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Abstract 

Sickle cell anaemia (SCA) is a haemolytic anaemia that reduces life expectancy and places a 

great burden on healthcare systems worldwide. Despite being a monogenic disorder, the 

phenotypic severity varies greatly between patients, ranging from patients that experience 

multiple strokes and organ failure during childhood, to those that live largely unaffected lives. 

Some genetic variants that affect globin gene expression are known to influence phenotype 

severity, but most of this variation remains unaccounted for.    

We conducted whole exome sequencing analyses, comparing SCA patients with mild and 

severe clinical phenotypes, with the aim of identifying novel genetic modifiers of the disease. 

SCA patient exomes were sequenced from a cohort at King’s College Hospital, and combined 

with publicly available SCA exomes recruited in the United States. Nine candidate variants were 

identified in genes with plausible mechanisms to influence the pathophysiology of the disease. 

The genes identified in this study affected nitric oxide signalling, haematopoietic regulation, 

globin gene expression and recovery from ischaemic injury. 

In order to evaluate these variants, a CRISPR genomic editing pipeline was established and 

tested on two previously identified candidate modifiers of SCA, in the genes ASH1L and KLF1. 

These variants were successfully introduced into erythroleukaemic cells and provide a pathway 

for testing the novel modifier genes identified in the exome sequencing analysis. Preliminary 

studies indicate that both ASH1L and KLF1 variants alter globin gene expression. 

In addition to genetic factors, we also hypothesised that epigenetic factors affect the SCA 

phenotype, and play a role in the therapeutic mechanism of hydroxyurea treatment. We 

optimised a method for isolating CD45+CD71+GPA- nucleated erythroid progenitors from small 

volumes of SCA peripheral blood. This was undertaken to evaluate the role of the epigenome in 

SCA phenotype severity and drug action, but for which patient sample collection proved too 

challenging within our clinical cohort.  
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and is lost by the proerythroblast stage. CD71 is expressed during erythroblast development 

and is lost by the enucleation of the orthochromatic erythroblast. GPA is a late stage erythroid 

marker, with increasing expression levels during erythroblastic development, and is expressed 
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highly on terminally differentiated cells. B – Cytology of erythroblasts isolated from human bone 

marrow. Image A is from Dzierzak & Philipsen (2013)109. B is from Hu et al. (2013)125 ............. 52 

Figure 1.7: Diagram illustrating the global distribution of (A & B) HbS allele, (C) Plasmodium 

falciparum infections. Note the strong overlap in central Africa. Image from Piel et al. (2010)190

 ............................................................................................................................................... 59 

Figure 1.8: Map showing the distribution of different haplotypes that associate with sickle globin 

alleles. The sickle globin mutation is believed to have arisen independently multiple times 

across malaria affected countries in Africa and Southern Asia. Image from Gabriel & Przybylski 

(2010)187. ................................................................................................................................ 60 

Figure 1.9: Figure from Mali et al. (2013)324. CRISPR Cas9 Type II System, showing the two 

distinct phases of bacterial ‘immune response’ and acquisition of resistance against invading 

viral DNA. Phase 1: Cas proteins (and Csn2) bind and recognise foreign DNA and cleave it into 

short 30bp ‘spacers’, and integrates these spacers into the host genome, at the 5’ end of the 

CRISPR array, separated by 36bp repeats. Phase 2: the CRISPR array is transcribed in full, 

and tracrRNA recognises and binds to the repeat regions, directing RNase III cleavage of the 

crRNA into sgRNA. tracrRNA-sgRNA complex recognise and bind to homologous sequence on 

foreign DNA. Cas9 is recruited by tracrRNA secondary structure, and cleaves the target DNA. 73 

Figure 1.10: Overview of the two main DSB repair pathways in humans. NHEJ – Non 

Homologous End Joining. HR – Homology Directed Repair. NHEJ involves the identification of 

DSB ends by Ku70/80, followed by non-specific end processing and ligation by Ligase IV. HDR 

pathway uses homologous sequence as a repair template to correct the damaged sequence. 

Image from Lans et al. (2012)336. ............................................................................................. 77 

Figure 2.1: Plasmid map of the 9kb pD1301 Cas9 plasmid provided by Horizon Discovery 

Group. Key features are highlighted: Cas9 is shown in red, self-cleaving GFP tag in green, 

kanamycin resistance gene in yellow, and gRNA target sequence and scaffold shown in blue. 87 

Figure 2.2: Diagram showing the cloning workflow to generate plasmids for introduction of 

specific genetic variants using the CRISPR-Cas9 system. Template sequence is indicated in 

purple, gRNA in blue, PAM site disruption in red, and SNP in yellow. ...................................... 89 

Figure 2.3: Diagrams of PCR amplicons used to clone K562 genomic DNA into CRISPR-Cas9 

plasmids to act as a template for Homology Directed Repair (HDR). Images are adapted from 

UCSC Genome Browser (http://genome.ucsc.edu - Assembly GRCh37/hg19380). A – 718bp 

amplicon from KLF1. B – 759bp amplicon from ASH1L. PCR amplicons are shown below the 
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genomic sequence, with BssHII restriction site tags at 5’ of primer in purple. In the genomic 

DNA sequence the targeted SNPs are indicated by red lines, with methionine residues and start 

codons indicated in green. gRNA target sequences are highlighted in blue. Also shown are 

single stranded oligodeoxynucleotides (ssODN), which were designed as an alternative 

technique to introduce the template sequence. In the ssODNs the SNP is shown in red, and the 

PAM site disruption in green. Full gene maps are shown in Appendix 1. .................................. 91 

Figure 3.1: Growth curves showing the progress of erythroid cultures from healthy blood 

PBMCs. A – Growth as total number of cells. B – Growth as a percentage of the starting cell 

number at P1D0. The black line at Day 6 indicates the transition from Phase 1 to Phase 2, and 

can be considered as both P1D6 & P2D0. Of the four cultures, only Culture 4 successfully 

recovered and expanded after switching to phase 2. Cultures 1-3 continued to experience large 

amounts of cell death, until being terminated early with only 1-2 million cells remaining, less 

than 10% of the starting culture. ............................................................................................ 104 

Figure 3.2: Flow Cytometry data from healthy PBMCs directly after isolation, compared to at 

P2D9 of a successful culture. Samples are from two separate healthy donors. A – Percentage 

of cells positive for each of the four cell surface markers: CD71, GPA, CD45 & cKit. CD71 & cKit 

are greatly enriched in the P2D9 cells compared to the PBMCs, increasing to 99.2% & 89.4% 

respectively. CD45+ cells are reduced to 26.6% in the cultured sample, making up 98.3% of the 

PBMCs.  B – CD71 & CD45 plots. CD45 & CD71 are co-expressed be some cell populations in 

both samples, although the majority of cells express either CD71 or CD45. C – GPA & CD45 

plots. There is no overlap in expression of GPA & CD45 in either sample, as is expected given 

the specificity of GPA as a late stage erythroid marker. D – CD71 & GPA plots. Two distinct but 

faint GPA+ populations are present in the PBMC sample; CD71+ and CD71-. Loss of CD71 

expression marks the transition to a later stage of erythroid progenitor development. In the 

cultured sample, only the CD71+ population is observed. E – Effect of FACS filtering gates on 

CD71 & GPA plot of P2D9 cultured cells. Red, blue & magenta represent CD45+, c-Kit+ and 

CD45-c-Kit- cells respectively. The position of the CD45-c-Kit- population shows that the culture 

is differentiating, as the CD71+ cells start to express GPA. .................................................... 106 

Figure 3.3: Photographs of cytospins showing in vitro culture of a healthy donor PBMC sample. 

Slides were stained with eosin & methylene blue. All photographs were taken at 40x 

magnification. The scale bar shown in P1D3 represents 50μm, and is the same for all 

photographs. A – Pro-erythroblasts, tightly packaged cells with no visible cytoplasm. B – Early 
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basophilic erythroblasts, larger than pro-erythroblasts, cytoplasm can be seen to be expanding 

away from the nucleus. C – Late basophilic erythroblasts, much more of the cytoplasm is visible 

compared to early basophilic cells. D – White blood cell populations, distinguishable from 

erythroid progenitors by lack of staining around the cell membrane. E – Macrophage cell. F – 

Polychromatic erythroblasts, nucleus stains lighter, and cytoplasm appears larger, with more 

white space. G – Orthochromatic erythroblasts, nucleus is more condensed, and cytoplasm is 

smaller, as cells prepare for enucleation. An early wave of basophilic erythroblasts can be seen 

to appear at P2D2, and is lost by P2D4. Subsequently the proerythroblast population that 

persists at this stage starts differentiating and progresses through the erythroid developmental 

stages until the orthochromatic stage at P2D10. .................................................................... 108 

Figure 3.4: Growth curves showing the progress of erythroid cultures from SCA HbSS blood 

PBMCs. A – Growth as total number of cells. B – Growth as a percentage of the starting cell 

number at P1D0. The black line at Day 6 indicates the transition from Phase 1 to Phase 2, and 

can be considered as both P1D6 & P2D0. Only Patient Culture 3 successfully recovered after 

entering Phase 2, and this recovery was delayed, with growth not occurring until P2D4. Patient 

Culture 2 expanded early during Phase 1, dropping to 77% of the starting culture at P1D1, 

before steadily recovering to 91% at P1D3, and then dropping to 39% by P1D4. Note that 

Patient Culture 1 was divided and cultured as three separate sub-cultures, under the same 

conditions. ............................................................................................................................ 109 

Figure 3.5: Growth curves showing the variability of erythroid cultures from SCA HbSS blood 

PBMCs. Patient Culture 1 from Figure 3.4 was divided into three sub-cultures at P1D0, and 

cultured concurrently in triplicate. A – Growth as a percentage of the starting cell number at 

P1D0. B – Mean of the growth curves shown in A, with error bars representing standard error. C 

– Mean of the growth curves shown in Figure 3.4.  The black line at Day 6 indicates the 

transition from Phase 1 to Phase 2, and can be considered as both P1D6 & P2D0. The variation 

observed in the growth of the sub-cultures is very low, and much greater variation is observed 

between the cultures from different patients, cultured at different times. ................................ 110 

Figure 3.6: Photographs taken of PBMC layers, visible after density separation with 

Histopaque® - 1077. A – Comparison of HbSS & Healthy blood samples, arrows indicate PBMC 

layer. In HbSS patient blood samples, this layer appears red. B – Three additional HbSS 

samples. Variation in the thickness and the intensity of this red layer varies between patients.

 ............................................................................................................................................. 111 
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Figure 3.7: Comparison of PBMCs from an HbSC patient and an HbSS patient. A – Photograph 

of PBMC layers after density separation. The PBMC layer from the less severe HbSC patient 

does not have the red layer that is observed in HbSS patients, and is indistinguishable from a 

healthy PBMC layer (Figure 3.6).  B – Flow Cytometry plots showing CD71 & GPA expression 

of the PBMC samples shown in A. The CD71+GPA+ cell population is present in both samples, 

but is more abundant in the HbSS PBMCs, making up 25.0% of cells, as opposed to 1.2% in 

HbSC. Both samples also have a high proportion of later stage CD71-GPA+ cells, 24.1% and 

20.0% for HbSS & HbSC respectively. .................................................................................. 112 

Figure 3.8: Flow cytometry analysis of three HbSS PBMC samples after <24 hours in culture. A 

– Numbers of CD71+GPA+ & CD71-GPA+ cells as a percentage of total PBMC layer, compared 

to a healthy PBMC sample. Levels of both populations vary between SCA patients, but are 

much higher than in the healthy blood sample. B – Flow cytometry plots of CD71 and GPA, after 

removal of CD45 and c-Kit, demonstrating the FACS gating used to collect each cell population. 

Magenta, maroon and blue represent CD45-CD14-, CD71+GPA+ & CD71-GPA+ cells 

respectively. .......................................................................................................................... 113 

Figure 3.9: Flow Cytometry data from CD71 BeadKit enrichment of three HbSS patient PBMCs. 

Both the CD71+ fraction (orange) and the CD71- fraction (grey) were analysed. A – CD71 

staining. CD71 is successfully enriched in the CD71+ fraction with a purity of 88.0 – 99.3%. B – 

CD45 staining. The CD45+ cells that make up the majority of PBMCs are successfully reduced 

in the CD71+ fraction, to <4% in HbSS 1 & 2, but only to 34.3% in HbSS 3. C – GPA staining.  

Similarly to CD71, GPA is successfully enriched in the CD71+ fraction, to >96% in HbSS 1 & 2, 

but only 65.3% in HbSS 3. .................................................................................................... 116 

Figure 3.10: Flow cytometry data from CD71 enrichment of nine HbSS patient PBMCs, following 

CD45 depletion. A – Flow diagram illustrating the process of isolating the different cell fractions. 

The CD71+ fraction (orange), the CD71- fraction (grey) and the CD45+ fraction (blue) were 

analysed. Sample HbSS 9 was from a patient undergoing HU therapy. Percentage of cells 

stained in each fraction is shown for B – CD45, C – CD71 and D – GPA. Processing of sample 

HbSS 7 appears to have failed, with the CD71+ fraction containing only 31.6% CD71+, 74.0% 

CD45+ & 13.8% GPA+ cells. Apart from HbSS 7, significant CD71 enrichment is observed in the 

CD71+ fraction for all samples, to between 80 – 99% purity. CD45 staining shows very low 

levels of CD45+ cells in the CD71+ fraction, of between 0.1 – 9.4% (excluding HbSS 7). GPA 

staining confirms that the cells isolated in the CD71+ and CD71- fractions are the CD71+GPA+ 
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and CD71-GPA+ cell populations respectively. E – Total cell counts of the CD71+ fraction from 

each sample, as estimated by haemocytometer counting. The total number of CD71+GPA+ cells 

isolated varied significantly between samples. ....................................................................... 118 

Figure 3.11: Photographs of cytospins taken from the three fractions of an HbSS patient blood 

sample isolated by Miltenyi BeadKit (CD45+, CD71- & CD71+). Slides were stained with eosin & 

methylene blue. Photographs were taken at 40x magnification, and scale bars represent 50μm. 

