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Abstract 

Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are clinically undetectable 

forms of non-invasive breast cancer. DCIS is considered a non-obligate precursor of invasive 

ductal carcinoma (IDC). LCIS shares many of the same genetic aberrations as invasive lobular 

breast cancer (ILC), which accounts for 10-15% of all invasive breast cancer. With the advent 

of screening mammography, the diagnosis of pure DCIS (with no invasive component) and 

LCIS has become more common, and approximately 20% of screen detected tumours are pure 

DCIS. 

The aim of this project is to test the hypothesis that breast cancer is a heterogeneous disease 

and that by focusing on specific histological subtypes we can increase the power to detect 

genetic variants that predispose to DCIS/LCIS/ILC. We also exploited the extreme phenotype 

hypothesis, having focused on cases with a severe phenotype such as early-onset or bilateral 

disease. 

During this PhD we assessed the role of rare coding variants using next generation sequencing 

approaches. We also interrogated data on 211,000 SNPs, genotyped on the iCOGS platform in 

3,000 DCIS cases 2500 LCIS/ILC and 5000 controls, to evaluate common variants that 

predispose to these subtypes of breast cancer. 

Some of the key findings include the excess of CDH1 protein truncating variants in cases with 

bilateral lobular lesions (8%), and the identification of a novel lobular specific locus on 7q34. We 

were also able to estimate the prevalence of rare variants predisposing to breast cancer in the 

context of sporadic cases with DCIS/LCIS/ILC. Further analyses and validation is required in 

order to assess any of the novel putative genes can be linked with ILC development. 

Once such variants have been validated they can be used to predict which women are at high 

risk of developing DCIS/LCIS/ILC and such women can be offered intensive screening or 

chemoprevention. 
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Chapter 1 General introduction 

1.1 Breast cancer 

Breast cancer is a malignant neoplasm arising from the lactiferous ducts or the milk-producing 

breast lobules. There are several molecular features which differentiate breast tumours, while 

also determining prognosis and treatment. 

1.1.1 Epidemiology 

Breast cancer is the most common malignancy amongst women, accounting for 23% of all 

cancers. More than 1.4 million women develop breast cancer every year worldwide, 50,000 of 

which are in the UK [1]. Breast cancer is the second most common cause of cancer death in 

women, and is estimated that approximately 12,000 women die of breast cancer every year in 

the UK [2]. The prevalence of the disease is about 1/1000 in the European population and the 

life-time risk of developing breast cancer for a woman is about 1/8 (12.5%). 

There was a steady increase in breast cancer incidence rates between 1975 and 2002 which 

can be attributed to several factors such as decreased and later-onset parity, increased obesity, 

excessive use of postmenopausal hormone replacement therapy (HRT), and more importantly 

likely represents an increased detection rate as a result of the dramatic increase of screening 

mammography [3]. This pattern of increasing incidence reversed in 2002 due to the results from 

Women’s Health Initiative Trial, where they associated the use of HRT with increased risk of 

breast cancer and coronary heart disease [4]. It is estimated that there was an annual decline of 

8% on breast cancer incidence rates between 2001 and 2004 [5]. Over the last decade there 

has been a significant increase in breast cancer incidence, reaching almost 20% and this has 

been attributed to lifestyle changes. A synchronous reduction of mortality for about 15% has 

also been seen, thought to be due to advances both in treatment modalities and prevention with 

early diagnosis [6]. In situ breast cancer incidence rates have also dramatically increased while 

use of mammographic screening has been universally adopted, and their detection has become 

more frequent. 

1.1.2 Risk factors 

Breast cancer is a complex, multifactorial disease and there are several risk factors contributing 

to disease development with the major ones being age and gender. Several other risk factors 
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that confer increased risk towards breast cancer development have been identified and can be 

grouped into four main categories; (i) Genetic factors: family history of disease, mutations in 

known breast cancer predisposition genes, common polymorphisms associated with the 

disease. (ii) Breast features: High density of breast tissue, personal history of invasive breast 

cancer, in situ disease, atypical proliferation. (iii) Reproductive and menstrual factors: Number of 

menstrual cycles, late or no parity, use of HRT, use of oral contraceptives. (iv) Lifestyle factors: 

Obesity, alcohol consumption, and exposure to radioactive compounds/chemicals. There are 

also factors that are associated with reduced risk of developing breast cancer and these include 

low-fat diet, regular exercise and minimal exposure to exogenous hormones such as estrogen 

[7-9]. 

 Genetic factors 

Family history of the disease is a major risk factor, with women having a first degree relative 

with breast cancer being approximately two times more likely to develop the disease. However 

altogether, less than 20% of the women who have breast cancer have a first degree relative 

with the disease.  The inherited genetic factors contributing towards breast cancer development 

are discussed in section 1.3. 

 Breast features 

Breast density has been associated with increased risk of breast cancer. It is estimated that 

about 16% of all breast cancers are attributed to mammographic density. However, breast 

density is modifiable by several factors such as hormones, parity, body mass index (BMI), and 

age [10]. Breast density is nowadays routinely reported, and classifies individuals in four 

categories for each density quartile. The relative risk (RR) for each quartile compared to the 

least dense quartile (D1) is RR=2.04 for D2, RR=2.81 for D3, and RR=4.08 for D4 [11]. Other 

breast features that have been identified as breast cancer risk factors are non-invasive lesions 

such as ductal or lobular carcinoma in situ which will be discussed in detail in section 1.2.1.2 

and section 1.2.1.4 respectively. 

 Reproductive and menstrual factors 

One of the risk factors with a significant impact on breast cancer risk is combined estrogen and 

progesterone hormone replacement therapy (HRT). The relative risk for current users versus 

never users is 1.66 (95%CI 1.58, 1.75) but can vary depending on duration, and type of 

hormone therapy but also on the histological subtype of the breast cancer [12, 13]. Investigating 
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a potential association between HRT and breast cancer goes back to the 70s. Since then, 

several studies have been published reporting association between the use of HRT and breast 

cancer development, irrespective of whether HRT was estrogen only or combined estrogen and 

progesterone. In the late 90s, a large meta-analysis confined the risk to current users of HRT 

[14]. The risk increased along with duration of HRT and reverted back to normal after the end of 

the treatment course. Five years later, the UK Million women study revealed that the risk of 

combined estrogen and progesterone HRT had a significantly stronger effect on breast cancer 

risk both with regards to incidence and death rates [15]. Different morphological subtypes of 

breast cancer also appear to have distinct aetiological associations with hormonal risk factors. 

Comparison of invasive lobular and ductal cancers in the UK Million women study has shown 

that current use of HRT has a stronger association with lobular than ductal cancer [13], and that 

this risk is higher for those who have used HRT for longer and for those using combined 

estrogen-progesterone therapy [13, 16]. 

There is a minor increase in breast cancer risk for women using oral contraceptives (OC) for up 

to 10 years after cessation. There is no increased risk after that period of 10 years. However, 

tumours in women taking OC are more likely to be less advanced and there is a reduced 

relative risk of developing breast cancer compared to non-users (RR=0.88 (95% confidence 

interval (CI) 0.81, 0.95)) [2]. A more recent study investigating association of reproductive risk 

factors with ER positive or ER negative breast cancer failed to identify any association of OC 

with either subtype [17]. However, a study from Iceland found an increased breast cancer risk 

for ever OC use (HR = 1.32, 95% CI 1.02–1.70) incorporating data from 16,928 individuals [18]. 

OC usage has been shown to be associated with a 2.5-fold increased risk for triple-negative 

breast cancer (95%CI, 1.4, 4.3) and no significantly increased risk for non-triple-negative breast 

cancer (P-heterogeneity = 0.008) in women under 40 years of age [19]. 

Two risk factors that can be summarised by the number of menstrual cycles are the age of 

menarche and the age at menopause. Having an early menopause is a risk factor for 

developing breast cancer. Females having their first period before 12 years of age are more 

likely to develop breast cancer than females having their first period after 12 [20]. Additionally, it 

has been shown that breast cancer risk is increased by 1.05 for every year younger at 

menarche and by 1.03 for every year older at menopause. Age-adjusted analysis for individuals 

between 45 and 54 years of age showed that pre-menopausal women were at increased risk 

compared to post-menopausal women with a relative risk of 1.43. 
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A really important and concurrently interesting risk factor for breast cancer is parity. Parity has a 

dual role on conferring risk for breast cancer, being both protective and harmful. It increases the 

risk of breast cancer for the first 15 years, while that risk is reduced later on, and switches to a 

protective factor. It has also been shown that uniparous women with late pregnancies, later than 

35 years of age, are at increased risk of breast cancer 5 years after their pregnancy with an 

odds ratio (OR) of 1.26, and 95% CI of 1.10-1.44 [21]. The risk of developing breast cancer 

increases by 3% for every year a woman ages after she gives birth for the first time [22]. 

Nulliparity is most strongly associated with risk of ER positive breast cancer (hazard ratio (HR) = 

1.31, 95%CI,:1.23-1.39); whereas late age at first birth is most strongly associated with risk of 

Estrogen receptor (ER) negative, Progesterone receptor (PR) negative, and HER-2 positive 

disease (HR = 1.83, 95% CI: 1.31, 2.56) [23]. 

The effect of breastfeeding was unclear until the collaborative group on hormonal factors in 

breast cancer meta-analysed data from 47 studies and identified breastfeeding as a protective 

factor for breast cancer. The relative risk of breast cancer is decreasing by 4% for every year of 

breastfeeding irrespective of the parity effect [22]. Another important finding of this study 

conducted in 2002, is that breast cancer incidence could be reduced to half in developed 

countries if women followed the same average births and breastfeeding patterns as they used 

to in the early 90s. 

 Lifestyle factors 

Obesity is associated with increased breast cancer risk in postmenopausal women. A study 

including approximately 200,000 postmenopausal women, estimated that the risk of developing 

breast cancer was 20%-40% greater for obese women (BMI ≥ 30) compared to those with a 

normal weight composition (BMI of 18.5–24.9). It has also been shown that the risk is increased 

with age. The hazard ratio for BMI ≥35 vs 18.5-25 was 1.24 (95% CI 0.97-1.58) for 50-59 year 

olds, 1.39 for 60-69 (95% CI 1.24-1.57) and 1.46 (95% CI 1.26-1.70) for ≥ 70 years [24]. Other 

studies also support this finding [25-27]. Several studies have identified an increase of weight 

during adulthood being associated with an increased risk of breast cancer [28, 29]. 

A very large trial evaluating the effect of fatty dietary restrictions failed to identify an 

advantageous effect [30]. Approximately 50,000 women were allocated to either of the two 

branches of the trial, which were either a diet with 20% reduced fat or a regular diet. There was 
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no significant value on this trial which was discontinued, even though it is very likely that there 

was a subset of obese women who had benefited from the trial. 

There is an association between alcohol consumption and breast cancer risk, where regular 

daily drinking can increase the risk by 4% and up to 40-50% if it becomes excessive [31]. The 

exact mechanisms and pathways through which alcohol can increase breast cancer risk are not 

widely explored, but since alcohol increases estrogen levels in the blood stream, this is a 

possible mode of action. This hypothesis can be supported by the fact that the association of 

alcohol usage is stronger with ER positive than ER negative breast cancers. However, some 

alcohol metabolites are also known to be carcinogens. Alcohol use in early adulthood has a 

stronger effect on breast cancer risk. The most important measure of alcohol intake in terms of 

risk estimation is likely to be the cumulative alcohol consumption [32]. There has been no 

evidence of differential association depending on the type of alcohol that is being consumed. 

A recent study identified working long hours as a risk factor for developing breast cancer. The 

OR conferred by working more than 55 hours per week was estimated to be 1.6 (95% CI 1.12-

2.29) [33]. However, the association is not clear since it could be influenced by parity and 

therefore more studies would be required to replicate and validate this finding. 

High levels of physical activity have been found to reduce the risk of developing breast cancer 

especially during adolescence or early adulthood [34]. According to estimates from a large 

cohort study, the equivalent of 10 hours walking exercise per week resulted in 21% reduction in 

breast cancer risk for all women and 38% for premenopausal women [35]. An interesting finding 

coming from a study using data from more than 200,000 females indicated that specifically 

house-holding activities, as opposed to occupational or recreational activities can have a 

stronger protective effect towards breast cancer [36]. 

 Risk prediction tools 

The major risk factor upon which risk predictions can be made is family history of the disease. 

Apart from family history, all the aforementioned risk factors could be added in a statistical 

model and depending on their estimated effect size, predict one’s risk of developing the 

disease. There are several risk prediction tools that have been developed over the last years, 

the majority of which can be accessed online. The major advantage of these prediction tools is 

that the clinician can get a single value as an outcome and decide on the appropriate 

intervention. As expected, there are many discrepancies between different tools mainly due to 
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the different underlying statistical models used but also due to the different risk factors taken 

into account. Some of those tools, such as BOADICEA (Breast and Ovarian Analysis of Disease 

Incidence and Carrier Estimation Algorithm), were initially developed to estimate one’s risk of 

being a BRCA mutation carrier, but can also be used to estimate the risk of developing breast 

cancer [37]. It has been shown to outperform other tools in terms of predicting accurately the 

likelihood of carrying a BRCA1 or BRCA2 mutation [38]. Some tools, such as the Claus model 

or the BRCAPRO include only family history in their prediction, whereas other models such as 

the Gail model or the Disease Risk Index emphasise less on family history and focus on other 

risk factors. The model that includes more risk factors than any other is the IBIS model 

(International Breast Cancer Intervention Studies) which was the most accurate of all other 

models at the time its algorithm was published [39]. 

1.2 Breast cancer classifications 

Several different features can be used to classify breast carcinomas. These features can be 

used in order to stratify individuals in terms of disease aggressiveness, response to treatment, 

overall prognosis, disease-free survival and other important clinical factors. These features 

include cyto-nuclear grade of the disease, stage of the disease, and molecular characteristics 

such as hormone receptor status, Herceptin (HER-2) expression and gene expression patterns 

of genes associated with proliferation or genes that could be implicated in cancer development 

in general. Breast carcinomas can also be classified based on their histological and 

morphological features. 

1.2.1 Histological subtypes 

There are several different histological subtypes of breast cancer. The most common breast 

cancer subtype is invasive ductal carcinoma (IDC) with invasive lobular carcinoma (ILC) being 

second with respect to prevalence. Due to the fact that IDC is a broad term, since most breast 

cancers arise from the breast ducts, it is more common to refer to it as invasive breast cancer of 

no special type (NST). According to the WHO classification there are 17 different histological 

subtypes of breast cancer, some of which are so rare that their combined prevalence accounts 

for less than 1% of all breast cancers. Some relatively common subtypes of breast cancer are 

the tubular breast cancers, which account for 2-4% of all breast cancers and are characterised 

by multiple tubules formed by layers of cancer cells, the mucinous (2%), which form cancer cell 
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clusters at the extracellular mucin, invasive papillary, neuroendocrine, invasive apocrine, 

metaplastic, invasive micropapillary, medullary, and invasive cribriform carcinomas. 

 Invasive ductal cancer 

The most common histological subtype of breast cancer is the invasive ductal cancer of no 

special type (IDC or NST). IDCs account for 70%–80% of all breast cancers. This group of 

breast tumours comprises all breast tumours that their features do not characterise any of the 

special subtypes. Therefore, diagnosis of NST ductal invasive carcinomas is based on 

excluding characteristics associated with specific types of breast cancer [40]. The prognosis of 

IDCs depends on several factors such as grade, stage, hormone receptor status, HER-2 

expression, presence of lympho-vascular invasion and others. 

One way of classifying tumours is the TNM (Tumour Node Metastasis) method and is the one 

that has been established as the standard. The American Joint Committee on Cancer (AJCC), 

was formed to define the factors that would be included in the classification [41]. More recently, 

the AJCC has joined powers with the Union for International Cancer Control (UICC) to generate 

a globally used and standardised system. Depending on the stage of the disease, there can be 

alternative treatment offered to individuals. Apart from alternative therapeutic options that are 

offered, prognosis is also very different between different stages of the disease. The 

classifications have been standardised by the AJCC and UICC committees and range from 

stage 0 to stage 4 depending on three main features; size of the tumour, lymph node 

involvement and presence of metastasis. 

Grading of tumours is a well-established method, firstly described by Patey and Scharff in 1928. 

The principals upon which they established their method were firstly reported by Greenough 

(1925). There are three main features that are used for grading. The first feature is the 

differentiation status of the cells that can be assessed by the presence of the tubular 

arrangement of the cells. The second feature is referring to the nuclei of the cells and can be 

assessed by the variation in shape, staining and size of the nuclei. Finally, the last feature is the 

frequency or proportion of mitotic cells as described by Bloom and Richardson [42]. Each 

feature is assessed with a score of 1-3 and all three scores are summed to lead to the final 

grade points. Tumours with 3-5 grade points are grade I, whereas tumours with 6-7 points are 

grade II. Finally, tumours with 8-9 grading points are characterised as grade III. This approach 

has been proven to be very helpful and efficient in categorising patients since the survival rates 
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are different amongst different groups. However, one needs to keep in mind that this scoring 

system is based on arbitrary threshold selections. This is a continuous scale that has been 

categorised in order to accommodate an easier way to communicate this information. Low 

grade tumours have the best prognosis amongst different grades and high grade tumours show 

the worst outcomes.  

A large proportion of IDCs (45–78%) is also associated with ductal carcinoma in situ (DCIS) 

which is a pre-invasive lesion of the breast [43, 44]. 

 Ductal carcinoma in situ 

DCIS is a non-obligate precursor of invasive breast cancer including IDC. Since the introduction 

of screening mammography there has been a 7-fold increase in reported DCIS incidence in the 

USA, primarily in postmenopausal women [45], with about 20% of screen-detected tumours 

being DCIS [46, 47]. Approximately 55% of all invasive breast cancers are associated with 

DCIS [43, 44]. For the majority of these cases it is hypothesised that the invasive component 

has arisen from the DCIS as they generally share somatic genetic changes [48, 49].  About 5% 

of DCIS cases are bilateral [50]. DCIS subtypes can also be subdivided by morphological 

features of the tumour [51]. 

As most DCIS cases are treated surgically, the natural progression of untreated DCIS is not 

known. Currently there are no accurate methods for predicting the behaviour of DCIS [52]. 

Although grade has not been shown to be a good predictor of recurrence many clinicians use 

this classification to determine the use of radiotherapy following breast-conserving surgery. 

There is a strong correlation between the grade of the in situ and co-existing invasive 

components in IDC, suggesting that DCIS does not progress from low through to high grade 

before becoming invasive [53, 54]. 

 Invasive lobular cancer 

Invasive lobular breast cancer (ILC) accounts for about 10-15% of all invasive breast cancers 

and is the second most common subtype of invasive breast cancer after the ductal subtype. Its 

prevalence has increased over the past years, possibly due to the increase in HRT usage in 

post-menopausal women [55]. The use of HRT is more strongly associated with ILC compared 

to IDC (RR=3.1 (95% CI 2.41-4.05) for ILC and RR=1.7 (95% CI 1.57-1.95) for IDC) [7]. The 

great majority of lobular tumours are characterised as ER and PR positive. Lobular carcinomas 

arise in the breast lobule as opposed to the ducts, where the more common ductal carcinomas 
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arise (Figure 1.1) and it has been demonstrated that there is a distinct molecular aetiology as 

well as clinical and biological characteristics [56]. Due to their nature of infiltrating the cell 

stroma in single file sheets, it is difficult to detect ILCs with mammography. They are also often 

detected at a more advanced stage than IDC. The majority of ILCs are grade 2. ILCs are less 

sensitive to chemotherapy compared to IDCs and the 10-year survival rate of women with ILC is 

lower than that of ER positive IDCs [57, 58]. A recent study that incorporated genomic, 

transcriptomic and proteomic data in a cohort of ILCs revealed that there are two distinct 

molecular subtypes of ILC. The two subtypes had distinct gene expression signatures with one 

of them being immune related whereas the other being hormone related [59]. The vast majority 

of ILCs are characterised by loss of E-Cadherin expression which is an adhesion molecule 

encoded by the CDH1 gene. E-cadherin has been implicated in the development of several 

different cancer types including breast cancer. ILC is also often associated with a pre-invasive 

form of lobular carcinoma, known as lobular carcinoma in situ (LCIS). 

 

Figure 1.1. Representation of the breast morphology with a focus on the two most common histological 
subtypes of breast cancer. In situ lesions are shown on top and invasive on the bottom part of the figure 
while the lobular subtype is indicated on the left side with the ductal on the right side of the figure. This 
figure has been adapted and edited from CancerHelp UK CRUK.org. 

 Lobular carcinoma in situ 

LCIS is a non-invasive breast lesion that is typically found incidentally on biopsy. The increased 

breast biopsy rate associated with screening mammography has led to an increase in the 

diagnosis of LCIS in post-menopausal women  [45]. LCIS is often associated with ILC, and 

shares many of the same genetic aberrations as ILC including E-cadherin loss, suggesting that 
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it is a precursor lesion in an analogous manner to DCIS preceding IDC [60]. Women who have 

had LCIS are 4 times (95% CI 2·1–7·5) more likely to develop invasive breast cancer compared 

to the general population, with an excess of ILC (23-80% of cases) [61-63]. LCIS increases the 

risk of developing breast cancer and especially ILC either in the ipsilateral or contralateral 

breast. The cumulative risk of developing invasive breast cancer at 15 years after LCIS 

diagnosis is 26% [64]. There is a debate of whether it is a precursor lesion or simply a risk factor 

for ILC. However the invasive cancers associated with LCIS are not exclusively ILC and can 

often be IDC, tubular cancers or mixed ductal-lobular cancers. In addition, unlike DCIS, LCIS is 

also a risk factor for developing invasive cancer in the contralateral breast [62]. 

1.2.2 Molecular subtypes 

There are broadly five different molecular signatures identified over the last years that have 

been widely used to characterise and classify breast cancer. These five patterns have been 

identified by gene expression profiling. The expression of three main markers; ER, PR, and 

HER-2, can also classify breast cancers in a relatively robust manner. Along with those three 

markers, there are specific sets of genes (usually related to proliferation) that are generally 

switched on or off depending on the breast cancer classification. The five molecular subtypes of 

breast cancer are generally classified as luminal-A, luminal-B, Basal, normal-like, and HER-2 

positive. Apart from staining for ER, PR and HER-2, that can classify tumours into different 

molecular subtypes, several different microarray gene expression panels have also been used 

as described in previous publications [65, 66]. More recently, gene expression panels based on 

microarray technology or qPCR methods, such as the PAM50, and the MammaPrint have been 

designed for molecular subtype classification based on the intrinsic subtypes [67-69]. 

Additionally, a recent study showed that genotyping specific genetic markers across the 

genome and using machine learning approaches such as support vector machine (SVM) can 

successfully distinguish tumours based on their ER status [70]. There are different prognostic 

and therapeutic implications for each different biological or molecular intrinsic subtype [71]. 

Some limitations of this classification is that gene expression patterns can separate specific 

subtypes better than others and there is no consistency amongst different methods or gene-sets 

especially on classifying luminal subtypes. Moreover, it has been shown that normal tissue 

contamination can significantly alter the gene expression profile and misclassify tumours into 

less aggressive categories. The molecular classification of breast tumours based on the well-
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defined immuno-histochemical markers remains a more practical method compared to more 

complicated gene expression profiles. Until novel molecular targets that can drive individual 

tumours to grow are identified and can be targeted either for diagnosis or for treatment, it is 

likely that immunohistochemistry will play a major role in defining breast cancer clinical practice 

[71]. 

 Luminal A 

Luminal-A breast cancers are characterised by high levels of ER and low levels of proliferation 

promoting genes. These tumours account for approximately 50-60% of all breast cancers and 

constitute the most common breast cancer molecular subtype [71]. They are generally 

characterised by low grade and can include several different histological subtypes. The 

prognosis for luminal-A breast cancers is good compared to other subtypes. Ki67 is a cell 

proliferation nuclear antigen, the expression of which has been broadly used as a factor to 

discriminate the luminal subtypes in clinical practice. Its expression follows a continuous pattern 

but Cheang and colleagues decided on a cut-off of 14%. Luminal breast cancers with Ki67 low 

(<14%) are classified as luminal-A and tumours with high Ki67 (≥ 14%) as luminal-B [23]. 

 Luminal B 

Luminal-B breast cancers are usually more aggressive than luminal-A and are characterised by 

higher nuclear grade. They are also associated with a worse prognosis, both in terms of relapse 

and survival rate [72, 73]. They account of for approximately 15-20% of all breast cancers.  

 Basal 

Basal breast cancers have the worst prognosis. The vast majority of these tumours are 

characterised by loss of expression of ER, PR, and HER-2 and are therefore usually being 

referred to as triple negative breast cancer (TNBC). The vast majority of triple negative breast 

cancers (TNBC) are high grade invasive ductal carcinomas [74]. Basal and TNBC are not 

synonyms since there is about 20% discrepancy between the two [75]. They account for 10-

35% of all breast cancers depending on the proportion of grade 3 cases included in the studies 

[76], and they are usually characterised by presence of necrotic zones, and poor tubule 

formation [71]. Approximately 50% of TNBC cancers respond to chemotherapy, whereas there 

is a large group that is chemotherapy resistant. This, along with the fact that these tumours do 

not express the ER, PR, and HER-2, and therefore cannot be treated with endocrine therapy or 

HER-2 targeted therapy, are some of the reasons why these tumours are more difficult to treat 

and have the worst prognosis amongst all molecular subtypes. 
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 Normal breast-like (unclassified) 

One intrinsic molecular subtype has been characterised as normal breast-like since the gene 

expression patterns of these tumours occasionally show similarities with normal breast tissue 

expression profiles. Between 5 and 10% of breast tumours are characterised as normal breast-

like and their prognosis is intermediate, between luminal and basal subtypes. Since there are 

many similarities with normal breast tissue, a hypothesis that this subtype is the result of poor 

sample extraction with normal tissue contamination has risen [71]. 

 HER2 overexpression 

Human epidermal growth factor receptor-2 belongs to the membrane tyrosine kinase family. It is 

encoded by the HER2 gene located on chromosome 17q21. Her2 operates in homodimers, 

transducing growth signals within cells. HER-2 overexpressing cells are therefore prone to 

tumour growth [77]. HER-2 overexpressing tumours are also characterised by overexpression of 

several HER-2 amplicon associated genes and low expression of ER, PR, and their associated 

genes. These tumours account for 15-20% of all breast cancers. With regard to the clinical 

features, HER-2 tumours are more likely to be of high grade and spread to lymph nodes. 

Initially, HER-2 overexpressing tumours and TNBC had a similar poor prognosis, but with the 

development of anti-HER-2 targeted therapies, the prognosis for HER-2-overexpressing 

tumours improved significantly. In general they still have a relatively poor prognosis but they 

respond to treatment such as trastuzumab (Herceptin) and anthracycline-based chemotherapy 

[78]. However, Staaf et al identified three different subtypes with distinct gene expression 

profiles, one of which was associated with dramatically poorer prognosis (12% vs 50-55% 10 

year survival) compared to the other two [79]. There are several ways to assess the HER-2 

status, such as immunohistochemistry, chromogenic in situ hybridisation, or fluorescent in situ 

hybridisation. Two studies investigating the correlation between the results of those three 

different techniques have shown that there is a high concordance between methods when they 

standard operating procedures are followed [80, 81]. 

1.3 Genetic predisposition to breast cancer 

Breast cancer, like other common complex disorders has a significant inherited genetic 

component contributing towards disease development, with an estimated heritability of 25% 

[82]. The heritability of a trait is defined as the phenotypic differences observed that are 
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attributed to genetic variation. The familial relative risk (FRR) is a measure of the genetic 

component of a trait which corresponds to the familial clustering. FRR is the ratio of the risk of 

developing breast cancer having a first degree relative with the disease compared to the 

general population. The FRR for breast cancer can vary based on several factors and can 

range from 1.4 for someone diagnosed over the age of 60 with a relative diagnosed over 60, to 

more than 5 for an index case diagnosed before 40 with a relative diagnosed before 40 [83]. 

However, meta-analyses of several epidemiological studies investigating the familial clustering 

of breast cancer estimated an overall two fold increased risk of breast cancer in women with an 

affected first degree relative,  RR= 2.1 (95% CI= 2.0-2.2) [84]. The excessive disease 

correlation amongst monozygotic twins compared to dizygotic demonstrates that the familial risk 

is predominantly due to genetic factors. Simulation studies have shown that the effect of 

environmental risk factors would have to increase breast cancer risk on the magnitude of 10-

fold to account for and explain part of the familial relative risk and such risk factors have not 

been identified in the context of breast cancer. Therefore it is hypothesised that breast cancer 

FFR could be explained by genetic factors [85]. 

Linkage studies have been used to map disease associated loci by interrogating the co-

segregation of genetic markers with affected family members of large families. Having multiple 

affected and unaffected individuals from the same family can assist to underpin the associated 

region. The region can then be screened by positional cloning to identify the causative gene. 

However, using this study design, highly penetrant alleles are required since moderate or low 

penetrant alleles might not provide enough power to generate a strong linkage signal. 

Candidate gene approaches usually include sequencing to identify mutations that are found 

disproportionally more frequently in affected individuals compared to healthy controls. 

Biologically plausible candidate genes are sequenced to identify novel breast cancer 

predisposition genes. Such candidates can include genes that interact with BRCA1 and BRCA2, 

as well as genes that are involved in similar DNA repair pathways. Other groups of genes that 

could be implicated with breast cancer include genes involved in cell cycle, checkpoint control, 

apoptosis, and genes involved in hormone metabolism. 

Association studies have been broadly used during the last decade to identify common low 

penetrance variants associated with traits. These studies can utilise up to more than a million 

common genetic markers across the genome and investigate potential association across the 

genome. In a case control association study, genetic markers are investigated to assess their 
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frequency in the case and control populations and can lead to the identification of loci that are 

significantly associated with the trait of interest, by observing differences in the frequency of the 

variant between the study populations that are not likely to occur by chance. The vast majority 

of association studies in breast cancer are genome-wide association studies (GWAS). Initial 

attempts were underpowered and several type I errors were reported and failed to replicate. 

Since then, several consortia have been formed establishing large enough data sets to ensure 

statistical power to detect associations. A study design that minimises type I errors, but also 

dramatically reduces the experimental costs is the separation of the study into different phases 

where the top candidates of a phase I study are followed up in a second replication phase II 

cohort, reducing the cost of the experiment as well as the false positive rates. 

The genetic architecture of breast cancer is not completely understood despite the huge efforts. 

This is possibly due to the complexity and the genetic heterogeneity of the disease. Therefore, 

even after fine-mapping and identifying associated regions with moderate and small effect size, 

there is still about 50% unexplained heritability and the aim of this project is to identify a part of 

it which could be hidden in either common or rare variants (Figure 1.2). It is broadly known that 

different subtypes of breast cancer have different characteristics and possibly different aetiology 

[86]. It is now evident that low-risk susceptibility loci are associated with the pathological 

subtype of breast cancer and support the hypothesis that breast tumours arise through distinct 

aetiological pathways [87]. The mechanism through which these susceptibility loci contribute to 

disease development is in most of the cases unknown and is one of the big challenges that 

researchers are facing. 
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Figure 1.2: Pie chart showing breast cancer heritability attributed to mutations in several genes as well as 
risk-conferring SNPs. However, there is still approximately 50% missing heritability that remains to be 
revealed. 

1.3.1 High penetrance genes 

Two genes, BRCA1 and BRCA2 account for about 20% of familial breast cancers and have 

been identified using linkage family studies and positional cloning at the early 90s [88, 89]. 

Variants in those two genes have a detrimental effect on the proteins’ function leading to a 

dramatically increased risk (OR>10) of developing breast cancer. There are diagnostic tests 

developed based on these genes, and women with BRCA1 or BRCA2 mutations can be offered 

intensive surveillance or a risk reducing surgery [90]. Mutations in TP53 confer high risk towards 

breast cancer, even though they are uncommon in non-Li-Fraumeni syndrome families, and 

therefore only account for a small fraction of the familial risk for breast cancer. Another gene 

harbouring highly penetrant variants is the CDH1 gene which specifically predisposes to the 

lobular histology. 

 BRCA1 

In 1990, an association between early onset breast cancer and a locus on chromosome 17q21 

was found utilising linkage analysis [91]. This led to the identification of BRCA1 gene four years 

later using positional cloning [88]. The population frequency of BRCA1 mutations is estimated to 

be approximately 1/1000 [92]. BRCA1 has a major role in DNA damage response, DNA repair. 

It also has a function in regulating chromatin formation and cell cycle. Loss of BRCA1 can lead 

to malfunctioning DNA repair that is error prone. Therefore, loss of function (LoF) mutations in 
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BRCA1 result in genomic instability that confers increased risk of tumorigenesis [93]. Breast 

cancers arising from a BRCA1 mutation show a triple negative phenotype and are generally 

characterized by high grade, with frequent similarities with medullary tumours characteristics 

[94, 95]. 

The cumulative breast cancer risk for BRCA1 mutation carriers at the age of 70 is 57% (95% CI, 

47% to 66%) [96]. BRCA1 mutations confer a lifetime risk of developing breast cancer up to 

85%. The age-corrected relative risk of breast cancer is higher in individuals under the age of 

40. Pathogenic mutations in BRCA1 also increase the risk of developing ovarian cancer. 

BRCA1 is a large gene comprising 24 exons. BRCA1 mutations are distributed across all exons 

of the gene. Most mutations are protein truncating and include nonsense variants, frameshift 

insertions or deletions (indels) and variants that alter the wild type splice sites. There are some 

founder mutations that are relatively frequent in certain populations, such as the Ashkenazi 

Jewish population and the Polish population. However, the vast majority of BRCA1 mutations 

are very rare individually and some have been reported only once. Although there is a large 

number of more than 1,300 pathogenic BRCA1 variants according to ClinVar database, one of 

the main issues that needs to be overcome is the classification of variants currently of unknown 

significance (VUS). 

 BRCA2 

Following the identification of BRCA1, BRCA2 on chromosome 13q12-13 [89] was linked with 

breast cancer, and cloned one year later [97]. BRCA2 is a key role player in homologous 

recombination, both during meiosis and double-strand break DNA repair [98]. BRCA2 mutations 

are rare with population frequency estimates ranging from 1/600 to 1/800, conferring a 

cumulative risk of breast cancer at age 70 years of 49% (95% CI, 40% to 57%). The risk of 

ovarian cancer is 18% (95% CI, 13% to 23%), which is relatively lower than BRCA1 carriers 

[96]. Male BRCA2 mutation carriers have also elevated risk of 80-100 folds towards breast 

cancer development, with a life time risk of 10% which is very similar to that of a non-BRCA2 

mutation carrier woman. Prostate cancers are also frequent amongst male BRCA2 carriers [92]. 

BRCA2 is also a large gene with 27 exons. Mutations are scattered across the coding portions 

of the gene and the majority of them are frameshift indels. Several missense variants also exist, 

the pathogenicity of many of which remains unclear. Large gene rearrangements also exist but 

are relatively rare. The ovarian cancer cluster region (OCCR) exists in the central part of the 
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gene, on exon 11. Mutations in this region are characterised by an increased risk of ovarian 

cancers, although the underlying molecular mechanisms remain unknown [99]. Bi-allelic 

mutations can cause Fanconi anaemia, subtype D1. This rare condition is characterised by 

skeletal abnormalities, predisposition to several tumour types. There are common founder 

mutations in BRCA2 that have been reported in the Ashkenazi population and the Icelanders. 

Morphologically BRCA2 mutated breast cancers are heterogeneous and they show similar 

patterns to sporadic breast tumours as opposed to BRCA1 related tumours which usually show 

a distinct morphology. Breast cancers in BRCA2 mutation carriers are usually ER positive, 

HER2 negative, and of luminal molecular subtype [94, 95]. They are usually higher grade than 

sporadic tumours and are less pleomorphic with lower mitotic rates in comparison to BRCA1 

related tumours. Unlike BRCA1 mutated tumours, they are not characterised by p53 

abnormalities [100]. 

 TP53 

TP53 gene is encoding for the p53 protein which has been implicated in several different cancer 

types. The gene is located on chromosome 17p13.1 and the encoded nuclear phosphoprotein is 

a transcription factor that controls the cell cycle progression, DNA damage repair, genomic 

stability and also apoptosis [101]. Germline mutations in the TP53 gene can cause Li-Fraumeni 

syndrome. In 1969, Li and Fraumeni firstly described this syndrome after reviewing medical 

records and death certificates of 648 childhood rhabdomyosarcoma cases. They identified four 

families having members affected with childhood sarcoma [102]. Those families also had a high 

incidence of other malignancies including breast cancer. Therefore, TP53 has been recognised 

as a gene that highly penetrant alleles can cause breast cancer. However, the prevalence of 

germline mutations amongst breast cancer cases is very low [103, 104]. The majority of TP53 

mutations are single nucleotide substitutions that lead to defective DNA binding and activation 

of other downstream genes [105, 106]. There is a large number of missense variants that have 

been implicated with cancer development. The TP53 gene is usually somatically mutated in 

BRCA1 related breast cancer [107]. In ClinVar database there are 46 variants that are classified 

as likely pathogenic and 95 variants classified as pathogenic that could predispose to breast 

cancer. 
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 CDH1 

Cadherin-1 or E-cadherin is a classical and very well studied protein of the cadherin 

superfamily. The encoded product is a cell-cell adhesion glycoprotein consisting of five 

extracellular cadherin repeats, a transmembrane region, and a cytoplasmic tail that is highly 

conserved and phosphorylated. Germline CDH1 mutations were initially reported in gastric 

cancer patients with a syndrome called hereditary diffuse gastric cancer (HDGC) [108]. Both in 

situ and invasive lobular carcinomas are generally characterised by loss of E-cadherin 

expression. About 30% of HDGC families where the cause is a CDH1 germline mutation have 

at least one individual with ILC [109-112]. However, germline CDH1 mutations in women with 

ILC and no family history of HDGC do not seem to be a common event. Out of the 343 women 

with ILC and no personal or family history of HDGC that have been screened for CDH1 

mutations and reported before, only 3 germline mutations have been identified leading to a 

CAF<1% (Combined Allele Frequency) [113-116]. The cases in these studies were selected 

mainly on the basis of early onset disease or family history of ILC.  

1.3.2 Moderate risk 

Several genes, most of them identified using a candidate gene approach, have alleles that 

confer moderate to high risk (OR>2) such as CHEK2, PALB2, PTEN, LKB1, BRIP, and ATM 

[117]. These genes are involved in similar pathways and molecular processes to the two BRCA 

genes, which made them good candidates to study. The advent of next generation sequencing 

and the capacity to sequence thousands of individuals at a relatively low cost, either in a whole 

genome/ exome context or in a targeted gene panel approach, allowed the identification of 

several other genes that are or might be implicated in breast cancer risk. 

 CHEK2 

CHEK2 gene, located on chromosome 22q12.1 encodes for the checkpoint kinase 2, which is a 

mediator of cellular response to DNA damage. CHEK2 phosphorylates both p53 and BRCA1 

and acts as a tumour suppressor [118]. The first mutation reported on the CHEK2 gene was the 

1100delC, having been identified in a study investigating families with Li-Fraumeni syndrome 

[119]. However, its overall relatively high frequency in the general population classifies it as an 

intermediate penetrance mutation. It is also the most common CHEK2 mutation. The frequency 

of 1100delC varies between populations, normally around 1%. Its frequency is increased in 

individuals with breast cancer. Particularly in a study interrogating individuals with family history 
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and BRCA1/BRCA2 negative genetic testing the frequency of the 1100delC mutation was 

almost 5% [120]. The CHEK2 Breast Cancer Case–Control Consortium (2004) investigated this 

mutation in 10,860 breast cancer cases and 9,065 controls with a frequency of 1.9% for cases 

and 0.7% for controls (OR 2.34; 95%CI 1.72, 3.20) [121]. Researchers from the breast cancer 

association consortium (BCAC) found evidence of association for rare missense variants in a 

cohort of 1,303 breast cancer cases and 1,109 heathy controls using a previously developed 

algorithm that grades missense variants based on their likelihood of being evolutionary tolerant. 

This study concluded that there are several CHEK2 rare variants, some of which are missense, 

that confer breast cancer risk [122]. One example is the missense mutations p.I157T. This 

variant (c.T470C) has been associated with breast cancer but confers a lower risk than the 

1100delC allele. A meta-analysis of the p.I157T variant, including 19,621 cases and 27,001 

controls, estimated an OR=1.48 (95%CI 1.31, 1.66) for unselected breast cancer as well as an 

increased risk of the lobular subtype with OR=4.17 (95%CI = 2.89, 6.03) [123]. 

 PALB2 

The PALB2 gene (partner and localizer of BRCA2), which is located at 16p12.2, encodes for a 

protein that is a nuclear partner of BRCA2 that facilitates BRCA2 functions in DNA repair [124].  

Furthermore, PALB2 can also bind to BRCA1 [125]. It has been characterised as a component 

of the BRCA complex and can link BRCA1 with BRCA2 [126]. Even though it has been shown 

that bi-allelic mutations in PALB2 are associated with Fanconi anemia [127, 128], mono-allelic 

truncating PALB2 variants have been identified in cases with  breast cancer and were estimated 

to confer a 2 to 6 fold increased risk of developing breast cancer [129, 130]. One frameshift 

deletion was identified in one individual in a cohort screening breast cancer families that tested 

negative during BRCA screening in Spain [131]. Another single frameshift deletion, c.1592delT, 

accounts for 1% of breast cancer incidence in Finland [130]. This variant has been identified 

after screening more than 4,500 individuals, including familial cases, sporadic cases, and 

healthy controls [132]. Moreover, a stop-gain truncating variant (Gln775X) has been found in the 

French Canadian population [133]. There are 89 pathogenic and 16 likely pathogenic variants 

associated with breast cancer in the ClinVar database. 

 BRIP1 

BRIP1 (or BACH1) is a gene located at 17q22.2, encoding a helicase that interacts with 

BRCA1. This complex has a role in double-strand break repair but also in checkpoint control 
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[134]. It has been shown that bi-allelic mutations in the BRIP1 gene cause Fanconi anemia 

[135]. Since it was known that LoF mutations in BRCA1 gene predispose to breast cancer, and 

BRCA1 interacts with BRIP1, it was plausible that there would be germline mutations in the 

BRIP1 gene, that predispose to breast cancer in a similar manner to BRCA1 mutations. In a 

study investigating more than 1,000 index cases with familial breast cancer that were BRCA 

negative and more than 2,000 controls, there was a significant enrichment of truncating variants 

in cases over controls, assigning BRIP1 as a low-moderate breast cancer predisposition gene 

with an estimated relative risk of 2 [136]. However, very recently a study that included 64,033 

individuals with breast cancer and 51,538 healthy controls concluded that there is no 

association between truncating variants in BRIP gene and risk of developing breast cancer 

[137]. 

 PTEN 

PTEN (phosphatase and tensin homolog), is another tumour suppressor gene which is located 

on chromosome 10q23.3. It encodes for the phosphatidylinositol phosphate phosphatase which 

plays a role in cellular regulation [138, 139]. Germline mutations can cause Cowden disease, a 

rare autosomal dominant inherited cancer syndrome. Cowden syndrome is characterised by 

increased risk of developing several types of cancer including breast cancer [140]. Since breast 

cancer is a characteristic phenotype in Cowden syndrome patients, PTEN is also considered a 

breast cancer predisposition gene. Due to the fact that most studies estimate the risk of breast 

cancer conferred by PTEN germline mutations using selected patients, they might overestimate 

the actual effect [141].  According to the ClinVar database, there are 8 variants classified as 

pathogenic and 1 variant classified as likely pathogenic. 

 ATM 

ATM gene (ataxia-telangiectasia mutated), located at chromosome 11q22.3, encodes for ATM 

which is a member of the PI3K-related protein kinases. ATM is an active serine/threonine 

kinase. This kinase that has a role in cellular response to DNA double strand breaks by 

phosphorylating the protein products of genes involved in breast cancer such as BRCA1, TP53, 

and CHEK2 [142]. ATM gene was initially discovered as being responsible for the cause of an 

autosomal recessive condition called ataxia-telangiectasia. It was not long until researchers 

identified a link between ataxia-telangiectasia and increased risk of breast cancer having 

studied families with ataxia-telangiectasia [143]. Soon, it became apparent that mutations at the 
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ATM gene can also predispose to breast cancer. Several studies investigated the link between 

ATM mutations and breast cancer, with contradicting results, either due to different study 

designs or sample size. A study that screened 443 familial breast cancer cases and 521 healthy 

controls identified that the same mutations that can cause ataxia-telangiectasia in bi-allelic 

carriers, can also predispose to breast cancer in mono-allelic carriers [144]. In a study 

investigating mutations in 2,531 breast cancer cases and 2,245 controls, they found evidence 

that protein truncating, as well as a subset of missense variants, contribute to breast cancer 

risk. They hypothesised that missense variants around the FRAP-ATM-TRRAP (FAT) domain, 

FAT C-terminal (FATC), and kinase domains can have a larger effect on the function of ATM 

than protein truncating variants [145]. 

A recent meta-analysis of the previously published studies revealed that the increased risk that 

carriers have at 50 years of age is estimated to be 6.02% and 32.83% for carriers at the age of 

80 [142]. Data from epidemiological studies and segregation analysis of familial breast cancer 

cases lead to estimates of a two-fold relative risk of breast cancer for ATM mutation carriers 

[144, 146]. Further research needs to reveal whether ATM mutation carriers could benefit from 

alternative treatment or have different response, and what will the clinical utility of ATM genetic 

testing be [147]. To conclude, ATM is another DNA repair gene, which along with CHEK2 

confers moderate risk towards breast cancer.  

 STK11 / LKB1  

STK11 (or LKB1) is a tumour suppressor gene, located on chromosome 19p13.3, and encodes 

for a member of the serine/threonine kinase family. This kinase acts as a cellular proliferation 

inhibitor and controller of cell polarity. It has also been shown that it is involved in the mTOR 

pathway. LoF mutations are the major cause of Peutz-Jeghers syndrome, which follows the 

autosomal dominant model of inheritance. It is a syndrome characterised by gastrointestinal 

polyposis and various cancers on different organs including breast cancer [148]. Different 

studies have estimated the lifetime relative risk of developing breast cancer to be approximately 

32%–55% for STK11 mutation carriers [149-151]. In a study investigating individuals with loss of 

heterozygosity (LOH) in the region of 19p13 from 14 families with breast cancer there was no 

mutation found in STK11 in any of the families, rejecting the hypothesis that this LOH and 

STK11 mutations are associated events that lead to breast cancer [152]. 
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1.3.3 Low risk variants 

In addition, more common susceptibility loci with low risk alleles have been identified. To date, 

approximately 100 independent breast cancer susceptibility loci have been identified in GWAS 

or large scale genotyping studies [153-174]. These associated loci are usually identified by 

single nucleotide polymorphisms (SNPs) and the vast majority of them are intergenic. The SNP-

disease association field exploded about a decade ago with the development of the GWAS. 

Just over a decade ago, microarrays were developed that can explore known genetic variation 

across the genome in a cost efficient way. By utilising this technology, there was a vast 

expansion on case control studies exploring the genetic aetiology of several complex diseases, 

including breast cancer. More recently, fine mapping is being performed by utilising imputation 

methodology but also denser genotyping platforms with the aim to capture specific regions 

important to particular diseases or pathways and identify the functional variants that are tagged 

by the associated SNPs. 

Initially, association studies were focused on variants with some prior evidence of implication in 

breast cancer such as variants in genes involved in DNA repair, cell cycle regulation, checkpoint 

control, apoptosis, and hormone metabolism. A BCAC study in 2006 identified borderline 

associations of 5 SNPs having interrogated 16 SNPs [175]. One of these SNPs was validated 

the following year as a susceptibility locus to breast cancer by the same consortium. This 

variant is a common missense variant (p.Asp302His, rs1045485) in CASP8 [176]. It has a minor 

allele frequency (MAF) of 10% in the European population and reduces the risk of developing 

breast cancer (OR=0.88 (95%CI 0.84, 0.92) P= 1.1x10-7). This variant was prioritised due to the 

fact that CASP8 is involved in apoptosis and therefore constitutes a good candidate gene. 

However, this variant failed to replicate in subsequent analyses [154]. 

The first breast cancer GWAS was a study including almost 45,000 individuals. It was a study 

separated in three stages starting with screening 266,732 SNPs during stage 1 and finally 

validating a set of 30 SNPs in stage 3 [153]. An intronic FGFR2 variant (rs2981582) was 

associated with familial breast cancer with P=2x10-76, (OR=1.26, 95% CI= 1.23-1.30). One of 

the most significant and well established associations is the one at the FGFR2 locus. The 

FGFR2 gene is located on chromosome 10q26.13 and encodes for the fibroblast growth factor 

receptor 2. Along with the FGFR2 variant, a further 4 common variants were identified as being 

associated with breast cancer, Table 1.1. Since then, several GWAS have been performed and 

up to 2013, 37 independent loci have been identified. 
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A few years ago, different cancer consortia (breast, ovarian, and prostate) combined their 

powers to establish the Collaborative Oncology Gene-environment Study (COGS). In 

collaboration with Illumina, they designed a custom cancer platform called iCOGS, which 

includes more than 210,000 markers across the genome selected from previous GWAS as 

suggestive cancer susceptibility loci or for fine-mapping in known cancer associated genomic 

regions. There were four consortia involved in the iCOGS development and the variant 

selection, one of which is the BCAC. 

In 2013, a large scale genotyping study using the iCOGS platform on approximately 50,000 

cases and 50,000 controls identified 41 novel loci associated with breast cancer bringing the 

total to 78 [154]. A year later, two more studies identified 5 further alleles associated with breast 

cancer [177, 178]. In a more recent study of the same consortium, using the iCOGS genotyping 

platform and utilising imputation methodologies, incorporating data from more than 120,000 

individuals, 15 further loci were identified [155]. A complete up to date list of independent loci 

that have been associated with breast cancer is reported on Table 1.1. Some of those variants 

show a stronger association with specific subtypes of breast cancer and that is also indicated in 

the same table. 15 loci show a stronger association with ER positive disease, whereas 10 are 

more significantly associated with ER negative breast cancer. 

 

 

  



45 
 

Table 1.1: Common known breast cancer predisposition loci. 

Study Year SNP Locus Gene Subtype OR P value 

Easton et al. [153] 2007 rs889312 5q11.2 intergenic BC 1.13 7x10-12 

  
rs13281615 8q24.21 CASC8 BC 1.08 5x10-12 

  
rs2981582 10q26.13 FGFR2 BC 1.26 2x10-76 

  
rs3817198 11p15.5 LSP1 BC 1.07 3x10-9 

  
rs3803662 16q12.1 CASC16 BC 1.2 1x10-36 

Stacey et al. [159] 2007 rs13387042 2q35 intergenic BC 1.2 1.3x10-13 
Stacey et al. [160] 2008 rs10941679 5p12 intergenic ER+ 1.27 2.5x10-12 
Zheng et al. [162] 2009 rs2046210 6q25.1 intergenic BC 1.29 2x10-15 
Ahmed et al. [161] 2009 rs4973768 3p24.1 SLC4A7 BC 1.11 4.1x10-23 

  
rs6504950 17q22 STXBP4 BC 0.95 1.4x10-8 

Thomas et al. [163] 2009 rs11249433 1p11.2 EMBP1 BC 1.16 1.2x10-18 

  
rs999737 14q24.1 RAD51B BC 0.94 1.7x10-7 

Turnbull et al. [164] 2010 rs3757318 6q25.1 CCDC170 BC 1.3 2.9x10-6 

  
rs1562430 8q24.21 CASC8 BC 1.17 5.8x10-7 

  
rs1011970 9p21.3 CDKN2B BC 1.09 2.5x10-8 

  
rs2380205 10p15.1 intergenic BC 0.94 4.6x10-7 

  
rs10995190 10q21.2 ZNF365 BC 0.86 5.1x10-15 

  
rs704010 10q22.3 ZMIZ1 BC 1.07 3.7x10-9 

  
rs909116 11p15.5 TNNT3 BC 1.17 7.3x10-7 

  
rs614367 11q13.3 intergenic BC 1.15 3.2x10-15 

Antoniou et al. [165] 2010 rs8170 19p13.11 BABAM1 TNBC 1.28 1.2x10-6 

  
rs2363956 19p13.11 ANKLE1 TNBC 0.80 1.1x10-7 

Haiman et al. [167] 2011 rs10069690 5p15.33 TERT ER- 1.18 1x10-10 

Fletcher et al. [166] 2011 rs9383938 6q25.1 ESR1 BC 1.18 1.4x10-7 

  
rs865686 9q31.2 intergenic BC 0.89 1.7x10-10 

Cai et al. [169] 2011 rs10822013 10q21.2 ZNF365 BC 1.12 5.9x10-9 
Ghoussaini et al. [174] 2012 rs10771399 12p11.22 intergenic  0.85 2.7x10-35 

  
rs1292011 12q24.21 intergenic ER+ 0.90 2x10-15 

  
rs2823093 21q21.1 intergenic ER+ 0.93 4.6x10-8 

Siddiq et al. [168] 2012 rs17530068 6q14.1 intergenic BC 1.12 1.1x10-9 

  
rs2284378 20q11.22 RALY ER- 1.16 1.1x10-8 

Long et al. [170] 2012 rs9485372 6q25.1 TAB2 BC 0.9 3.9x10-12 
Kim et al. [171] 2012 rs13393577 2q34 ERBB4 BC 1.53 8.8x10-14 

Couch et al. [172] 2013 rs2290854 1q32.1 MDM4 ER- 1.16 1.3x10-7 
Garcia-Closas et al. [157] 2013 rs6678914 1q32.1 LGR6 ER- 1.10 1.4x10-8 

  
rs12710696 2p24.1 intergenic ER- 1.10 4.6x10-8 

  
rs11075995 16q12.2 FTO ER- 1.11 4x10-8 

Michailidou et al. [154] 2013 rs616488 1p36.22 PEX14 BC 0.94 2x10-10 

  
rs11552449 1p13.2 DCLRE1B BC 1.07 1.8x10-8 

  
rs4849887 2q14.2 intergenic BC 0.91 3.7x10-11 

  
rs2016394 2q31.1 intergenic ER+ 0.94 1.1x10-8 

  
rs1550623 2q31.1 intergenic BC 0.94 3x10-8 

  
rs16857609 2q35 DIRC3 BC 1.08 1.1x10-15 

  
rs6762644 3p26.1 ITPR1 ER+ 1.07 1.4x10-8 

  
rs12493607 3p24.1 TGFBR2 ER+ 1.07 1x10-7 

  
rs9790517 4q24 TET2 BC 1.05 4.2x10-8 

  
rs6828523 4q34.1 ADAM29 ER+ 0.87 2.9x10-14 

  
rs10472076 5q11.2 intergenic BC 1.05 2.9x10-8 

  
rs1353747 5q11.2 PDE4D BC 0.92 2.5x10-8 

  
rs1432679 5q33.3 EBF1 BC 1.07 2x10-14 

  
rs11242675 6p25.3 intergenic BC 0.94 7.1x10-9 

  
rs204247 6p23 intergenic ER+ 1.06 9x10-8 

  
rs720475 7q35 ARHGEF5 ER+ 0.93 2.9x10-8 

  
rs9693444 8p12 intergenic BC 1.07 9.2x10-14 

  
rs6472903 8q21.11 CASC9 BC 0.91 1.7x10-17 

  
rs2943559 8q21.11 HNF4G BC 1.13 5.7x10-15 

  
rs11780156 8q24.21 intergenic BC 1.07 3.4x10-11 

  
rs10759243 9q31.2 intergenic BC 1.06 1.2x10-8 

  
rs7072776 10p12.31 intergenic ER+ 1.09 2.5x10-11 

  
rs11814448 10p12.31 intergenic BC 1.26 9.3x10-16 

  
rs7904519 10q25.2 TCF7L2 BC 1.06 3.1x10-8 

  
rs11199914 10q26.12 intergenic ER+ 0.94 9.1x10-8 

  
rs3903072 11q13.1 intergenic BC 0.95 8.6x10-12 

  
rs11820646 11q24.3 intergenic BC 0.95 1.1x10-9 

  
rs12422552 12p13.1 intergenic BC 1.05 3.7x10-8 

  
rs17356907 12q22 intergenic BC 0.91 1.8x10-22 
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Study Year SNP Locus Gene Subtype OR P value 

  
rs11571833 13q13.1 BRCA2 BC 1.26 4.9x10-8 

  
rs2236007 14q13.3 PAX9 ER+ 0.91 1.9x10-10 

  
rs2588809 14q24.1 RAD51B ER+ 1.10 5.7x10-9 

  
rs941764 14q32.11 CCDC88C BC 1.06 3.7x10-10 

  
rs17817449 16q12.2 FTO BC 0.93 6.4x10-14 

  
rs13329835 16q23.2 CDYL2 ER+ 1.09 3.4x10-10 

  
rs527616 18q11.2 intergenic BC 0.95 1.6x10-10 

  
rs1436904 18q11.2 CHST9 ER+ 0.93 7.3x10-8 

  
rs4808801 19p13.11 ELL BC 0.93 4.6x10-15 

  
rs3760982 19q13.31 intergenic BC 1.06 2.1x10-10 

  
rs132390 22q12.2 EMID1 BC 1.12 3.1x10-9 

  
rs6001930 22q13.1 MKL1 BC 1.12 8.8x10-19 

Sawyer et al. [173] 2014 rs11977670 7q34 intergenic ILC 1.13 6x10-10 
Cai et al. [177] 2014 rs4951011 1q32.1b ZC3H11A BC 1.09 8.8x10-9 

  
rs10474352 5q14.3 intergenic BC 1.09 1.7x10-9 

  
rs2290203 15q26.1 PRC1 BC 1.08 4.2x10-8 

Milne et al. [178] 2014 rs1053338 3p14.1 ATXN7 BC 1.07 1x10-8 

  
rs6964587 7q21.2 AKAP9 BC 1.05 2x10-10 

Michailidou et al. [155] 2015 rs12405132 1q21.1 RNF115 BC 0.95 7.9x10-9 

  
rs12048493 1q21.2 OTUD7B BC 1.07 1.1x10-9 

  
rs72755295 1q43 EXO1 BC 1.15 1.8x10-8 

  
rs6796502 3p21.3 intergenic BC 0.92 1.8x10-8 

  
rs13162653 5p15.1 intergenic BC 0.95 1.1x10-10 

  
rs2012709 5p13.3 SUB1 BC 1.05 6.4x10-9 

  
rs7707921 5q14 ATG10 BC 0.93 5x10-11 

  
rs9257408 6p22.1 intergenic BC 1.05 4.8x10-8 

  
rs4593472 7q32.3 LINC-PINT BC 0.95 1.8x10-9 

  
rs13365225 8p11.23 intergenic BC 0.95 1.1x10-8 

  
rs13267382 8q23.3 LINC00536 BC 1.05 1.7x10-8 

  
rs11627032 14q32.12 RIN3 BC 0.94 4.5x10-9 

  
rs146699004 17q11.2 TEFM BC 0.93 3.3x10-8 

  
rs745570 17q25.3 intergenic BC 0.95 1.4x10-9 

  
rs6507583 18q12.3 SETBP1 BC 0.91 3.2x10-8 

Couch et al. [156] 2016 rs67073037 2p23.2 WDR43 ER- 0.92 4.8x10-9 
  rs6562760 13q22 intergenic ER- 0.92 5x10-10 
  rs17181761 13q22 intergenic ER- 1.09 4.2x10-8 
  rs188686860 2q33 intergenic ER- 1.36 8.3x10-8 

 

The underlying mechanisms of action for the vast majority of the common alleles that are 

associated with breast cancer are unknown. Fine-mapping and functional studies are required 

to elucidate the role and contribution of these loci for breast cancer. Several studies have been 

conducted in order to identify the functional role of GWAS hits [179]. However it has been 

proved difficult to assess the role of these loci. 

