these GRN. Possibly, the gene modules and cell biological functions 

necessary for the differentiation of tumorigenic cells and the maintenance of iPSC are not 

highly interconnected during this stage of tumour development. Furthermore, the sets of 

TF and genes and the inferred regulatory interactions between nodes might vary between 

GRNs due to the variability of the statistical and mathematical methods used by both 

studies. Additionally, the MYC is essential in human and mouse for the efficient 

reprograming of iPSC and for the maintenance of pluripotent stem cells. For instance, a 

GRN modelled from PSC from the mouse embryo depicted MYC as a central hub in a 

pluripotency GRN that integrates multiple gene modules, which modulate various 

biological processes such us cell cycle, metabolism and epigenetic remodelling and 

inhibition of differentiation genes (Fagnocchi et al., 2016; Fagnocchi & Zippo, 2017). The 

genes connected with MYC in the mouse pluripotency GRN are not directly connected with 

the MYC hub in the network modelled from our data. However, several of the genes 

interacting with MYC in our GRN, such as FGF2, SMARCA2 and AHR are necessary for 
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pluripotency, indicating that the MYC module might play a role in pluripotency 

maintenance of iPSC. It is likely that the genes comprised in the both GRN differ due to 

the different mechanism used for selecting the genes to model the networks. Hence, the 

genes included in the mouse pluripotent GRN might have been excluded from our data 

prior to the netbook modelling. For instance, it is possible that down-regulation of these 

genes is not necessary for human iPSC differentiation toward NESC lineage. Therefore, 

these genes were not significantly down-regulated in our data set and were not included in 

the GRN. However, these genes might also play a role in the maintenance of pluripotency 

in human iPSC. Additionally, genes included in the mouse pluripotency network, which 

are not directly connected with MYC are also highly expressed at day 0 in our data set, 

including NANOG, SOX2 and OCT4. However, the statistical analyses used to infer the 

interactions of the GRN indicated correlation of these genes with other modules different 

than MYC. 

The PAX6 hub is up-regulated after d2 of neural induction similarly to the majority of 

genes (8) interacting with the hub. GO analysis of the PAX6 module show enrichment for 

the terms “regulation of RNA biosynthetic process”, “regulation of transcription, DNA 

template”, “central nervous system development”, “sensory organ development”, “neural 

tube development” and “dorso-ventral pattern formation”. These regulatory functions 

might be required for activation and maintenance of the neural induction program. For 

instance, the 8 genes interacting with PAX6 in the GRN have been implicated in different 

steps of CNS development. Possibly, activation and interaction of genes within the module 

is necessary to initiate the sequential regulatory signals that direct neural induction. PAX6 

is highly expressed in NE cells derived from ESCs and directly from human foetuses and 

it is required for the neural induction, as demonstrated by known-down studies in human 

ESC (Zhang et al., 2010; Blake & Ziman, 2014). It has been suggested that PAX6 promotes 
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neural induction by inhibiting the pluripotency factors OCT4, NANOG and possibly by 

activating NE genes. Our results suggest that PAX6 might interact with the TFs RAX, 

GLI3, MEIS2, LHX2 and NR2F2 at d2 after 2i neural induction to promote the transition 

between PSC and NESC. Importantly, the gene module might interact with other genes not 

included in the network to modulate differentiation. Genome editing techniques such as 

CRISPR/CAS9 and CRIPSPRi would enable silencing of these TFs at specific times during 

neural induction to test the GRN predictions. A recent study, show that Pax6 is the central 

hub a GRN necessary for the activation and maintenance of radial glial cells and cortical 

neurons differentiated from mouse ESC. The results indicated that Pax6 hub activates 

neuronal genes and inhibits mesodermal and endodermal genes to ensure unidirectionality 

of the differentiation program (Sun et al., 2015; Thakurela et al., 2016). However, the genes 

include in this study were not comprised in our data set and GRN. For instance, neuronal 

genes included in the radial glial GRN, such as ASCL and NEUROG2, are expressed at 

low levels during NESC differentiation. Perhaps, these GRN is activated posteriorly to 

NESC differentiation and proceeds the regulatory interactions of PAX6 module described 

in this study. Aditionally, PAX6 is the central regulator of the mammalian lens 

developmental program. Analyses of the regulatory interaction of Pax6 during mouse lens 

development indicated that the TF directly activates modules of crystalline genes, cell cycle 

exit genes, Wnt signalling genes and extra cellular matrix genes, biological processes that 

might be required for lens differentiation (Sun et al., 2015; Antosova et al., 2016). 

However, these gene modules might not be required for NESC differentiation from iPSC 

in humans since the genes comprised in the modules are not interacting with PAX6 in the 

GRN modelled form our data. 

Similarly, the SMAD2 hub is differentially up-regulated at d3 of neural induction. SMAD2 

shows a connectedness of 19 and target genes are up- or down-regulated at either d6 or d8. 
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GO analyses shows enrichment for “regulation of gene expression”, “regulation of RNA 

metabolic process”, “regulation of RNA biosynthetic process” and “regulation of 

transcription, DNA-templated” terms. SMAD2 module might modulate changes in RNA 

processing, which impact DNA transcription after d3 of neural induction. These changes 

might be necessary for NE induction or for inhibition of genes that induce differentiation 

to other cell phenotypes such as pluripotency, but the precise mechanism remains to be 

investigated.   

CDC6 is initially up-regulated after d2 and is subsequently down-regulated after d3. CDC6 

interacts with 14 genes, all of which are down-regulated at d4 and d6. GO analysis reveals 

enrichment for “regulation of cell cycle process”, “cell cycle phase transition”, “G1/S 

transition” and “DNA replication” terms. Several studies have demonstrated that cell fate 

decisions are tightly synchronized with specific cell cycle profiles (Sakaue-Sawano et al., 

2008). For instance, in mouse and human ESCs, pluripotency is associated with a truncated 

G1 phase that lacks G1 checkpoint regulation. Increase in the length of G1 phase through 

CDK inhibition leads to spontaneous differentiation of ESC/iPSC, possibly by increasing 

the time of exposure to specification signals (Ruiz et al., 2011; Soufi & Dalton, 2016). 

Moreover, ESC initiates cell fate decisions at G1 state. Pluripotent cells at early G1 

differentiate into mesendoderm due to elevated expression of SMAD2/SMAD3 during this 

phase. Cells at late G1 acquire neural-ectoderm differentiation competence due to 

accumulation of cyclin D, which activates CDCK4/6 leading to phosphorylation and 

reduction of SMAD2/3 (Pauklin & Vallier, 2013, Soufi & Dalton, 2016). Additionally, it 

has been shown that neural progenitor cells have an extended G1 phase and short S phase 

during neuronal differentiation. For instance, truncated G1 and elongated S1 in neural 

progenitors leads to reduced production of cortical neurons, indicating that completion of 

G1 might be necessary for establishing the molecular program that directs neural 
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differentiation (Lanctot et al., 2017).  Possibly, down-regulation of gene modules enriched 

for “cell cycle phase transition” and “G1/S transition” at d4 and d6 enhances neural 

differentiation by promoting elongation of G1 phase or by a different mechanism through 

regulation of cell cycle progression. However, the precise means by which this gene module 

inhibits or promotes neural induction remains to be elucidated.  

4.4.2. MYC inhibition 

Validating gene-gene relationships inferred from the GRN can be achieved by testing the 

network predictions using specific interventions (Olsen et al., 2014). The small molecule 

inhibitor 10058-F inhibits MYC-MAX interaction preventing regulation of their gene 

targets. I inhibited MYC activity during the first 3 days of neural induction to identify 

possible effects in the expression of other genes of the GRN. Since the MYC module is 

highly connected with other GRN modules, I hypothesized that inhibition of MYC may 

affect expression of other genes within the GRN. The results indicated that MYC inhibition 

does not affect expression of other pluripotency markers, NANOG and OCT4, or NE 

markers, SOX11 and ZNF521. However, inhibition of MYC leads to an increase in 

expression of SMARCA2, CDH1 and TFAP2C after 2 days and CDH1 by d3. These factors 

are significantly down-regulated after 2 (SMARCA2) and 3 days (CDH1 and TFAP2C) of 

2i induction and are directly connected with MYC in the GRN. Importantly, MYC 

expression is differentially down-regulated at d1. Hence, initial levels of MYC during the 

first day of neural induction might be necessary to enhance down-regulation of SMARCA2, 

CDH1 and TFAP2C. Premature inhibition of MYC with 10058-F during 2i differentiation 

might prevent these regulatory mechanisms. Hence, the results suggest that MYC exerts a 

regulatory effect up-stream of these genes, validating the inferred connection between 

MYC and SMARCA2, TFAP2C and CDH1 in the GRN. It seems that MYC function is 
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compensated, possibly by other factors, at d3 for SMARCA and CDH1 inhibition but not 

for CDH1. Induction of MYC expression during the initial 3 days of 2i induction might 

provide additional data to infer MYC regulatory effects over the genes in the GRN module.  

4.4.3. Limitations 

GRNs are often modelled based heavily on known TF regulatory interactions. However, 

the gene expression patterns transversed during development are also regulated by post-

translational and epigenetic modifications. Incorporating these regulatory events in the 

GRN would vastly improve the GRN predictions; but requires elevated resources and 

extended periods of time due to the computational complexity of the models. Accordingly, 

epigenetic and post-translational modifications are rarely incorporated and are not included 

in the GRN modelled by our collaborators in this study. Hence, not all regulatory 

mechanisms that control the formation of specific gene product abundances are included. 

It is important to realize that this does not invalidate the network, just that certain 

interactions or edges may obscure undetected nodes. 

An enormous number of potential interactions arise from the data generated from high-

throughput technologies, increasing the complexity of the GRN topology. Filtering the data 

according to specific criteria is essential to reduce the dimensionality of the GRN. The 

GRN inferred by Jun Ming comprises only selected TFs that are highly connected with 

other genes. These interactions are based on prior knowledge of the regulatory functions of 

these factors and might exclude interactions with biologically relevant TF that are 

unknown. Additionally, the GRN nodes might interact with constitutively expressed genes 

that do not show differential expression during neural induction (these would be an example 

of undetected nodes – see above). Identification of genes that might be biologically 
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meaningful without prior knowledge of all relevant interactions remains challenging. 

Hence, the GRN shows potential causal relations between genes at different states of 

differentiation, but possible intermediate nodes are not evident in the network. 

Additionally, visualization of specific spatiotemporal states of the GRN may improve by 

integrating the time points and direction (up-regulation or down-regulation) of the TF 

differential expression. For future studies, I will to optimize the GRN topology by testing 

the GRN predictions through combinatorial gene activation and repression (using CRISPRi 

and CRISPRa). Additionally, I will perform ChIPseq and proteomic analyses would enable 

to continue the refinement of the GRN model.  

4.4.4. Conclusion 

Interdisciplinary collaboration between experimentalists and modellers enables 

computational modelling of GRN from large-scale transcriptional datasets. Accordingly, 

our collaborators Jun Min and Shankar Subramanian (UCSD) modelled a GRN from the 

high-throughput transcriptional datasets obtained from our experimental approaches. The 

GRN shows the potential causal relations of a set of selected TF with a subset of genes 

during different stages of NE differentiation. The regulatory interactions between these TF 

and genes lead to distinct network topologies at different stages of differentiation, 

representing dynamic changes in gene expression levels and connectivity. This network 

controls the different biological processes carried out during neural induction. I identified 

gene modules within the GRN and interrogated them GO analysis, which enabled 

determination of the distinct biological processes operative during different stages of 

development.  
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CHAPTER 5. Single cell RNAseq  

5.1 Introduction  

The development of techniques for single cell isolation, and cDNA synthesis and 

amplification from a small amount of starting RNA, enable quantitative analyses of the 

transcriptome at a single cell resolution (Tang et al., 2010, Poulin et al., 2016). These 

approaches revealed that isogenic cell populations exposed to identical micro-

environmental conditions could depict heterogeneous gene expression levels (Elowitz et 

al., 2002; Tang et al., 2010; Fujita et al., 2016). It has been proposed that transcriptional 

bursting is the major driver of gene expression variability. Individual genes show different 

burst kinetics, resulting in different gene product abundances among cells within a 

population, which might impact cell fate commitment decisions. Measurement of bulk 

expression of the population can obscure fluctuations in gene expression of single cells 

(Koern et al. 2005). Hence, considering only the average expression of a population could 

mask subpopulations with different burst kinetics, which may be fated to acquire different 

phenotypes or may represent intermediate states of differentiation (Islam et al. 2011; 

Trapnell et al. 2014; Buettner et al., 2015) (Figure 5.1). Additionally, to identify the 

regulatory relations among genes underlying different stages of development, it is 

important to determine that the interacting genes are expressed in the same individual cells 

(Moignard & Gottgens, 2014). 
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Figure 5.1. Gene expression profiles from single and bulk cells analyses. A. Expression 

analyzes from bulk cells show that all cells in the population express similar levels of a transcript 

(top left) giving a unimodal distribution (mid left); whereas single cell analyses indicate that some 

cells among the population show low levels of expression and other high levels of expression (top 

right), leading to a bimodal distribution (mid right). B Single cell expression analyses separate the 

expression of different transcripts in individual cells (bottom right) from co-expression of these 

transcripts in the cell population (bottom left) (Moignard & Gottgens, 2014). 