A – Red blood cell contamination in the CD45+ fraction. B – Nucleated CD45+ cells, nucleus 

stains as dark purple. C & D – Light purple staining indicates cytoplasm, but these cells are 

lacking a nucleus. E – Enucleated red cells. F – Sickling red cells. The CD45+ fraction mostly 

consists of nucleated PBMCs, with some red cell contamination. The CD71- fraction is densely 

packed with erythrocytes. The CD71+ fraction consists mostly of enucleated reticulocytes, 

staining slightly darker than in the other fractions. CD71+ & CD71- also contain larger 

enucleated cells, possibly post enucleation but prior to the reduction in volume that 

accompanies reticulocyte maturation401. ................................................................................ 121 

Figure 3.12: Flow Cytometry data from both fractions of an HbSS patient blood sample as 

isolated by BeadKit (CD34- & CD34+). A – Percentage of cells positive for each of the three cell 

surface markers: CD34, CD45 & GPA, as well as co-expression of each pair. CD34+ enrichment 

was successful with 97.8% purity in the CD34+ fraction, compared to 27.4% in the CD34- 

fraction. B – Composition of CD34+ population from both fractions. C – Graphs showing co-

expression of the cell surface markers. Pink indicates CD34+CD45+ cells, as defined by gate 

Q2. Results indicate two distinct cell populations within the CD34+ cells, with roughly 99% 

expressing either GPA or CD45, but <1% expressing both. ................................................... 123 

Figure 3.13: Photographs of cytospins taken from both fractions of an HbSS patient blood 

sample as isolated by BeadKit (CD34- & CD34+). Slides were stained with eosin & methylene 

blue. Photographs were taken at 40x magnification, and scale bars represent 50μm. A – Red 

blood cell contamination in the CD34- fraction. B – Nucleated CD34+ cells. As expected the 

CD34- fraction contains the majority of the PBMC sample. The CD34+ fraction is less densely 

packed, and contains some debris and dead cells, as well as some cells lacking a nucleus. 

Nucleated CD34+ cells are also visible. ................................................................................. 124 

Figure 3.14: Flow cytometry analyses of the three fractions (GPA+, GPA-CD71- & GPA-CD71+) 

isolated from three HBSS patient samples by GPA depletion and subsequent CD71 enrichment. 

Sample 2 was receiving HU treatment. A – Mean percentage of cells positive for GPA, CD45 & 
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CD71. Error bars represent standard error. GPA+ cells were successfully depleted, making up 

89.0% of the GPA+ fraction and 0.4% and 1.7% of the GPA- fractions. CD71+ cells were high in 

both the CD71- and CD71+ fractions, although higher in the enriched fraction, at 84.9%. B, C & 

D show individual expression as well as co-expression of markers for cells in each of the three 

fractions: B – GPA+. C – GPA-CD71-. D – GPA-CD71+. CD45+ cells made almost all of the 

GPA- fractions, and as was observed previously, very little co-expression of GPA and CD45 

was observed. CD71+ cells made up 84.9% of the GPA-CD71+ fraction, with 83.5% co-

expressing CD45. ................................................................................................................. 127 

Figure 3.15: Analysis of samples after depletion of GPA+ cells and enrichment for CD71+ cells. 

A – Flow cytometry plots for CD71 and CD45, comparing the GPA-CD71- and GPA-CD71+ 

fractions for all three samples tested. Intensity of CD71 is higher for some cells in the fraction 

enriched for CD71. Two distinct CD45+CD71+ populations are visible, distinguishable by high or 

low CD45 expression. B – Table summarising the DNA extracted from the GPA-CD71+ 

fractions of the three samples. Q-Micro – Qiagen QiaAMP DNA Micro Kit. Very low cell numbers 

were isolated, but total DNA yield is in the region of 400ng for all three samples, just below the 

500ng recommended for DNA methylation analysis395. .......................................................... 128 

Figure 4.1: Flow diagram outlining the three different analyses performed in this chapter in order 

to identify candidate genetic modifiers of SCA. Analysis 1 is presented in 4.3 and 4.4, with a 

detailed description of the various filtering steps provided in 4.3.1. Analysis 2 is presented in 

4.5.2, and Analysis 3 in 4.5.3. ............................................................................................... 133 

Figure 4.2: Summary of 649 SCA exomes downloaded from dbGaP (phs000691.v2.p1). 

Samples were checked for the SCA mutation (rs334), 10 were found to be heterozygous, and 1 

found to be homozygous for the wild type, these samples were excluded from further analyses. 

The majority of patients (411) were recruited from one of the three clinical trials – HUSTLE, 

SWiTCH or TWiTCH. ............................................................................................................ 138 

Figure 4.3: Summary of all 2,798,560 variants present in the mild group of patients, grouped by 

type of variant. Intergenic variants include those annotated as upstream or downstream. Coding 

variants also include those annotated as splicing variants. UTR – Untranslated Region. 93% of 

all annotated variants are either intergenic or intronic. ........................................................... 142 

Figure 4.4: Candidate variant filtering pipeline, describing the process of filtering the 2,798,560 

variants observed in the mild SCA patient group down to 11,419 for the gene burden analysis, 
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and 3,159 for the individual variant analysis. The full list of 11,419 variants is provided in 

Appendix 12. ......................................................................................................................... 143 

Figure 4.5: Summary of the 137,825 variants present in the mild group after filtering of 

intergenic and non-coding variants (other than splicing and ncRNA). ..................................... 144 

Figure 4.6: Summary of the candidate variants in the mild group after filtering for variants 

observed in the severe groups. A – Summary of the 26,810 variants after filtering by severe 

patients from KCH and SWiTCH clinical trial (KS). B – Summary of the 21,189 variants after 

filtering by severe patients from KCH, SWiTCH and TWiTCH clinical trials (KST). C – Change in 

proportion of variants for each variant type in A and B compared to before filtering for variants in 

the severe group (shown in Figure 4.5). ................................................................................ 146 

Figure 4.7: Summary of the trimming of the ncRNA dataset to include only variants in ncRNA 

covered by both the Agilent SureSelect and Roche NimbleGen exome capture kits. A – 

Summary of the number of ncRNA with annotated variants in each of the exome capture 

groups. Variants in the 336 ncRNA only present in the SureSelect group were excluded, and 

only variants in the 4988 that are shared were included in downstream analyses. B – Number of 

ncRNA variants before and after filtering for each of the candidate variant groups. ................ 147 

Figure 4.8: Filtering of splicing variants outside of the canonical 2bp splice site, for both the 

KCH and SWiTCH, and KCH, SWiTCH and TWiTCH filtered candidate variants. Approximately 

95% of splicing variants were removed by selecting for 20% of the splice site sequence. ...... 148 

Figure 4.9: Summary of the candidate variants after filtering for variants observed in the 

commonly mutated genes list. A – Summary of the 17,286 variants in the KCH and SWiTCH 

filtered group. B – Summary of the 14,346 variants in the KCH, SWiTCH and TWiTCH group. C 

– Number of each variant type removed by filtering out Commonly Mutated Genes for both the 

KCH & SWiTCH (KS), and the KCH, SWiTCH & TWiTCH (KST) filtered groups. ................... 150 

Figure 4.10: Summary of the candidate variants after filtering for variants observed in the 

haematopoietically silent genes list. A – Summary of the 15,199 variants in the KCH and 

SWiTCH filtered group. B – Summary of the 12,680 variants in the KCH, SWiTCH and TWiTCH 

group. C – Number of each variant type removed by filtering out haematopoietically silent genes 

for both the KCH & SWiTCH (KS), and the KCH, SWiTCH & TWiTCH (KST) filtered groups. . 152 

Figure 4.11: Summary of the candidate variants after exclusion of variants that occur only once, 

and in a gene that is not mutated in any other mild patient. A – Summary of the 11,419 variants 

in the KCH and SWiTCH (KS) filtered group. B – Summary of the 9,271 variants in the KCH, 
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SWiTCH and TWiTCH group (KST). C – Comparison of each variant type for the KS and KST 

filtered groups. ...................................................................................................................... 155 

Figure 4.12: Summary of the 3,159 and 2,597 candidate variants in the final lists for the KCH & 

SWiTCH (KS) and KCH, SWiTCH & TWiTCH (KST) filtered groups respectively. Loss of 

function variants (Splicing, Frameshift, Stopgain or Stoploss) were narrowed down to 24 and 18 

variants in the KS and KST lists. ........................................................................................... 156 

Figure 5.1: Figure showing the full length of the KLF1 gene as viewed in the UCSC Genome 

Browser (http://genome.ucsc.edu - Assembly GRCh37/hg19380). Transcription occurs on the 

negative strand, and the red line indicates the position of the KLF1 SNP (rs10407416) in intron 

1. The tracks below show ChIP-Seq signals for KDM5B, as well as two ZBTB7A replicates in 

K562 cells. It can be seen that there is a strong signal for KDM5B along the length of the gene, 

but that the signal for ZBTB7A is weak. This data was produced as part of the ENCODE 

Project474, and the tracks for KDM5B, and ZBTB7A have UCSC accession numbers 

wgEncodeEH002085 & wgEncodeEH001620, respectively. .................................................. 190 

Figure 5.2: Cas9 plasmid transfections in K562 cells. A – Percentage of cells GFP+ 48 hours 

after Lipofectamine transfection with different amounts of plasmid. Transfection rate increased 

with increasing concentrations of plasmid, but was very inefficient, reaching only 2% of live 

cells. B – Percentage of cells GFP+ 48 hours after transfection using the three different 

techniques. Due to differing restrictions on transfection reaction volume for each technique, 

different plasmid amounts were used: Lipofectamine - 6μg, Calcium Phosphate - 12μg and 

Nucleofection - 3μg. Nucleofection was by far the most successful, despite using the least 

amount of plasmid. Error bars indicate standard error, for each of the Lipofectamine 

transfections and the Nucleofection n = 3, for Calcium Phosphate n = 4. ............................... 194 

Figure 5.3: Summary of clonal expansions from 12 nucleofection reactions. 4 where only the 

Cas9-gRNA-Template plasmids were transfected, 6 with the plasmids and siRNA for 

knockdown of the NHEJ pathway, and 2 with the plasmids and additional ssODN templates. A – 

Summary of the 1,920 single cell cultures plated, of which only 190 survived. B – Percentage 

survival for each of the three nucleofection conditions. Survival was low for all experiments, but 

interestingly was lowest when transfected with the plasmid only. Error bars indicate Standard 

Error. .................................................................................................................................... 195 
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Figure 5.4: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 

Template containing plasmids only, after subsequent FACS and clonal expansion. A – 

Summarises the results for all plasmids. B – Shows the results for each plasmid individually. 

Plasmids used were for KLF1 gRNA 2, SNP and PAM only control (KS2 & KP2 respectively), 

and ASH1L gRNA 1, SNP and PAM only control (AS1 & AP1 respectively). Total refers to the 

number of cell lines that survived the single cell sorting stage. Cut refers to cell lines where any 

genetic changes have occurred, SNP refers to cell lines where the template mutations have 

been introduced on any allele, Hom Cut or SNP refers to cell lines defined as Cut or SNP that 

are homozygous. The results show that the gRNA-Cas9 plasmids cut with high efficiency, but 

introduction of the template is much less successful. Only one cell line was homozygous for a 

genetic variant, and none were homozygous for the SNPs of interest. ................................... 197 

Figure 5.5: rtPCR analysis of NHEJ knockdown by siRNA in K562 cells, normalised firstly to β-

actin expression, and then to the untransfected control. rtPCR analysis was performed on RNA 

extracted 48 hours after transfection with either scrambled siRNA or targeted siRNA. A – 

Knockdown using siRNA for XRCC6. B – Knockdown using siRNA for Ligase IV. Results show 

reduced expression for both XRCC6 and Ligase IV, 11.6% and 60.2% of untransfected K562 

expression respectively. Expression appears to have increased in the scrambled controls, 

although large variation was observed. Two sets of PCR primer pairs were used for each gene 

targeted, XRCC6-1 & 2 and Lig4-1 & 2, and results are consistent between each pair. Error bars 

indicate 95% confidence intervals, calculated from three biological replicates, each with two 

technical replicates. Knockdown of XRCC6 was statistically significant compared to scrambled, 

whereas Ligase IV was not, likely due to the variation observed between the samples 

transfected with scrambled siRNA. ........................................................................................ 198 

Figure 5.6: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 

Template containing plasmids and siRNA, after subsequent FACS and clonal expansion. Total 

refers to the number of cell lines that survived the single cell sorting stage. Cut refers to cell 

lines where any genetic changes have occurred, SNP refers to cell lines where the template 

mutations have been introduced on any allele, Hom Cut or SNP refers to cell lines defined as 

Cut or SNP that are homozygous. A – Summary of the cell lines transfected with each siRNA 

set: Scrambled, Ligase IV or XRCC6, as well as the cumulative counts for all three. B & C – 

Summary of the cell lines transfected with either KS2 or AS1 plasmids, B shows total counts, C 

shows percentage of total. Results show that co-transfection with siRNA for one of the target 
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genes does not appear to affect Cas9 cutting activity, which is consistent between the three 

groups. No homozygous variants were observed after transfection with scrambled siRNA, 

whereas three were observed with siRNA targeting Ligase IV, and one for XRCC6. Overall 

survival of cell lines past the single cell FACS stage is much higher for the KS2 plasmid than for 

AS1. One of the AS1 cell lines (KAX9) was found to be homozygous for the desired SNP. .... 200 

Figure 5.7: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 

Template containing plasmids and ssODN templates for KS2 or KP2 (ssKS2 or ssKP2), after 

subsequent FACS and clonal expansion. Total refers to the number of cell lines that survived 

the single cell sorting stage. Cut refers to cell lines where any sequence changes have 

occurred, SNP refers to cell lines where the template mutations have been introduced on any 

allele, Hom Cut or Hom SNP refers to cell lines defined as Cut or SNP that are homozygous. A 

– Total cell line counts. B – Percentage of total. Cleavage was observed in all cell lines, and 

SNP uptake was high. Number of homozygous cell lines remained low, however two ssKS2 cell 

lines were homozygous for the SNP of interest (ssKS2-10 & ssKS2-29). ............................... 202 

Figure 5.8: Sequence of the ASH1L SNP site of the K562 cell line that was homozygous for 

PAM disruption mutation and the SNP. K562 shows the wild type untransfected sequence. The 

green box/arrow shows the site of the C to T PAM disruption mutation. The red box/arrow 

shows the site of the A to G SNP of interest. A – MUSCLE alignment of the two sequences, with 

coding sequence displayed (antisense). The two SNPs can clearly be seen in the KAX9 

sequence, and it can be seen that the SNP results in an arginine to Glycine substitution, while 

the PAM disruption does not affect the coding sequence. One other polymorphism was 

identified, but by investigating the sequence traces was confirmed to be an artefact of the base 

calling algorithm. B & C – Forward and Reverse sequence traces respectively. Due to the 

presence of large Sanger sequencing artefacts, that persisted despite repeated sequencing, 

both forward and reverse sequence traces are shown, to confirm that the both the PAM 

disruption and SNP are present............................................................................................. 204 

Figure 5.9: rtPCR analyses of wt K562 and KAX9 cell lines. Graphs show relative expression of 

genes normalised to actin β, for A – β-globin (HBB), B – γ-globin (HBG), C – α-globin (HBA) and 

D – KLF1. Error bars indicate 95% confidence intervals, calculated from three technical 

replicates for each of the two cell lines. Expression of the globin genes is significantly increased 

in KAX9 compared to K562, and KLF1 expression is unchanged. .......................................... 206 
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Figure 5.10: rtPCR analyses of wt K562 and KAX9 cell lines, normalised to either α-globin or β-

globin expression. A – β-globin normalised to α-globin, B – γ-globin normalised to α-globin, C – 

γ-globin normalised to β-globin. Error bars indicate 95% confidence intervals, calculated from 

three technical replicates for each of the two cell lines. Results indicate that relative to α-globin, 

β-globin increased and γ-globin decreased in KAX9 compared to wt K562. The ratio of γ-globin 

to β-globin transcripts also decreased in KAX9 cells. ............................................................. 208 

Figure 5.11: Sanger sequencing trances of the KLF1 SNP site of K562 cell lines that 

incorporated the template sequence on at least one allele, and had no indel mutations on either 

allele. K562 shows the wild type untransfected sequence. ssKS2-10 and ssKS2-29 were 

homozygous for both the C to G PAM disruption (green box) and the C to G SNP of interest (red 

box). ssKS2-47 was heterozygous for both the PAM disruption and the KLF1 SNP. .............. 209 

Figure 5.12: Sanger sequencing trances of the KLF1 SNP site of three K562 cell lines that 

contained heterozygous indel mutations. K562 shows the wild type untransfected sequence. 