Identifying a functional role of signals that lie within gene deserts with the nearest gene being 

several kilo-bases away, such as the 2q and 8q loci, is even more challenging. The opposite 

phenomenon is also not trivial, where several genes, some of which might be good biological 

candidates lie within the associated linkage disequilibrium block. It is likely that the true 

functional risk modifying variants that are tagged by the association signal will be identified by 

large-scale sequencing projects such as the 100,000 genomes.  

Eight of the associated loci have been investigated thoroughly with fine-mapping studies to 

identify the true functional variant. Fine-mapping at the 5p15 locus identified several variants 
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that lie in the TERT gene and have an effect on the encoded protein’s activity [180]. Two 

variants near the FGFR2 gene have been found to alter important binding domains of the E2F1 

and FOXA1/Era. The target gene of these variants has been found to be FGFR2 [181]. In a 

similar manner three variants at the 11q1 locus regulate the CCND1 gene, which encodes for 

the Cyclin D1 by altering transcription factor domains [182]. A variant (rs4442975) at the 2q35 

locus has been found to confer risk towards breast cancer by regulating the expression of 

IGFBP5 gene which encodes for the insulin-like growth factor binding protein 5 [183]. 

Other approaches that could increase the power to detect associations are to focus on other 

populations, and especially population isolates, where associations might be easier to detect 

due to possible bottleneck effects. There is evidence that associations between populations are 

different and by focusing on different populations we can underpin more novel associations 

[184]. Specific phenotypic features can also be used as proxies for breast cancer and therefore 

can also be used to identify common alleles associated with the disease. Such features can 

include mammographic density or molecular profiling of the individuals [185]. Another approach 

is to enrich the data set for genetic predisposition by selecting cases with early onset of 

disease, bilateral disease or family history [90]. 

Most of the studies have been focusing on breast cancer as one entity apart from separating 

cases based on their ER expression. Several studies have stratified individuals based on the 

ER status and identified loci that are either differentially associated between ER positive and ER 

negative breast cancer or specifically associated with ER positive or negative breast cancer 

[156, 157]. Two different studies from BCAC identified a total of 8 novel breast cancer 

predisposition loci being specifically associated with ER negative disease. There is clear 

evidence that the strength of associations varies between ER positive and ER negative disease. 

Several studies have interrogated the association of breast cancer predisposition SNPs with the 

five molecular breast cancer subtypes [87, 186, 187]. One consistent finding is the stronger 

association of the variant rs2981582 with the Luminal-A subtype. Simulation methods predicted 

that more than another 1,000 independent loci are likely to be associated with breast cancer but 

with the current data sets and technology we are unable to detect them at the genome-wide 

significance level [154]. The majority of these loci are expected to have a very small effect size 

(1.02<OR<1.05). Given the fact that the smallest effect size being detected via GWAS to date is 

approximately 1.05, it becomes apparent that larger data sets and possibly different analytical 



48 
 

approaches might be required to identify the excess of unrevealed loci that could increase the 

explained heritability. 

1.3.4 Missing heritability 

Even though a huge leap forward has been made in defining the molecular genetic contribution 

over the last couple of decades, with the advancements in technology and the identification of 

several genetic loci associated with traits, the problem of missing heritability persists almost for 

all complex traits. The heritability of a disease is defined as the proportion of the phenotypic 

difference that is attributable to the genotypes [188]. There are several potential roots for this 

problem and some arise from the tools that are being used, but also from the way data is 

interpreted. Some of the possible reasons for the problem of high levels of unexplained 

heritability in any trait are the following [189]. 

Firstly, the most significantly associated variant in a region might be tagging an actual functional 

variant that has not been identified yet. This leads to underestimation of the actual contribution 

of a genomic locus to a trait. 

Another explanation for a fraction of the missing heritability could be that one might need to 

consider facts outside the standard pre-set models, such as those of rare variants with large 

effect and common variants with small effect. There might be rare variants with small effect, 

which would translate to the necessity of millions of samples in order to identify and quantify 

their effect in a phenotype. 

Similarly, there could be rare variants acting as expression Quantitative Trait Loci (eQTLs) for 

target genes and therefore explain a fraction of the phenotypic variation. Since the majority of 

loci associated with traits do not lie within exonic portions of genes, it becomes apparent that 

finding their functional role and mechanism of action towards a phenotype is challenging. Part of 

these associations can be explained by eQTLs where a variant in a position can regulate the 

expression of gene and predispose to a phenotype through this mechanism.  An eQTL study in 

breast cancer that was published in 2013 where the authors used publicly available data from 

TCGA (The Cancer Genome Atlas) and identified 3 cis and 3 trans-acting eQTLs out of the 15 

breast cancer loci that they investigated [190]. 

Furthermore, the statistical models that are currently used are not optimal to assess the effect of 

common variants with minimal effects. Since the P<5x10-8 threshold is used in every GWAS or 

large scale genomic study, it is limiting the pool of variants that reach that level of significance. 
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Implementing a different approach that could use the information of the variants that could be 

hidden below the pre-set level of genome-wide significance could help explaining a part of 

heritability. 

There are methods being developed and used in order to estimate the total amount of the 

heritability explained by a study, using the information from the whole data set rather than from 

the “significant hits” only [191]. 

On the other hand, diseases such as breast cancer are very heterogeneous and by treating 

them as one entity might not reveal the genetic architecture underlying the disease 

development. The majority of breast genetic studies focus on breast cancer as one disease, 

with the exception of ER status stratification [156, 157]. There are studies in psychiatric and 

quantitative genetics illustrating that dissecting a case cohort into distinct pathological subtypes 

can increase the power and improve the ability to detect association with a trait when there is 

evidence of distinct inheritance patterns [192]. 

The opposite approach has also been shown to be successful. Instead of phenotypic 

stratification, joining phenotypes can also increase the likelihood of identifying novel genetic 

variants predisposing to disease since the sample size can dramatically increase, without 

having a huge impact on the genetic heterogeneity of the samples. A recent study meta-

analysed GWAS data from breast ovarian and prostate cancer consortia and identified seven 

novel loci that are associated with at least two of the three different cancer types all of which 

included breast cancer (rs17041869, rs7937840, rs1469713, rs200182588, rs8037137, 

rs5013329, rs9375701) [193]. 

1.4 Aim of the study 

The aim of this study is to investigate the genetic predisposition to distinct morphological 

subtypes of breast cancer and expand our understanding of breast cancer pathogenesis. Our 

efforts were focused on DCIS, ILC, and LCIS, with the objective to understand the similarities 

and differences between different histological subtypes in the context of both rare and common 

inherited genetic variation. 

1.4.1 Distinct subtypes to increase genetic homogeneity 

Despite its complexity and heterogeneity, breast cancer has been, in general, treated as one 

disease in most genetic studies up to date. A few exceptions are studies that looked into ER 
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specific cases and identified ER specific loci [156, 157]. The main hypothesis of this project is 

based on the fact that breast cancer is a heterogeneous complex disease or even a 

heterogeneous complex of diseases. This heterogeneity could also be translated to genetic 

heterogeneity. We focused our efforts on specific histological subtypes of breast cancer based 

on the hypothesis that by carefully defining the phenotype and focusing on specific 

morphologies, one is more likely to increase the genetic homogeneity of the sample and 

therefore increase statistical power to detect association. 

1.4.2 Extreme phenotype selection 

One of the main hypotheses applied during the course of this PhD was the extreme phenotype 

hypothesis. There are several studies that have shown that cases with more severe symptoms 

are more likely to carry a highly penetrant variant contributing towards disease development. 

Following this principal, we hypothesise that cases with early onset of disease, bilateral disease, 

or family history are more likely to carry a rare highly penetrant variant predisposing to breast 

cancer. Individuals that fulfilled certain criteria were prioritised for analysis.  
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Chapter 2 Rare genetic variation predisposing to ILC and LCIS 

2.1 Introduction 

Lobular breast cancer is the second most common subtype of breast cancer with an increasing 

incidence among the female population over the last years. It has been previously shown that 

both ILC and LCIS have higher familial risks than their ductal counterparts, with the presence of 

stronger family history and bilateral lesions [50, 194, 195]. These suggest the presence of rare 

penetrant variants that contribute to breast cancer development. 

Lobular carcinomas are characterised by loss of E-cadherin expression and somatic mutations 

are a common cause of this loss. It was therefore not unreasonable to hypothesise that 

germline CDH1 variants may contribute to the familial risk of lobular cancer. Cadherin-1 or E-

cadherin is a classical and very well studied protein of the cadherin superfamily. The encoded 

product is a cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a 

transmembrane region, and a cytoplasmic tail that is highly conserved and phosphorylated. 

Loss of 16q and acquired events in the CDH1 gene, which is known for its tumour suppression 

function, have been implicated with several different carcinomas including gastric, breast, 

colorectal, thyroid, and ovarian cancers. E-cadherin’s loss of function is thought to contribute to 

cancer development by promoting proliferation, invasion, and metastasis [196]. 

Rare missense variants in the CDH1 gene have not been thoroughly investigated due to their 

frequency and their expected lower penetrance than protein truncating variants. However, 

several studies investigating predisposition to breast cancer highlighted a possible association 

of rs35187787, with breast cancer [197]. This variant is a missense variant (p.A592T) located in 

exon 12 of CDH1.  

There is very little data on the prevalence of the other known moderate and high penetrance 

breast cancer predisposition genes in lobular breast cancer. Lobular cancers have been shown 

to be more frequent among BRCA2 carriers than BRCA1 carriers [198] and there is anecdotal 

evidence that CHEK2 and PALB2 mutations may be associated with ILC [199, 200].  

2.2 Aims and strategy 

With the aim of understanding genetic predisposition to lobular breast cancer 2,539 individuals 

recruited through the GLACIER study (Genetics of LobulAr Carcinoma In situ in EuRope) were 

investigated to study the genetics of both ILC and LCIS. The numbers of cases with different 

phenotypic characteristics within the GLACIER study are indicated in Figure 7.1, page 157. One 
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of the aims of this project was to assess the frequency of germline mutations in CDH1 in 

bilateral LCIS/ILC testing the hypothesis that cases of bilateral LCIS/ILC are more likely to be 

underpinned by an inherited component. This hypothesis is supported by a recent retrospective 

study from France of all index cases (165 in total) who had undergone CDH1 mutation 

screening in their region from 2006-2012. A second aim of our study was to identify a possible 

association of rs35187787 with any form of lobular disease, since there was some prior 

evidence of association with breast and other types of cancer. A third aim of this project was to 

assess the prevalence of the known rare variants in sporadic lobular breast cancer and also to 

identify novel rare variants that predispose to ILC. Currently women with lobular breast cancer 

are only eligible for CDH1 screening if there is a family history of diffuse gastric cancer. 

Although CDH1, BRCA2, CHEK2 and PALB2 mutations have been described in ILC [201] the 

prevalence of mutations in these genes in sporadic lobular breast cancer is unknown. Mutations 

in BRCA1 and TP53 are not well described in ILC, due to their rarity and in our study we aim to 

assess their contribution towards this histological subtype of breast cancer. 

We have employed different approaches to identify variants in either known breast cancer 

predisposition loci or novel putative genes. In an initial attempt to identify rare variants that 

predispose to ILC, we utilised WES technology to interrogate the exonic portions along with the 

splicing flanking regions of all coding genes. 

2.3 Pilot whole exome sequencing of seven individuals 

As a pilot study we selected 7 individuals with a severe phenotype, including early onset of 

disease, or bilateral lobular carcinoma. The list of individuals that were prioritised for whole 

exome sequencing is indicated in Table 2.1. Amongst those individuals, a CDH1 protein 

truncating variant was identified, along with a BRCA2 protein truncating variant. Both variants 

have been previously described as pathogenic. The BRCA2 variant was present in an individual 

diagnosed with unilateral ILC and LCIS at the age of 38. This case had two first degree relatives 

affected with breast cancer. The CDH1 variant was found in an individual with bilateral LCIS 

and unilateral ILC at the age of 36 that has been previously tested negative in BRCA genetic 

screening. This finding led to an extension of this study to investigate the prevalence of CDH1 

truncating variants in a cohort of cases with bilateral lobular lesions. 
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Table 2.1: Characteristics of 7 individuals selected for the pilot whole exome sequencing project. 

Study ID 

FHx of 
Breast 
Cancer 

Age at 
Dx Details Bilateral 

FHx of 
Breast 
Cancer 

TG00978 yes 35 ILC + extensive LCIS no yes 

TG00784 no 36 
L ILC + LCIS; R pure extensive 
LCIS yes no 

TG00276 yes 38 ILC + LCIS no yes 

TG00675 yes 36 ILC + extensive LCIS no yes 

TG00211 no 37 ILC + extensive LCIS yes no 

TG00384 no 39 ILC + extensive LCIS no no 

TG00115 no 40 ILC + extensive LCIS no no 
 

2.4 CDH1 mutations are frequent in bilateral LCIS/ILC 

2.4.1 Methods 

We screened the GLACIER database for individuals with bilateral lobular lesions, either invasive 

or in situ. At the time of this analysis, DNA from 2,210 cases of LCIS/ILC that have been 

recruited from 97 UK hospitals was available. Diagnosis from local pathology reports had been 

confirmed in 1,960 cases. We identified 50 individuals of European ethnicity, having bilateral 

LCIS/ILC. Cases were considered bilateral if they had evidence of bilateral LCIS with or without 

invasive carcinoma, or pure ILC either synchronously or sequentially. All cases with FFPE 

tissue blocks (N=26) underwent histological review to confirm the diagnosis by specialised 

pathologists. None of the 26 samples that were reviewed had the histological diagnosis 

changed following review. A proportion of those 50 samples (N=29) were prioritised for whole 

exome sequencing, whereas the rest were PCR amplified and Sanger sequenced using 

protocols described in section 7.2. The entire coding sequence and associated splice sites of 

the CDH1 gene were screened. Additionally, MLPA was performed in order to investigate the 

presence of large deletions or duplication including whole exons of the CDH1 gene.  

2.4.2 Results 

The characteristics of each bilateral case are summarised in Table 2.2. The majority of patients 

had bilateral LCIS with or without invasive disease. One case had bilateral ILC with no LCIS 

and four had bilateral ILC with unilateral LCIS. The median age of diagnosis was 51 (range 36-

60, IQR=6). For pure bilateral LCIS the median age was 49 (IQR=5,5), and for LCIS with ILC 

the median was 51 (IQR=6). The median age of diagnosis for all 50 bilateral cases was 51 

years, which was similar to the median age of the 1,791 unilateral cases (51 years) of LCIS/ILC 

(all non-European cases excluded) collected through GLACIER (P=0.89, Mann-Whitney U test). 
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Family history of breast cancer (not confined to first degree relative) was more frequent in 

bilateral cases (56%) than unilateral (41%) (P=0.042, Fisher’s exact test), section 7.3.2. There 

was no significant excess of family history of gastric cancer in patients with bilateral disease 

(10%) compared to unilateral (8%) (P=0.61 Fisher’s exact test). 

Four germline mutations were identified in four individuals: one donor splice site mutation 

(c.48+1G>A), two frame-shift mutations (c.1465insC, c.2398delC), and a nonsense substitution 

(c.1942G>T), Table 2.3, Figure 2.1, Appendix 3. 

Table 2.2: Characteristics of 50 bilateral cases from the GLACIER study. The four carriers are indicated in 
bold. 

Sample ID 
Age of 

first 
LCIS/ILC 

Age of 
second 

LCIS/ILC 

Pathology left 
breast 

Pathology 
right 

breast 

Family History of                                                                              
breast cancer 

Family 
History of 

gastric 
cancer 

TG00092 52   LCIS 
LCIS/Mixed 

invasive 
-   

TG00107 49   LCIS LCIS 
Aunt (50) Mother 

(Paget's) 
  

TG00138 51   LCIS LCIS/ILC - 
 

Grandmother 
TG00144 46   LCIS/ILC LCIS - Uncle 
TG00162 46   LCIS LCIS Mother(43)   

TG00170 54   ILC 
LCIS/IDC, 

ILC 
- 

Grandfather, 
Uncle 

TG00197 55   LCIS/ILC LCIS - 
 

TG00325 57   LCIS/IDC LCIS/IDC - 
 

TG00413 44   LCIS/ILC LCIS/IDC Aunt   

TG00457 53   
LCIS/Mixed 

invasive 
LCIS/Mixed 

invasive 
Sister(52), Aunt(60)  Cousin (54) 

TG00541 46   LCIS/ILC LCIS/ILC 
Grandmother (70), 
Aunt (70), Cousin 

(45) 
  

TG00544 52   LCIS/IDC LCIS -   
TG00598 51   LCIS LCIS/IDC - 

 
TG00617 51   LCIS/ILC LCIS - 

 
TG00632 58   LCIS/ILC LCIS - 

 
TG00645 51   LCIS LCIS -   
TG00669 45   LCIS/ILC LCIS Sister, Grandmother   
TG00705 44   LCIS LCIS -   

TG00762 53 60 LCIS 
LCIS/Mixed 

invasive 
Great-grandmother   

TG00777 56   LCIS LCIS 
Grandmother, Aunt, 

Aunt, Aunt 
  

TG00784 36 37 LCIS/ILC LCIS -   
TG00800 50   LCIS LCIS/ILC -   
TG00852 50   LCIS/ILC LCIS Mother (50)   
TG00857 54 55 LCIS/ILC LCIS Mother (54)   

TG00945 57 59 LCIS/ILC LCIS 
Mother (40), Sister 

(35) 
  

TG00985 58   LCIS/ILC LCIS Sister   
TG01026 52   ILC LCIS/ILC -   

TG01038 52   LCIS 
LCIS/Mixed 

invasive 
Great-grandmother 

(70) 
  

TG01154 50   LCIS/ILC LCIS Sister (57), Cousin Aunt (65) 
TG01192 56   LCIS/IDC LCIS/ILC Grandmother, Aunt   
TG01212 60   LCIS LCIS/ILC Aunt(55)   
TG01295 48 50 LCIS LCIS/ILC Aunt (70)   

TG01366 57   ILC LCIS/ILC 
Mother(55), 
Cousin(59) 

  

TG01420 52   LCIS/ILC LCIS/ILC -   
TG01457 52   LCIS/ILC LCIS/ILC Sister(40), Sister(56)   
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Sample ID 
Age of 

first 
LCIS/ILC 

Age of 
second 

LCIS/ILC 

Pathology left 
breast 

Pathology 
right 

breast 

Family History of                                                                              
breast cancer 

Family 
History of 

gastric 
cancer 

TG01483 46   LCIS LCIS Sister(46)   
TG01490 60   LCIS/Tubular LCIS/IDC Cousin (50)   

TG01513 48   LCIS LCIS/ILC 
Mother(39), 
Sister(38) 

  

TG01514 40   LCIS LCIS/ILC -   
TG01528 56   LCIS/ILC LCIS -   

TG01534 43   
LCIS/ILC, 
Tubular 

LCIS Mother (74)   

TG01648 50   ILC ILC -   
TG01666 52 56 LCIS LCIS/ILC Grandmother   
TG01672 51   LCIS/ILC LCIS/ILC Cousin (55)   
TG01705 52 53 LCIS LCIS Grandmother (67)   
TG01777 47   LCIS LCIS/IDC Aunt (65)   
TG01824 42 44 LCIS/ILC LCIS/ILC -   
TG01844 49   LCIS LCIS -   

TG02040 50   LCIS/ILC ILC 

Mother (60), Sister 
(51), Grandmother 
(56), Grandmother 

(60) 

  

TG02417 49   LCIS/ILC 
LCIS/ILC, 
Tubular 

-   

 

 

Figure 2.1: Chromatograms of the four protein truncating CDH1 variants identified in cases with bilateral 

lobular disease, (A) TG01672:c.48+1G>A, (B) TG00162:c.1465insC, (C) TG01514:c.1942G>T and (D) 
TG00784:c.2398delC.. 

The c.48+1G>A mutation is novel, affecting the donor splice site of intron 1 and occurred in an 

individual with bilateral LCIS and ILC at the age of 51 with a family history of breast cancer. The 

other three mutations introduce a premature stop codon in exon 10, 13 and 15 respectively, 

leading to a protein lacking all or part of the intracellular domain. These three mutations have 

been previously described: c.1942G>T, a somatic mutation in colon cancer [202]; c.1465insC, a 
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germline mutation in diffuse gastric cancer [203]; and c.2398delC, a founder mutation in four 

Newfoundland families with diffuse gastric and ILC [110]. The c.1465insC mutation occurred in 

an individual with bilateral pure LCIS at the age of 46 whose mother had breast cancer at the 

age of 43. The remaining two carriers had bilateral LCIS and unilateral concurrent ILC with no 

family history of breast cancer. None of the four cases had a family history of gastric cancer. 

There was no evidence of exonic deletions/duplications in any of the remaining 46 cases 

without a germline mutation as revealed by MLPA. Using a control data set from the King’s 

College London exome sequencing database, we found no truncating or splice site mutations in 

CDH1 in 536 ethnicity matched female individuals (P<0.0001, Fisher’s exact test). 

Table 2.3: Variant information along with pathological features of individuals with CDH1 protein truncating 

variants. None of these variants was present in the ExAC population. 

Sample 
ID 

Exon 
Nucleotide 

substitution 
Amino-acid 
substitution 

Age of 
diagnosis 

Pathology 

TG01672 1 c.48+1G>A Donor splice site 51 Bilateral LCIS, Bilateral ILC 
TG00162 10 c.1465insC p.P489fs 46 Bilateral LCIS, No ILC 
TG01514 13 c.1942G>T p.E648X 40 Bilateral LCIS, Unilateral ILC 
TG00784 15 c.2398delC p.P799fs 37 Bilateral LCIS, Unilateral ILC 

 

Four (8%) of the bilateral cases in our cohort of LCIS/ILC were found to have a germline 

mutation in CDH1. All are predicted to be loss of function, with one being a splicing mutation 

and the remaining three being truncating mutations. Two have previously been shown to be 

pathogenic.  

Germline CDH1 mutations were initially reported in patients with hereditary diffuse gastric 

cancer (HDGC) [108]. Approximately 30% of families with HDGC due to CDH1 germline 

mutations also include individuals with ILC [109-112]. However germline CDH1 mutations in 

women with ILC that present without a family history of HDGC appear to be rare. Of the 408 

cases of LCIS/ILC with no family history of HDGC screened for CDH1 mutations and reported in 

the literature, only three germline mutations have been described, all in cases of ILC [113-116], 

Table 2.4. The cases in these studies were selected mainly on the basis of early onset disease 

or family history of ILC. In a study where 165 were screened for CDH1 mutations, they identified 

18 individuals with CDH1 mutations, three of which had bilateral ILC before the age of 50 prior 

to developing gastric cancer [204]. 
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Table 2.4: Published breast cancer studies that screened the CDH1 gene for germline mutations in cases 

with no family history of gastric cancer. 

Studies Phenotypes 
Mutation 
carriers 

Total 
cases 

Current 
study 

Bilateral LCIS/ILC  4 50 
FH of breast cancer1 2 27 

Early onset (<45 years) 2 7 
Bilateral LCIS/ILC  4 50 

Rahman et 
al. 2000 

LCIS  0 65 
FH of breast cancer 0 20 

Early onset (<45 years) 0 Unknown 
Bilateral LCIS 0 17 

Masciari et 
al. 2007 

 9 ILC/ 14 mixed pathology  1 23 
FH of breast cancer 1 19 

Early onset (<45 years) 1 4 
Bilateral ILC Unknown Unknown 

Schrader et 
al. 2011 

ILC  0 318 
FH of breast cancer 0 104 

Early onset (<45 years) 0 214 
Bilateral ILC 0 Unknown 

Xie et al. 
2011 

Familial ILC2 2 2 
FH of breast cancer 2 2 

Early onset (<45 years) 1 1 
Bilateral ILC 2 2 

 

The frequency of CDH1 mutations is much higher than previous studies of LCIS/ILC without a 

personal or family history of gastric cancer where only 0.7% of the sporadic or familial cases of 

LCIS/ILC without HDGC carry CDH1 mutations (P=0.003, Fisher’s exact test, comparison with 

previous literature). The median age of the mutation carriers at presentation was eight years 

lower than that of the 46 CDH1 negative bilateral cases (43 years versus 51 years respectively). 

Interestingly only two cases had a family history of breast cancer with one having a first degree 

relative with the disease (subtype unknown) and none of them having any family history of 

gastric cancer. This is in accordance with the findings of Claus et al [50], who showed that few 

cases of bilateral LCIS had a family history of breast cancer despite the fact that both bilaterality 

and family history of breast cancer are reported to be more frequent in LCIS than other breast 

pathologies [50, 194, 195]. 

2.5 CDH1 rare variant c.G1774A:p.A592T (rs35187787) and 

association with lobular breast cancer 

During the pilot WES screening of 7 individuals, we incidentally identified a missense variant 

(c.G1774A : p.A592T: rs35187787) in one case. Previous studies suggested an association of 

rs35187787 with cancer having found co-segregation of this variant in families with multiple 

affected members. Variant rs35187787 has been initially implicated with cancer in a study 

                                                      

1 Not confined to first-degree relative 
2 Index case only described, Family A, 5 ILC cases, 2 bilateral; Family B, 1 ILC 
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investigating the genetics of colon cancer. This variant was found in two unrelated individuals 

with colon cancer one of which had a family history of colon and gastric cancer where the 

variant co-segregated with both diseases [205]. The same researchers proceeded with a follow 

up screening of around 1,800 individuals in order to explore their findings further, and to assess 

the frequency of this variant in breast cancer and a healthy control group. They screened over 

1,300 cases with either sporadic or familial breast cancer and approximately 500 controls. The 

frequency for this variant across different groups (familial cases, sporadic cases, BRCA carriers, 

early onset cases, controls) varied between 0.56% and 0.83% [206]. Several studies have 

reported this variant while screening the CDH1 gene for pathogenic variants. However, due to 

its prevalence in healthy individuals, most studies are either inconclusive or treat this variant as 

benign [207]. 

Since there is a prior knowledge of CDH1 being associated with breast cancer of lobular 

subtype, and other researchers have looked at the association of rs35187787 with breast 

cancer we followed a phenotypic stratification approach where we investigated a possible 

association of rs35187787 in the context of lobular disease. Rather than including all breast 

cancer cases in our analysis, we included individuals with lobular breast cancer since there is a 

prior knowledge of association between CDH1 and ILC. 

2.5.1 Methods 

We genotyped 2,630 cases with either LCIS or ILC and 1,471 matched controls from the 

GLACIER study. Samples were quantified and plated into 96 well plates. Genotyping was 

outsourced to LGC for this project. The genotyping technology used was KASP and genotypes 

were analysed in plink. Samples were excluded based on self-reported non-European ethnicity. 

The final data set comprised 2,440 lobular cases and 1,349 controls. A Fisher’s exact test was 

used in order to test for association of the variant with lobular breast cancer in general, or any 

specific subgroup based on onset of disease, bilaterality, and family history. Different prediction 

tools have been used to assess the deleteriousness of this variant in silico. In order to assess 

potential causality of rs35187787, which has a population frequency of <0.01, we used 

PROVEAN (Protein Variation Effect Analyser), SIFT (Sorting intolerant from tolerant variants), 

Polyphen2 (Polymorphism Phenotyping v2), CADD (Combined annotation–dependent 

depletion), and DANN which are bioinformatics tools that predict a potential functional role of 

variants including non-synonymous variants. In the context of this thesis, non-synonymous 
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variants are defined as single nucleotide substitutions that alter the amino-acid sequence of a 

protein coding gene (missense variants). 

2.5.2 Results 

To assess the frequency and the potential causality of this variant, we used genotypic data 

obtained from 2,440 lobular cases along with 1,349 matched healthy controls with no personal 

or family history of breast cancer. No homozygotes were identified. This variant was present in a 

heterozygous state in 33 cases and 22 controls. No evidence of association was found. There 

was no underlying association in subgroup analyses of individuals with family history, bilateral 

lesions or early onset of disease, Table 2.5. This large study of approximately 4,000 individuals 

provides enough evidence that rs35187787 is not associated with any form of lobular breast 

cancer. In order to attempt to assess a potential functional effect, we used several 

bioinformatics tools including PROVEAN (Protein Variation Effect Analyser), SIFT (Sorting 

intolerant from tolerant variants), and Polyphen2 (Polymorphism Phenotyping v2). All tools 

suggest that this variant has a significant and damaging effect on the predicted protein’s 

structure and function. Table 2.6 shows the in silico predictions of functional consequences for 

rs35187787. Figure 2.2 indicates that rs35187787 is a highly evolutionary conserved locus. 

Table 2.5: Summary data on rs35187787 for different GLACIER study populations including a reference 
European ExAC population group. P values are calculated using a Fisher’s exact test. 

Group Carriers Total N MAF P value 

ExAC 292  66740 0.0043 - 

Controls 22 1349 0.0082 Ref 

All cases 33 2440 0.0068 0.8 

ILC 20 1419 0.0070 0.73 

Age<45 or FH any 17 968 0.0088 0.47 

Age<45 or FH ILC 9 618 0.0073 0.68 

FH ILC 5 432 0.0058 0.82 

<45 ILC 7 388 0.0090 0.48 

Age<45 and FH ILC 1 64 0.0078 0.66 

Bilateral 1 63 0.0079 0.58 

 

However, our data show no significant association using a Fisher’s exact test (P=0.8) (Table 

2.5). Therefore, it is extremely unlikely that this variant is associated with lobular breast cancer. 

Its frequency in the European population is 0.4% (ExAC). 



60 
 

Table 2.6: In silico predictions for rs35187787 using different prediction tools. 

Tool PROVEAN CADD DANN SIFT PolyPhen2 

Score -2.75 15.26 0.995 0 0.266/ 0.492 

Prediction Damaging 
Possibly 

damaging 
Damaging Deleterious 

Benign/ 
Possibly 

damaging 
 

 

Figure 2.2: Conservation status of the rs35187787 variant across 19 species. 

2.6 Exome sequencing of extreme phenotypes 

In an attempt to identify novel breast cancer predisposition genes we exploited the extreme 

phenotype hypothesis. The underlying basis of this hypothesis is that cases that have a strong 

family history, or a more severe phenotype such as bilateral disease or early onset of disease, 

are more likely to carry a rare variant that will confer high risk towards disease development. We 

performed whole exome sequencing on 51 individuals. The characteristics of the 51 cases with 

lobular disease that underwent exome sequencing are shown in Table 2.7. In addition, we 

downloaded data for 110 individuals with ILC from TCGA. Individuals were initially screened for 

rare variants in known breast cancer predisposition genes. For those with no obvious 

pathogenic variants identified, an exome-wide gene burden test was performed using 536 

female Europeans as controls. The controls have been sequenced in-house for other projects 

investigating the genetic predisposition to other non-cancer diseases. However, we cannot 

exclude the possibility that a portion of them might have a history of breast or ovarian cancer 

even though they were screened for a different trait. All individuals that remained in the final 
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data set, irrespective of their status were of European ancestry, confirmed by principal 

component analysis (PCA). We identified eight genes not known to be associated with breast 

cancer that contained rare protein truncating or non-synonymous variants that were predicted to 

be deleterious in cases of ILC and were either absent or present at low frequency in the 

controls. The number of variants identified during this study along with some key characteristics 

of the genes are highlighted in Table 2.12, page 71. The aim of this study was to identify good 

candidates that would be validated in a larger targeted sequencing phase II study. 
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Table 2.7: Individuals selected for exome sequencing. Age of diagnosis, pathological phenotype, laterality, 
family history of breast cancer along with number of affected family members are indicated on the table. 

Sample ID Age Pathology Bilateral FH of BC N FH 1st d N FH 2nd d 

TG00475 29 ILC/LCIS 
    

TG00386 34 ILC/LCIS 
    

TG00396 34 ILC/LCIS 
    

TG00978 35 ILC/LCIS 
 

x 2 
 

TG00484 35 ILC/LCIS 
 

x 
 

1 
TG01161 35 ILC/LCIS 

    
TG01238 35 ILC/LCIS 

    
TG00675 36 ILC/LCIS 

 
x 1 1 

TG01543 36 ILC/LCIS 
 

x 1 
 

TG00784 36 ILC/LCIS x 
   

TG00211 37 ILC/LCIS x 
   

TG00276 38 ILC/LCIS 
 

x 2 
 

TG00384 39 ILC/LCIS 
    

TG01514 40 ILC/LCIS x 
   

TG00115 40 ILC/LCIS 
    

LI_2 40 ILC ? 
 

2 
 

TG01824 42 ILC/LCIS x 
   

TG02438 42 ILC/LCIS x 
   

TG01534 43 ILC/LCIS x x 1 
 

TG01901 44 ILC x x 
 

3 
TG00669 45 ILC/LCIS x 

   
TG00541 46 ILC/LCIS x x 

 
1 

TG00144 46 ILC/LCIS x 
   

TG01483 46 LCIS x 
   

TG01513 48 ILC/LCIS x x 2 
 

TG01295 48 ILC/LCIS x x 1 
 

TG00107 49 LCIS x x 1 1 
TG02417 49 ILC/LCIS x 

   
TG02525 49 ILC/LCIS x 

   
TG01844 49 LCIS x 

   
LI_1 49 ILC ? x 2 

 
TG01154 50 ILC/LCIS x x 1 1 
TG02040 50 ILC/LCIS x x 2 2 

ES_Sister1 50 ILC/LCIS 
 

x 1 
 

TG01648 50 ILC x 
   

TG00852 50 ILC/LCIS x 
   

TG01672 51 ILC/LCIS x x 
 

1 
TG00053 51 ILC/LCIS 

 
x 1 

 
TG00612 51 ILC/LCIS x 

   
TG02394 51 ILC/LCIS x 

   
TG01457 52 ILC/LCIS x x 2 

 
TG00088 52 ILC/LCIS 

    
TG02504 53 ILC x 

   
TG02095 56 ILC/LCIS x x 1 

 
101190-INV 56 ILC/LCIS x 

   
TG01473 57 ILC x 

   
101185-INV 57 ILC/LCIS 

    
101181-INV 75 ILC/LCIS 

    
101194-INV 81 ILC/LCIS 

    
GLC_Sister1 48 ILC/LCIS ? x 2 

 
GLC_Sister2 55 IDC/LCIS ? x 2 

 
 

2.6.1 Findings in known breast cancer predisposition genes 

In addition to the CDH1 findings, we investigated the existence of high penetrant variants that 

have been previously associated with breast cancer. Preliminary exome sequencing analysis 
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revealed the presence of 5 variants in 6 individuals (Table 2.8). Three truncating BRCA2 

mutations have been identified in three individuals with ILC diagnosed at 38, 57 and 65 

respectively. Two of the variants are only 10 base pairs apart and lead to a stop codon at exon 

11 (c.C5645A, and c.C5655A). The third BRCA2 variant is a dinucleotide (AG) deletion on exon 

20 that leads to a frame-shift (c.8537_8538del). These findings suggest that the prevalence of 

germline BRCA2 mutations is approximately 2% for ILC based on our phase I study 

incorporating data from 110 TCGA samples and 51 samples sequenced in house. This is 

consistent with previous literature on prevalence of BRCA2 mutations which is estimated to be 

between 1% and 5% [208]. Two individuals from the TCGA with ILC being diagnosed at the age 

of 63 and 80 respectively, carry the CHEK2 variant c.T470C. This is a non-synonymous 

missense variant (p.I157T) conferring an overall risk of developing breast cancer of OR=1.5 

(95% CI = 1.3-1.7). However, according to a meta-analysis study investigating the prevalence of 

that variant, the risk of developing lobular breast cancer is significantly higher (OR=4.2, 95%CI 

CI = 2.9-6) [123]. This provides more evidence for the shared but distinct aetiology of different 

morphological subtypes of breast cancer. Finally, the last rare penetrant variant that we found in 

the phase I analysis is located on exon 40 of the ATM gene. The individual, age of 72 when 

diagnosed with ILC, carried the nonsense c.G5932T variant (p.E1978X). This variant has been 

previously shown to be associated with breast cancer across different populations with an 

overall OR=5.6 (95% CI 1.3-21.4) [209]. 

Table 2.8: Established mutations in known breast cancer predisposition genes apart from CDH1. 

Sample ID Age Gene Exon AA change Nt change 

TCGA_BC026 72 ATM 40 p.E1978X c.G5932T 

S0072 38 BRCA2 11 p.S1882X c.C5645A 

S0251 57 BRCA2 11 p.C1885X c.C5655A 

TCGA_BC018 65 BRCA2 20 p.2846fs c.8537_8538del 

TCGA_BC007 80 CHEK2 4 p.I157T c.T470C 

TCGA_BC021 63 CHEK2 4 p.I157T c.T470C 

 

2.6.2 Familial cases 

Exome sequencing two individuals from the same family can dramatically increase the power to 

identify causative variants. Since the expectation is that the same variant is predisposing all 

family members to breast cancer, having more affected individuals reduces the number of 

shared variants across all of them and therefore can indicate the true “pathogenic” variant. Two 
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members of the same family have been exome sequenced in two occasions to follow a family 

based approach in order to enrich the analysis for true pathogenic variants. 

In order to stratify and filter variants according to deleteriousness, we applied strict filtering 

criteria with CADD>30 for non-synonymous variants. An exploratory analysis including known 

pathogenic and non-pathogenic variants in BRCA1 and BRCA2 indicated that a CADD>30 is a 

reasonable cut-off. The false positive rate amongst 1,500 variants was < 1%. Protein truncating 

variants were also included in the analysis. Finally, a MAF<1% cut-off was applied using the 

1000 Genomes project and the Exome sequencing project (ESP). 

A family pedigree is shown in Figure 2.3, where two siblings were exome sequenced. A list of 6 

variants that correspond to 6 genes was the output of the analysis. The genes are; ATRIP, 

STK38L, ULK2, OR2AP1, RREB1, and BAIAP3, Table 2.9. 

Table 2.9: Best candidate genes from Family 1. The frequency of those variants was interrogated in our 
set of 536 matched controls and in the ExAC population. 

Gene 
Controls 
N=536 

ExAC 
frequency 

Variant description 

ATRIP 0 - ATRIP:NM_130384:exon12:c.2263delG:p.V755fs 

STK38L 0 - NM_015000:exon4:c.G211A:p.A71T 

ULK2 0 - NM_014683:exon26:c.C2971T:p.R991C 

OR2AP1 1 - NM_001258285:exon1:c.93delT:p.L31fs 

RREB1 2 0.00039 NM_001003700:exon10:c.C3191T:p.P1064L 

BAIAP3 2 - NM_003933:exon17:c.1617-1G>T 

  

The ATRIP gene was the most plausible candidate both due to the absence of similar variants 

to a group of controls but also due to its function as a transcription factor. This variant is a novel 

frameshift deletion in exon 12 (c.2263delG:p.V755fs). DNA from a third affected member of the 

family was obtained, and the presence of the ATRIP protein truncating variant was confirmed 

using Sanger Sequencing. Two siblings diagnosed at 40 and 49 respectively were selected for 

exome sequencing whereas germline DNA from their mother was used for Sanger sequencing 

validation. 
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Figure 2.3: Pedigree of a family with three affected individuals, two of which were confirmed to be of 
lobular histology. Both of those individuals were exome sequenced. 

For the second family with three siblings affected with different histological subtypes of breast 

cancer, a similar approach was followed. A representative pedigree is shown in Figure 2.4.  The 

top candidate genes are reported on Table 2.10. The two genes that seemed to be the best 

candidates to pursue at the validation stage were ESR2 and FMO2. The ESR2 variant is a stop-

gain protein truncating variant (c.C335A: p.S112X, rs141516067). Its frequency in the general 

population is less than 0.02%.  

ESR2 encodes for estrogen receptor β. The specific role of ER-β, in breast cancer development 

is currently unknown. However, due to the key role of estrogen in the development of breast 

cancer [210], and the involvement of ER in the estrogen signal transduction, it has been 

speculated that variants at the ESR2 gene could be associated with breast cancer. 

 

Figure 2.4: Three siblings with different histological subtypes of breast cancer. IDC black), ILC (green), 
DCIS (blue), and LCIS (red) are shown in the three siblings. 



66 
 

The FMO2 variant is a novel frameshift insertion in exon 7 (c.893_894insA:p.K298fs). Due to 

the limitation on the number of amplicons that could be included, the second candidate, FMO2, 

was partially screened with only the exon where the mutation was found being included in the 

gene panel. The presence of both variants was confirmed on the third sibling using Sanger 

Sequencing. 

Table 2.10: Best candidates from Family 2 with three affected siblings. The frequency of those variants 
was interrogated in our set of 536 matched controls and in the ExAC population. 

Gene 
Controls 
N=536 

ExAC 
frequenc

y 
Variant description 

ESR2 2 0.000092 NM_001040275:exon2:c.C335A:p.S112X 

TRPC6 2 0.000033 NM_004621:exon4:c.G1196A:p.R399Q 

AHCTF1 1 0.0011 NM_015446:exon27:c.3374+1G>T 

BUB1B 1 - NM_001211:exon2:c.G61A:p.E21K 

FMO2 1 - NM_001460:exon7:c.893_894insA:p.K298fs 

IL17RE 1 0.00049 NM_001193380:exon14:c.1297-2A>T 

PCSK9 1 0.000039 NM_174936:exon11:c.1863+1G>A 

RNF123 1 - NM_022064:exon13:c.1110+1G>C 

ZNF594 1 0.000066 
NM_032530:exon2:c.2173_2174insT:p.K725_H726delins

X 

DPH6 0 0.00059 NM_080650:exon3:c.G136A:p.D46N 

FMNL3 0 - NM_175736:exon18:c.G2048A:p.R683H 

LMNTD1 0 0.0053 NM_001145728:exon3:c.89+1G>A 

METTL1 0 0.00012 NM_005371:exon3:c.G326A:p.R109Q 

PLEKHN
1 

0 0.000018 NM_032129:exon14:c.1632delG:p.Q544fs 

RILPL1 0 - NM_178314:exon1:c.G46T:p.E16X 

RILPL2 0 - NM_145058:exon4:c.610delT:p.F204fs 

SLC17A6 0 - NM_020346:exon8:c.1041+1G>A 

TM7SF2 0 - NM_001277233:exon7:c.810_811insC:p.T270fs 

UNC5D 0 - NM_080872:exon9:c.1271_1272insT:p.F424fs 

ZNF221 0 - NM_013359:exon6:c.1294delT:p.Y432fs 
 

2.7 Gene based case control rare variant association study 

2.7.1 Design 

The gene collapsing method has been followed in order to identify rare, non-synonymous or 

truncating variants that predispose to lobular breast cancer. We therefore conducted a gene 

based case control study based on rare variants that are likely to cause a phenotype. This 

method merges all variants of a certain class, or variants that fulfil certain criteria and measures 

the excess of their frequency in one group (cases) over the other (controls). Since the 

prevalence of the disease is approximately 1/10,000 and there is high expected genetic 
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heterogeneity, the expectation for that project would be to identify two or three variants per gene 

in the cases and that would correspond to an excess compared to the control population where 

we would expect to observe none or one variant on that same gene. 

2.7.2 Methods 

Our attempts were focused on 42 cases with severe phenotype that have been exome 

sequenced in-house and were not carriers of known germline mutations that predispose to 

breast cancer and 110 ILC cases with ILC that have been downloaded from TCGA. The 

samples downloaded from the TCGA were of unknown or European ethnic background. We 

focused our analysis on individuals of European ancestry, and therefore we excluded 1 case 

based on non-European ancestry after PCA (Figure 2.5).  

 

Figure 2.5: Principal component analysis using 9568 common variants (MAF>5%) corresponding to ethnic 
differences. PC1 vs PC2 are plotted before (left) and after (right) removal of outliers. Red dots correspond 
to cases (GLACIER and TCGA), green to controls, and blue to unused samples. 

Possible sample contamination was suspected in 3 TCGA cases due to high levels of 

heterozygosity, Figure 2.6, and high relatedness amongst them, and therefore these individuals 

were also excluded from downstream analyses. 
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Figure 2.6: Heterozygosity plot from cases and controls included in analysis. Three TCGA cases are 
contaminated and have significantly higher heterozygosity values. 

A total of 41 individuals out of 102 that remained in the final TCGA data set have been 

diagnosed before the age of 60. The age of diagnosis ranged from 40-90 with a mean of 62 for 

the TCGA data set. A density plot indicating the age of diagnosis of the GLACIER and the 

TCGA cases is shown in Figure 2.7. 536 European females that have been exome sequenced 

in house to identify rare variants predisposing to rare conditions not associated with cancer 

were used as controls for this study. 

 

Figure 2.7: Density plot of different case groups. Pink indicates the cases that have been sequenced in-
house, purple corresponds to TCGA cases, and green to GLACIER cases that have not been exome 
sequenced. 

The exome sequencing pipeline is described in section 7.4.3. Samples were analysed using 

gene collapsing tests on EPACTS software as well as manually. Using these approaches we 

separated the different classes of variants and collapsed all the variants of the same class in a 

gene. Subsequently, an excess of variants of a specific class on each gene was measured and 

quantified, which gave an indication of an overall gene burden. 

A major filtering criterion is the MAF<1%. Additionally, a variant class filter was applied where all 

protein truncating variants were kept in the analysis, along with missense variants with a high 
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deleteriousness prediction (CADD>30). The average number of variants post-filtering per 

individual was 29. A representative quantile-quantile plot is shown in Figure 2.8. 

The frequency threshold that has been used in order for variants to remain in the analyses was 

MAF<1%. However, taking into account the prevalence of the disease (1/10,000) along with the 

expected genetic heterogeneity and burden of the variants, we can enrich for potentially more 

damaging variants by altering the threshold and include only very rare variants with MAF<0.005 

or MAF<0.001. Indeed, the vast majority of the variants that remained in the analysis were rare 

with MAF<0.001%. Due to the nature of the phenotype and the prevalence of the disease, we 

expect very rare events to have a large effect on the phenotype. This means that it is less likely 

for a single variant to explain a big proportion of the phenotypic variation. We can therefore de-

prioritise genes where the “burden signal” comes from a single variant or most individuals carry 

the same variant/s. On the contrary, if a gene has several unique variants (variants that are 

found in only one individual), enriched in the cases against the controls, it is more likely that 

there is some biological significance underlying the statistical differences observed. Moreover, 

since our hypothesis is to investigate rare “pathogenic” variants, we can focus our research on 

genes where the number of putative pathogenic variants in the control data set is either none or 

very close to none. Due to our strict filtering steps, we expect the variants that remained in the 

analysis to have a substantial effect on the gene’s function. Identifying several “highly penetrant 

variants” in the control group contradicts the initial hypothesis and therefore genes that show 

this pattern get de-prioritised irrespective of any excess of variants in cases over controls and 

the significance P value. 

 

Figure 2.8: Representation of P value distribution in a QQ-plot format. The observed p values are plotted 
against the expected. 
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2.7.3 Results 

The criteria followed for a gene to be ranked in the final list, were either to have at least 2 

variants (post-filtered) in GLACIER cases, and no variants in controls, or 2 or more variants in 

GLACIER and TCGA cases and maximum of 1 variant in controls. Genes that fulfilled these 

criteria are shown in Table 2.11. We identified twelve genes not known to be associated with 

breast cancer that contained rare, likely deleterious non-synonymous or protein truncating 

variants in cases of ILC and were either absent or present only once in the controls. Variants 

found in those genes underwent manual inspection in Integrative Genomics Viewer (IGV) to 

ensure that they are efficiently covered and do not result from spurious amplification/ 

sequencing/ variant calling errors.  After manual inspection of these variants in IGV, we selected 

8 genes to follow up on a phase II large scale case control study. The selected genes are 

indicated in bold on Table 2.11. During this analysis, we identified the same non-synonymous 

variant (rs35610885) in 5 GLACIER cases, 4 TCGA cases, and 7 Controls. This variant is 

predicted to be deleterious based on its high CADD score (>30) and therefore warrants further 

investigation. The frequency of the variant in the cases was extremely higher than the controls 

(MAFGLACIER=6%, MAFTCGA=2.5%, MAFControls=0.6%). That variant lies within exon 2 of the SRA1 

gene. Due to the role of SRA1 gene in hormone metabolism and its usage as a prognostic 

factor in ER positive breast cancers, we included the exonic portions of that gene in our gene 

panel of the follow up study using a targeted sequencing approach. 

Table 2.11: Top genes from the phase I rare variant case control analysis including 42 GLACIER cases, 
107 TCGA cases, and 536 controls. The genes highlighted in bold are the ones that were followed up in 
phase 2. 

Gene GLACIER TCGA All cases Controls Bilateral 

WDR17 2 1 3 0 1 

GOLGB1 2 1 3 0 0 

IDE 3 0 3 0 2 

MME 2 2 4 0 0 

PABPN1L 2 3 5 1 2 

SLC15A2 2 1 3 1 1 

CYP4F11 2 0 2 0 2 

UBTFL1 2 0 2 0 1 

NEURL2 2 0 2 0 0 

LIMCH1 2 0 2 0 1 

DCLRE1B 2 0 2 0 1 

ATG2B 2 0 2 0 1 
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We have therefore selected a set of novel genes, from our exome sequencing case control 

study of 144 germline samples from women with ILC, that contain rare variants showing a 

possible association with ILC, Table 2.12.  The 144 exomes consisted of 42 cases sequenced 

in house, selected for their young age of onset (<40 years) or presence of bilateral disease, 

along with 102 germline ILC exomes downloaded from the Cancer Genome Atlas (https://tcga-

data.nci.nih.gov/tcga/) (Accessed 03/03/2014). Carriers of known mutations predisposing to 

breast cancer were removed prior to the analysis. 

Table 2.12: Number of variants in cases and controls along with size of gene for the 8 putative 

novel loci identified during the phase I case control analysis. Column “Variants” corresponds to 

the carrier number of GLACIER, TCGA, and Controls. 

Gene Length 
Total 

amplicons 
in gene 

Exons Variants 
Amplicons 

selected 
Coverage 

MME 2253 40 30 1.2.0 40 Full 

IDE 3060 48 28 3.0.0 48 Full 

DCLRE1B 1599 17 4 2.0.0 17 Full 

PABPN1L 837 12 8 2.3.1 12 Full 

SLC15A2 2190 29 23 2.1.1 4 Exons 

GOLGB1 9789 109 26 2.1.0 6 Exons 

WDR17 3969 62 33 2.1.0 7 Exons 

ATG2B 6237 85 45 2.0.0 6 Exons 

 

2.8 Targeted sequencing of known and putative novel breast cancer 

predisposition genes 

As a phase II study we incorporated findings from phase I study as well as genes with prior 

evidence of association with breast cancer, and designed a custom targeted sequencing panel 

comprising 20 genes, Table 2.13. 

Six of these genes are known breast cancer susceptibility genes CDH1, BRCA2, BRCA1, TP53, 

CHEK2, and PALB2. Although CDH1, BRCA2, CHEK2 and PALB2 mutations have been 

described in ILC [16] the prevalence of mutations in these genes in sporadic lobular breast 

cancer is unknown. Mutations in BRCA1 and TP53 are not well described in ILC, due to their 

rarity and this study will assess whether they have any association with ILC. 

Apart from these 6 known breast cancer predisposition genes, we included 14 putative novel 

breast cancer genes. The majority of these stem from the phase I exome sequencing rare 

variant case control study. As shown in Table 2.12, 8 genes were direct candidates from the 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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case control study including 42 ILC cases from the GLACIER study, 102 ILC cases downloaded 

from the TCGA, and 536 controls. This list is comprised of MME, IDE, DCLRE1B, PABPN1L, 

SLC15A2, GOLGB1, WDR17, and ATG2B.  Three genes were selected based on individual 

family analysis after intersecting the results with publicly known databases and the 536 controls 

that have been used in the phase I study. These include ESR2, FMO2, and ATRIP. A single 

variant at the SRA1 gene was found to be significantly enriched in the cases over the controls 

during the phase I study and due to the function of the gene it constitutes a potential interesting 

candidate. Therefore, we included all exonic portions and flanking splicing junctions of the gene 

in our panel. Finally, two genes that have been recently implicated with cancer syndromes, 

FAM175A, and CTNNA1, were included in our targeted resequencing gene panel. With regards 

to the CTNNA1 gene, there was one individual with ILC in our study with a non-synonymous 

variant with CADD>30, c.G670A:p.A224T, whereas there was no genetic evidence in our study 

for FAM175A. CTNNA1 is a main interactor of CDH1 in the catenin-cadherin pathway and 

mutations in that gene could cause a similar phenotype as mutations in the CDH1 gene, 

affecting cell adhesion [211]. A recent study identified two protein truncating variants in two 

families with HDGC [212]. Immunohistochemistry of tumours from carriers revealed loss of α-

catenin expression, suggesting a somatic event at the CTNNA1 gene. They concluded that 

mutations can cause HDGC and therefore CTNNA1 screening should be included in genetic 

testing of prospective families. In addition, FAM175A has been recently implicated with cancer 

predisposition and was deemed a good candidate to include in the targeted sequencing panel. 