 

5.1.2. Transcriptional bursts 

Gene transcription comprises a series of biochemical reactions that are determined by 

molecular concentrations, diffusion rates and TF dynamics. Hence, factors extrinsic to the 

gene such as cell size, cell cycle phase and the concentrations of molecules required for 

transcription might add variability to the process (Munski et al., 2012; Schoech & Zabet, 

2014; Nicolas et al., 2017). However, the main source of transcriptional fluctuation among 

cells is intrinsic transcriptional bursts, which lead to variation of mRNA transcript 

production due to irregular gene transcription. Integration of quantitative expression of 

gene transcripts with mathematical models has led to the formulation of 2 main models to 
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explain transcriptional bursting. The one-state model suggests that mRNA is produced and 

degraded in a constant rate proportional to the number of mRNA molecules, where a 

Poisson distribution characterizes the distribution of mRNA among the cell population 

(Corrigan et al., 2016; Nicolas et al., 2017). The two-state model of gene regulation better 

explains the distribution of genes whose expression does not follow a Poisson distribution, 

which is common in higher eukaryotes. The model assumes that short episodes of RNA 

synthesis are followed by transcriptional silence at a constant rate (Islam et al., 2011; Fujita 

et al., 2016; Nicolas et al., 2017). In this model, promoters have 2 states: the “on” state 

when the promoter is randomly activated, producing a burst of mRNA transcripts, and an 

“off” state when the promoter is inactive, and no transcription occurs (Munski et al., 2012; 

Corrigan et al., 2016; Soltani & Sight, 2016). The two-states model generates variable 

distribution of mRNA transcripts depending on the burst size (number of transcripts 

produced in each burst) and frequency (frequency of burst occurrence) at a specific time 

point. For instance, short “on” and long “off” periods produce occasional mRNA busts with 

high variance and a long tailed distribution; whereas long periods of activation or 

inactivation generate bimodal distribution with clearly delineated “on” and “off” 

populations (Munski et al., 2012; Nicolas et al., 2017).   

The molecular mechanisms that drive transcriptional variability are not well understood. 

However, several studies have identified a number of factors that might influence the burst 

shape including local genomic environment, the nucleosome occupancy in the 

transcription-starting site (TSS), histone marks and DNA regulatory elements (Raj et al., 

2006; Muramoto et al., 2010; Dar et al., 2012; Fukaya et al., 2016; Nicolas et al., 2017; 

Hendy et al., 2017) (Figure 5.2).  These mechanisms lead to changes in TF availability at 

the DNA binding sites, suggesting that TFs availability impacts transcriptional bursting 

(Nicolas et al., 2017). In addition, it has been demonstrated that at lower concentrations of 
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TFs, the dominant source of variability in transcriptional bursts of gene targets is the 

frequency, whereas at higher concentrations of TFs the main difference is the size (Carey 

et al., 2013).  

 

  
Figure 5.2. Regulatory mechanism of transcriptional bursting. Transcriptional burst size and 

frequency are influenced by the local chromatin environment; histone modifications; number and 

affinity of promoters (large square) core regulatory elements (cis) (small squares); formation of loops 

with distal regulatory elements; and the availability of TF. These molecular mechanisms are depicted 

in boxes, where the color represents their role in regulating the size (blue) and the frequency (pink) 

of transcriptional bursts (Nicolas et al., 2017).   

 
 

Additionally, the transcriptional bursting frequency might fluctuate among cells during 

distinct cell cycle phases and different sized cells (Soltani & Sight, 2017). During the S 

phase of the cell cycle the cell duplicates the number of gene copies, which might double 

the mRNA transcripts produced. A recent study analyzed the transcription kinetics of 

Nanog and Oct4 in mouse PSCs throughout the cell cycle and demonstrated that frequency 

of transcriptional burst is reduced after DNA replication to compensate additional DNA 
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copies of cells in S and G2 phases. These findings suggest that cell cycle progression might 

influence the frequency of transcriptional bursts (Padovan- Merhar et al., 2015; Ben-Moshe 

& Itzkivitz, 2016; Skinner et al., 2016).  Similarly, it has been show that larger cells 

increase the burst size to maintain the appropriate mRNA abundances despite the cell size 

(Padovan- Merhar et al., 2015).  

 

Variability in gene transcriptional bursting among individual cells might have significant 

biological functionality in relation of cell fate commitment (Chang et al. 2008; Yan et al. 

2013; Trapnell et al. 2014). The biological relevance of tissue heterogeneity has been 

highlighted in a recent study that demonstrated that heterogeneous populations as early as 

the 4-cell mouse embryo bias cell fate decisions. The TF Sox21 show the highest 

heterogeneous expression at this stage, with lower Sox21 expressing cells acquiring extra-

embryonic fate, whereas cells expressing higher level of Sox21 were maintained in a 

pluripotent state (Goolam et al., 2016).  

5.1.3. Gene expression changes during the cell cycle 

During mitosis (M), several nuclear processes are disrupted by the displacement of multiple 

components from the chromatin, including several TFs, epigenetic marks and RNA Pol II 

polymerase (Pol II), and the dissociation of enhancers-promoter interactions. Dissociation 

of these factors leads to interruption of RNA synthesis (Young et al., 2007; Hsiung et al., 

2016; Liu et al., 2017). However, specific regions of the mitotic chromatin remain 

associated with particular histone marks and TFs. Maintenance of these genes during 

mitosis is referred as bookmarking. TFs and epigenetic marks might pass to the newly born 

cell facilitating displacement and recruitment of other TFs, providing an inheritance 

mechanism (Wang & Higgins, 2013a; Liu et al., 2017). Subsequently, during late telophase 
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Pol II and global TFs are recruited to the newly formed cell nuclei and the cell restarts RNA 

synthesis (Prasanth et al., 2003; Hsiung et al., 2016). The transcription of genes expressed 

during interphase is progressively reactivated during G1 phase. However, a few genes 

important for cellular functions such as housekeeping are preferentially re-activated earlier 

during M/G1 transition (Fukuoka et al., 2012). Additionally, a recent study reported that 

during the first rounds of transcription after mitosis at G1, the majority of activated genes 

are transcribed at their highest levels during cell cycle. M/G1 transcriptional peak might 

occur heterogeneously among cells and might increase transcriptional differences among 

the cell population (Hsiung et al., 2016).   

 

Heterogeneous gene expression results in variability of mRNA and protein levels within 

the cell population leading to different rates of cell cycle progression among individual 

cells (Matson & Cook, 2017). Additionally, unequal distribution of RNA, proteins, 

metabolites and organelles might contribute to cell cycle differences among cells, which 

remains for more than two cell cycles. Hence, proliferation or exit from the cell cycle 

decisions are made individually by each cell of the population, leading to distinct 

subpopulations with different proliferation dynamics. A cell population might comprise 

proliferating, quiescent or senescent cells, which are evident only with single cell analyses 

(Sakaue-Sawano et al., 2008; Overton et al., 2014; Matson & Cook, 2017).  

 

Several studies have reported that cell cycle progression is strongly related with cell fate 

choice. The cell cycle machinery might orchestrate maintenance of pluripotency or cell 

specification to particular cell types during different phases. As mentioned in Chapter 4, 

transition trough G1 phase establishes a window of opportunity for cell cycle exit and 

differentiation. hESCs differentiate into mesendoderm during early G1 phase, whereas cells 
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in late G1 acquire neuroectoderm fate (Pauklin & Vallier, 2013, Soufi & Dalton, 2016). 

Furthermore, it has recently been reported that during S and G2 phases, the damage 

checkpoint factors ATR/ATM and cyclin B enhance TGF-β/Nodal activity, establishing an 

intrinsic propensity towards pluripotency in hESCs. These mechanisms might potentiate 

DNA damage repair since damage repair proteins are largely expressed in ESCs compared 

to differentiating cells; additionally, if the damage is not repairable, ESCs undergo 

apoptosis effectively since they have lower apoptotic threshold than differentiating cells. 

Restriction of ATR/ATM during G1 phase enables the inhibition of pluripotency, leading 

to differentiation. Hence, these studies demonstrated that the molecular mechanism 

underlying specific cell cycle stages direct selective preference toward pluripotency or 

differentiation in hESCs (Gonzales et al., 2015; Vallier, 2015) (Figure 5.3).  

 
 

Figure 5.3. Pluripotency and differentiation during the cell cycle. During early G1, cells tend to 

differentiate into endoderm due to the expression of SMAD2/3, whereas at late G1 accumulation of 

cyclin D and activation of CDK4/6 leads to phosphorylation of SMAD2/3 and acquisition of 

neuroectoderm lineage.  During S and G2 phases ATR/ATM kinases enhance TGF-β/Nodal signaling 

promoting pluripotency maintenance (Vallier, 2015).  

 

For this study we used single cell analyses to compare the expression patterns of individual 

cells at d8 after neural induction, to assess population heterogeneity and identify potential 
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cell sub-populations that may be primed to acquire different cell phenotypes or may 

represent novel transitional states in the NESCs population. 

5.2. Methods 

5.2.1. Single cell RNAseq 

A confluent well from a Nunc 6 well plated with around 3,000,000 cells that were neural 

induced using 2i for 8 days was used for a single cell RNAseq assay. Media was removed, 

and the cells were incubated for 4 minutes at 37°C with 1ml of accutase. After incubation, 

cells were detached from the well by pipetting 4 times. The accutase cell suspension was 

transferred to a 50ml tube containing 6ml of DMEM/F12 without phenol red (Thermo 

Fisher, 21041025). Cells were centrifuged at 900rpm for 2 minutes and the media was 

removed. Cells were re-suspended in 1ml of DMEM/F12 and filtered through a 4µm cell 

strainer (Falcon, 08-771-1). Cells were counted and diluted with DMEM/F12 to obtain 

approximately 500,000cells/ml. A final concentration of 500ng/ml of DAPI (Sigma 

Aldrich, D9542) was added to the cell suspension to check for viability. Cell sorting was 

performed in the cell sorting facilities of the Weatherall Institute of Molecular Medicine 

(WIMM) at the University of Oxford. Single cells were sorted using a BD FACS ARIA III 

instrument considering single cells, viability, size and granularity by the WIMM technician. 

Sorted single cells were collected into 4µl of Smart-seq2 lysis buffer containing 2.5mM 

dNTPs (Thermo-Fisher) and 2.5µM Oligo-dT30VN (Biomers.net) in a 4°C cooled 96 well 

plate. Libraries were prepared and sequenced by our collaborator Dr. Neil Ashley according 

to the standard procedures of the WIMM (Picelli et al., 2914).  Briefly, single cell cDNA 

synthesis was performed using SuperScript II (Invitrogen, 18064-014) and was amplified 

with the KAPA Hifi Hot Start Ready Mix KAPA (Biosystems, KK2601). Smart-seq2 
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cDNA was end-paired, A-tailed and commercial adapters and indexes were ligated with 

the Illumina Nextera XT Kit (Illumina, FC-131-1024). Samples were pooled and sequenced 

with the NextSeq® 500/550 High Output Kit v2 (FC 404-2005) in a NextSeq 550 system 

by our collaborator Jerome Nicod in the Wellcome Trust Centre for Human Genetics. 95 

Nextera samples were sequenced in one lane at a combined depth of 400,000,000 reads 

(approximately, 4,000,000 reads per cell). FastQ files were aligned to a reference genome 

trough the Tuxedo pipeline by our collaborator Leo Perfect (Price laboratory).  