The green box shows the site of the C to G PAM disruption mutation. The red box shows the 

site of the C to G SNP of interest. Indel mutations prevent clear reading of the sequence from 

Sanger sequencing traces, since the two alleles are out of frame of each other. Therefore to 

fully characterise the genotypes of these cell lines, PCR amplicons were cloned and sequenced 
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 Introduction 

1.1 General Introduction 

This work aimed to investigate factors that affect the severity of the clinical phenotype 

presented by sickle cell anaemia (SCA) patients. Despite being well characterised as a 

monogenic disorder, the severity of symptoms, as well as the response to current treatments, 

varies greatly between SCA patients. 

 

This aim was investigated through three distinct research objectives: 

 

1. To optimise a non-invasive technique to isolate nucleated erythroid progenitors from the 

peripheral blood of SCA patients. There is a growing body of evidence to support the 

role of epigenetic factors in the pathology of SCA, both in terms of naturally occurring 

variation and in response to drug treatment. Due to the nature of erythrocytes and their 

lack of a nucleus, it is notoriously difficult to investigate epigenetic regulation in these 

cells in vivo, and most existing studies either focus on transcriptomic analyses of 

enucleated cells, or use in vitro treatment models. We set out to develop a protocol to 

allow investigation of both the epigenome & transcriptome of a nucleated erythrocyte 

progenitor population in a longitudinal manner (i.e. detecting changes in response to 

drug treatment in vivo). 

 

2. To conduct a whole exome sequencing (WES) study, comparing sequencing data from 

SCA patients with severe and mild clinical phenotypes. At one end of the phenotypic 

spectrum, some patients experience very few symptoms and live largely unaffected 

lives, while at the other end of the spectrum, some patients experience multiple strokes 

and organ damage at young age, and are frequently hospitalised. It has been shown 

that sequence variation in some genes (genetic modifiers) heavily influence the 

pathophysiology of the disease, and are known to affect symptomatic severity. 

However, much of this variation remains unaccounted for. We proposed to conduct a 

WES study investigating the extreme ends of the phenotypic spectrum, in order to 
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identify novel genetic modifiers that may be influencing the severity of symptoms in 

these patients. 

 

3. To use CRISPR genomic editing to replicate two previously identified candidate modifier 

SNPs in vitro. The aim of this work was to perform preliminary functional analyses to 

inform on the effect these SNPs have on gene function, as well as to set up a CRISPR 

genomic editing pipeline in our laboratory, to allow functional analyses of candidate 

variants identified by the WES study in the future. 
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1.2 Haemoglobin & SCA 

1.2.1 Healthy Haemoglobin 

Haemoglobin is a tetrameric protein expressed at high levels in erythrocytes, with the ability to 

bind oxygen molecules (O2) under conditions of high O2 concentration, and release them under 

conditions of low O2 concentration, allowing it to efficiently distribute O2 to tissues that need it. 

The affinity of haemoglobin for O2 binding is allosterically regulated by multiple small molecules, 

including 2,3-bisphosphoglycerate (BPG), Cl- and H+, allowing for tight regulation over the O2 

distribution process1–5. This is additionally regulated throughout development by the use of 

various isoforms of haemoglobin, controlled through the expression of different subunits. Since 

in the foetus O2 must be sourced from the mother’s blood through the placenta, where O2 

availability is much lower than in the lungs, a higher affinity for O2 binding is required for 

foetal/embryonic haemoglobin. This ensures that at the low concentration at which O2 

dissociates from the maternal haemoglobin, it still binds to the foetal/embryonic haemoglobin for 

transport through the foetal/embryonic body6–8. 

The haemoglobin tetramer is made up of two α-globin like subunits and two β-globin like 

subunits, which are encoded by two distinct gene clusters on chromosomes 16 and 11, 

respectively. The layout of the genes at these loci are shown in Figure 1.1, and the genes are 

positioned in the order in which they are expressed throughout development9. Two Gower 

haemoglobins are expressed during embryonic stages, HbGower I (ζ2ε2) and HbGower II (α2ε2), 

and during foetal development expression of ζ-globin is completely replaced by the two α-globin 

genes, and ε-globin is replaced by expression of the γ-globin genes, giving rise to the foetal 

haemoglobin (HbF: α2γ2)9,10. Shortly after birth, expression is switched from the γ-globins to β-

globin and δ-globin, producing adult haemoglobins HbA (α2β2) and HbA2 (α2δ2). HbA is the 

most abundant form of haemoglobin in healthy adults, making up >95% of total 

haemoglobin11,12. 

Each globin subunit folds around an aqueous pocket containing a protoporphyrin IX molecule, 

which has a negatively charged central ring that coordinates the binding of an Fe2+ ion13. Two 

histidine residues from the globin peptide interact with Fe2+, the first is situated below the plane 

of the porphyrin ring and is referred to as the proximal histidine, interacting directly with Fe2+, 

and the second is situated above the plane of the porphyrin ring, interacting with Fe2+ through 

coordination of a bound O2 molecule, and is referred to as the distal histidine14,15.  
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Figure 1.1: Layout of the α-globin like gene locus on chromosome 16 and the β-globin like gene locus on 
chromosome 11. Genes are positioned in the order in which they are expressed during development. 
Embryonic haemoglobin – ζ2ε2, foetal haemoglobin – α2γ2, adult haemoglobin α2β2. Adapted from Kiefer et 
al. 20089. 
 

In the absence of O2 binding, Fe2+ sits just below the plane of the porphyrin ring, closer to the 

proximal histidine13. Upon O2 binding, electron rearrangements reduce the size of Fe2+ and it is 

pulled into the centre of the porphyrin ring, forming a more stable structure coordinated by six 

interactions13,16. This is illustrated in Figure 1.2. 

 

Figure 1.2: Oxygen binding stabilises the coordination of Fe2+ (Green) in the plane of the porphyrin ring, 
dragging the proximal histidine (and therefore the helix to which it is attached) closer, altering the structure 
of the globin subunit. Image is from Berg, Tymoczko & Stryer (2002)13. 
 

The conformational changes that occur upon binding of O2 to the globin subunits transition 

haemoglobin from the T (Tense, deoxygenated) state to the R (Relaxed, oxygenated 

state)2,13,15,17. The conformational changes in each globin subunit alter the interaction with the 

neighbouring subunits, allowing for the cooperative binding effect of O2 to haemoglobin. Upon 

O2 binding to one subunit, conformational changes make the R state of the other subunits more 

favourable, increasing O2 affinity17. This effect is additive, and when three of the four subunits 

are oxygenated, the affinity of the fourth subunit for oxygen is increased 20-fold13. The allosteric 
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regulators of haemoglobin oxygen affinity act by stabilising either the T or R state, e.g. there is a 

central cavity between the four subunits that closes upon transitioning to the R state, BPG binds 

this cavity, preventing the conformation changes required to transition to the R-state and 

therefore favouring the low oxygen affinity T-state13,18. 

 

1.2.2 Sickle Haemoglobin (HbS) & SCA Pathophysiology 

SCA is a recessive disorder caused by an aberrant haemoglobin variant, referred to as sickle 

haemoglobin (HbS). HbS is the result of a single nucleotide polymorphism (SNP) in the β-globin 

gene (HBB) on chromosome 11. The SNP is an A to T substitution, replacing the negatively 

charged glutamic acid at position 6 with a hydrophobic valine residue (E6V, OMIM: 

141900.0243). This substitution alters the conformation of haemoglobin; in the absence of Glu-6 

no intramolecular ionic interaction occurs with Lys-132, instead Val-6 forms intermolecular 

hydrophobic interaction with Phe-85 & Leu-88 of a neighbouring tetramer, resulting in HbS 

polymerisation19,20. 

Patients with SCA inherit two copies of this aberrant β-globin allele (βS), resulting in the 

production of sickle haemoglobin (HbS, α2βS2) rather than the wild type (HbA, α2β2). HbS has 

reduced solubility under low oxygen conditions, and in the deoxygenated T-state polymerises 

into long helical chains rather than free-floating globular tetramers19. These aberrant polymers 

aggregate and distort the shape of the erythrocyte cell membrane, forcing them from a 

biconcave structure to the eponymous sickle shape. Sickled erythrocytes are more rigid than 

wild type, and cannot pass through smaller capillaries as easily, slowing blood flow and 

resulting in vaso-occlusion and acute pain, commonly referred to as sickle crises21. The sickled 

cells are fragile, with an average survival time of 10-20 days compared to 110-120 days for wild 

type erythrocytes, leading to a chronic haemolytic anaemia22.  

High rates of haemolysis in SCA patients leads to increased levels of extra-cellular haemoglobin 

in the blood. The cell-free haemoglobin then binds and sequesters nitric oxide (NO), a 

vasodilatory signalling molecule. This reduction in NO bioavailability further increases 

susceptibility to frequent vaso-occlusive events and pulmonary hypertension. Recently however, 

the importance of the role of NO signalling in SCA pathology has been disputed, mostly due the 

perceived ineffectiveness of treatments designed solely to boost NO signalling23,24. 
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1.2.3 Genotypes of Sickle Cell Disease 

A number of other β-globin genotypes result in a variety of sickle cell phenotypes when co-

inherited with at least one copy of the βS allele. Collectively these disorders are classified as 

Sickle Cell Disease (SCD), with SCA referring to homozygosity for the βS genotype. 

 

1.2.3.1 Alternative β-globin Genotypes 

The phenotype of SCD requires at least one βS mutation, the most common genotype being 

HbSS (homozygosity for βS), however there are a variety of rare alternative mutations that can 

give rise to the SCD phenotype when co-inherited with the βS allele, either passively through 

reduction of functional β-globin levels, or by acting cooperatively25. Haemoglobin C is the most 

common of these, and is discussed below in 1.2.3.2. 

 

1.2.3.2 Haemoglobin C 

An alternative substitution at the same position as the HbS mutation (HBB Glutamic acid 6), 

gives rise to a milder form of the SCA phenotype. This allele is referred to as HbC, and is 

characterised by Glutamic acid to Lysine substitution (rs33930165), rather than the Valine 

substitution that is associated with HbS. Similarly to HbS, both heterozygous and homozygous 

forms of HbC have been associated with protection from Malaria, and as such HbC is also most 

prevalent in populations of African descent26–29. 

Homozygosity for HbC presents as a mild haemolytic anaemia, less severe than that observed 

with HbSS patients30,31. Similarly to that observed with HbAS, coinheritance of HbC with the wild 

type HbA allele results in a mostly asymptomatic phenotype32. 

Coinheritance of HbC with HbS, results in a much more severe phenotype, although still with 

reduced severity of some of the vasculopathy related complications observed in HbSS 

patients31,33. 

 

1.2.3.3 β-Thalassaemia 

β-Thalassaemia is characterised by insufficient production of the β-globin component of adult 

haemoglobin, resulting in anaemia. The severity of the clinical symptoms of β-thalassaemia vary 

greatly, dependent on the levels of functional β-globin synthesised. Alleles that produce no 

functional transcripts, either due to early termination, frameshift mutations or large scale 

genomic deletions are classified as β0 genotype34–37, while alleles that contain polymorphisms 
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that reduce expression, typically by disrupting the promoter or other gene regulatory regions are 

classified as β+ genotype38–40. The β+ alleles display much more heterogeneity, based on the 

quantitative effect that the specific variant has on β-globin synthesis, and can be classified as 

severe, mild or silent41. 

Heterozygous β-thalassaemia patients (β/β+/0) are generally asymptomatic, and are referred to 

as carriers for the disease. Homozygous patients (β+/0/β+/0) lack a fully functional copy of the 

gene, and phenotypes range from thalassaemia major, suffering severe anaemia and requiring 

blood transfusions from shortly after birth, to thalassaemia intermedia, and the asymptomatic 

state41. Similarly to SCA, β-thalassaemia can be ameliorated by persistent expression of γ-

globin after birth (as discussed in 1.6.1), providing a functional alternative to β-globin42–44. 

In England roughly 44 per 1000 births are carriers of a β-thalassaemia allele, and coinheritance 

with a βS allele is common45. For both SCA and β-thalassaemia, heterozygosity for the 

pathogenic allele is mostly asymptomatic. However, compound heterozygotes where each of 

the disorders is co-inherited on separate β-globin alleles gives rise to a SCD phenotype46–48. In 

these cases the severity depends on the functionality of the β-thalassaemia allele. With 

decreasing expression from the functional allele, the ratio of βwt:βS shifts in favour of βS, and so 

levels of the pathogenic HbS increase48–51. Heterozygotes for βS/β0 produce no healthy β-globin, 

and present the same clinical phenotype as HbSS patients. 
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1.3 β-globin Locus Control 

The β-globin gene locus consists of five β-globin paralogues, as shown in Figure 1.1 as well as 

a β-globin pseudogene (HBBP1). The genes have a highly specific pattern of expression and 

are arranged in the order in which they are expressed throughout development, progressing 

from ε-globin at the 5’ end expressed in embryos to δ-globin and β-globin at the 3’ end 

expressed in adults. Expression of the genes in the locus is developmental stage and tissue 

specific, and is tightly regulated by a variety of factors, including long range chromatin 

interaction between individual promoters and an upstream locus control region (LCR). 

Disruption of these regulatory mechanisms can lead to blood disorders such as anaemias and 

thalassaemias. 

 
 
1.3.1 Transcription Factors 

Transcription factors play an important role in regulating gene expression, stabilising the 

chromatin state surrounding the transcription start site, recruiting and stabilising the 

transcription initiation complex and RNA polymerases (or destabilising in the case of 

repressors).  

The GATA family of transcription factors are key regulators of haematopoietic development52. 

GATA2 expression in haematopoietic stem cells (HSCs) is replaced by GATA1 expression at 

the proerythroblast stage52. GATA3 is also expressed at HSC stage, and is involved in the 

development of lymphoid lineages53. GATA1 is essential for globin gene expression, and 

knockdown in K562 cells results in chromatin reorganisation at the β-globin locus, forming 

transcriptionally repressive heterochromatin54. GATA1 upregulates expression of other erythroid 

transcription factors including KLF1 and TAL1, and binds with them at the β-globin locus 

stabilising long range chromatin interactions between CTCF/RAD21 binding sites55–57. 