A study from Finland identified an excess of a non-synonymous variant in a cohort of 126 breast 

cancer families and 868 controls [213]. Additionally, two separate protein truncating mutations 

have been identified as pathogenic in two different studies investigating hereditary cancer 

syndromes. The first one is a frameshift insertion, c.1106_1107insG and has been reported in 

two individuals with ovarian cancer [214]. The second one is another frameshift insertion, 

c.1032dupT, identified by GeneDX during clinical diagnostics screening. These two variants lie 

within exon 9. Due to the limitation in amplicons, we included only exon 9 of the gene where the 

pathogenic variants have been previously identified. 

Samples were amplified and sequenced according to the protocols mentioned in section 7.2. 

The analysis pipeline that was used for data analysis is described in section 7.4. In brief, 

sequences were aligned to the reference genome (hg19) using Novoalign, primers were 

stripped using Btrim, and variants were called using GATK’s Haplotype caller and Samtools. 
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The intersection of those two variant calling algorithms was used as the final data set. 

Subsequently, Annovar was used to annotate variants according to gene content, population 

frequency and potential pathogenicity. The databases used are described in section 7.4. 

Table 2.13: Information on 20 genes included in the targeted sequencing panel. The transcripts 

mentioned in this table were used to obtain the HGVS nomenclature for the position of each 

variant. 

Gene Transcript 
Length 
in bp 

Total 
amplicons 

in gene 
Exons Amplicons Coverage Justification 

CDH1 NM_004360 2,649 36 16 36 Full 
Lobular breast 

cancer 
predisposition 

BRCA2 NM_000059 10,257 126 28 126 Full 
Lobular breast 

cancer 
predisposition 

BRCA1 NM_007300 5,552 68 24 68 Full 
Breast cancer 
predisposition 

CHEK2 NM_007194 1,761 28 22 28 Full 
Breast cancer 
predisposition 

PALB2 NM_024675 3,561 48 15 48 Full 
Breast cancer 
predisposition 

FAM17
5A 

NM_139076 1,230 16 10 5 Exons 
Suggestive literature 

evidence 

TP53 NM_000546.4 1,146 15 10 15 Full 
Breast cancer 
predisposition 

CTNNA1 NM_001903 2,721 32 22 38 Full 
Suggestive literature 
evidence + 1 carrier 

ESR2 NM_001291712 1,747 22 20 23 Full 
Best candidate from 

family 1 

ATRIP NM_130384 2,344 28 15 29 Full 
Best candidate from 

family 2 

FMO2 NM_018881 1,416 17 9 5 Exons 
Second candidate 

from family 1 

SRA1 NM_001035235 891 9 5 12 Full 
Excess of a single 
variant in phase I 

MME NM_007287 2,253 37 30 40 Full 
Candidate from 
phase I study 

IDE NM_004969 3,060 43 28 48 Full 
Candidate from 
phase I study 

DCLRE1B NM_022836 1,599 16 4 17 Full 
Candidate from 
phase I study 

PABPN1L NM_001080487 837 11 8 12 Full 
Candidate from 
phase I study 

SLC15A2 NM_021082 2,190 29 23 4 Exons 
Candidate from 
phase I study 

GOLGB1 NM_001256486 9,789 109 26 6 Exons 
Candidate from 
phase I study 

WDR17 NM_170710 3,969 62 33 7 Exons 
Candidate from 
phase I study 

ATG2B NM_018036 6,237 85 45 6 Exons 
Candidate from 
phase I study 

 

In order to evaluate the role of rare protein coding variation in each gene, we undertook a gene 

burden analysis. All variants of a certain class (missense, nonsense, etc.) were pooled together 

to investigate the relative risk conferred by variants of a particular class within a gene rather 

than each variant individually. This approach allows for meaningful statistical analysis and 

provide sufficient statistical power to observe the effect sizes of the magnitude that have been 
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previously described for rare variation in cancer predisposition. Our hypothesis is underpinned 

by an expectation that rare alleles will contribute to the disease. We therefore employed a one-

tailed test. The corrected level of significance was set at P<0.0036 to correct for multiple testing 

using the Bonferroni correction (α/Ngenes) for 14 genes. 

The different age groups of individuals across different lobular subgroups groups are indicated 

in Table 2.14. 

Table 2.14: Individuals included in analysis separated by age of diagnosis (cases) and 

recruitment (controls). 

Age 
groups 

Controls 
All 

lobular 
ILC LCIS 

LCIS & 
Non ILC 
invasive 

≤ 40 0 118 72 24 22 

≤ 50 685 958 616 163 179 

≤ 60 1,277 2,215 1,443 366 406 

All 1,611 2,215 1,443 366 406 

 

Variants that were called by both variant callers (GATK, Samtools) were used for this analysis in 

order to minimise the number of false positive calls. Variants were further filtered based on read 

depth (DP), quality control score (QC), and genotypic quality (GQ). Having removed all variants 

that failed the QC metrics used, we ended up with 1,210 variants in the 6 known breast cancer 

predisposition genes and 956 variants in the 14 genes under investigation for novel association 

with lobular breast cancer. 

2.8.1 Assess prevalence of known breast cancer predisposition genes 

During the phase II study we screened 2,215 individuals diagnosed ≤ 60 with any form of lobular 

disease out of which 1,443 were ILCs. The exact numbers and phenotypic characteristics of all 

screened samples are reported in Table 2.14. For variants in known breast cancer 

predisposition genes, we assigned labels of benign, VUS, and pathogenic, based on the 

publicly available annotations from ClinVar. With regards to BRCA1 and BRCA2, we also 

utilised the use of the Breast Cancer Information Core (BIC) BRCA database that incorporates 

findings from several screening studies including the Myriad database. We therefore identified 

46 pathogenic, and likely pathogenic variants across all 6 genes under investigation. A total of 

179 VUS were identified across those 6 genes. 

 BRCA1 

During BRCA1 screening, 90 non-synonymous/ missense variants were identified in 1,443 

cases and 85 in 1,611 controls. In addition, one previously described as pathogenic variants 
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was identified. This variant is non-synonymous and found in an individual diagnosed with ILC at 

the age of 54. It lies in exon 10 of the gene, c.G1789A:p.E597K, rs55650082. The same variant 

was found in one of the 366 LCIS cases that were screened as part of that project. One novel 

finding is the presence of a significant excess of VUS in ILC cases over controls across different 

age groups. A total of 40 VUS have been identified in controls and 55 in 1,443 ILC cases 

diagnosed ≤ 60. This leads to a significant enrichment in VUS in ILC compared to controls with 

ORILC=1.56 (95% CI 1.03-2.35). This enrichment remains when we investigate specific 

subgroups of early onset ILC with ORILC Age≤50=1.8 (95% CI 1.09-2.56) and ORILC Age≤60= 2.93 

(95% CI 1.12-7.66), Table 2.15, Figure 2.9. BRCA1 shows an excess of VUS in ILC cases and 

that is observed across all different age groups. 

 

Figure 2.9: Distribution of BRCA1 VUS across a) controls b) cases with AoD ≤ 40 c) cases with AoD ≤ 50 
and d) cases with AoD ≤ 60. 
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Table 2.15: Prevalence of BRCA1 VUS in ILC cases and healthy controls. OR and P correspond to a 

Fisher’s exact test. ILC are separated into age of onset groups. 

Age of 
diagnosis 

Carriers 
controls N (%) 

Carriers 
cases N (%) 

OR 95% CI P 

≤ 40 40 (2,5%) 5 (7%) 2.93 1.12, 7.66 0.042 

≤ 50 40 (2,5%) 27 (4.3%) 1.8 1.09, 2.96 0.026 

≤ 60 40 (2,5%) 55 (3.8%) 1.56 1.03, 2.35 0.037 
 

 BRCA2 

BRCA2 is the most enriched gene amongst the 6 that were tested in our targeted sequencing 

experiment, in terms of pathogenic variants. There are 22 protein truncating variants in ILC 

cases and only 3 in the control population. This leads to an 8-fold increase of protein truncating 

variants in the ILC group compared to the controls (OR=8.30, 95%CI 2.5-27.8, P=2.7x10-5). 

Three of those variants have not been described before to our knowledge, indicated with green 

in Figure 2.10. The first one lies in exon 11 and is a frameshift deletion: c.6068delA: p.D2023fs, 

found in an individual diagnosed with ILC at the age of 44 with a very high incidence of breast 

cancer in her family (4 affected relatives). The second one is a deletion in exon 22, 

c.8942_8943del:p.E2981fs, found in a case diagnosed with ILC at the age of 49. Her mother 

has also developed breast cancer at the age of 60. Finally, the last novel variant is located in 

exon 27 and is also a frameshift deletion, c.9719delT:p.V3240fs. This individual was diagnosed 

at the age of 48 and had no family history of breast cancer.  

 

Figure 2.10: Distribution of protein truncating variants identified in ILC cases from our cohort. Black 
lollipops correspond to previously known pathogenic variants whereas green correspond to variants that 
have not been described before. 

This enrichment gets stronger as we interrogate individuals with early onset of disease. A 

breakdown of the prevalence of BRCA2 protein truncating variants amongst different age 

groups is indicated on Table 2.16. A complete list of BRCA2 pathogenic variants along with 

three novel protein truncating variants that were identified in our study is reported in Table 2.17. 
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Table 2.16: Case control analysis including known breast cancer predisposition variants and novel protein 
truncating in BRCA2 in 1,443 ILC cases and 1,611 controls. 

Age 
group 

BRCA2 
carriers 

Frequency OR 95% CI P 

≤ 40 4 5.5% 31.53 6.92, 143.66 1x10-4 

≤ 50 16 2.6% 14.29 4.15, 49.23 4x10-7 

≤ 60 22 1.5% 8.30 2.48, 27.78 3x10-5 

 

Table 2.17: Details of BRCA2 pathogenic variants identified in our cohort. 

Sample 
ID 

Nt change AA change Class Pathology Age 

CG00386 c.5946delT p.S1982fs Frameshift Control 41 

CG00552 c.5098delG p.G1700fs Frameshift Control 41 

CG01138 c.C2612A p.S871X Stop-gain Control 43 

TG00276 c.C5645A p.S1882X Stop-gain ILC 38 

TG01228 c.750_753del p.V250fs Frameshift ILC 39 

150349 c.A7988T p.E2663V Non-synonymous ILC 39 

TG01442 c.1257delT p.C419fs Frameshift ILC 40 

TG01783 c.517-2A>G 
 

Splicing ILC 42 

TG01787 c.750_753del p.V250fs Frameshift ILC 42 

TG01686 c.1301_1304del p.K434fs Frameshift ILC 42 

TG01352 c.C9294G p.Y3098X Stop-gain ILC 43 

TG01378 c.6068delA p.D2023fs Frameshift ILC 44 

150368 c.C9382T p.R3128X Stop-gain ILC 44 

TG00783 c.1389_1390del p.T463fs Frameshift ILC 47 

TG01338 c.9719delT p.V3240fs Frameshift ILC 48 

150411 c.657_658del p.T219fs Frameshift ILC 49 

TG00870 c.5946delT p.S1982fs Frameshift ILC 49 

TG01141 c.G7757A p.W2586X Stop-gain ILC 49 

TG01606 c.8942_8943del p.E2981fs Frameshift ILC 49 

TG02084 c.25delC p.P9fs Frameshift ILC 53 

TG02115 c.25delC p.P9fs Frameshift ILC 53 

150476 c.3598_3599del p.C1200fs Frameshift ILC 55 

TG02408 c.3680_3681del p.L1227fs Frameshift ILC 55 

TG01934 c.5835dupA p.I1945fs Frameshift ILC 57 

TG00467 c.5946delT p.S1982fs Frameshift ILC 60 

TG00306 c.517-2A>G  Frameshift LCIS/IDC 55 

TG01559 c.C9294G p.Y3098X Frameshift LCIS 43 

TG01506 c.517-2A>G  Splicing LCIS/ Mixed Duct/Lob 49 

TG00255 c.C5682G p.Y1894X Stop-gain LCIS/Mixed Duct/Lob 35 

TG00463 c.5835dupA p.I1945fs Frameshift LCIS/Mixed Duct/Lob 58 

TG00286 c.8067delT p.C2689fs Frameshift LCIS/Mixed Duct/Lob 33 

TG01400 c.9117+1G>A c.9117+1G>A Splicing Mixed Duct/Lob 44 
 

The prevalence of BRCA2 mutations is relatively high, with 1.4% of all cases with lobular 

features and 1.5% of ILC cases being carriers of a pathogenic variant. The frequency of 
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pathogenic variants in BRCA2 increases in groups of early onset disease. As indicated in Table 

2.16, the frequency of carriers amongst ILC cases diagnosed ≤ 40 is 5.5%, whereas the 

frequency of BRCA2 pathogenic variants is 2.6% for cases diagnosed ≤ 50, dropping down to 

1.5% for cases diagnosed ≤ 60. A significant enrichment in VUS with CADD>20 was also 

observed in BRCA2, with 25 ILC cases and 14 controls being carriers (OR=2.01, 95%CI 1.04-

3.8,  P=0.036). 

 

 Frequency of protein truncating mutations in the CDH1 gene 

CDH1 has 6 truncating variants In ILC and none in controls. Four additional protein truncating 

variants have been identified in individuals with either pure LCIS or LCIS concurrent with non-

lobular invasive breast cancer. The location of the six variants found in ILC cases across the 

CDH1 gene is indicated in Figure 2.11. A detailed list of all 10 individuals that are carriers, along 

with some key phenotypic characteristics and variant information, is shown in Table 2.18. Those 

10 individuals include the four that have been screened in the cohort of 50 cases with bilateral 

lobular disease as described in section 2.4. Two of the remaining five variants were novel 

whereas the other three have been previously described. One variant, rs121964875, has been 

described in a family with three individuals with gastric cancer [215]. The second variant, 

rs587781919, has been identified in an individual diagnosed with breast cancer at the age of 60, 

in a study evaluating the use of targeted diagnostic sequencing [216]. Finally, the last variant, 

c.1487_1493del, a deletion of seven bases, has been described in an index case from a HGC 

family, diagnosed at the age of 30 [217]. The three novel variants are frameshift deletions. The 

first one, c.3delG alters the start codon and is expected to have a detrimental effect to the 

gene’s function. The second one is located in exon 7, 933delC, whereas the latter lies within the 

last exon of the gene and even though it is a protein truncating variant, its exact effect cannot 

be easily estimated. The location of the variant is 18 amino-acids before the stop-codon. The 

frameshift causes the stop codon to be skipped and the next stop codon is downstream of 46 

additional amino-acids. There was no protein truncating variant identified in any of the 1,611 

healthy controls. A non-significant excess of rare VUS with CADD>20 was also observed in 

lobular cases (OR=2.61, P=0.21) compared to controls, with 7 ILC carriers and 3 out of 1,611 

controls. The coverage of the first exon was suboptimal, probably due to higher GC content, 

with 31% of the samples having less than 10 reads which was set as the minimum required 

coverage for variants to be included. The same suboptimal pattern of amplification was 
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observed for exon 12. Therefore, it is possible that a portion of the variation in CDH1 gene, and 

specifically in exons 1 and 12, is missed due to technological limitations. 

Table 2.18: All CDH1 protein truncating variants found in our cohort are reported along with characteristics 
of carriers. Bold indicates variants that have not been previously described. 

ID Status AoD 
Breast cancer 

FH 
Gastric 

cancer FH 
Exon 

Amino-
Acid 

change 
Nt change 

TG02059 LCIS/IDC 43 x x 1 p.M1fs c.3delG 

TG01672 ILC 51 Cousins x 1 
 

c.48+1G>A 

TG01223 LCIS 49 x x 2 p.W20X c.G59A 

TG50400 ILC 47 x x 3 
 

c.387+1G>A 

TG00589 LCIS/Mixed 51 x Father (70) 7 p.L311fs c.933delC 

TG00162 ILC 46 Mother x 10 p.P488fs c.1465dupC 

TG00323 LCIS/IDC 58 Mother/sister Grandfather 10 p.S496fs c.1487_1493del 

TG01514 ILC 40 x x 13 p.E648X c.G1942T 

TG00784 ILC 36 x x 15 p.P799fs c.2398delC 

TG01112 ILC 55 Mother x 16 p.W865fs c.2594delG 
 

 

Figure 2.11: Distribution of protein truncating variants identified in ILC cases. Black lollipops correspond to 
known pathogenic variants whereas green indicates the novel variant. Pfam domains are also indicated 
across the CDH1 gene. 

 TP53 

Having screened 1,443 ILC cases and 1,611 controls for the TP53 gene, we identified 9 rare 

non-synonymous variants along with 1 protein truncating variant. Protein truncating variants are 

rare in TP53 gene. Missense variants are usually linked with Li-Fraumeni syndrome. TP53 has 

a very high pLI score (pLI=0.91) which constitutes an indicator for low tolerance in LoF 

mutations. A variant that has been previously reported as pathogenic is c.G818A: p.R273H: 

rs28934576 was found in an individual diagnosed with ILC at the age of 55, with an affected 

sister with thyroid cancer. It is a non-synonymous variant in exon 8. Intersecting our data with 

ClinVar, we identified 3 VUS in cases and 5 in controls. No significant enrichment of VUS has 

been observed. This is the first study to date to estimate the prevalence of TP53 germline 

mutations in a series of unselected lobular breast cancer cases, which as expected is very low 

(0.07%). 
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 CHEK2 

CHEK2 analysis indicates a non-significant enrichment in both VUS and pathogenic variants in 

cases but we need larger sample size since some of the variants are relatively common (0.01% 

< MAF < 1%) and present in the control population. There are seven protein truncating variants 

in individuals with any form of lobular disease, out of which 3 in ILC cases whereas there was 

only one in a healthy control, Table 2.19. 

Even though previous literature suggested that CHEK2 variant, I157T, might be more strongly 

associated with development of lobular breast cancer compared to IDC, our data do not support 

this hypothesis. This variant was present in 3 controls and 2 cases (P=0.99). A non-significant 

enrichment of rare variants has been observed but no conclusions can be drawn from our 

analytical approach on CHEK2 predisposition to breast cancer. This is due to the fact that the 

effect size differs amongst different CHEK2 variants. 

Suboptimal amplification was also observed in two amplicons at the CHEK2 gene, Table 7.6, 

page 179. With regards to the c.1100C deletion variant that has been previously associated with 

increased risk of developing breast cancer, there were three individuals with ILC that were 

carriers of this variant. However, Samtools algorithm failed to identify them and call them. 

Therefore, this variant was not included in the final analysis. 
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Table 2.19: CHEK2 variants that have been previously described to be associated with breast cancer 

development and were present in our cohort. 

Status 
Sample 

ID 
Nt change AA change Variant class 

Control CG00303 c.T470C p.I157T Non-synonymous 

Control CG00741 c.T470C p.I157T Non-synonymous 

Control CG01482 c.T470C p.I157T Non-synonymous 

Control CG00400 c.C1196T p.S399F Non-synonymous 

Control CG00417 c.C1196T p.S399F Non-synonymous 

Control CG01651 c.1375-2A>G 
 

Splicing 

ILC TG00138 c.A349G p.R117G Non-synonymous 

ILC TG01704 c.A349G p.R117G Non-synonymous 

ILC TG01829 c.T470C p.I157T Non-synonymous 

ILC TG02526 c.T470C p.I157T Non-synonymous 

ILC TG01819 c.G715A p.E239K Non-synonymous 

ILC TG00217 c.1176delT p.L392fs Frameshift 

ILC TG00735 c.1176delT p.L392fs Frameshift 

ILC TG01163 c.C1468T p.R490X Stop-gain 

LCIS/IDC TG00892 c.A529T p.K177X Stop-gain 

LCIS/IDC TG01579 c.1176delT p.L392fs Frameshift 

LCIS TG00511 c.G697T p.E233X Stop-gain 

LCIS TG00061 c.188_189insC p.L63fs Frameshift 
 

 PALB2 

In addition to BRCA2, PALB2 also shows a significant enrichment in terms of known 

pathogenic/ likely pathogenic variants, with 8 being present in ILC cases and 1 in a control 

sample. A case control analysis that included only pathogenic and likely pathogenic variants, 

irrespectively of whether they have been described before, indicates a strong effect size for 

PALB2 in the context of ILC. There is a 10-fold increase in the prevalence of PALB2 protein 

truncating variants in ILC cases compared to controls, Table 2.20. 

Table 2.20: Pathogenic variants in ILC cases and controls; OR and P correspond to a Fisher’s exact test 
using 1443 cases and 1611 controls. 

Carrier 
controls 

N (%) 

Carrier 
ILC 

cases 
N (%) 

OR 95% CI P 

1 (0.06%) 8 (0.6%) 8.98 
1.12, 
71.85 

0.016 

 

The list of individuals with a PALB2 protein truncating variant is shown in Table 2.21. All those 9 

PALB2 variants are protein truncating and 4 out of the 8 in the cases are novel in the context of 

publically available databases and are highlighted in bold. Apart from 8 ILC cases with protein 



82 
 

truncating variants, there were three cases with LCIS (two of which with concurrent IDC) that 

also carried a known pathogenic protein truncating variant. The list of individuals with a PALB2 

protein truncating variant is shown in Table 2.21. Out of 1,443 individuals with ILC there were 8 

carriers. Another 3 carriers with any form of lobular disease were also identified. The prevalence 

of these variants is 0.6% in ILC. This can translate to an enrichment of the magnitude of 10 fold 

compared to controls. 

Table 2.21: Details of PALB2 carriers from the GLACIER study. Novel variants are highlighted in bold. 

Sample ID Nt change AA change Class Pathology Age 

CG01848 c.2052delC p.P684fs Frameshift Control 41 

150378 c.C3256T p.R1086X Stop-gain ILC 53 

TG01120 c.C3256T p.R1086X Stop-gain ILC 50 

TG00941 c.2748+1G>A  Splicing ILC 54 

TG01021 c.G2718A p.W906X Stop-gain ILC 59 

150477 c.2488delG p.E830fs Frameshift ILC 51 

TG00571 c.1317delG p.G439fs Frameshift ILC 41 

TG02368 c.1172delC p.A391fs Frameshift ILC 50 

TG01249 c.G412T p.E138X Stop-gain ILC 54 

TG00239 c.G3113A p.W1038X Stop-gain LCIS/IDC 47 

TG00565 c.G2386T p.G796X, Stop-gain LCIS/IDC 60 

TG01329 c.G3113A p.W1038X Stop-gain LCIS 55 
 

2.8.2 Identification of putative novel breast cancer predisposition genes 

In an attempt to identify novel breast cancer predisposition genes that were either candidates 

from the phase I exome sequencing study or suggested by literature, we included exons and 

splicing junctions from 14 genes that showed some suggestive evidence of association. 

Due to experimental limitations on the number of amplicons that could be included, four genes 

were not fully screened and only a small number of selected exons were captured, Table 2.13, 

page 73. 

We conducted gene burden tests to test for enrichment of rare likely pathogenic variants cases 

over controls. Two different analyses were conducted; the first one included cases with any 

form of lobular disease whereas the second one included only cases with ILC. The final data set 

comprised of 1,611 healthy controls and 2,215 cases with lobular disease out of which 1,443 

had ILC. The remaining 772 cases included 366 cases of pure LCIS and 406 cases with LCIS 

and non ILC invasive disease (either IDC or mixed ductal lobular). 
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The total number of truncating variants across all 14 putative novel genes was 20 for lobular (17 

ILC) cases and 17 for controls. The complete list of protein truncating variants is reported in 

Table 2.22. 

Table 2.22: Details of protein truncating identified in ILC cases and controls in the 14 putative novel genes 
under investigation. 

Sample Age Pathology Gene Class Exon Nt change 
AA 

change 

CG01957 67 Control CTNNA1 Stop-gain 10 c.C1351T p.R451X 

CG00990 54 Control ESR2 Stop-gain 7 c.C335A p.S112X 

CG00299 92 Control IDE Stop-gain 1 c.13delC p.L5X 

CG00393 50 Control IDE Stop-gain 1 c.13delC p.L5X 

CG00730 56 Control IDE Stop-gain 1 c.13delC p.L5X 

CG00814 53 Control IDE Stop-gain 1 c.13delC p.L5X 

CG01160 63 Control IDE Stop-gain 1 c.13delC p.L5X 

CG01340 60 Control IDE Stop-gain 1 c.13delC p.L5X 

CG01345 51 Control IDE Stop-gain 1 c.13delC p.L5X 

CG01423 63 Control IDE Stop-gain 1 c.13delC p.L5X 

CG01454 53 Control IDE Stop-gain 1 c.13delC p.L5X 

CG00850 50 Control MME Splicing 5 c.439+1G>A x 

CG00940 46 Control MME Frameshift  6 c.466delC p.P156fs 

CG01712 56 Control MME Frameshift  6 c.466delC p.P156fs 

CG00552 41 Control MME Frameshift  12 c.1186delA p.K396fs 

CG00695 47 Control SRA1 Splicing 5 c.391-2A>G x 

CG00912 55 Control SRA1 Frameshift  3 c.236dupC p.P79fs 

TG02438 43 ILC DCLRE1B Stop-gain 3 c.C508T p.R170X 

TG00025 48 ILC ESR2 Stop-gain 7 c.C335A p.S112X 

TG02470 47 ILC ESR2 Stop-gain 7 c.C335A p.S112X 

TG01952 52 ILC ESR2 Splicing 8 c.362+2T>C x 

TG00978 35 ILC GOLGB1 Frameshift  20 c.9476_9477insC p.E3159fs 

TG01172 58 ILC GOLGB1 Frameshift  18 c.9221dupA p.Q3074fs 

TG01819 52 ILC IDE Stop-gain 2 c.C184T p.R62X 

TG00140 48 ILC IDE frameshift  1 c.13delC p.L5X 

TG00386 34 ILC IDE frameshift  1 c.13delC p.L5X 

TG01824 42 ILC IDE frameshift  1 c.13delC p.L5X 

TG02215 53 ILC MME Stop-gain 2 c.C11G p.S4X 

TG02012 56 ILC MME Frameshift  6 c.466delC p.P156fs 

TG00591 50 ILC MME Frameshift  9 c.763dupT p.R254fs 

TG01147 51 ILC SRA1 Splicing 5 c.391-2A>G x 

TG01499 46 ILC SRA1 Frameshift  5 c.598dupA p.R200fs 

TG01457 52 ILC WDR17 Frameshift  12 c.1592delA p.Q531fs 

TG01648 50 ILC WDR17 Frameshift  14 c.1892_1896del p.D631fs 

TG01561 57 LCIS/IDC SRA1 Splicing 5 c.391-2A>G x 

TG01691 37 LCIS ATRIP Frameshift  11 c.1561delT p.L521fs 

TG02219 46 
LCIS/Mixed 
Duct/Lob 

IDE Stop-gain 1 c.13delC p.L5X 
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An additional 368 non-synonymous variants in controls and 322 in ILC cases were identified. 

From those, 181 had CADD>20 for controls and 171 for cases, while 15 controls and 22 ILC 

cases had variants with CADD>30. 

With regards to non-frameshift variants, the same FAM175A variant was identified in 4 controls 

and 1 ILC case. Another FAM175A variant was identified in one control along with a variant in 

PABPN1L. The same ESR2 variant was also identified in two individuals with ILC. The complete 

list of all rare non-frameshift variants identified is reported in Table 2.23. 

Table 2.23: Non-frameshift variants identified in the putative novel genes. 

Sample Age Pathology Gene Exon Nt Change AA change 

CG01524 46 Control FAM175A 9 c.1102_1104del p.368_368del 

CG02086 51 Control PABPN1L 3 c.412_414del p.138_138del 

CG00542 56 Control FAM175A 9 c.826_828del p.276_276del 

CG00603 54 Control FAM175A 9 c.826_828del p.276_276del 

CG00853 48 Control FAM175A 9 c.826_828del p.276_276del 

CG01370 41 Control FAM175A 9 c.826_828del p.276_276del 

TG00022 53 ILC ESR2 9 c.541_543del p.181_181del 

TG01663 47 ILC ESR2 9 c.541_543del p.181_181del 

TG02106 53 ILC FAM175A 9 c.826_828del p.276_276del 
 

None of the genes under investigation reached the Bonferroni corrected threshold when 

included only protein truncating variants or when combining protein truncating variants along 

with non-synonymous variants with CADD>30 or with CADD>20. 

One gene that shows some suggestive evidence of association is DCLRE1B. There is a 

borderline significance of rare non-synonymous variants in DCLRE1B with 16 variants in lobular 

cases and only 3 in controls (P=0.02, OR=3.9 95%CI 1.1-13.4). This analysis included non-

synonymous variants with CADD>20 along with protein truncating variants. However, further 

screening projects including larger sample size are required in order to validate or reject our 

initial suggestive association. 

Three tables show the summary results of the gene based analysis for the 14 putative novel 

breast cancer predisposition genes. The analysis was conducted using either i) purely protein 

truncating variants (Table 2.24), ii) including truncating and non-synonymous with CADD>30 

(Table 2.25), and finally iii) truncating and non-synonymous with CADD>20 (Table 2.26). Two 

different case sets were used for these analyses. The first group includes 1,443 cases 

diagnosed with ILC ≤ 60 and the second one 2,215 cases diagnosed ≤ 60 with any form of 

lobular disease, including LCIS with our without any form of invasive breast cancer. The only 



85 
 

suggestive evidence of association comes from the analysis including variants that are either 

protein truncating or non-synonymous with CADD > 20. 

DCLRE1B, a gene involved in DNA repair, shows a nominal association with lobular breast 

cancer. Post-filtering, there were 16 variants in the cases group and 3 in the controls. This leads 

to a non-significant after multiple testing correction OR=3.9 (95% CI 1.13-13.41) and P=0.02, 

Table 2.26. 

Another good biological candidate was the ESR2 gene. During the phase II screening of 2,215 

lobular cases and 1,611 controls we identified three individuals diagnosed with ILC (age of 

diagnoses 47, 48, 52) and one healthy control (age = 54) with a protein truncating variant. Due 

to its biological significance in hormone regulation, the ESR2 gene was more thoroughly 

investigated. In a restricted analysis, investigating rare variants with MAF<0.001, we identified 

20 individuals with any form of lobular disease being carriers and only 5 control carriers (ORAny 

lobular=2.92, P=0.025. However, this analysis does not generate enough evidence for association 

and therefore further analyses incorporating larger data sets should be conducted to assess 

whether rare variants at the ESR2 gene can predispose to breast cancer. 

Table 2.24: Case control analysis including protein truncating variants. 

Gene 
Control 
carriers 

ILC 
carriers 

OR 95% CI P 
All 

lobular 
OR 95% CI P 

ATG2B 0 0 nan nan 0.999 0 nan nan 0.999 
ATRIP 0 0 nan nan 0.999 2 inf - 0.512 

CTNNA1 1 0 0 - 0.999 0 0 - 0.421 
DCLRE1B 0 1 inf - 0.472 1 inf - 0.999 

ESR2 1 3 3.35 0.35, 32.28 0.35 4 2.91 0.33, 26.09 0.405 
FAM175A 0 0 nan nan 0.999 0 nan nan 0.999 

FMO2 0 0 nan nan 0.999 0 nan nan 0.999 
GOLGB1 0 2 inf - 0.223 2 inf - 0.512 

IDE 9 4 0.49 0.15, 1.61 0.275 7 0.56 0.21, 1.52 0.312 
MME 4 3 0.84 0.19, 3.75 0.999 4 0.73 0.18, 2.91 0.728 

PABPN1L 0 0 nan nan 0.999 0 nan nan 0.999 
SLC15A2 0 0 nan nan 0.999 0 nan nan 0.999 

SRA1 2 2 1.12 0.16, 7.94 0.999 3 1.09 0.18, 6.54 0.999 
WDR17 0 2 inf - 0.223 3 inf - 0.269 
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Table 2.25: Case control analysis including protein truncating and non-synonymous (CADD>30) variants. 

Gene 
Control 
carriers 

ILC 
carriers 

OR 95% CI P 
All 

lobular 
OR 95% CI P 

ATG2B 2 5 2.8 0.54, 14.44 0.266 6 2.19 0.44, 10.84 0.480 
ATRIP 0 0 nan nan 0.999 1 inf - 0.999 

CTNNA1 3 0 0 - 0.252 3 0.73 0.15, 3.61 0.701 
DCLRE1B 0 3 inf - 0.105 4 inf - 0.144 

ESR2 1 3 3.35 0.35, 32.28 0.35 4 2.91 0.33, 26.09 0.405 
FAM175A 0 1 inf - 0.472 1 inf - 0.999 

FMO2 0 0 nan nan 0.999 0 nan nan 0.999 
GOLGB1 0 2 inf - 0.223 2 inf - 0.512 

IDE 11 7 0.71 0.27, 1.83 0.637 9 0.59 0.25, 1.44 0.262 
MME 7 8 1.28 0.46, 3.53 0.797 11 1.14 0.44, 2.96 0.817 

PABPN1L 1 3 3.35 0.35, 32.28 0.35 3 2.18 0.23, 21.01 0.643 
SLC15A2 0 1 inf - 0.472 1 inf - 0.999 

SRA1 2 2 1.12 0.16, 7.94 0.999 3 1.09 0.18, 6.54 0.999 
WDR17 5 4 0.89 0.24, 3.33 0.999 6 0.87 0.27, 2.86 0.999 

 

Table 2.26: Case control analysis including protein truncating and non-synonymous (CADD>20) variants. 

Gene 
Control 
carriers 

ILC 
carriers 

OR 95% CI P 
All 

lobular 
OR 95% CI P 

ATG2B 3 6 2.24 0.56, 8.97 0.322 7 1.7 0.44, 6.58 0.534 
ATRIP 37 30 0.9 0.56, 1.47 0.712 45 0.88 0.57, 1.37 0.574 

CTNNA1 35 28 0.89 0.54, 1.47 0.703 44 0.91 0.58, 1.43 0.730 
DCLRE1B 3 8 2.99 0.79, 11.29 0.129 16 3.9 1.13, 13.41 0.020 

ESR2 22 22 1.12 0.62, 2.03 0.762 32 1.06 0.61, 1.83 0.890 
FAM175A 0 2 inf - 0.223 2 inf - 0.512 

FMO2 0 0 nan nan 0.999 0 nan nan 0.999 
GOLGB1 5 6 1.34 0.41, 4.40 0.765 10 1.46 0.50, 4.27 0.605 

IDE 19 11 0.64 0.31, 1.36 0.274 18 0.69 0.36, 1.31 0.315 
MME 27 24 0.99 0.57, 1.73 0.999 37 1 0.60, 1.64 0.999 

PABPN1L 14 15 1.2 0.58, 2.49 0.71 21 1.09 0.55, 2.15 0.865 
SLC15A2 0 3 inf - 0.105 5 inf - 0.078 

SRA1 21 19 1.01 0.54, 1.89 0.999 33 1.15 0.66, 1.99 0.679 
WDR17 12 14 1.31 0.60, 2.83 0.557 21 1.28 0.63, 2.60 0.597 

 

2.9 Discussion 

We have shown for the first time that CDH1 mutations predispose to LCIS, with 12.5% (1/8 

cases) of pure LCIS (no invasion) and 9% (4/45) of bilateral LCIS with or without invasive 

disease of any subtype having CDH1 mutations. Interestingly, none of the cases with bilateral 

LCIS and non-lobular invasive disease (11 cases) had CDH1 mutations, suggesting that the 

presence of a germline CDH1 mutation in bilateral LCIS predisposes to the development of ILC 

rather than IDC. In the study by Rahman et al. only 17 cases (26%) of the 65 cases of LCIS 

screened had bilateral disease, Table 2.4, page 57, which may explain why no CDH1 mutations 

were detected. 

Our findings suggest that CDH1 testing should be offered to individuals with bilateral lobular 

lesions under the age of 50, enabling us to identify CDH1 mutation carriers to whom MRI 
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screening and endoscopic surveillance for diffuse gastric cancer will be beneficial. To conclude, 

there is evidence that CDH1 mutations are associated with early-onset (<50 years) bilateral 

disease which however is not observed in the remaining mutations found on the other genes 

where there seems to be a broader distribution of age. One limitation of this analysis is that we 

do not have information on family history and existence of bilateral disease on the TCGA 

samples. 

One of the limitations of the CDH1 study is that family history is self-reported by the index case 

and we are therefore unable to ascertain what subtype of breast or gastric cancer family 

members suffered from. It does not appear that there is an excess of personal or family history 

of gastric cancer in the GLACIER cohort comparing it with the UK statistics produced by the 

Cancer Research UK, but we cannot be certain that diffuse gastric cancer is not 

overrepresented in our bilateral cases. 

The majority of breast cancer predisposition genes confer high risk to disease showing an 

excess of truncating variants that will lead to loss of function. The main exception in that rule is 

the TP53 gene, where several missense variants also confer high risk. With the exception of 

TP53, researchers struggle to refine the effect of missense variants and the vast majority of 

them are still considered as VUS. There are certain missense variants in BRCA1 and BRCA2 

that confer high risk of breast cancer, but the vast majority do not [218, 219]. Our data support 

this statement. We have identified a significant excess of VUS in BRCA1 and pathogenic 

variants BRCA2 for individuals with ILC. For these genes, algorithms based on conservation, 

pedigree data, and analysis of tumour subtype can be used to predict the pathogenicity of some 

variants [220, 221]. A similar approach can be followed on other breast cancer susceptibility 

genes such as PALB2, ATM, and CHEK2. Missense variants that lie in important functional 

domains of genes or are evolutionary conserved are more likely to confer risk towards disease 

[122]. However, accurate risk estimations associated with the majority of the missense variants 

still remain to be obtained, even for very well studied and thoroughly sequenced genes such as 

BRCA1 and BRCA2. In the future, and with advances in sequencing technology, it will be 

possible to identify and stratify the effect of individual variants and confine individualised risks 

per variant. One such occasion could be the rs35187787 variant, a non-synonymous CDH1 

variant for which we failed to identify any correlation with the lobular phenotype. Our study 

concluded that rs35187787 is not associated with ILC. This missense CDH1 variant has been 

previously described as pathogenic in a family of diffuse gastric and colorectal cancer [45]. 
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However, there is now evidence that it is unlikely to be associated with breast cancer 

development. Its frequency in the European population is relatively common for a variant with 

moderate-high penetrance. If this variant conferred susceptibility to cancer, its penetrance 

would be low since its frequency in the general population is relatively high, reaching almost 1% 

in the Europeans. In our pilot study of 7 individuals, we identified one carrier. However, we were 

unable to identify an association when we screened a larger sample size, where the frequency 

of the variant was very similar between the cases and control groups (ranging between 0.58%- 

0.9%). Mutations in the CDH1 gene can lead to non-malignant carcinogenesis such as LCIS 

and lobular neoplasia. These pathological features are randomly detected in core biopsies and 

they might exist in a higher proportion of the population than expected. Identifying genes and 

variants that predispose to these forms of disease can be challenging because a proportion of 

the control population can actually be pre-symptomatic or at high risk. This could partially 

explain the fact that rs35187787 exists in controls at similar proportions as in breast cancer 

cases in general [206]. 

In the context of the putative novel gene identification, there are some limitations in the study 

design. The absence of family history or age of diagnosis of their other disorder for the controls 

constitutes another limitation of this study. Furthermore, the presence of common susceptibility 

genes between different diseases could impact our ability to detect a true association or 

enrichment in the cases versus the controls, since a portion of the controls could also be 

carriers of certain mutations that predispose both to breast cancer and another syndrome or 

rare disorder. 

During the phase I exome sequencing study, we identified eight genes not known to be 

associated with breast cancer that contained rare protein truncating or non-synonymous 

variants that were predicted to be deleterious in cases of ILC and were either absent or present 

at low frequency in the controls. The number of variants identified during this study along with 

some key characteristics of the genes, are highlighted in Table 2.12. We therefore designed a 

phase II study where we investigated these genes in a larger cohort. Along with those putative 

novel genes, we included known breast cancer predisposition genes in our custom panel 

comprising 20 genes. 

Our targeted sequencing project revealed that the prevalence of BRCA2 mutations is relatively 

high in cases with lobular carcinoma and in particular ILC cases. More than 3% of ILC cases 
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that were diagnosed with the disease before the age of 40 are carriers of a BRCA2 pathogenic 

variant. 

We have also identified an enrichment of VUS in the BRCA1 gene in ILC cases compared to 

the control population. This enrichment is more profound in individuals with early onset ILC. 

This is the first study to date that shows an association of BRCA1 variants and lobular breast 

cancer.  Further breakdown and classification of these variants using either larger screening 

studies, in silico, or in vitro studies could elucidate their exact role in breast cancer 

development, and accurately assess their effect size. The clinical utility of diagnostic genetic 

tests can increase by decreasing the number of VUS and by being able to assess risks 

conferred by specific variants with higher precision. 

Significant differences were observed for 4 out of 6 genes with TP53 not reaching significance 

due to the very small number of carriers, and CHEK2 due to the presence of pathogenic 

variants in the control group. However, with regards to CHEK2, it has been observed that 

different variants can have different effect size towards breast cancer development, and 

therefore an alternative approach where variants could be stratified further according to their 

class or domain might be more appropriate. Previous literature suggests a stronger link 

between CHEK2 and lobular disease in comparison to the more common ductal breast cancer. 

However, our data does not support this statement with an overall OR=1.5 (95% CI 0.52-4.31) 

for all pathogenic variants across the CHEK2 gene. However, the gene based approach might 

not be the most appropriate for CHEK2 since there is evidence for differential effect size among 

different variants with non-synonymous variants usually having a smaller effect size. The 

proportions of non-synonymous and truncating variants differ between cases and controls. The 

ratio (R) of non-synonymous to truncating variants R=6 for controls and R=1.66 for cases which 

indicates an enrichment in more penetrant variants in cases. Nevertheless, these results are not 

statistically significant. A larger sample size would be required to be able to identify further 

variants and stratify them based on their properties to draw robust conclusions on their 

estimated effect. 

One individual was a carrier of a BRCA1 mutation. A further missense pathogenic TP53 variant 

has been identified in an individual with ILC. With regards to BRCA1, we identified an excess of 

variants previously classified as VUS in ILC cases over controls. This observation was more 

profound in early onset cases with approximately 7% of cases carrying a VUS. This finding is 

novel and requires further validation in larger cohorts to establish the underpinning mechanisms 
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of action of these variants. The fact that the effect size gets stronger with younger age of 

diagnosis is another finding that suggests that there is a true signal in the observed enrichment 

in VUS. 

A group in Poland conducted a CHEK2 screening study in a Polish population including 211 ILC 

cases and found 29 (13.7%) pathogenic variants out of which 4 (1.9%) were protein truncating 

[222]. The same group, a year later published another analysis on CHEK2 where they found 

111 (11.5%) mutations in ILCs out of which 23 (2.4%) were protein truncating in a total of 960 

ILC cases [223]. Researchers from the same consortium, identified that PALB2 mutations were 

present in 0.5% of their ILC Polish cases (7/1306) [224]. This comes in concordance with our 

findings where 0.5% of our unselected population with ILC are carriers of a protein truncating 

PALB2 variant. 

A recent study reported a borderline association of germline PALB2 mutations with LCIS, 

having identified an enrichment of LCIS in their population of PALB2 positive samples. 

However, we identified only one individual with pure LCIS carrying a PALB2 protein truncating 

variant, rs180177132, in our cohort of 366 LCIS cases [225]. 

One limitation of the targeted sequencing study with regards to known genes is the suboptimal 

coverage of specific exons in CDH1 and CHEK2 genes. It is likely that pathogenic mutations 

exist in these genes and we do not have the means to identify them. 

In an attempt to identify novel genes predisposing to lobular breast cancer, we conducted a two-

phased gene based rare variant association study. Due to the expected genetic heterogeneity 

and the small sample size of the phase I study, we failed to identify strong candidates during the 

initial screening. However, having found some evidence of enrichment in 8 genes, we 

incorporated them in a phase II targeted sequencing project along with another 6 candidates 

and 6 known breast cancer predisposition genes. 

After having screened the whole GLACIER cohort of 2,215 lobular cases and 1,611 controls 

and conducted a case control study for these genes, there were two genes that warranted 

further investigation; DCLRE1B and ESR2. A common non-synonymous variant in DCLRE1B 

has been previously associated with breast cancer [154]. This gene encodes for DNA cross-link 

repair 1B protein. DCLRE1B is an evolutionarily conserved gene involved in repair of inter-

strand cross-links. Its role in genome stability constitutes that gene as a good biological 

candidate [226]. Having found a nominally significant excess of rare variants in the gene might 

elucidate its role on breast cancer development. Further studies should validate whether there 
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is a true signal in rare protein truncating variants or missense variants with high likelihood of 

pathogenicity. Due to its function, alterations caused by rare variants could be related to breast 

cancer development in a similar manner to BRCA1 and BRCA2. The second gene with some 

suggestive evidence, ESR2, is also biologically relevant. Several association studies have been 

conducted to identify the relationship between common SNPs at the ESR2 locus and the risk of 

developing breast cancer [227]. Overall, results have been inconclusive with some studies 

showing nominal associations in specific populations that fail to replicate. However, rare 

variants at the ESR2 gene could be implicated with specific subtypes of breast cancer in certain 

populations [228]. In our study of more than 2,200 lobular cases and 1,600 controls, we have 

shown some evidence of enrichment in rare variants but this enrichment is not significant after 

correcting form multiple testing. Further studies should validate whether there is a contribution 

of rare ESR2 variants towards lobular breast cancer development. 

We are in no position to draw conclusions for any of the two putative novel breast cancer 

predisposition genes. If these genes are validated as breast cancer predisposition genes, they 

could be included in targeted sequencing panels that are broadly used in diagnostic laboratories 

in clinical practise. 

The outcome of the novel gene discovery study was not as fruitful as initially expected and there 

are a few possible reasons on why that might be. A key consideration is whether there would be 

that many variants in the selected genes to reach a CAF of 0.1% or 0.5%. Taking into account 

the genetic heterogeneity of breast cancer and the extremely low frequency of pathogenic 

variants that have already been associated with breast cancer, it becomes apparent that we 

were underpowered for the phase 1 to identify genes that can confer susceptibility to breast 

cancer with this case control study. The number of cases (144) is very low for such a study. 

Investigating the proportions of rare truncating variants in the putative novel genes, highlights 

the fact that there is no significant contribution of any of these genes towards lobular breast 

cancer development since there is no gene with more than 4 protein truncating variants and no 

gene with more than 9 combined protein truncating and non-synonymous with CADD>30 in ILC 

cases. A total of 9 variants in cases would indicate a possible signal but the presence of similar 

proportions of variants in the control group, diminishes this possibility. 

To conclude, we have shown evidence for involvement with ILC of all 6 known breast cancer 

predisposition genes under investigation in our study. The prevalence of BRCA2 pathogenic 

variants is higher than CDH1. The latter is found mutated in a similar portion as the PALB2. 
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However, CDH1 mutations are more prevalent amongst bilateral cases. We have shown a 

significant excess of BRCA1 VUS in ILC compared to controls, as well as the presence of 1 

pathogenic TP53 variants in an individual with ILC. CHEK2 protein truncating variants are not 

as common in our study. We have also shown some evidence of involvement of two novel 

genes but these findings require further validation. 
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Chapter 3 Common variants predisposing to lobular carcinoma 

3.1 Introduction 

Several studies have been conducted over the last ten years in order to identify genetic markers 

associated with breast cancer [153-174]. However, most studies have been treating breast 

cancer as one disease with the exception of ER stratification. It has been shown that breast 

cancer is extremely heterogeneous and therefore we hypothesise that by focusing on specific 

morphological breast cancer subtypes we are more likely to increase power to detect 

association by increasing the genetic homogeneity of the sample set. 

GWAS in breast cancer have identified loci that predispose to invasive breast cancer in general, 

or specifically to ER positive or ER negative disease GWAS [153-174]. However, no previous 

study has focused specifically on lobular carcinomas. Only one common single nucleotide 

polymorphism (SNP; rs11249433 at 1p11.2) has been shown to be more strongly associated 

with lobular than ductal histology [229]. This locus has been recently investigated thoroughly in 

a fine-mapping study from BCAC incorporating data from more than 90,000 individuals [230]. 

After imputation the same variant still showed the strongest association, and no significant 

eQTLs were observed. Using an in silico analysis, utilising both UCSC Genome Browser and 

HaploReg v3 to determine altered regulatory motifs using ENCODE data, Horne et al observed 

that the variant is located in an enhancer/promoter region. For the remaining SNPs 

predisposing to ER positive tumours, it is unclear whether the studies have lacked statistical 

power to identify differential associations by histology, or whether associations tend to be non-

differential by morphology after accounting for ER status. We therefore screened individuals 

with ILC and or LCIS on the iCOGS genotyping platform and conducted a case control study 

using 5,000 controls coming from 4 different studies (SEARCH, BBC, SBCS, UKBGS). 

Exogenous hormone use, reproductive behaviour, early menarche and late menopause are well 

established risk factors for invasive breast cancer [231]. However many of the initial risk factor 

studies considered breast cancer as one disease and did not study the different subtypes as 

defined by ER and Her2 expression or by morphological. They were therefore biased towards 

the more common ductal ER positive cancers. 

More recent studies have started to look at risk factors by breast cancer subtype and found 

some differences. For example, nulliparity is most strongly associated with risk of ER positive 

breast cancer (hazard ratio, HR=1.31, 95% confidence interval,CI,:1.23-1.39); whereas late age 
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at first birth is most strongly associated with risk of ER-/PR-/HER2+ disease (HR = 1.83, 95% 

CI: 1.31-2.56) [232]. Oral contraceptive use has been shown to be associated with a 2.5-fold 

increased risk for triple-negative breast cancer (95% confidence interval, 1.4-4.3) and no 

significantly increased risk for non-triple-negative breast cancer (P-het=0.008) in women under 

40 years of age [19]. Lobular cancers show stronger associations with the use of hormone 

replacement therapy (HRT) than IDC, [233] and their incidence follows a similar temporal 

pattern as the use of combined HRT [7]. A population-based study by Flesch-Janys et al 

conducted in Germany, observed a more than 2-fold higher risk for lobular than for ductal 

cancer for current HRT users [234].  

In situ disease has been shown to be associated with some of the risk factors common to all 

breast cancers [235, 236]. Claus et al demonstrated that reproductive risk factors, including age 

at menarche, age at first birth, parity and age at menopause showed very similar associations 

with DCIS and invasive ductal cancer suggesting that most risk factors affect the risk of invasive 

ductal cancer primarily through their effects on the risk of DCIS. Reeves et al, 2011 [237], 

showed that combined HRT was associated more strongly with IDC then DCIS and the opposite 

was found in the estrogen only type. There is no evidence that reproductive history contributes 

to progression of in situ to invasive disease [238]. 

There is relatively little reported on risk factors associated with LCIS. This is mainly due to the 

difficulty of getting a large enough study population of LCIS, as it is commonly only discovered 

as an incidental finding. Reeves et al [13] reported on 86 cases of LCIS and showed that 

compared to never users of hormone therapy the relative risk for LCIS was higher than that for 

DCIS (2.82. 95CI 1.72-4.63 and 1.56, 95 CI 1.38-1.75 respectively). Claus et al [235] showed 

that in 123 cases of LCIS the risk factors associated with LCIS and DCIS were similar to those 

associated with invasive breast cancer. In this study we intended to explore the hormonal and 

reproductive risk factors associated with LCIS and ILC. Since we already have genetic data 

from a large scale genotyping project for the same individuals, we also assessed potential 

gene-environment (GxE) interactions between HRT use and loci that have been previously 

shown to be associated with lobular breast cancer. 

3.2 Case control association study 

The aim of this study was to identify new breast cancer susceptibility loci specific to lobular 

carcinoma, and to evaluate the heterogeneity of associations of known loci by morphology. This 
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involved pooling genotyping data from over 6,000 cases of lobular carcinoma (ILC and/or LCIS) 

and over 34,000 controls genotyped using the iCOGS chip, a custom SNP array that comprises 

211,155 SNPs enriched at predisposition loci for breast and other cancers. The analyses that 

were conducted during this PhD included a total of 2,527 lobular cases from the GLACIER 

study along with 5,000 controls. 

3.2.1 Methods 

Cases and controls originate from GLACIER and 34 studies forming part of the BCAC included 

in the COGS Project [159]. The GLACIER study recruited a total of 2,539 cases: 2,167 were 

identified from local pathology reports in 97 UK hospitals, 346 cases were identified through the 

British Breast Cancer Study (BBCS) using UK Cancer Registry data and 26 cases from the 

Royal Marsden Breast Tissue Bank. BCAC studies recruited all types of breast cancer.  

All these cases were genotyped with the iCOGS chip and compared to 5,000 UK controls 

selected from four UK studies participating in BCAC and already typed on the iCOGS chip. 

Controls were randomly selected prior to analysis so that each of these UK studies, including 

GLACIER, had a case-control ratio of at least 1:2, Table 3.1. 

Table 3.1: Dissemination of control samples allocated to GLACIER or BCAC analysis. 

UK study 

 
No of 

lobular 
cases 

 
Total No  

of 
controls 

 
Source of Controls 

No of 
controls 
selected 
for BCAC 
analysis 

No of 
controls 

selected for 
GLACIER 
analysis 

BBCS 

British Breast 
Cancer Study 

83 1,397 
A friend or non-blood 

relative of cases, recruited 
from throughout UK 

166 1,231 

SBCS 

Sheffield Breast 
Cancer Study 

72 848 

Unselected women 
attending Sheffield 

Mammography Screening 
Service with no evidence of 

a breast lesion 

144 704 

UKBGS 

Breakthrough 
Generations 

Study 

50 470 

Women from throughout 
the UK who had not had 
breast cancer or in situ 

disease before entry into 
the cohort study 

100 370 

SEARCH 

Study of 
Epidemiology & 
Risk Factors in 

Cancer Heredity 

1,234 8,069 

(a) from the EPIC-Norfolk 
cohort study, (b) women 
attending GP practices, 

matched to cases by age 
and geographic region 

(East Anglia) 

5,374 2,695 

Total 1,439 10,784  5,784 5,000 

 

Pathological information in BCAC was collected by the studies individually but combined and 

checked through standardized data control in a central database. A total of 4,152 ILC and 89 

LCIS cases were identified by the central BCAC pathology database. 
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This study includes only cases of pure LCIS or ILC with or without LCIS. Cases of LCIS with 

IDC or mixed lobular and ductal carcinoma in GLACIER were excluded in order to perform 

meta-analyses with the BCAC studies which do not have information on the presence or 

absence of LCIS associated with an invasive cancer. Germline DNA extracted from peripheral 

blood was used for this project. All GLACIER samples were genotyped on the iCOGS custom 

Illumina iSelect platform as part of my PhD, section 7.2.2. The remaining cases and controls 

were genotyped as part of the COGS project by collaborators, as described in detail elsewhere 

[154]. The GLACIER cases were analysed using the same QC criteria as the COGS project. 

Briefly, genotypes were called using Illuminas proprietary GenCall algorithm and 10,000 SNPs 

were manually inspected to verify the algorithm calling. Individuals were excluded if 

genotypically not female, had overall call rate <95% or were ethnic outliers (248 cases) as 

identified by PCA, combining the genotyping data with the three Hapmap2 populations. SNPs 

with a Gencall rate of < 0.25, call rate <95% (call rate <99% if MAF <0.1) and P-HWE<10-7 or 

evidence of poor clustering on inspection of cluster plots were excluded. All SNPs with MAF 

<0.01 were excluded from this analysis.  