5.2.2. Single cell analysis 

FASTQ files were aligned to the GENCODE human genome release 24 (GRCh38.p5) 

concatenated to the ERCC RNA spike-in FASTA file using Tophat (ref). The “no novel 

junctions” option was selected to restrict alignment to genes contained in the GENCODE 

human transcriptome annotation release 24. Cuffnorm was used to calculate FPKMs. A 

Pearson’s correlation analysis was performed with the RPKMs obtained from the bulk 

RNAseq data at d8 from the iPSC1 and the FPKMs from the single cell RNAseq data. The 

correlation was calculated with Prism package of GraphPad software. Raw read counts 

were extracted from the BAM files in R using the summarizeOverlaps function from the 

GenomicFeatures package in Bioconductor. The raw counts were adjusted for the size of 

the library and the gene and were log2 normalized with the dependency EdgeR in the 

package “scater 1.4.0” in RStudio. Quality control was assessed with the function QC 

metrics. The quality control figures, gene expression plots and PCAs were performed the 

package “scater” in RStudio with the functions plotQC, plotPCA and plotExpression. 
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5.3. Results 

5.3.1. Correlation between bulk RNAseq and single cell RNAseq data 

RPKMs obtained from bulk RNAseq analyses from the cell line iPSC1 at d8 were 

compared with the average FPKMs from the single cell RNAseq analyses from the same 

time point and cell line using a Pearson’s correlation. A significant positive correlation 

(R=0.56, p < 0.0001) was observed between the 19218 genes compared between the 2 data 

sets (Figure 5.4). The results indicate that the gene expression of the genes obtained by bulk 

RNAseq analyses is significantly associated to the single cell RNAseq data.  

 

Figure 5.4. Correlation between bulk RNAseq data and single cells RNAseq 

data. RPKMs from bulk RNAseq analyses and average FPKMs from single cells 

RNAseq for 19,218 genes at are depicted with circles.  
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5.3.2. Single cell RNAseq quality control  

Quality control (QC) analyses of single cell RNAseq data were performed to identify low 

quality cells including cells with a high percentage of reads corresponding to the RNA 

spike-ins, which suggest capture of a dead cell or a failure during library preparation. The 

average expression of the gene among all cells, the proportion of cells expressing the gene 

and the counts of control genes (genes constitutively expressed), mitochondrial genes and 

spike-ins are computed to determine low abundance genes and dropout rates (MacCarthy 

et al., 2017). 

Plotting the distribution of reads among genes identifies libraries where a reduced number 

of genes contain the majority of counts and libraries where counts are evenly distributed 

among the genes. The proportion of the library that accounted for the 6000 most highly 

expressed genes was analyzed. The results indicated that the majority of counts are evenly 

distributed among genes. However, for one cell the majority of counts corresponded to a 

reduced number of genes, which possibly are the RNA spike-ins. Hence, this cell was 

excluded from down-stream analyses (Figure 5.5). 
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Figure 5.5. Cumulative proportion of the library accounted for the 6000 most expressed 

genes. The cumulative proportion of the library (total counts) is shown in the Y-axis and the 6000 

most expressed genes are show in the X-axis. The cells are represented with different colors. The 

arrow shows the cell where the majority of counts correspond to a reduced number of genes.  

 
 
The 50 most highly expressed genes in healthy cells are often mitochondrial, ribosomal, 

constitutively expressed genes and RNA spike-ins (when used for RNAseq). Analyses of 

the expression of these genes thus enable verification that transcripts levels are behaving 

as expected. The results indicate that mitochondrial genes such us MT-CO1, MT-CO2 and 

MT-CO3; ribosomal genes including RPS19, RPS2 and RPL7; constitutively expressed 
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genes such us ACTB, GAPDH and UBC; and RNA spike-ins are among the highest 

expressed (Figure 5.6).  

 
                              

Figure 5.6. 50 most highly expressed genes. The percentage of the total counts is indicated 

in the X-axis and the genes names in the Y-axis. The circles show the percentage of counts 

among all cells and the bars represent the gene counts for individual cells. The 50 highly 

expressed genes account for the 16.6% of the total counts across all cells.    

 
 

5.3.3. Single cell RNAseq data analysis 

PCA and t-Distributed Stochastic Neighbour Embedding (t-SNE) analyses were preformed 

to reduce data dimensionality, determine the degree of heterogeneity in the dataset and 
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identify potential subpopulations. PCA is a linear dimensionality reduction method, 

whereas t-SNE is a non-linear method, both are widely used for single cell RNA analyses. 

The gene expression data from 93 high quality cells was used for these analyses. The PCA 

results indicated that the PC1 corresponds to 10% of the variance among cells and PC2 to 

2.5%. Neither component shows segregation of cells into obvious clusters among the 

population (Figure 5.7).  

 

 
 

Figure 5.7. Principal component analyses of the single cell RNAseq data. PC1 

is show in the X-axis and indicates the 10% of variance among cells. The PC2 is 

show in the Y-axis and represents 2.5% of variance. Each cell is represented as a 

dot in the plot.  
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The t-SNE analyses shown the multidimensional data mapped to 2 dimensions, with no 

obvious clustering among the cells in the population (Figure 5.8).  

 

 
Figure 5.8. t-SNE analyses of the single cell RNAseq data. Dimension 1 is show 

in X-axis and dimension 2 in Y-axis. The cells are represented as dots in the plot  

 
 
 

Cells in different cell cycle phases generate different levels of mRNA transcripts and have 

different gene expression profiles. Hence, we analyzed the expression of genes that regulate 

the cell cycle to identify potential differential expression across the cells. The results 

indicate that expression of the genes CCNB2, CDK1, CCNB1, CDC6, CDK2 and GMNN 

is bimodally distributed (Figure 5.9).  
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Figure 5.9. Expression of cell cycle genes in individual cells. Violin plots show the expression 

of the cell cycle regulators CCNB2, CDK1, CCNB1, CDC6, CDK2 and GMNN represented with 

different colors. Individual cells are shown as dots in the plots. The Y-axis shows the gene 

expression levels (log2 counts adjusted for the library and gene size).  

 
 
 
A PCA showing the expression levels of CDK1, CDK2, CCNB1, CCNB2, CDC6 and 

GMNN cell cycle regulators was generated to determine if the heterogeneous expression 

of these genes across the cell population is related the to degree of separation of cells across 

PC1 or PC2 (Figures 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15.). The results suggest that the 

majority of cells with high expression values of these genes are slightly segregated from 

the cells expressing lower values of the genes across PC1.   
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Figure 5.10. PCA depicting expression levels of CDK1. The color key shows CDK1 

expression, where purple indicates low expression and yellow high expression. Individual 

cells are represented as dots in the plot. PC1 is show in the X-axis and PC2 Y-axis. 

 

 

Figure 5.11. PCA depicting expression levels of CDK2. The color key shows CDK2 

expression, where purple indicates low expression and yellow high expression. Individual cells 

are represented as dots in the plot 
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Figure 5.12. PCA depicting expression levels of CCNB1. The color key shows CCNB1 

expression, where purple indicates low expression and yellow high expression. Individual 

cells are represented as dots in the plot.  

 

 

Figure 5.13. PCA depicting expression levels of CCNB2. The color key shows CCNB2 

expression, where purple indicates low expression and yellow high expression. Individual 

cells are represented as dots in the plot.  
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Figure 5.14. PCA depicting expression levels of CDC6. The color key shows CDC6 

expression, where purple indicates low expression and yellow high expression. 

Individual cells are represented as dots in the plot.  

 

 

Figure 5.15. PCA depicting expression levels of GMNN. The color key shows GMNN 

expression, where purple indicates low expression and yellow high expression. Individual 

cells are represented as dots in the plot. 
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Expression of neuroectodermal markers was analyzed to determine if all cells of the 

population at d8 express these genes. The results indicated that the majority of cells express 

high levels of PAX6 and SOX11. However, a number of cells show an absence of SOX11 

expression, indicating a bimodal distribution. The expression of ZEB2 and ZNF521 is 

detected in a range from 0 to high expression levels across the population. The expression 

of the genes NR2F2 and NESTIN is bimodally distributed, where the majority of cells show 

high expression levels and another cluster shows low or no expression (Figure 5.16). 

 

 

Figure 5.16. Expression of neuroectodermal markers in individual cells. Violin plots show 

expression of the neuroectodermal markers ZEB2, SOX11, ZNF521, NR2F2, PAX6 and 

NESTIN, represented with different colors. Individual cells are shown as dots in the plots. The 

Y-axis shows the gene expression levels (log2 counts adjusted for the library and gene size).  
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Similarly, expression of neuroectodermal precursors was analyzed in individual cells. The 

results indicated that expression of IRX3, ZIC3 and FOXD4 is not detected in the majority 

of the cells. Expression of the genes ZIC2 and SOX3 is detected in a range from zero to 

high, whereas expression of GMNN is bimodally distributed (Figure 5.17). 

 

 

Figure 5.17. Expression of neuroectodermal precursor markers in individual cells. Violin 

plots show expression of the neuroectodermal precursor markers GMNN, ZIC2, SOX3, IRX3, 

ZIC3 and FOXD4 represented with different colors. Individual cells are shown as dots in the 

plots. The Y-axis shows the gene expression levels (log2 counts adjusted for the library and gene 

size).  

 

Analyses of expression of pluripotency markers in individual cells indicated that the genes 

NANOG, OCT4 and ZFP42 are not expressed or detected in low levels across all cells in 

the population, whereas no expression was detected for UTF1. MYC expression is 

bimodally distributed among the cells in the population.  The expression of the genes ZIC2 
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and SOX3 is detected in a range from zero to high expression, whereas expression of 

GMNN is bimodally distributed (Figure 5.18). 

 

 

Figure 5.18. Expression of pluripotency markers in individual cells. Violin plots show 

expression of the pluripotency markers MYC, NANOG, OCT4, ZFP42 and UTF1 represented 

with different colors. Individual cells are shown as dots in the plots. The  Y-axis shows the gene 

expression levels (log2 counts adjusted for the library and gene size).  

 
 
 
Additionally, expression of genes most highly up-regulated from time points d6 to d8 in 

the bulk cells analyses, was analyzed to determine if expression of these genes increased 

in all cells of the population. The results show that expression of DMRTA2, ABCG2, 

ALDH1A1 and CCK is not detected in the majority of cells and that high expression levels 

are detected only in a minority of cells. The gene TNFSF15 is expressed at low levels or 

not at all, whereas WNT2B expression is bimodally distributed (Figure 5.19).  
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Figure 5.19. Individual cells expression of the genes most highly up-regulated from time 

point d6 to d8 in bulk analyses. Violin plots show expression of DMRTA2, ABDG2, 

ALDH1A1, CCK, TNFSF15 and WNT2B the genes most highly up-regulated from d6 to d8 in 

bulk analyses. The Y-axis shows the gene expression levels (log2 counts adjusted for the library 

and gene size).  

  

 

5.4. Discussion 

Single cell RNAseq studies have shown that seemingly homogeneous cell populations 

comprise cells with variability in gene expression, protein abundances and potency to 

differentiate into specific phenotypes (Shalek et al., 2013). Cells captured at the same time 

might include subpopulations with intermediate differentiation states or subpopulations of 

cells fated to distinct phenotypes, which can only be identified by single cell studies. Hence, 

we performed single cell RNAseq analysis to assess transcriptional heterogeneity in iPSCs 

derived NESCs, which might be masked in the bulk cells analyses.  
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Dimensionality reduction techniques such as PCA and t-SNE enable intuitive visualization 

of similarities and differences among individual cells within a population (McCarthy et al., 

2017). The results indicate that after 8 days of neural induction the NESC population is 

highly homogeneous. Variance across PC1, which explains 10% of the variance across 

cells, appears to be driven by differential expression of genes that regulate cell cycle 

progression. The cell cycle regulators CCNB2, CDK1, CCNB1, CDC6, CDK2 and GMNN 

are either highly expressed or lowly expressed forming 2 adjacent clusters along PC1. 

Possibly, cells comprising the NESC population are progressing through different phases 

of the cell cycle, which leads to bimodal distribution of expression levels of these genes. 

Global transcriptional variability during cell cycle occurs because genes are activated or 

inhibited in a specific order during different cell cycle phases. For instance, during mitosis 

global transcription is interrupted leading to a decrease of mRNA transcript abundances. 