TAL1 is an important haematopoietic transcription factor, critical for the establishment of 

haematopoietic lineages from mesodermal cells in early development, and is involved in 

maintenance of HSC renewal and quiescence in adults58–60. During haematopoiesis, expression 

of TAL1 is highly expressed in the myeloid lineages, and in erythroid cells associates with 

GATA1, LMO2 and Ldb1 at the β-globin locus, where it is required for chromatin looping58,61,62.    

Krüppel-like factor 1 (KLF1) is an erythroid specific transcription factor that plays a crucial role in 

the γ-globin to β-globin switch63,64. KLF1 directly activates β-globin expression by binding to the 
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promoter, and also silences transcription from the γ-globin genes through activation of 

BCL11A64–67. Interestingly, low levels of KLF1 expression are also required for ε and γ globin 

expression during early development, and it is thought to be required to stabilise the chromatin 

architecture of the β-globin locus with GATA157,68.  

BCL11A is required for the γ-globin to β-globin switch during erythroid development, repressing 

expression from the γ-globin genes by recruitment of the NuRD histone deacetylase complex to 

the promoter regions, mediated by interactions with SOX6, GATA1 and FOG169–72. Knock down 

of BCL11A reactivates γ-globin expression, and BCL11A polymorphisms have been associated 

with increased HbF levels in adults69,73–75. 

 

Figure 1.3: Figure illustrating the role of transcription factors during the  γ-globin to β-globin switch during 
erythroid development. MYB activated upregulation of KLF1 causes an increase in BCL11A, as well as 
ZBTB7A (LRF), and both of these form complexes recruiting the NuRD repressor to the γ-globin genes. 
Figure adapted from Cavazzana et al. (2017)76.  
 

MYB is a haematopoietic transcription factor, required during early haematopoiesis for 

commitment to the erythroid lineages, and activates transcription of both KLF1 and LMO277,78. 

MYB is activated by a distal enhancer in the MYB-HBS1L intergenic region upon binding by the 

transcriptional activation complex containing GATA1 and TAL1, as well as KLF1, resulting in a 

positive-feedback loop for transcriptional activation and commitment to the erythroid lineage79,80. 

Upregulation of KLF1 by MYB also provides a mechanism by which increased MYB promotes 

the γ-globin to β-globin switch. Sequence polymorphisms at the MYB-HBS1L intergenic region 

have been associated with increased HbF levels, and along with BCL11A and KLF1, MYB is 

downregulated in response to HU treatment73,75,81. 

ZBTB7A (aka LRF - Leukaemia/lymphoma-related factor) is a haematopoietic transcription 

factor, that is a downstream target of both GATA1 and KLF1, and plays a role in lineage 

determination in many haematopoietic cell populations, at both late and early stages82–84. 
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ZBTB7A is also involved in the repression of the γ-globin genes through recruitment of the 

NuRD histone deacetylase complex, and acts independently to BCL11A85. Since both ZBTB7A 

and BCL11A are upregulated by increased KLF1 expression, this means that KLF1 dependant 

repression of the γ-globin genes during the globin switch occurs through two parallel 

pathways82,85. 

 

1.3.2 Chromatin Looping 

Upstream of the β-globin gene locus is a cluster of 5 DNase I hypersensitivity sites (HS1-5, with 

HS5 being the furthest upstream), these are collectively known as the Locus Control Region 

(LCR), and play an important role in gene regulation. In addition to the LCR, the β-globin locus 

has a downstream hypersensitivity site (3’HS). HS5 and 3’HS contain CTCF binding sites in 

both mice and humans, and CTCF binding results in chromatin looping, bringing these two sites 

into close proximity, creating a chromatin domain and insulating from the effects of neighbouring 

enhancers (Figure 1.4A)86,87. 

Within this chromatin domain, the LCR acts as a distal enhancer, looping out into close 

proximity of the promoter of the specific gene being expressed (Figure 1.4B). This allows 

recruitment of chromatin remodelling machinery, transcriptional machinery and stabilisation of 

the transcription initiation complex. HS1-4 of the LCR are required for globin gene expression, 

and loss of HS5 does not affect expression levels, suggesting that its role is restricted to 

forming the chromatin domain with 3’HS88. 

The genes in both the α-globin and β-globin loci are arranged in the order in which they are 

expressed in development. Interestingly, the order of expression changes if the genes are 

rearranged, showing that the spatial organisation of the locus is important. This is thought to be 

due to the distance of the promoters from the LCR affecting the affinity for chromatin looping89. 
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Figure 1.4: Chromatin looping at the β-globin locus. A – Interactions between CTCFs (orange) at HS5 and 
3’HS (yellow) form a chromatin domain. B – Interactions between HS1, 2 & 4 and the γ-globin promoters 
result in histone acetylation and expression from those genes. C – Transcriptional activation complexes 
from the distal enhancer and the promoter dimerise through Ldb1 dimerisation domain. GATA1 and TAL1 
bind DNA, LMO2 stabilises this binding and recruits Ldb1. Images A & B from Kim & Kim (2013)90, C from 
Love et al. (2014)91. 
 

Chromatin looping at the β-globin locus is mediated by interaction between two transcriptional 

activation complexes, one forming at the LCR and the other at the promoter of the expressed 

gene. These complexes include GATA1, TAL1, LMO2 and Ldb1. Along with GATA1, which is 

required to maintain the open chromatin state at the locus, TAL1 binding is necessary to recruit 

LMO2 and Ldb1, and looping is lost when TAL1 is knocked down61,90. Although KLF1 is not a 

component of this complex, it is required to stabilise binding at the LCR57,92. 

Ldb1 and LMO2 are non DNA binding components of the complex, LMO2 is required for 

stabilisation of the complex, and for recruitment of Ldb1, with the LIM domain in LMO2 binding 

to the LIM-Interacting Domain in Ldb158,93,94. Ldb1 contains a self-association dimerisation 

A       B 

    
 

C 
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domain, and is the component of the complex responsible for mediating the interaction between 

the complexes at the two different genomic positions, directly binding to its counterpart in the 

other complex (Figure 1.4C)95,96. In Ldb1 knock out cells, chromatin looping can be rescued by 

fusion of the dimerisation domain to LMO295. If fused to an artificial zinc finger DNA binding 

protein, the dimerisation domain is capable of reactivating the transcriptionally silenced γ-globin 

gene, by induction of forced chromatin interactions97,98. Ldb1 mediated chromatin looping is also 

involved in transcriptional activation of other erythroid activated genes, including KLF1, GATA1, 

TAL1 and LMO291,96,99. 

 

1.3.3 DNA Methylation 

DNA methylation is a common epigenetic mark, and when located at promoters is often 

associated with transcriptional silencing; recruiting chromatin modifying complexes, or 

interfering with transcription factor to DNA interactions. 

While the β-globin locus has no bioinformatically predicted CpG islands, it has been found that 

in tissues expressing the globin genes, the promoters of the active genes have reduced CpG 

methylation, suggesting that DNA methylation is a relevant factor in the regulation of the 

locus100. This has also been shown in a transgenic mouse model, where DNA methylation was 

found to reduce expression of the foetal globin genes by 20 times101. Similarly, using a TALE-

TET1 construct, targeted demethylation of four CpG sites in the β-globin promoter region is 

enough to reactivate the gene in K562 cells102. The maintenance DNA methyltransferase 

DNMT1 associates with BCL11A, and is required to maintain transcriptional silencing of the 

repressed β-globin like genes103,104. 

 

1.3.4 Histone Modifications 

Histone modifications play a role in gene regulation, recruiting chromatin modifying complexes 

and signalling the transcriptional state of the gene. Histone marks are therefore very informative 

and useful to assay, especially in parallel with transcriptomic approaches such as RT-PCR or 

RNA-seq. They can be used to predict whether a gene is active or repressed, e.g. positive 

residues in the tail of histone H3 are commonly acetylated in euchromatin9,105. Methylation of 

lysine residues on histone tails indicates different states depending on which residue is 

methylated; H3K4 methylation is associated with active promoters, and H3K36 methylation is 

associated with actively transcribed regions, whereas H3K9, H3K27 and H4K20 methylation is 
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usually associated with inactive genes9. In the case of the β-globin locus it is important that the 

transitions between these marks by histone deactylases (HDACs) and acetyltransferases 

(HATs) as well as the methyltransferases and demethylases is controlled to regulate the 

complex expression pattern of the globin genes. 

The active genes at the β-globin locus have high levels of H3K27 acetylation, and low levels of 

H3K27 methylation, and this is reversed in the transcriptionally silent genes106. At the β-globin 

promoter, GATA1 recruits the histone acetyltransferase CBP and NF-E2 recruits the histone 

methyltransferase MLL2, promoting histone acetylation and H3K4 methylation and activating 

transcription54,107,108. 

GATA1 and KLF1 are also required to maintain the chromatin organisation at the β-globin locus, 

and knockdown of KLF1 in K562 cells reduces expression of the γ-globin genes, as well as 

H3K9ac, H3K14ac & H3K27ac histone marks at both the LCR and γ-globin, and disrupts 

chromatin looping between the two sites57. Chromatin looping was also lost upon knockdown of 

CBP in these cells, demonstrating the importance of histone modifications in regulating the 

structural organisation of chromatin at the locus90. 
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1.4 Erythroid Development 

Haematopoiesis is a complex and tightly regulated process, by which a wide variety of cell types 

with highly specialised structures and functions are produced from a small pool of HSCs. Many 

haematopoietic cell types have a greatly reduced life span compared to other tissues, and this 

also varies greatly between the haematopoietic lineages. As a result, haematopoiesis is a 

continuous process, highly responsive to stimuli to allow coordination and maintenance of the 

many blood cell populations in the proportions required. 

Erythropoiesis is the developmental pathway within haematopoiesis that results in the 

production of erythrocytes, and in adults is responsible for the generation of approximately 

2x1011 red blood cells per day109. 

 

1.4.1 Normal Erythropoiesis 

The major sites of haematopoiesis change throughout development. The initial haematopoietic 

populations reside in the embryonic yolk sac, and during foetal development haematopoiesis 

occurs in the liver and spleen. After birth, HSCs migrate to the bone marrow, which remains the 

major site for haematopoiesis throughout adulthood109–111. 

Since SCA does not affect the embryonic or foetal stages of development, when alternative β-

globin paralogues are expressed, this section will focus on erythropoiesis in the bone marrow. 

 

 

1.4.1.1 Haematopoietic Stem Cells & Early Stage Progenitors 

A haematopoietic pool is maintained in the bone marrow, with self-renewal potential allowing 

expansion of the HSCs to replace those undergoing differentiation. Various cytokines in the 

bone marrow signal for quiescence of HSCs, as well as for their retention in the bone marrow 

through expression of adhesion molecules, including α4β1 integrin, which binds to VCAM1 

expressed on stromal cells in the bone marrow112–114. CXCL12 is one of the key cytokines in this 

process, binding to CXCR4 expressed on HSCs, and is essential for maintaining 

quiesence113,115,116. Several cytokines such as Granulocyte colony stimulating factor, Flt3 Ligand 

and Interferon-α can be used to induce the activation and mobilisation of HSCs in mice117,118. 
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Figure 1.5: Simplified overview of haematopoietic development and terminally differentiated cell types 
produced from HSCs. MPP (Multipotent Progenitor), CLP (Common Lymphoid Progenitor), CMP (Common 
Myeloid Progenitor), MEP (Megakaryocyte-Erythroid Progenitor), GMP (Granulocyte-Macrophage 
Progenitor). Image adapted from Dzierzak & Philipsen (2013)109.  
 

The process of HSC development, and the potential cell types they can give rise to are 

summarised in Figure 1.5109. Upon haematopoietic stimulation, either as a result of natural 

blood homeostasis or in response to injury and blood loss, long-term HSCs divide 

asymmetrically, producing one long-term HSC and one short-term HSC, which no longer has 

capacity for self-renewal119,120. The short-term HSC develops into a Multipotent Progenitor 

(MPP), before committing as either a Common Myeloid Progenitor (CMP) or Common Lymphoid 

Progenitor (CLP)121,122. Before this stage the cells are capable of differentiating into any blood 

cell type, but CMPs are lineage restricted to myeloid cells, and CLPs can only produce the white 

blood cells119,122. 

CMPs develop into either Granulocyte-Macrophage Progenitors (GMPs), responsible for 

production of the granulocytes and macrophages, or Megakaryocyte-Erythroid Progenitors 

(MEPs). MEPs develop into either megakaryocytes, which produce platelets, or 

proerythroblasts, early stage erythroid progenitors that develop into the terminally differentiated 

erythrocytes109,122.  
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1.4.1.2 Erythroblast Development 

Erythroblast development occurs in the bone marrow at erythroblastic islands, where 

proerythroblasts cluster around central macrophages109,123,124. In humans this usually consists of 

10-30 erythroid progenitors per macrophage123. Proerythroblasts develop through three distinct 

stages identifiable through cytology, before enucleation and final erythrocyte maturation, all of 

which occurs at the erythroblastic island. 

 

Figure 1.6: Summary of erythroid development, showing the individual erythroblastic stages, as well as the 
enucleation step. A – Cell surface expression is shown for Kit, CD71 and GPA (Ter119 is the murine 
equivalent of GPA). Kit expression is a marker for early stage progenitors, and is lost by the 
proerythroblast stage. CD71 is expressed during erythroblast development and is lost by the enucleation 
of the orthochromatic erythroblast. GPA is a late stage erythroid marker, with increasing expression levels 
during erythroblastic development, and is expressed highly on terminally differentiated cells. B – Cytology 
of erythroblasts isolated from human bone marrow. Image A is from Dzierzak & Philipsen (2013)109. B is 
from Hu et al. (2013)125 
 

Proerythroblasts develop into basophilic erythroblasts, followed by polychromatic erythroblasts 

and finally orthochromatic erythroblasts before enucleation (Figure 1.6)109. Pro-erythroblasts 

have very little visible cytoplasm, and appear as small, tightly packaged cells. As they develop 

into basophilic erythroblasts the cytoplasm becomes visible, appearing to expand out from the 

nucleus. Basophilic staining in the cytoplasm is reduced as haemoglobin accumulates, and is 

accompanied by the appearance of large vesicles containing ferritin imported from the 

macrophage126. During the polychromatic erythroblast stage the nucleus condenses, and at the 

A 

 
B 
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orthochromatic erythroblast stage stains very dark. Rapid division occurs during this process, 

and the cell size decreases throughout these terminal stages127,128. 

It is interesting to note that during erythroid development each cell goes through the process of 

globin switching observed during embryonic and foetal development, transitioning from HbF to 

HbA129–131. 

 

1.4.1.3 Enucleation & Reticulocyte Maturation 

The process of enucleation follows the orthochromatic erythroblast stage, and asymmetrically 

divides the cell into two products: a pyrenocyte, containing the condensed nucleus with a thin 

cytoplasmic shell, and a reticulocyte, consisting of the remaining organelles and the majority of 

the cytoplasm132,133. The pyrenocyte presents phosphatidylserine on the cell surface and is 

engulfed by the nearby macrophage at the erythroblastic island134,135, while the reticulocyte 

matures, developing into an erythrocyte. 