A cryptic relatedness analysis of the GLACIER case control data set was performed using 

46,918 uncorrelated SNPs and there was no evidence of any duplicates. The same analysis 

showed no evidence of overlap between the GLACIER samples and the BCAC samples. For 

each SNP, a per-allele OR was calculated by logistic regression, including the first five principal 

components (PCs) as covariates, using plink (http://pngu.mgh.harvard.edu/purcell/plink/), 

section 7.4.1. Genotyping and analysis of BCAC studies is described in detail elsewhere [154], 

All analyses were performed in subjects of European ancestry (determined by PCA). The meta-

analysis was performed by other members of the BCAC. In brief, case-control OR for ILC or 

LCIS cases vs controls from BCAC and GLACIER were combined using inverse variance-

weighted fixed-effects meta-analysis, as implemented in METAL [239]. Case-only analyses 

were also carried out to compare genotype frequencies for ILC vs LCIS and potentially identify 

invasive or in situ specific associations.  

For GLACIER cases and controls, PCA was carried out on a subset of 46,918 uncorrelated 

SNPs and used to exclude individuals or groups distinct from the main cluster using the first 

PCs, Figure 3.1. Following removal of outliers (166 cases and 245 controls), the PCA was 

repeated and the first five PCs included as covariates in the analysis, Figure 3.2. 

http://pngu.mgh.harvard.edu/purcell/plink/
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Figure 3.1: Ethnic differences on samples genotyped on iCOGS platform defined by PCA.  

 

Figure 3.2: Principal component 1 vs Principal component 2 for samples genotyped on iCOGS after 
removal of ethnic outliers. 

The adequacy of the case-control matching was evaluated using quantile-quantile plots of test 

statistics and the inflation factor (λ) calculated using only 37,544 uncorrelated SNPs that were 

not selected by BCAC and were not within one of the four common fine-mapping regions, to 

minimize selection for SNPs associated with breast cancer, Figure 3.3.  As the majority of the 

SNPs on the iCOGs array are associated with breast, ovarian or prostate cancer, the SNPs 

selected for this analysis were taken from the set of prostate cancer SNPs, with the assumption 
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that these SNPs are more likely to be representative of common SNPs in terms of population 

structure in our study. After excluding individuals based on genotyping quality and non-

European ancestry, data for the GLACIER study available for analyses included 1,782 cases 

(1,470 ILC (with or without LCIS), 312 pure LCIS) and 4,755 controls.  

A further 518 cases (482 ILC, 36 LCIS) and 1,465 controls were analysed as part of a phase II 

study. Controls were recruited through the GLACIER study, but were not genotyped in phase I 

on the iCOGS chip to reduce costs. Cases came from the following studies: 232 cases from 

GLACIER, 176 from BBCS, 71 from DietCompLyf [239], 39 from Kings Health Partners Cancer 

Biobank (KHP-CB). All cases were white West European, apart from the 39 samples from the 

KHP-CB where there were no associated ethnicity data. These samples were genotyped at 

LGC Genomics. 

 

Figure 3.3: QQ-plots for GLACIER data set based on 37,544 uncorrelated SNPs not selected on the basis 
of breast cancer (left), and all SNPs in data set (right). 

In a phase I analysis, we evaluated associations between SNPs on the iCOGS chip and risk of 

ILC and LCIS using 1,782 lobular cases (1,470 ILC with or without LCIS, 312 pure LCIS) from 

GLACIER, and 4,755 UK controls from BCAC. There was little evidence for systematic inflation 

of the test statistics, based on 37,544 uncorrelated SNPs that had not been selected on the 

basis of breast cancer risk (λ=1.04, Figure 3.3). Data were combined by meta-analysis with a 

further 4,241 cases (4,152 ILC, 89 LCIS) and 29,519 controls of European ancestry, derived 

from 34 studies in BCAC, and previously typed on the iCOGS chip. The final meta-analysis, 

conducted by BCAC collaborators, incorporated data from a total of 6,023 cases (5,622 ILC, 

401 LCIS) and 34,271 controls with genotypes on 199,961 iCOGS SNPs (after quality control 

exclusions and MAF >0.01). 
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3.2.2 Novel breast cancer predisposition loci 

All SNPs reaching genome-wide significance (P<5x10-8) in the meta-analysis were correlated 

with one of the known breast cancer predisposition loci (Figure 3.4). In an attempt to identify 

novel loci predisposing to lobular carcinoma, we selected 6 SNPs (rs11977670, rs2121783, 

rs2747652, rs3909680, rs9948182, rs7034265) that were not correlated (r2<0.25) with known 

loci and that showed the best evidence of association (P between 5x10-8 and 5x10-5) in the 

overall lobular case-control analysis (ILC and LCIS). This group of SNPs was genotyped in a 

phase II study comprised of 516 European cases (481 ILC, 35 LCIS) and 1,467 ethnically 

matched controls. The power we had to detect genome wide significance of variants with 

MAF=0.2 and an effect size of OR=1.2 was 97%. 

 

Figure 3.4: Manhattan plot showing results from meta-analysis of 5,622 ILC cases and 34,243 controls.  

One of the six SNPs, rs11977670 at 7q34, reached genome-wide significance in a pooled 

analysis of phase I and II ILC cases and controls (OR=1.13, 95%CI=1.09-1.18, P=6.0x10-10), 

Table 3.2, Figure 3.6, Appendix 4. rs11977670 showed a similar association with LCIS (P-het 

for ILC vs LCIS=0.198), and no association with IDC (OR=1.02, 95%CI=1.00-1.05, P=0.07; P-

het ILC vs IDC =1.3 x10-5), indicating that this is a lobular specific predisposition locus. The risk 

allele appeared to act in a dominant rather than additive manner: ORAG=1.21, 95%CI=1.14-

1.30; ORAA=1.27, 95%CI=1.17-1.38 (GLACIER only analyses: PAdd=9.8x10-5, PDom=1.2x10-5, 

PRec=0.07). None of the other 5 SNPs genotyped were associated with lobular breast cancer at 

a genome-wide significance level. 
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Table 3.2: Common variants reaching a suggestive significance threshold of P<5x10-5 that were screened 

on phase II. 

SNP RAF 
Phase I OR 

(95% CI) 
Phase I 

P  
Phase II OR 

(95% CI) 
Phase 

II P  
Phase I + II OR 

(95% CI) 
Phase   
I + II P 

rs2121783 0.41 1.11 (1.07, 1.16) 7.1x10-7 1.08 (0.93, 1.25)  0.31 1.11 (1.07, 1.15) 4.5x10-7 
rs2747652 0.47 0.91 (0.87, 0.95) 1.4x10-5 0.98 (0.85, 1.14)  0.83 0.92 (0.88, 0.95) 2.2x10-5 

rs11977670 0.43 1.12 (1.07, 1.16) 1.4x10-7 1.38 (1.19, 1.60)  2.9x10-5 1.13 (1.09, 1.18) 6.1x10-10 
rs3909680 0.43 1.10 (1.05, 1.14) 1.0x10-5 1.05 (0.91, 1.22)  0.51 1.09 (1.05, 1.14) 9.9x10-6 
rs9948182 0.34 0.90 (0.86, 0.94) 3.7x10-6 1.02 (0.88, 1.18)  0.83 0.91 (0.87, 0.95) 1.2x10-5 
rs7034265 0.19 0.90 (0.85, 0.95) 7.2x10-5 0.93 (0.77, 1.12)  0.44  0.90 (0.85, 0.95) 5.6x10-5 

 

rs11977670 at 7q34 (position:139942304, GRCh Build 37) is intergenic, Figure 3.5, 65 kb from 

the nearest gene, JHDM1D, a histone demethylase and 500 kb from BRAF, a gene frequently 

somatically mutated in melanoma. 

 

Figure 3.5: Plot of recombination, gene location and other SNPs typed in iCOGs in a 200KB region 
eitherside of the novel lobular specific locus. 
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Figure 3.6: Forest plot for rs11977670 indicating effect size of different BCAC studies along with GLACIER 
and phase II study. 

3.2.3 Known breast cancer predisposition loci for ILC 

The majority (56) of the 75 known (at the time of analysis) common breast cancer susceptibility 

loci were associated with ILC at P<0.05 with the effect in the same direction as previously 

reported (31 were significant at the Bonferroni corrected P<0.00066), and 14 of these reached 

genome-wide significance (P<5x10-8, Table 3.3). The strongest associations were with SNPs 

close to FGFR2 (rs2981579, OR=1.38, P=5.1x10-52), TOX3 (rs3803662, OR=1.33, P=1.1x10-35), 

at 1p11.2 (rs11249433, OR=1.25, P=2.7x10-25) and 11q13.3 (rs554219, OR=1.33, P=1.6x10-22). 

All 14 loci had previously been shown to be associated with ER positive breast cancer and one 

locus, rs11249433 (1p11.2), with lobular histology in subgroup analysis. Of the remaining 19 

SNPs with P>0.05, 18 had ORs in the same direction as previously reported for overall breast 

cancer. Only one of the seven ER negative specific loci on the iCOGS array showed a 

borderline significant association with ILC (rs12710696, P=0.037), but none reached the 

Bonferroni corrected P<0.00066. 
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Table 3.3: Previously reported SNPs that are associated with ILC (P<5x10-8) in our meta-analysis. 

Cytoband SNP 
MAF 

Controls 
OR (95% CI) P 

10q26.13 rs2981579 0.4 1.38 (1.32, 1.44) 5.1x10−52 

16q12.1 rs3803662 0.26 1.33 (1.27, 1.39) 1.1x10−35 

1p11.2 rs11249433 0.4 1.25 (1.20, 1.30) 2.7x10−25 

11q13.3 rs554219 0.12 1.33 (1.26, 1.41) 1.6x10−22 

9q31.2 rs865686 0.38 0.83 (0.79, 0.86) 1.0x10−17 

2q35 rs13387042 0.49 0.84 (0.80, 0.87) 5.7x10−17 

11q13.3 rs75915166 0.06 1.40 (1.29, 1.51 1.2x10−16 

11q13.3 rs614367 0.14 1.24 (1.18, 1.31) 7.2x10−15 

10q21.2 rs10995190 0.16 0.80 (0.75, 0.85) 1.7x10−13 

5q11.2 rs889312 0.28 1.18 (1.13, 1.23) 9.1x10−13 

10q22.3 rs704010 0.38 1.14 (1.10, 1.19) 3.7x10−10 

10p12.31 rs1243182 0.32 1.14 (1.09, 1.19) 6.1x10−9 

4q34.1 rs6828523 0.12 0.82 (0.77, 0.88) 1.6x10−8 

8q24.21 rs13281615 0.41 1.13 (1.08, 1.18) 2.1x10−8 

 

A case only analysis including 3,201 ILC cases from GLACIER and BCAC, 15,023 ER positive 

IDC cases from BCAC, and 29,273 controls from BCAC has yielded some loci that seem to be 

more strongly associated with one histology over the other, Table 3.4. We have shown evidence 

for three loci to be more strongly associated with lobular histology (rs11249433, rs2981579, 

rs10995190). 

Table 3.4: Loci that show differential association between ILC and IDC. 

Cytoband SNP MAF IDC OR (95%CI) IDC P ILC OR (95%CI) ILC P P-het 

1p11.2 rs11249433 0.4 1.09 (1.06, 1.13) 2.3x10-9 1.28 (1.22, 1.35) 7.2x10-20 2.8x10-8 

5p12 rs10941679 0.25 1.17 (1.13, 1.21) 4.1x10-21 1.03 (0.97, 1.10) 0.32 1.6x10-4 

10q26.13 rs2981579 0.40 1.31 (1.27, 1.35) 1.3x10-71 1.42 (1.35, 1.50) 3.5x10-38 5.4x10-3 

14q24.1 rs2588809 0.16 1.12 (1.08, 1.17)  8.7x10-9 0.99 (0.92, 1.07) 0.87 0.001 

10q21.2 rs10995190 0.16 0.87 (0.84, 0.91) 4.2x10-11 0.76 (0.71, 0.83) 1.3x10-11 0.002 

8q21.11 rs6472903 0.18 0.89 (0.85, 0.92) 3x10-9 1 (0.93, 1.07) 0.89 0.004 

2q31.1 rs1550623 0.16 0.93 (0.89, 0.96) 2.2x10-4 1.01 (0.94, 1.08) 0.84 0.031 

 

As mentioned in Chapter 2, CDH1 has a key role in lobular breast cancer development and 

therefore it was not unreasonable to hypothesise that common variants tagging the gene might 

be associated with the disease. We therefore investigated possible association of 56 variants 

with MAF>1% that were present in iCOGS platform and spanning a region 184KB surrounding 

and tagging the CDH1 gene. None of these 56 variants reached even a nominal association 

level of P<0.05. We therefore concluded that common variants at the CDH1 locus are unlikely to 
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be associated with ILC, even though the genotyping platform used did not include a GWAS 

backbone which could implicate that there might still be variants that are not optimally tagged. 

3.2.4 Known breast cancer predisposition loci for LCIS 

For the 75 known breast cancer susceptibility loci, case-control analysis for the 401 cases of 

pure LCIS (without invasive disease) and 24,045 controls, revealed 15 out of 75 SNPs 

associated with LCIS at P<0.05 (Table 3.5). The strongest associations were for rs865686 

(9q31.2, P=2.2x10-5); rs3803662 (TOX3, P=1.2x10-4), rs75915166 (11q13.3, P=7.8x10-4) and 

rs1243482 (MLLT10, 10p12.31, P=7.8x10-4) that is partially correlated (r2=0.69) with rs7072776, 

a recently identified ER positive breast cancer predisposition locus that showed a weaker 

association with LCIS (OR=1.17, 95%CI =1.00-1.36, P=0.05). Forty-seven of the remaining sixty 

SNPs at P>0.05 had ORs in the same direction as for ILC. This is greater than what expected 

by chance (Sign test conducted by BCAC collaborators, P=1.2x10-5) suggesting many of these 

SNPs predispose to LCIS, but our study did not have enough power to detect these 

associations with the small sample size. They also conducted a global test in case-only analysis 

(ILC vs LCIS), which indicated no significant differences in associations of the 75 SNPs 

between LCIS and ILC (LRT=0.438). However, individual SNP analyses suggested some 

differences. Two loci showed stronger associations with ILC than pure LCIS: rs2981579, 

FGFR2 (P-het=0.02); and rs889312, 5q11.2 (P-het=0.03). Case-only analysis also suggested 

that two ER negative specific SNPs [157, 168] were more strongly associated with LCIS than 

ILC: rs6678914, 1q32.1 (P-het=0.0007) and rs17529111, 6q14.1 (P-het=0.04), even though 

they did not reach the Bonferroni corrected threshold of significance. The remaining SNPs 

showed no significant heterogeneity between ILC and LCIS, Table 3.5. 
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Table 3.5: Previously reported SNPs that are associated with LCIS (P<0.05) in a pooled meta-analysis 

including 401 LCIS cases and 24,045 controls. 

Cytoband SNP MAF OR (95% CI) P 
P-het ILC vs 

LCIS 

1q32.1 rs6678914 0.41 0.77 (0.67, 0.90) 8.0x10−4 0.0007 

10q26.13 rs2981579 0.4 1.19 (1.03, 1.37) 0.019 0.04 

6q14.1 rs17529111 0.22 1.25 (1.06, 1.48) 0.009 0.04 

10q21.2 rs10995190 0.16 0.69 (0.55, 0.87) 0.002 0.1 

2p24.1 rs12710696 0.36 1.17 (1.01, 1.35 0.034 0.1 

2q14.2 rs4849887 0.1 0.71 (0.54, 0.93) 0.012 0.11 

8q21.11 rs6472903 0.18 0.81 (0.66, 0.99) 0.036 0.11 

9q31.2 rs865686 0.38 0.72 (0.61, 0.84) 2.2x10−5 0.12 

5p15.33 rs10069690 0.26 1.18 (1.01, 1.38) 0.04 0.19 

5p15.33 rs7726159 0.34 1.22 (1.05, 1.42) 0.008 0.254 

11q13.3 rs614367 0.14 1.32 (1.10, 1.58) 0.003 0.46 

10p12.31 rs1243182 0.32 1.29 (1.11, 1.49) 7.8x10−4 0.49 

11q13.3 rs75915166 0.06 1.55 (1.20, 2.01) 7.8x10−4 0.54 

2q35 rs16857609 0.26 1.25 (1.07, 1.46) 0.006 0.625 

11q13.3 rs554219 0.12 1.31 (1.08, 1.60) 0.007 0.8 

16q12.1 rs3803662 0.26 1.35 (1.16, 1.57) 1.2x10−4 0.99 

 

3.3 Environmental risk factors and interactions 

Several studies have identified potential GxE interactions in the context of breast cancer. Some 

studies have found evidence of interactions in the FGFR2 locus [240, 241] as well as other loci 

[242]. Recent joined efforts from consortia revealed that it is unlikely that there will be a large 

enough interaction to be clinically useful [243]. However, this study looked at age at menarche, 

parity, age at first birth and BMI as environmental exposures. Findings from the UK Million 

Women Study also support this statement with no major interaction being identified after 

investigating 12 SNPs and 10 environmental risk factors in a cohort of 7,610 breast cancer 

cases and 10,196 controls [244]. Additionally, a collaboration study recently failed to identify any 

interaction with HRT after correcting for multiple testing. In this two-phased study, investigators 

tested the hypothesis of lobular specific interactions with no significant findings [245]. However, 

the number of lobular cases was very small. Another BCAC study investigating interactions 

between SNPs and HRT in the context of lobular breast cancer identified some potential signals 

that warrant further investigation [246]. 

We therefore followed a stratified phenotype approach, focusing on the lobular histology to 

interrogate environmental risk factors as well as investigate possible interactions between HRT 

and known SNPs that have been associated with lobular breast cancer. 
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3.3.1 Methods 

Genotypic data for 12 single nucleotide polymorphisms (SNPs) that have been previously found 

to be associated with lobular breast cancer were obtained using two different genotyping 

approaches including the iCOGS custom platform from Illumina [154] and KASP genotyping 

technology. Individual effect sizes as well as the presence of GxE interactions were 

investigated. Genotypes were converted in dosage values (0, 1, 2) based on minor allele 

frequency (MAF) and minor allele count (MAC) was used as the genotypic value. 

Controls aged <35 years or >60 years were excluded in order to match the age range of the 

cases. As all controls were required by definition not to have a family history of breast cancer, 

all cases with a family history of breast cancer were excluded as this might influence the use of 

exogenous hormones. For the same reason only cases and controls born between 1948 and 

1971 were included in this analysis. Age was defined as the age of diagnosis (age on day of 

pathology report) for the cases and for controls as their age on the day questionnaire was 

received. 

Women who reported a natural cessation of periods or a bilateral oophorectomy were classified 

as postmenopausal. Since the use of HRT whilst peri-menopausal and surgical interventions 

such as a hysterectomy without a bilateral oophorectomy, may mask the natural cessation of 

periods, anyone who fell in to these categories but was aged 56 and over, were assumed to be 

postmenopausal, and those younger were scored as having unknown menopausal status. 

Parity was defined as the number of live births, excluding still births. 

Risk factor data were analysed using SAS/STAT® software. All subjects were analysed 

together and then separate analysis was performed for post-menopausal women. Using 

multivariate logistic regression accounting for age in the model, odds ratios (ORs) and 95% 

confidence intervals (95%CI) for cases and controls were computed for age of menopause, age 

of menarche, parity (never, parous, 1-2, >2), age of first birth (≤ 25, > 25), ever breastfed in 

parous women, ever use of OC (combined estrogen-progesterone, progesterone only, 

combined and progesterone only), years of OC use, ever use of levonorgestrel-releasing 

intrauterine system (Mirena), ever use of HRT, years of HRT use (never, 0-4, 5-9, ≥ 10), type of 

HRT used (estrogen only, combined), and ever use of exogenous hormones (either HRT or 

OC). A case-only comparison of pure LCIS (ref) vs ILC +- LCIS was also performed for HRT. 

The final data set included 1,095 cases consisted of 658 ILC + LCIS, 191 pure ILC, 39 mixed 

ILC with unknown LCIS status and 207 pure LCIS. Out of those 1,095 individuals, we obtained 
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genotypic data for 1,050 of them. Out of the 1,326 controls that have been used in this study, 

we obtained genotypic data for 1,224 of them. 

3.3.2 Environmental risk factors 

There is a non-significant excess of HRT usage amongst cases (OR: 1.23; 95%CI: 1.00-1.48, 

P=0.056), Table 3.6. This association becomes significant when looking in postmenopausal 

women (OR: 1.37; 95%CI: 1.04-1.80, P=0.025). Also, women who had taken HRT for >10 years 

had a significantly increased risk (OR: 3.07; 95%CI: 1.87-5.03, P<0.0001). Breast feeding was 

protective (OR: 0.67; 95%CI: 0.54-0.83, P=0.0003). Age of first birth (≥ 26) was associated with 

increased risk of lobular disease (OR: 1.23; 95%CI: 1.03-1.47, P=0.0258) amongst parous 

women. There was a non-significant trend towards an association with combined HRT. 
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Table 3.6: Demographic and association data in women aged 35-60 born between 1948 and 1971. 

 
Controls 

N=1326 

Cases  

N=1095 
 

 
N (%) N (%) OR (95% CI) P 

Age 
Age (mean±SD) 49.55 (± 6.00) 50.75 (± 5.5) 1.04 (1.02, 1.05), p <.0001 

Age at menopause 
Mean age at 
menopause 

48.79 (±5.32) 48.65 (±5.08) 0.99 (0.96, 1.02), p=0.44 

Age at menarche 
Mean age at 
menarche 

12.82 (± 1.56) 12.85 (± 1.6) 1.01 (0.96, 1.06), p=0.72 

Parity 
Nulliparous 261 (19.68) 182 (16.62) 1 (ref) 

Parous 1065 (80.32) 913 (83.38) 1.18 (0.96, 1.46), p= 0.12 
Age of First Birth 

≤ 25 749 (56.49) 557 (50.87) 1 (ref) 
> 25 577 (43.51) 538 (49.13) 1.23 (1.03, 1.47), p= 0.026 

Breastfeeding 
Never 198 (18.66) 233 (25.55) 1 (ref) 

Breastfed 863 (81.34) 679 (74.45) 0.67 (0.54, 0.83), p= 0.0003 
Oral Contraceptive (OC) use and type 

Never 172 (13.14) 151 (13.97) 1 (ref) 
OC used 1137 (86.86) 930 (86.03) 0.95 (0.75, 1.20), p= 0.65 

Mirena Coil (MC) use 
Never 149 (58.66) 143 (71.50) 1 (ref) 

MC used 105 (41.34) 57 (28.50) 0.60 (0.40, 0.89), p= 0.011 
Years of Contraceptive use 

Mean years of use 9.58 (± 7.38) 9.73 (± 7.2) 1.01 (0.99, 1.02) p=0.50 
Hormonal Replacement Therapy (HRT) use 

Never 1047 (80.35) 789 (74.02) 1 (ref) 
HRT used 256 (19.65) 277 (25.98) 1.23 (1.00, 1.51), p= 0.056 

Years of HRT use 
Never 1047 (84.44) 789 (76.31) 1 (ref) 

0 < x < 5 118 (9.52) 124 (11.99) 1.25 (0.94, 1.64), p= 0.12 
5 ≤ x < 10 52 (4.19) 59 (5.71) 1.28 (0.87, 1.91), p= 0.21 

≥ 10 23 (1.85) 62 (6.00) 3.07 (1.87, 5.03), p <.0001 
Type of HRT used 

None used 1047 (87.62) 789 (85.67) - 
estrogen only 70 (5.86) 51 (5.54) 1 (ref) 

Combined 78 (6.53) 81 (8.79) 1.41 (0.87, 2.27), p= 0.16 
Any exogenous hormone use (either OC or HRT) 

Never 152 (6.35) 116 (4.85) 1 (ref) 
Ever 1160 (88.41) 964 (89.26) 1.08 (0.84, 1.40) 

    

The use of mirena coil has a protective effect since a smaller proportion of cases were using 

this method of contraception (OR=0.60 (95%CI 0.40, 0.89), P= 0.011), Figure 3.7. 
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Figure 3.7: Effect size of mirena coil in lobular breast cancer development. 

No association was found with use of OC (OR=0.95 (95%CI 0.75, 1.20), P=0.65) or use of any 

exogenous hormones (OR=1.08 95%CI 0.84, 1.40, P=0.54). 

3.3.3 Genetic risk factors 

12 SNPs that have been previously found to be associated with lobular breast cancer at a 

genome-wide level have been assessed in the context of this study. Table 3.7 shows the 

association of these loci using data from 1050 cases and 1224 controls. No covariates have 

been added in the logistic regression. The significance threshold has been Bonferroni corrected 

(p<0.0042) for 12 tests. Significant association was found with 7 SNPs in this data set. The 

associated loci were then followed up for a GxE interaction investigation with HRT usage as a 

binary variable (never versus ever users). 

Table 3.7:Association of 12 loci previously associated with ILC in our data-set of 1050 lobular cases and 
1224 controls. 

SNP Estimate St Error Chi-Square P 

rs75915166 0.3178 0.125 6.4642 0.011 
rs10995190 -0.1262 0.0905 1.9421 0.1634 
rs11249433 0.184 0.0619 8.8213 0.003 

rs11977670 0.3136 0.0622 25.4186 <.0001 

rs13387042 -0.053 0.0608 0.7602 0.3833 
rs2981582 0.3667 0.0637 33.0933 <.0001 

rs3803662 0.3149 0.0678 21.5585 <.0001 

rs554219 0.3529 0.0902 15.3176 <.0001 

rs6678914 -0.076 0.0629 1.4606 0.2268 
rs704010 0.2277 0.061 13.9108 0.0002 

rs865686 -0.2656 0.0641 17.1944 <.0001 

rs889312 0.1214 0.0669 3.2943 0.0695 
     

3.3.4 Gene-environment interactions 

In order to look for the combined effects of HRT and genotypes, we selected only 

postmenopausal women from both cases and controls. This corresponds to 406 cases and 481 

controls. The proportion of definitely postmenopausal women was equal amongst the two 
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groups (37%). Table 3.8 shows the number of individuals per group of genotype and HRT 

status for the 7 SNPs that reached the corrected level of significance for this study. The 

corresponding effect sizes of HRT per genotype along with the significance P values across the 

7 SNPs under investigation are indicated in Table 3.9. Evidence for three interactions has been 

found, having investigated 406 postmenopausal cases and 481 matched controls,  

 

Table 3.10. Data is represented in two different ways plotting the 6 data points (genotypes 3x2 

HRT status), Figure 3.8, Figure 3.9, Figure 3.10. Three different genetic models have been 

investigated, firstly the additive model where the exact allele count is considered, but also the 

dominant and recessive models where the heterozygotes are merged in one group with the 

homozygotes of the rare or the common allele respectively. For rs704010 and rs865686, the 

interaction seems to act in a recessive manner, where two copies of the risk allele are required 

to observe the effect from HRT. On the contrary, the interaction between rs2981582 (FGFR2) 

and HRT seems to follow the additive model. However, due to the relatively small sample size, 

these possible interactions need to be validated in additional samples for any conclusions to be 

drawn. 

Table 3.8: Number of individuals stratified across different genotypic groups and ever vs never HRT users. 

N of minor 
alleles 

0 1 2 

 
Controls Cases Controls Cases Controls Cases 

SNP No Yes No Yes No Yes No Yes No Yes No Yes 

rs11249433 98 55 64 45 139 77 109 92 52 22 41 33 
rs11977670 94 58 55 50 153 74 108 90 43 21 51 32 
rs2981582 115 50 56 52 145 83 112 88 28 22 46 30 
rs3803662 167 88 104 74 104 59 87 70 19 8 23 26 
rs554219 229 118 160 119 59 31 49 44 2 6 5 5 
rs704010 116 67 67 50 124 72 104 68 48 16 43 50 
rs865686 125 55 95 81 130 76 93 82 35 24 26 8 

 

Table 3.9: Interaction between ever vs never use of HRT with 7 SNPs that were significantly associated 
with lobular breast cancer. 

N of minor 
alleles 

0 1 2 

SNP OR (95% CI) P OR (95% CI) P OR (95% CI) P 

rs11249433 1.11 (0.77, 1.61) 0.578 1.27 (0.93, 1.73) 0.127 1.54 (0.92, 2.60) 0.102 
rs11977670 1.24 (0.85, 1.83) 0.267 1.32 (0.97, 1.79) 0.078 1.26 (0.76, 2.11) 0.374 
rs2981582 1.82 (1.25, 2.66) 0.002 1.04 (0.77, 1.40) 0.816 0.86 (0.50, 1.48) 0.587 
rs3803662 1.29 (0.95, 1.75) 0.104 1.08 (0.77, 1.52) 0.654 2.01 (0.93, 4.33) 0.077 
rs554219 1.26 (0.98, 1.61) 0.078 1.09 (0.70, 1.70) 0.698 0.92 (0.22, 3.78) 0.905 
rs704010 1.16 (0.81, 1.66) 0.415 1.13 (0.82, 1.56) 0.454 1.82 (1.06, 3.11) 0.029 
rs865686 1.31 (0.93, 1.85) 0.119 1.35 (0.98, 1.85) 0.066 0.94 (0.52, 1.72) 0.849 
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Table 3.10: Interaction P values based on 3 different genetic models (additive, dominant and recessive) 
between ever vs never use of HRT vs 7 SNPs that were significantly associated with lobular breast cancer. 

SNP Locus MAF 
Additive 

interaction 
P 

Dominant 
interaction 

P 

Recessive 
interaction 

P 

rs11249433 1p11.2 0.43 0.3237 0.4562 0.4097 
rs11977670 7q34 0.43 0.8524 0.8142 0.5616 
rs2981582 FGFR2 0.42 0.0309 0.0702 0.0945 
rs3803662 TOX3 0.29 0.2868 0.5204 0.1842 
rs554219 CCND1 0.12 0.7396 0.8538 0.1543 
rs704010 ZMIZ1 0.41 0.0581 0.5072 0.0065 
rs865686 9q31 0.37 0.0199 0.1496 0.0099 

 

Figure 3.8: Interaction plots for rs2981582 (FGFR2). Interaction P= 0.030, lobular association P=5x10-52. 

 

Figure 3.9: Interaction plots for rs704010 (ZMIZ1). Interaction under recessive model P= 0.0065, lobular 
association P=3x10-10. 

 

Figure 3.10: Interaction plots for rs865686 (9q31.2). Interaction P= 0.019, lobular association P=1x10-17 
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3.4 Discussion 

In this study, where we focused on lobular breast cancer, we identified a novel variant that 

appears to be specific to this morphological subtype. We also ascertained which of the known 

variants predispose specifically to lobular breast cancer and shown for the first time that some 

of these loci are also associated with LCIS. Our study showed that the genetic pathways of 

invasive lobular cancer and ER positive IDC mainly overlap, but with key differences.   

Analysing of a total of 6,539 lobular breast cancer cases (including 436 cases of pure LCIS) and 

35,710 controls led to the first identification of a lobular-specific SNP, rs11977670 (JHDM1D; 

OR=1.13 P=4.2x10-10, that showed little or no evidence of association with IDC (P=0.064) or 

DCIS (P= 0.44). Fine-mapping of the region is required, followed by functional assays to 

determine whether the associated SNPs regulate the function of certain genes. Preliminary in 

silico functional analysis suggests that SNPs in this region may be influencing expression of 

JHDM1D (histone demethylase) and SLC37A3 (sugar-phosphate exchanger). An eQTL 

analysis using a surrogate SNP, rs13225058, revealed that the risk allele is associated with 

increased expression of both JHDM1D and SLC37A3. This analysis included 335 ER positive 

primary tumours where both genotyping and expression data were available and were 

downloaded from TCGA. There are little data on the role of these genes in cancer. There is 

some evidence that increased expression of JHDM1D can suppress tumour growth by 

regulating angiogenesis [247] and decreased expression promotes invasiveness, which is 

contrary to what one would expect from the risk data. Studies of syndecan-1-deficient breast 

cancer cells, which show increased cell motility and invasiveness, demonstrate decreased 

expression of both JHDM1D and E-cadherin [248], suggesting the two genes may interact. 

Somatic mutations in CDH1 are frequent in ILC and rare germline frameshift mutations in CDH1 

have been described in ILC, particularly in families with hereditary diffuse gastric cancer 

(HDGC), but also in cases of familial ILC with no HDGC [115, 249, 250]. However, none of the 

CDH1 tagging SNPs that were typed on the iCOGs chip showed any association with lobular 

cancer at P<0.05. 

A total of 75 of the known common breast cancer susceptibility loci were assessed for 

association with ILC and LCIS. As cases of ILC are generally ER positive with the majority of 

ILCs classified as luminal tumours [251], it does not come as a surprise that the majority of 

SNPs that we found to be associated with ILC were previously known to predispose to ER 
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positive breast cancer. However, some loci were only associated with ER positive IDC and not 

with ILC, particularly rs10941679 at 5p12, previously shown to more strongly predispose to ER 

positive, lower-grade cancers [252], P-het=2.7x10-8. Another study showed a much stronger 

association with ILC than IDC, particularly rs11249433 at 1p11.2 [229]. These data show 

evidence for specific aetiological pathways in the development of different histological subtypes 

of breast cancer, in addition to common pathways that predispose to multiple tumour subtypes. 

Our analyses have shown for the first time that many of the SNPs that predispose to ILC also 

predispose to LCIS, even though the number of pure LCIS cases is small. Although only 15 of 

the known breast cancer SNPs were associated with LCIS risk at P<0.05, 47 of the remaining 

60 SNPs at P>0.05 had ORs in the same direction as for ILC (Sign Test P=1.2x10-5) suggesting 

that many more SNPs are likely to be associated with pure LCIS but did not reach statistical 

significance because of the relatively few LCIS cases without associated ILC in our study.  This 

is not unexpected if LCIS is an intermediate phenotype for ILC. However, a small number of 

SNPs had differential effects on LCIS or ILC risk. Specifically, rs6678914 at 1q32.1 (LGR6), 

known to be an ER negative specific SNP [157], that appeared to be associated with LCIS but 

not ILC (P-het=0.0007), and rs17529111 at 6q14 preferentially associated with ER negative 

tumours [168] that had a stronger association with LCIS than ILC (P-het=0.04). We also 

identified SNPs in FGFR2 and at 5q11.2 (MAP3K1) that appear only to predispose to ILC. 

These findings are surprising but based on small numbers and therefore need confirmation in 

future studies. 

Some of the SNPs associated with both ILC and LCIS showed a stronger effect size in LCIS 

compared to ILC (for example SNPs at TOX3, 9q31.2, 11q13.3, ZNF365 and MLLT10). It is 

possible that the SNPs that showed an association with both LCIS and ILC predispose to the 

development of LCIS rather than ILC, and that the effect size is smaller in ILC as not all cases 

of LCIS will become invasive cancer. SNPs that predispose strongly to LCIS were also 

associated with ER positive IDCs but again with stronger effect sizes in LCIS, consistent with 

the fact that 30-40% of invasive tumours associated with LCIS will not be ILC but will be IDC, 

mixed ductal-lobular or other morphology. 

With regards to environmental risk factors, we do not observe any deviation from what is 

already known, with late age of first birth and long periods of HRT usage increasing the risk, 

while breastfeeding having a protective effect. 
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Enough power was obtained to validate 7 out of 12 loci that have previously been found to be 

associated with lobular breast cancer on the same subset of our data set that has been used to 

investigate the effect of environmental risk factors. Using the seven SNPs that reached the 

corrected significance threshold, we investigated potential GxE interactions using genotypes 

from those seven SNPs and use of HRT in postmenopausal women. 

Previous studies have highlighted the potential interaction between HRT and SNPs located in 

the FGFR2 locus. We have also shown evidence of an interaction on this locus. The log-

additive increased risk that is conferred by the risk allele is observed in the group of individuals 

who have not used HRT. This finding suggests that use of HRT can mask the effect of a SNP 

since individuals using HRT are at equally higher risk than no HRT subjects irrespective of their 

genotype. 

In addition to that, a common polymorphism in the ZMIZ1 locus shows a possible interaction 

with use of HRT. As shown in Figure 3.9, the effect of the SNP and HRT is higher in HRT users 

that are carriers of two risk alleles. The significance of the recessive model (where 

heterozygotes and homozygotes of the common allele are treated as one group) is higher with 

P=0.0065 compared to the additive model where the number of alleles per individual is counted 

and taken into consideration. Larger sample size would be required to confirm this finding. 

Finally, the last possible interaction is found with rs865686 (9q31.2) where we observe the 

same effect with users of HRT and carriers of two risk alleles. 

With the sample size of the current study, and an interaction that is not expected to be very 

strong in terms of increased risk, it is evident that we are underpowered and more samples 

would be required in order to dissect and accurately estimate possible interactions between the 

use of HRT and SNPs that predispose to ILC. 

In conclusion, we have identified a novel lobular-specific predisposition SNP at 7q34 close to 

JHDM1D that does not appear to be associated with IDC. Most known breast cancer 

predisposition SNPs also predispose to ILC, with some differential effects between ILC and 

IDC. In addition, many SNPs predisposing to invasive cancer are also likely to increase the risk 

for LCIS. We have also shown for the first time that common breast cancer polymorphisms 

predispose to LCIS. Furthermore, we have shown that many of the ER positive breast cancer 

predisposition loci also predispose to ILC, although there is some heterogeneity between ER 

positive lobular and ER positive IDC tumours. Overall, our analyses show that genetic 

predisposition to IDC and ILC overlap to a large extent, but there are important differences that 
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are likely to prove insightful. No GxE interaction for postmenopausal women was deemed 

significantly associated with ILC after correcting for multiple testing but we have shown 

suggestive evidence of three possible interactions that qualify for further investigation. 
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Chapter 4 Rare variants in known predisposition genes 

contributing to DCIS development 

4.1 Introduction 

Most non-genetic risk factors for breast cancer have similar associations with DCIS and IDC, 

supporting the notion that DCIS is a precursor of invasive cancer [235, 237]. There is also 

evidence from epidemiological studies that there is an inherited predisposition to DCIS. Claus et 

al showed that women with DCIS are more likely to have a first-degree relative with breast 

cancer than controls with an odds ratio of 1.6 (95% CI 1.3-2.1). They have also demonstrated 

that DCIS cases are 2.4-times (non -significant) (95%CI=0.8-7.2) more likely to have an affected 

mother and sister with breast cancer than controls [253]. Furthermore, there is evidence from a 

study of almost 40,000 women that the familial relative risk of DCIS is greater than that of 

invasive breast cancer. For women with a family history of breast cancer aged 30-49 the OR for 

developing DCIS was 2.4 (95%CI=1.1, 4.9) compared to an OR of 1.7 (95%CI=0.9, 3.4) for 

invasive cancer. For women aged 50 and above the risks were slightly reduced, but still higher 

for DCIS (OR=2.2, 95%CI=1.0, 4.2) than invasive disease (OR=1.5, 95%CI=1.0, 2.2) [254]. 

However, this was not confirmed in the UK Million Women Study, which showed a similar 

association with family history for DCIS and IDC [237]. 

A part of this inherited predisposition is explained by BRCA1 and BRCA2 mutations, as 

mutations in these genes are found in a similar proportion of DCIS and invasive breast cancer 

cases [255]. In a study that screened a total of 7,295 with in situ breast cancer (with or without 

presence of personal or family history of invasive breast cancer) they estimated the prevalence 

of BRCA1 and BRCA2 mutations to be 5.9%. In a more restricted analysis investigating 

individuals with no personal or family history of invasive breast or ovarian cancer, they identified 

17 carriers out of 738 (Prevalence =2.3%) [256]. This is in agreement with earlier findings from 

Claus et al. where they found the prevalence of BRCA1/2 mutations to be 3.2% amongst 369 

DCIS cases that they screened [255]. 

In order to assess the prevalence of germline mutations in known breast cancer predisposition 

genes including BRCA1 and BRCA2 in the context of an unselected population of DCIS, we 

screened individuals that were diagnosed with the disease before the age of 50. 
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4.2 Rare variants in known breast cancer predisposition genes 

4.2.1 Methods 

Samples were selected from the ICICLE study (Investigation of the genetiCs of In situ 

Carcinoma of the ductaL subtypE), and after a review of the pathology reports, we identified 680 

individuals that were eligible for this project. All individuals were under 50 years of age when 

diagnosed and had no invasive disease. The final data set includes 657 individuals with DCIS 

diagnosed ≤ 50. A total of 124 cases were diagnosed ≤ 40. Along with the DCIS cases, we 

additionally screened 1,611 healthy European females that were not diagnosed with any form of 

breast cancer by at least the age of 40. The age for controls ranged between 40 and 92, with a 

median of 52. The numbers of individuals included in the final analysis stratified by ER status 

and nuclear grade are indicated in Table 4.1. For 94 cases, immunohistochemistry was 

performed by our research group members to assess the ER status of the lesion since the 

pathology reports were incomplete. ER staining was reviewed by our study pathologist. 

Table 4.1: ER status and nuclear grade information for DCIS cases included in the final analysis. 

 ER positive ER Negative Missing All 

High grade 229 74 94 397 
Intermediate grade 118 3 46 167 

Low grade 30 1 23 54 
Missing 2 0 37 39 

All 379 78 200 657 
 

In our cohort of 657 unselected DCIS cases, we have information on family history for 633 of 

them. A total of 168 (25.6%) cases had a first degree relative with breast cancer. From those 

168 cases, 31 (5%) were diagnosed ≤ 40. 465 (70.7%) cases had no affected first degree 

relatives, and the remaining 24 (3.7%) cases had missing data. 

In order to assess the prevalence of rare variants in known breast cancer predisposition genes 

we utilised a targeted sequencing method. For this project we interrogated the presence of rare 

variants in 6 known breast cancer predisposition genes in the context of early onset DCIS. Apart 

from BRCA1 and BRCA2, we screened TP53, CDH1, CHEK2, and PALB2. 

The Fluidigm Access Array technology has been used to amplify germline DNA from those 

individuals. Samples were pooled in a 960 multiplexing format and sequenced on a HiSeq2500 

lane. The cluster density for the lane that included all DCIS samples was 713 +/- 39 K/mm2. 
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The analysis pipeline is described in section 7.4.3. A total of 230 variant sites passed the QC 

metrics, including a MAF<1% cut-off. Out of those variants 177 were missense, 2 were non-

frameshift deletions, and the remaining 51 were protein truncating variants. 

Variants were classified as benign, VUS, and pathogenic according to ClinVar. For BRCA1 and 

BRCA2 in particular, a more accurate database (BIC) was used that incorporates findings from 

several validated studies. Variants that are reported in ClinVar as pathogenic or likely 

pathogenic were merged in the pathogenic category along with protein truncating variants that 

were not present in ClinVar. Variants that were previously classified as benign or likely benign 

were merged into the benign category for the purpose of our analyses. The remaining variants 

were considered as VUS. 

There is no enrichment with regards to benign variants compared to controls in any of the genes 

or overall. This observation also serves as an internal quality control and as a metric of calling 

variants across cases and controls with no bias. The prevalence of benign variants in the six 

genes under investigation is 17.5% across both DCIS case and control populations. 

Table 4.2 shows the prevalence of pathogenic mutations in our panel of six genes stratified by 

family history of breast cancer and age of diagnosis. Family history is defined as having at least 

one first degree relative with breast cancer. 

With regards to pathogenic variants, there is an overall significant enrichment in DCIS cases 

compared to controls for all DCIS cases ≤ 50 as well as DCIS cases diagnosed ≤ 40 (Fisher’s 

exact test, section 7.3.2. The prevalence of pathogenic variants in DCIS cases diagnosed ≤ 50 

is 5% and reaches almost 10% for cases diagnosed ≤ 40. The distributions of mutations across 

all six genes under investigation for cases diagnosed ≤ 50 and ≤ 40 are indicated in Figure 4.1. 

Table 4.2: Prevalence of germline mutations identified in our cohort of DCIS stratified by family history and 
age of onset. FH corresponds to having a first degree relative with breast cancer. OR and P are generated 
using a Fishers exact test comparing the cases to our set of 1,611 controls. Cases with missing 
information on family history were excluded from family history related analyses. 

Group Carriers Frequency OR 95% CI P 

Controls 10 0.6% Ref Ref Ref 
Age ≤ 40 +FH 6 19.4% 38.42 13, 113.90 1.9x10-7 

Age ≤ 40 -FH 5 5.9% 10.13 3.38, 30.35 0.00054 
Age ≤ 40 all 12 9.7% 17.15 7.25, 40.57 3.7x10-9 

Age ≤ 50 +FH 17 10.1% 18.02 8.11, 40.06 6.4x10-12 

Age ≤ 50 -FH 15 2.7% 5.34 2.38, 11.96 5x10-5 

Age ≤ 50 all 33 5% 8.46 4.14, 17.28 7.9x10-11 

 
The presence of family history is more profound amongst carriers when compared to non-

carriers. As indicated in Table 4.3, significant differences are observed for cases diagnosed 

before 50 and the same trend is observed for cases diagnosed before 40 even though it does 
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not reach significance, probably due to small sample size. Carriers are more likely to have a first 

degree relative with breast cancer compared to non-carriers. 

Table 4.3: Presence of first degree relative with breast cancer is more frequent amongst germline mutation 
carriers compared to non-carrier DCIS cases. 

Group 

N (%) cases 
with 1st degree 

relative 
affected 

N (%) carriers 
without 1st 

degree relative 
affected 

OR 95% CI P 

Age ≤ 40 6 (19.4%) 5 (5.9%) 3.79 
1.06, 
13.49 

0.06 

Age ≤ 50 17 (10.1%) 15 (3.2%) 3.38 1.65, 6.93 0.0014 
 

The same analysis was conducted for the two main breast cancer predisposition genes and the 

results are shown in Table 4.4. 

Table 4.4: Prevalence of pathogenic variants in BRCA1 and BRCA2 amongst different groups of DCIS 

stratified by age of diagnosis and having a first degree relative with breast cancer. 

Groups Gene 
N 

Carriers 
Frequency OR 95% CI P 

All DCIS cases 
diagnosed ≤ 50 all 

(N=657) 

BRCA1 4 0.61% inf - 0.007 
BRCA2 18 2.74% 15.10 4.43, 51.43 9.1x10-8 

Combined 21 3.2% 17.70 5.26, 59.54 3.1x10-9 
Age ≤ 50 with 

affected 1st degree 
relative (N=168) 

BRCA1 3 1.79% inf - 0.00083 
BRCA2 9 5.36% 30.34 8.13, 113.21 8.4x10-8 

Combined 11 6.55% 37.55 10.37, 136.03 1.1x10-9 
Age ≤ 50 with no 

affected 1st degree 
relative (N=465) 

BRCA1 1 0.22% inf - 0.22 
BRCA2 8 1.72% 9.38 2.48, 35.51 0.00052 

Combined 9 1.94% 10.58 2.85, 39.23 0.00015 
All DCIS cases 

diagnosed ≤ 40 
(N=124) 

BRCA1 2 1.61% inf - 0.0051 
BRCA2 8 6.45% 36.97 9.68, 141.21 7.5x10-8 

Combined 9 7.26% 41.95 11.20, 157.07 6.7x10-9 
Age ≤ 40 with 

affected 1st degree 
relative FH (N=31) 

BRCA1 1 3.23% inf - 0.019 
BRCA2 4 12.90% 79.41 16.95, 372.09 3.5x10-6 

Combined 5 12.90% 103.08 23.40, 454.13 9.2x10-8 

Age ≤ 40 with no 
affected 1st degree 

relative (N=84) 

BRCA1 1 1.19% inf - 0.049 
BRCA2 3 3.57% 19.85 3.95, 99.90 0.0021 

Combined 4 4.76% 26.80 5.90, 121.77 0.00018 

Controls (N=1,611) 
BRCA1 0 0% Ref Ref Ref 
BRCA2 3 0.18% Ref Ref Ref 

Combined 3 0.18% Ref Ref Ref 
 

Almost 20% of individuals under the age of 40 with a first degree relative with breast cancer are 

carriers of a pathogenic mutation in one of the 6 genes that were screened in our study. The 

prevalence of mutations was 10.1% for individuals with an affected first degree relative and their 

age of diagnosis ≤ 50. 
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Figure 4.1: Distribution on pathogenic mutations in screened genes across individuals diagnosed with 
DCIS ≤ 50 years (left), and ≤ 40 years (right). 

4.2.2 Prevalence of BRCA1 rare variants 

A total of 4 BRCA1 truncating variants were identified in cases with DCIS. All of those variants 

have been previously assessed as pathogenic. These variants are indicated in Figure 4.2 and 

Table 4.5. The frequency of BRCA1 pathogenic variants is 0.6% in our cohort, Table 4.6. 

 

Figure 4.2: Distribution of BRCA1 protein truncating variants identified in 4 individuals with DCIS 
diagnosed ≤ 50. 

Table 4.5: Details of BRCA1 protein truncating variants identified in DCIS cases. 

Sample 
ID 

Nt change 
AA change Class Age Family history Grade 

ER 
status 

IT00761 c.C4327T p.R1443X Stop-gain 49 Sister, breast, 48 High Negative 
IT00811 c.3750delG p.E1250fs Frameshift 38 Mother, cervical, 37 High Positive 

IT01459 c.117_118del p.C39fs Frameshift 49 
Mother-aunt-sister, 

breast-breast-
ovarian, 38-40-32 

Low Negative 

IT02701 
c.4158_4162

del 
p.S1386fs Frameshift 40 

Sister-sister, breast-
breast, 30s-30s 

High Negative 

 

One individual diagnosed with high grade ER positive DCIS at the age of 38, was a carrier of a 

pathogenic variant in both BRCA1 and BRCA2. Both variants are frameshift deletions; BRCA1: 

c.3750delG, p.E1250fs, and BRCA2: c.4445delA, p.E1482fs. This was the only carrier with ER 

positive DCIS whereas the remaining three had ER negative DCIS. 

Table 4.6: Rare variants identified in controls and DCIS cases at the BRCA1 gene. 

Class 
N (%) 

Controls 
N (%) DCIS OR 95% CI P 

Benign 44 (2.73) 14 (2.13) 0.76 0.41, 1.39 0.46 
VUS 40 (2.48) 18 (2.74) 1.11 0.63, 1.94 0.77 

Pathogenic 0 (0) 4 (0.61) inf - 0.007 
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4.2.3 Prevalence of BRCA2 rare variants 

A total of 18 protein truncating variants were identified in our cohort of 657 DCIS cases, Figure 

4.3. The prevalence of BRCA2 pathogenic variants in our unselected population of DCIS cases 

diagnosed before the age of 50 is 2.7%, Table 4.7. All of these variants have been previously 

described as pathogenic. Some key characteristics of the carriers are indicated in Table 4.8. It 

is of note that there was no ER negative DCIS amongst the DCIS BRCA2 carriers. 

Table 4.7: Rare variants identified in controls and DCIS cases at the BRCA2 gene. 

Class 
N (%) 

Controls 
N (%) DCIS OR 

95% CI 
P 

VUS 177 (11) 77 (11.72) 1.08 0.81, 1.43 0.61 
Benign 47 (2.92) 29 (4.41) 1.54 0.96, 2.46 0.093 

Pathogenic 3 (0.19) 18 (2.74) 15.1 4.43, 51.4 9x10-8 
 

 

Figure 4.3: Distribution of BRCA2 protein truncating variants identified in individuals with DCIS diagnosed 
≤ 50. 

Table 4.8: Details of BRCA2 protein truncating variants identified in DCIS cases and 3 controls. 

Sample 
ID 

Nt change 
AA 

change 
Class Status Age Grade 

ER 
status 

CG00386 c.5946delT p.S1982fs Frameshift Control 41 - - 

CG00552 c.5098delG p.G1700fs Frameshift Control 41 - - 

CG01138 c.C2612A p.S871X Stop-gain Control 43 - - 

IT02381 c.631+2T>G  Splicing DCIS 46 Low Positive 

IT01335 c.750_753del p.V250fs Frameshift DCIS 48 High Positive 

IT03243 c.750_753del p.V250fs Frameshift DCIS 39 High Missing 

IT03343 c.1929delG p.V643fs Frameshift DCIS 41 High Missing 

IT01733 c.C3785G p.S1262X Stop-gain DCIS 37 Intermediate Positive 

IT00811 c.4445delA p.E1482fs Frameshift DCIS 38 High Positive 

IT01134 c.4473_4476del p.L1491fs Frameshift DCIS 44 Intermediate Positive 

IT00953 c.5345_5346del p.Q1782fs Frameshift DCIS 41 High Missing 

IT02863 c.C5682G p.Y1894X Stop-gain DCIS 30 High Positive 

IT02864 c.5754dupT p.H1918fs Frameshift DCIS 47 Intermediate Missing 

IT02922 c.T6206G p.L2069X Stop-gain DCIS 47 Intermediate Missing 

150452 c.6275_6276del p.L2092fs Frameshift DCIS 38 Missing Missing 

IT00562 c.6482_6485del p.D2161fs Frameshift DCIS 47 High Positive 

IT01747 c.7977-1G>C 
 

Splicing DCIS 34 Intermediate Positive 

IT02197 c.8575delC p.Q2859fs Frameshift DCIS 44 Intermediate Positive 

IT02811 c.8575delC p.Q2859fs Frameshift DCIS 40 High Positive 

IT00033 c.C9382T p.R3128X Stop-gain DCIS 42 High Positive 

IT00099 c.C9382T p.R3128X Stop-gain DCIS 34 High Positive 
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4.2.4 No protein truncating variants identified in the CDH1 gene 

CDH1 was selected for its prior association with the lobular histology and our results validate 

the previous notion that it is a lobular specific locus. No protein truncating variant was identified 

in individuals with DCIS, Table 4.9. Additionally there was no enrichment of missense variants 

in a case control manner CAFDCIS=1.3% and CAFControls=1.5%, P=0.66. The coverage of exon 1 

and exon 12 was suboptimal, but this it is not expected to dramatically change the analysis in 

terms of identifying pathogenic variants. 

Table 4.9: Rare variants identified in controls and DCIS cases at the CDH1 gene. 

Class N (%) Controls N (%) DCIS OR 95% CI P 

Benign 29 (1.8) 11 (1.67) 0.93 0.46, 1.87 0.99 
VUS 10 (0.62) 7 (1.07) 1.72 0.65, 4.55 0.29 

Pathogenic 0 (0) 0 (0) nan nan nan 
 

4.2.5 Three pathogenic TP53 variants identified in DCIS cases 

Another gene with highly penetrant variants that has been linked to breast cancer is TP53. 

However, germline mutations in that gene are rare since they usually exist in families with Li-

Fraumeni syndrome. Two variants that have been previously found to be pathogenic were 

identified (c.C916T: p.R306X: rs121913344, and c.G542A: p.R181H: rs397514495). A further 

protein truncating variant was also identified and is very likely to be causal. It has not been 

described before as a germline variant but it has been found as a somatic alteration in a colon 

carcinoma specimen [257], Table 4.10, Figure 4.4. The prevalence of TP53 germline mutations 

in our cohort is approximately 0.5%, Table 4.11. 

Table 4.10: Details of three TP53 variants that have been previously found to be pathogenic and were 

identified in three individuals with DCIS. 

Sample 
ID 

Nt 
change 

AA change Class Age 

Family 
history 

(relative, 
type, age) 

Grade ER status 

IT03363 c.C916T p.R306X Stop-gain 40 
Father 

unknown 
50 

High Negative 

IT01091 c.G542A p.R181H 
Non-

synonymous 
45 

Grandmother-
cousin, 

breast-breast,  
60-60 

Intermediate Positive 

IT00768 c.G272A p.W91X Stop-gain 35 
Mother, 

breast, 39 
High Positive/Negative 
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Table 4.11: Rare variants identified in controls and DCIS cases at the TP53 gene. 

Class 
N (%) 

Controls 
N (%) DCIS OR 

95% CI 
P 

Benign 2 (0.12) 2 (0.3) 2.46 0.35, 17.48 0.33 
VUS 5 (0.31) 2 (0.3) 0.98 0.19, 5.07 0.99 

Pathogenic 0 (0) 3 (0.46) inf - 0.024 
 

 

Figure 4.4: Distribution of TP53 protein truncating (black lollipop) and one non-synonymous (green lollipop) 
variant identified in 3 individuals with DCIS diagnosed ≤ 50. 

4.2.6 CHEK2 

Three protein truncating variants were identified amongst the 657 DCIS cases, Figure 4.5. 