The expression of the majority of genes is re-activated during early G1 depicting a peak of 

expression (Fukuoka et al., 2012; Hsiung et al., 2016). As the cell cycle proceeds, three 

waves of expression during G1/S, G2/M and M/G1 phases regulate the molecular events 

that drive progression to the next phase (Bertoli et al., 2013). During S phase, DNA is 

replicated, which might lead to the production of double the amount of mRNA transcripts 

(Padovan- Merhar et al., 2015). Hence, variable gene product abundances are produced 

during particular stages of the cell cycle, and this seems to represent the major partition of 

the NESC population. Correlation results suggest that the expression of single cells at d8 

after neural induction closely resemble that of the bulk transcriptome captured at the same 

stage. Single cell data depicted high homogeneity among the cell population, aside from 

that represented by changes in cell cycle phase, thus bulk data can be interpreted without 

the confound of population heterogeneity.  
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Similarly, analyses of NE markers revealed variability in gene expression patterns across 

NESC at d8. Immunofluorescence analyses (section 3.3.3) of ZEB2, ZNF521, NR2F2, 

PAX6 and NESTIN show that the majority of cells are expressing high levels of these 

proteins. However, a reduced number of cells in the population are either expressing low 

levels or not expressing these factors, suggesting that the heterogeneous expression of these 

specific genes among the population is reflected at a protein level. However, a percentage 

of cells with low intensity staining levels might have been incorrectly count as negative, 

due to the high intensity threshold set during the data analyses to discriminate positively 

stained cells from non-specific staining. Additionally, transcriptional burst and fluctuation 

of different biochemical processes including transcription, translation kinetics, mRNA and 

protein stability and degradation rates might contribute to the differential expression levels 

observed trough immunofluorescence assays. Alternatively, the population might include 

cells at different developmental stages or acquiring different phenotypes, thus expressing 

different levels of these genes.  

The bimodal distribution of the genes expression at an mRNA levels, determined from 

single cells RNA sequencing, could be related to variability of the transcriptional bursting 

frequency. For instance, a recent study demonstrated that the transcriptional burst 

frequency of a set of genes bound to the polycomb repressive complex (PRC) was lower 

compared with active genes not bound by PRC. Genes with lower frequency of variation 

including Klf4, Tbx3 and Lefty2 show bimodal distribution, whereas genes with higher 

bust frequency such us Oct4 and Sox2 depicted unimodal distribution in mESCs (Kar et 

al., 2017). Possibly, bimodally distributed NE markers have low frequency transcriptional 

bursts and cells were captured and cluster together during a long “on” activation period or 

“off” transcriptional inactive periods. It is also feasible that the cell population comprises 

two sub-populations primed to acquire different fate or transitioning between distinct 
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neural differentiation stages. Additionally, the majority of single cell RNAseq data presents 

high frequency of dropout events, where no gene counts are observed in a cell where the 

gene is actually expressed. Dropout events occur when low starting amounts of mRNA 

transcripts are “lost” during library preparation and are consequently excluded from 

sequencing data (Kharchenko et al., 2014; McCarthy et al., 2017; Vallejos et al., 2017). 

Therefore, high dropout events are more frequent in, but not exclusive to, genes with low 

expression. Dropout events could also contribute to the bimodal expression of the NE 

markers observed in the d8 NESCs. However, immunofluorescence assays show that 

SOX11, NR2F2 and NESTIN proteins are not detected in all cells of the population, 

suggesting that heterogeneous expression of these genes is not entirely caused by technical 

noise. Similarly, the NE markers ZEB2 and ZNF521 show variable expression with 

continuous changes from high to low transcript amounts. Possibly, these genes depict 

different transcriptional bursts sizes among the cell population. Additionally, expression of 

these genes might be activated gradually during differentiation, leading to variable 

expression in cells transitioning through different developmental stages. However, the 

global gene expression patterns across the population are homogeneous, indicating that 

cells are not forming defined clusters that might drive differences in cell fate decisions and 

suggesting that cells are progressing through similar developmental trajectories.  

Single cell analyses show that the NE precursor factors IRX3, ZIC3 and FOXD4 and the 

pluripotency markers NANOG, OCT4, ZFP42 and UTF1 are not expressed in the majority 

of cells at d8 in human iPSC derived NESCs, as observed in the bulk transcriptome analysis 

at the same stage. Additionally, the NE progenitors SOX3 and ZIC2 are expressed from 

high to low levels at d8 across single cells, whereas GMNN and the pluripotency marker 

MYC showed a bimodal distribution, which might result from differences in the 

transcriptional burst shape, cell cycle progression or developmental stages. In bulk cell 



 
196 

analyses GMNN, ZIC2, SOX3 are highly expressed at d8, whereas MYC is expressed at 

low levels. 

The RNAseq data from bulk analyses on the cell line iPSC1 show that the genes DMRTA2, 

ABDG2, ALDH1A1, CCK, TNFSF15 and WNT2B are the most highly up-regulated from 

d6 to d8. Interestingly, single cell data analyses at d8 from the same cell line show that 

these transcripts are either not detected or expressed in low levels in the majority of 

individual cells. The results indicated that the gene expression data from single cells and 

bulk cell is highly co-related. Thus, the expression of these genes at a single cell level might 

reflect the gene expression of the individual cells of the population evaluated trough bulk 

analyses. The results suggest that the averaged gene expression depicted in bulk analyses 

might mask the transcriptional events occurring in subpopulations of cells. GRN modelling 

is largely based on bulk expression data, assuming that differentially expressed genes are 

activated or inhibited in the majority of cells. Hence, these results highlight the importance 

of determining that the nodes of a GRN are expressed in the same cell, to validate the 

inferred regulatory connections and refine the GRN. Therefore, single cell RNA 

sequencing analyses during different time points of NESC differentiation would enable 

determine if the GRN nodes interacting with no time delay are expressed in the same cell, 

allowing to greatly refine the GRN interactions.  However, due to the elevated cost of single 

cell RNA sequence assays, these analyses were not performed this study.  

5.5. Limitations 

The development of bioinformatics tools to analyse single cell datasets enables 

determination of level of gene expression at a specific time point in a single cell, but this 

level of resolution comes with an increase in technical noise (McCarthy et al., 2017). Thus, 
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quality control and normalization are critical to estimate and reduce the technical noise of 

the dataset. However, tools to identify and remove dropout events are limited. Hence, the 

major technological challenge of single cell RNAseq analyses is to improve sensitivity and 

accuracy to separate technical noise from intrinsic heterogeneous expression. These 

techniques are being developed and will vastly improve single cell clustering and data 

visualization analyses. Similarly, an important source of biological noise is the cell cycle, 

which generates variability in the gene expression as cells progressing through different 

cell cycle phases, which might obscure other meaningful biological signals in the data. 

However, current methods to remove the cell cycle effect generate a significant risk of 

removing other components of interest (Barron & Li, 2016). Additionally, cell isolation, 

reverse transcription, cDNA synthesis, library preparation and sequencing are expensive 

techniques, which restricts the number of cells, time points and treatments that can be 

feasibly analyzed.  

5.6. Conclusions 

After 8 days of neural induction the NESC population is highly homogeneous with no 

evidence of clustering. The principal source of variability among cells appears to be related 

to cell cycle progression. Additionally, we show that even if the expression levels of the 

bulk analyses are highly correlated with the averaged quantification of single cells 

transcripts, bulk analyses mask substantial differences occurring at single cell level. These 

differences should be considered for inferring relations among genes in a GRN to confirm 

that the nodes are expressed in the same cell.  
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CHAPTER 6. General Discussion  

The scope of this study was to discover the gene expression patterns underlying neural 

induction in human iPSCs and ESCs; and to identify TFs that orchestrate acquisition of 

NESC fate. Most emphasis in PSC studies has been on analyzing the differentiation of 

neural progenitors to specific neuronal phenotypes focusing on neuronal subtypes 

associated with developmental disorders. Neural induction is the first step of CNS 

development and there is abundant evidence to suggest that fate specification occurs during 

this stage. Hence, the gene expression and regulatory interactions generated during NE 

differentiation control the progressive restrictions in cell fate that drive cell competence 

towards neural and neuronal differentiation. However, the molecular events that cause 

human ESC/iPSCs to become neural progenitors have not been deeply studied (Neely et 

al., 2012; Moody et al., 2013; Kamiya et al., 2014). Knowledge of the initial gene 

expression patterns that drive neural induction in iPSCs greatly improves our knowledge 

about this critical stage of development in humans and identifies the first molecular events 

that drive both normal neurodevelopment and aberrant differentiation leading to 

neurodevelopmental disorders.    

For this study, neural differentiation was induced in 3 iPSC and 1 ESC line by 

recapitulating the developmental cues identified from animal models. Mouse NE 

differentiation initiates with inhibition of a BMP and TGFβ from the “node” to the dorsal 

region of the ectoderm (Klein & Moody, 2015). Similarly, neural induction in ESC/iPSC 

is initiated by inhibiting SMAD signaling trough the addition of small molecule inhibitors 

(2i). The resulting data indicated that ESCs and iPSCs lines with different genetic 

background and iPSC lines reprogramed with distinct methods generated similar transcript 

levels and gene expression patterns during neural induction (Figure 3.2). These results 
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demonstrate that the protocol used in this study is highly reproducible for generating 

NESCs and that iPSC constitute a remarkable tool to recapitulate in vitro molecular 

mechanisms that drive pluripotent stem cells toward a neural fate.  

After 2i induction ESC/iPSC, which represent Epi cells during human development, 

maintain transcription of pluripotency markers and genes that regulate cell biological 

functions necessary for pluripotency until d2 after induction (Figures 3.12 and 3.13). 

Following down-regulation of pluripotency genes, thousands of genes are activated 

including NE markers, genes related with other stages of the CNS differentiation and other 

genes that have not been previously related with the CNS development and could be used 

as novel NE markers (Figures 3.10 and 3.11). Activation of this large number of genes is 

necessary to initiate and maintain NESCs differentiation, inhibit the pluripotency program 

and inhibit pathways that drive differentiation towards other phenotypes. The neural 

induction program comprises genes that are up-regulated from d2 to d8 and also genes that 

have peaks of expression during different time points during neural induction (Figure 3.9). 

GO analyses of genes associated with specific expression profiles, indicated that these gene 

modules regulate different cell molecular functions during neural induction that are 

necessary to promote the transition from pluripotency to neural fate (Figure 3.14). These 

gene modules are additionally required during other developmental stages such as forebrain 

development and synapse formation. Among these genes GMNN, and ZIC2 have a peak of 

expression at d2, SOX11 is up-regulated from d3 and SOX3 is highly expressed at d8 

(Figure 3.4). In Xenopus, FoxD4 induces the expression of Gmnn and Zic2 and later the 

expression of Sox11 (Lee et al., 2014). In mouse, Foxd4 shows a peak of expression in 

NESC and might regulate nueral fate acquisition by inhibiting pluripotency markers and 

promoting the expression of Gmnn and Zic2, similarly than in Xenopus (Gaur et al., 2016; 

Sherman et al., 2017). Similarly, Gmm promotes neural differentiation in mouse by 
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promoting histone acetylation in neural genes and by activating neural development 

regulators in association with Zic1 (Lim et al., 2011; Sankar et al., 2016). The study results 

suggest that the sequential activation of these genes expression and their function is 

conserved across species during embryonic development. However, in humans these 

markers are likely to be induced by different factors since FOXD4 is not expressed during 

NESCs induction. In Xenopus, transition between NE progenitors and NE cells depends on 

inhibition of Sox3, Sox2 and Sox11 family members and up-regulation of Zic and Irx 

factors that promote expression bHLH proneural factors in neural progenitors (Lee et al., 

2014). Studies in mouse and chick embryos suggest that Sox1, Sox2 and Sox3 factors are 

expressed in most neural precursors and are necessary to maintain the cells in a progenitor 

state, whereas Sox11 is activated later in neural progenitors and differentiating neurons 

(Bergsland et al., 2011; Lee et al., 2014). The results show that IRX1, IRX3 and ZIC1 

genes were not detected during neural induction in human PSCs, whereas IRX2 and ZIC3 

have a peak of expression at d2 and are subsequently down-regulated. Additionally, SOX2, 

SOX3 and SOX11 are activated during different stages of NE induction and remain active 

in NESCs at day 8 (Figure 3.4). The results indicate that the sequential expression of IRX, 

ZIC and SOX family factors are activated in a different manner than in Xenopus, suggesting 

specie-specific differences and highlighting the necessity to use human cells to analyze 

human neural development. However, similarly than in mouse and Xenopus, the TF SOX1, 

SOX2, SOX3 and SOX11 are actively expressed in NESC. Factors required for both 

pluripotency and neural differentiation such us SOX2 and NESTIN show high levels of 

expression during the course of neural induction, validating their role in the maintenance 

of pluripotency and promotion of neural differentiation in humans (Figure 3.4).  