Enucleation is an important stage in erythropoiesis, and provides multiple structural advantages 

to the terminal erythrocyte, increasing flexibility and reducing both mass and volume, whilst 

maintaining its function as a haemoglobin rich oxygen transporter136–138. Enucleation also acts 

as an extremely effective developmental gate (there is no known mechanism by which a 

reticulocyte can re-absorb its nucleus), and given that erythrocytes are by far the most abundant 

cell type in the body, perhaps this irreversible block on cellular reprogramming is protective from 

an oncogenic perspective. It has been suggested that mitochondria are removed for a similar 

reason, since they have little influence over cell size or flexibility, but are a major source of 

oxidative stress136. 

 

1.4.2 Stress Erythropoiesis & Erythroid Progenitors in the Peripheral Blood 

Under conditions of hypoxic stress, stress erythropoiesis is triggered. The process of stress 

erythropoiesis is not fully understood, but it has long been linked to increased HbF levels139–142. 

It is thought to be alternative erythropoietic developmental pathway, resulting in the rapid 

production of immature erythrocytes. During this fast-tracked differentiation process, the globin 

switch from HbF to HbA does not occur, resulting in an increased proportion of F-cells in 

circulation143. Due to the demonstrated ability of hypoxic stress to trigger F-cell production, and 

the cytotoxic effects of HU treatment, induction of stress erythropoiesis has been suggested as 

a mechanism of action for HU143,144.  
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Stress erythropoiesis is triggered by a hypoxic response, mediated by the hypoxia induced 

transcription factor HIF2, which results in increased erythropoietin (EPO) production145. 

Induction of stress erythropoiesis is also dependent on functional EPO Receptor (EPOR) 

activation of STAT5146. Under stress erythropoietic conditions induced by phlebotomy in sheep, 

erythropoietin receptor (EPOR) levels are doubled, and mice haploinsufficient for EPOR are 

unable to elicit a stress erythropoietic response147,148. Stress response of dendritic cells has also 

been associated with activation of stress erythropoiesis, mediated through increased expression 

of Stem Cell Factor (SCF), the ligand for Kit149. 

SCA patients have increased levels of stress erythropoiesis as a result of hypoxia associated 

with the disease, and likely as a result of increased mobilisation, higher levels of stress erythroid 

progenitors have been observed in the peripheral blood150. 

 

1.4.3 In vitro Culturing of Erythroid Progenitors 

Erythroid progenitors primarily reside in the bone marrow, but small populations have been 

identified in the peripheral blood of healthy individuals, and can be isolated and expanded in 

culture. There are many variations of these culturing techniques, and they are widely used, 

presenting a source of erythroblasts more easily accessible than by invasive bone marrow 

sampling. 

In 1989 Fibach et al. demonstrated that it was possible to grow and differentiate erythroid 

progenitors isolated from the peripheral blood using a liquid in vitro culture151. Prior to this 

culturing was restricted to the establishment of macrophage dependent erythroblastic colonies 

on agar152. 

Human erythroid progenitors are commonly cultured from bone marrow, peripheral blood, cord 

blood and foetal livers, and in many protocols are enriched for CD34+ cells prior to culturing, 

with the aim of purifying the early stage progenitor population70,129,150,153–158. However the 

benefits of this are disputed, with evidence suggesting that most of the erythroblastic growth 

potential actually comes from the CD34- population159.  

The timeline of the cultures varies greatly between different protocols, with some lasting up to 

60 days153. This is mostly dependant on the design of the culture, with some single-phase 

cultures inducing differentiation from the start, two-phase cultures including an expansion phase 

before inducing differentiation, and three-phase cultures including two distinct expansion 

phases before differentiation153,154,159. 
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The in vitro culture technique tested in this project was a two-phase liquid culture, performed on 

Peripheral Blood Mononuclear Cells (PBMCs) that were not CD34+ enriched. 

 

1.4.3.1 Culture Components 

Various different media and serum are used in the in vitro culture systems, as well as a wide 

variety of different cytokines and growth hormones to stimulate proliferation and prevent 

apoptosis. All of these cultures include EPO, and the majority contain SCF, both of which have 

important proliferative and anti-apoptotic roles in erythropoiesis148,160–162. In addition, the culture 

tested in this project contains dexamethasone, Insulin-like Growth Factor 1 (IGF1) and 

Interleukin-3 (IL-3). 

Dexamethasone is a corticosteroid that acts as a ligand for the glucocorticoid receptor. It has 

been shown to increase the longevity of erythroid progenitors in culture, promoting self-renewal 

and preventing terminal differentiation in vitro161,163–165. IGF1 is a growth hormone with a similar 

structure to insulin, and binds to the IGF1 receptor on the cell surface, signalling for survival and 

proliferation. Under culture conditions, IGF1 has been shown to increase erythroblast numbers, 

and is required for later stages of differentiation166–168. 

IL-3 is a cytokine that stimulates both growth and differentiation in haematopoietic populations, 

and in combination with EPO stimulates early stage haematopoietic progenitors to commit to 

the myeloid lineage. However, if IL-3 is present in the media for the duration of the culture, a 

large proportion of these progenitors are stimulated to terminally differentiate into mast cells, 

rather than erythrocytes169. Therefore culture medium is only supplemented with IL-3 during the 

first phase (the expansion phase), and not during the second phase (the differentiation phase). 

 
1.4.3.2 Cell Surface Markers 

Cell surface markers can be used to accurately identify the developmental stage of erythroid 

progenitors, either directly from the peripheral blood, or after in vitro expansion and 

differentiation. 

CD71 and Glycophorin A (GPA) can be used to assess the stage of the erythroblasts. CD71 is a 

membrane receptor for transferrin and is expressed early on in development to allow iron 

accumulation prior to haemoglobin production. Expression is then lost towards the final stages 

of erythrocyte maturation109,129,170(Figure 1.6). GPA is an erythroid specific glycoprotein that is 
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transcriptionally silent during early haematopoiesis, and is expressed at high levels after the 

basophilic erythroblast stage109,129(Figure 1.6).  

c-Kit is the receptor for the ligand SCF and is expressed at high levels on HSCs, where SCF 

binding promotes self-renewal and expansion of the HSC pool171–173. c-Kit is negatively 

regulated by GATA1, so is lost shortly after the switch from GATA2 to GATA1 early in erythroid 

development173(Figure 1.6). CD34 is also an early HSC marker that is lost during 

haematopoietic development, before reaching  the proerythroblast stage174. 

CD45 (aka leukocyte common antigen) is expressed from an early stage during haematopoietic 

development, but is lost from the erythroid lineage, and can be used as a leukocyte specific 

marker125,175. CD14 is a marker expressed highly on monocytes, and was used since 

monocytes are the largest source of contamination of the in vitro culture175,176. 
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1.5 Sickle Cell Anaemia 

1.5.1 History of Sickle Cell Anaemia 

SCA was first recorded in the Western scientific literature by J. B. Herrick in 1910. The case 

was that of a patient from Grenada in the West Indies, with healthy parents and three healthy 

siblings, who presented “unusual blood findings” and red blood cells with a “large number of 

thin, elongated, sickle-shaped and crescent-shaped forms”177. Two additional cases were 

published in 1911 and 1915, and in 1922 a fourth patient was presented by V R Mason, with the 

first reference to the disease as “Sickle Cell Anaemia”178–180. 

The heritability of the disease was confirmed by two separate publications in 1949, where sickle 

trait (also referred to as sicklemia or drepanocytosis) was suggested to present in a dominant 

pattern in heterozygous carriers of the disease, while only homozygous cases had the full 

clinical presentation of SCA181,182. 

In 1949 Linus Pauling et al. noted a shift in the electrophoretic mobility of haemoglobin from 

SCA patients, correctly hypothesising that the sickle haemoglobin has a net positive charge of 

2-4 ions more than healthy haemoglobin183. He went on to hypothesise that these haemoglobin 

molecules “might be capable of interacting with one another at these sites sufficiently to cause 

at least a partial alignment of the molecules within the cell”, which remains the widely accepted 

hypothesis of SCA disease aetiology, more than 65 years after publication183. Pauling’s 1949 

paper is considered a landmark publication in the field of molecular medicine, being the first 

case of a disease being attributed to a specific molecular defect, and SCA became the first ever 

“Molecular Disease”183. 

Pauling’s discovery of the differing charge on the sickle haemoglobin molecules was confirmed 

in 1956, with the discovery of a substitution of a negatively charged glutamic acid residue for a 

neutral valine residue on each of the two β-globin subunits184. 

In 1978, a genetic association was identified between the sickle variant and a disrupted 

restriction digest site, 5kb downstream from the β-globin gene185. This formed the basis of using 

restriction fragment length polymorphisms (RFLPs) as a diagnostic tool, and led to antenatal 

screening for SCA in affected families186,187. 
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1.5.2 Sickle Cell Disease Epidemiology and Malarial Resistance 

Due to the severity of SCD and the fact that it is a genetic disorder, it might have been expected 

that the disease would be less prevalent as a result of negative selection, since infant mortality 

is high without early intervention. The prevalence of the sickle genotype is increased because 

individuals who are heterozygous for the HbS allele have increased resistance to severe 

malaria from Plasmodium falciparum188,189. It is therefore likely that the prevalence of the sickle 

cell genotype is maintained in part by a balance of the positive selection for heterozygosity 

against the negative selection for homozygosity. This also explains why the disease is most 

prevalent in tropical and sub-tropical regions where malaria is endemic, including sub-Saharan 

Africa, the Mediterranean, the Middle East and India (Figure 1.7)190. The global frequency of the 

HbS allele as estimated by the 1000 Genomes Project is 0.03, this is increased to 0.10 in 

African populations, and 0.14 in the Yoruban subpopulation in Nigeria191. 

Individuals who are heterozygous for the HbS allele do not present with the SCA phenotype, but 

do have an increased protection from the symptoms of malaria. However, patients homozygous 

for the sickle HbS allele do not have this protective effect, they experience the severe anaemia 

and autosplenectomy associated with SCA, and are actually predisposed to an increased risk of 

death from malarial infection192,193. 

Carriers of the HbS allele are not actually protected from the malarial infection, but from the 

symptoms. The proportion of erythrocytes infected with P. falciparum appears to be reduced in 

these individuals, believed to be at least partially due to increased rates of sickling in infected 

erythrocytes, and the subsequent clearance of these cells from the bloodstream by 

phagocytosis193–195. It has also been shown that cytoskeletal disruption in erythrocytes of HbS 

carriers prevents correct trafficking of the malarial proteins to the cell membrane, which are 

required for endothelial adhesion and thought to increase parasite survival29,193,196. 

The sickle mutation is believed to have arisen independently multiple times, in different 

populations under strong selective pressure by malarial infection. This is demonstrated by the 

different genetic haplotypes that associate with the βS mutation, as shown in Figure 1.8187. 

Malaria is not endemic to Northern Europe, and so the selective advantages of the sickle 

mutation are minimised in these countries. However, likely as a result of increased global 

migration over the last century, SCD is the most common severe genetic disorder in the UK, 

and affects approximately 13,000 individuals197–199. 140-175 babies are born with SCD in 

England each year, equating to 0.22-0.28 per 1000 births, this is increased to 5.6 and 14.7 in 
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patients with Caribbean and African ancestry respectively45. A published analysis of SCD 

treatments and sickle related hospitalisations in 2010-2011 estimated that SCD costs the NHS 

roughly £18.8 million annually, with over 6,000 hospitalisations due to acute sickle pain crisis 

alone198. 

 

 

Figure 1.7: Diagram illustrating the global distribution of (A & B) HbS allele, (C) Plasmodium falciparum 
infections. Note the strong overlap in central Africa. Image from Piel et al. (2010)190 
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Figure 1.8: Map showing the distribution of different haplotypes that associate with sickle globin alleles. 
The sickle globin mutation is believed to have arisen independently multiple times across malaria affected 
countries in Africa and Southern Asia. Image from Gabriel & Przybylski (2010)187.  
 

1.5.3 Sickle Cell Anaemia Symptoms 

The major symptoms of SCA arise from severe chronic haemolytic anaemia and acute vaso-

occlusive events. Hypoxia due to anaemia causes cell death in organs and peripheral tissues, 

while recurrent episodes of vaso-occlusion prevent blood flow to large areas of tissue, causing 

increased cell death, and resulting in many symptoms, including chronic and acute pain, stroke, 

chronic lung disease, osteonecrosis, renal failure and retinopathies25,200. 

Sickle cell crisis is an inflammatory response triggered by vaso-occlusion, and is the most 

common reason for hospitalisation of SCA patients198. Evidence suggests that damage caused 

to the endothelium by rigid cells triggers this response, and activated endothelial cells, as well 

as neutrophil extracellular traps (NETs) are involved in this process201–203. 

Autosplenectomy is a common occurrence in SCA patients, with splenic function often severely 

impaired from a young age (<12 months), due to damage caused by vaso-occlusive events and 

continuous filtering of abnormal sickled cells from the blood204,205. Loss of splenic function 

leaves SCA patients susceptible to infections206.  



61 
 

Current risk categories for stroke in SCA children are assessed by measuring blood flow in the 

brain using transcranial Doppler ultrasonography (TCD), and patients with a flow of <170cm/s 

are considered at low risk, however a study found a significantly high incidence of intracranial 

stenosis as well as silent cerebral infarcts in these patients, both of which are predictive markers 

of future stroke. This shows that the current methods used to predict severity of SCA symptoms 

can be improved207. 

Despite the well-characterised genotype and the classification as a classical Mendelian 

recessive disorder, SCA pathology varies greatly between patients, both in terms of severity 

and symptoms observed. Patients with the same β-globin mutation will in some cases have high 

incidence of stroke and clotting from an early age, and others will be largely unaffected, 

reaching old age without incident; this implies that there is an additional component to the 

disease200,208. 

 

Symptoms observed in a longitudinal study of 1056 patients 

     Acute Clinical Events 
 

Irreversible Organ Damage 
Symptom % Patients 

 
Symptom % Patients 

Hospitalisation: 76 
 

Gall Bladder Disease 28 
Sickle Related 73 

 
Avascular Necrosis 21 

Painful Sickle Crisis 70 
 

Sickle Chronic Lung Disease 16 
Associated Sickle Crisis 51 

 
Leg Ulcer 14 

Acute Chest Syndrome 48 
 

Priapism (<17 yrs) 14 
Hypersplenism 20 

 
Renal Failure 12 

Bone Infarction 15 
 

Cerebrovascular Accident 11 
Aplastic Crisis 14 

 
Retinopathy 9 

Trauma 13 
   Meningitis/Septicaemia 12 
 

Death 232 Total 
Neurologic Disorder 12 

 
Sickle Caused 170 (73%) 

Dactylitis <4 years 4 
 

<20 years 46 (20%) 
 
Table 1.1: Table showing data from a longitudinal study of 1056 SCA patients over 40 years, adapted from 
Powars et al. (2005)200. A large variety of symptoms are presented, and the percentage of patients that 
presented with each clinical event is shown, the study found that patients that present a chronic clinical 
event are more likely to have future events as well. 
 