These are p.L200fs, p.D134fs, p.E236fs and the age of diagnosis of the carriers were 49, 42, 

and 41 respectively, Table 4.12. The case control comparison in the context of pathogenic 

variants includes all variants that have been reported as pathogenic in ClinVar, and therefore 

includes two non-synonymous variants that confer moderate risk towards breast cancer and are 

present in 5 controls. However, due to the fact that the penetrance of CHEK2 variants varies, no 

conclusions can be drawn for its contribution towards DCIS. An additional analysis was 

performed, including only frameshift mutations which are very likely to disrupt the genes 

function, Table 4.13.  

Table 4.12: Details of CHEK2 variants that have been previously found to be pathogenic identified in 3 
DCIS cases and 6 controls. 

Sample 
ID 

Nt change AA change Class Status Age Grade 
ER 

status 

CG00303 c.T470C p.I157T 
Non-

synonymous 
Control 47 - - 

CG00741 c.T470C p.I157T 
Non-

synonymous 
Control 60 - - 

CG01482 c.T470C p.I157T 
Non-

synonymous 
Control 40 - - 

CG00400 c.C1196T p.S399F 
Non-

synonymous 
Control 75 - - 

CG00417 c.C1196T p.S399F 
Non-

synonymous 
Control 41 - - 

CG01651 c.1375-2A>G 
 

Splicing Control 48 - - 
IT01888 c.1176delT p.L392fs Frameshift DCIS 49 High Positive 
IT01444 c.402_403del p.D134fs Frameshift DCIS 42 High Positive 
IT01057 c.1281dupA p.E428fs Frameshift DCIS 41 High Negative 
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Table 4.13: Rare variants identified in controls and DCIS cases at the CHEK2 gene. 

Class N (%) Controls N (%) DCIS OR 95% CI P 

Benign 1 (0.06) 0 (0) 0 - 0.99 
VUS 18 (1.12) 16 (2.44) 2.21 1.12, 4.36 0.034 

Pathogenic 6 (0.37) 3 (0.46) 1.23 0.31, 4.92 0.72 
Frameshift indels 0 (0) 3 (0.46) inf - 0.024 
 

 

Figure 4.5: Distribution of the three protein truncating variants identified in DCIS cases across the CHEK2 
gene. 

4.2.7 PALB2 

A significant enrichment of PALB2 protein truncating and highly likely pathogenic variants has 

been observed in our cohort, Table 4.14. A total of 6 protein truncating variants have been 

identified in 6 individuals with DCIS with their age of diagnosis ranging from 39 to 49. The 

presence of PALB2 variants at this frequency in DCIS is a novel finding that could have clinical 

implications. A total of six protein truncating variants were identified in PALB2, Figure 4.6. 

Variant p.W1038X was identified in two individuals with age of diagnosis at 43 and 49 

respectively, Table 4.15. This variant was initially reported by Rahman et al. when PALB2 was 

identified as a breast cancer predisposition gene [129]. A second variant that was initially 

reported at the same study was identified in an additional individual from our study. Case 

IT03307 is a carrier of a stop-gain variant, p.Y1183X and was diagnosed with DCIS at the age 

of 46. Another protein truncating variant, p.F776fs was present in a case diagnosed with DCIS 

at the age of 39. This individual had both her mother and her grandmother affected with breast 

cancer at the age of 59 and 65 respectively. The same variant has been recently described in a 

study investigating the prevalence of PALB2 germline mutations in familial cases of breast 

cancer [258]. They identified one carrier (diagnosed with breast cancer at 39) who had breast 

cancer, with four maternal and one paternal family member also having breast cancer. Another 

variant identified in our study, p.R170fs in a DCIS case diagnosed at 44, has also been 

previously described as a mutation in a cohort of breast and ovarian cancer in the Polish 

population [259]. Finally, a protein truncating variant, that to our knowledge has not been 
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previously described, was identified in an individual diagnosed with DCIS at the age of 41. This 

case had her mother and her grandmother (maternal side) affected with breast cancer at the 

age of 52 and 54 respectively. The variant is a frameshift deletion in exon 4 

(c.833delT:p.L278fs). 

 

Figure 4.6: Distribution of PALB2 protein truncating variants identified in 6 individuals with DCIS diagnosed 
≤ 50. 

Table 4.14: Rare variants identified in controls and DCIS cases at the PALB2 gene. 

Class N (%) Controls N (%) DCIS OR 95% CI P 

Benign 30 (1.8) 11 (1.6) 0.9 0.45, 1.80 0.86 
VUS 37 (2.9) 6 (1.1) 0.39 0.16, 0.93 0.027 

Pathogenic 1 (0.06) 6 (1.1) 14.84 1.78, 123.5 0.0031 
 

Table 4.15: Details of PALB2 protein truncating variants identified in DCIS cases and 1 control. 

Sample 
ID 

Nt change AA change Class Status Age Grade 
ER 

status 

CG01848 c.2052delC p.P684fs Frameshift Control 41 - - 
IT03307 c.C3549G p.Y1183X Stop-gain DCIS 46 High Positive 
IT00229 c.G3113A p.W1038X Stop-gain DCIS 43 Intermediate Positive 
IT02690 c.G3113A p.W1038X Stop-gain DCIS 49 High Positive 
IT03010 c.833delT p.L278fs Frameshift DCIS 41 High Missing 
IT01887 c.2325dupA p.F776fs Frameshift DCIS 39 High Positive 
IT03240 c.509_510del p.R170fs Frameshift DCIS 44 High Positive 

  

4.2.8 In situ comparison of mutations in known breast cancer predisposition genes 

In order to investigate the differential association between two different histological subtypes of 

in situ breast carcinoma, we conducted a case only analysis including 657 DCIS cases and 163 

LCIS cases. All individuals included in the analysis were diagnosed ≤ 50 and had pure in situ 

lesions with no presence of invasive disease. 

A total of 2 LCIS cases were carriers leading to a prevalence of 1.2% for LCIS. On the contrary, 

33 DCIS carriers lead to a prevalence of 5% for DCIS. This analysis shows that rare pathogenic 

variants in known breast cancer predisposition genes are more common amongst DCIS cases 

compared its lobular counterpart, LCIS, (OR=4.26, 95% CI 1.01-17.93, P=0.03). 
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4.3 Discussion 

Previous literature in the prevalence of pathogenic germline mutations in individuals with DCIS 

is limited. A study that screened BRCA1 and BRCA2 in individuals with in situ disease identified 

that the prevalence of mutations varies between 2.3%, for cases with no family history of breast 

or ovarian cancer and 7.7% for cases with family history of both breast and ovarian cancer 

[255]. Our study confirms the previous literature having identified similar proportions of germline 

mutations in our study of DCIS. 

Initially Claus et al. reported the combined prevalence of 3.3% for pathogenic variants in 

BRCA1 and BRCA2 in a population study of DCIS. Our findings come in concordance with 

these data. In our cohort of 657 cases of DCIS diagnosed ≤ 50 we identified 22 pathogenic 

variants in BRCA1 and BRCA2 in 21 individuals which leads to a carrier frequency of 3.2%. 

There was no large study investigating the prevalence of mutations of other breast cancer 

predisposition genes such as CDH1, TP53, PALB2, and CHEK2. Even though the prevalence of 

mutations in these genes is unknown for DCIS, they have been described before. 

As expected, CDH1 does not contribute to DCIS pathogenesis. Our study confirmed the 

previous notion that CDH1 is a predisposition gene exclusively to the lobular histological 

subtype of breast cancer. 

A study interrogating morphological and molecular features of 39 TP53 germline mutation 

carriers identified that 11 of them were DCIS [260]. Another study with the aim of characterising 

the features of breast cancers arising from germline TP53 mutations, identified 7 DCIS cases 

out of the 29 of their whole sample set [261]. However, these two studies were focused on 

germline mutation carriers and cannot be compared to our study. In our study we can provide 

an estimate of the prevalence of TP53 mutations in an unselected cohort of DCIS. 

In a cohort investigating the prevalence of CHEK2 variants across different subtypes of breast 

cancer identified 13 protein truncating CHEK2 variants out of 203 DCIS cases screened. 

However, those cases had concurrent micro-invasion lesions which might represent a different 

histological population compared to our study [223]. 

A recent case study investigating the primary tumour of a 68 year old affected with bilateral 

ovarian cancer and grade 2 IDC identified a novel germline PALB2 mutation. Histological review 

of the breast lesion revealed presence of DCIS. The index case had a mother diagnosed with 

breast cancer at 42 and her sister diagnosed with DCIS at the age of 54. The PALB2 protein 
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truncating variant was also present in the sister [262]. Here we show strong evidence for 

involvement of PALB2 protein truncating variants in the development of DCIS with the 

prevalence of its pathogenic germline variants reaching 1% in our unselected population of 

DCIS. 

This is the first study that investigates the prevalence of rare variants in the context of young 

onset DCIS (diagnosed ≤ 50). Intersection with databases on known breast cancer 

predisposition variants showed that the vast majority of protein truncating variants identified in 

our study has been previously described as pathogenic. A major exception to this rule was a 

relatively common BRCA2 variant that leads to a stop codon in exon 27, c.A9976T:p.K3326X, 

rs11571833. This variant was present in 29 controls and 17 cases (MAFControls=0.8%, 

MAFDCIS=1.3%) and it has previously been described as benign due to the fact that it lies in the 

last exon of the gene and due to its high frequency in healthy individuals .This variant has been 

recently found to be a low penetrance variant in a cohort of familial breast cancers [263]. 

To conclude, we have identified enrichment in pathogenic variants in BRCA1, BRCA2, TP53, 

and PALB2. CHEK2 requires a larger sample size to be able to conclude on the effect size and 

its importance towards DCIS development. Our data shows that if we focus on early onset 

individuals with one first degree relative with breast cancer we can enrich for pathogenic 

variants and yield a positive result for more than 20% of the cases. This finding has implications 

for clinical practise. Early onset DCIS cases with other affected family members could be 

offered genetic testing and intensive surveillance if considered necessary. 

We have also shown that the patterns and prevalence of pathogenic mutations differ between 

the two different histological subtypes of in situ breast lesions. Germline mutations were found 

to be more common in DCIS compared to LCIS even though previous literature suggest that 

there is  a stronger familial component or risk in LCIS compared to DCIS. Our findings do not 

support this notion but we have a limitation of a relatively small sample size. Additionally, the 

familial risk conferred in LCIS might be attributed to other genetic factors that are yet to be 

explored. Therefore, we cannot draw any definite conclusions towards the familiality of DCIS 

and LCIS even though the prevalence of pathogenic germline mutations is higher in the DCIS 

study. 

  



127 
 

Chapter 5 Common variation predisposing to DCIS 

5.1 Introduction 

Several lines of evidence from epidemiological studies point towards an inherited predisposition 

to DCIS. For low risk common breast cancer predisposition alleles most of the initial breast 

cancer association studies were not powered to identify associations with DCIS, so it is not 

clear whether all the low-risk susceptibility loci that have been identified are associated with 

DCIS and what the strength of any associations are. There are no large scale genetic/genomic 

studies to date, that focus on the inherited component of DCIS. However, the latest BCAC study 

which identified 41 loci associated with breast cancer, also looked at 2355 DCIS cases, but no 

novel findings that are DCIS specific were reported [154]. Nevertheless, the DCIS samples 

show comparable ORs to the invasive samples for the loci that were identified in this study 

[154]. A recent study investigating the association between 39 of the known breast cancer 

predisposition loci, identified rs1011970 (9p21.3, CDKN2BAS) to be more strongly associated 

with in situ breast cancer compared to invasive disease (P-HetBCIS/BC = 0.0065) [264]. This trend 

remained in a DCIS vs BC analysis (P-HetDCIS/BC = 0.021). 

It is now evident that some low-risk susceptibility loci are associated with different pathological 

subtypes of breast cancer and support the hypothesis that breast tumour subtypes arise 

through distinct molecular pathways [157, 173, 265]. In order to identify further low-risk 

susceptibility loci, it will be necessary to look at specific morphological subtypes including DCIS 

as well as the cytonuclear grade and ER status of the disease. In this study we analysed 3,078 

cases of pure DCIS collected through the ICICLE study and performed a meta-analysis with 

2,352 in situ cases collected through the BCAC. Our aims were to assess whether any of the 

known low risk breast susceptibility alleles have different associations for DCIS and IDC, and to 

identify if there are any DCIS-specific low risk alleles. 

It is evident that DCIS and IDC represent various phases of the same disease process, 

however, in this study we intend to identify potential links and differences between these stages 

of the disease and pinpoint potential reasons as to why not all DCIS cases progress to invasive 

disease.  

It still remains unclear why not all DCIS progress to invasive lesions. In particular, there are 

concerns regarding over-diagnosis and over-treatment of DCIS through screening programmes 

[266]. Current methods for accurately predicting the behaviour of an individual DCIS lesion are 



128 
 

poor, with many researchers attempting to identify molecular biomarkers that can be used to 

distinguish between aggressive and non-aggressive DCIS with, little success to date. The 

rationale for our study was to determine whether a subgroup of non-aggressive DCIS could be 

identified by examining low-risk genetic susceptibility loci. 

In our study we examined the extent to which DCIS without associated invasive disease (5,067 

cases) and IDC (24,584 cases) share low-risk susceptibility loci and whether there were any 

differences in the strength of the associations. We conducted subgroup case only analyses 

including grade, ER, and age of diagnosis stratification. We also interrogated the differences 

and similarities between DCIS and LCIS. 

We also examined whether there are any putative novel loci associated with early stage breast 

cancer that would be easier to identify using a data set of DCIS rather than invasive breast 

cancer. 

5.2 Methods 

5.2.1 Clinical resource 

Cases derived from the ICICLE study, a UK case-only study of DCIS. A total of 3,078 cases 

were genotyped with the iCOGS platform and compared to 5,000 UK controls selected from four 

UK studies (BBCS -1,231 controls, SBCS - 704 controls, UKBGS - 370 controls, SEARCH -

2,695 controls) participating in BCAC and already typed on the iCOGS genotyping platform. 

Controls were randomly selected prior to analysis, and were excluded from case-control 

comparisons with BCAC cases from the originating study. After excluding individuals based on 

genotyping quality and non-European ancestry, data for the ICICLE study available for analyses 

included 2,715 DCIS cases and 4,813 controls. 

In a meta-analysis, the study was combined with samples from 29 studies with DCIS cases 

forming part of the BCAC included in the COGS Project [154]. 

BCAC studies recruited all types of breast cancer. Pathological information in BCAC was 

collected by the studies individually but combined and checked through standardized data 

control in a central database. A total of 2,352 cases with DCIS were identified by the central 

BCAC pathology database. Controls came from the 29 BCAC studies (37,654 in total). 

5.2.2 Genotyping and Analysis 

A detailed description of the methodology used is reported in sections 7.2 and 7.4. Genotypes 

were called using Illuminas proprietary GenCall algorithm and 10,000 SNPs were manually 
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inspected to verify the algorithm calling. Individuals were excluded if genotypically non-

European or not female, or had overall call rate <95% (248 cases).  SNPs with a Gen-Train 

score of < 0.4, call rate <95% (call rate <99% if MAF <0.1) and P-HWE<10-7 or evidence of poor 

clustering on inspection of cluster plots were excluded. All SNPs with MAF <0.01 were 

excluded. A cryptic relatedness analysis of the whole data set was performed using 46,789 

uncorrelated SNPs and led to the exclusion of 28 cases and 18 controls due to relatedness 

between the ICICLE and BCAC samples (PIHAT>0.1875). 

For ICICLE cases and controls, PCA was carried out on a subset of 46,789 uncorrelated SNPs 

and individuals or groups distinct from the main cluster (327 cases and 164 controls) were 

excluded using the first five PCs, Figure 5.1. Following removal of outliers, the PCA was 

repeated and the first five PCs were included as covariates in the analysis. 

 

Figure 5.1: Principal component analysis indicating the genetic ancestry of the samples compared to the 
three Hapmap2 populations. Individuals not clustering within the European population were removed from 
further analyses. 

The adequacy of the case-control matching was evaluated using quantile-quantile plots of test 

statistics and the inflation factor (λ) calculated using 37,289 uncorrelated SNPs that were not 

selected by BCAC and were not within one of the four common fine-mapping regions, to 

minimize selection for SNPs associated with breast cancer, Figure 5.2. As the majority of the 

SNPs on the iCOGS array are associated with breast, ovarian or prostate cancer, Figure 5.3, 
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the SNPs selected for this analysis were taken from the set of prostate cancer SNPs, with the 

assumption that these SNPs were more likely to be representative of common SNPs in terms of 

population structure in our study, Figure 5.2. The inflation factor was λ=1.06 using this subset of 

SNPs whereas it increased to λ=1.09 when included the whole SNP data set. 

 

Figure 5.2: QQ-plot using 37,289 SNPs that have been selected on the basis of association with prostate 
cancer and have no prior evidence of association with breast cancer (λ=1.065). 

 

Figure 5.3: QQ-plot showing all post-qc SNPs in iCOGS platform. Inflation is due to the enrichment on 
breast cancer predisposition loci on the iCOGS platform (λ=1.092). 

For each SNP, we estimated a per-allele OR and reported corresponding 95% confidence 

intervals by logistic regression, including the five PCs as covariates, using PLINK v1.07 

(http://pngu.mgh.harvard.edu/purcell/plink/). 

Genotyping and analysis of BCAC studies have been described in detail elsewhere [154]. In 

brief, data were analysed using the Genotype Library and Utilities (GLU) package to estimate 

per-allele ORs for each SNP using unconditional logistic regression. All analyses were 

performed in subjects of European ancestry (determined by PC analyses) and adjusted for 

study and seven PCs. 



131 
 

All the meta-analyses were conducted by collaborators from BCAC and the summary statistics 

were sent back to us for analysis. Case-control ORs for DCIS cases vs controls from BCAC and 

ICICLE were combined using inverse variance-weighted fixed-effects meta-analysis, as 

implemented in METAL [267]. This was done by collaborators from BCAC. Case-only analyses 

were also carried out to compare genotype frequencies for (i) ER positive vs ER negative DCIS, 

(ii) high grade DCIS vs low and intermediate grade DCIS, and (iii) DCIS vs IDC, and were used 

as a test for heterogeneity of ORs by tumor subtype. Only studies with data on both subtypes 

contributed to case-only analysis comparing these subtypes. Similar case-only analyses were 

performed for the IDC cases in these studies to assess whether any heterogeneity evident in 

DCIS also occurred in IDC. 

For the known breast cancer predisposition loci P<0.00066 was considered statistically 

significant (Bonferroni correction for multiple testing on 76 known loci). All of the known breast 

cancer susceptibility loci at the time of analysis were included in the iCOGS chip with the 

exception of rs2284378 (20q11) that was identified as an ER negative breast cancer 

predisposition SNP after the iCOGS chip was developed [168]. 

5.3 Known variants predisposing to DCIS 

Fifty-one of the 76 known common breast cancer susceptibility loci genotyped on the iCOGS 

array showed an association at P<0.05 with DCIS, with effect in the same direction as 

previously reported in IDC (Figure 5.4, Figure 5.5). Sixteen SNPs showed a significant 

association with DCIS at P<0.00066 with three reaching genome-wide significance (P<5x10-8), 

Table 5.1. The strongest associations were with loci in FGFR2 (rs2981579, OR=1.29, 

95%CI=1.24-1.35, P=9.0x10-30) and TOX3 (rs3803662, OR=1.15, 95%CI=1.1-1.21, P=1.7x10-8). 

For the majority of known loci (N=46) the risk allele for invasive breast cancer is the minor allele. 

For the ORs presented on the forest plot (Figure 5.5) the reference allele was set as the non-

risk allele in order to determine whether the association with DCIS was in the same direction as 

previously published for invasive breast cancer. Thus ORs for DCIS will be >1 if in the same 

direction as invasive disease and <1 if in the opposite direction, Appendix 5. 

Table 5.1: Three out of the 76 previously published loci are associated with DCIS at P<5x10-8. 

Chr SNP Locus MAF OR (95%CI) P 

10 rs2981579 FGFR2 0.4 1.29 (1.24-1.35) 1.16x10-29 

10 rs2981582 FGFR2 0.38 1.28 (1.22-1.34) 2.66x10-27 

16 rs3803662 TOX3 0.26 1.15 (1.1-1.21) 1.91x10-08 
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The case-only analysis (DCIS vs IDC) confirmed the shared genetic susceptibility between 

DCIS and IDC as none of the heterogeneity P values were significant after a Bonferroni 

adjustment for 76 SNPs. Five loci that show a P-Het<0.05 are indicated with red in Figure 5.4, 

Table 5.2. One of those 5 variants, rs4245739 (MDM4), with a MAF=0.26 shows a stronger 

association with DCIS OR=1.09 (95% CI 1.04, 1.14), P=0.00073  as opposed to IDC with 

OR=1.02 (95%CI 1.00, 1.05), P=0.087, without however reaching statistical significance after 

multiple testing, P-het=0.017. 

Table 5.2: Five loci showing a borderline differential association between DCIS and IDC. None of these 
loci reached a Bonferroni corrected P<0.00066. 

Chr SNP Locus RAF 
DCIS OR    
(95% CI) 

DCIS P IDC OR (95% CI) IDC P P-Het 

1 rs11249433 1p11.2 0.41 0.98 (0.94, 1.02) 0.36 1.08 (1.05, 1.11) 4.4x10-9 0.011 
1 rs4245739 MDM4 0.26 1.09 (1.04, 1.14) 0.00073 1.02 (1.00, 1.05) 0.086 0.017 
10 rs7072776 DNAJC1 0.28 1.00 (0.95, 1.05) 0.96 1.06 (1.03, 1.09) 3.5x10-5 0.036 
9 rs10759243 9q31.2 0.28 1.03 (0.98, 1.08) 0.23 1.06 (1.03, 1.09) 7.4x10-5 0.041 
3 rs12493607 TGFBR2 0.34 0.99 (0.95, 1.04) 0.80 1.07 (1.04, 1.09) 1.4x10-6 0.044 

 

 

Figure 5.4: Effect size in form of OR of known breast cancer predisposition loci for DCIS (blue) and IDC 
(yellow). Highlighted in red are the five loci that show a borderline differential association between the two 
groups. 
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Figure 5.5: Forest plot showing ORs and 95% CI for DCIS on 76 known breast cancer predisposition 
SNPs. 

5.4 Novel variants predisposing to DCIS 

Novel SNPs showing the strongest evidence for association with DCIS (P<6x10-6) in the meta-

analysis (after excluding previously reported loci) were genotyped in a Phase II analysis at LGC 

Genomics. The Phase II samples consisted of 653 DCIS cases from the ICICLE and 

Breakthrough Generation Studies and 1,882 controls from the ICICLE study not previously 

genotyped on the iCOGS chip. All individuals included in the analysis were of European 

ancestry (self-reported).  
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All SNPs reaching genome-wide significance (P<5x10-8) in the meta-analysis were correlated 

with one of the known breast cancer predisposition loci. In particular 5 previously published 

regions reached genome-wide significance (2 independent FGFR2 loci, the MAP3K1 locus, the 

NEK10 locus, and the TOX3 locus). There were three SNPs that were not correlated with 

known loci at P<6x10-6, Figure 5.6, all with very little evidence of an association with IDC, Table 

5.3. 

Table 5.3: Three loci showing a suggestive association with DCIS. 

SNP rs12631593 rs13236351 rs73179023 
Chromosome 3 7 22 

Position 60701884 97772513 43424477 
Nearest genes FHIT LMTK2 PACSIN2:TTLL1 

MAF 0.11 0.032 0.13 

ICICLE DCIS phase I 
OR (95% CI) 1.15 (1.04, 1.28) 1.31 (1.10, 1.56) 0.83 (0.75, 0.91) 

P 0.0088 0.0029 0.00020 
BCAC DCIS 

OR (95% CI) 1.25 (1.14, 1.36) 1.3 (1.12, 1.51) 0.86 (0.79, 0.94) 
P 1.0x10-6 0.00060 0.0012 

Meta-analysis phase I 
OR (95% CI) 1.21 (1.13, 1.29) 1.3 (1.16, 1.46) 0.85 (0.79, 0.90) 

P 5.5x10-8 5.7x10-6 1.1x10-6 
Phase II DCIS 

OR (95% CI) 0.93 (0.76, 1.14) 0.91 (0.63, 1.31) 0.95 (0.78, 1.15) 
P 0.49 0.61 0.57 

Meta-analysis phase II 
OR (95% CI) 1.18 (1.10, 1.25) 1.26 (1.13, 1.41) 0.86 (0.80, 0.91) 

P 7.8x10-7 2.9x10-5 1.7x10-6 
BCAC IDC 

OR (95% CI) 1.01 (0.97, 1.05) 1.05 (0.99, 1.13) 0.97 (0.93, 1.00) 
P 0.54 0.13 0.060 

DCIS vs IDC P-Het 0.0048 0.17 0.0099 
 

 

Figure 5.6: Manhattan plot for DCIS vs controls analysis. Three suggestive novel regions are highlighted in 
green. 

Of these novel SNPs, rs12631593, 3p14.2, (an intronic variant in FHIT, chr3: 60726844) 

showed the strongest association with DCIS (OR=1.21, 95%CI=1.13-1.29, P=5.5x10-8). This 
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SNP showed little association with IDC (OR=1.01, 95%CI=0.97-1.05, P=0.54) and this was 

supported by the case-only analysis (P-HetDCIS/IDC=0.0048). 

The second locus was on 22q13.2, rs73179023 (DCIS only: OR=0.85, 95%CI=0.79-0.90, 

P=1.11 x10-6; IDC only: OR=0.97, 95%CI=0.93-1.00, P=0.06, P-HetDCIS/IDC=0.0099). 

Finally, the third locus was on and 7q21.3, rs13236351 (DCIS only: OR=1.30, 95%CI=1.16-

1.46, P=5.71x10-6; IDC only: OR=1.05, 95%CI=0.99-1.13, P=0.13, P-HetDCIS/IDC=0.172). 

These SNPs were genotyped in a validation study including further 653 DCIS cases and 1,882 

controls, however for all three loci there was no evidence of an association (rs12631593, 

rs13236351, and rs73179023 P=0.49, 0.61, and 0.57 respectively) and none reached genome-

wide significance following a meta-analysis of all data (P=7.8x10-7, 2.9x10-5, and 1.7x10-6 

respectively), Table 5.3. The power we had to detect genome wide significance of variants with 

MAF=0.2 and an effect size of OR=1.2 was 96%. 

5.4.1 Imputation to fine map novel loci 

Using data from 2,715 DCIS cases from ICICLE along with 4,813 controls from BBCS, SBCS, 

UKBGS, and SEARCH through BCAC, and utilising 186,038 variants from iCOGS we imputed 

38,016,337 variants using impute2, section 7.4.2. The genotypes were imputed based on 

haplotype information based on the version 3 of 1000 genomes phase I data set. From those 

variants 11,301,527 were imputed with an info score >0.5. These variants were then filtered 

based on their P value and 105,231 variants had P<0.01. A total of 2,651 variants that were 

genotyped on iCOGS were on that list whereas the remaining were imputed with an info score 

>0.5. The three suggestive novel DCIS predisposition loci were interrogated in detail. The three 

regions of interest are plotted using LocusZoom, Figure 5.7, Figure 5.8, Figure 5.9 [268]. 

The region surrounding rs12631593 in chromosome 3 is not very well captured in iCOGS and 

there were only 17 SNPs genotyped in the region of 200KB, Figure 5.7. From the imputed 

SNPs, the one with the lowest P value was rs73836108, OR= 1.27 (95%CI 1.07, 1.51), 

P=0.00034, Table 5.4. 
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Figure 5.7: Fine-mapping of putative novel DCIS specific region on chromosome 3. Circles correspond to 
genotyped SNPs whereas squares correspond to imputed SNPs. The SNP showing the strongest 
association in the genotyping-based meta-analysis is highlighted in purple. 

In the region 100KB upstream, and downstream of rs13236351 in chromosome 7, there were 

138 genotyped variants and another 531 imputed with info score >0.5, Figure 5.8. The SNP with 

the lowest P value was rs12704976 as indicated in Table 5.4. 

 

Figure 5.8: Fine-mapping of putative novel DCIS specific region on chromosome 7. Circles correspond to 
genotyped SNPs whereas squares correspond to imputed SNPs. The SNP showing the strongest 
association in the genotyping-based meta-analysis is highlighted in purple. 
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Finally, a total of 637 variants were imputed with info score>0.5 in the region spanning 100 KB 

each side of rs73179023 in chromosome 22. The imputed SNP with the strongest association 

was rs9611991 which is an intronic variant on the TTLL1 gene (OR=0.83 95%CI 0.77, 0.89, 

P=2.67x10-7), Figure 5.9, Table 5.4. 

 

Figure 5.9: Fine-mapping of putative novel DCIS specific region on chromosome 22. Circles correspond to 
genotyped SNPs whereas squares correspond to imputed SNPs. The SNP showing the strongest 
association in the genotyping-based meta-analysis is highlighted in purple. 

Overall, using imputation method we identified a stronger association in all three regions under 

investigation, Table 5.4. However, this is a preliminary analysis, including only data from the 

ICICLE study. Since those three suggestive loci resulted from a meta-analysis including BCAC 

samples, it would be reasonable to conduct this meta-analysis using the imputed data and 

investigate whether any of the associated loci reaches genome wide significance. If there are 

any significant findings, they would need to be replicated in further studies. 

Table 5.4: Genotyped and imputed SNPs in the three putative novel DCIS predisposition loci. Imputed 
SNPs are highlighted in bold. Info score measures the quality of the imputation and r2 is a measure of LD 
between the genotyped and imputed SNPs at each locus. 

SNP Chr 

Distance 
from 

genotyped 
SNP 

r2 MAF 
Info 

score 
ICICLE OR P 

rs12631593 3 - 
 

0.11 - 1.15 (1.04, 1.28) 0.0088 

rs73836108 3 8,968 0.40 0.04 0.65 1.27 (1.07, 1.51) 0.00034 

rs13236351 7 - 
 

0.04 - 1.31 (1.10, 1.56) 0.0029 

rs12704976 7 71,466 0.41 0.07 0.95 1.28 (1.13, 1.46) 0.00021 

rs73179023 22 - 
 

0.13 - 0.83 (0.75, 0.91) 0.0002 

rs9611991 22 11,578 0.43 0.12 0.95 0.81 (0.73, 0.90) 4.3x10-5 
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5.5 Grade specific analysis 

Grade data were available for 95% of ICICLE DCIS cases; 1,635 (60%) were high cytonuclear 

grade and 943 (35%) were low/intermediate grade. The grade data on the BCAC DCIS were 

less complete with data only available on 35% of cases: 306 (13%) high grade and 522 (22%) 

low/intermediate grade cases, Table 5.5. A case-control analysis was performed on the 

low/intermediate and high grade subsets separately and a case-only analysis of 

low/intermediate grade vs high grade DCIS was performed in order to assess whether any of 

these loci are grade specific after a Bonferroni correction (P<0.00066). 

Table 5.5: DCIS cases from the ICICLE and BCAC studies stratified by grade. 

Grade 
N of ICICLE 

cases 
N of BCAC 

cases 

High 1635 306 
Intermediate 693 247 

Low 250 275 
Missing 137 1524 
Total 2715 2352 

 

Analysis of DCIS by grade revealed that although the majority of SNPs predispose to all grades 

of DCIS some are grade specific, Table 5.6. The two SNPs close to CCND1 showed a strong 

association with low/intermediate grade DCIS (rs75915166, OR=1.36, 95%CI=1.17-1.59, 

P=7.2x10-5; rs554219, OR=1.32, 95%CI=1.18-1.48, P=8.2x10-7) and no association with high 

grade DCIS. Case-only analysis confirmed that these loci were low/intermediate grade specific 

(rs75915166, P-Hetlow/highgrade=0.00014; rs554219, P-Hetlow/highgrade=0.00013) and this was 

independent of ER status (adjusted for ER status rs75915166, P=0.0050; rs554219, P=0.019). 

Table 5.6: Grade specific associations for two CCND1 variants reaching the Bonferroni corrected 
P<0.00066 and a further 3 variants reaching nominal significance of P<0.05. 

   
Low/intermediate grade High grade 

low/ 
inter vs 

high 
grade 

SNP Chr Locus OR (95% CI) P OR (95% CI) P P-Het 

rs554219 11 CCND1 1.32 (1.18, 1.48) 8.2x10-07 1.02 (0.91, 1.14) 0.75 0.00013 
rs75915166 11 CCND1 1.36 (1.17, 1.59) 7.2x10-05 0.92 (0.79, 1.08) 0.31 0.00014 
rs7072776 10 DNAJC1 1.09 (1.00, 1.18) 0.051 0.95 (0.87, 1.03) 0.18 0.0019 

rs10941679 5 5p12 1.26 (1.15, 1.37) 2.1x10-07 1.09 (1.01, 1.19) 0.030 0.0033 
rs10995190 10 ZNF365 1.05 (0.94, 1.18) 0.34 1.30 (1.16, 1.43) 2.1x10-06 0.017 

 

A similar-case-only analysis of IDC by grade that was conducted by BCAC collaborators 

confirmed that the two SNPs on 11q13.3 close to CCND1 were also invasive grade 1/2 specific 

in IDC (rs75915166, OR=1.42, P=1.7x10-30, P-Het=2.8x10-10; rs554219, OR=1.39, P=4.7x10-49, 
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P-Het=1.3x10-17) and again were independent of ER status (P=1.3X10-6, P=1.6x10-6, 

respectively). 

rs10941679, 5p12 showed a borderline association with low/intermediate grade DCIS 

(OR=1.26, P=2.1x10-7, P-Hetlow/highgrade=0.0033). This locus has previously been shown to be 

associated with low grade PR positive IDC [252]. A variant at the ZNF365 locus shows evidence 

of a stronger association with high grade DCIS. This has already been observed in overall 

breast cancer (BCAC Website). 

5.5.1 Novel variants with evidence of association with high grade DCIS 

In an attempt to identify novel common variants associated with specific sub-phenotypes of 

DCIS, we conducted a case control analysis including only cases with high grade DCIS. This 

analysis including 1,635 cases and 4,813 controls yielded a possible novel locus at 

chromosome 17, Figure 5.10. One of the variants in the association linkage disequilibrium (LD) 

block (rs9302935, P=2.4x10-5) was selected to be genotyped on a phase II study where 172 

additional high grade DCIS cases were screened along with 1,882 controls. Additionally, data 

from BCAC was added to the meta-analysis. The final data set that was used for the meta-

analysis is reported in Table 5.7. Genome wide significance was not reached. Due to the fact 

that the variant is relatively rare MAF<5%, additional samples could be used in order to 

establish whether the observed nominal association stands true, Table 5.8. The observed 

association is driven primarily by the ICICLE study, even though all studies have the effect on 

the same direction. Screening additional cohorts of high grade DCIS could elucidate whether 

this association stands true. 

 

Figure 5.10: Association plot on chromosome 17 for high grade DCIS. Rare variants in region near the 
CASC17 gene. Shows a suggestive signal with high grade DCIS. 
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Table 5.7: Number of individuals used for the single SNP (rs9302935) analysis in the putative novel locus 
on chromosome 17. 

Study Controls Cases Total 

ICICLE 4,813 1,635 6,448 

BCAC 27,389 306 27,695 

ICICLE phase II 1,882 55 1,937 

Total 34,084 1,996 36,080 
 

Table 5.8: Meta-analysis results for rs9302935, a putative locus for high grade DCIS. 

Study MAF OR 95% CI P value 

ICICLE 0.032 1.54 (1.26, 1.89) 2.4x10-5 

BCAC 0.038 1.46 (0.96, 2.22) 0.08 

Phase II 0.039 1.17 (0.46, 2.94) 0.75 

Meta-analysis 0.034 1.51 (1.26, 1.81) 5.5x10-6 

 

5.6 ER specific analysis 

Following immunohistochemistry for ER of the ICICLE study samples, 1,484 (54%) cases were 

classified as ER positive and 383 (14%) as ER negative. The ER data on BCAC DCIS were less 

complete with 664 (28%) ER positive, 301 (13%) ER negative and 1,387 (59%) ER unknown 

cases, Table 5.9. 

Table 5.9: DCIS cases from ICICLE and BCAC studies stratified by ER status. 

ER 
status 

N of 
ICICLE 
cases 

N of 
BCAC 
cases 

Positive 1484 664 

Negative 383 301 

Missing 848 1387 

Total 2715 2352 

 

One SNP, rs527616, on chromosome 18q11.2 reached the Bonferroni corrected significance 

threshold (76 tests) with a P-Het=0.00036 for differential association between ER positive and 

ER negative DCIS, Table 5.10. This is one of the known ER positive loci in the context of 

invasive breast cancer. Our results indicate that DCIS behaves in a similar manner to IDC in 

terms of genetic predisposition stratified by ER status. 
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Table 5.10: Seven known predisposition loci showing evidence for differential association between ER 
positive and ER negative DCIS at P<0.05. 

      ER positive DCIS ER negative DCIS 
ER+ vs 

ER- 
SNP Chr Locus OR (95% CI) P OR (95% CI) P P-Het 

rs527616 18 18q11.2 1.14 (1.06, 1.22) 0.00026 0.88 (0.79, 0.98) 0.023 0.00036 
rs554219 11 CCND1 1.24 (1.12, 1.36) 1.8x10-05 0.94 (0.80, 1.12) 0.51 0.0078 

rs11977670 7 7q34 1.06 (0.99, 1.13) 0.087 0.93 (0.84, 1.04) 0.22 0.021 
rs6678914 1 LGR6 1.01 (0.95, 1.09) 0.67 1.14 (1.02, 1.28) 0.020 0.029 
rs9693444 8 8p21.1 1.08 (1.01, 1.16) 0.031 1.22 (1.08, 1.36) 0.00084 0.039 

rs10771399 12 PTHLH 1.23 (1.11, 1.37) 0.00014 1.04 (0.88, 1.23) 0.65 0.049 
rs10995190 10 ZNF365 1.16 (1.06, 1.28) 0.0016 1.37 (1.16, 1.61) 0.00013 0.049 

 

5.7 Age specific analysis 

In order to interrogate whether any of the known breast cancer predisposition loci is associated 

with the onset of DCIS, we conducted a case-only analysis separating individuals with at the 

cut-off of 50 years of age. There were 573 DCIS cases from ICICLE with age of diagnosis <50, 

and 2,003 diagnosed at the age of 50 or over. This data set was combined with 410 individuals 

with age of diagnosis <50 and 1,648 with age of diagnosis ≥ 50, Table 5.11. Six out of the 76 

known breast cancer predisposition loci showed a borderline differential association between 

early (< 50) and late (≥ 50) onset of DCIS, Table 5.12. One of the variants, rs527616-18q11.2, 

reached the Bonferroni corrected P value with a P-Het=0.0003. 

Table 5.11: DCIS cases from ICICLE and BCAC studies stratified by onset of disease. 

Age of 
diagnosis 

N of 
ICICLE 
cases 

N of 
BCAC 
cases 

< 50 573 410 

≥ 50 2003 1648 

Missing 139 294 

Total 2715 2352 

  

Table 5.12: Six known breast cancer predisposition loci that show evidence for differential association 
between early and late onset DCIS. ICICLE and BCAC ORs are indicated separately and P-het 
corresponds to combined ICICLE and BCAC age stratified analysis of age of diagnosis ≥ 50 versus < 50. 

Chr SNP RAF 50 ≥ BCAC 50 ≥ ICICLE < 50 BCAC < 50 ICICLE P-Het 

18 rs527616 0.63 1.00 (0.93, 1.06) 0.95 (0.88, 1.02) 0.91 (0.79, 1.05) 0.75 (0.66, 0.86) 0.0003 
16 rs3803662 0.26 1.13 (1.05, 1.21) 1.14 (1.05, 1.24) 1.35 (1.15, 1.58) 1.28 (1.12, 1.47) 0.0041 
2 rs13387042 0.51 0.86 (0.80, 0.92) 0.91 (0.85, 0.98) 0.87 (0.75, 1.00) 1.08 (0.96, 1.22) 0.015 

14 rs2236007 0.79 0.95 (0.88, 1.03) 0.98 (0.90, 1.08) 0.91 (0.76, 1.08) 0.82 (0.70, 0.96) 0.016 
7 rs11977670 0.43 1.02 (0.96, 1.09) 0.96 (0.89, 1.03) 1.10 (0.96, 1.27) 1.12 (0.99, 1.27) 0.030 
3 rs6762644 0.4 1.09 (1.02, 1.17) 1.03 (0.95, 1.11) 0.99 (0.86, 1.15) 1.26 (1.11, 1.43) 0.039 

 

5.8 In situ comparison 

In an attempt to distinguish the signals from known breast cancer predisposition loci we 

conducted an in situ case only analysis, comparing cases with DCIS with cases with LCIS. This 
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analysis included 1,484 ER positive DCIS cases along with 231 LCIS cases. Figure 5.11 shows 

the difference in effect size for LCIS and ER positive DCIS cases in 76 known breast cancer 

predisposition loci. 

Table 5.13 shows the SNPs that had a P-het<0.05 between ER positive DCIS and LCIS. Four of 

these loci rs865686, rs12710696, rs17529111, and rs11249433 seem to be associated with 

LCIS whereas the remaining one, rs4973768 at the SLC4A7 locus seems to be associated with 

ER positive DCIS. In the case control analyses there were 1,484 ER positive DCIS cases and 

4,813 controls, and 231 LCIS cases and 4,755 controls. The only SNP that passes the 

Bonferroni correction of P<0.00066 is rs865686 at chromosome 9q31.2. This variant seems to 

be strongly associated with LCIS (OR=1.57 (95%CI 1.28, 1.92) P=1.8x10-5, but not with ER 

positive DCIS. 

Table 5.13: Five SNPs showing evidence for differential association between ER positive DCIS and LCIS. 

      ER+ DCIS LCIS  
SNP Chr Locus OR (95% CI) P OR (95% CI) P P-Het 

rs865686 9 9q31.2 1.07 (0.98, 1.16) 0.14 1.57 (1.28, 1.92) 1.8x10-5 0.00065 
rs12710696 2 2p24.1 0.99 (0.90, 1.08) 0.76 1.29 (1.06, 1.56) 0.0096 0.0066 
rs4973768 3 SLC4A7 1.19 (1.09, 1.29) 5.4x10-5 0.94 (0.78, 1.14) 0.53 0.018 

rs17529111 6 6q14.1 1.01 (0.91, 1.12) 0.79 1.33 (1.07, 1.65) 0.011 0.022 
rs11249433 1 1p11.2 0.99 (0.91, 1.08) 0.90 1.22 (1.01, 1.47) 0.038 0.049 

 

 

Figure 5.11: Effect size for ER positive DCIS versus LCIS based on 76 known breast cancer predisposition 
loci. 

5.9 Discussion 

This study provides the strongest evidence to date for a shared genetic susceptibility between 

DCIS and IDC, based on 5,067 cases with pure DCIS (no invasive disease) and 24,670 cases 

with IDC. It differs from previous BCAC analyses of DCIS, as it has included an aditional 3,078 

DCIS cases, excluded all cases of pure LCIS and has also compared DCIS to IDC rather than 

all invasive disease. We found no significant differences, although there were some DCIS-
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specific loci that did not replicate or reach genome-wide significance. Therefore, our data largely 

support the theory that DCIS and IDC are a continuum of the same disease, without excluding 

the possibility that there may be some low-risk susceptibility loci that have a strong association 

with stage 0 (DCIS) and a weaker association with other stages of breast cancer. Identifying 

any such loci is important as it would identify a subset of DCIS that has a low risk of 

progression. 

An important finding of this study is the lack of DCIS / IDC specific loci among the known breast 

cancer predisposition loci. Of the five breast cancer predisposition alleles originally reported by 

Easton et al [153], three were shown to be associated with in situ (998 cases of DCIS and LCIS) 

disease (rs2981582-FGFR2, rs3803662-TOX3, rs889312-MAP3K1) with rs889312 showing a 

stronger association with DCIS (P-trend 0.007, per allele OR 1.30 for DCIS, per allele OR 1.13 

for invasive disease). However this finding of potential DCIS specific loci was not confirmed in 

the UK Million Women Study which found no differential association with DCIS vs IDC for twelve 

breast cancer susceptibility loci, including rs889312, although their sample size was smaller 

(873 DCIS and 4,959 IDC) [237]. In the recent BCAC COGS analysis all 41 novel SNPs 

identified on the iCOGS chip showed comparable ORs for invasive and in situ disease (based 

on data from 2,335 in situ, and 42,118 invasive cases), with the exceptions of rs12493607 

(TGFBR2), and rs3903072 (11q13.1), for which associations seemed to be restricted to invasive 

disease [154]; however we found no evidence of an IDC specific association for these loci after 

correcting for multiple testing. We have also shown for the first time that seven of the known 

invasive breast cancer predisposition loci not previously shown to have an association with 

DCIS show comparable ORs for IDC and DCIS: rs4973768 (SLC4A7), rs3821902 (ATXN7) 

[178], rs10995190 (ZNF365), rs554219 (CCND1), rs3757318 and rs2046210 (ESR1). 

This lack of DCIS / IDC specific loci is in contrast to our previous study of lobular cancer where 

we showed that there were loci that were specific to invasive lobular cancer (ILC), showing no 

association with LCIS and there was also the suggestion of the LCIS specific loci [173]. When 

we compare the DCIS data presented here to our previous LCIS analyses it reveals that there is 

some overlap between loci that are associated with ER positive DCIS and LCIS. However there 

are also some differences: rs6678914, LGR6 and rs865686, 9q31.2 show a strong association 

with LCIS but little evidence of an association with ER positive DCIS (P-HetDCIS/LCIS = 7.4x10-5 

and 6.6x10-4 respectively) Table 5.13, Figure 5.11. It has been previously shown that rs865686 

is associated with ER positive IDC, however we do not observe this association on DCIS [269]. 
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We have also previously shown that rs11249433, 1p11.2 and rs11977670, 7q34 have a 

stronger association with invasive lobular cancer than IDC [173]. These loci showed only a 

weak association with LCIS and no association with ER positive DCIS in this analysis. 

Most association studies of invasive breast cancer perform subgroup analyses based on ER 

status. In contrast to invasive breast cancer, ER status is not routinely assessed in DCIS in all 

centres, despite the NSABP B-24 trial showing a benefit from endocrine therapy in ER positive 

DCIS [270]. A national audit of DCIS in the UK revealed that only 50% of DCIS cases had ER 

status assessed and ER positivity in low and intermediate grade DCIS was significantly more 

common than in high grade DCIS (P< 0.001) (ER positive high grade 69%, intermediate grade 

94%, low grade 99%) [271]. In order to overcome this issue we performed ER 

immunohistochemistry on the samples from ICICLE without ER status. However there was still a 

large amount of data on ER status missing from the BCAC cases, resulting in only 684 ER 

negative DCIS cases being available for analyses making it difficult to draw definitive 

conclusions about ER negative DCIS. In essence, the findings are similar to invasive breast 

cancer, with ER negative and ER positive DCIS having different genetic susceptibility profiles 

and ER positive DCIS having a very similar profile to ER positive IDC. 

Cytonuclear grade of DCIS is used by many clinicians to select those cases most likely to 

benefit from radiotherapy despite the fact that grade has not been shown to be a good predictor 

of recurrence. In the UK audit of DCIS, grade data were available for 99% of DCIS with 59% 

classified as high grade, 29% as intermediate and 11% as low grade [271]. Similarly, in our 

study, data on grade were available for 95% cases in ICICLE. In invasive disease only a 

minority of predisposition loci have been shown to be grade specific; rs2981582 (FGFR2) and 

rs13281615 (8q24) [272, 273] and rs10941679 (5p12) [252]. We have shown that analysis of 

DCIS by grade revealed other known loci that are grade specific. The loci with the strongest 

association with grade were SNPs on 11q13, showing a stronger association with 

low/intermediate grade DCIS and IDC, than high grade lesions. The finding of a strong 

association with low and intermediate grade ductal carcinomas that is independent of ER status 

in both DCIS and IDC for these loci is novel. Variant rs614367 was the first locus on 11q13 

shown to be associated with invasive breast cancer [274]. Fine mapping of the region 

subsequently showed two independent signals (rs554219 and rs78540526, r2= 0.38), which are 

the loci reported in this analysis. Functional analyses demonstrated that the risk variants modify 

enhancer and silencer elements with the likely target gene being CCND1 [182]. Both SNPs map 
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to a transcriptional enhancer element and the risk alleles apart from increasing the risk of 

developing breast cancer, also reduce the binding of ELK4 transcription factor and luciferase 

activity in reporter assays, and can therefore be associated with low cyclin D1 protein levels in 

tumours. 

A study of 150 cases of subsequent breast cancer (invasive and in situ) after DCIS showed a 

significant association for both grade and ER status between the index DCIS and the 

subsequent breast cancer (whether ipsilateral or contralateral), suggesting that women with 

DCIS are at risk of developing subsequent breast cancers of a similar phenotype [275]. This 

finding supports the genetic predisposition data presented here, with ER and grade specific loci 

in DCIS showing similar specificity in IDC. 

Although we did not identify any novel loci that reached genome-wide significance, we did 

identify three potential novel DCIS predisposition loci, two of which were DCIS specific 

(rs12631593, rs73179023), and therefore need further investigation in other cohorts of DCIS. As 

at least 55% of IDC have associated DCIS present at diagnosis consistent with direct precursor 

behaviour, it may seem biologically implausible that a SNP predisposes to DCIS but shows no 

association with IDC. However it is possible that there is a subset of DCIS with very low 

probability of progression. If the finding of DCIS specific predisposition loci was confirmed in 

other studies, identifying such a subset of low risk DCIS would be clinically valuable. 

In conclusion, this is the largest study to assess genetic predisposition in DCIS and shows that 

the majority of invasive breast cancer predisposition loci also predispose to DCIS. It highlights 

that, as for invasive disease, different SNPs predispose to ER positive and ER negative DCIS. 

In addition it shows the importance of grade in both DCIS and IDC. 
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Chapter 6 General discussion 

 

In this thesis I have analysed rare and common variants in two different subtypes of breast 

cancer; lobular (ILC and LCIS) and DCIS. The rationale for selecting these two subtypes as the 

focus of my research project was because did form a large proportion of breast cancer case 

control studies and were therefore relatively understudied compared to  IDC, but are important 

subtypes as their incidence rate is increasing. 

As ILC can be difficult to detect by screening mammogram, the ability to identify those women 

at high risk of ILC with genetic screening would be highly beneficial for the population. Similarly, 

DCIS can be a precursor to IDC and therefore identifying those at risk of developing DCIS 

would enable us to offer prevention prior to the development of invasive disease. 

There was already evidence of a distinct genetic aetiology between the different breast cancer 

subtypes and we therefore followed a phenotypic stratification approach to identify loci 

predisposing to specific histological subtypes. 

The work outlined in this thesis has added to our current knowledge of genetic predisposition to 

these two subtypes by identifying which of the known rare variants predisposing to each 

subtype as well as identifying novel loci. Overall, we have shown that there is a significant 

overlap in the genetic predisposition of different histological subtypes of breast cancer but there 

are also distinct associations that could help us understand the aetiology of these subtypes, 

which in turn may allow us to identify subtype specific therapies. 

6.1 Clinical significance of findings 

6.1.1 Lobular breast cancer 

CDH1 protein truncating mutations are more common than previously thought [250] and these 

seem to be more in bilateral cases with 4/50 (8%) of individuals with bilateral lobular disease in 

our initial series having a germline mutation. None of our four mutation carriers satisfy the 

current criteria for CDH1 testing given the necessity to have a family history of diffuse gastric 

cancer in order to be eligible for screening. Although they gave no family history of gastric 

cancer it is possible that they may develop diffuse gastric cancer in the future, as Pharoah et al 

(2001) showed that the estimated cumulative risk of gastric cancer is higher (83%) than that for 

breast cancer (39%) in women with CDH1 mutations. However this was calculated using 
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families with at least three cases of DGC and, as discussed by Pharoah et al, may not apply to 

individuals with a minimal family history, in whom the risks are likely to be lower [111]. 

Benusiglio et al. suggested that women with a personal or family history of at least two ILC 

before the age of 50 should be offered CDH1 screening. However, none of the four carrier 

cases identified in our study would fulfil these criteria as they do not take into account bilateral 

LCIS. On the basis of our study we recommend that this should be extended to include women 

with bilateral LCIS. 

Two studies, including our own, have shown that CDH1 mutations in bilateral LCIS or ILC are 

more common than previously thought [204]. If further studies confirm these findings then, 

CDH1 testing could be offered to individuals with bilateral LCIS/ILC under the age of 50, 

enabling us to identify patients with CDH1 mutations who may benefit from regular breast MRI 

screening and endoscopic surveillance for diffuse gastric cancer. 

Apart from the bilateral analysis, we screened 2,215 individuals with lobular breast cancer out of 

which 1,443 had ILC. We identified 6 further protein truncating variants. Out of the 10 protein 

truncating variants identified in our study, we identified four novel CDH1 protein truncating 

variants including the one that has been published already [250]. 

The prevalence of CDH1 protein truncating mutations is high amongst individuals with bilateral 

lobular lesions (8%) but not in individuals with unilateral lesions (<0.5%). 

This is the first study at this scale to assess the prevalence of pathogenic variants in the context 

of unselected individuals with lobular breast cancer. The prevalence of CDH1 mutations is 

relatively low, <1%. However, CDH1 is relatively intolerant to LoF variants since it has a high 

pLI which is an indicator of how tolerant a gene is to LoF variants. 

With regards to the two main breast cancer predisposition genes, BRCA1, and BRCA2, the 

clinical utility of genetic testing in the context of lobular carcinoma is not well defined. In 

particular, BRCA1 mutations are less frequent amongst individuals with lobular carcinomas 

whereas the clinical characteristics of BRCA2 carriers are more heterogeneous compared to 

BRCA1 carriers that are usually TNBC. 

BRCA2, with a low pLI which indicates that it is prone to LoF variants, was mutated in almost 

2% of our ILC cases, and in more than 5% of the cases when restricting analysis to early-onset 

ILC (≤ 40). The analysis of known predisposition genes revealed that BRCA2 has a significant 

contribution to lobular breast cancer. However, these findings are not strong enough to 

recommend individuals with ILC for BRCA2 screening. 
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Our targeted sequencing project allowed us to ascertain the prevalence of rare breast cancer 

predisposition variants in ILC and generated data that can influence the recommendations for 

genetic testing in breast cancer. It is particularly important to identify women at high or 

moderate risk of ILC as this type of breast cancer is often undetectable by mammogram, so 

women at risk can be offered other alternatives such as MRI screening and / or 

chemoprevention. We identified a known pathogenic mutation or a novel protein truncating 

mutation in 3.25% of our unselected ILC patients diagnosed before the age of 60. 

I have also shown preliminary evidence for three GxE interactions which will need validation in 

larger cohorts. These interactions are between HRT usage and three SNPs that have been 

previously shown to be associated with ILC (rs2981582, rs704010, and rs865686). 

Nevertheless, these preliminary findings are interesting and may have clinical utility if validated, 

for example by assessing breast cancer risk by genotype before offering HRT. This is 

particularly pertinent to lobular breast cancer which has a stronger association with HRT than 

IDC. 

6.1.2 DCIS 

The current NICE guidelines for BRCA1 and BRCA2 screening are based on a minimum 

combined probability of a mutation identification of at least 10%. There are methods such as the 

BOADICEA (see section 1.1.2.5) and the Manchester scoring system that can provide carrier 

probabilities based on family history and other clinical characteristics. However, these do not 

include the presence of DCIS lesions as a risk factor in their calculations. 

Clinical guidelines are focused on TNBC which is associated with BRCA1 germline mutations 

and all women with TNBC under the age of 40 are now offered BRCA1 screening. BRCA2 

mutations are more common in ER positive carcinomas, and the majority or our DCIS 

population has an ER positive phenotype. 

In our small subset of 31 cases diagnosed with DCIS ≤ 40 and having a first degree relative 

affected with breast cancer, the frequency of BRCA2 pathogenic variants is 13%, suggesting 

that women with young onset DCIS should be referred for genetic screening, in the same way 

that invasive cases are. 

In the group of individuals diagnosed with DCIS ≤ 40 with no first degree relative of breast 

cancer, the frequency of BRCA1 and BRCA2 pathogenic variants is 4.76% which highlights the 

potential benefit of genetic testing in cases with young onset DCIS, even in the absence of 
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family history. However, our data-set is relatively small and these findings need to be validated 

in order for them to be translated into clinical practise.  