Further culture of NESCs leads to formation of rosettes around d12, whose morphology 

and cell composition resembles that of the neural tube. The gene expression data show that 
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at d8 cells do not express polarization markers necessary for the formation of rosettes 

(Figure 3.21). Hence, activation of the genes necessary for polarization and rosette 

formation are possibly activated subsequent to NESC formation. However, we report for 

the first time that several rosette and RG cell markers and neuronal sub-types markers are 

precociously activated during early (d2) neural induction.  

During gastrulation in the Xenopus embryo, the area between the NE and non-NE 

differentiates into the NBZ at the expense of the neural crest due to inhibition of WNT 

signaling. The NBZ gives rise to the PPE, of which the most anterior region will form the 

olfactory placode. GnRH neurons differentiate from the olfactory placode and migrate to 

the hypothalamus (Moody & LaMantia, 2015). In humans, the regulatory events that drive 

differentiation of GnRH neurons are largely unknown. For instance, only a single 

alternative study has reported a protocol to generate GnRH neurons from ESC (Lund et al., 

2016).  In this study we aimed to identify the initial molecular signals that drive NESCs to 

acquire GnRH fate. Colleagues in Price laboratory have demonstrated that the addition of 

WNT inhibitors during neural induction leads to the generation of positive GnRH neurons 

after approximately 50 days (Kathuria et al., 2017). We identify a set of 44 genes 

differentially up-regulated exclusively in NESCs fated to become GnRH neurons, which 

might play a role in the adquisition of GnRH neuronal phenotype (Figures 3.26 and 3.27). 

Additionally, 103 genes were up-regulated exclusively in NESCs destined to differentiate 

in cortical neurons. Inhibition of these genes might also be necessary to initiate the GnRH 

induction program.  
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6.1. Gene regulatory networks 

The genome encodes thousands of genes, whose expression continually changes during 

different stages of development. Expression of these genes is tightly regulated to generate 

specific amounts of gene products necessary to control the cellular functions required for 

each developmental stage (Karlebach & Shamir, 2008). GRNs govern the expression of 

genes and the product abundances at specific time points and can be modeled from time 

series transcriptome data by mathematical and statistical analyses to identify regulatory 

gene interactions during induction. We show the first GRN modeled during NESCs 

differentiation, which comprises 9 main hubs with high connectedness (JUN, MYC, FOS, 

PAX6, SP3, CDC6, SMAD2, HDAC6, and LEF1) and incorporates with time delay co-

relations (Figure 4.4). The GRN connectivity (topology) continuously changes in response 

to regulatory signals that control gene expression, generating different expression patterns 

during differentiation. The genes and gene modules activated during neural differentiation 

regulate cell biological functions necessary for neural differentiation and pluripotency 

inhibition. Among these modules, the MYC hub regulates different molecular functions 

including cell proliferation, CDC6 regulates cell cycle progression and PAX6 regulates the 

CNS development among others (Figure 4.7). It has been suggested that PAX6 promotes 

neural differentiation by inhibiting pluripotency markers such as NANOG and OCT4 and 

possibly by activating TFs required for NE differentiation (Zhang et al., 2010; Blake & 

Ziman, 2014). We identify 8 genes within the PAX6 module, whose activation at d2 

potentially initiates the consequent steps that drive initiation of neural induction and 

inhibition of pluripotency (Figure 4.3).  



 
203 

6.3. Single cell analyses 

NESCs are positive for known NE markers such us PAX6, SOX11 and ZEB2. Single cell 

RNAseq analyses enabled identification of expression variability across NESCs at d8. The 

data indicated that the NESC population is highly homogeneous (Figures 5.7 and 5.8). The 

largest percentage of variance (10%) appears to relate to the cell cycle phase in which cells 

were captured (Figures 5.10 to 5.15). Nevertheless, genes did show heterogeneous 

expression, which is also reflected at a protein level (Figures 5.16 to 5.19 and 3.7). These 

results highlight the importance of single cell analyses in GRN modeling to determine that 

those genes proposed to interact within the network are expressed in the same cell. 

Heterogeneous expression across the cell population might be related to variability in the 

transcriptional burst shape, the cell cycle phase in which cells were captured, dropout 

events, variability in the developmental stage across individual cells and due to the 

generation of 2 sub-populations primed to acquire different fate. However, the global gene 

expression patterns suggest that cells are progressing through similar developmental states.  

6.3. Future experiments 

Transcriptome analyses during induction enabled identification of thousands of genes 

differentially activated and inhibited during different stages of neural induction. 

Identification of these genes permits determination of the potential roles and pathways of 

TFs of interest by inhibiting their expression trough different techniques such us shRNA 

gene knockdown, small molecule inhibitors or CRISPR-CAS9, and analysing the 

subsequent effect of inhibition on gene expression and neural induction. Likewise, it would 

be interesting to generate transcriptome data under the same conditions of this study from 

iPSC lines with penetrant mutations associated with neurodevelopmental disorders risk. 
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For instance, we have a SHANK3 mutated (highest monogenic cause of autistic spectrum 

disorders) cell line isogenic to the ESC line used in this study. Comparing the expression 

patterns of the mutated and control lines would enable identification of potential early 

molecular events that distinguish normal from aberrant neural induction. Additionally, it 

would be interesting to analyze neural induction in 3D cultures, which provide spatial 

organization that promotes exposure to the biochemical signals from the 

microenvironment, extracellular matrix and neighbouring cells thereby offering a more 

complete recapitulation of in vivo development. However, 3D cultures are less reproducible 

since their microenvironment can vary depending on several factors including the scaffold 

material mechanics, topography and biochemistry and the delivery and transportation of 

soluble factors and oxygen (Carletti et al., 2011; Hollister, 2013). Cells among the 3D 

culture are exposed to different spatial and physical constraints and biochemical cues, 

leading to variability in cell proliferation and differentiation and generating heterogeneous 

cell populations (Edmondson et al., 2014). Hence, it is not suitable to use bulk cells 

analyses to analyse the transcriptome of cells comprised in 3D cultures and it can be 

difficult and expensive to preform immunofluorescence analyses and single cell isolation 

depending on the scaffold material and topography (Antoni et al., 2015). Additionally, 

modelling a GRN from transcriptome data from 3D culture isolated cells isolated remains 

challenging due to the low read coverage of single cell RNAseq analyses. Nevertheless, as 

these technologies improve they will offer an exciting alternative to 2D monocellular 

cultures. 

Similarly, it would be important to continue the GRN refinement by testing the GRN 

predictions by perturbing the network. CRISPRi technologies could be used to repress 

expression of PAX6 and OTX2 and CRISPa to activate expression of MYC in iPSC derived 

NESCs and quantitatively assess the response of the perturbation in the expression of their 
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interacting gene targets. CRISPRi and CRISPRa offer the additional benefit of being well 

suited to modulation of expression of several genes simultaneously. Similarly, connectivity 

between TFs and gene targets inferred in the GRN could also be validated by ChIP-seq 

analyses to determine if their regulatory interactions are direct, and potentially to identify 

novel interactions of the TFs with other genes that are differentially expressed during 

differentiation. Additionally, including constitutive expressed genes and less connected 

genes that might interact with the network modules may improve the GRN model.  

High-throughput RNAseq data enables modelling a GRN that provides a global view of 

the gene regulatory interactions and potential cellular biological functions underlying 

neural induction. However, RNA transcription is also regulated by epigenetic 

modifications. Combining, transcriptome and epigenetic data sets to model a GRN would 

enable a deeper insight into the molecular events that drive NESCs development. Thus, the 

GRN model would significantly improve by the incorporation of epigenetic regulatory 

interactions. Post-translational modifications of histones tails and DNA methylated 

cytosines can be detected by using specific antibodies through ChIP-seq analyses. 

Additionally, Assay for Transposase-Accessible Chromatin with high-throughput 

sequencing (ATAC-seq) method could be used to identify open chromatin regions at 

specific time points during NESCs induction. These data would enable determination of 

the epigenetic status during neural induction. This may identify distinct cellular states prior 

to changes in the transcriptome. Alternatively, such studies might illuminate the epigenetic 

mechanisms that regulate the expression of specific genes among the GRN and determine 

the sequential epigenetic changes necessary for neural induction. The function of individual 

genomic elements identified can be screened by using modified CRISPR to deliver specific 

chromatin modifying activities (Enriquez, 2016).  
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Additionally, single cell analyses demonstrated that averaging the gene expression values 

of cell populations could obscure variability in the expression of individual cells across the 

population. However due to the elevated cost of the RNA sequencing assays we did not 

performed these analyses during different stages of differentiation. Hence, further 

experiments should include single cell RNAseq during the 7-time points of NESCs 

differentiation to verify that the genes interacting in the GRN are expressed in the same 

cell. It would be interesting to analyse the gene expression profile of NESCs induced with 

2i-WNT inhibition protocol at d8 to determine if the 44 differentially up-regulated genes 

compared with 2i treatment are expressed in the same cells or generate sub-populations that 

might bias the cell fate. Additionally, inhibition of the expression of the 5 TFs differentially 

up-regulated in NESCs fated to differentiate to GnRH neurons might enable determination 

of the mechanism by which these factors promote GnRH fate acquisition.  

6.4. Conclusion  

In this thesis I report for the first time a complete overview of the gene expression patterns 

underlying neural induction of human iPSC/ESCs. Identification of genes and pathways 

underlying iPSC transition from pluripotency to neural competence would enable 

identification of the molecular pathology of neurodevelopmental disorders caused by 

known mutations and provide an insight into the gene regulatory events that direct normal 

and aberrant human neurodevelopment. Inhibition of the pluripotency program occurs 

during the initial 2 days of 2i neural induction, followed by activation of thousands of genes 

that orchestrate NE fate acquisition. Among these genes several NE precursors, NE and 

forebrain markers were identified, validating previous findings from animal and ESC 

studies. Additionally, we report activation of genes that have not been previously related 

with CNS development and that could be used as novel NE markers. The potential 
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regulatory interactions between genes activated during NESC induction were captured in a 

GRN, which enables clear visualization of the potential causal relations between genes at 

different stages of induction. We identified GRN modules and with similar expression 

profiles, which potentially regulate the biological processes required for the transition from 

pluripotency to NE fate. Additionally, we report that WNT inhibition during neural 

induction leads to the specific activation of 44 genes, which may prime NESCs to 

differentiate into GnRH neurons. Down regulation of 103 genes activated during 2i 

(cortical) differentiation might also be necessary for cells to acquire GnRH phenotype. 

Additionally, we demonstrated that the differentiation protocol generates a highly 

homogenous population of NESC at d8. However, a number of genes depicted 

heterogeneous expression, which must be considered to validate that GRN inferred 

interactions occur between genes expressed in the same cell. Hence, with this study we 

provide for the first time a complete systematic description of the genes that orchestrate 

neural induction from human ESC/iPSCs. This provides valuable insight into mechanisms 

that may be used to control the fate specification of iPSC derived neuroectodermal stem 

cells and also cast light on the biological processes that might underwrite the initial stages 

of human neural development in vivo. 
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APPENDICES 

 
Appendix. 3.1. Description of the statistical analyses results from the Q-PCR assays (CD-ROM). 

The table includes the differences between means, the significance and the adjusted p-value of the two-

way ANOVA test preformed to determine the significance of the difference between time points. 

 

Appendix. 3.2. Description of the statistical results of the differentially up-regulated transcription 

factors of cells induced with 2i media (CD-ROM). The table includes the details of the statistical 

analyses preformed to identify differentially expressed genes. The number of genes in the list is higher 

that the number established of total TF differentially expressed since some TF are up-regulated between 

more than one time point. The data is organized in chronological order. The last comparison in the table 

represents the analyses between time point d0 and d8.  

 

Appendix. 3.3. Description of the statistical results of the differentially down-regulated 

transcription factors of cells induced with 2i media (CD-ROM).  The table includes the details of the 

statistical analyses preformed to identify differentially expressed genes. The number of genes in the list 

is higher that the number established of total TF differentially expressed since some TF are down-

regulated between more than one time point. The data is organized in chronological order. The last 

comparison in the table represents the analyses between time point d0 and d8.  

 

Appendix. 3.4. Description of the statistical results of the differentially up-regulated transcription 

factors of cells induced with 2i-WNT media (CD-ROM). The table includes the details of the 

statistical analyses preformed to identify differentially expressed genes. The number of genes in the list 

is higher that the number established of total TF differentially expressed since some TF are up-regulated 

between more than one time point. The data is organized in chronological order. The last comparison in 

the table represents the analyses between time point d0 and d8. 