A longitudinal study of 1056 patients over 40 years is summarised in Table 1.1. The table shows 

the variety of symptoms, and the study found that many of the chronic clinical events were risk 

factors for future clinical events, further demonstrating that the severity of symptoms varies from 

patient to patient, despite sharing the same sickle-globin mutation200. This wide variety of 

symptoms provides a challenge in clearly defining boundaries between severe and mild patients 
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for our analyses, since phenotypic severity is a sliding scale. For this study, patients that suffer 

a stroke or serious clinical incident before the age of 18 are considered as severe, and patients 

that reach 30 years without serious incident as mild. In addition to this, onset of symptoms 

usually associated with old age (e.g. retinopathies & hypertension) at <18 years, is considered 

severe. 

 

1.5.4 Treatments 

Due to the variation in phenotype severity observed, there is no ‘one size fits all’ treatment for 

SCA. A variety of treatment options are available, with different advantages and disadvantages, 

and a specific treatment plan is generally decided on a case by case basis depending on the 

frequency and severity of the symptoms observed. 

Bone marrow transplant remains the most comprehensive treatment option, at least partially 

replacing the host’s sickle HSC population with that from a healthy donor, leading to increased 

production of healthy erythrocytes209–211. However, bone marrow transplantation is an invasive 

procedure, requiring the availability of an HLA-matched sibling, and risks severe complications 

such as graft versus host disease212–214. As a result, very few SCA patients receive this 

treatment. 

Blood transfusions are an effective temporary treatment option for SCA patients, increasing the 

proportion of healthy erythrocytes circulating in the peripheral blood. These can either be 

administered as treatment in response to an acute clinical event, to alleviate symptoms and 

assist in recovery, or they can be used as a preventative measure for patients at risk of stroke, 

as identified by severe clinical history or TCD215–218. The STOP (Stroke Prevention in Sickle Cell 

Anaemia) trial demonstrated that regular transfusions as a long-term treatment plan was able to 

reduce incidence of primary stroke in children with SCA218.  

Patients receiving regular blood transfusions require frequent hospital visits, and risk long term 

complications. Regular blood infusions increases the risk of alloimmunisation, triggering an 

adaptive immune response to donor erythrocytes and resulting in haemolysis of transfused 

blood, reducing the effectiveness of treatment and increasing the burden of clearing already 

high levels of haemolytic debris from the bloodstream219. Interestingly the rates of 

alloimmunisation vary between countries, and is thought to be linked to the shared genetic 

ancestry of the donor and the recipient, i.e. patients of African or Asian ancestry treated in 

countries with a majority of white donors experience higher rates of alloimmunisation219–221. 
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As well as increased risk of blood borne infections, regular blood transfusions increase levels of 

iron, which is released from erythrocytes upon haemolysis, and over time can result in iron 

overload218. Due to the redox activity of unbound iron, iron overload results in increased free 

radical production and higher levels of oxidative stress and inflammatory response to the 

damage caused222. Excess iron that cannot be excreted builds up in hepatocytes and eventually 

cardiomyocytes, and can lead to cirrhosis and heart failure222,223. Iron overload as a result of 

regular transfusions is a significant cause of death among SCA patients, and the monitoring of 

iron levels is important to minimise risks, and to ensure that the need for chelation therapy is 

identified at an early stage222,224,225. 

Hydroxyurea (HU, also referred to as hydroxycarbamide) is the most commonly prescribed drug 

for treatment of SCA, and significantly reduces frequency of sickle cell crises and 

hospitalisations, increases overall survival and is preventative of strokes and other vaso-

occlusive events226–230. HU has been used as a chemotherapy drug to treat myeloproliferative 

neoplasms (MPNs) since the early 1960s, and was first tested for use in SCA patients in 1984, 

having being shown to increase foetal haemoglobin levels in anaemic monkeys231–233. MPNs are 

myeloid lineage cancers that result in uncontrolled expansion of blood cell populations, and HU 

was used for treatment since it disrupts DNA replication, and inhibits proliferation of the 

malignant cell types231,234,235. It is now known that HU blocks DNA synthesis through inhibition of 

Ribonucleotide Reductase (RNR), which catalyses the reduction of ribonucleotides to the 

deoxyribonucleotides required for DNA strand elongation, either during replication or DNA 

repair236,237. 

In SCA patients this cytotoxic effect of HU treatment results in a reduction of reticulocyte and 

white blood cell counts22. However, rates of haemolysis are decreased and a greater proportion 

of these reticulocytes survive, and the reduction in white blood cells may be beneficial in 

improving blood flow through narrow blood vessels238. 

The main benefit of HU treatment in SCA patients is mediated through the increase in foetal 

haemoglobin (HbF) levels; increased HbF provides a functional alternative to the sickle globin, 

as well as diluting the intracellular HbS concentration, competing for binding and forming hybrid 

tetramers (a2gbS). This is mediated through repression of the MYB, BCL11A, KLF1 and TAL1 

regulatory pathways, although how this is achieved is not fully understood81,239,240. Evidence 

supports the involvement of miRNA as well as the nitric oxide (NO) and cGMP signalling 

pathway, with HU treatment known to increase NO production either through signalling or as a 
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by-product of its degradation239,241–245. This increase is also caused by an increase in the 

proportion of F cells (erythrocytes with high HbF) in the peripheral blood, which occurs as a 

result of increased stress erythropoiesis in response to the cytotoxic effects of HU (1.4.2)246,247. 

Various other processes are also thought to be involved in the mechanism of action of HU, 

including increasing the oxygen affinity of haemoglobin (only the deoxygenated state of 

haemoglobin polymerises), mediated through a reduction in adenosine signalling248. Another 

proposed mechanism is through altering the expression of cell surface adhesion molecules, 

reducing rates of vaso-occlusion249. 

Because of the many processes and pathways that HU appears to affect, it is difficult to identify 

distinct mechanisms of action, since it is not clear which of these changes occur as a direct 

result of HU interaction, and which occur as a secondary response to either the cytotoxic stress 

of HU treatment, or to the general improvement in disease phenotype. For this reason it is 

important that reliable protocols are in place to investigate the epigenetic and transcriptional 

changes that occur in specific homogenous erythroid populations from SCA patients in vivo, 

since the additional stress of in vitro culturing further masks the pathways being influenced by 

HU treatment. While most current studies either use mouse models or in vitro culturing 

techniques (discussed in 1.4.3), a study by Walker et al. used a magnetic bead separation 

technique to isolate both DNA and RNA from erythroid progenitors in patients undergoing HU 

therapy245.  

Trials comparing HU treatment and phlebotomy to chronic blood transfusions and chelation 

therapy have been conducted in the USA, looking to prevent complications such as iron 

overload as a result of regular transfusions. The SWiTCH (Stroke With Transfusions Changing 

to Hydroxyurea) study was carried out in SCA patients that had experienced stroke at a young 

age (<18), and were receiving regular transfusions to prevent a secondary stroke250,251. TWiTCH 

(TCD With Transfusions Changing to Hydroxyurea) was a similar study, investigating SCA 

patients receiving regular transfusions to prevent initial stroke, having been identified as at risk 

by TCD252. SWiTCH was terminated early when HU was shown to be inferior to transfusions in 

preventing adverse effects, and did not alter liver iron levels250. TWiTCH however did 

demonstrate that liver iron levels were reduced in the HU treatment arm, and showed non-

inferiority to transfusions in terms of effect on TCD velocity and risk for stroke252. 

Prior to HU, other drugs had been used to re-activate expression of foetal haemoglobin, 

including butyrate and 5-azacytidine253–256. 5-azacytidine is incorporated into the genome as a 
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homologue of cytosine that cannot be methylated, inhibiting DNA methylation. This was thought 

to reactivate γ-globin by removing repressive DNA methylation marks at the promoter, 

highlighting a role for epigenetic factors in the pathology of SCA254,256. The study by Walker et 

al. found that HbF induction in response to HU was not accompanied by hypomethylation at the 

γ-globin promoter245. Interestingly butyrate is thought to increase translation efficiency of γ-

globin mRNA, suggesting the role of post-transcriptional regulators257. More recently, novel HbF 

inducers have been proposed, including rapamycin and pomalidomide258,259.  

Anti-sickling agents such as 5-hydroxymethyfurfural (5-HMF) has also been suggested as a 

potential treatment option, increasing the oxygen affinity of haemoglobin, and therefore reducing 

sickling260,261. 

The vasodilatory effect of NO signalling has been identified as a potential mechanism by which 

HU may ameliorate SCA symptoms severity, and arginine treatment has been shown to reduce 

pain during sickle cell crises through the same mechanism242,262,263. NO is a vasodilatory 

signalling molecule that is synthesised from L-arginine by NO synthases, and supplementing 

arginine levels was suggested as a way to increase NO levels262,264. However the importance of 

the role of NO in SCA is disputed23, and the study that found arginine therapy to relieve pain 

during sickle crises also observed that low arginine in these patients didn’t always correlate with 

low NO, and suggested that the benefits of arginine therapy may also be conferred through NO 

independent pathways262. 

As a result of autosplenectomy, SCA patients have an increased susceptibility to infections, and 

preventative measures are started at an early age, with patients receiving additional 

vaccinations for Streptococcus pneumoniae, Influenza and Hepatitis B, as well as prophylactic 

antibiotic treatment in children265–268. 
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1.6 Known Genetic Modifiers of SCA Phenotype Severity 

Haplotype analysis of the β-globin locus in SCA patients in Africa and Southern Asia has 

revealed a correlation between haplotype and severity of symptoms, highlighting that genetic 

factors outside of the βS mutation play a role in disease pathology187,269. 

Genetic variants in genes and pathways influencing the pathophysiology of SCA can account 

for some of the variation in severity that is observed. The two best characterised mechanisms of 

action for these genetic modifiers are those that increase HbF production, and those that cause 

α-thalassaemia. Both of these play a role in ameliorating the severity of the SCA phenotype. 

 

1.6.1 Foetal Haemoglobin 

Foetal haemoglobin (HbF) is expressed during foetal development, with a switch to HbA 

occurring shortly after birth. HbF is made up of two α subunits and two γ subunits (α2γ2), with β-

globin transcriptionally silent at this stage. This explains why there are no in utero complications 

of SCA (other than those caused by SCA in the mother270,271), and why symptoms are not 

observed until several months after birth272. Even moderately increased γ-globin levels in an 

erythrocyte leads to competition for α-globin binding, reducing HbS formation, and 

polymerisation. 

Errors can occur in the regulatory switch from γ-globin to β-globin, and in healthy adults 

individual erythrocytes may contain high HbF, these are referred to as F cells, and generally 

account for <1% of total blood haemoglobin273,274. Genetic variants have been identified that 

result in much higher levels of HbF in adults, collectively these are characterised as Hereditary 

Persistence of Foetal Haemoglobin (HPFH) syndromes. In HPFH patients, HbF expression is 

not limited to F-cells, but is expressed universally across erythrocytes, since rather than being a 

stochastic phenomenon caused by dysregulation on a cell by cell basis, every cell contains the 

same genetic variant, which will affect HbF γ-globin expression in the same way269. 

HPFH can be caused by genetic variants at the β-globin locus that directly influence gene 

expression. These include variants that disrupt the β-globin promoter, variants in the promoter 

or intronic regions of the γ-globin genes that are associated with transcriptional repression, and 

disruptions in the LCR, which interacts with promoters in the locus through long-range 

chromatin looping274–276. 
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Alternatively genetic variants causative of HPFH can disrupt genes in pathways that regulate 

expression from the β-globin locus, these include genes such as BCL11A and KLF163,74,276,277. 

Another mechanism for HPFH is through variants that result in increased haematopoiesis276. 

Under hypoxic conditions stress erythropoiesis can occur, stimulating an increased rate of 

erythrocyte production, achieved by the release of premature erythroid progenitor cells from the 

bone marrow141,142. Since the γ-globin to β-globin switch occurs during erythroid maturation, 

these premature erythrocytes still synthesise γ-globin, leading to an overall increase in blood 

HbF levels139,143,278 (discussed in more detail in 1.4.2). MYB is haematopoietic regulator that is 

required for cell cycle progression of erythroid progenitors and HSCs, playing a crucial role in 

proliferation and differentiation78. As a result of this MYB has oncogenic potential, and variants 

up-regulating the function of MYB are implicated in various cancers, including leukaemia279,280.  

MYB acts as a transcriptional activator of key erythroid transcription factors KLF1 & LMO2, 

which both play a role in transcriptional regulation at the β-globin locus77. Variants in the 

intergenic region between MYB and HBS1L, have been linked to high HbF levels by GWAS, 

and ChIP-seq combined with Chromosome Conformation Capture (3C) shows a distal enhancer 

interaction with the MYB promoter79,80,281. 

Elevated HbF levels in healthy individuals is mostly asymptomatic. However, in patients with 

SCA or any other β-globinopathy, coinheritance of HPFH provides a functional alternative to βS 

and results in a less severe disease phenotype.  

HbF levels in SCA patients vary greatly, and associate with the different sickle globin 

haplotypes (Figure 1.8). Individuals with the Senegal or Saudi Arabia/India haplotypes generally 

have higher levels of HbF, and present a milder disease phenotype than those with the Bantu or 

Cameroon haplotype, while patients with the Central African Republic haplotype generally have 

the lowest HbF levels and present the most severe symptoms269,282.  

Additional genetic studies have identified three quantitative trait loci (XmnI-Gγ on chromosome 

11p, BCL11A on 2p and the HBS1L-MYB intergenic region on 6q) that have been attributed to 

up to 50% of common HbF variation in SCA patients74,283. 

 

1.6.2 α-Thalassaemia 

Α-Thalassaemia is defined by insufficient production of the α-globin component of adult 

haemoglobin, resulting in a haemolytic anaemia. Similarly to γ-globin, α-globin is encoded by 

two paralogous genes (HBA1 & HBA2) both of which are situated in the α-globin like gene locus 
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(referred to as α-globin locus), shown in Figure 1.1. As is observed at the β-globin locus, 

developmental stage specific regulation results in a switch from the embryonic ζ-globin to adult 

α-globin, further adding to the repertoire of haemoglobin variants encountered during healthy 

development. Interestingly, it has been shown that ζ2βs2 haemoglobin does not polymerise in 

vitro, and expression of ζ-globin in a SCD mouse model reversed the phenotype, suggesting 

that similarly to γ-globin, persistent expression of ζ-globin could have a therapeutic effect on the 

SCA phenotypes. 

The expression of four functional α-globin genes in adults makes α-thalassaemia a particularly 

variable disease, both in terms of genotype and phenotype. Expression levels from each 

individual gene vary with genetic polymorphisms in their regulatory regions, while frameshift and 

stop gain mutations prevent the translation of functional products, however the most common 

genetic cause is the large scale deletion of an entire α-globin paralogue284,285. Disease severity 

varies with the amount of functional α-globin, which depends on a combination of gene copy 

number and functional expression level from each gene present285,286. 