A recent study used the BRCAPRO algorithm to assess the scores of DCIS cases with or 

without a BRCA1 or BRCA2 mutation [276]. Carriers had overall higher score than non-carriers 

but there was no significant discrimination between the two groups irrespectively of whether 

DCIS was treated as breast cancer or as not cancer. 

We have also shown evidence for DCIS predisposition in other breast cancer susceptibility 

genes such as the PALB2 gene, with the frequency of pathogenic mutations being higher than 

1% in our DCIS cohort. Our findings illustrate that the prevalence of known breast cancer 

predisposition genes is relatively high (5%) amongst our unselected cohort of DCIS and 

increases dramatically when including certain criteria such as early onset of disease or family 

history. 

6.2 Novel predisposition loci 

6.2.1 Rare and common variants in lobular breast cancer 

One of the best biological candidates from our WES study of extreme cases with ILC was the 

ESR2 gene. A protein truncating variant was identified in a family with three affected sisters. 

Overall we identified a further three protein truncating variants in three individuals with ILC. 

However, due to the fact that the same initially identified stop-gain variant was present in a 

healthy control, there is no statistical significant enrichment. Since ESR2 encodes for estrogen 

receptor β, we explored the possibility that these variants are likely to express the phenotype in 

the presence of an environmental trigger, with the most plausible risk factor being use of HRT. 

However, only one of the three ILC carriers in the replication cohort had taken HRT. Therefore, 

further studies screening the coding portions of the ESR2 gene should be conducted in order to 

validate whether there is a significant contribution of rare variants predisposing to breast cancer.  

We have provided evidence suggestive of association between another putative novel gene, 

DCLRE1B with lobular breast cancer, using a rare variant gene-based approach. However, due 

to the low frequency of events we are unable to draw conclusions on whether rare variants in 

DCLRE1B predispose to breast cancer. Other approaches including more samples or strict 

phenotypic criteria should be used in the future in order to validate any of the candidate genes 

from our study. Nevertheless, this gene constitutes a very good candidate since it is involved in 

inter-strand cross-link DNA repair and warrants further investigation. Additional evidence of 
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involvement of that gene with breast cancer development stems from the fact that a common 

nonsynonymous variant in that gene, rs11552449, has been previously shown to be associated 

with breast cancer. 

Our study has also demonstrated the existence of distinct molecular pathways underpinning 

different histological subtypes of breast cancer by identifying a novel locus, rs11977670, at 

chromosome 7q34 that is specifically associated with invasive lobular breast cancer. This was 

the first time that unselected individuals with lobular carcinomas were screened at this level to 

identify novel genetic risk factors. Further functional work is required and currently being 

undertaken in our research group in order to identify a possible role and mechanism of action 

for this locus. A histone demethylase, JHDM1D, is 65KB upstream and could possibly explain 

this functional role. Furthermore, fine-mapping approaches have been followed but failed to 

identify further neighbouring variants that would show a higher association. 

6.2.2 Novel findings DCIS predisposition 

None of the SNPs that were genotyped in iCOGS, and were not in LD with any of the previously 

known breast cancer susceptibility loci, reached genome-wide significance. Three loci that were 

found to be associated were genotyped in a phase II stage but none achieved replication or 

overall significance. The locus in chromosome 22 (rs73179023), showed comparable effect 

sizes across all different studies (ICICLE, BCAC, and phase II) and therefore constitutes the 

best candidate out of three. In support of this, the risk for overall breast cancer is on the same 

direction as our DCIS cohort with a suggestive level of significance. A larger replication study 

could potentially validate this finding. 

6.3 Evidence for distinct genetic aetiology between different 

histological subtypes of breast cancer 

While conducting in situ breast carcinoma comparisons, we identified a significant excess of 

rare variants in 6 known breast cancer predisposition genes under investigation in DCIS over 

LCIS. However, previous studies have shown that there is a higher familial relative risk amongst 

lobular carcinomas compared to the ductal subtype. Our findings do not necessarily reject the 

previous notion that there is strong genetic contribution towards lobular carcinoma 

development. The case could be that there is strong genetic basis for LCIS and ILC 

development, which we were unable to identify. One possible explanation is that due to the 

underlying breast cancer heterogeneity, a group of different genes that is yet to be identified can 
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predispose to the lobular histology. Another possible explanation is that the genetic aetiology of 

lobular cancers is more complex: interactions either in the form of epistasis, genetic modifiers, 

or GxE interactions play a crucial role. As it has been previously shown that HRT has a stronger 

association with ILC compared to IDC, we cannot exclude the possibility that HRT might trigger 

ILC in the presence of specific genetic variation. 

Our common-variant analysis of lobular breast cancer has validated the hypothesis of a shared 

genetic aetiology of different breast cancer subtypes with some key differences and distinct 

associations. A key finding is that the strength of association can differ between different 

histological subtypes. We have identified the first lobular specific locus and have shown 

evidence for three SNPs that seem to be more strongly associated with lobular histology when 

comparing ILCs to IDCs [173]. The SNP with the most significant differences was rs11249433 

which has been previously described as being strongly associated with ER positive breast 

cancer and in particular of lobular histology. The major finding from our DCIS common variant 

analysis was that DCIS and IDC share most of their common susceptibility loci [277]. The 

finding by Campa et al that rs1011970 is more strongly associated with in situ disease was not 

validated in our study which has a larger sample size [264]. This leads to the conclusion that 

these two distinct lesions are two different phases of the same disease. This does not come as 

a surprise since it is broadly hypothesised that DCIS is a precursor lesion to IDC.  

It has been illustrated that polymorphisms at the CCND1 locus are associated with breast 

cancer and that genomic aberrations in this locus are frequent in ER positive carcinomas. 

CCND1 alterations belong to early events in tumour development and appear to be present in 

LCIS and DCIS lesions. We have shown that variants in the CCND1 locus are also associated 

with LCIS and DCIS. While conducting grade and ER stratified DCIS case-only conditional 

analyses, we have shown that two independent loci near the CCND1 gene are associated with 

low/ intermediate grade and ER positive DCIS in an independent manner. This finding was also 

validated in individuals with IDC from the BCAC studies. 

6.4 Excess familial risk and unexplained heritability 

The genetic architecture of breast cancer is highly complex with several loci having been 

identified to be associated with some form of the disease. As previously described, there are 

genes with highly penetrant variants increasing the risk of developing the disease drastically. 

There are several other genes with rare variants conferring a moderate risk towards breast 
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cancer development. Also, there are more than 100 independent signals attributed to SNPs 

across the genome associated with the disease. Those loci increase the risk of developing the 

disease by a small fraction, usually with OR <1.5. Several research groups have tried to 

combine data from multiple low risk loci and introduce them as one single value of polygenic 

risk score (PRS). Researchers from BCAC have utilised information from 77 SNPs and 

introduced a PRS for breast cancer utilising their previously estimated individual risks conferred 

by each of these variants. Even though the results are promising and may be clinically useful for 

the top 1% at the PRS scale, there is still a lot room for improvement and discrimination of 

cases and controls [278]. They stratified their groups into percentiles and assessed the risk for 

each percentile group. The average lifetime risk for breast cancer is 12%. It was found that the 

absolute risk of breast cancer by the age of 80 for the top 99 percentile according to the PRS is 

29%. It was also estimated that the risk for the highest quintile is 17.2% (95% CI 16.1%-18.1%). 

Since the NICE guidelines recommend secondary care to individuals with a lifetime risk higher 

than 17%, individuals at the PRS scale could benefit from intensive screening. Another 

interesting but expected finding was that a stronger FRR was observed for women at the lowest 

percentile of the PRS. This suggests that rare highly penetrant variants may have a stronger 

impact on familial breast cancer. Collaborators from BCAC also conducted similar analyses in 

the context of ILC and found more significant differences (unpublished data). The separation of 

different percentiles is more profound for ILC cases. However, the lobular analysis is based on 

72 SNPs whereas the overall breast cancer analysis is based on 77. 

Our approach of phenotypic stratification has not produced strong evidence of novel loci 

associated with breast cancer. We have used a conventional approach by focusing on 

phenotypic similarities amongst the samples used in order to potentially enrich the genetic 

homogeneity of the data set and therefore increase the power to identify true associations. 

However, as it is well understood, the genetic architecture and aetiology of breast cancer is 

heterogeneous and interactions can occur across the genome as well as between genetic and 

environmental risk factors. Millions of individuals would be required to be screened in order to 

identify a portion of these interactions. It has also been shown that regulatory elements across 

the genome also play a big role in disease-causing and in particular in breast cancer. Larger 

projects such as the 100,000 Genomes Project are under way with the aim of whole genome 

sequencing individuals to identify predisposition variants that not necessarily lie within coding 

regions. By furthering this approach, and introducing several other large scale sequencing 
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projects in the future, we would be able to use this information to identify variants that affect 

regulatory elements and link them with disease development. 

One successful strategy to identify rare variants predisposing to breast cancer would be to 

focus on individuals with a severe phenotype or individuals that are more likely to carry a rare 

variant contributing to disease development due to strong family history. However, evidence of 

merging samples even at a very high level, that one would expect to increase the genetic 

heterogeneity drastically, has also been shown to be successful. One approach for lobular 

carcinoma would be to identify other types of cancer with similar patterns of phenotypic or 

molecular characteristics such as diffuse gastric cancer and merge those data sets into a larger 

cohort to increase power. This could work both in terms of common and rare variant 

identification. 

6.5 Contribute to database annotation - VUS 

Besides the direct clinical utility of studies such as ours, by leading to the incorporation of genes 

into diagnostic panels or risk prediction tools, there are further contributory elements in addition 

to scientific knowledge expansion. Several databases exist where genes or variants are 

annotated with different features and can be used by research studies investigating genetics of 

specific diseases. Identifying novel variants or genes associated with disease can increase the 

pool of variants, genes, or phenotypes that exist in databases and can lead to less resource 

wasting and better science communication. The finding of excess of VUS in ILC cases 

compared to controls highlights the potential benefit of screening larger cohorts to identify which 

of these variants can be clinically useful. 

6.6 Limitations 

Even though during this project we followed a phenotypic stratification approach by focusing on 

specific histological subtypes, there is still a high expected heterogeneity within our data set. 

For the lobular subtype study, our cohort is comprised of cases with any features of lobular 

disease, including cases with pure LCIS, pure ILC, concurrent ILC and LCIS, and LCIS 

concurrent with non-lobular invasive disease. Depending on the hypothesis, different sample-

sets were used, and expected heterogeneity had its toll towards identifying novel signals. 

It should be noted that our common variant case control studies are not true GWAS. The 

genotyping platform used was designed by four consortia for tagging or fine-mapping of loci with 

prior suggestive evidence of association with cancer, without an actual GWAS backbone and 
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therefore our studies cannot be considered GWAS. This has to leave a window of uncertainty in 

terms of any possible other loci that could be associated with the phenotypes of our interest but 

we were unable to capture due to the technology used. SNPs on the iCOGs chips were chosen 

on the basis of some prior evidence of association with breast cancer as a whole. Although ILC 

would have been a small proportion of the samples in the discovery sets for these SNPs it is 

possible that other lobular specific loci exist that have not been included on the iCOGs chip. 

This is particularly true for LCIS, which would only have been included in the discovery set as a 

parallel phenotype when associated with invasive disease. 

One limitation of the targeted sequencing project is that, due to cost constraints, we could only 

select a small number of genes to be tested in the targeted sequencing. Some of those genes 

were not screened in full. Alternative technologies that allow for larger capture regions could be 

used that would allow a more thorough investigation of loci suspected to be associated with 

breast cancer and lobular disease in particular. 

Finally, we identified several limitations with regards to WES case control analysis. The controls 

that have been used for this analysis do not have family history or age of diagnosis of their other 

disorder. We can also not exclude the possibility that they may develop breast cancer. Another 

possible limitation is that there might be common susceptibility genes between different 

diseases, and therefore we would not be able to detect a true association or enrichment in the 

cases over the controls since a portion of the controls are also carriers of certain mutations that 

predispose both to breast cancer and another syndrome or rare disorder. 

One major limitation of the phase I WES rare variant case control study is the lack of power due 

to small sample size. Taking into account the genetic heterogeneity of the disease along with 

the phenotypic diversity of the samples, we did not have enough power to detect associations 

with statistical significance. Therefore, we followed a rare event approach where genes were 

prioritised in the absence of variants in the control population. This approach might not be ideal 

since there might be false positive results that can reach the final gene selection, but at the time 

of this analysis and with the data available, this was the most cost effective approach to 

investigate putative novel genes that could predispose to lobular breast cancer. A larger phase I 

study could potentially yield a different and more accurate gene list but due to time and cost 

constraints we were forced to select our candidate genes based on a smaller phase I exome-

wide gene based study. Future analyses, incorporating more samples could yield a different 

gene list that could be later on tested in a targeted sequencing project. 
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With advances in sequencing technologies, screening a large number of genes is becoming 

more cost effective and we are now able to screen more than 100x the region of our targeted 

sequencing panel, for the same reagent cost. If that technology existed while we were designing 

the phase II study, we could have incorporated a larger set of genes identified as possible 

candidates from phase I as well as a larger set of genes that have been implicated with breast 

cancer development in the past. Finally, genes near common variant association loci such as 

the region in chromosome 7q34, which is lobular specific could also be screened. This would 

allow a thorough investigation of these regions and potentially could lead to the identification of 

rare variants in the region that are functional and are tagged by common tagging SNPs. We 

would then be able to explain a larger proportion of the genetic aetiology of lobular breast 

cancer. 

6.7 Summary of findings 

To summarise the key findings of our study, we have identified a germline protein truncating 

variant in 8% (95% CI 5%-15.5%) of individuals with any bilateral form of lobular disease. This is 

significantly higher compared to unilateral cases and healthy individuals. 

We have estimated the prevalence of BRCA2 mutations to be higher than CDH1 mutations in 

the context of lobular cancer. A total of 1.4% (95% CI 0.8%-2%) and 1.5% (95% CI 1%-2%) of 

ILC cases or cases with any form of lobular disease are BRCA2 carriers whereas less than 

0.5% (ILC 95% CI 0.1%-0.9%)  (Any lobular 95% CI 0.2%-0.8%) are CDH1 carriers in both of 

the aforementioned groups. We have provided evidence of an excess of rare BRCA1 VUS in 

ILC compared to controls. We have also shown that the prevalence of PALB2 mutations is 

relatively high 0.6% (95% CI 0.2%-1%) for ILC and 0.5% (95% CI 0.2%-0.8%) for any lobular 

carcinoma. A total of 3.2% (95% CI 2.3%-4.1%) of ILC cases screened carry a germline 

pathogenic variant in one of the 6 breast cancer predisposition genes that we screened. We 

have identified a common novel breast cancer predisposition locus that is specific to the lobular 

histology. This locus is currently being interrogated in depth in order to identify the functional 

role of this region. Further analyses are required to validate any of the putative novel genes 

assessed in our study. 

We have also assessed the prevalence of pathogenic mutations in known breast cancer 

predisposition genes in a cohort of DCIS cases. The combined prevalence of BRCA1 and 

BRCA2 germline mutations is 3.2% (95% CI 1.9%-4.5%) in our population. It is increased to 
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12.9% (95% CI 1.1%-24.7%) when taking into account only individuals with a first degree 

relative with breast cancer and age of DCIS diagnosis ≤ 40. We were able to identify a 

pathogenic mutation in 19.4% (95% CI 5.5%-33.3%) of individuals having a first degree relative 

with breast cancer and were diagnosed with DCIS ≤ 40. Finally, we have shown evidence for 

shared genetic susceptibility between DCIS and IDC with regards to common variants. 

Overall, we have contributed to current knowledge on breast cancer predisposition by focusing 

on specific histological subtypes that have previously been understudied. More studies, 

incorporating larger data-sets can underpin those similarities and differences and assist in 

understanding the complexity of the genetic architecture underlying breast cancer 

predisposition.  
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Chapter 7 Materials and methods 

7.1 Clinical resource 

7.1.1 GLACIER study 

The GLACIER study has recruited 2,539 patients from throughout the UK with the aim of 

understanding genetic predisposition to LCIS and ILC (MREC 06/Q1702/64). Women who have 

or had LCIS (with or without invasive disease of any morphological subtype) or pure invasive 

lobular carcinoma before the age of 60 at the time of diagnosis were eligible for enrolment. 

Figure 7.1 shows the different pathological features of the cases enrolled in GLACIER. Cases in 

GLACIER study are split into 6 morphological categories from left to right: Pure LCIS (388), 

Pure ILC (382), ILC with LCIS (1152), IDC with LCIS (277), invasive of mixed morphology with 

LCIS (156), missing pathology (143), and ineligible based on predefined criteria (37). 

  

Figure 7.1 Proportion of different morphological subtypes in the GLACIER study. 

Pathology reports were requested and were filed for more than 95% of the participants. 

Peripheral blood samples, and formalin fixed paraffin embedded (FFPE) tissue blocks were 

collected from participants alongside family history data and other risk factor information. 

Individuals were asked to complete a questionnaire reporting demographic, ethnic, reproductive 

and family history information. 
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7.1.2 ICICLE study 

The ICICLE study ascertained 3,371 DCIS cases across the UK (MREC 08/H0502/4). The aim 

of this study is to identify genetic predisposition to DCIS. Participants were selected based on 

the following eligibility criteria 1) cases with any grade of DCIS and no invasion, 2) age of 

diagnosis, with participants having to be younger than 60 years of age when diagnosed with 

DCIS. Recruitment was followed by collection of information on the grade and size of the 

tumours by pathologists. For cases where an FFPE tissue was available, sections were stained 

and reviewed to assess the grade and ER status. The concordance between these scores and 

the pathology reports was assessed and more than 95% correlation was observed. The 

distribution of the age of diagnosis is provided in Figure 7.2. 

 

Figure 7.2 Distribution of the age of diagnosis of DCIS for all cases recruited in the ICICLE study. 

 

7.1.3 Samples from the KHP Cancer Biobank 

Although recruitment for the GLACIER and ICICLE studies was completed in 2012, individuals 

with ILC or DCIS were recruited via Guys Hospital breast tissue bank (NHS REC ref. 12-EE-

0493) as a continuation research initiative. Since its start in 2015 this study has recruited more 

than 200 individuals with either ILC or DCIS. 

7.1.4 GLACIER and ICICLE healthy controls 

As part of the GLACIER and ICICLE studies, healthy volunteers were also recruited using two 

methods: 1) by requesting the recruited individuals to approach their female peers with no 
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personal or family (up to 2nd degree) history of breast cancer, LCIS, DCIS, or benign breast 

disease, 2) via posters requesting healthy volunteers with no personal or family (up to 2nd 

degree) history of breast cancer, LCIS, DCIS, or benign breast disease) within the recruiting 

hospitals. All participants donated a blood sample and were asked to complete a self-

administered paper-based questionnaire on their family history and reproductive and hormonal 

risk factors after giving full consent for the study. In total, 2,121 healthy volunteers have been 

recruited. 

7.1.5 Additional samples 

In addition to the individuals recruited through the GLACIER and ICICLE studies, there were 

other DNA samples used for particular analyses. In more detail, 200 ILC/LCIS samples from 

University of Westminster and 300 ILC samples from ICR were used for the iCOGS genotyping 

studies. These samples were processed as part of the GLACIER study at the BRC genomics 

facility with respect to the genotyping project.  

 TCGA 

An additional data set used in this project was downloaded from TCGA, which constitutes a 

repository of different data sets, including whole exome sequencing, on different types of 

cancer. A user key was obtained by our research group from the Cancer Genomics Hub 

(CGHub) in order to obtain access to downloading data. Using the online interface, a manifest 

of samples list was generated and was fed to the Gene-Torrent downloading software in order 

to download the .bam (mapped to the genome) files from the Santa Cruz server where the 

TCGA data is stored (https://tcga-data.nci.nih.gov/tcga/). It is likely that the .fastq (raw 

sequence)  files from TCGA have been processed in a different way in order to produce the 

.bam files and the .vcf (variant calling) files, and therefore it was prudent to reformat the data to 

its initial form and apply the same filtering criteria as per exome samples sequenced in-house. 

This was done to ensure data was aligned in the same way amongst the TCGA samples and 

our in-house samples. Following an interrogation of clinical data from more than 1,000 

individuals with breast cancer, we identified 110 germline exomes from individuals with ILC. 

Files that were already mapped to the reference genome were downloaded (.bam files). Some 

clinical characteristics of the TCGA individuals such as age of diagnosis of ILC along with 

menopause status and ER status are reported in Appendix 1. 
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 Controls for exome sequencing case control analysis 

More than 6000 samples have been exome sequenced in the BRC genomics facility over the 

last 5 years. The vast majority of these samples were sequenced to identify rare variants 

predisposing to rare disorders and syndromes not associated with cancer development. A 

systematic approach was followed to select control samples from this sample set. A total of 536 

European unaffected females with no personal history of breast cancer were used as controls 

for this study. Cryptic relatedness analysis was conducted, as well as PCA that led to the 

identification of a cluster of individuals with European ancestry. A gender identification script 

was performed to ensure that individuals used in the final analysis were all females. The 

disorders that the control samples were selected for are mentioned in Table 7.1. 

Table 7.1: Disorders that controls samples were sequenced for. All projects including 10 or more 
individuals are mentioned. 

Project Samples 

AGEP 44 
Renal Disease 42 

EB 35 
SIDS 33 
SRNS 33 

Lymphoedema 22 
Hidradenitis Suppurativa 22 

Renal 16 
SRS 13 

Epilepsy 12 
Wiedemann Steiner 10 

Paradoxical Psoriasis 10 
Other 244 

 

7.2 Laboratory experiments 

7.2.1 DNA quantification 

All samples were initially quantified using PicoGreen in the outsourced centre (Tepnel, 

Manchester, UK) following DNA extraction. Subsequently, several different DNA quantification 

methods have been used for the germline DNA that we obtained from the GLACIER and 

ICICLE studies, these included Nanodrop, Agilents Bioanalyzer and Tapestation, as well as 

Qubit. 

 Nanodrop 

All samples that were processed in the targeted sequencing experiment underwent Nanodrop 

quantification and quality control. The Nanodrop 8000 (Thermo Fisher Scientific) 

spectrophotometer was used to measure the quantity and quality of all samples. DNA 

quantification was performed using 1 μl of sample and DNA quality and purity was tested by 
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spectral scan observation and considered when a single prominent A260 peak and an ~1.8 

A260/A280 ratio was found. 

 Qubit 

The Qubit Fluorometer (Q32857, Thermo Fisher Scientific) has been used to quantify samples 

for all samples that have been selected for exome sequencing have been quantified using the 

Qubit dsDNA Broad Range Assay Kit (Q32853, Thermo Fisher Scientific) whereas the pooled 

libraries were quantified using Qubit dsDNA High Sensitivity Assay Kit (Q32851, Thermo Fisher 

Scientific) according to manufacturers instructions. Libraries were quantified and aliquoted 

appropriately to load on the sequencing machine. Finally, 5% of the samples used on the 

targeted sequencing experiment were also quantified using Qubit since the Nanodrop measures 

usually overestimates the amount of DNA present due to the fact that Qubit only quantifies 

dsDNA. This was performed in order get an estimate of the variation between Nanodrop and 

Qubit for which the average Qubit/Nanodrop measure ratio was of 0.53x. Therefore, the 

Nanodrop measurements were multiplied by 0.53 while calculating the optimal input DNA for the 

targeted sequencing experiment. 

 Bioanalyser 

Samples selected for exome sequencing were run in an Agilent 2100 Bioanalyzer system which 

provides sizing, quantitation and quality control of DNA. This was performed to ensure that the 

DNA integrity was optimal across different stages of the library preparation step before the 

samples were ready for sequencing. 

This method includes an in-chip electrophoresis where DNA molecules migrate through their 

wells and are separated based on their size. Fragments are detected using fluorescence. 

The peaks are analysed in the incorporated software (2100 expert software), where the 

fluorescence intensity is plotted against the migration time to produce electrophoregrams. The 

quantification of the samples occurs by comparing the sample peaks to the ones of the upper 

standard which is of known concentration. The two different kits used are indicated in Table 7.2 

Table 7.2: Bioanalyzer kits used for different stages of the WES library preparation quantification. 

Kit High Sensitivity DNA 1000 

Quantitative range 5-500 pg/µL 0.5-50 ng/µL 
Size range 50-7000 25–1000 

Peaks for ladder 15 13 
Lower/Upper marker 35/10380 bp 15/1500 bp 

Lot-Number 5067-4626 5067-1504 
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 Tapestation 

For the Fluidigm amplified libraries, a selection of 8 samples per plate, or 4 samples per array, 

which included harvested and barcoded products, were randomly selected for screening using 

the Tapestation 2200 and the 1000D screen tapes. Additionally, final pooled libraries were run 

in order to visualise the purity of the libraries and to estimate the variance in fragment length 

and the average length of the fragment size. A representative example is shown in Figure 7.3. 

The average length of the fragment size was used to calculate the appropriate amount of library 

that needs to be loaded on the sequencer for sequencing (see section 7.2.10). To prepare 

libraries at the optimal input that the Genomics facility requires them, 4μM, we can calculate the 

molar concentration of the libraries using the formula: 𝑀𝑜𝑙𝑎𝑟 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑛𝑀) =

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑛𝑔)𝑥106𝑥(
1

649
)𝑥(

1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑝)
) 

 

Figure 7.3: Targeted sequencing pooled library quantification. The concentration along with the average 
size of the fragments is calculated by selecting the area of interest. 

 

7.2.2 iCOGS genotyping 

A total of 200ng per sample of germline DNA from both the GLACIER and ICICLE studies was 

used for genotyping in the iCOGS platform. Samples genotyped included 3,160 ICICLE cases, 

2,210 GLACIER cases together with 5,000 ethnicity-matched controls. The cases were 

genotyped at the BRC Genomics core facility at Guys Hospital. Regarding the 5,000 matched 

controls used, these came from 4 different studies across the UK (SEARCH, BBCS, SBCS, 

UKBGS).  

The iCOGS array platform has been designed by four different consortia including the BCAC, 

with the aim of identifying individuals at higher risk of developing certain types of cancer. The 

platform utilises the Infinium array technology from Illumina where hundreds of bi-allelic markers 
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can be assessed. The iCOGS custom Illumina iSelect, contains 211,155 variants, most of which 

are single nucleotide polymorphisms (SNPs). In brief, the first step of the protocol involves 

whole genome DNA amplification for approximately 20 hours and its followed by DNA 

fragmentation, precipitation and resuspension. The resuspended DNA is then hybridised onto 

the BeadChip for approximately 17-20 hours. The following day the BeadChips are washed and 

stained, imaging is performed at least one hour after the staining to ensure that BeadChips 

have dried properly. Suboptimal imaging was observed initially in the bottom two rows of the 

BeadChips. A problem during the staining process was identified after liaising with Illumina and 

kits were replaced. Samples that failed were re-run in a new batch of replacement BeadChips. 

7.2.3 Primer design 

In order to capture the exonic portions of the CDH1 gene, exon-flanking intronic primers were 

designed using Primer3 (http://frodo.wi.mit.edu/). 

For the targeted sequencing project, primers were designed using the D3 tool that is 

incorporated on an online version of the Fluidigm website. D3s underlying algorithm is based on 

Primer3. Since this is a complex high-throughput multiplex PCR based experiment, several 

thresholds have to be optimised in order to minimize non-specific binding and primer-dimer 

generation. In this regard, repeat regions, high GC content regions, as well as regions with 

common variants were avoided when possible from primer sites. Primers were designed within 

the flanking regions of the target fragment (exons +/- 10 bp) so the product size would range 

150-200bp, including the primers, Appendix 2. A second stage of primer selection occurred 

where we excluded all common SNPs (5% MAF) based on the latest, at the time of analysis, 

dbSNP version (dbSNP_142). Universal sequence tags were added to each primer to ensure 

that a second step PCR can also occur. 

7.2.4 PCR 

Samples with suspected mutations or variants of interest were PCR-amplified for subsequent 

Sanger sequencing in order to validate or reject the initial hypothesis supporting the existence 

of a rare variant. A total of 10-100 ng of germline DNA were amplified using standard 

conditions. Three minutes of hot start at 94°C were followed by 30 cycles of 45 sec at 94°C, 30 

sec at 55°C and 90 sec at 72°C. The last step of the PCR is 10 min at 72°C and the products 

were later on stored at -20°C. For fragments failing to amplify using the standard protocol 

adjustments on the annealing temperature were made to ensure optimal fragment amplification. 

http://frodo.wi.mit.edu/
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7.2.5 Gel electrophoresis 

To ensure proper amplification before Sanger Sequencing, PCR products were electrophoresed 

on 1% TBE agarose gels stained with GelRed (Biotium) and visualised under a UV 

transilluminator.  

7.2.6 Sanger sequencing 

PCR products were initially purified using ExoSAP (New England Biolabs). Subsequently, 

sequencing reaction was performed using 3.5μl purified PCR-amplified product, 1X sequencing 

buffer (Applied Biosystems), 5pM primer, and 0.25ul of BigDye terminator v1.3 Cycle 

sequencing kit (Applied Biosystems) for a final volume of 5.25μL. Samples were then purified 

via ethanol precipitation and purified DNA products were sequenced on the ABI 3730 Genetic 

Analyser (Applied Biosystems). Sequencing data were analysed with the Sequencher software 

V4.9 (Gene Codes). The conditions that were used for the sequencing reaction were 30 cycles 

of 30 sec at 96°C, 15 sec at 50°C, and 60 sec at 60°C. 

Sanger sequencing was performed in 32 samples of individuals with bilateral lobular breast 

cancer, where all exonic portions and flanking splicing junctions of the CDH1 gene were 

amplified. Primers used to amplify the coding portions of the CDH1 gene are reported on Table 

7.3. Additionally, this sequencing method was used to validate variants identified through next 

generation sequencing, either WES or the targeted sequencing experiment. 
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Table 7.3: Primer pairs for CDH1 screening. 

Primer ID Primer Sequence 
Fragment 

length 

ECADX1F TAGAGGGTCACCGCGTCTAT 
378 

ECADX1R AATGCGTCCCTCGCAAG 

ECADX2.F TCACCCGGTTCCATCTAC 
198 

ECADX2.R TTCCAACCCCTCCCTACT 

ECADX3F TGTCCAATTTCCTAATCTCTGTGA 
300 

ECADX3R AAAACAACAGCGAACTTCTCA 

ECADX4.F CCTGAAGTATCCGTCTTGAATTG 
235 

ECADX4.R TCCCTCCCAGAGAAACAGAG 

ECADX5.F GTTGGGATCCTTCTTTACTA 
296 

ECADX5.R AAATCCTGGGTGGATGTTAC 

ECADX6F TTCCTCATCAGAGCTCAAGTCA 
248 

ECADX6R TTTGGGGTCCAAAGAACCTA 

ECADX7F GCAGCTTGTCTAAACCTTCATC 
250 

ECADX7R TCCTCCACACCCTCTGGAT 

ECADX8F GTTCCTGGTCCTGACTTGGT 
247 

ECADX8R CCATGAGCAGTGGTGACACTT 

ECADX9F AATCCTTTAGCCCCCTGAGA 
382 

ECADX9R TCTGGGAAAGTCACCCTGTC 

ECADX10F TTTTTAACTTCATTGTTTCTGCTCTC 
299 

ECADX10R TCAGTTGAAAAATCCTCACACTT 

ECADX11F ACATGTTGTTTGCTGGTCCT 
229 

ECADX11R AGGCAGCAAAGGCTCAGAT 

ECADX12F CAAGCTGCCACATTTTCTGT 
296 

ECADX12R TGGAGCAAAGTTGCCAAA 

ECADX13F TCCCCTGGTCTCATCATTTC 
300 

ECADX13R TCAAAGGCTGAGTCACTTGC 

ECADX14.F CTCTCAACACTTGCTCTGTC 
206 

ECADX14.R AGAGATCACCACTGAGCTAC 

ECADX15.F TCCAACCATAATCTATAAACTGAACA 
298 

ECADX15.R TGACACAACTCCTCCTGAGC 

ECADX16.1F AAGATGCTTTTGTCCCTTCTTC 
493 

ECADX16.1R TCTTTTGGACATCACCACCA 

ECADX16.2F CAGCTCCCTTCCCTTGAGAT 
396 

ECADX16.2R AAAAAGGCAGAGGGACACAC 

ECADX16.3F CCAGCACCTTGCAGATTTTC 
400 

ECADX16.3R CCAAGATGGGAGGATCACTT 

 

7.2.7 MLPA 

Multiplex Ligation-dependent Probe Amplification (MLPA) was performed in order to investigate 

the presence of abnormal copy number of exons in the CDH1 gene. MLPA is a multiplex PCR 

method using a probe-mix which is designed to detect deletions and duplications of one or more 

sequences in a particular gene of a DNA sample. MLPA was performed using the MRC Holland 

kit. In brief, DNA samples were amplified and PCR products were analysed on the ABI 3730 

Genetic Analyser (Applied Biosystems) using TAMRA 500 according to manufacturer’s 

instructions. Data analysis was conducted using Coffalyser.Net (MRC Holland, Amsterdam, 
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Netherlands), which allows for MLPA analysis. Data from the sequenced fragments is 

standardised and visualised using this tool to call potential exonic deletions/rearrangements.  

7.2.8 Agilent Sure-select exon capture 

Samples were prepared so a total of 3μg of germline DNA was used as input for WES. The 

library preparation step was performed using the target enrichment capture SureSelectXT2 

Human All Exon V4 from Agilent. One library was prepared for each individual sample that was 

exome sequenced.  The Qubit system was used to quantify genomic DNA before library 

preparation. The initial DNA fragmentation or shearing step, was performed using sonication 

with Covaris E220. The Covaris instrument was degassed for least 30 minutes before use, and 

the chiller temperature was set between 2°C to 5°C to ensure that the temperature reading in 

the water bath displays 5°C. A tapered pipette tip was used to slowly transfer 130µl of DNA 

sample through the pre-split septa of the Covaris microTUBE. The target DNA fragment size 

after shearing is 150 to 200 bp. Once the shearing was completed, DNA was removed while 

keeping the snap-cap on, and inserting a pipette tip through the pre-split septa and slowly. 

Subsequently, the sheared DNA was purified using AMPure XP beads. The quality of the DNA 

was assessed using the 2100 Bioanalyzer and the DNA 1000 assay. The next step included 

repair of the ends of the DNA fragments, using the SureSelect XT Library Prep Kit ILM, followed 

by another DNA purification using AMPure XP beads. Subsequently, the 3 end of the DNA 

fragments were adenylated and libraries were once again purified using the AMPure XP beads. 

This purification was followed by the ligation of the paired-end adaptor. This step can produce 

varying results, based on the quality and quantity of the input DNA. Usually five cycles produced 

adequate DNA yield for the subsequent capture without introducing bias. This specific 

amplification step is of great importance as several different genomic attributes, such as GC 

content or repetitive sequences increase the difficulty of region amplification, which may 

therefore be underrepresented in the final sequencing data. This constitutes a common feature 

of high throughput experiments where amplification of these regions tends to fail or amplify sub-

optimally for the majority of the samples used under the same experimental conditions. The 

libraries were finally purified with AMPure XP beads. In order to assess the quality and quantity 

of the libraries, the 2100 Bioanalyzer instrument and DNA 1000 assay were used. The 

electropherograms were inspected and showed a distribution of DNA fragment size peak of 

approximately 225 to 275 bp. The concentration of the library DNA was determined by 

integrating under the peak. 



167 
 

7.2.9 Fluidigm Access Array 

The Access Array technology from Fluidigm has been selected for the targeted sequencing 

project. This method allows for simultaneous amplification of all different fragments of interest 

utilising microfluidics technology. The objective of this protocol was to create an amplicon library 

of the regions of interest, making them suitable for next-generation sequencing as it allows the 

interrogation and identification of single nucleotide substitution variants as well as small indels. 

This is an amplicon-based method where different primers are designed to capture the target of 

interest and regions are PCR-amplified in micro-chambers. 

The principle of Fluidigm Access Array is based on a two-step PCR amplification process. 

Approximately 100ng (range between 50ng-250ng) of high quality germline DNA has been used 

to amplify samples from the GLACIER and the ICICLE studies on a custom made targeted 

sequencing panel from Fluidigm. This comprised 573 amplicons translating to 218 exons of 20 

genes being amplified in a core of an array for 48 samples each and for a total of 97 arrays, 

which translates to 27,504 different PCR reactions being performed concurrently.  

The sample mix for the initial PCR amplification includes 3μl of diluted DNA sample  (ranging 

between 50 and 250ng), 0.5μl of 10X FastStart High Fidelity Reaction buffer (without MgCl2), 

0.9μl of 25mM MgCl2, 0.25μl DMSO, 0.1μl of 10mM PCR Grade Nucleotide Mix, 0.05μl 5U/ul 

FastStart High Fidelity Enzyme Blend, and 0.25μl 20X Access Array Loading Reagent. Note 

that all samples, primers, and mixes were vortexed and centrifuged appropriately to allow for 

homogeneous delivery of the reagents into the micro-chambers since there is no active mixing 

in the array.  

The Fluidigm designed primers were supplied in single-plex with forward and reverse primers 

combined, these are multiplexed according to suppliers instruction to achieve optimal efficiency, 

a total of 48 sets of up to 13 different pairs of primers were used in this project. Target-specific 

primers incorporate common sequence tags, Figure 7.4 attached to the 5 and 3 ends, Appendix 

2. These sequences allow the second PCR to occur as they provide a binding site for sample-

specific primers, Figure 7.4. The latter primers not only contain the complementary sequence of 

the common sequences but also sample specific barcodes and paired-end Illumina sequencing 

primer-annealing sites. 

A 5μM multiplexed primer stock plate is prepared according to manufacturer’s instructions and 

is followed by the preparation of the 20x primer plate by adding 20μl of the previously diluted 

5μM Multiplexed primer, 5μl of 20x Access Array Loading Reagent, and 75μl of 1xTE. This 
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dilution results in a primer mix with a final primer concentration of 1μM from which 4μl were 

loaded into the primer inlets on the right hand side of the arrays. Once the primer mix and the 

sample mix were loaded into the array, the latter was loaded into the IFC Controller AX for the 

“Sample load” process which distributed all mixes to the microchambers for the amplification 

step to occur.  

The described sample loading process was followed by the transference of the arrays into the 

FC1 Thermal Cycler (Fluidigm) onto the vacuum controlled surface. Application of vacuum on 

the array is crucial as it allows the maintenance of homogeneous conditions across the surface 

of the different reaction chambers along the 2 hours and 20 minutes of the amplification step. 

Upon completion of the thermal cycling program the “harvest” procedure was performed on a 

post-PCR IFC Controller AX, where all amplified samples from the chamber were driven back to 

the sample inlets and transferred to a 96 well plate. The final volume of the harvested product 

was approximately 10μl. 

A fraction of these samples corresponding to different arrays underwent an amplification check 

using the D1000 screentapes on the Tapestation. In this regard, harvested products were 

diluted 1:100 in 1x TE, this step is of great importance since excessive amount of DNA in the 

following step could inhibit the reaction or cause biased amplification towards specific 

fragments. Consequently, this could lead to a non-uniform representation of the fragments 

during sequencing. 

During the barcoding step and using the common sequence as a bridge, the sequencing primer 

sites as well as the sample specific barcodes for multiplexing during sequencing were 

introduced. The barcodes used are shown in the description of Appendix 2. The components 

used in the barcoding step include 1μl of the diluted harvested libraries, 2μl 10X FastStart High 

Fidelity Reaction buffer (without MgCl2) (Roche), 3.6μl 25mM MgCl2, 1μl DMSO, 0.4μl 10mM 

PCR Grade Nucleotide Mix, 0.2μl 5U/ul FastStart High Fidelity Enzyme Blend, 7.8μl PCR 

certified water, and 4μl of the barcode library primer, leading to a total volume of 15μl. 

Amplified products were inspected in Tapestation to verify that the fragments were of the 

expected range, with no primer dimers or artefacts of unwanted size. A shift of approximately 60 

bp was observed in all samples when comparing the harvest of the first amplification and the 

product of the barcoding PCR. This corresponds to the addition of the sequencing primers and 

barcodes. 
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The final step of this protocol included a magnetic bead clean-up step where 2μl of each sample 

from each 96 well plate were pooled together into one Eppendorf tube. A total of 12μl of the 

pooled library was then mixed with 24μl of 1xTE buffer, and 36μl of Ampure XP beads 

(Beckman Coulter). The clean-up protocol involved two washes with freshly made 70% Ethanol, 

and a final elution of 40μl in 1xTE buffer. This was followed by quantification of the purified 

libraries using Qubit High Sensitivity Assay Kit and their average length size was measured in 

Tapestation using the D1000 screentape. The two values obtained in each of the readings were 

then used to calculate the final Molar concentration in order to prepare each library at 4nM. The 

next step involved the pooling of 10 pooled libraries, note that at this stage each library 

corresponds to 96 samples, which leads to a multiplexing of 960 individual samples per final 

quantified library. 

 

Figure 7.4: Representation of the two step PCR reaction with sizes of different amplicon components. PE-
1 and PE-2 correspond to sequences that will bind on the sequencing flow cell, CS-1 and CS-2 are the 
common sequences that are used as bridges to allow for the initial PCR to be used as a template using 
universal primers, TS-F and TS-R correspond to the target specific primers, and the target corresponds to 
the region of interest. Numbers on top of each fragment correspond to the base-pair length of each 
component. 

A major key point to be taken into consideration while performing and planning this protocol is 

that sample input should be carefully selected since too little DNA can lead to clonal 

amplification whereas too much DNA can lead to PCR inhibition. Additionally, pipetting errors at 

any stage could lead to preferential amplification of specific primer sets or inconsistent 

amplification in general. Ensuring there are no bubbles in all of the array inlets while loading the 

sample mix and the primer mix on the arrays is also crucial. If any bubbles are observed, they 

can be removed using a microlance. Another key consideration is that there is no active mixing 

within the array, therefore it is important to ensure that all reagents and mixes have been 

adequately vortexed and briefly centrifuged prior to pipetting to the array. Finally, an incorrect 

proportion of beads during purification may lead to loss of product, or failure in primer dimer 

removal. Furthermore, it is critical to remove the Ampure XP beads from the fridge to equilibrate 

at room temperature for at least 30mins and also prepare a fresh stock of 70% Ethanol 

whenever the clean-up step is performed. 
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7.2.10 Sequencing by synthesis 

Illuminas platforms (i) MiSeq and HiSeq2500 were selected for sequencing the pooled libraries 

of the targeted sequencing and (ii) GAIIx and HiSeq2000 for the samples that underwent whole 

exome sequencing. All platforms are based on the same principal, sequencing by synthesis 

chemistry. In brief, once the libraries are amplified and bound to the flow cells clusters are 

generated. Subsequently, several different rounds of single nucleotide extension occur, each of 

which is accompanied by laser scan to identify each incorporated base. 

There are two different sequencing methods, namely the single read and the paired end read. 

Here, we performed the paired end read protocol where there is higher confidence on the reads 

since each fragment is being scanned twice, once from each end. Therefore the outcome reads 

has their pair assigned which gives higher confidence to a read being mapped appropriately or 

highlight errors if paired reads do not map on the same chromosomal positions. This 

sequencing method is based on reversible dye-terminators that enable the identification of 

single bases as they are introduced into DNA strands. This technique was used both for our 

whole exome sequencing project and the targeted cancer panel amplicon based sequencing. 

There are four main elements or main procedures in Illumina sequencing by synthesis 

technology. The first one is the library preparation step where the regions of interest are 

amplified and attached to special adaptors on both 5 and 3 ends in order for them to be 

compatible with sequencing. Library preparation may follow one of two different methods with 

distinct principals that lead to amplification of specific target regions. One of the methods is 

called target enrichment whereas the other is amplicon based. Both of these approaches have 

been used in this project, the target enrichment for whole exome sequencing and the amplicon 

based for the targeted cancer panel sequencing. 

Library preparation and purification is then followed by cluster generation. In a brief description, 

the DNA molecules bind on complementary sequences on the flow cell, the molecules bend to 

form a bridge on the flow cell and attach on a second complimentary oligo, the reverse strand is 

synthesised using a polymerase, the two strands are then straightened and ready for another 

round of amplification. This procedure occurs in close proximity on the flow cell and therefore 

leads to clusters of thousands of amplified clones from the same molecules. Once the bridge 

amplification is finished all the reverse strands are washed off and removed from the flow cells 

surface. The next step includes the incorporation of single nucleotides per sequencing read and 

the record their fluorescent emissions. Each of the four different nucleotides have their own 
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unique fluorescent label and when excited they emit a specific signal that is captured by a laser 

camera. These emissions are captured and converted to base calls that are later combined to 

form the sequencing reads. 

One of the advantages of SBS is that the base calls are accompanied by intensities from the 

excitation and therefore can be quantified. It has been shown that this method delivers the 

highest proportion of high quality base calls (Q>30). Depending on the reagents and equipment 

used, the read length can vary between 100 up to 250 bases. For exome sequencing the read 

length selected was 2x100 bp. The 2x corresponds to the fact that the sequencing is paired end 

and therefore each fragment is sequenced from both ends irrespective of how long it is. For the 

targeted sequencing project, the read length was 2x150 for the MiSeq and 2x125 for the 

HiSeq2500. 

It is important to calculate the read length appropriately and ensure that all regions in the 

fragments are captured by at least one read. Therefore, all fragments designed for the targeted 

sequencing project were ≤ 200 bp and the sequencing length was of 125 to ensure an optimal 

coverage across all regions by at least read 1 or read 2 if not from both. Additionally, the 

nucleotides, apart from the fluorescent tags, have reversible 3 blockers that will not allow the 

incorporation of more than one base per read. Each sequencing cycle consists in the 

incorporation of a base and a scan of the flow cell that will convert the emissions to base calls 

and all non-incorporated nucleotides are washed off. A step where the blockers are removed is 

also included to allow for the next read or cycle to occur. This process is repeated as many 

times as the reagents allow, or until the DNA molecule is completely sequenced. Once read 1 is 

finished, a similar bridge amplification occurs but this time the forward strands get washed off, 

leaving the reverse strands to be sequenced. Before the initiation of read 2, the index read is 

performed. This is a step that allows for demultiplexing samples that have been pooled on the 

same lane of the sequencing flow cell. 

 MiSeq 

As a pilot sequencing experiment, the first 94 samples were sequenced on a MiSeq to assess 

the uniformity of coverage across different samples and amplicons. In this regard, 6pM of 94 

samples pooled library, plus a positive control and a negative control, were run on MiSeq as 

part of a Pilot study. Samples were run at 150 bases paired-end run on an Illumina MiSeq 

system (v2 reagents). The optimal cluster density for MiSeq system, i.e. the number of clusters 

per square millimetre for the run on a flow cell, is approximately 800K/mm², and the cluster 
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density achieved for this pilot experiment was 630 ±14K/mm2. The successful outcome of this 

experiment, Figure 7.5, allowed us to proceed with the experiment and the remaining samples 

were processed and sequenced on a HiSeq2500. 

 

Figure 7.5: Coverage graph from MiSeq pilot experiment. For each sample (x axis) we achieved high 
coverage (at least 200x for 80% of the target capture, green). There was one sample that failed to amplify 
apart from the negative control. 

 HiSeq 2500 

All samples were sequenced on HiSeq2500 as 125 bases paired-end run (v4 reagents) using 

9pM of pooled library. The expected average coverage was of 800X. The optimal cluster density 

for a HiSeq2500 run is estimated to be 950 K/mm2. Table 7.4 shows the cluster density that 

was achieved for each of the 5 pools that were sequenced on the HiSeq2500. The proportion of 

high quality bases is also indicated on the same table with more than 95% of the sequenced 

data having Q>30. The “Q” score is a Phred scaled score that indicates the probability that a 

given base is incorrectly called during sequencing. A score of Q=30 corresponds to a probability 

of incorrect call for a base of 0.001. Some basic sequencing metrics are indicated in Table 7.4. 

Information on cluster density and total number of reads and high quality reads per lane is 

reported in Table 7.5. 

Table 7.4: Summary statistics on basic quality control metrics for targeted sequencing experiment. 

 
Reads 

Raw clusters per 
lane 

Perfect index reads 
% Q30 
Bases 

Mean Quality 
Score 

1st IQR 379,659 0.09 98.21 94.9 35.82 

Median 433,992 0.1 98.41 95.33 35.9 

Mean 457,607 0.1 98.16 95.36 35.91 

3rd IQR 502,337 0.11 98.57 96.09 36.06 
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Table 7.5: Information on cluster density and reads for the 5 HiSeq2500 lanes that were used for 
sequencing the amplified libraries of the targeted sequencing experiment. 

Lane Tiles 
Density 
(K/mm2) 

Clusters PF 
(%) 

Reads 
(M) 

Reads 
PF (M) 

% ≥ 
Q30 

5 96 731 +/- 38 97.89 +/- 0.72 203.01 198.71 98.37 
6 96 916 +/- 46 97.05 +/- 0.82 254.52 247 97.66 
7 96 932 +/- 46 96.87 +/- 0.83 258.99 250.88 97.58 
8 96 713 +/- 39 97.90 +/- 0.73 198.08 193.91 98.38 

8.2 96 853 +/- 44 97.0 +/- 0.8 237.06 229.92 96.6 
 

7.3 Statistical methods 

7.3.1 Logistic regression 

Logistic regression models have been used to assess possible associations between genetic 

loci and specific subtypes of breast cancer. For the genotyping data that was on the iCOGS 

platform we performed the analysis using plink. For imputed data the logistic regression models 

were built in snptest. 

We also investigated potential GxE interactions introducing multivariate models taking into 

account genetic and environmental factors, the interaction term, and age as an additional 

covariate. These models were run on SAS version 9.4. 

Logistic regression models were deemed more appropriate to use since they allow the inclusion 

of more than one explanatory variable (dependent variable) and those can either be 

dichotomous, ordinal, or continuous. This model also provides a quantified value for the 

strength of the association adjusting for other variables (removes confounding effects). The 

exponential of coefficients correspond to odd ratios for the given factor. The major advantage of 

this model as opposed to a Cochran-Armitage (CA) association test is that it is suitable to 

construct odds ratios and confidence intervals since it can directly measure the effect size of 

genotypes to phenotypes. On the contrary, CA test measures the difference in counts between 

the cases and the controls with respect to the average of risk alleles in each group [279]. 

7.3.2 Fishers exact test 

Fishers exact test has been used in a case-control manner for gene based rare variant analysis. 

One sided test was selected since the expectation was enrichment rather than deficit of variants 

in cases over controls. The Fishers exact test seems more appropriate in rare variant 

association studies (RVAS) since it is more accurate than other tests when the expected 

numbers are relatively small which is true in the instance of rare variants.  
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7.3.3 Mann-Whitney U-test 

Mann Whitney U-test has been used when comparing continuous data such as age of 

diagnosis. This test was preferentially selected over the traditional students t-test since it is non 

parametric and does not rely on assumptions such as normal distribution of the data. 

7.3.4 Multiple testing corrections 

Bonferroni correction has been used in several different analytical processes during the course 

of this project. In GWAS the gold standard is to use the genome wide significance cut-off of 

P<5x10-8. It has been estimated that there are approximately one million independent loci 

across the genome. A Bonferroni correction for 1 one million markers has led to the usage of 

the genome wide significance by almost all scientific genetic community. The Bonferroni 

correction corresponds to the division of the α by the number of tests. For α=0.05 and 5 different 

tests, we can correct for 5 tests by dividing α by 5 and the new adjusted significance threshold 

will be 0.01. 

7.3.5 Power calculations 

In order to estimate the appropriate sample size to allow the identification of rare variant 

association during the phase II targeted sequencing project, a power calculation was 

conducted. In a power calculation several factors are taken into account to estimate the power 

of identifying true signals. The power of a study is defined as the probability of identifying a true 

association and corresponds to one minus the probability of falsely accepting the null 

hypothesis of no association. This can be translated to one minus type II error where type II 

error = b and 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑏. The factors included in the model are the minor allele frequency 

(MAF) of the variant of interest, the expected effect size (OR), the prevalence of the disease, as 

well as the significance threshold α. Due to the nature of the project, aiming the investigation of 

rare variants hypothesising that variants on the same gene with similar features might have the 

same effect, we can replace the MAF on the model with the combined allele frequency (CAF) of 

aggregated rare variants with similar characteristics, protein truncating or predicted to be 

deleterious, and estimate the power to detect gene based association. 

Using the Bonferroni corrected threshold of significance (P=0.0036), and the sample size that 

we have (approximately 2,300 cases and 1,600 controls), we obtain enough power (>97%) to 

detect any association, for highly penetrant with OR=10 and combined allele frequency of 

0.01%. In the occasion of more common variants with CAF=0.5% and moderate penetrance 

with OR=3, we have 87% power to detect association [280]. 
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7.4 Analysis/ Bioinformatics tools 

7.4.1 Genotypic data analysis 

Several different tools and methods have been used to analyse the genotyping data set that 

was generated from the iCOGS custom Illumina arrays. The initial scanned fluorescent signals 

are converted into genotypes and undergo quality control. Furthermore, statistical analysis 

allows the evaluation of possible association of candidate markers with specific breast cancer 

subtypes. The process that was followed will be thoroughly described in this chapter. 

 Genome Studio 

Initial quality control of the data was performed using genome studio (Illumina). The raw 

scanning files (.idat) were loaded into genome studio where all quality control metrics were 

investigated to ensure these were within the acceptable thresholds. Once the whole data set is 

loaded, genotypes were called using Illuminas GenCall algorithm (embedded on Genome 

Studio). Moreover, Genotypic statistics such as call frequency and call rates were calculated. 

Sample and variant quality control can occur both in Genome Studio and after the genotypic 

data has been extracted in a .ped and .map format. Initial QC occurred in Genome Studio with 

four major filtering criteria: (i) Gen-train score >0.4, which corresponds to how well the three 

genotypic clusters are separated from each other, with values ranging from 0-1, (ii) call 

frequency > 95%, which corresponds to the proportion of samples that have been called for 

each individual variant, (iii) call rate > 95%, which corresponds to the proportion of variants that 

have been successfully called for each individual, and (iv) the Gencall rate > 0.25, which relates 

to individual genotypes. Gencall rate ranges from 0-1 and corresponds to how far a genotypic 

point is from the centre of the genotypic cluster that it belongs. 

 Plink 

Plink (v1.07) was used for additional quality control of the genotyping data [281]. In more detail, 

the following criteria were used in order to exclude variants, MAF, call frequency and deviation 

from Hardy-Weinberg equilibrium (HWE). In addition, individuals were excluded based on low 

call rates. 

Recoding of the genotyping data into dosage was also conducted in Plink using the –recode-A 

command, additionally this toolset was used to conduct the association study using the final 

individual data sets and variants that passed all filtering criteria. 
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The logistic model used included the disease phenotype as a response variable (case control), 

individual variants as predictor variables, and the first five PCs, after excluding ethnic outliers, 

as covariates in the model to correct for any underlying residual noise. 

Genomic inflation factor was calculated to ensure it remained under the acceptable threshold of 

λ<1.10. The platform used was a custom chip designed by cancer consortia, including BCAC, 

and is enriched for variants that already predispose to different types of cancer. In this regard, in 

order to assess inflation we selected a subset of SNPs that have been previously selected by 

the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the 

Genome (PRACTICAL) in an attempt to exclude regions that have already been associated with 

breast cancer and have been selected for fine-mapping. 

QQ-plots were also generated in order to visualise the distribution of association and inspect 

possible deviation of the observed associations compared to the expected. By comparing the 

QQ-plots that have been generated using the final data set of variants and the one that has 

been generated using only SNPs selected by PRACTICAL, dramatic genotyping platform 

enrichment for variants that are associated with breast cancer becomes apparent. 

In order to identify individuals that are related we conducted a cryptic related analysis and 

excluded one individual for every pair that had a PIHAT >0.185. That led to the inclusion of 

individuals with relatedness more distant than second degree in the analysis. 