 

Appendix. 3.5. Description of the statistical results of the differentially down-regulated 

transcription factors of cells induced with 2i-WNT media (CD-ROM). Details of the statistical 

analyses preformed to identify differentially expressed genes. The number of genes in the list is higher 

that the number established of total TF differentially expressed since some TF are down-regulated 

between more than one time point. The data is organized in chronological order. The last comparison in 

the table represents the analyses between time point d0 and d8. 
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GO Term Count P 

Value 

Fold 

Enric

hhme

nt 

Bonferroni FDR 

Regulation of ion transport 73 1.27E-05 1.671 4.08E-02 2.32E-02 
Hindbrain development 29 1.08E-05 2.456 3.48E-02 1.97E-02 
Spinal cord development 22 5.46E-06 3.022 1.77E-02 9.93E-03 
Positive regulation of phosphorus metabolic 
process 

121 5.23E-06 1.491 1.69E-02 9.50E-03 
Epithelial tube morphogenesis 51 3.18E-06 1.978 1.04E-02 5.79E-03 
Embryonic camera-type eye development 14 2.86E-06 4.590 9.30E-03 5.19E-03 
Neuron recognition 14 2.86E-06 4.590 9.30E-03 5.19E-03 
Positive regulation of neurogenesis 62 2.84E-06 1.843 9.25E-03 5.17E-03 
Tube morphogenesis 55 2.83E-06 1.928 9.20E-03 5.14E-03 
Negative regulation of neurogenesis 46 8.36E-07 2.165 2.73E-03 1.52E-03 
Cellular response to BMP stimulus 33 6.18E-07 2.600 2.02E-03 1.12E-03 
Neurons 20 2.88E-07 3.835 9.41E-04 5.24E-04 
Tube development 83 2.81E-07 1.769 9.17E-04 5.10E-04 
Regulation of synapse organization 29 2.13E-07 2.947 6.96E-04 3.87E-04 
Regulation of cell motility 100 2.04E-07 1.677 6.68E-04 3.71E-04 
Synaptic signaling 85 1.59E-07 1.778 5.19E-04 2.89E-04 
Cell projection morphogenesis 115 8.84E-08 1.635 2.89E-04 1.61E-04 
Blood vessel morphogenesis 74 7.78E-08 1.899 2.54E-04 1.41E-04 
Regulation of cell migration 97 4.34E-08 1.748 1.42E-04 7.89E-05 
Telencephalon development 48 9.91E-09 2.439 3.24E-05 1.80E-05 
Vasculature development 91 6.31E-09 1.857 2.06E-05 1.15E-05 
Response to growth factor 
 

99 5.02E-09 1.810 1.64E-05 9.12E-06 
Synapse assembly 35 2.99E-09 3.067 9.78E-06 5.44E-06 
Cell-cell adhesion via plasma-membrane 
adhesion molecules 

48 2.91E-09 2.528 9.53E-06 5.30E-06 
Diencephalon development 25 1.93E-09 4.033 6.31E-06 3.51E-06 
Regulation of neurogenesis 108 6.37E-10 1.820 2.08E-06 1.16E-06 
Positive regulation of nervous system 
development 

80 5.36E-10 2.053 1.75E-06 9.74E-07 
G-protein coupled receptor signaling pathway 96 4.51E-10 1.913 1.47E-06 8.20E-07 
Neuron projection guidance 51 8.72E-11 2.686 2.85E-07 1.59E-07 
Cell migration 156 5.15E-11 1.671 1.68E-07 9.36E-08 
Cell motility 170 4.84E-11 1.628 1.58E-07 8.80E-08 
Neuron projection development 129 3.48E-11 1.789 1.14E-07 6.33E-08 
Epithelium development 147 4.11E-12 1.760 1.35E-08 7.48E-09 
Cell morphogenesis differentiation 122 3.73E-12 1.884 1.22E-08 6.78E-09 
Regulation of nervous system development 126 1.64E-12 1.883 5.36E-09 2.98E-09 
Cell-cell signaling 193 8.00E-13 1.642 2.61E-09 1.45E-09 
Cell surface receptor signaling pathway 301 2.68E-13 1.464 8.75E-10 4.87E-10 
Eye development 71 6.52E-14 2.596 2.13E-10 1.18E-10 
Brain development 118 3.40E-14 2.040 1.11E-10 6.18E-11 
Neuron development 153 3.14E-14 1.840 1.02E-10 5.69E-11 
Forebrain development 77 1.69E-14 2.541 5.52E-11 3.07E-11 
Sensory perception 93 2.69E-16 2.455 7.26E-13 4.00E-13 
Pattern specification process 85 6.45E-17 2.618 3.63E-13 2.00E-13 
Central nervous system development 157 9.28E-20 2.075 3.03E-16 1.69E-16 
Sensory organ development 106 2.12E-20 2.577 6.92E-17 3.85E-17 
Nervous system development 334 2.13E-31 1.811 6.96E-28 3.87E-28 

 
Appendix. 3.6. Description of the significant GO results of the differentially up-regulated genes of 

cells induced with 2i media. Details of the GO analyses including the terms, the number of genes per 

term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enric
hhme
nt 

Bonferroni FDR 

Positive regulation of synapse assembly 18 9.29E-06 3.410 4.30E-02 1.76E-02 
Cellular response to growth factor stimulus 84 6.61E-06 1.634 3.07E-02 1.25E-02 
Central nervous system neuron development 20 6.40E-06 3.223 2.98E-02 1.21E-02 
Synaptic signaling 79 5.57E-06 1.673 2.60E-02 1.05E-02 
Trans-synaptic signaling 79 5.57E-06 1.673 2.60E-02 1.05E-02 
Hindbrain development 30 3.64E-06 2.551 1.71E-02 6.89E-03 
Stem cell differentiation 22 3.34E-06 3.126 1.57E-02 6.32E-03 
Epithelial cell differentiation 73 1.64E-06 1.771 7.70E-03 3.10E-03 
Enzyme linked receptor protein signaling 
pathway 

121 1.33E-06 1.534 6.28E-03 2.52E-03 
Regulation of synapse assembly 22 1.27E-06 3.299 6.00E-03 2.41E-03 
Tube morphogenesis 55 9.48E-07 2.000 4.47E-03 1.79E-03 
Embryonic eye morphogenesis 14 9.13E-07 5.039 4.30E-03 1.73E-03 
Regulation of cell motility 96 6.19E-07 1.661 2.92E-03 1.17E-03 
Epithelial tube morphogenesis 52 3.61E-07 2.111 1.70E-03 6.82E-04 
Neuron migration 30 2.74E-07 2.867 1.29E-03 5.18E-04 
Eye morphogenesis 32 2.03E-07 2.787 9.59E-04 3.84E-04 
Regulation of signal transduction 287 1.82E-07 1.311 8.61E-04 3.45E-04 
Regulation of cell migration 93 1.43E-07 1.731 6.75E-04 2.70E-04 
Telencephalon development 46 6.32E-08 2.365 2.99E-04 1.20E-04 
Forebrain generation of neurons 21 5.53E-08 4.049 2.62E-04 1.05E-04 
Camera-type eye development 52 4.05E-08 2.255 1.91E-04 7.66E-05 
Diencephalon development 23 3.72E-08 3.821 1.76E-04 7.04E-05 
Forebrain neuron differentiation 20 3.71E-08 4.319 1.75E-04 7.02E-05 
Cell projection morphogenesis 114 2.51E-08 1.679 1.18E-04 4.74E-05 
G-protein coupled receptor signaling 
pathway 

93 1.90E-08 1.806 8.97E-05 3.59E-05 
Regulation of neurogenesis 101 1.58E-08 1.762 7.46E-05 2.99E-05 
Positive regulation of nervous system 
development 

75 1.14E-08 1.980 5.39E-05 2.16E-05 
Vasculature development 90 6.84E-09 1.865 3.23E-05 1.29E-05 
Eye development 60 5.21E-09 2.226 2.46E-05 9.85E-06 
Axon development 75 4.74E-09 2.020 2.24E-05 8.98E-06 
Blood vessel development 87 3.63E-09 1.913 1.72E-05 6.87E-06 
Neural crest cell development 24 2.38E-09 4.180 1.12E-05 4.50E-06 
Regulation of neuron differentiation 91 1.94E-09 1.904 9.15E-06 3.66E-06 
Synapse assembly 35 1.65E-09 3.150 7.82E-06 3.13E-06 
Neuron projection morphogenesis 89 9.06E-10 1.949 4.28E-06 1.71E-06 
Central nervous system neuron 
differentiation 

40 3.66E-10 3.021 1.73E-06 6.93E-07 
Cell morphogenesis involved in neuron 
differentiation 

85 2.06E-10 2.044 9.74E-07 3.90E-07 
Neuron projection guidance 50 1.35E-10 2.700 6.36E-07 2.55E-07 
Axon guidance 50 1.11E-10 2.713 5.26E-07 2.11E-07 
Regulation of nervous system development 120 1.66E-11 1.859 7.84E-08 3.14E-08 
Cell surface receptor signaling pathway 293 6.34E-13 1.463 2.99E-09 1.20E-09 
Neuron development 146 5.40E-13 1.812 2.55E-09 1.02E-09 
Forebrain development 75 8.54E-14 2.515 4.03E-10 1.62E-10 
Sensory organ morphogenesis 59 1.01E-14 3.034 4.77E-11 1.91E-11 
Brain development 118 6.16E-15 2.092 2.89E-11 1.15E-11 
Central nervous system development 149 1.80E-17 2.014 8.51E-14 3.41E-14 
Sensory organ development 100 7.02E-18 2.477 3.32E-14 1.33E-14 
Neurogenesis 221 1.81E-21 1.860 8.58E-18 3.43E-18 
Neuron differentiation 200 1.36E-22 1.980 6.45E-19 2.58E-19 
Nervous system development 320 6.13E-29 1.789 2.90E-25 1.16E-25 

 
Appendix. 3.7. Description of the significant GO results of the differentially up-regulated genes of 

cells induced with 2i-WNT media. Details of the GO analyses including the terms, the number of genes 

per term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enrich
hment 

Bonferroni FDR 

Leukocyte activation 103 1.43E-05 1.508 4.91E-02 2.62E-
02 Inflammatory response 85 1.41E-05 1.583 4.85E-02 2.59E-
02 Regulation of intracellular signal 

transduction 
246 9.96E-06 1.286 3.44E-02 1.83E-

02 Response to decreased oxygen levels 61 8.24E-06 1.773 2.86E-02 1.51E-
02 Chemotaxis 87 5.77E-06 1.608 2.01E-02 1.06E-
02 NADH regeneration 13 5.59E-06 4.413 1.95E-02 1.02E-
02 Calcium ion transport into cytosol 31 5.53E-06 2.387 1.93E-02 1.01E-
02 ATP generation from ADP 22 3.55E-06 2.987 1.24E-02 6.50E-
03 Positive regulation of ion transport 46 3.06E-06 2.033 1.07E-02 5.60E-
03 Intracellular signal transduction 370 2.90E-06 1.230 1.02E-02 5.32E-
03 Sensory perception 85 2.69E-06 1.649 9.40E-03 4.92E-
03 Signal transduction by protein 

phosphorylation 
143 9.26E-07 1.475 3.25E-03 1.70E-

03 Regulation of secretion 110 5.37E-07 1.589 1.89E-03 9.84E-
04 Regulation of angiogenesis 49 4.73E-07 2.103 1.66E-03 8.68E-
04 Regulation of ion homeostasis 45 4.00E-07 2.197 1.41E-03 7.33E-
04 Blood circulation 92 1.66E-07 1.713 5.82E-04 3.03E-
04 Regulation of vasculature development 54 1.43E-07 2.090 5.02E-04 2.62E-
04 Synaptic signaling 107 1.35E-07 1.644 4.74E-04 2.47E-
04 Ion transmembrane transport 155 1.22E-07 1.496 4.30E-04 2.24E-
04 Positive regulation of phosphorus metabolic 