Loss of a single α-globin gene (αα/α-) is asymptomatic and is classified as being a silent carrier, 

and loss of two copies (α-/α- or αα/--) is referred to as α-thalassaemia trait, only presenting a 

mild phenotype (mild anaemia). In the presence of less than two functional α-globin genes, the 

symptoms become much more severe, resulting in symptoms including severe haemolytic 

anaemia, oedema, jaundice and skeletal/cardiovascular malformations285,286. 

Similarly to SCD, α-thalassaemia has been associated with protection against malaria, and in α-

thalassaemia patients this effect is observed in both the heterozygous and homozygous 

forms287–289. This is contrary to what is observed in SCD, where the protective effect is limited to 

the heterozygous patients193. 

As a result of both disease phenotypes being evolutionarily advantageous in malaria rich 

regions, the global distributions of both SCA anaemia and α-thalassaemia are very similar, and 

they are often co-inherited, with 30-35% of SCA patients from an African ethnic background 

also having α-thalassaemia290–293. When co-inherited with even the silent carrier state of α-

thalassaemia, HbSS patients have reduced sickling, resulting in reduced haemolysis and 

increased erythrocyte lifespan. As such, some of the major symptoms of SCA are ameliorated, 

including risk of stroke and acute chest syndrome, however reduced haemolysis in these 

patients also leads to increased blood viscosity and been associated with increased vaso-
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occlusive crises and osteonecrosis294–300. These patients also have a reduced response to 

treatment with HU301. 

This effect on disease severity is most likely caused by a reduction in formation of the 

haemoglobin tetramer (α2βS2) due to a lack of α-globin. This results in lower intracellular HbS 

levels, and since βS-globin is only pathogenic when incorporated into haemoglobin, there is a 

reduction in the likelihood of polymerisation reaching the threshold required to distort the 

erythrocyte membrane. 

 

1.6.3 Epigenetic Modifiers 

As well as variation in severity between individuals of different genotypes, it has been observed 

that the SCA phenotype can vary between monozygotic twins302–304. Since these individuals are 

genetically identical, it can be assumed that any variation is due to epigenetic or environmental 

factors, with phenotypic discordancy caused by the regulation of modifier genes rather than 

sequence variants. 
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1.7 Genetic Editing: CRISPR-Cas9 

Recent advances in genomic editing techniques now present exciting opportunities for 

researchers investigating genetic disorders, not only for possible applications in the laboratory, 

but also for the potential to correct disease causing mutations in patients, which would become 

the pinnacle of personalised medicine. Unfortunately however, in addition to the ethical issues 

that will almost certainly be raised, there are technical obstacles that need to be overcome 

before this can become a reality.  

Firstly, from a practical viewpoint, an effective delivery system is needed, capable of introducing 

the CRISPR machinery into all cells of a target tissue. This is more achievable for tissues with a 

high turnover rate such as the haematopoietic lineages, where the desired mutation only has to 

be introduced into the HSC pool in bone marrow. However, in developed tissues with low 

turnover rates a much larger number of cells will need to be targeted directly. For the majority of 

cases, genomic correction may need to be carried out at early developmental stages to be 

effective, either to correct a progenitor population before the tissue becomes established, or 

because correcting the genotype may not reverse any damage already caused by deleterious 

mutations in developed tissues. 

Also, as is clearly demonstrated by the results in this study, the technique is not yet 100% 

accurate, especially when it relies on the use of the host’s endogenous DNA repair machinery. 

While directed cleavage of DNA by CRISPR is efficient, the genomic integration of template 

sequences is less so, often resulting in introduction of small insertion or deletions around the 

target site. Off target effects as well as these aberrant on target effects of CRISPR therapy 

could be catastrophic and unpredictable, and unlike the majority of non-surgical medical 

treatments, irreversible. Ideally cells need to be isolated, edited, rigorously tested and replaced. 

Bone marrow is one of the few tissues that can realistically fill all these criteria: blood cells have 

a high turnover rate, and therefore editing could potentially be done at any stage. Cells are 

repopulated from an easily isolatable stem cell population. Bone marrow transplants are already 

a commonly performed technique in severe haemoglobinopathies, and the dangers of host 

rejection are significantly reduced since the recipient’s own marrow can be used. 
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1.7.1 CRISPR-Cas9 Discovery 

The name ‘CRISPR’ (Clustered Regularly InterSpaced Palindromic Repeats), has no relevance 

to either the structure or mechanism of the CRISPR-Cas9 systems used in laboratories today, 

but instead refers to the structure of a highly repetitive locus that was initially identified in E. coli 

by Ishino in 1987, and was later observed in many other prokaryotes, often occurring at multiple 

sites in the genome305–307. The term ‘CRISPR’ was first coined by Jansen in 2002, along with 

the Cas (CRISPR-associated) family of genes that co-localised with the CRISPR loci307. 

In early 2005, both Mojica and Pourcel independently published that the non-repetitive regions 

separating these repeats (protospacer regions) were homologous to DNA sequences found in 

bacteriophages and other transmissible genetic elements, and they hypothesised that CRISPR 

loci play a role in protecting prokaryotes from pathogenic foreign DNA308,309. 

Also in 2005, Bolotin identified a variation in Streptococcus thermophilus and Streptococcus 

vestibularis, where Cas1-4 from previously investigated bacterial strains were absent, but had 

been replaced by a Cas1 homologue and two additional genes, one of these genes was Cas9 

(although referred to in this paper as Cas5)310. This was the first discovery of what would later 

become known as the Type II CRISPR System, the system currently used in laboratories 

around the world310,311. 

In 2007 Barrangou et al. confirmed the theory that CRISPR functions as a bacterial immune 

system, demonstrating in S. thermophilus that when cultured in the presence of bacteriophages, 

some cultures acquired resistance, and that this correlated with the incorporation of 

bacteriophage genomic DNA sequence into new protospacer elements in the bacterial 

genome312. Additionally, creating knockout strains of Cas7 and Cas9 (referred to as Cas5 in the 

paper) they showed that Cas7 was required for incorporation of new protospacer elements, and 

therefore acquisition of resistance, and that Cas9 was required for the resistance to be 

effected312. The papers by Bolotin & Barrangou also both mention that Cas9 contains nuclease 

activity, and that it is likely important for its function310,312. 

In 2008, van der Oost et al. found that the entire CRISPR loci of repeating elements was 

transcribed as one long CRISPR RNA (crRNA), and that this was cleaved by a complex of Cas 

proteins into short guide RNA (sgRNA), each containing one of the protospacer sequences313. 

They cloned components from a Type I CRISPR system from E. coli into a CRISPR negative E. 

coli strain, and designed an artificial crRNA to target λ phage. This was the first example of a 

CRISPR system being artificially targeted for a specific sequence of interest313.  Using this 
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system Oost et al. demonstrated that the CRISPR system was driven by sgRNA, cleaved from 

the longer crRNA transcript, and that this works for both sense and antisense RNA sequences, 

suggesting that dsDNA is the target. This theory was confirmed later on 2008 by Marraffini & 

Sontheimer, targeting an untranslated region of a conjugation plasmid, in the summary of this 

paper they go on to postulate that if the functionality of CRISPR is not limited to its use in 

bacterial systems, then it would have many potential uses, including its use in the clinic314. 

In 2010 it was shown that the cleavage site is not random, and that a double strand break is 

introduced 3bp upstream of the Protospacer Adjacent Motif (PAM), a sequence in the target 

DNA immediately at the 3’ of the protospacer sequence315. 

In 2011, performing RNA-seq on Streptococcus pyogenes, Deltcheva et al. came across a small 

non-coding RNA adjacent to the CRISPR locus316. This tracrRNA (trans-activating CRISPR 

RNA) was found to be required for crRNA processing into sgRNA, and has a 24bp sequence 

complementary to the CRISPR repeating region, suggesting a mechanism where the crRNA 

cleavage is directed by binding of tracrRNA316. It was shown in 2012 that this tracrRNA also 

interacts with Cas9 through its secondary structure, and therefore acts as the link that physically 

connects the sequence targeting sgRNA to the nuclease activity of Cas9311,317. 

In 2012 two separate papers were published demonstrating significant optimisation in the use of 

the CRISPR-Cas9 System, Gasiunas et al. demonstrated that by purifying the individual 

components they were able to perform CRISPR mediated cleavage in vitro, directed by 20bp 

protospacer sequences in the crRNA318. Jinek et al. (published as a collaboration between the 

Doudna and Charpentier laboratories) demonstrated that the tracrRNA was required to interact 

with Cas9, and that it was possible to fuse the sgRNA and the tracrRNA into a single gRNA 

molecule, streamlining the process for use outside of bacterial systems319. 

In January 2013 the first examples of CRISPR use in human cells were published, initially by 

Zhang and Church separately (in the same issue of Science)320,321, and then a few weeks later 

separately by Doudna and Kim322,323. All four of these papers used systems based on the S. 

pyogenes Type II CRISPR System, and the authors of all four papers have separately applied 

for patents covering various aspects of their work. 
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1.7.2 Mechanism: Bacterial ‘Immune System’ 

 

Figure 1.9: Figure from Mali et al. (2013)324. CRISPR Cas9 Type II System, showing the two distinct 
phases of bacterial ‘immune response’ and acquisition of resistance against invading viral DNA. Phase 1: 
Cas proteins (and Csn2) bind and recognise foreign DNA and cleave it into short 30bp ‘spacers’, and 
integrates these spacers into the host genome, at the 5’ end of the CRISPR array, separated by 36bp 
repeats. Phase 2: the CRISPR array is transcribed in full, and tracrRNA recognises and binds to the repeat 
regions, directing RNase III cleavage of the crRNA into sgRNA. tracrRNA-sgRNA complex recognise and 
bind to homologous sequence on foreign DNA. Cas9 is recruited by tracrRNA secondary structure, and 
cleaves the target DNA. 
 
 

The S. pyogenes Type II CRISPR system is shown in Figure 1.9, demonstrating how CRISPR 

works in bacteria to protect the cell from infection by previously encountered foreign DNA. Viral 

DNA that enters the cell is recognised and cleaved into short 30bp ‘protospacer’ DNA 

fragments. This process is not fully understood, but Cas9 is known to play a crucial role, and 
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interestingly the HNH and RuvC nuclease domains of Cas9 are not required, suggesting that its 

role in creating protospacer DNA does not include cleavage325. Disruption of the PAM site 

recognition domain, which specifies the ‘NGG’ sequence required at the 3’ of the target 

sequence for efficient cleavage, results in the creation of protospacer sequences with no PAM 

site specificity326. This suggests that the role of Cas9 at this stage is to identify eligible 

protospacer sequences upstream of potential PAM sites, to allow efficient cleavage when the 

same sequence is encountered upon re-infection. The requirement of a PAM site outside of the 

protospacer target sequence is an important feature that prevents Cas9 cleavage of the 

CRISPR array, which will contain an exact sequence match for each sgRNA produced. 

While the mechanism for initial recognition of foreign DNA is not fully understood, presumably it 

is relatively inefficient, or there would be no requirement for the adaptive immune response 

element of CRISPR. It has been observed that protospacers matching the bacterial host 

genome are sometimes incorporated into CRISPR arrays, resulting in severe genomic 

instability325. This suggests that this initial recognition may not be efficiently targeted against 

foreign DNA, and would explain the necessity of acquired immunity, with cells targeting self 

undergoing negative selection, and cells targeting pathogens undergoing positive selection. 

This is similar to the selection processes applied to mammalian T-cells during development in 

the thymus327. 

After the recognition and cleavage of foreign DNA, Cas1, Cas2 and Csn2 are then required for 

the integration of the 30bp protospacer into the CRISPR array325,326,328. Cas1 forms a complex 

with Cas2, and has nuclease activity, able to target a specific sequence at the 5’ end of the 

CRISPR array328. During this process, the new 30bp protospacer is inserted at the 5’ end of the 

CRISPR array, and the 36bp repeating unit is duplicated, so that it flanks either side of the new 

protospacer. 

The second phase of the CRISPR-Cas9 immune system, is the recognition and cleavage of 

foreign DNA upon reinfection. The entire CRISPR array is transcribed as one long crRNA, which 

is then broken down into sgRNAs, in a process coordinated by tracrRNA. tracrRNA have a 24bp 

region of sequence homology to the CRISPR array repeats, and recruit RNase III to these sites 

along the crRNA316. Cleavage occurs in both the protospacer sequence and the repeat region, 

leaving a sgRNA of 39-42bp, consisting of 20bp of protospacer target sequence at the 5’, and 

19-22bp of the repeat region at the 3’ 316. The subsequent sgRNA:tracrRNA complex binds to 

Cas9, and directs it to any sites matching the 20bp target sequence, which will be cleaved if a 



75 
 

PAM site (NGG) is situated immediately downstream of the target sequence. The secondary 

structure formed by the tracrRNA plays a key role in this process, and is required for Cas9 

activity, both in identifying potential protospacer sequences in the first phase, and for the 

cleavage of them in the second phase319,326. 

 

1.7.3 CRISPR-Cas9 as a Laboratory Tool 

For use in a laboratory setting, typically only the effector part of the CRISPR pathway is desired, 

and the Cas genes responsible for identifying novel foreign DNA elements, cleaving them and 

incorporating them into the host genome in the form of a CRISPR array, are omitted. The only 

components that are required are the sequence specific sgRNA, the tracrRNA and the effector 

complex. Typically, rather using two RNA components, the single fused gRNA model 

demonstrated by Doudna & Charpentier is used319. The most commonly used effector is based 

on Cas9, of the Class II Type II CRISPR System found in S. pyogenes. 

 

1.7.3.1 Other CRISPR Systems and Cas9 Variations 

There are two main classes of CRISPR system that have been identified in prokaryotes, defined 

by the component of the pathway responsible for binding to the tracrRNA, and introducing 

double strand breaks into the bound target DNA. Class I systems include Type I, Type III-A, 

Type III-B and Type IV CRISPR Systems, and rely on multiple subunits assembling to form one 

large complex, referred to as Cascade (CRISPR-associated Complex for Antiviral Defence) in 

Type I systems, Csm in Type III-A and Cmr in Type III-B329. The function and mechanism of 

Type IV systems are not fully understood, but have been identified based on sequence 

homology. Interestingly the Cas genes in Type IV are not always situated adjacent to a CRISPR 

array329. 

Class II includes Type II and Type V CRISPR Systems, these systems have one large gene that 

codes for the entire effector complex, that binds the tracrRNA and has the nuclease function, in 

Type II systems this is Cas9, and in Type V this is Cpf1329.  

Class II systems rather than Class I have been isolated and optimised for use in the laboratory, 

since it is much more efficient to clone and express a single gene than to dissect the Cas 

operon and clone several individual subunits. As was mentioned in 1.7.1, the initial four papers 

describing the use of CRISPR in human cells all used a Type II system based on Cas9 from S. 

pyogenes, optimised for human codon usage. This remains the most commonly used CRISPR 
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method in laboratories today, and various modified versions are now available, allowing 

researchers to tailor the Cas9 function to suit the requirements of their experiments. 