 EIGENSTRAT 

PCA has been utilised in order to identify residual factors or vectors that might influence the 

case control analysis. This method is based on reducing dimensionality of the data and 

identifying and quantifying the key vectors that appear to influence the data. The software used 

for this analysis was EIGENSOFT from EIGENSTRAT (v3.0). This method was applied for the 

common variant genotyping analysis as well as for the rare variant case control analysis based 

on exome sequencing. For both studies, a subset of uncorrelated common variants (r2<0.5, 

MAF<5%) were selected. The most significant vectors generated by the initial PCA correspond 

to ethnic differences. Samples were excluded if they failed to lie within the European cluster. In 

terms of the common variant genotyping project, genotypic data on three HapMap2 populations 

(CEU, JPT_CHB, and YRI) were used as a reference to ensure samples were clustering within 

the expected population. The first five PCs or Eigenvectors were used as covariates in the 

logistic regression model that was used to identify possible associations of common variants 

with different breast cancer subtypes. 
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7.4.2 Imputation 

An imputation step was also undertaken to fine-map potential loci predisposing to DCIS. In brief, 

imputation exploits linkage disequilibrium properties of variants that are more likely to be 

inherited together and with this information it estimates the genotypes of variant sites that are 

not captured by the genotyping platform. As previously mentioned, iCOGS custom array 

constituted the genotyping platform used and it comprises more than 211,000 variants. By 

employing the described imputation methodology, we were able to impute genotypes of more 

than 2,000,000 variants across the genome using the phase I of the 1000 genomes version 3 as 

a reference study population. 

 SHAPEIT 

Shapeit (v2.r644) was used to reformat the genotypes and generate haplotypes that can be 

compared to the reference haplotypes downstream [282]. Using Shapeit allows not only phasing 

of whole chromosomes, including chromosome X but also phasing of individuals with any level 

of relatedness, preparing the input for the imputation process. The missingness in regards to 

individuals and variants was set to 5%. 

 Impute2 

The imputation step was conducted utilising the Impute2 tool [283]. Once all samples had been 

phased using Shapeit genotypes were imputed based on linkage disequilibrium properties. 

Including the -use_prephased_g option allows for imputation using pre-phased haplotypes. 

Regions were split into 578 chunks of 5Mb for computational reasons. Imputed genotypes were 

subsequently merged per chromosome. 

 SNPtest 

The output of the imputation is probabilistic, meaning each variant will not get called as 

homozygous or heterozygous but will instead get three probability values for each of the three 

possible genotypes (for bi-allelic markers). A genetic tool that has been designed to handle this 

format of input data in order to conduct association studies is snptest (v2.4.1) [284]. The model 

used is very similar to the one used for the genotyped variant association studies, where a 

logistic regression model is built and each marker is tested individually taking into account the 

same five PCs as covariates. Due to the large number of tests, each chromosome was 

individually tested and output files were stored separately. Variants with P<0.05 were then 

combined in a final output file. 



178 
 

7.4.3 Sequencing data analysis 

Our attempts at identifying rare variants predisposing to breast cancer were focused on next 

generation sequencing and, more specifically, WES. The top candidate genes were also 

followed up in a phase II study where they were thoroughly interrogated using a custom made 

gene panel, using a targeted sequencing method. The sequencing method that has been used 

for both phases of the study was the sequencing by synthesis (SBS) provided by Illumina. The 

data processing, quality control and analysis, along with the different tools used, will be 

described in depth along this chapter. 

 Btrim 

Btrim was the tool chosen to trim the sequences from their 5 end, which constitutes a very 

important procedure in amplicon-based experiments [285]. Since there is a PCR amplification 

step, the primer sites do not correspond to the genomes of the individuals but to the predefined 

primers. Therefore it is crucial to remove those bases from the sequencing reads since they 

influence the final calls. To overcome this Btim can take a set of sequences that correspond to 

the primers and remove them from each 5 end of the sequencing reads. Read 1 and read 2 are 

getting treated separately, and therefore are getting desynchronised, so a second Btrim 

command should be used to synchronise the reads again in order for these to be paired. 

 Novoalign 

Once the primer sites had been trimmed from the 5 ends of the reads, each read was aligned to 

the reference genome (http://www.novocraft.com). The GRCh37 version of the genome has 

been used as a reference. The tool to perform the alignment was Novoalign. Gap opening 

penalty=65 and gap extension penalty=7 thresholds were applied. 

 Picard tools 

The AddOrReplaceReadGroups command from Picard tools (v1.74) was used to add the meta-

information in each .bam file (https://github.com/broadinstitute/picard). Additionally, Picard tools 

have been used to convert the mapped (.bam) files downloaded from the TCGA to raw 

sequencing format (.fastq) using the SamToFASTQ command, this step is crucial in terms of 

data homogeneity. Moreover, the downloaded .bam files from TCGA were converted back to 

.fastq files, this step allows us to perform the alignment as previously described in Section 

7.4.3.2. 
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 Bedtools 

In order to assess the proportion of the reads that have been mapped to the region of our 

interest, Bedtools (v2.17.0) has been used [286]. The coverageBed command from Bedtools 

also provides information on the exact depth of coverage for each specific region, and therefore 

apart from average coverage, and percentage of target region covered by a certain depth, we 

can identify the proportion of a gene that has been captured efficiently at a certain cut-off. Using 

Rs library ggplot2, we can visualise the coverage data in the form of a histogram per target 

region incorporating data across all individuals. We achieved at least 20x for 90 per cent of the 

capture region for 4536 out of 4599 samples (98.6%), Figure 7.6. 

The coverage achieved for the regions of interest was satisfactory, with more than 97% of the 

target region being captured by at least 20 reads on average per sample. The mean coverage 

of our target region was 803 reads on average across all samples. There were specific 

amplicons that failed to amplify, and that pattern was consistent across the majority of the 

samples. A list of amplicons that failed to amplify is reported in Table 7.6. 

Table 7.6: Amplicons failed to amplify during the targeted sequencing project. 

Amplicon ID Exonic region 
Amplicon 

size 
% GC Comment 

ATRIP_t1_1 chr3:48488240-48488506 176 77 High GC content 

ATRIP_t1_2 chr3:48491465-48491586 178 78 High GC content 

BRCA1_t6_5 chr17:41251782-41251907 195 44 
Designed without SNP 
and repeat annotation 

CDH1_t1_1 chr16:68771309-68771376 200 71 High GC content 

CDH1_t12_1 chr16:68855894-68856138 199 47 
 

CHEK2_t1_1 chr22:29130381-29130719 191 47 
Primers designed 

within a repeat region 

CHEK2_t1_3 chr22:29121221-29121365 185 58 
 

IDE_t16_1 chr10:94235631-94235761 192 26 
Primer designed within 

a repeat region 

IDE_t24_3 chr10:94215323-94215410 195 35 
 

MME_t4_2 chr3:154834258-154834358 182 33 
 

MME_t5_1 chr3:154834443-154834558 198 30 
 

PALB2_t13_3 chr16:23614770-23615000 200 41 
 

PALB2_t4_21 chr16:23646173-23647665 180 21 
 

SRA1_t1_e2_3 chr5:139936722-139937047 191 65 
 



180 
 

 

Figure 7.6: Completeness of coverage across all samples for the whole target region incorporating 
genomic locations across 20 genes. 

 Samtools 

Using Samtools (v0.1.18) -view command, the .sam files which are the output of the alignment 

are converted to the binary format .bam for computational efficiency [287]. There are two main 

algorithms used in this project for variant calling. One of them is the Samtools algorithm with the 

-mpileup command where each sample is getting called individually and the final data is later on 

combined for the statistical analysis (see commands). Samtools has been used for variant 

calling and in particular the mpileup command. Several quality metrics were taken into account 

when calculating variants that pass the filtering criteria. Variants were filtered using the 

vcfutils.pl varFilter command and some of the default settings altered to accommodate the 

particularities of the targeted sequencing project which is amplicon based. The minimum read 

depth was increased to 10 from the default value which was 2. We reduced the threshold of the 

minimum number for a single nucleotide substitution to be within a certain number of bp around 

a gap to be filtered. The default was 3 but this was altered to 0. The strand bias filter was also 

removed since we expect strand bias in our sequencing experiment. The expected strand bias 

is due to the fact that not all regions are covered by both the forward and the reverse primers 

(which correspond to read 1 and read 2), due to the fact that the amplicons are up to 200 bp 

whereas the sequencing reads are 125 bp. 

 GATK 

The second variant calling approach followed is using GATKs algorithms (v3.2-2) where each 

sample is initially called individually but later on combined using a multi-sample calling algorithm 

[288]. It employs the haplotype caller from GATK in conjunction with the joint genotype caller 

that allows for multi-sample calling. This approach could be more appropriate for statistical 

evaluation of variants where each variant position is compared against all other samples. The 

statistical outcome of this approach is more accurate for relatively common variants. Apart from 
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calling a variant or not at a certain position, this algorithm gives information on whether that 

position is captured for each sample. Therefore, the statistical analysis can include only 

individuals that each position has been appropriately covered. This method has the advantage 

of investigating variant and non-variant positions across all samples in a data set which allows 

for more accurate genotype calls [289]. 

 VCFtools 

A filtering step of the vcf files can occur using vcftools (v0.1.14) where we can redefine the 

target region as well as specific quality metrics such as the minimum base quality allowed for a 

variant to remain in the final called variant list [290]. The minimum genotyping quality was set to 

20 and minimum read depth to 10. 

 Annovar 

Variants that have fulfilled all filtering criteria in terms of quality control metrics were annotated 

using the Annovar tool (Apr_2015) [291]. Annovar has several different built in databases 

incorporated and allows for different annotations. These annotations can be separated by their 

type and can include genomic reference, gene based annotations, variant type annotations, 

population frequencies, but also pathogenicity prediction scores. In brief, the annotations used 

were gene based; variant type and class was assessed including the nucleotide and amino-acid 

change. Variant frequency on the European population was also annotated using three different 

sources (1000 genomes, ESP, ExAC) that will be discussed downstream on section 7.4.6. 

Finally, variant deleteriousness was assessed using prediction scores including CADD, DANN, 

SIFT, and two different versions of PolyPhen2. There are other alternative methods of 

annotating the variants such as the Variant Effect Predictor (VEP) from ENSEMBL and the 

SnpEff from the GATK but the Annovar method has already been established in our research 

group and since it contains all the information that was necessary to conduct these studies and 

annotate the variants, it was used in preference compared to the other methods. 

 Variant filtering 

Variants that were called by both variant callers (GATK, Samtools) were used for the targeted 

sequencing data analysis in order to minimise the number of false positive calls. Variants were 

further filtered based on read depth (DP), quality control score (QC), and genotypic quality 

(GQ). All variants with DP<10, QC<20, or GQ<20 were excluded from the analysis. 

Furthermore, variants were filtered according to their class. Synonymous variants were 

excluded, along with intronic variants that are more than two base-pairs apart from the splice 
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junction. Frameshift indels, stop-gain, stop-loss and splicing variants were considered protein 

truncating whereas non-synonymous variants were considered protein altering as per Table 7.7. 

Table 7.7. Variant type definitions and descriptions. 

Variant class Variant type Description 

Missense/ non-synonymous Protein altering 
A single nucleotide substitution that 
leads to an amino-acid substitution 

Stop-gain Protein truncating 
A single nucleotide substitution that 

leads to the introduction of a premature 
stop codon 

Stop-loss Protein truncating 
A single nucleotide substitution that 

leads to the loss of the wild type stop 
codon 

Frameshift indel Protein truncating 
An insertion or deletion of a number of 

nucleotides that leads to a frame-shift of 
the amino-acid sequence  

Non-frameshift indel Protein altering 
An insertion or deletion of a number of 
nucleotides that leads to the addition or 

deletion of a number of amino-acids  

Splicing Protein truncating 
A single nucleotide substitution in the 
essential splice site 1 or 2 nucleotides 

adjacent to the splice site 

Synonymous Silent 
A single nucleotide substitution that 
leads to the same amino-acid being 

encoded 

 

 KING 

In terms of the exome sequencing data set, cryptic relatedness analysis was conducted and a 

kinship matrix was generated. The pairwise relatedness matrix was constructed using the KING 

tool [292]. This method generates pairwise relationship values amongst every pair of samples in 

the data set. The outcome kinship coefficient (KC) values correspond to duplicates/monozygotic 

twins (KC>0.354), first degree relatives (0.177<KC<0.354), second degree relatives 

(0.0884<KC<0.177), third degree relatives (0.0442<KC<0.0884) and less than third degree 

(KC<0.0442). For every pair of samples with a KC>0.0884 one sample was randomly removed. 

A set of 9,569 common uncorrelated variants was extracted from the WES data and was 

reformatted into .map and .ped format to be used as an input for the relatedness analysis. The 

same set of variants was used for the PCA with regards to WES data. 

 EPACTS 

Efficient and Parallelizable Association Container Toolbox (EPACTS) is a framework that 

enables gene based or single variant association using next generation sequencing (NGS) data. 

Gene burden methods test for association of a gene with a disease by examining whether a 

particular class of alleles in a gene is enriched or depleted in cases versus random controls 

from the general population. Using EPACTS (v3.2.3) and applying a Fishers exact test we 
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conducted gene burden tests under the dominant model of inheritance. In order to test for 

association of a particular class of variants in a gene with the phenotype of our interest, a 

threshold cut-off of MAF<0.01 has been used. Due to the nature of breast cancer, we expect 

enrichment and not deficit of damaging alleles in our cases versus the controls, which allows 

using a one-tailed chi square test. The Fishers exact test seems more appropriate test in RVAS 

since it is more accurate than other tests when the expected numbers are relatively small such 

as in the instance of rare variants. 

7.4.4 Prediction tools 

One of the key challenges in variant identification and prioritisation in clinical genetics is the 

separation of variants with a suggestive effect on the genes function from those that are more 

likely to be neutral and have no significant effect. Several prediction tools have been developed 

over the last year in order to prioritise variants and to assess a score of potential 

deleteriousness on each variant. Different algorithms use different features such as evolutionary 

tolerance, structural similarities in terms of amino acid changes, and others. The prediction tools 

that have been used in this project will be briefly described separately. 

 SIFT 

SIFT is an online tool that has been developed over a decade ago and is used in genetics to 

assess potential deleteriousness for non-synonymous variants [293]. Their algorithm is based 

on how evolutionary tolerant a variant is. Variants in regions that are highly conserved amongst 

different species are more likely to have a larger effect on the genes function. A variant with a 

SIFT score of <0.05 is predicted to be deleterious. 

 Polyphen2 

Another tool that has been used is Polyphen2 [294]. This tool also performs predictions for non-

synonymous variants. This algorithm is heavily dependent on structural changes that a variant 

might cause to the protein. It takes into account the amino-acid similarities and differences and 

scores variants according to the expected impact of the amino-acid change. Two different 

databases of Polyphen2 were used, with one of them focusing on rare “disease causing” 

variants, and the second one scoring variants for an “effect on genes function”. The thresholds 

for deleteriousness are slightly different between the two databases even though both 

databases use a spectrum of scores that range between 0 and 1. 

HVAR is used for diagnostics of Mendelian diseases and variants with a score higher than 

0.909 are considered probably damaging. The HDIV database is used for evaluating rare 
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variants at loci involved in complex diseases and variants with a score higher than 0.957 are 

considered probably damaging. 

 Combined Annotation–Dependent Depletion (CADD) 

CADD is a recently developed tool that predicts the deleteriousness of all possible single 

nucleotide variants as well as small indels that could occur in the human genome [295]. The 

algorithm is based on a support vector machine (SVM). It has two main advantages over the 

majority of the other commonly used tools. The first one is the fact that it can score all possible 

substitutions and small indels rather than just non-synonymous variants, and secondly the 

predictions are made by using a matrix of several different features including conservation, 

structural effect, gene based location, co-localisation with regulatory elements, effect on 

splicing, and others. CADD is based on integrating many diverse annotations to provide a single 

Phred like score for each variant. The CADD score correlates with allelic diversity, annotations 

of functionality, pathogenicity, disease severity, experimentally measured regulatory effects and 

complex trait associations, highly ranks known pathogenic variants. Since CADD scores are 

based on Phred probabilities, CADD score of 10 corresponds to a variant predicted to be on the 

top 10% of variants in terms of deleteriousness. CADD score of 20 corresponds to the top 1% 

and CADD score of 30 corresponds to the top 0.1%. The authors of the tool suggest a cut-off of 

15 for suggestive deleterious variants. After correlating CADD scores with known variants with 

large effect size that predispose to breast cancer we concluded that a cut-off of 30 will be more 

appropriate for our analyses. 

 DANN 

DANN is a tool developed soon after the CADD tool. It utilises the same information as the 

CADD tool but differs in terms of calculating deleteriousness since it is based on deep neural 

network machine learning as opposed to SVM which is the method that the CADD developers 

preferred [296]. They have shown that it outperforms CADD in terms of identifying truly 

pathogenic variants. This algorithm can take into account non-linear relationships between 

different factors. Another difference between CADD and DANN is that CADDs output is the C 

score which is in the Phred scale whereas DANN output values range between 0-1. Their 

developers set a cut-off of 0.995 to distinguish likely deleterious variants from likely benign 

variants with variants having a DANN score >0.995 being more likely to have a detrimental 

effect on the genes product function. 
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7.4.5 Genome browsers 

 UCSC 

The University of California Santa Cruz (UCSC) (http://genome.ucsc.edu/) genome browser has 

been used for several tasks throughout the course of this PhD [297]. During primer designing, 

the BLAST tool has been used to ensure that primers designed were not annealing at multiple 

locations on the genome and were specific to the target region. The primer sites were also 

intersected with known polymorphisms from dbSNP (v142) to ensure that no common variant lie 

within the primer sites that could lead to preferential allelic amplification. This process was 

performed using UCSCs variant annotation integrator. The final usage of UCSC was the lift-over 

tool to convert coordinates from different genome assemblies. This tool was particularly useful 

when the iCOGS genotyping data which was in hg18 was required to be converted to hg19. 

 ENSEMBL 

Ensembl (http://www.ensembl.org/) is a joint project between EMBL-EBI and the Wellcome 

Trust Sanger Institute to develop a software system which produces and maintains automatic 

annotation on selected eukaryotic genomes including human [298]. It has been used to 

investigate particular variants of interest. There are several features available that allow 

exploring different features of variants such as whether there is a phenotype associated with 

them, and what is their frequency in different populations. It also provides information on linkage 

disequilibrium (LD) variants and evolutionary information in terms of phylogenetic context. A 

phylogeny analysis a rare CDH1 variant and its evolution conservation (how evolutionary 

conserved a variant is across species) was also conducted using the Ensembl browser. 

Moreover, Ensembl allows access to the nucleotide sequence of genes of interest, including or 

excluding introns. This can be used as a template in occasions of primer designing. It also 

allows to interrogate gene sequences and visualise whether known variants exist or whether a 

variant identified during Sanger sequencing has been previously reported. 

7.4.6 Online databases 

The following databases have been used to filter the variants that were the output of 

sequencing experiments. A general cut-off of minor allele frequency (MAF) <1% was used 

throughout the analyses unless otherwise specified. Any variant with MAF>1% in any of the 

following databases was discarded. 
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 ClinVar 

ClinVar is a database where relationships between variants and human disease are archived 

and aggregated (https://www.ncbi.nlm.nih.gov/clinvar/). A clinically useful website that has been 

established and serves as a variant repository is ClinVar. Different research groups, consortia 

or diagnostic laboratories can upload information on the clinical utility of variants identified and 

help to build an accurate database on genetic variation across all genes implicated with 

disease. Variants can be classified as benign, likely benign, unknown significance, likely 

pathogenic and pathogenic depending on different genomic features as well as ascertainment 

criteria. 

 1000 Genomes 

The 1000 Genomes project is a deep catalogue of Human Genetic variation. It includes low 

coverage (4x) sequencing data on 2,504 individuals from European, Asiatic, African and 

American populations. 

 ExAC 

The Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org) is a coalition of 

researchers that collaborate in order to aggregate exome sequencing data from different large-

scale sequencing projects, enabling data access to the scientific community. The data set 

provided includes 60,706 unrelated individuals undergone WES as part of various genetic 

studies. Individuals affected by severe paediatric conditions, have been removed in order for the 

data set to be used as a reference for allele frequencies. 

 ESP 

The aim of the NHLBI GO Exome Sequencing Project (ESP) is to understand the contribution of 

rare genetic variation to heart, lung and blood disorders by utilising WES technology on deeply 

phenotyped populations. The current data set includes variants on 4,300 European-Americans 

unrelated individuals. 
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Appendix 1 

Clinical information on cases downloaded from TCGA. AoD corresponds to age of diagnosis. 

Sample AoD 
ER 

status 
Menopause 

status 
Sample AoD 

ER 
status 

Menopause 
status 

TCGA_BC0014 40 Positive Premenopausal TCGA_BC0061 62 Positive Postmenopausal 
TCGA_BC0103 44 Positive Premenopausal TCGA_BC0004 62 Positive Postmenopausal 
TCGA_BC0083 44 Positive Postmenopausal TCGA_BC0080 62 Positive Postmenopausal 
TCGA_BC0114 44 Positive Unknown TCGA_BC0036 62 Positive Postmenopausal 
TCGA_BC0095 44 Positive Unknown TCGA_BC0013 62 Positive Postmenopausal 
TCGA_BC0008 45 Positive Premenopausal TCGA_BC0062 62 Positive Postmenopausal 
TCGA_BC0040 46 Positive Premenopausal TCGA_BC0049 62 Positive Unknown 
TCGA_BC0031 46 Positive Premenopausal TCGA_BC0015 62 Positive Postmenopausal 
TCGA_BC0105 46 Positive Premenopausal TCGA_BC0100 63 Positive Postmenopausal 
TCGA_BC0022 46 Positive Premenopausal TCGA_BC0045 63 Positive Postmenopausal 
TCGA_BC0005 46 Positive Premenopausal TCGA_BC0041 63 Unknown Postmenopausal 
TCGA_BC0016 46 Positive Premenopausal TCGA_BC0021 63 Positive Postmenopausal 
TCGA_BC0025 46 Positive Premenopausal TCGA_BC0078 63 Negative Postmenopausal 
TCGA_BC0118 47 Positive Premenopausal TCGA_BC0099 63 Positive Postmenopausal 
TCGA_BC0039 48 Positive Premenopausal TCGA_BC0092 64 Positive Postmenopausal 
TCGA_BC0096 48 Positive Postmenopausal TCGA_BC0088 65 Positive Postmenopausal 
TCGA_BC0051 49 Positive Premenopausal TCGA_BC0018 65 Positive Postmenopausal 
TCGA_BC0050 49 Positive Premenopausal TCGA_BC0104 65 Positive Postmenopausal 
TCGA_BC0069 49 Unknown Premenopausal TCGA_BC0043 65 Positive Postmenopausal 
TCGA_BC0066 50 Positive Premenopausal TCGA_BC0024 66 Positive Postmenopausal 
TCGA_BC0109 50 Positive Premenopausal TCGA_BC0098 67 Positive Postmenopausal 
TCGA_BC0055 50 Positive Unknown TCGA_BC0017 68 Positive Postmenopausal 
TCGA_BC0119 51 Positive Premenopausal TCGA_BC0075 68 Positive Postmenopausal 
TCGA_BC0033 52 Positive Postmenopausal TCGA_BC0110 68 Positive Postmenopausal 
TCGA_BC0032 53 Positive Postmenopausal TCGA_BC0081 69 Positive Postmenopausal 
TCGA_BC0070 53 Positive Postmenopausal TCGA_BC0101 70 Positive Postmenopausal 
TCGA_BC0065 53 Positive Postmenopausal TCGA_BC0085 70 Positive Postmenopausal 
TCGA_BC0019 53 Positive Postmenopausal TCGA_BC0056 70 Positive Postmenopausal 
TCGA_BC0111 54 Positive Postmenopausal TCGA_BC0003 71 Positive Postmenopausal 
TCGA_BC0002 54 Positive Postmenopausal TCGA_BC0097 71 Positive Postmenopausal 
TCGA_BC0120 54 Positive Postmenopausal TCGA_BC0026 72 Unknown Postmenopausal 
TCGA_BC0073 55 Negative Postmenopausal TCGA_BC0071 72 Positive Postmenopausal 
TCGA_BC0064 56 Positive Postmenopausal TCGA_BC0077 72 Positive Postmenopausal 
TCGA_BC0037 56 Positive Postmenopausal TCGA_BC0048 73 Positive Postmenopausal 
TCGA_BC0035 56 Positive Postmenopausal TCGA_BC0116 74 Positive Postmenopausal 
TCGA_BC0023 56 Positive Postmenopausal TCGA_BC0006 74 Positive Postmenopausal 
TCGA_BC0074 57 Positive Postmenopausal TCGA_BC0082 75 Positive Postmenopausal 
TCGA_BC0094 58 Positive Postmenopausal TCGA_BC0052 75 Positive Postmenopausal 
TCGA_BC0034 59 Positive Postmenopausal TCGA_BC0027 78 Positive Postmenopausal 
TCGA_BC0029 59 Positive Postmenopausal TCGA_BC0089 78 Positive Postmenopausal 
TCGA_BC0010 59 Positive Unknown TCGA_BC0115 79 Positive Postmenopausal 
TCGA_BC0028 60 Positive Postmenopausal TCGA_BC0090 79 Positive Postmenopausal 
TCGA_BC0044 60 Positive Postmenopausal TCGA_BC0007 80 Positive Postmenopausal 
TCGA_BC0108 60 Positive Postmenopausal TCGA_BC0020 80 Positive Postmenopausal 
TCGA_BC0053 60 Positive Unknown TCGA_BC0076 80 Positive Postmenopausal 
TCGA_BC0087 61 Positive Postmenopausal TCGA_BC0030 80 Positive Postmenopausal 
TCGA_BC0058 61 Positive Postmenopausal TCGA_BC0067 81 Positive Postmenopausal 
TCGA_BC0046 61 Positive Postmenopausal TCGA_BC0093 84 Positive Postmenopausal 
TCGA_BC0009 61 Positive Postmenopausal TCGA_BC0113 84 Positive Postmenopausal 
TCGA_BC0042 61 Positive Postmenopausal TCGA_BC0091 85 Positive Postmenopausal 
TCGA_BC0072 61 Positive Postmenopausal TCGA_BC0112 87 Positive Postmenopausal 
TCGA_BC0038 62 Positive Postmenopausal TCGA_BC0079 90 Positive Postmenopausal 
TCGA_BC0068 62 Positive Postmenopausal TCGA_BC0102 90 Positive Postmenopausal 
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Appendix 2 

Table representing all primers used for the targeted sequencing experiment. The multiplexing approach is 
indicated in the first three columns where the stock wells and final wells are indicated for each primer pair. 
All forward primers had the adaptor sequence ACACTGACGACATGGTTCTACA attached to their 5 end 
whereas the reverse primers had TACGGTAGCAGAGACTTGGTCT attached to their 5 end to allow for 
sequencing primers to anneal. 

Stock 
Plate 

Stock 
Well 

Final 
Well 

Forward primer Reverse primer Amplicon ID 

1 A01 A01 GTTCCATCTACCTTTCCCCCAC CCCTTTCCAACCCCTCCCT CDH1_t2_2 

1 A02 A01 GCCAAACCGCTGTGACCC CGCAAGCAGGAAGCGTTTG IDE_t1_1 

1 A03 A01 GGTCTCAGGGCTCAGCAG CACACACCCACCTTCCTTGAG PABPN1L_t2_2 

1 A04 A01 CCCTGATGCCCTCCACCAT GCTGCCGAAAAGAACCAACTTC PABPN1L_t6_1 

1 A05 A01 CGCCAGGCAGCAAGAGG GTGTCAAGCTCCTCCAGGTC ATRIP_t1_2 

1 A06 A01 AGGCCTCGGTGAAGGG CTTGTGCGGAGACAGAGAAGTG ESR2_t4_3 

1 A07 A01 CCTCTGCGCTCATGTTCCT CACTGGCCATGCGGACA PABPN1L_t5_1 

1 A08 A01 GGCCCCAGAATCTCCTTGGT GACGCGAGGGGAGTGGA PABPN1L_t1_3 

1 A09 A01 CCGGAACTCCACTGTTAGCTTAT CCGCCCCGGAAATGACG SRA1_t1_e2_4 

1 B01 B01 AGACAGAGGGTCCATACTAAGCG CAACTGGCCCGCGTGA SRA1_t1_e1_1 

1 B02 B01 CTGTCGGATACTTGGGGTG GAACGGGTCGTCAGGGTC ATRIP_t1_1 

1 C01 C01 GACACAAAGCCAGGCCTAAAAC AACTGGGTCCCGGTGTCG PALB2_t1_1 

1 C02 C01 AAGCCTTCCAAACAGGCTTAT AGGAACGCGGCTGGAA SRA1_t1_e2_1 

1 C03 C01 CCTTGGTGGCAAACTCTATGTAGG TGGAGGCCCACTTCAGC PABPN1L_t4_1 

1 C04 C01 CCCCGGACCCTGACGA CACAGCCATCAAGGGGATCTG ATRIP_t1_3 

1 C05 C01 CGGAACTGCAAAGCACCTGT GAATGCGTCCCTCGCAAGT CDH1_t1_1 

1 C06 C01 CTCACCGGTTCTGCCCTTG TCCTTGAGGAGGACTCAAAACA PABPN1L_t6_2 

1 D01 D01 GCGGCGCTGTTGGTTTC GCGGCCTCTCTCCAGGT CDH1_t2_1 

1 D02 D01 CTGCCTGCCCCTTCACC GTGTCACCTCCCCTATAAGCC PABPN1L_t3_1 

1 D03 D01 CTAGGCTGAGCGGATTGTTAGG CAGCAGCACCGTGTCCC ATRIP_t12_1 

1 D04 D01 GCCCCACGCACCTCTG AGTATAAGCTAACAGTGGAGTTCCG SRA1_t1_e2_2 

1 E01 E01 TTCCAGCCGCGTTCCTTG GTACGTGAAGCCGGGTGAG SRA1_t1_e2_3 

1 E02 E01 GCCCAACCTTAATGGAAACTGTG GAGGCCATCAAGATGAAGGTGTG PABPN1L_t2_1 

1 F01 F01 AGTGGACACTGTCTCTAAGGAGC TTGAGGCTCAGCAGTCTCATGG CHEK2_t1_3 

1 F02 F01 GGCTGTCCCAGAATGCAAGAAG GTCCAGATGAAGCTCCCAGAATG TP53_t1_2 

1 F03 F01 GGAATCCTATGGCTTTCCAACCTA CTCCCCCTCCTCTGTTGCT TP53_t8_6 

1 F04 F01 CATCGCAGTGGACTTCTGG TGCCTGGACCAGCTCT DCLRE1B_t1_2 

1 F05 F01 AGGCTCCTGACACACTGGA TGGAGATGCTGAATGCCCAC ESR2_t8_1 

1 F06 F01 TAGGTTCCAGTGTGTGTTCCAAG CCAACCCTTCCCTTGATCTGC ATRIP_t9_2 

1 F07 F01 CACGGTGATGTTGCACAGACAG TGCTGACCCCCGGCAT ATRIP_t12_2 

1 F08 F01 ACTAGCTGCTCGGGGCTC GCGGTTTTACCCTGGCAATTC ESR2_t4_4 

1 F09 F01 CTTGGGGTGTCCAGAGAACTTG TGGGGTTTCTTTCCTCACCTCTA PABPN1L_t4_2 

1 F10 F01 CATCCGTCACCCAGACCC AAGGAGGAGAAAGAGGAGGAA PABPN1L_t1_1 

1 F11 F01 GTGTTAAGCCTGCTCTCTCTTCA TTCCCACTGGCCCTCTTTTTG CTNNA1_t16_2 

1 F12 F01 AGTCTTCCAATGCCTGTTCCAAA TTTTCAGTCCCCGCATCAGAG SRA1_t2_2 

1 G01 G01 CCATCCTGAAGGGCCCATAATC CTCTACCAGCACGATGCCAAA CHEK2_t1_2 

1 G02 G01 TTTTATCGGGACGCCGTTGT CACGGTGTGGTCCGAGTG DCLRE1B_t1_1 

1 G03 G01 TCTGTGGCAACAATCAGAGGTTT TTTGTTCACTGCCCTCCTCTCTC ATG2B_t42_3 

1 G04 G01 TTCACTGGACTGAATCTGGTTGC GGTGCTCCGCTTCTCTTAGC ATRIP_t8_3 

1 G05 G01 TCTACAGCCTGGGAAAGGAATCA TCCAACGCAGCATGTTGGAAT DCLRE1B_t4_2 

1 G06 G01 GGAAAACTGATAGCCAGAAAGCC CAGCTAGTGCTCACCCTCCT ESR2_t4_2 

1 G07 G01 CTCAGCCAGGTTCTCTTGCTC GCTCCAGACGGTCTCCTCA PABPN1L_t1_2 

1 G08 G01 ACGGCCTATCGCAGAAGGA GAATCTGACTTGTTGGGGAACCT ATRIP_t12_3 

1 G09 G01 GAGGTGGGACCTGCCCTA TGGTAAGGAAAGGAGTGGTGCT ATRIP_t13_1 

1 G10 G01 AAATCATTGTGGACCCCTTGAGC CCATGTACTCCGAAAGCAGGTC CTNNA1_t6_2 

1 G11 G01 GGGCCTCCGTGCACCT CAGCTGATCGTCTTCTGTCTGG CTNNA1_t13_1 

1 G12 G01 TCAGACTCGACTGGGAAACTTGT TTAAGCCATGTTGCTTGATCCTG SRA1_t2_3 

1 H01 H01 CCTACGATTGCTATCCTTCCCAC CTCAGACTGTCCTGAAAGCCTCC DCLRE1B_t4_4 

1 H02 H01 CCTCACCTCTTTCTGTCTAGCTG GCGGGAAGCATCGATAAACTCAT CTNNA1_t12_1 

1 H03 H01 AGGCCAACAGGGACCTGATATAC GGGATGGTCAAGAGCTGGAAAT CTNNA1_t5_3 

1 H04 H01 CAAGATCTGGAGCAAAGATGAGC TTCTGTCTCTACACACACAGGGA ESR2_t5_2 

1 H05 H01 GGAAGATGAAGGCACCAGAGAAA GACTGATATTCAGGAGCCCCGAG CTNNA1_t17_3 

1 H06 H01 CATTTCCTCCCCCTTGTACAGTT TGCTAAGTGCAGTCACAGAGAAG ATRIP_t8_4 

1 H07 H01 CTTAAGAAAACCCTCGCAGGGAC GGCCCCCTTACCACCAGAG ATRIP_t11_1 

1 H08 H01 AGTGTGAAGGTAGGTTATGGAGC GTGGGAACAGAGCTGAGGTG ATRIP_t9_1 

1 H09 H01 TTAACTTGCAGACACTTTTCCCA CGATGCTTTGGTTTGGGTGAT ESR2_t7_1 

1 H10 H01 CTCCAAGAGAAGGATGTGGATGG TGTGTGCGAGCACTGGAAAG CTNNA1_t11_2 

1 H11 H01 TCAGAGGTAAAGGACCACTCAAA GGCCCATGAAACTTACCCTGAAT CTNNA1_t15_2 

1 H12 H01 ATGTGAGTGCCACACTGAACC CACCTCGGCCTTGACCTTG CTNNA1_t16_1 

2 A01 A02 GGTGTAGGAGCTGCTGGTG TCTGACTGCTCTTTTCACCCAT TP53_t1_3 

2 A02 A02 GAGAGGACTGGCTGGAGTTTG ACTCACCTTTGTTGTTGGACACT CHEK2_t1_4 

2 A03 A02 AACCAGCCCTGTCGTCTCTC CTGTGCAGCTGTGGGTTGATT TP53_t2_1 

2 A04 A02 GAGGCCAAGCAGCAGTACATT TGGGCAGTGTAGGATGTGATTTC CDH1_t10_2 

2 A05 A02 TTCACAGTGGAGGAGAAGGC GAAGCTCGGAGTAAGAGGAATGG DCLRE1B_t4_3 

2 A06 A02 CTTCAAGCACAGCCCACCT GGAAGCCATACCCTGTGACTTTT CTNNA1_t17_1 

2 A07 A02 GGATGGAGCACAAGTGGTTTACT CTGCATCCTTATCCTGTTGTCCC PABPN1L_t7_1 

2 A08 A02 GGTAGAGACCAACCCTGAGGAC CTCCATCACTAAGCCTGTGAACC ATRIP_t8_5 

2 A09 A02 GACAGGAGCATCAGGAGGTTA TCAGAGCAATGACTTCTGGCTT ESR2_t7_2 

2 A10 A02 CGCCATTTCTGTGACTCGTCTT TTATGAAACTGCGGCTCGAGAAC ATG2B_t42_2 

2 A11 A02 TAGAGGAATCCTGCAGAAGAACG CACCCTGGTGCTGTGAGG CTNNA1_t5_2 

2 A12 A02 GGGTCAGAGGGTCTATCTCTGG CCCACAAGTTTCCCAGTCGAG SRA1_t2_1 

2 B01 B02 TCAGAGTCAGACAAAGACCAGGA CTCAAGGGAAGGGAGCTGAAAAA CDH1_t16_3 

2 B02 B02 TTTGGAGAGACACTGCCAACTG TCGAGGCAGCAAAGGCTC CDH1_t11_2 

2 B03 B02 GCTGCTTCTGGCCTTCTTTATCT TCTCCGCCTCCTTCTTCATCATA CDH1_t14_1 

2 B04 B02 CAGGTGGTGCCCATTGTAAGT GGGGATTCAAACACAACACCTTG DCLRE1B_t4_5 

2 B05 B02 AAAAAGCGAAGATTGCGGAACAG CCTGTGCAGCCTGGTGG CTNNA1_t14_2 

2 B06 B02 CAGATTCTGCTGCTGGGGAAG CTTAAGGCACTGGGTCAGGACA ATRIP_t8_6 

2 B07 B02 CCCTCTTTGCTTTTACTGTCCTCT TCGGAGGAGGGAATCTCAGC ESR2_t8_2 

2 B08 B02 CGGTTTCATAACCCACAGATCCA ccTGGATTAGACAGCGCACTAAA CDH1_t3_3 

2 B09 B02 CCACAGGTTCTTATGATGGGTCA GCCGATGAAGAACTGTACAAGGG ATRIP_t8_2 

2 B10 B02 CTTTATGAGAAAGGGCACCCTGA TTCTTAGGATGGGGTGGGGAC ATRIP_t10_1 

2 B11 B02 CAGTCTTGGTGGTGGTAAGAAGG GAGGAGTCTGTTTTCAGAGGAGG SRA1_t4_1 

2 B12 B02 TGAAGAGGAATCCCAAAGTTCCA CCCCTGTCATCTTCTGTCCCT TP53_t1_1 
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2 C01 C02 CGGACGATGATGTGAACACCTAC ATACACATTTGTCCTCCACACCC CDH1_t7_2 

2 C02 C02 ATCTGGGGTATCAGGTAGGTGTC CCTGGAGTCGATTGATTAGAGCC BRCA1_t23_1 

2 C03 C02 CAGCTACATGTTGTTTGCTGGTC ATGATTAGGGCTGTGTACGTGCT CDH1_t11_1 

2 C04 C02 AGGTGATAAAAGTGAATCTGAGGCATA TGTTTGTGCCTGTCCTGGG TP53_t5_3 

2 C05 C02 AAATTGGTTTAGGGTCCCCCTTG ATACCCTGCCTGGAAAAAGTTCA DCLRE1B_t4_10 

2 C06 C02 CACAGCTCATGGACCTCTACTTT CCAGTGCGCCCTTCACC ESR2_t4_1 

2 C07 C02 TCATCTTGTCTTCTGCAGGTTCC CTCCTTCCCAAACAAGCTTTCCA ATRIP_t7_2 

2 C08 C02 CCTGACCCGGGGAGGTAA GACAGAACCAGGACAGTGATTGG DCLRE1B_t2_1 

2 C09 C02 GCTTCACACCAGGGACTCTTTT AGCCATGACATTCTATAGCCCTG ESR2_t1_2 

2 C10 C02 GCACAATAAAATTAAACGAGCTTCCTC GCCACAGAAGCAACGTCAAAC ATG2B_t42_1 

2 C11 C02 AGGAGTTGGATGACTCTGACTTT GAAACAAGAAAGGGGACAGGGAA CTNNA1_t13_2 

2 C12 C02 ATACCTTGCACCAGTAGAGCCAT CTTCCTATGTGGTGCTGTCTTCC SRA1_t3_2 

2 D01 D02 CATTTCAGCAATCTGAGGAACCC CATTCCCCTGTCCCTCTCTCTT BRCA1_t20_1 

2 D02 D02 TTGTGTTTGCACAGTGCCTTTC TATTGTCCTGAGTCATCCCTGTG PALB2_t12_1 

2 D03 D02 aaGAGGAATCCTTTAGCCCCCTG CTCCCACGCTGGGGTATTG CDH1_t9_1 

2 D04 D02 ATCTGAAAGCGGCTGATACTGAC CTTCTTGAAGCGATTGCCCCATT CDH1_t16_2 

2 D05 D02 TTCTTGTCCTGCTTGCTTACCTC CCTTACTGCCTCTTGCTTCTCTT TP53_t5_4 

2 D06 D02 TCAACCTTTTTTCTCCAAAGGACT GAGCCATGCTTTGGCTTTCC CDH1_t15_2 

2 D07 D02 GACCCAAAACCCAAAATGGC CATGTGATGTCATCTCTCCTCC TP53_t9_1 

2 D08 D02 CAAGCCTTCTCTGGCTGTTAGAA CAACTGCTTCTTGATCCGCAAAG DCLRE1B_t4_6 

2 D09 D02 ATATTCTGGTTCCATGTGTTGGG ATCGGAGGATTATCGTTGGTGTC CDH1_t8_1 

2 D10 D02 GCTGCAGATTTCTCTTCATTGGC CACAGGCTGCTTGCTCAAC SRA1_t4_2 

2 D11 D02 CACCATCCCAGTTCTGATTCTGC GATCACCACTGAGCTACCAAGG CDH1_t14_2 

2 D12 D02 TTCAGATAGTAAGCCCCACAGTC CAGAGGCCTGGGCAATTCTTC ATRIP_t6_5 

2 E01 E02 CCTCACAACCTCCGTCATGTG CTTGTGCCCTGACTTTCAACTCT TP53_t2_2 

2 E02 E02 AACATAGCCCTGTGTGTATGACT CAATTTCATCGGGATTGGCAGGG CDH1_t15_1 

2 E03 E02 CTGCTGATCCTGTCTGATGTGAA TTGGGTCGTTGTACTGAATGGTC CDH1_t12_2 

2 E04 E02 TCAGGGCAGAATTGGATTAAGCA ATTTTTGTCAGGGAGCTCAGGAT CDH1_t7_1 

2 E05 E02 TGGCTTAGAGAAGGAATATTTGATGGT ACCTCATCAGAATGGTAGGAATAGC BRCA2_t10_56 

2 E06 E02 TCTTCTCTCCTTGTAGTCTTCCCA GAGCATATACCTCAGCCAAAGGA MME_t17_2 

2 E07 E02 GCCACGTTTTACTGAGCAAGTAG AGCAAATGATAAGAAAGAAGCTGTT CTNNA1_t12_2 

2 E08 E02 CACTAAAGGAGAAAGGTGCCCAG GAGCACGGCTCCATATACATACC ESR2_t1_3 

2 E09 E02 CTTCACACGACCAGACTCCATAG AGAAAGCCCTTCCTTTCCCTTTT ESR2_t2_2 

2 E10 E02 GTCACAGTCACAGGTAGGTTGTC TTGGCCCTCAAGGCTCCTAT PALB2_t5_3 

2 E11 E02 ACAGAGACTCAAAGAAGGCCAAG CAGTGGGGCCGTCAACATA DCLRE1B_t4_7 

2 E12 E02 GCCCCTTCTCCCATGTTTTCTT GACAGACCCCTTAAAGACCTCCT CDH1_t6_1 

7 E01 E02 CTCCAGCATAGCCAACCACA TCTCTTAGAAGCAGGTATGTGATGA SRA1_t3_1 

2 F01 F02 TCCTGGCATGTGTTTCTACAGAG CTCAGTCTGTCTTGCCAGTGATA PALB2_t5_2 

2 F02 F02 CTGACTTGGTTGTGTCGATCTCT AGACCTTTCTTTGGAAACCCTCT CDH1_t8_2 

2 F03 F02 CTGCCCTGCAGTGAATTTTGAAG TATTCAGCGTGACTTTGGTGGAA CDH1_t3_2 

2 F04 F02 GGCAGCTGTCAAAAGAATTGAGG GTCTTCTGTCCAAGTGCGTTTTC CHEK2_t9_1 

2 F05 F02 AGCAGAAGGGAAAGGAAAGGAAA CTGCTGTCATCTGATCCTCCT CHEK2_t2_1 

2 F06 F02 GTCAGCGTGTGTGACTGTGAA TTCCAGGAAATAAACCTCCTCCA CDH1_t13_3 

2 F07 F02 GTGAGTCTCAAAAGAGGGTGACT GAGAACCATGGCCCATCCAG DCLRE1B_t4_9 

2 F08 F02 TCCAAAGCCTCAGGTCATAAACA GAAATTGAAAGGTGGGGATCTGG CDH1_t12_3 

2 F09 F02 CAGCTTACAGTTGCCACCTTTTC TCTCTGAGGTGACTACGTGAATG CTNNA1_t11_1 

2 F10 F02 cctCAGAGGACAGGGCTTTT CCTCCCACTCTGCTATAGGACATAA ESR2_t3_1 

2 F11 F02 ACTGTGTGTAATATTTGCGTGCTT GGCTGAGACAGGTGTGGA BRCA2_t26_1 

2 F12 F02 CGGGCTAGTGTCTTGCTGTATTC tgttatggACCAGTGCTACTCCC PALB2_t2_2 

7 F01 F02 ATCATTAGTGGGGCTGCCTTG ACATGTTATAGAAAACTCCTCATCCA CTNNA1_t6_3 

2 G01 G02 TTGCTAGACTTCTTGCCCCAGAT GAGCTCAGACTAGCAGCTTCG CDH1_t16_1 

2 G02 G02 AGAGACCCCAGTTGCAAACC CCCAGGCCTCTGATTCCTCA TP53_t3_5 

2 G03 G02 TGGATGTGCTGGATGTGAATGAA AGTTGCTGCAAGTCAGTTGAAAA CDH1_t10_3 

2 G04 G02 GCAGAATTGCTCACATTTCCCAA CTGGGTCTTTTCCCTTTCTCTCC CDH1_t4_2 

2 G05 G02 TGAGTGATAAACCAAACCCATGC TGAAGTGACAGTTCCAGTAGTCC BRCA1_t22_1 

2 G06 G02 CTGCTCACACTTTCTTCCATTGC TGACCCTGAATCTGATCCTTCTG BRCA1_t15_3 

2 G07 G02 CAGGTGATTTGATGAAGGCTGCT AGACATAGGCCTGTATACTTACAACT CTNNA1_t3_2 

2 G08 G02 TGTTAATGTTCAGTGGAATCTCATGT GCCTTCTTAGAACGACCTCTCTT CTNNA1_t2_1 

2 G09 G02 ATCCTAAGTCTGGCAGGAAATGT CTATGCAACACCAGACAGGAAGT GOLGB1_t19_1 

2 G10 G02 TGTTTGGGGCTCTTGACCTTATC CATTCCGGGCAACCAGATTCA ATRIP_t8_1 

2 G11 G02 GACAGCACCCACTGTTGAAGAT GTCAGGTGAGACCCACAAAGAAT ATRIP_t8_7 

2 G12 G02 GGCACCCCTCTTCTAGCTACTG CTGCAGTGTGGGCTCAATGTT DCLRE1B_t4_11 

7 G01 G02 TTGCAATGATCCACAAAAGATTGCT AGGTAGCGCTCACTATGTCTTCT IDE_t18_1 

2 H01 H02 GCTGTGTCATCCAACGGGAAT TTGGGGTCCAAAGAACCTAAGAG CDH1_t6_2 

2 H02 H02 GAGTTCACAACACAGCAGCAC ACATCAAATGCCCCCACTTTACT CHEK2_t15_5 

2 H03 H02 AACTCCAATCAGAACCTTCCACC TATTCCTGAGGACCAAGAACCTG CHEK2_t1_1 

2 H04 H02 CTAGACTTGGTCTGGTGGAAGGC CCTGAGGCTTTGGATTCCTCTC CDH1_t12_1 

2 H05 H02 GTGCAGGCTGATTTTCTTTTTCC ATTAGGATGTCTGGCACATGCAC PALB2_t4_3 

2 H06 H02 AGTCTTCGCACAGTGAAAACTAA TCTACCAGGCTCTTAGCCAAAAT BRCA2_t3_2 

2 H07 H02 GCCAAGAACTTGATGAATGCTGT CCCGTTTAATCTTGGTCTGTGTC CTNNA1_t17_2 

2 H08 H02 GGCAAGTCAGAAAGTCAGATGGA TCTCTTTTGCACTTATGGATGCAC MME_t1_2 

2 H09 H02 TCCCTTCCTTGAAGATTCACTCG CACCTGCCTACACACTTACCTTT FMO2_t6_4 

2 H10 H02 CCCAAGATTTTTCTTTAGGCCACC AAGCTTTGAAATGCAGACCACAC ESR2_t11_1 

2 H11 H02 TTTCAAATGAGCAAGTTGGGGTG CCATATTACTTTATACTCCTTTAAATACGGTT PALB2_t5_4 

2 H12 H02 ATACTGCTCTGTAGTGCTTCACC AAACACCCTTTCCATTCAGCTCT GOLGB1_t17_1 

7 H01 H02 GGGGCTTTGTGGACAATCTTCTT TCACTTACATGGTCTGCAATGGT CTNNA1_t15_1 

3 A01 A03 GGTGCCAGTCTTGCTCACAG GGCCTGGGTTAAGTATGCAGAT BRCA1_t21_1 

3 A02 A03 AGAAGGCAAGGTTTTCTACAGCA AAAATCCTGGGTGGATGTTACCC CDH1_t5_2 

3 A03 A03 GGAAAGACCCACAGCTAACATCA CCGTGGCTGGCCTAACTTTTTT CHEK2_t2_2 

3 A04 A03 TTCTCCAGCCCAAGAATCTATCA GAATTTGCAATCCTGCTTCGACA CDH1_t13_2 

3 A05 A03 TCAATGCCTTCTTGGTTTGGTCT AATTTGAGTTATTCTGTGTATTAGAACTTTATTTT IDE_t5_3 

3 A06 A03 GTAGTGCAGATACCCAAAAAGTGG GCTTCAAGAGGTGTACAGGCATC BRCA2_t17_3 

3 A07 A03 TCTATTGTTGGAGGTAGGAGAGG TGTCGGGAAGGAAGAACCAG DCLRE1B_t3_1 

3 A08 A03 AAGCCCTGGAGGTTGGTGA TCTAGTCTGGAGAAGTCACTGGG DCLRE1B_t2_2 

3 A09 A03 TTGGCTAATGCACTCTGAGAACT ATTGCCACTGTCGTCCCATTT CTNNA1_t14_1 

3 A10 A03 AGGACAGTTGGCATCCAAAGAAT CCAGCAGGAGACTCAGAACTAC ATRIP_t7_1 

3 A11 A03 GTCATGTCCTCTATGGACTTTTCC AAATGACCCAGGTCTCAAATGCC IDE_t21_3 

3 A12 A03 AGCCTGCCCTGGAGGAA CTCTTGACAGTCTATTTGGGATATTTATTT PALB2_t12_2 

8 A01 A03 GGCTATCTCCTTCAGCCTTTACC TCTGCATCTGATGATGCTTTTTG GOLGB1_t19_2 

3 B01 B03 AGGTTGGACTGTTAGACCTGAAG ATGGGCCTTTTTCATTTTCTGGG CDH1_t4_1 

3 B02 B03 CTCCTAAACTCCAGCAGTCCAC TGGCAAGTTCAACATTATTCCCT CHEK2_t11_2 

3 B03 B03 GGCACAGCAGGCCAGT CTCATCTTGGGCCTGTGTTATCT TP53_t4_6 

3 B04 B03 AGATTCCCACTTACCTCTGCGAA CAGAACTGTTGCCATTGTGTCAG PALB2_t7_2 

3 B05 B03 AAAATAACCTAAGGGATTTGCTTTGT TGAAACAAACTCCCACATACCACT BRCA2_t4_1 

3 B06 B03 AACGTCGTAATCACCACACTGAA TGTGAGGATGCCAGTTTCTGC CDH1_t9_2 

3 B07 B03 CAGACACCACCATGGACATTCTT CAACCTCTGCATTGAAAGTTCCC BRCA1_t15_2 

3 B08 B03 AGATGATCCCTGCTCTTCTGT GCCAGTAGCAATCTTCCTGTGAT CTNNA1_t3_3 

3 B09 B03 AAACATTTTGTTGATTTATTAGGATTTTCCA GCCCAGTAGCTGTACCAACTC DCLRE1B_t4_1 
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3 B10 B03 TGCTACTGATTTCTTCCTGTTCCT ACACCCAAGAACATTTTCCCCAC PALB2_t4_15 