process 
164 8.41E-08 1.485 2.96E-04 1.54E-

04 MAPK cascade 142 8.28E-08 1.537 2.91E-04 1.52E-
04 Extracellular matrix organization 68 8.27E-08 1.931 2.91E-04 1.52E-
04 Regulation of response to external stimulus 51 5.54E-08 2.202 1.95E-04 1.02E-
04 Angiogenesis 81 4.92E-08 1.833 1.73E-04 9.01E-
05 Negative regulation of cell proliferation 115 4.69E-08 1.642 1.65E-04 8.59E-
05 Transmembrane transport 204 1.29E-08 1.448 4.55E-05 2.37E-
05 Regulation of phosphorus metabolic process 245 1.20E-08 1.395 4.21E-05 2.19E-
05 Muscle contraction 72 1.16E-08 1.977 4.08E-05 2.13E-
05 Regulation of cell migration 125 6.81E-09 1.655 2.40E-05 1.25E-
05 Oxoacid metabolic process 144 5.52E-09 1.596 1.94E-05 1.01E-
05 Response to other organism 116 5.51E-09 1.699 1.94E-05 1.01E-
05 Positive regulation of cell migration 85 7.57E-10 1.959 2.66E-06 1.39E-
06 Vasculature development 117 6.18E-10 1.755 2.17E-06 1.13E-
06 Regulation of cell motility 137 2.87E-10 1.688 1.01E-06 5.25E-
07 Cell-cell signaling 237 6.87E-11 1.481 2.42E-07 1.26E-
07 Cell motility 216 4.87E-11 1.520 1.71E-07 8.92E-
08 Positive regulation of cell motility 90 4.16E-11 2.019 1.46E-07 7.63E-
08 Regulation of ion transport 111 3.55E-11 1.867 1.25E-07 6.51E-
08 Small molecule biosynthetic process 101 3.03E-11 1.939 1.07E-07 5.56E-
08 G-protein coupled receptor signaling 

pathway 
124 1.64E-11 1.816 5.76E-08 3.00E-

08 Cell migration 203 1.92E-12 1.598 6.75E-09 3.51E-
09 Ion transport 254 5.98E-18 1.658 2.10E-14 1.10E-
14  

Appendix. 3.8. Description of the significant GO results of the differentially down-regulated genes 

of cells induced with 2i media. Details of the GO analyses including the terms, the number of genes 

per term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enrich
hment 

Bonferroni FDR 

Mesenchyme development 49 1.37E-05 
 

1.884 4.78E-02 2.52E-02 
 Coenzyme metabolic process 65 1.20E-05 1.718 4.19E-02 2.20E-02 

T cell activation 71 1.10E-05 1.677 3.84E-02 2.02E-02 
Regulation of signal transduction 380 1.01E-05 1.211 3.53E-02 1.85E-02 
Regulation of sequestering of calcium ion 28 1.00E-05 2.453 3.52E-02 1.84E-02 
Positive regulation of cell adhesion 69 6.62E-06 1.716 2.33E-02 1.21E-02 
Positive regulation of ion transport 46 6.60E-06 1.981 2.33E-02 1.21E-02 
Epithelium development 162 5.31E-06 1.395 1.87E-02 9.74E-03 
Response to cAMP 27 4.28E-06 2.608 1.51E-02 7.85E-03 
ATP generation from ADP 23 2.86E-06 2.937 1.02E-02 5.26E-03 
Leukocyte activation 109 2.59E-06 1.544 9.18E-03 4.75E-03 
Regulation of programmed cell death 216 1.66E-06 1.346 5.91E-03 3.05E-03 
Negative regulation of cell motility 51 1.64E-06 1.991 5.83E-03 3.01E-03 
Leukocyte cell-cell adhesion 58 1.49E-06 1.900 5.28E-03 2.73E-03 
Response to cytokine 124 1.18E-06 1.519 4.18E-03 2.16E-03 
Regulation of angiogenesis 50 8.73E-07 2.047 3.11E-03 1.60E-03 
Regulation of cell-cell adhesion 70 5.43E-07 1.825 1.94E-03 9.97E-04 
Transmembrane transport 203 3.16E-07 1.393 1.13E-03 5.80E-04 
Ion transmembrane transport 158 2.92E-07 1.470 1.04E-03 5.35E-04 
NADH regeneration 15 2.65E-07 4.709 9.43E-04 4.85E-04 
Regulation of vasculature development 55 2.55E-07 2.041 9.09E-04 4.68E-04 
Calcium ion transport into cytosol 35 1.97E-07 2.560 7.01E-04 3.61E-04 
Leukocyte cell-cell adhesion 83 1.44E-07 1.777 5.12E-04 2.64E-04 
Regulation of tube size 37 1.43E-07 2.512 5.11E-04 2.63E-04 
Cellular homeostasis 137 1.39E-07 1.538 4.97E-04 2.56E-04 
Inflammatory response 96 1.08E-07 1.706 3.87E-04 1.99E-04 
MAPK cascade 145 4.69E-08 1.543 1.67E-04 8.61E-05 
Cardiovascular system development 164 3.26E-08 1.505 1.16E-04 5.98E-05 
Regulation of blood circulation 67 2.79E-08 1.995 9.94E-05 5.12E-05 
Regulation of ion homeostasis 49 2.67E-08 2.293 9.52E-05 4.90E-05 
Angiogenesis 85 1.90E-08 1.840 6.76E-05 3.48E-05 
Positive regulation of cell migration 86 8.99E-10 1.946 3.20E-06 1.65E-06 
Regulation of phosphorus metabolic 
process 

256 6.07E-10 1.426 2.16E-06 1.11E-06 
Single-organism transport 470 5.43E-10 1.272 1.94E-06 9.97E-07 
Chemotaxis 104 2.66E-10 1.852 9.47E-07 4.87E-07 
Positive regulation of cell motility 91 7.04E-11 1.993 2.51E-07 1.29E-07 
Protein coupled receptor signaling 
pathway 

133 5.00E-12 1.802 1.78E-08 9.17E-09 
Regulation of cell motility 145 8.56E-05 

 
1.751 1.79E-08 9.22E-09 

 Extracellular matrix organization 80 2.60E-12 2.232 9.28E-09 4.78E-09 
Cell-cell signaling 255 6.45E-14 1.549 2.30E-10 1.18E-10 
Cell migration 215 2.18E-14 1.641 7.76E-11 3.99E-11 
Ion transport 256 6.20E-16 1.607 2.37E-12 1.22E-12 

 
Appendix. 3.9. Description of the significant GO results of the differentially down-regulated genes 

of cells induced with 2i-WNT media. Details of the GO analyses including the terms, the number of 

genes per term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enric
hhme
nt 

Bonferroni FDR 

Cell activation 88 2.21E-05 1.573
6006

18 

2.54E-02 3.56E-02 
Single organism cell adhesion 78 2.16E-05 1.629

3349
85 

2.48E-02 3.47E-02 
Single organismal cell-cell adhesion 74 1.91E-05 1.660

9132
54 

2.20E-02 3.08E-02 
Positive regulation of cell adhesion 47 1.13E-05 1.986

5082
18 

1.30E-02 1.82E-02 
Cell-cell adhesion 109 8.48E-06 1.523

7957
41 

9.81E-03 1.37E-02 
Transmembrane transport 121 7.42E-06 1.489

3856
08 

8.59E-03 1.20E-02 
Defense response 136 5.40E-06 1.457

8752
88 

6.25E-03 8.69E-03 
Sulfur compound metabolic process 47 4.56E-06 2.055

9292
04 

5.28E-03 7.34E-03 
Regulation of cell proliferation 139 4.15E-06 1.457

3917
98 

4.81E-03 6.68E-03 
Transport 351 4.07E-06 1.224

8839
35 

4.72E-03 6.56E-03 
Extracellular structure organization 46 6.01E-07 2.234

4274
72 

6.99E-04 9.68E-04 
Single-organism transport 281 3.27E-08 1.338

9638
43 

3.80E-05 5.27E-05 
Angiogenesis 45 2.56E-04 1.774

3644
07 

5.09E-01 4.56E-01 
 
Appendix. 3.10. Description of the GO results of the genes assigned to the profile 31 of cells 

induced with 2i media. Details of the GO analyses including the terms, the number of genes per term 

(count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   

 
 
 

 
GO Term Count P 

Value 
Fold 
Enric
hhme
nt 

Bonferroni FDR 

Organophosphate metabolic process 111 3.81E-05 1.464
3050

54 

4.42E-02 6.15E-02 
Positive regulation of cell adhesion 49 3.79E-05 1.860

3030
3 

4.39E-02 6.12E-02 
Defence response 144 3.76E-05 1.386

5612
65 

4.35E-02 6.06E-02 
Regulation of signal transduction 237 3.71E-05 1.269

8497
07 

4.30E-02 5.99E-02 
Angiogenesis 52 2.86E-05 1.840

3551
25 

3.34E-02 4.62E-02 
Phosphorus metabolic process 265 2.81E-05 1.253

9387
07 

3.28E-02 4.54E-02 
Response to hypoxia 40 2.79E-05 2.044

2890
44 

3.26E-02 4.51E-02 
Epithelial cell proliferation 46 2.52E-05 1.937

6561 
2.94E-02 4.07E-02 

Regulation of cell communication 262 1.36E-05 1.268
0684

33 

1.60E-02 2.20E-02 
Cellular response to chemical stimulus 234 1.34E-05 1.291

6540
79 

1.58E-02 2.17E-02 
Regulation of body fluid levels 62 8.59E-06 1.801

6567
26 

1.01E-02 1.39E-02 
Organic acid metabolic process 98 6.01E-06 1.579

3090
78 

7.10E-03 9.71E-03 
Response to hormone 94 4.51E-06 1.608

8602
65 

5.33E-03 7.28E-03 
Cell-cell adhesion 122 1.68E-06 1.531

9874 
1.99E-03 2.71E-03 

Cell communication 506 1.07E-06 1.178
6507

3 

1.27E-03 1.73E-03 
Single-organism biosynthetic process 139 5.02E-07 1.516

2064
68 

5.95E-04 8.11E-04 
Transmembrane transport 139 2.29E-07 1.536

8507
31 

2.71E-04 3.70E-04 
Response to organic substance 260 1.12E-07 1.346

6808
41 

1.32E-04 1.80E-04 
Organonitrogen compound metabolic process 215 4.86E-08 1.414

9407
17 

5.76E-05 7.85E-05 
Small molecule metabolic process 195 2.31E-08 1.460

9174
78 

2.74E-05 3.73E-05 
Regulation of cell proliferation 164 9.69E-09 1.544

5446
74 

1.15E-05 1.56E-05 
Transport 409 1.50E-09 1.282

0537
57 

1.78E-06 2.42E-06 
Single-organism transport 326 1.26E-11 1.395

3245
49 

1.49E-08 2.03E-08 
 
Appendix. 3.11. Description of the GO results genes assigned to the profile 31 of cells induced with 

2i-WNT media. Details of the GO analyses including the terms, the number of genes per term (count), 

the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enric
hhme
nt 

Bonferroni FDR 

Positive regulation of synapse assembly 11 3.92E-05 5.251
6474

7 

0.03750178
4 

0.061720
889 Embryonic morphogenesis 39 3.92E-05 2.054

3381
36 

0.03749994
6 

0.061717
806 Neural precursor cell proliferation 16 2.47E-05 3.730

5571
88 

0.02381975
3 

0.038933
002 Positive regulation of developmental 

process 
63 2.10E-05 1.740

0274
49 

0.02027063
7 

0.033073
155 Positive regulation of cell differentiation 53 1.14E-05 1.895

4978
82 

0.01107415
4 

0.017985
732 Telencephalon development 23 9.45E-06 2.994

7411
19 

0.00917583
1 

0.014888
603 Inner ear development 20 7.52E-06 3.379

5075
65 

0.00730600
3 

0.011843
666 Organ morphogenesis 61 4.70E-06 1.849

5309
04 

0.00457674
8 

0.007409
302 Cell development 102 4.49E-06 1.558

9008
98 

0.00436383
1 

0.007063
869 Animal organ development 152 3.95E-07 1.461

1050
92 

3.85E-04 6.22E-04 
Sensory organ development 42 1.40E-07 2.491

6369
38 

1.36E-04 2.20E-04 
Head development 53 1.15E-07 2.214

0468
31 

1.12E-04 1.81E-04 
Synapse organization 27 5.61E-08 3.515

5656
62 

5.47E-05 8.83E-05 
Forebrain development 35 4.74E-08 2.916

1124
83 

4.62E-05 7.46E-05 
Brain development 53 2.17E-08 2.330

5756
12 

2.12E-05 3.42E-05 
Cellular developmental process 191 1.33E-08 1.439

0843
96 

1.30E-05 2.10E-05 
Anatomical structure morphogenesis 143 8.43E-10 1.634

7773
77 

8.22E-07 1.33E-06 
Pattern specification process 43 5.99E-10 2.966

3705
16 

5.84E-07 9.43E-07 
Cell projection organization 87 4.41E-10 2.011

3395
14 

4.30E-07 6.95E-07 
Cellular component morphogenesis 89 1.79E-10 2.026

4253
92 

1.74E-07 2.82E-07 
System development 213 2.58E-11 1.493

0161
95 

2.51E-08 4.06E-08 
Multicellular organism development 240 9.55E-13 1.480

1370
02 

9.31E-10 1.50E-09 
 
Appendix. 3.12. Description of the significant GO results of the genes assigned to the profile 65 of 

cells induced with 2i media. Details of the GO analyses including the terms, the number of genes per 

term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   

 
 