3 B11 B03 CATCCTCCAAGATACCCCCCATA ACAGAAGAAGCCTTAAGACACCC CHEK2_t13_1 

3 B12 B03 GAACCTGCTTCTCCAAGACTGC CTCAGAACATTTCACCTCAGCAC GOLGB1_t17_2 

8 B01 B03 GAGACTCACTACATCAGACGGAA CTGGAAGATTTACAGGCAACCCT ATRIP_t3_2 

3 C01 C03 CTCTGCAAAGGGGAGTGGAATAC TCTCTTTCTCTTATCCTGATGGGT BRCA1_t19_1 

3 C02 C03 CCAATTTTGGTAAGCTGCCCATC GCCGGTTGTAAAGAGCCATGTAT PALB2_t7_1 

3 C03 C03 CCAAGATGATTTTCTTAGGCTCTGG TTTCTTTGCAGCCTGAAGTGATT IDE_t25_1 

3 C04 C03 GTAGCTATGACAAAGGCCAACCA TCTTTAGTGGAGCAAAAGGGTGA IDE_t23_1 

3 C05 C03 TGAGGAGGGAGGACTGTCTCTAA TCATCGAAGCCATGGGTGATTT MME_t17_1 

3 C06 C03 ATAACAAGTGTTGGAAGCAGGGA TGACATTAAGGAAAGTTCTGCTGTT BRCA1_t9_6 

3 C07 C03 ACATTCACTGAAAATTGTAAAGCCTA GTCTTACCGAAAGGGTACACAGG BRCA2_t12_3 

3 C08 C03 GTCTCAGCCCAGATGACTTCAAA GTATTTGGTGCCACAACTCCTTG BRCA2_t26_3 

3 C09 C03 TCAATGCAGAGGTTGAAGATGGT ACTTTGTAATTCAACATTCATCGTTGTG BRCA1_t15_4 

3 C10 C03 TCGTGCTGATATTTGTGTGAGGT TGACTTGTCTAGGAAGGCAGTTG PALB2_t4_2 

3 C11 C03 TGCCCTGCAAGTGTGAGATTTTA GTGTTAATGATGGGGCTGATGTG ESR2_t5_1 

3 C12 C03 GACACTGGGGAAACAGATCCATA ATCTACAGGTGACAGGAAACTGA DCLRE1B_t3_2 

8 C01 C03 CTTTGCGGATCAAGAAGCAGTTG GGACCCTAAACCAATTTCCTCCC DCLRE1B_t4_8 

3 D01 D03 CTACTGAATGCAAAGGACACCAC TGCAGCGTTTATAGTCTGCTTTTA BRCA1_t10_1 

3 D02 D03 CAGAAATGAGAAACCACCAATCACA TGAAACCCATTTCTACTCTTTTCTTC CHEK2_t5_1 

3 D03 D03 GCTCTTAACATGCTCCAGACCTT AAATGCTGCTTCCACATAAAGCC MME_t12_1 

3 D04 D03 TCAGAAGGAGATAAAGGGGAAGGA ATGGCTGAACTAGAAGCTGTGTT BRCA1_t11_1 

3 D05 D03 CCCCACACTGAGAACAGTATGAA GTACCACTTGTCCTCCCAGTATT SLC15A2_t4_2 

3 D06 D03 CTGTGGTTATAAAGCCAGAAGCA CACATATTTGGGTAGCTTGTTATACAT ATRIP_t5_2 

3 D07 D03 CTAAGATGGGGAAAGCAGGTGAA AGAGGACCTTATTGTTCTACCAGGA PALB2_t5_5 

3 D08 D03 CTCCACGGCTACTTTCCTCTGG ACACTCTTGATGGCAGGAATGAAA PALB2_t4_6 

3 D09 D03 ACCCAATTCAATGTAGACAGACG TTTGTCCATGGTGTCAAGTTTCT BRCA1_t6_5 

3 D10 D03 AGCATGTTTCTTTTGCCTTCCAG ATGCAAAACTGAACTATCCCTCC ATRIP_t4_2 

3 D11 D03 CCCCTCAACTTGCTCAAACAAATA TGGACCCAATATAAGAGCACCTTG MME_t21_1 

3 D12 D03 CATTCACTTGACCTGCAGAGGG CGGCACTTCTTTTCTGGATTCAT MME_t22_1 

8 D01 D03 CCCTTGTAAACACCAATAGTAAAGGG AACATCTTCTACAGCAGCCACAA CTNNA1_t2_2 

3 E01 E03 CACAAGTTCGCTCTTTGGAGAAG GAAACCGTAGAGGCCTTTTGACT CDH1_t3_1 

3 E02 E03 TTCTGCTTTTGCTCACCACTAGG TGACAAGTTACACATCAAAACCCA PALB2_t4_20 

3 E03 E03 AGAATGCAGGTTTAATATCCACTTTG TTGCAAATGTAAGTGGTGCTTC BRCA2_t9_11 

3 E04 E03 ACAGTGTTAGGTGAAAATGTGGA ACTACCAAACAGACATGCAAAGC IDE_t20_1 

3 E05 E03 TGCGAATTAAGAAGAAACAAAGGC ACACTCTGTCATAAAAGCCATCAGT BRCA2_t14_2 

3 E06 E03 CAGACTCTTCCAGCTGTTGCT CAATTGGTGGCGATGGTTTTCTC BRCA1_t14_2 

3 E07 E03 TCCTTCTCACTCAACCATAAAGTGATT CCTGGGCACCTTTCTCCTTTAG ESR2_t1_1 

3 E08 E03 CACTCACCACACTTCACCATTCC CAGTGTTGTTGACCAGGAAGAGA ESR2_t3_2 

3 E09 E03 CCCAAGCTCTTTTGTCTGGT GCCTGGGAACTCTCCTGTTC BRCA2_t26_6 

3 E10 E03 GACTACTGACAAGTCCATTTCCA TGCAAAAACTTACCTGAGAATAAGAAA SLC15A2_t20_1 

3 E11 E03 ACGCTAGTTGTAGAAACAGCATC GAGGGGAAATGCGTAGAAGGAAT ESR2_t6_1 

3 E12 E03 CTAGCAGGCACTGTCCCAC GAATGGTGGCCTGTTAATTCTGG CHEK2_t13_2 

8 E01 E03 AGGATTATTGGGACTTTGCAGAAC CCTAGGGCCCATTTTCTTTCGAT MME_t22_2 

3 F01 F03 TCATGCTGTTTACATTCACTAAGGC AACCTACCTGTGACTGTGACTCT PALB2_t5_1 

3 F02 F03 AGAAGAAAACGGCATTTTGAGTGT TGCAGTTATGCCTCAGATTCACTT TP53_t6_1 

3 F03 F03 ACAACAAAACCATATTTACCATCACG CTGTGATGGCCAGAGAGTCTAAA BRCA2_t20_2 

3 F04 F03 ACATCAGTGACTGTGAAAAAGCA GCCCCGTGAAGGGGAAG CHEK2_t15_1 

3 F05 F03 TCTAAGAAGGCCCATGTTTTGGC AAAGGCCTGCCTCTCTTTACCTA CTNNA1_t2_3 

3 F06 F03 TCATGGCTGGATATTCATGGTGG ATGACCTTTGTGCCTCTTCTTGC ESR2_t1_4 

3 F07 F03 TCCTTTGTAGCTTGCTCACACTT TGGAGAGAATTGCAGCTGAAGAA ATG2B_t17_2 

3 F08 F03 CCCTAGGTTCCATTTTCCCAACT TTAGTCTTGTGAGAGCAGCCAAG FMO2_t6_5 

3 F09 F03 TATACCAAATTCAGCCCACCTGT TATGCAGATGGTTGAAGACACCC IDE_t19_1 

3 F10 F03 ACACTATTCAGGAGAAAATGAGAGCC TGTGACATTTCCCATACCTGACC IDE_t7_1 

3 F11 F03 ATTGTTTTTATTGTGTGATACATGTTTACTT AGCCAACTGTATTCCTTTTCCAGT BRCA2_t15_1 

3 F12 F03 CTTTGTTCTGGATTTCGCAGGTC AAGTATTTCATTTTCTTGGTGCCAT BRCA1_t11_2 

8 F01 F03 TGACTTCATCTAATCACCTCCTACCA TCATGAGAACCTTATGTGGAACCC CHEK2_t11_1 

3 G01 G03 GGAGTATAAAGTAATATGGATGAAGAAAGGC AGAGACATCTTAAAGAGGGAAGCTG PALB2_t5_6 

3 G02 G03 TGCAATCAAAAGGGAGCAATAAGC GGTCTCGGGAATGACATTACGTT MME_t3_1 

3 G03 G03 ACAAAGATGGAGACCTCGTTGAC ACCACCAATAATACACTTAAGATTGAACA MME_t18_2 

3 G04 G03 GCTGTAATGAGCTGGCATGAGTA TTCAGCTGCTTGTGAATTTTCTG BRCA1_t9_42 

3 G05 G03 AACTTTTCAGCATTTACCAGCAA CATCAGGGTGCTGTAGGCAT CTNNA1_t5_1 

3 G06 G03 CAGCTGTGTGATTACTTACTGGA GGTTTCCTGAAGCTATGTTCCTT ESR2_t6_2 

3 G07 G03 GAGATATGCCTTACACGTTCTGC TCCATAGTCTCAGCATAGAAGCC GOLGB1_t12_1 

3 G08 G03 GATGGAACAGTGGAGGAGAACAT AAAATGGAACCTAGGGGCTGGAT FMO2_t6_3 

3 G09 G03 TCCCAAATTTACTGAAGGGGTGT TTCGTACCCTTAGGTTTGCACAG IDE_t4_2 

3 G10 G03 AGTTTGAATCCATGCTTTGCTCT ACTGCAAATACAAACACCCAGGA BRCA1_t9_2 

3 G11 G03 GAAACTCCCACCACAGCACATA ACCAATATTAAGCCTTAGTGGGTATC CHEK2_t12_6 

3 G12 G03 CAACAGAAAACTGGGAGCAAAAA AGGACTTTTTTCCCATATTTAGAATTCAG MME_t6_1 

8 G01 G03 GCAGGTTATTAATGCTGCACTGG ACATCTTCACATACTTCTCTGGG CTNNA1_t10_2 

3 H01 H03 TGACTACTGGCACTTTTGTTGAAG TGATCAGTAAATAGCAAGTCCGT BRCA2_t10_41 

3 H02 H03 CCCAGTATTTAGCACACTCAGCA CAGTCAGAAAAGCCACCTCACTA IDE_t21_2 

3 H03 H03 TTTTGGAGATCATAGCTCAAGCC TCCATCTCAAAAGGCCATATCAC IDE_t15_2 

3 H04 H03 TGCTGCTATTTAGTGTTATCCAAGG AAGGAGCCAACATAACAGATGGG BRCA1_t9_39 

3 H05 H03 TGAGCCAAATGTGTATGGGTGAA CAGCCTATGGGAAGTAGTCATGC BRCA1_t9_7 

3 H06 H03 TTCCTTGTCACTCAGACCAACTC TATTGGCAAAGGCATCTCAGGAA BRCA1_t9_3 

3 H07 H03 GGTGAGTTCTTATTTCAGTTACTGGTG CCTAGTGGTGAGCAAAAGCAGAA PALB2_t4_13 

3 H08 H03 TCTGCCAAGTCATCTCTGCAAAA CAGGTTCAAAGAGGGATGCTCA ESR2_t2_1 

3 H09 H03 ATGATGATGTCCCAAGTCGTCTA ACGAGTGAATCTTCAAGGAAGGG FMO2_t6_2 

3 H10 H03 AGTGGCCATGGGTTTAAATGAGG AGACAGAGAGGTGAATGCAGTTG IDE_t4_1 

3 H11 H03 TCTTACCCTCCATCTTCTGCAAAC GGCTTAGGGCATTGTTTTGTTCC PALB2_t9_2 

3 H12 H03 GGCTTGTGATTTTGAAGCCCAG CAGAGGGAGCAGCCAGTTTATTT ATRIP_t4_1 

8 H01 H03 GCTGTCCATGCAGGCAACATA TTGCTCTTATGGTTGTTACCCAG CTNNA1_t1_2 

4 A01 A04 AGAAAATTGTGTTTTCACTTTACCCT TCTTGACTTCTGGAACAATTGCC PALB2_t13_2 

4 A02 A04 TCAAAGGGCTCCACTGGTTTTTC TCCTTGGATGATGATGCTTTCAC PALB2_t5_8 

4 A03 A04 TCAAGTTATTCAATTGCTAGTCATGGG TCGAGGTACTCATTATTCAGTTTGTT MME_t14_2 

4 A04 A04 AAGTGACTTTTGGACTTTGTTTCTT TCGGGAAACAAGCATAGAAATGGA BRCA1_t9_17 

4 A05 A04 TATTTTCTTTCCTCCCAGGGTCGT TCAACCTCATCTGCTCTTTCTTG BRCA2_t6_2 

4 A06 A04 ACCTACATAAAACTCTTTCCAGAATGT GCAATGGAAGAAAGTGTGAGCAG BRCA1_t15_1 

4 A07 A04 GCTCTCTCAACAGGACAATCATCT TCTCTGGTAAGAAAACAGAAAATAATTTGTAA SLC15A2_t4_4 

4 A08 A04 GCTCTGTGTGACACTCCAGGT CCTGTATTTTAGTTGAAGAAGCACCC BRCA2_t16_2 

4 A09 A04 AGGGTTATTTCAGTGAAGAGCAGT GCTTACAATACGCAACTTCCACA BRCA2_t21_8 

4 A10 A04 ACTGCCAAATCTGCTTTCTTGAT TGGGAAAACCTATCGGAAGAAGG BRCA1_t9_35 

4 A11 A04 AGCCAGGCTGTTTGCTTTTATTAC CAGCTGAGAGGCATCCAGAAAA BRCA1_t9_41 

4 A12 A04 TCTTCAATGATAATAAATTCTCCTCTGTGT GAGGGGCCAAGAAATTAGAGTCC BRCA1_t9_5 

9 A01 A04 AACCCTTTCATATTCATACCTTTCTCT ATCTGAATGCCACTGAGAATGCC CHEK2_t12_8 

4 B01 B04 GCCAGAACCACCATCTTTCAGTA AGTACCCGTTCCCTTGATGTCTA BRCA1_t12_1 

4 B02 B04 AAGTCCTCCATTTCTGTATCCATGC ACCTGATGAAGACTTTGGACCTC PALB2_t5_7 

4 B03 B04 TGTGCCTCCAAACTTACAGGT ACTGCCCAACCAGAAAAAGGT PALB2_t4_10 
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4 B04 B04 GAGGTCCTTCTGCACGTAACTTC GGAGGTGAGGACTGCATTTTCTA IDE_t9_2 

4 B05 B04 TCTTCAGAGTTTTGCAGCCATGA AGTAGAACTGAGGTATGCTCCCA IDE_t25_3 

4 B06 B04 ACCCTCAATCAAAAAATGCTTCCA GCCTATTTGTACCTTGAGCTCCT IDE_t15_1 

4 B07 B04 CCCATGTCCTCAAAGTTTGCATT GCATTTCTGGACTCCTTGTAGGT MME_t11_2 

4 B08 B04 GTGGCATGATCTTTTACATAGGTTT CCTGTGCAAAGTTCAAGAAAAATAGTTG MME_t20_1 

4 B09 B04 CTCACACAGGGGATCAGCATTC ACAGCATGAGAACAGCAGTTTATT BRCA1_t9_40 

4 B10 B04 AGGAGAGAAAGGGAAAAGACCCA CACCTTCAGCCATCCTGTTTCTC CDH1_t5_1 

4 B11 B04 AGCTGACCAATTAATCCAGGAAG ACAACCTTCTCCCTTCTACATGC WDR17_t19_2 

4 B12 B04 GATCAGAAAGGGTCCCACTGC TCCTCACATCACCCCATTTTTCC PALB2_t9_3 

9 B01 B04 TTCCTCAGCAAATGATCCTTCAG CAATGTTCTCCTCCACTGTTCCA FMO2_t6_1 

4 C01 C04 ACTTACTGCCTCTCTTGCTGAAC CCCAGGAGTGGTAGGTCTCATAA CHEK2_t6_3 

4 C02 C04 TGTTGAAGCAAGGTTCCGAGATA AGTTTTTGAACTTGCTGCTGTCTT IDE_t20_2 

4 C03 C04 GTGCTTCTTGGACAGCTGAAAA ATCAATAACAACAATGTATGTGGAAGT MME_t6_2 

4 C04 C04 TCCAGTTGCAGGTTCTTTACCTT GGAGGAAGTCTTCTACCAGGCAT BRCA1_t9_28 

4 C05 C04 TGCAATGAAGCAGAAAACAAGC ACGATGGCCTCCATATATACTTCT BRCA2_t25_2 

4 C06 C04 ACTGCACTGTGAAGAAAACAAGC AGTCTACTAGGCATAGCACCGTT BRCA1_t9_4 

4 C07 C04 ACCAGAATATCTTTATGTAGGATTCAGAG AGAAACTACCCATCTCAAGAGGA BRCA1_t14_1 

4 C08 C04 AACCTCAGAAACAGCAACTTGGA AGTGTGAACAAACTGATAGTGTCCT MME_t12_2 

4 C09 C04 TGTTTTCAGTACCGTTCGAATCT AGTTCCTTCTCGAGTGTCCCATA WDR17_t13_2 

4 C10 C04 CAGAGACAGGTGGGAGGAG GGGAACATGGTTTTGACCTTTTTT PALB2_t13_3 

4 C11 C04 CTGAAGCTGCACATCATCCAGTT ACAGAATTGAGGGCTCAGGTAAA GOLGB1_t12_2 

4 C12 C04 CCACTGAGCCTTGTACAGACTTTT ACATATTAAGAGAGAAATCTTTGATGCAC MME_t3_2 

9 C01 C04 TCAGATGTTGGAATTTTTGTGTTAAATCT CCACTAATGATGCTTTCCAGACG CTNNA1_t6_1 

4 D01 D04 ATGGAAACTGGCAGCTATGGAAT GACAACTGGCTTGTGCAACATTT BRCA2_t16_3 

4 D02 D04 AGGAAGTCAGTTTGAATTTACTCAGTTT CAAATTGCTTGCTGCTGTCTACC BRCA2_t10_26 

4 D03 D04 TCATCATCTTTGCTTATCAGCTCCT TCCTTCAGACACAGCTACTTATG CHEK2_t14_1 

4 D04 D04 TTAATCTTCACAACAACCCTGTAAAAT GCAAAGAAAACCAATTTTTGATGCC PALB2_t10_1 

4 D05 D04 TGTGTCATGTAATCAAATAGTAGATGTG AGCAATTTCAACAGTCTAATCAATGTC BRCA2_t7_1 

4 D06 D04 ACAGTCAATATCAGAATAAACCAAAATGA TCTCTTAACAATTTCCGGGCTGA IDE_t17_1 

4 D07 D04 ACTAGGACTGCTCCCACCA ACTGGAAAGGTTAAGCGTCAATA BRCA2_t26_7 

4 D08 D04 TTCAATGCAAGTTTTTCAGGTCA ACCTGCATTCTTCAAAGCTACAGA BRCA2_t9_9 

4 D09 D04 TGAAAAAGAGCAAGGTACTAGTGAA GCACCACAGTCTCAATAGAAACAA BRCA2_t10_51 

4 D10 D04 GCTTGCGGGTGTCTTTAGTTC TGGTCACTTGGTCTTTATTCTGGT CDH1_t13_1 

4 D11 D04 TGTCAGGGAGCTGAACTTCTCTA AGCCAGTTTATTTCACAAACAAGATA IDE_t19_2 

4 D12 D04 ACCAAAAGCAACAGTTAAGGATTT GTGGCTGTGGAGGTGGT CDH1_t10_1 

9 D01 D04 GTAAAATGTGCTCCCCAAAAGCA GGAGTTGGTCTGAGTGACAAGG BRCA1_t9_1 

4 E01 E04 TTCCTGAGTTTTCATGGACAGCA TCACTTGCTGAGTGTGTTTCTCA BRCA1_t4_1 

4 E02 E04 TGCAATTCAGTACAATTAGGTGGG GCTTTCAAAACGAAAGCTGAACC BRCA1_t9_30 

4 E03 E04 ACTGAAAGGCTTTATACTCTTCTCATATT CTCTGTTATTCTGTTTATCAAAGGACCC CHEK2_t7_1 

4 E04 E04 TAAAGGAACTGTAGTCGCCCTG CTGCTAGATCACCAGTAACTGAAA PALB2_t4_11 

4 E05 E04 AAGGTTTAAATTTTTACTTGCATCCTTATTT CTGCAGAAAAACATTCTTGCACA PALB2_t4_5 

4 E06 E04 TCACACTGTGGGAAAAAGAACAA GTGCCCAAAGAGCTGAAAAGATT PALB2_t3_1 

4 E07 E04 ATTCACTTCCCAAAGCTGCCTAC CTCTCTAACCTTGGAACTGTGAG BRCA1_t6_1 

4 E08 E04 TGTCATGGACCACGTTTCAGATT ACACTTCACCAAGTTGCCTACAA CTNNA1_t8_2 

4 E09 E04 AGTTACATGGCTTAAGTTGGGGAG TGGACGTTCTAAATGAGGTAGATGA BRCA1_t9_36 

4 E10 E04 ACGTATGGCGTTTCTAAACATTGC TTCTTCTTTTCCAGCCTTTCCAT BRCA2_t15_2 

4 E11 E04 ACTATATGACTGAATGAATATCTCTGGTT GTGCTCTTTTGTGAATCGCTGAC BRCA1_t18_1 

4 E12 E04 TTTGGTTCTGTTTTTGCCTTCCC AATAATGCTGAAGACCCCAAAGA BRCA1_t9_20 

9 E01 E04 TGCACCTGTGAGAGGATTAATGT TTAGTATGTCAATATAACAAATACATGAAAGAATG WDR17_t13_3 

4 F01 F04 AGCTGACAGAGACAAAGATGAAGG AGCATAATTTTTGGCTGCTTTGTTT PALB2_t8_1 

4 F02 F04 CAGACTTCCAGGACCTTCATGC AGGAGTCGTATATAGCTAATCTCTGTG IDE_t7_2 

4 F03 F04 TCGGCTATCCTGATGACATTGTTT CAACCTGTGGTTTCAGGCTACTT MME_t14_5 

4 F04 F04 AATTACAAAAACAAGTACAGAATAGGACT GGGCCAATGTCATCTTGTTATACAG MME_t9_1 

4 F05 F04 AGCTTTTATGGAAGATGATGAACTGA TAGTGATTGGCAACACGAAAGGT BRCA2_t10_75 

4 F06 F04 GACAACCCGAACGTGATGAAAAG ACTTTAGGGTCTTTGCCCATTGA BRCA2_t10_50 

4 F07 F04 TAGAGCATGTGGTGTGATGTCTC AGAACACGGACTTGTTTTTCCCA CTNNA1_t10_1 

4 F08 F04 CTGTGCCTGGCCTGATACAATTA CTAGTCTCTTTTGTTGGGCCTCC BRCA2_t19_1 

4 F09 F04 TTTCATTCAAAAGTAAAAAGGTGAATCAAT CTTCAAGGAAGCCACATATGCAA IDE_t8_2 

4 F10 F04 TGTGAAAAATCTAAAAACCAAGTGAAAG GCTCCATTTAGACCTGAAAGGGTT BRCA2_t9_4 

4 F11 F04 GAAGCAAAATGTAATAAGGAAAAACTACAG CCACTTTTGAATGTTGTACTGGGT BRCA2_t10_4 

4 F12 F04 AGTGGCGACCAGAATCCAAATC TTCCTTGATACTGGACTGTCAAAA BRCA2_t24_14 

9 F01 F04 ACTGTGGTTAACTTCATGTCCCA ACTGATTATGGCACTCAGGAAAGT BRCA1_t9_19 

4 G01 G04 TGCTTTAGATCGTTTGTCTTGTG TAGCTGTAACTACAACCACCATC FAM175A_t9_3 

4 G02 G04 ATTTCTTTTTAGGAGAACCCTCAATCAA GTCAGAATATTATATACCATACCTATAGAGGGAGA BRCA2_t11_2 

4 G03 G04 GCAGCAAGCAATTTGAAGGTACA TTCACAGCTTTTTGCAGAGCTTC BRCA2_t10_30 

4 G04 G04 ACTGAAAGAAAGTGTCCCAGTTG ACTAGTACCTTGCTCTTTTTCATCA BRCA2_t10_49 

4 G05 G04 ACATCAGCTACTTTGGCATTTGA AATAAGCAGAAACTGCCATGCTC BRCA1_t9_38 

4 G06 G04 TTTTTATCAGATGTCTTCTCCTAATTGTG CCAAGGCTCTTCTCTTTTTGCAG BRCA2_t26_2 

4 G07 G04 CCCTTTGAGAGTGGAAGTGACAA GAAAATCTTTCTTTCTTTTGTTCTCTGTG BRCA2_t9_5 

4 G08 G04 TGGACTGGAAAAGGAATACAGTT AGCCAACTTTTTAGTTCGAGAGAC BRCA2_t15_3 

4 G09 G04 GGCCTGCTCGCTGGTAT AGAAATATATGGTAAGTTTCAAGAATACATCA BRCA2_t18_2 

4 G10 G04 CCAGCACAGAAAAACGAGATCCT GAGGCTAGTTAGTAGCAGTGGGA PALB2_t9_1 

4 G11 G04 AACTTGTGGGCAGTTGGC GCACCTTGAACACATTCCTCCTA PALB2_t4_9 

4 G12 G04 TAGGACTTGCCCCTTTCGTCTAT AGCAGAAAACACAGAAAAATCTCCA BRCA2_t24_11 

9 G01 G04 GGCTTATCTTTCTGACCAACCAC GCAACATTCTCTGCCCACTCTG BRCA1_t9_16 

4 H01 H04 TACCTCCACCTGTTAGTCCCATT TGCAAGTTCTTCGTCAGCTATTG BRCA2_t26_4 

4 H02 H04 CCTTTAACTCTGAAACCAATTGTAGG TTTGGAGCTTTGCTGCTGTTAT PALB2_t6_2 

4 H03 H04 CTGGCGCTTTGAAACCTTGAAT GTGAGTCAGTGTGCAGCATTTG BRCA1_t9_18 

4 H04 H04 ATGAAACAGTTGTAGATACCTCTGAA TGGTTCCACTTCAGATACAAATGAGT BRCA2_t9_3 

4 H05 H04 TTTTCAGTGCCTGTTAAGTTGGC TCTTGGTCATTTGACAGTTCTGC BRCA1_t8_1 

4 H06 H04 AAGAAGTAGAACAGCGTGTGTTT TTTGATCTCTGTCTCCAGCTGTC ATRIP_t6_1 

4 H07 H04 TTGCCACGTATTTCTAGCCTACC TCTGAATATAGACTTTTTGATACCCTGA BRCA2_t9_7 

4 H08 H04 TTCTGCTCCGTTTGGTTAGTTCC ACTGAAAATCTAATTATAGGAGCATTTGTT BRCA1_t9_34 

4 H09 H04 GGAATAGCCACATACAGAATGCC AGATGTGTGTGTTGGTAACTTTGA CHEK2_t10_1 

4 H10 H04 TCACCAAAACCCTTCATCTTTTCA GTCCAGCTAGTACACCACAAATCA FAM175A_t9_2 

4 H11 H04 TGCAAAAGTCCCAAAGTAGGAGAA TGTAACAAGAGGCTCCAACAGTC CTNNA1_t1_1 

4 H12 H04 CCTCAGGTTGCAAAACCCCTAAT TAAAGAAGCCAGCTCAAGCAATA BRCA1_t9_11 

9 H01 H04 ATTTGGCTTGTTACTCTTCTTGGC AGTCAGTAGAAATCTAAGCCCACC BRCA1_t9_27 

5 A01 A05 AACTGAGGACCTAGAGGGAAAGC ACCTAGAGACTGCTTTAGTGCAA PALB2_t10_2 

5 A02 A05 TTCTGAGGAATGCAGAGATGCTG TAAAAGCCCCTAAACCCCACTTC BRCA2_t10_29 

5 A03 A05 TTGTAGAATGGCCTTAATCAAATGTT AGGCCTTCCAAAAACACATTCAG IDE_t21_1 

5 A04 A05 CTCTACTGATTTGGAGTGAACTCTT CCAGAAGTGATGAACTGTTAGGT BRCA1_t9_37 

5 A05 A05 CTTTCTTCAGAAGCTCCACCCTA GAGATTGGTACAGCGGCAGAG BRCA2_t2_2 

5 A06 A05 GTAATGAGTCCAGTTTCGTTGCC TGTGAACAAAAGGAAGAAAATCAAGGA BRCA1_t9_15 

5 A07 A05 GGATGCCATCTTCTTTACAGACCT GACTGTACCTGTTGTCTTTTGGC CTNNA1_t4_1 

5 A08 A05 TCTTTCAAGGAATGAGCACCTCC GCTGTTTACACTTAGATCTTGGTCTTT ATG2B_t17_3 

5 A09 A05 ACGTATGGAAAGTTCTAATAAATGTCAGC CAAGTCTCCTGAAGACAAGCG IDE_t2_1 

5 A10 A05 ACATTTTTTCAGACTGCAAGTGGG TGTTTCCTCATAACTTAGAATGTCCA BRCA2_t10_47 
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5 A11 A05 AAAGCAGGCATAAGTGAATGGTC AAAACGTATTTCTGGGGCTGTT PALB2_t3_2 

5 A12 A05 TGCTGGGCGGTGGTTTTTT GCAGTGTACATGGTAAGCCTTCATA MME_t11_3 

10 A01 A05 TCTGTTCCAGAATGGTCAGAGGT CTGAGGACAGAGGGCTTCTAACT CTNNA1_t9_1 

5 B01 B05 CTGTGATACTGAGAAAAGACAGTAGT TGTCTGTTTTGTTGGGTTTTGTT PALB2_t5_9 

5 B02 B05 AGAACAAGAAGCTATATGACTGAATTCTT TGATGTGACTTTTGTTTTCACAGAC PALB2_t6_1 

5 B03 B05 GGAGAGCTGACTTTAGTTAATGAGAGAA GGAGGCTGTCATTCAGAGTCATT PALB2_t4_4 

5 B04 B05 ATTACCTGTCTAGGGCACCTTCT AAGTCATTTTTGTGAACATATGCTTTTT IDE_t3_2 

5 B05 B05 CAGGAAGGACAGTGTGAAAATGA AGAACATCCTTGGAAGTAGGAGT BRCA2_t10_5 

5 B06 B05 AGAAGCAGAAGATCGGCTATAAAA CCTTAACAGCATACCACCCATCT BRCA2_t17_2 

5 B07 B05 GTTACAGCTGGGGAGGTCATGTT TAAGGTACCCAAGGCCAAAAGAG SLC15A2_t20_2 

5 B08 B05 TACCCAGTCCCCCATGTATTAGG AGAAATGGCAAAATGCTGACCTG IDE_t13_1 

5 B09 B05 GAACTTCTCCAGTGGCTTCTTCA GAGTCCTCCTTCTGTGAGCAAA BRCA2_t9_8 

5 B10 B05 TGCAAATGCATACCCACAAACTG ACAAACGATTTTACCACTGGCTATC BRCA2_t10_60 

5 B11 B05 TTAAAGGGAGGAGGGGAGAAA AGGCTCTTTAGCTTCTTAGGACA BRCA1_t17_1 

5 B12 B05 TCATTAATACTGGAGCCCACTTC TCTGCTAGAGGAAAACTTTGAGGA BRCA1_t9_12 

10 B01 B05 TACACTGGGAGAAAACATTGCTG TCCATTTTCTATTCATCATTTACTGCTT MME_t19_5 

5 C01 C05 aaaaaaCCAAGCTGCTTCTTCTAA TTCTTATAGGTCCTGTTGTTGGAG IDE_t24_1 

5 C02 C05 GACATGCTTGTATTTTTCAAACTTTTCT ACACCAGATCATTTTGTAGTTTGG MME_t7_1 

5 C03 C05 CCAGCCACATTAAGCATTTGGAC GAGCAGGACAAGGACCGAGAG MME_t1_1 

5 C04 C05 TGTGTTACAAAGAATGAATTAATGACCT TTGCTAGTTAGCTGTCTGCTCTT MME_t13_1 

5 C05 C05 CTTTCCCAAAACATGGCACTCAC AAGCTCTTTCTTTTCACCTGCAT PALB2_t7_3 

5 C06 C05 AAAAAATTGTAAGGGTTCTTACCTCGAC AAGAAATCCCTTTTCTTCCCTTCCA IDE_t5_2 

5 C07 C05 AGATGTTCTTCTTGGAAAGGGTGT GCACTCCCTGTTGGATGTTATGA IDE_t6_2 

5 C08 C05 CCTTTTTCTGGTTGGGCAGTTG TGTCTGGGAAAAGACTAAAGGAACA PALB2_t4_12 

5 C09 C05 AGTTTCTCTTCTTTTTCTTCTCTTGGA AAGGTAAAGAACCTGCAACTGGA BRCA1_t9_24 

5 C10 C05 CCTGCTTTTTTCCAGCCATTCAG AATGCAAACTTTGAGGACATGGG MME_t10_2 

5 C11 C05 GGTATCTTGAAGTTGAGGAATGCTG CACACAGAATGAGTTTTTCCCTCT CTNNA1_t4_2 

5 C12 C05 GCCTGTTCCATCTCAAATAATGAAG CCCCAAGACTTCCATCTAAAATCCT CTNNA1_t9_2 

10 C01 C05 TCACATGTCAGGCTTATTCATAGAT CATATATACAGTATGAGTTTACAGGGTTTTT IDE_t12_2 

5 D01 D05 GTTTCTTACCTTTCCACTCCTGGT TCACTATCAGAACAAAGCAGTAAAGT BRCA1_t13_2 

5 D02 D05 TGAAATACTCCACACAGCAATGTA GGTTTCTAAATAAGGGTGGCCGTA IDE_t10_1 

5 D03 D05 CCTCTAGCAGATTTTTCTTACATTTAGTTT GAAAGATAAGCCAGTTGATAATGCC BRCA1_t9_14 

5 D04 D05 TCTGCCTCATACAGGCAATTCAG AGCTAAAGAACTTGACCAAGACA BRCA2_t6_1 

5 D05 D05 AAACAACAATTACGAACCAAACCT TTGTAGTTCTCCCCAGTCTACCA BRCA2_t2_3 

5 D06 D05 GGCCAGGGGTTGTGCTTTTTA TTCGAGGCAGAGTGGATGTTTTT BRCA2_t14_1 

5 D07 D05 AGTACAGCAAGTGGAAAGCAAGT CACAGTGCTCTGGGTTTCTCTTAT BRCA2_t10_69 

5 D08 D05 ACCAGAAGAATTGCATAACTTTTCCT CTTTTCATCACGTTCGGGTTGTC BRCA2_t10_48 

5 D09 D05 AGCACAAATGGCTATAGGCTATCATT TGAGAACTTAGAAAAACAATCAGCAC CTNNA1_t7_1 

5 D10 D05 AGTCTGGGTTTTATATCGTCTGC GTCCTGGTATCCAGTGCATCG ESR2_t10_1 

5 D11 D05 ACAATTCTGACTTTGTTTCCTTGAAT ACCACTTACTTATTGTTTTGGCTCC WDR17_t11_1 

5 D12 D05 TGGTGGGATCACTGATAAGAAGTA TCCTTAAATATAAAGTCACAAATCAACAATTAAAA IDE_t2_2 

10 D01 D05 CTGGTTATTTAACAGATGAAAATGAAGTG TTACTTGAAGATAAACTTATTGGATGTACC BRCA2_t10_32 

5 E01 E05 AGTAACACACAAAGTGGTCCCAG ACTGGTTTGTTGGAAGAATGTGA PALB2_t11_1 

5 E02 E05 TGGATGGAGAAGACATCATCTGG ACAATGTGTACCATATAACTAATTTTACCTT BRCA2_t19_2 

5 E03 E05 acacttggccCTGTCACTTTTTA CAACTTCTAGCCTGTCGATTGTT PALB2_t4_1 

5 E04 E05 AGTTTTGGTTTTCATTTGCTGGT CACCTGTAAGTTTGGAGGCACAA PALB2_t4_8 

5 E05 E05 ACAGATCCACAGCATGAAGAAGT TGAATGTTGCAGGCTGGGTTAAT IDE_t8_1 

5 E06 E05 TCATTATACTATTCTCTACTTTTGTAATGCTTG TGGAAGAATTTAGACCTGACTTAATAGA IDE_t11_1 

5 E07 E05 CCTGATACTTTTCTGGATGCCTCT TCCACCTCCAAGGTGTATGAAGT BRCA1_t9_43 

5 E08 E05 TGTACAGAGAATAGTTGTAGTTGTTGA AGGAAAGGCACATTCCATAGCTG BRCA2_t16_1 

5 E09 E05 CGCTTTTGCTAAAAACAGCAGAAC TCAGACTGTTAATACAGATTTCTCTCCA BRCA1_t9_8 

5 E10 E05 TCACCTTGTGATGTTAGTTTGGA AAAGACTTGCTTGGTACTATCTTCT BRCA2_t10_66 

5 E11 E05 GCTTTTCTCCCCATCTGTAAAGGA AGAACAATTTCATCTTTAGTCAGCTAATC ESR2_t9_1 

5 E12 E05 ATTTGTGGTGTACTAGCTGGACT TTGTCAGGCATTACGGACCTTTT FAM175A_t9_4 

10 E01 E05 GCTACTCCAACAGTTTAGTGCT TTGGCAATTTCTTTTTCCAATTCCA MME_t8_1 

5 F01 F05 GTTTTATGCAGCAGATGCAAGGT AACTAGTATTCTGAGCTGTGTGC BRCA1_t16_1 

5 F02 F05 TCCATATTGCTTATACTGCTGCT TCAGGGAACTAACCAAACGGAG BRCA1_t9_32 

5 F03 F05 GCTTCATTACAAAACGCAAGACA CCAGAGAAAGCAGATGAATTTACCA BRCA2_t10_67 

5 F04 F05 CAAATGAGGGTCTGCAACAAAGG TGCTTGAAGATTTTTCCAAAGTCAG BRCA2_t13_1 

5 F05 F05 ACCGGTACAAACCTTTCATTGT GAACAAGATGGCTGAAAGTCTGG BRCA2_t23_1 

5 F06 F05 TGTGCTCACTGTACTTGGAATGT AGGCAACGAAACTGGACTCATTA BRCA1_t9_13 

5 F07 F05 ACGAAACACCCATAAAGAAAAAAGAACT GTGGGAGCAGTCCTAGTGGAT BRCA2_t26_5 

5 F08 F05 CTTGATTCTGGTATTGAGCCAGT GCTGCATTTTTATTTTTGCAGGGTG BRCA2_t10_59 

5 F09 F05 AGATGAAACGGACTTGCTATTTACT TTTGCTCCGTTTTAGTAGCAGTT BRCA2_t10_45 

5 F10 F05 TCATTTGCATAGGAGATAATCATAGGAA AATGTGTTAAAGTTCATTGGAACAGAA BRCA1_t1_1 

5 F11 F05 CTTCTTTTCCTCCTTGCTTCTTTT GCAGCCAATTTTACTAAAGAAGATTATTG IDE_t16_1 

5 F12 F05 ATGGAGCAGAACTGGTGGG AGTACATCTAAGAAATTGAGCATCCTT BRCA2_t17_4 

10 F01 F05 TGCAATTTCAGAATTGTTATTCAAAGG TCATTGTTTTTAGATATTTTCCCACTATAAATCT CHEK2_t4_2 

5 G01 G05 TTGTTTCAGACTTTGAATAGCAGAG GGGACAAAAGCTGTGAATATTGCT CHEK2_t3_1 

5 G02 G05 ccatcgtaagtcaagtagcatctgT TCAAAGACAATGGCTCCTGGTTG TP53_t7_e6_1_4 

5 G03 G05 TTTGAACTTCCTGCATGCTCACT TCACCTGTACTTACTAACTTTCAGCA IDE_t3_3 

5 G04 G05 AGAACAGACAACTCCTGGAAACG AATGCGCCTCTATTTCCCTAACC IDE_t14_1 

5 G05 G05 GCAAGGCTGGTGCTTGTGA AGGATCTGAGAAGTACATGAACGG IDE_t24_3 

5 G06 G05 TTTGCTCTTGAAAAACAGATTCCTT TGGTTTTTAAGTGTGCCCCTTTT IDE_t9_1 

5 G07 G05 TGCTCTTCATTTGATTTCATTAGGAGT TTTTGCTCCCAGTTTTCTGTTGC MME_t5_1 

5 G08 G05 TAAATCCATAGGCTACGGCTAAAC TCAATGTTATAATTTAGAAAACGGCACA MME_t9_2 

5 G09 G05 AGTGATATTGAGAATATTAGTGAGGAAACT ACAAAAGTGCCAGTAGTCATTTCA BRCA2_t10_37 

5 G10 G05 TCTAACACTGTGAAAAAGCCAACA ACTCTGGAGACTAGACCAAACCA IDE_t5_1 

5 G11 G05 TGGAGAAAATACCCCTATTGCAT AGATGCTGCTCTTCATCTCTCTT BRCA2_t9_6 

5 G12 G05 AGATATGGAGAGAAATCTGTATTAACAGTC TCCAGTGATGAAAACATTCAAGCA BRCA1_t9_10 

10 G01 G05 ACTTGACTTGTGTAAACGAACCC ACCTAGAGTCATTTTTATATGCTGCTTT BRCA2_t10_12 

5 H01 H05 AGCTAATAATGGAGCCACATAACACA ACTCAGTCATAACAGCTCAAAGT BRCA1_t2_1 

5 H02 H05 ACCATATTCTGTAAGGACAGGACAAA GATCACAGTGGCAATGGAACCTT CHEK2_t4_1 

5 H03 H05 CAGCAGTATTTCAGTCCTTGCAC TGATACACCATGCACTGGGATTG MME_t18_1 

5 H04 H05 TGCAAAAAACTGGAGAAAGTATGGT CCTATAAGCCAGAATCCAGAAGGC BRCA1_t13_1 

5 H05 H05 TCCCTTCTTTGGGTGTTTTATGCT TGCTGCATTCTTCACTGCTTCAT BRCA2_t20_1 

5 H06 H05 TGCTACTCTCTACAGATCTTTCAGTT ACCTGGTTCTTTTACTAAGTGTTCAAA BRCA1_t9_22 

5 H07 H05 AGCAGTTTCAGGACATCCATTTT AGCCATGTCCATCAATGTTTTGC BRCA2_t13_3 

5 H08 H05 CCTGAGATGCATGACTACTTCCC AGATTAGGGGTTTTGCAACCTGA BRCA1_t9_9 

5 H09 H05 TCGAGTGATTCTATTGGGTTAGGA CAAGAAAGCAGATTTGGCAGTTCA BRCA1_t9_33 

5 H10 H05 AGTTTGTTCTACTTACTCCAAAGATTCA GGGCTCTCCTCTTCTTTTTCCAA BRCA2_t10_74 

5 H11 H05 AACAATTGATGGTAAAGTGCTACACA AGATATTACCTTTGGAAATAGCACTAAACT WDR17_t11_2 

5 H12 H05 ACTCACAAATTCATCCATCTAAGCA AGTAGCCATAAAGATCATCAGCAA CHEK2_t6_1 

10 H01 H05 ACCCTCTAACTATAACTGAATCTTGGA AAGAATGGGCTTAAGTTTGGTTAAAT MME_t10_1 

6 A01 A06 TCCCTGTGTAAGTGCATTTTGGT TTTTAGAAAACACTTTCTCGGTGTAAT BRCA2_t1_1 

6 A02 A06 ATTTTTGCAGAATGTGAAAAGC CAAAACAACAACAACAAAAAAACC BRCA2_t8_4 

6 A03 A06 CAGGCTAGGCTAAGCTATGATGT AAATGGTTCTATGACTTTGCCTGA TP53_t7_e6_1_1 

6 A04 A06 TGTCATGATTCTGTTGTTTCAATGT TCTACTGGCAGCAGTATATTTGTT BRCA2_t10_38 
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6 A05 A06 TCAGAACTGAGCATAGTCTTCACT TTTCTGAAGAACCACCTTCAACA BRCA2_t10_70 

6 A06 A06 AGTGTTTCTTGCTGTATGTTCGG TTTTCCTACAATTAGCATTTATGAGCA CHEK2_t3_2 

6 A07 A06 GGTATGGTGTCGCCTCTTTTTC GCCCATATATTGAGCAGAGATACT IDE_t13_2 

6 A08 A06 TGTTAAATTATGAAGCCATCTCTGTGG AGTGAGCATGCAGGAAGTTCAAA IDE_t3_1 

6 A09 A06 GTAGTACATGGCATGCTGGTGAG ACTTCAGAAAGGGGAAAGAAGGG IDE_t17_2 

6 A10 A06 TCTCATTCCCAGTATAGAGGAGACTT TGGACAGGAAACATCATCTGCTT BRCA2_t3_1 

6 A11 A06 GAGGCATTGGATGATTCAGAGGA GTTTCCAAACTAACATCACAAGGT BRCA2_t10_64 

6 A12 A06 AATAATTTTGTCTTCCAAGTAGCTAATGA CCTCTGCAAGAACATAAACCAAATCTT BRCA2_t10_11 

11 A01 A06 TCTTTTGGGACAATTCTGAGGAAA TCTGAAACTTTTTTGCTTTTTGGATCA BRCA2_t10_3 

6 B01 B06 ACAGACAGTTTCAGTAAAGTAATTAAGGA CACTCTGAATGTCAGCAAAAACCT BRCA2_t10_63 

6 B02 B06 AGGCTTGTACAGCATATGTGGATT AAAAAGCGGTTGACATTATTCAGT MME_t8_2 

6 B03 B06 CCGGTTTTAATATTTCTTCCCAAATCT AAGGAGGGAAAGACCTGCTTCTA MME_t15_1 

6 B04 B06 TTTACCAGCCACGGGAGC GGTAGCTCCAACTAATCATAAGAGAT BRCA2_t23_2 

6 B05 B06 ACTGCTATACGTACTCCAGAACA GGTGAATAGTGAAGACTATGCTCAGTT BRCA2_t10_68 

6 B06 B06 TGATATATAATGTTCAGTTTTTAGTTCTTGCT ACGTAAAAACCATTTCTTACCTGATT MME_t2_3 

6 B07 B06 GAAATTTTGTAACCAGATATTTTGAATGGT GTGGGGAAGGGACATGTTAGC ATRIP_t5_1 

6 B08 B06 TTTCTCCATCTCCCCAACTACAT AAATGTGATCTTCTCTGTTCCTCT ATRIP_t3_1 

6 B09 B06 AGGTTGACTTAGAATCTCACTTTCCTG TGGCCAACTGCCCACAAG PALB2_t4_7 

6 B10 B06 AAACAGCAAAAAGTCCTGCAACT TCTGGTTGACCATCAAATATTCCT BRCA2_t10_54 

6 B11 B06 CAGAATCCAAATTTTACCGCACCT TGGTTGGTCTGCCTGTAGTAATC BRCA2_t13_2 

6 B12 B06 AAAGAAAAGAAGAAGAAGAAGAAGAAGAA CCTTGTATTTTACAGATGCAAACAGC BRCA1_t5_1 

11 B01 B06 ACTTACTGCAAGTAGCTCAACAT AGTAGTAACCAAGATAAAGCATCCA FAM175A_t9_1 

6 C01 C06 actgtgcccAAACACTACCTT TCAGAATTGTCCCAAAAGAGCTA BRCA2_t10_1 

6 C02 C06 GAGGTAGCTTCAGAACAGCTTCA AGGCTTGCTCAGTTTCTTTTGATT BRCA2_t10_18 

6 C03 C06 TCTTTAACTGTTCTGGGTCACAAAT TGGAGTTTTAAATAGGTTTGGTTCGT BRCA2_t2_1 

6 C04 C06 TGGCGTCCATCATCAGATTTATATTC ACTAACAAGCACTTATCAAAACTGAAA BRCA2_t22_2 

6 C05 C06 ACTAGCTCTTCACCCTGCAAAAA TCTCGTTGTTTTCCTTAATTACTTTACTG BRCA2_t10_61 

6 C06 C06 GGGAAAAGAACAGGCTTCACCTA ATCTGTCAGTTCATCATCTTCCAT BRCA2_t10_73 

6 C07 C06 CAGCTGCCCCAAAGTGTAAAG TGCAGGACTTTTTGCTGTTTCT BRCA2_t10_52 

6 C08 C06 AAGTGTACAAGAGAATAAAAAGCAATCT GGGCATACTCCTTAACTTCTTTCTCA CTNNA1_t8_1 

6 C09 C06 ACCTAGTCATGATTTCTAGAGGCAAAG TCTTGAAGGTGATGCTACTCTCA BRCA2_t10_7 

6 C10 C06 CAACTGCATTCACCTCTCTGTCT TGGTAGTTTTGTTTCTGATTCTGC IDE_t4_3 

6 C11 C06 CCCAAAGCTACACACACGAGATT AGTTTTCTGAGCCTTCAAATGATGA PALB2_t8_2 

6 C12 C06 GGGACTACTACTATATGTGCATTGA ACAGAGGACTTACCATGACTTGC BRCA2_t8_3 

11 C01 C06 TATTTATGTATATTCTCTCCTTTTTCTAGATGGT AATTGATCTACAATGAATAAAAGTGTAAACAAAGC MME_t2_5 

6 D01 D06 ATGTTCTTGCAGAGGAGAACAAA TGAAGCTACCTCCAAAACTGTGA BRCA2_t10_14 

6 D02 D06 CCGGACATTTTCTGGTCTGAGTT ATCTGCTTTAATAAACTATGTAGTAGCTTTG IDE_t11_2 

6 D03 D06 AGTCTTTTGGCACGGTTTCTGTA AGCATACATAGGGTTTCTCTTGGT BRCA1_t5_2 

6 D04 D06 CCTTGTTTCTATTGAGACTGTGGTG TCAATGACTGAATAAGGGGACTG BRCA2_t10_53 

6 D05 D06 ATGTAGCACGCATTCACATAAGG TGCAGATGAGACTGACTTATGAAGC BRCA2_t10_65 

6 D06 D06 TGGCTTATAAAATATTAATGTGCTTCTGT AACTATCTTCTTCAGAGGTATCTACAAC BRCA2_t9_1 

6 D07 D06 AGCTTTTTCAAAATTTCTATTTCTGTTTCA tcattGACCTGGGCTTTGATT CHEK2_t7_4 

6 D08 D06 TCAGAAAATAATCACTCTATTAAAGTTTCTCC TTGTTTTCACAGGAACATCAGAAAAAG BRCA2_t10_72 

6 D09 D06 GGTCACTATTTGTTGTAAGTATTTTTGTTTA TCTTGATTTTCTATTATCCTGTCAAATTCAT BRCA2_t11_1 

6 D10 D06 GGATGAGAAAGGCAAGCCTACAT GGGAGTTTCTCACTACTTTCCCT CHEK2_t8_1 

6 D11 D06 CCGCCATACCCAGCCCTAT TTAGTGTACTGTTCTGGGCTGCT IDE_t22_1 

6 D12 D06 AGTAGCAGTGCAGAAAGCAAAAG GGTTCTCCACCTCTGCTATCAAT MME_t4_2 

11 D01 D06 CCCCTCAGATGTTATTTTCCAAGC CTTTAAGATAGTCATCTGGTTTTCAGG BRCA2_t10_25 

6 E01 E06 ACAGTGATACTGACTTTCAATCCC GGAATATTTTTGGTTAATTCAACATCAGATTCATA BRCA2_t10_6 

6 E02 E06 ACAAAAACAGCCCCAGAAATACG TGTTGGTGTTTTTCTTCTTCCAGT PALB2_t2_1 

6 E03 E06 TGGTCCAAACTTTTCATTTCTGCTTT AGTACAGTCTTTAGTTGGGGTGG BRCA2_t25_1 

6 E04 E06 TACTACAGGCAGACCAACCAAAG TGGAGTTGTTTTTGTTAAACTGATGA BRCA2_t13_4 

6 E05 E06 CACCTGCATTTAGGATAGCCAGT CTCTGAATCATCCAATGCCTCGT BRCA2_t10_62 

6 E06 E06 AAAGCAGCATATAAAAATGACTCTAGG TGTTCAGAGAGCTTGATTTCCTT BRCA2_t10_15 

6 E07 E06 CACTTCTTCCATTGCATCTTTCTCA TTTGTCGCTGCTAACTGTATGTT BRCA2_t22_1 

6 E08 E06 ACAGGTGATCATAAGGTCCACAG ACACGTAAGTGAATGAATTAGCTACAA ATRIP_t2_1 

6 E09 E06 TGCTTTAATTGTGTGAGTGGGTTG CACTACAGGTTGGGAACGATAGA MME_t16_1 

6 E10 E06 AGCCTTATTCACTAAAATTCAGGAGG AAGAATACCCTAGATACTAAAAAATAAAGTCAA BRCA2_t19_3 

6 E11 E06 CAAAAACAGTACACAAGGCATTTTT AAGGAGGTGCTCATTCCTTGA ATG2B_t17_1 

6 E12 E06 AAATCTCAATTCACCTAAAAACCTTCA AGCAGAGCTTCTTTAAGCTGACC WDR17_t19_1 

11 E01 E06 TTAACCACACCCTTAAGATGAGC CTGAGCTTGTTTCTTATCATTCAACA BRCA2_t21_3 

6 F01 F06 TGGAAATTAGGAAGGCCATGGAA TCTGGATTTATAATCATTTTGTTAGTAAGGT BRCA2_t21_10 

6 F02 F06 TTTTTAAAGTGAATATTTTTAAGGCAGTTCT CAGAGGAAAAGGTCTAGGGTCAG BRCA2_t18_1 

6 F03 F06 TGTTGATAAGAGAAACCCAGAGCA ACCAACTGTTGTTTGTCTTGTTG BRCA2_t10_71 

6 F04 F06 AGATAATCAAAAGAAACTGAGCAAGCC TCTGCCTTTTGGCTAGGTGTTAAAT BRCA2_t10_22 

6 F05 F06 TGCAAATGAGCAATTATGTTTGCATAG ACTCCTAATGAAATCAAATGAAGAGCA MME_t4_1 

6 F06 F06 TGGAAAAGAATCAAGATGTATGTGCT TCTTCAGAGTCTGGATTGACAGTTAT BRCA2_t10_8 

6 F07 F06 AGGACTCCTTATGTCCAAATTTAATTGAT TTAGTTCTGATTTTTGGTCTTTCGG BRCA2_t9_10 

6 F08 F06 TTCAAACAGTACTATAGCTGAAAATGAC TCAACATTCTTCAATACTGGCTCAA BRCA2_t10_57 

6 F09 F06 ATAGCTGCAAAGACCACATTGGA CACATTCATCAGCGTTTGCTTCA BRCA2_t9_2 

6 F10 F06 ACAAGAGAAATACTGAAAATGAAGATAACA AGTGTTTCCCTCCTTCATAAACTGG BRCA2_t10_43 

6 F11 F06 TCCTGGACTTGACCTAAATCACAA CCAACAGTCTATTATAAACAATGAAAGTGA MME_t20_4 

6 F12 F06 AAAAATGAAAACTCTTAAACTAAATTTGTGC TGTTGCCTCGCTTCACAG CTNNA1_t3_1 

6 G01 G06 TGTTAATAAAAATAAAACTTAACAATTTTCCCCTT GCAAAGGTATAACGCTATTGTCAAATTC BRCA2_t5_1 

6 G02 G06 TGGGTTTTGATGTGTAACTTGTCAT TGAATGAAATGTCACTGATTCTTTCTTAAAT PALB2_t4_21 

6 G03 G06 CCAAAACACAAATCTAAGAGTAATCCA CGTTTACACAAGTCAAGTCTGTTTCA BRCA2_t10_9 

6 G04 G06 AGTCATTGAAAATTCAGCCTTAGC TGTCATTTTCAGCTATAGTACTGTTTG BRCA2_t10_55 

6 G05 G06 GGTTGTAGTTACAGCTACTTTTAGAAACA GCTTTGTAGAAGAAATGTTATATGTTGAACTG FAM175A_t9_5 

6 G06 G06 ACAAACTGCACATACATCCCTGA TGGGGGGAAATTTTTTAGGATCTG BRCA1_t7_1 

6 G07 G06 AAAATACCGAAAGACCAAAAATCAGAAC AAAAAACACAGAAGGAATCGTCATC BRCA2_t9_12 

6 G08 G06 TCTCTGAACATAACATTAAGAAGAGCA ACTATTTTTACAATCAGAAACAACTACACT BRCA2_t10_20 

6 G09 G06 GGAAGTTGCGAAAGCTCAAGAAG TTCTGGTTTCTGATCAAAGAAATTTACA BRCA2_t10_46 

6 G10 G06 AAACATTGATGGACATGGCTCTG ACTGAAAGGCAAAAATTCATCACACA BRCA2_t13_5 

6 G11 G06 AGTCTGTCTGGACATAAACAAGCA GACTCTCATTTGCTGGCTGGAC PALB2_t13_1 

6 G12 G06 TTACCTTCCAAGAGTTTTTGACATGA TGAATAAATTTTAGAATCAGTGATCGCCTC CHEK2_t5_2 

11 G01 G06 GGAGAACCTCTACTCAAACTGTTACC TGTCCAAGAAGCACCTAAAGCAA MME_t5_2 

6 H01 H06 TTGTTTCCTAGGCACAATAAAAGAT TGTTCATTTATAAAAACGAGACTTTTC BRCA2_t12_5 

6 H02 H06 ACTCACCTGCAATAAGTTGCCTT GCATTGTACCTGCCACAGTAGAT BRCA1_t7_4 

6 H03 H06 GGACAGCACGTATGTCATTAGCA TTTTACTTACTCTGTATGCTTGACCA MME_t19_1 

6 H04 H06 TGTTTAGGTTTATTGCATTCTTCTGTGA ACTGTAGTTTTTCCTTATTACATTTTGCT BRCA2_t10_2 

6 H05 H06 GAGCTTTCGCCAAATTCAGCTAT TGCCAGTAAATTGTAACATTCGTC BRCA2_t24_7 

6 H06 H06 GCATGTCTAACAGCTATTCCTACCAT TACAGTTTGTGGGTATGCATTTG BRCA2_t10_58 

6 H07 H06 TTTCCTACTGTGGTTGCTTCCAA ATTTGCCTTTTGAGTATTCTTTCTACA BRCA1_t3_1 

6 H08 H06 AGACATAAAATGCTTCTAGATAAGCTAAC AGGTGCAGTGTGTCCATTAAGAA WDR17_t13_1 

6 H09 H06 TTCAGAAAACTTACTGCTTCTTTGATAA TCAAGTCGTTTATTTGGAAGTTGTT IDE_t16_2 

6 H10 H06 aCACAACATAAATAATGAAACCTCCAA AGAACAAAAATGTTCCATTGCCAGA IDE_t6_1 

6 H11 H06 TTTTTATTCTCAGTTATTCAGTGACTTGT AGTGTTTTTGCAGCTGTGTCATC BRCA2_t17_1 

6 H12 H06 GGATGGATGCCGAGACAAAAAAG TGGAAACACTACATATTGAAGGAGC MME_t13_2 
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