 

 
GO Term Count P 

Value 
Fold 
Enric
hhme
nt 

Bonferroni FDR 

Inner ear development 19 2.92E-05 3.193
2402

72 

0.02676116
6 

0.045689
816 Cellular component assembly involved in 

morphogenesis 
27 6.40E-06 2.747

3528
01 

0.00592534
6 

0.010011
946 Forebrain development 31 4.45E-06 2.568

9313
05 

0.00412107
5 

0.006957
103 Head development 49 4.04E-06 2.035

9240
97 

0.00374273
3 

0.006317
217 Synapse organization 24 3.09E-06 3.108

1163 
0.0028653 0.004834

139 Anatomical structure morphogenesis 130 2.30E-06 1.478
1567

92 

0.00213067 0.003593
421 Brain development 48 2.23E-06 2.099

3417
12 

0.00207310
7 

0.003496
24 Cellular component morphogenesis 87 1.22E-09 1.970

2186
88 

1.14E-06 1.91E-06 
Cell projection organization 91 1.94E-11 2.092

4837
54 

1.80E-08 3.03E-08 
Neural precursor cell proliferation 14 3.79E-04 3.246

6563
68 

0.29669337
6 

0.591215
524 Telencephalon development 20 2.85E-04 2.590

0969
17 

0.23276794 0.445407
729  

Appendix. 3.13. Description of the significant GO results genes assigned to the profile 65 of cells 

induced with 2i-WNT media. Details of the GO analyses including the terms, the number of genes per 

term (count), the p-value, the adjusted p-value (Bonferroni) and the false discovery rate.   
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Appendix. 3.14. Description of the statistical results of genes differentially up-regulated in cells 

induced with 2i media compare with cells induced with 2i-WNT media (CD-ROM). Gene 

expression statistical analyses between cells induced with 2i and 2i-WNT media. The data has being 

organized in chronological order of the time points compared and includes d4 and d8, which were the 

days with significant differential expression between treatments.  

 

Appendix. 3.15. Description of the statistical results of genes differentially down-regulated in cells 

induced with 2i-WNT compare with cells induced with 2i- media (CD-ROM). Gene expression 

statistical analyses between cells induced with 2i-WNT and 2i media. The data has being organized in 

chronological order of the time points compared and includes d4 and d8, which were the days with 

significant differential expression between treatments.  

 
 

 
GO Term Count P 

Value 
Fold 
Enric
hhme
nt 

Bonferroni FDR 

Anatomical morphogenesis morphogenesis 31 4.20E-05 2.111
5358

79 

0.02733981
7 

0.062821
007 Tissue development 24 4.07E-05 2.501

9457
39 

0.02648550
1 

0.060831
989 Organ development 35 1.98E-05 2.034

6209
54 

0.01297799 0.029608
529 System development 47 2.76E-07 1.981

1182
77 

1.82E-04 4.14E-04 
 
Appendix. 3.16. Description of the GO results of the differentially up-regulated genes of cells 

induced with 2i media compared with cells induced with 2i-WNT media at d4 and d8. Details of 

the GO analyses including the terms, the number of genes per term (count), the p-value, the adjusted p-

value (Bonferroni) and the false discovery rate.   

 
 
 

 

Appendix. 3.17. ZO1 immunofluorescence. The immunofluorescence analyses of the rosette 
marker ZO1 in cell induced with 2i after time point d8. The nuclei are stained with Hoescht 33342. 
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Appendix. 4.1. Gene regulatory network (CD-ROM). Gene expression statistical analyses between 

cells induced with 2i-WNT and 2i media. The data has been organized in chronological order of the time 

points compared and includes d4 and d8, which were the days with significant differential expression 

between treatments.  

 
 

GO Term Coun
t 

P 
Value 

Fold 
Enric
hhme
nt 

Bonferro
ni 

FDR 

Developmental process 97 1.40E-19 2.142
2874

58 

3.22E-18 1.11E-16 
Response to stimulus 108 3.91E-13 1.612

8706
93 

8.99E-12 3.10E-10 
Locomotion 40 2.91E-11 3.251

9002
66 

6.69E-10 2.31E-08 
Reproductive process 32 8.68E-08 2.898

9992
18 

2.00E-06 6.88E-05 
Rhythmic process 15 2.02E-07 5.980

0569
8 

4.64E-06 1.60E-04 
Immune system process 42 1.96E-06 2.119

3418
98 

4.50E-05 0.001550
669 Biological adhesion 32 8.98E-06 2.334

5020
09 

2.07E-04 0.007119
987 Localization 69 1.20E-04 1.461

6106
57 

0.002767
741 

0.095469
787 Cellular component organization or biogenesis 72 1.50E-04 1.429

4865
66 

0.003451
086 

0.119067
63  

Appendix. 4.2. Description of the GO results of the genes in the regulatory network. Details of the 

GO analyses including the terms, the number of genes per term (count), the p-value, the adjusted p-value 

(Bonferroni) and the false discovery rate.   

 
 

 
GO Term Count P 

Value 
Fold 
Enric
hhme
nt 

Bonferro
ni 

FDR 

Cell proliferation 15 1.15E-05 3.702
8837

42 

2.56E-02 2.01E-02 
Intrinsic apoptotic signaling pathway 8 3.81E-06 11.55

0243
47 

8.53E-03 6.64E-03 
Programmed cell death 16 3.61E-06 3.767

5258
1 

8.09E-03 6.29E-03 
Cell death 17 1.26E-06 3.784

1591
59 

2.84E-03 2.20E-03 
Regulation of response to stress 15 1.41E-07 5.334

4782
47 

3.16E-04 2.45E-04 
Regulation of cell proliferation 17 2.26E-08 5.049

6812
39 

5.09E-05 3.95E-05 
 
Appendix. 4.3. Description of the GO results of the MYC module. Details of the GO analyses 

including the terms, the number of genes per term (count), the p-value, the adjusted p-value (Bonferroni) 

and the false discovery rate. 
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GO Term Count P 
Value 

Fold 
Enric
hhme
nt 

Bonferro
ni 

FDR 

RNA biosynthetic process 8 7.98E-05 3.847
0444

85 

4.43E-02 1.17E-01 
Nervous system development 7 6.49E-05 5.895

2774
81 

3.62E-02 9.51E-02 
Regulation of RNA metabolic process 8 5.91E-05 4.015

9033
08 

3.30E-02 8.65E-02 
Neural tube development 4 5.67E-05 41.80

7947
02 

3.17E-02 8.30E-02 
Forebrain regionalization 3 4.98E-05 236.7

375 
2.79E-02 7.30E-02 

Regulation of RNA biosynthetic process 8 4.64E-05 4.156
0237 

2.60E-02 6.81E-02 
Transcription, DNA-templated 8 4.56E-05 4.166

9967 
2.56E-02 6.68E-02 

Regulation of transcription, DNA-templated 8 4.29E-05 4.203
0625

83 

2.41E-02 6.29E-02 
Central nervous system development 6 1.57E-05 12.31

4044
21 

8.87E-03 2.30E-02 
Forebrain development 5 1.15E-05 25.62

0941
56 

6.49E-03 1.68E-02 
Dorsal/ventral pattern formation 4 9.07E-06 76.98

7804
88 

5.14E-03 1.33E-02 
Sensory organ morphogenesis 5 2.06E-06 39.45

625 
1.17E-03 3.02E-03 

Positive regulation of gene expression 8 1.98E-07 9.050
8960

57 

1.13E-04 2.91E-04 
Sensory organ development 8 4.15E-11 30.20

5741
63 

2.36E-08 6.08E-08 
 

Appendix. 4.4. Description of the GO results of the PAX6 module. Details of the GO analyses 

including the terms, the number of genes per term (count), the p-value, the adjusted p-value (Bonferroni) 

and the false discovery rate.   

 
 

 
 
 

GO Term Coun
t 

P 
Value 

Fold 
Enric
hhme
nt 

Bonferro
ni 

FDR 

Blood vessel development 7 4.62E-05 9.402
3404

26 

4.05E-02 7.20E-02 
RNA biosynthetic process 15 1.84E-05 2.885

2833
64 

1.63E-02 2.87E-02 
Regulation of RNA metabolic process 15 1.08E-05 3.011

9274
81 

9.59E-03 1.68E-02 
Regulation of RNA biosynthetic process 15 7.01E-06 3.117

0177
75 

6.25E-03 1.09E-02 
Transcription, DNA-templated 15 6.78E-06 3.125

2475
25 

6.04E-03 1.06E-02 
Regulation of transcription, DNA-templated 15 6.08E-06 3.152

2969
37 

5.42E-03 9.47E-03 
Negative regulation of RNA metabolic process 10 5.82E-06 6.238

1422
92 

5.19E-03 9.07E-03 
Negative regulation of RNA biosynthetic process 10 4.14E-06 6.501

5447
99 

3.69E-03 6.44E-03 
Negative regulation of transcription, DNA-
templated 

10 2.84E-06 6.802
8017

24 

2.53E-03 4.42E-03 
Regulation of gene expression 17 8.34E-07 2.949

1893
38 

7.46E-04 1.30E-03 
Negative regulation of gene expression 12 2.75E-07 6.124

1713
82 

2.46E-04 4.29E-04 
Positive regulation of RNA biosynthetic process 12 1.08E-07 6.704

0707
96 

9.69E-05 1.69E-04 
Positive regulation of transcription, DNA-
templated 

12 9.01E-08 6.824
8648

65 

8.06E-05 1.40E-04 
Positive regulation of RNA metabolic process 13 1.05E-08 7.002

4744
03 

9.42E-06 1.64E-05 
Positive regulation of gene expression 14 4.96E-09 6.335

6272
4 

4.44E-06 7.73E-06 
 
Appendix. 4.5. Description of the GO results of the SMAD2 module.  Details of the GO analyses 

including the terms, the number of genes per term (count), the p-value, the adjusted p-value (Bonferroni) 

and the false discovery rate.   
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GO Term Count P 
Value 

Fold 
Enric
hhme
nt 

Bonferro
ni 

FDR 

Regulation of cell cycle G1/S phase transition 5 6.64E-05 21.02
2311

02 

3.65E-02 9.71E-02 
DNA damage checkpoint 5 5.94E-05 21.62

7269
61 

3.27E-02 8.69E-02 
Nucleic acid metabolic process 17 4.80E-05 2.317

1724
37 

2.65E-02 7.02E-02 
DNA recombination 6 2.05E-05 16.17

6809
74 

1.14E-02 3.00E-02 
Cell cycle checkpoint 6 1.68E-05 16.85

7142
86 

9.37E-03 2.46E-02 
Regulation of mitotic cell cycle 11 4.67E-10 14.47

1814
11 

2.62E-07 6.84E-07 
DNA metabolic process 14 3.73E-11 9.641

8480
34 

2.09E-08 5.45E-08 
DNA replication initiation 7 6.10E-12 131.5

2083
33 

3.41E-09 8.92E-09 
DNA replication 12 4.37E-14 27.02

1936
86 

2.45E-11 6.40E-11 
G1/S transition of mitotic cell cycle 12 2.86E-15 34.52

0847
57 

1.62E-12 4.22E-12 
Mitotic cell cycle process 17 5.13E-16 12.11

0245
99 

3.11E-13 8.10E-13 
Cell cycle phase transition 16 1.54E-17 18.64

3041
71 

8.62E-15 2.25E-14 
Mitotic cell cycle phase transition 16 6.88E-18 19.67

2412
11 

3.85E-15 1.01E-14 
 

Appendix. 4.6. Description of the GO results of the CDC6 module. Details of the GO analyses 

including the terms, the number of genes per term (count), the p-value, the adjusted p-value (Bonferroni) 

and the false discovery rate.   

 

 