Modified Cas9 variants are now available, including versions in which one of the nuclease 

domains is inactivated, either the HNH domain, which cleaves the strand bound by the gRNA or 

the RuvC domain, which cleaves the non-complementary strand319. The resultant Cas9 variants 

only cleave one strand, and are referred to as Cas9 ‘nickases’, these only introduce double 

strand breaks if two gRNA are used in parallel on opposite strands, and greatly increase 

cleavage specificity, since if only one gRNA binds within a region, a nick rather than a double 

strand break is introduced, reducing off-target effects330,331. Other variants harbour mutations 

disrupting both nuclease domains; these Cas9Null variants do not have any nuclease activity, but 

can be tagged to another protein or domain with a regulatory function. In these cases CRISPR 

is used as a molecular delivery system, with Cas9-directed recruitment of a transcription factor 

or epigenetic modifier to a specific locus332–334. 

The Type V system is now also being used in laboratories, and is considered to have several 

advantages over the Type II system. Type V is still a Class II System, and so still only requires a 

single molecule effector (Cpf1), and Cpf1 is smaller than Cas9, and can therefore be introduced 

into cells more easily. Endogenous Cpf1 from Francisella novicida is 3,900bp, while Cas9 from 

the same strain (F. novicida has both systems) is 4,887bp, and the commercially available 

optimised Cas9 from S. pyogenes is 4,101bp335. The sgRNA produced after processing of the 

crRNA in the Type V system interact directly with Cpf1, and no tracrRNA is required, similarly to 

the gRNA system designed by Doudna & Charpentier for the Type II system319,335. The PAM site 

required for cutting by Cpf1 is ‘TTN’ at the 5’ of the target sequence335. The fact that this is 

different from the ‘NGG’ favoured by Cas9 provides additional flexibility in gRNA design, which 

is limited by presence of a PAM site in the target region, e.g. if the region of interest has a low 

abundance of ‘GG’ dinucleotide, the Cpf1 system can be used instead (and vice versa). 

Additionally, while Cas9 produces blunt ends, Cpf1 cleavage leaves a 5-nucleotide overhang at 

the 5’ end, this can be used for efficient template insertion if an artificial template with the same 

overhangs is generated335. Since the cleavage sites are not palindromic like the sequences 

typically targeted by restriction endonucleases, the overhangs produced are not identical 

(unless by chance) and allow directional insertion of the template sequence. 
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1.7.3.2 Endogenous Repair Machinery 

While the gRNA directed cleavage of DNA by Cas9 is highly specific and efficient, the 

subsequent Double Strand Break (DSB) repair relies on the host’s endogenous repair 

machinery, and is less predictable. 

 

Figure 1.10: Overview of the two main DSB repair pathways in humans. NHEJ – Non Homologous End 
Joining. HR – Homology Directed Repair. NHEJ involves the identification of DSB ends by Ku70/80, 
followed by non-specific end processing and ligation by Ligase IV. HDR pathway uses homologous 
sequence as a repair template to correct the damaged sequence. Image from Lans et al. (2012)336. 
 

Two main pathways repair DSBs in humans, Non-Homologous End Joining (NHEJ) or 

Homology Directed Repair (HDR), as summarised in Figure 1.10. NHEJ is non-specific, with 

ku70/80 recognising two dsDNA ends, and Ligase IV ligating them, often resulting in 

introduction of short insertions or deletions.  

HDR relies on the identification of a homologous sequence to use as a template to repair the 

gap between the two ends, which would usually be the other allele. In HDR, the MRN complex 

recognises and binds to the DSBs, and recruits other factors including StIP, which is required 

for trimming the 5’ strand, leaving a 3’ overhang at the DSB site337,338. RAD51 displaces the 

bound RPA, and enables the 3’ overhang to ‘invade’ nearby dsDNA. When a region of 
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sequence homology is found, the overhang acts as a primer, and polymerases extend the 

sequence, reading off the template strand338. This continues until the junction between the two 

sister chromosomes is resolved, which can occur by a variety of different methods, and may 

result in recombination and genomic crossover338.  

For gene knockouts or introduction of non-specific deletions to disrupt a DNA motif, the NHEJ 

pathway is sufficient, and produces a variety of different genotypes with differing lengths of 

insertions or deletions as a result of end processing. However, for precise gene editing, where a 

specific sequence is desired, the HDR pathway is relied on. Under normal conditions, the HDR 

pathway uses the undamaged allele as the template for repair, but an artificial DNA repair 

template can be provided, containing a modified sequence for incorporation into the genome. 

Artificial DNA repair templates can either be incorporated into a plasmid, or introduced as 

independent DNA fragments, which can be either double stranded or single stranded339,340.  

Utilisation of HDR as a mechanism to incorporate template DNA into the genome after 

introduction of DSB is well established341,342. This was initially developed through the use of 

older techniques such as meganucleases, which bind and cleave specifically at long target 

sequences, which could be modified for sequences of interest342,343. More recently, this has 

developed into the use of fusion proteins, such as Zinc Finger Nuclease (ZFNs) and 

Transcription Activator Like Effector Nucleases TALENs, fusing nuclease domains to DNA 

binding domains with high sequence specificity, essentially allowing modular construction of a 

nuclease that targets a desired site342,344–346. This is very similar to the principle of CRISPR-

Cas9 targeted cleavage, but the ease with which gRNA can be substituted enables Cas9 based 

approaches to be more efficiently applied in practice, compared to fusion proteins which require 

construction of a new specific protein for each target site342. 

Template DNA for HDR can be either single or double stranded, and can be introduced to the 

cell directly, or incorporated into a vector such as a plasmid or virus347–349. When introducing the 

template sequence in the form of Single Stranded Oligodeoxynucleotides (ssODNs), efficient 

incorporation can be observed with sequence homology arms of >40bp flanking the targeted 

DSB site347. However, when using dsDNA, longer homology arms are required, typically ranging 

from 500-800bp either side of the target site, and linearised DNA is more efficient than a circular 

plasmid340,350,351.  

In order to improve the efficiency of cleavage directed genomic editing techniques such as 

CRIPSR, which rely on the incorporation of a template sequence into the host genome, the 
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HDR pathway is preferred over NHEJ. There are several techniques that have been suggested 

as a way to promote HDR over NHEJ in cells, including both transitory changes, such as siRNA 

knockdown of NHEJ components, as well as permanent changes, such as gene knock outs352–

354. While knock outs are more efficient, and would effectively silence the NHEJ pathway, they 

risk substantial genomic instability in any subsequent cell lines generated354–356. Transitory 

silencing is therefore preferable, since the loss of NHEJ function can be limited to a short time 

frame during which genome editing is taking place. 

Alternative methods to promote rates of HDR over NHEJ include small molecule inhibitors of the 

NHEJ pathway, such as the Ligase IV inhibitor SCR7357,358, as well as taking advantage of the 

differences in activity observed during different phases of the cell cycle. NHEJ is active 

throughout the cell cycle, whereas HDR activity is mostly active during S-Phase359. It has 

recently been shown that the use of modulators of the cell cycle, such as Cyclin D1, can 

increase HDR efficiency by promoting transition to S-Phase351. Modified versions of Cas9 fused 

to a Geminin, a protein that is targeted for degradation during G1 have also been shown to 

increase efficiency, allowing temporal regulation of Cas9 machinery to ensure that cleavage 

occurs at a time when HDR is most efficient360,361. 

 

1.7.3.3 Off-Target Activity of CRISPR-Cas9 

 

The off-target effects of CRISPR-Cas9 directed cleavage of DNA are well documented. ChIP-

Seq experiments have demonstrated Cas9 occupancy at off-target sites, and while this is 

believed to overestimate off-target effects, since Cas9 occupancy does not necessarily correlate 

with actual cleavage, whole genome sequencing analyses identify a large number of indel 

mutations and SNPs at loci across the genome, in both coding and non-coding regions362–366. 

This off-target activity is mostly unpredictable, and could severely restrict the conclusions that 

are able to be drawn from experiments replicating mutations using this technique. To verify that 

any observed effects are caused by the mutation of interest rather than secondary mutations 

introduced at other genomic loci, it may be necessary to carry out costly genomewide analyses 

to document all the specific off-target effects for each clonal cell population generated. 

The majority of off-target activity appears to arise as a result of S. pyogenes Cas9 tolerating 

some mismatches between the gRNA and the bound DNA, with increased tolerance further 
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away from the PAM site, and frequency of cleavage at these off target sites also increases at 

higher Cas9 concentrations367,368. 

While the off target effects can be mediated to a certain extent by selecting gRNA with the 

fewest predicted off-target sites, based on sequence similarity in the target host genome, there 

is only limited scope for this, especially when introducing specific mutations, since the gRNA 

need to be as close to the target site as possible to maximise efficiency for HDR. Instead, 

specificity may be improved through the use of other Cas9 variants, such as the Cas9 nickases 

described in .1.7.3.1, where two different Cas9 molecules must bind on opposite strands and in 

close proximity to cleave DNA324. Modified versions of Cas9 have now also been generated 

specifically for their improved specificity and reduction in off-target activity, these include High 

Fidelity Cas9 (spCas9-HF1), Enhanced Specificity Cas9 (eSpCas9) & Hyper Accurate Cas9 

(HypaCas9)369–371. Interestingly, truncated gRNA (tru-gRNA) with target sequences shorter than 

the usual 20bp have also been demonstrated to reduce Cas9 off-target activity372. 

 

1.7.4 Current Clinical Work 

The development of accurate genomic editing techniques such as CRISPR-Cas9 present many 

therapeutic opportunities, particularly for monogenic blood disorders such as SCA. The sickle 

cell mutation has already been corrected using CRISPR-Cas9 in human erythroid progenitors in 

vitro, although with a very low efficiency, highlighting the issue of relying on the endogenous 

HDR machinery373. 

An alternative strategy has been to introduce large scale deletions at the β-globin locus, 

mimicking a naturally occurring 13kb deletion that causes HPFH, increasing γ-globin 

expression374.  Introducing genomic deletions relies on the NHEJ pathway rather than HDR and 

is much more efficient, correction of the sickle mutation requires a highly specific gene-edited 

product, whereas the lack of specificity of the large deletion allows for more sequence variation 

surrounding the deletion site after the DSB repair. 
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 Materials & Methods 

2.1 Isolation of Erythroid Progenitors 

2.1.1 Blood Samples & PBMC Isolation 

Peripheral blood samples were collected from either healthy donors, or anonymised SCA 

patients, recruited from Guy’s Hospital or King’s College Hospital to participate in projects IRAS 

ID - 128238 or IRAS ID - 35853. 

9 – 27ml blood were collected in vacuum tubes containing EDTA. Samples were centrifuged at 

3000rpm for 10 minutes, and the Buffy Layer collected using a Pasteur pipette. The Buffy Layer 

was diluted 1:1 in Dulbecco’s Phosphate-Buffered Saline (PBS), gently layered onto 2/3 by 

volume of pre-warmed Histopaque®-1077 (Sigma-Aldrich – 10771) in polystyrene culture tubes 

(Corning - 430172). Samples were centrifuged at 1900rpm for 30min with no brake, and the 

PBMC layer was collected using a Pasteur pipette. 

PBMC samples were then washed three times in PBS before progressing to downstream steps. 

 

2.1.2 Culture Conditions 

Phase 1: PBMCs were plated at 107 cells per ml, in StemSpan™ media (Stem Cell 

Technologies - 09650), supplemented with 1 nM Dexamethasone (Sigma-Aldrich – D4902), 2 

U/ml Erythropoietin (Eprex), 40 ng/μl Insulin-like Growth Factor 1 (R&D Systems – 291-G1-

200), 2 ng/ml Interleukin-3 (Stem Cell Technologies - 02603), 2 mM L-Glutamine (Sigma-Aldrich 

– G7513), 1% Penicillin & Streptomycin (Sigma-Aldrich – P4333), 40 ng/μl Stem Cell Factor 

(Sigma – S7901) and 0.2% Synthechol (Sigma-Aldrich – S5442). The cultures were transferred 

to new plates daily, in order to remove adherent cells. The medium was refreshed on Phase 1 

Day 3 (P1D3), when cells were diluted to 2 x 106 cells per ml, and Interleukin-3 concentration 

was reduced to 1 ng/ml. 

Phase 2: Phase two was initiated on either P1D6 or P1D7, depending on the health of the 

culture as assessed by cytospin. The medium was fully replaced, without Interleukin-3, and cells 

were diluted to 106 cells per ml, and maintained at this concentration for the remainder of the 

culture. Throughout Phase 2, cultures were monitored daily by cytospin.  
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2.1.3 Cytospins 

Aliquots were concentrated onto microscope slide by centrifugation at 1000rpm for 3min in a 

cytocentrifuge (Thermo Scientific™ Cytospin™ 4). Slides were incubated for one minute in each 

of methanol fixation solution, eosin solution, and methylene blue solution (Thermo Fisher 

Scientific - 10435310). Stained cells were air-dried before addition of DPX Mountant and cover 

slip. 

 

2.1.4 Flow Cytometry & Cell Sorting 

Cells were re-suspended in 80μl PBS and incubated for 20min at room temperature with 20μl 

Human Fc Receptor Binding Inhibitor (eBioscience - 14-9161-73). 5μl of antibody was added, 

and cells were incubated for 30min at room temperature in the dark and washed with PBS prior 

to analysis or sorting. 

Flow cytometry analysis was carried out using BD Accuri™, BD FACSCalibur™ or BD 

FACSCanto II™ cytometers. Fluorescence-Activated Cell Sorting (FACS) was carried out on BD 

FACSAria™ cell sorters, as a service provided by the BRC Flow Cytometry Core Facility at 

Guy’s Hospital. The FACS service was unavailable outside of working hours, and so for direct 

sorting of SCA patient PBMCs, cells were plated in the culture medium overnight before sorting 

the following day, at P1D1.  

Fluorescent antibodies used for flow cytometry: anti-CD71-APC (eBioscience - 17-0719-42), 

anti-Glycophorin A-FITC (eBioscience - 11-9886-42), anti-CD45-eFluor® 450 (eBioscience - 48-

9459-42), anti-CD34-PE (Miltenyi Biotec - 130-098-140), anti-CD14-PE-Cy7 (eBioscience - 

9025-0149-120) and anti-c-Kit-PE-Cy7 (eBioscience - 25-1178-42). 

 

2.1.5 Antibody-MicroBead Cell Isolation 

For CD71+ cell isolation, freshly extracted PBMCs were depleted of CD45+ cells using Human 

CD45 MicroBead kit (Miltenyi Biotec - 130-045-801) using LD columns. The CD45- fraction was 

then enriched for CD71+ cells using Human CD71 MicroBead Kit (Miltenyi Biotec - 130-046-201) 

using MS columns. 

CD34+ cells were isolated from freshly extracted PBMCs using Human CD34 MicroBead Kit 

UltraPure (Miltenyi Biotec - 130-100-453) using MS columns, the protocol was repeated with an 

additional column, for increased purity. 
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For isolation of GPA-CD71+ cells, freshly extracted PBMCs were depleted of GPA+ cells using 

Human CD235a (Glycophorin A) MicroBead Kit (Miltenyi Biotec – 130-050-501) using LD 

columns. The GPA- fraction was then enriched for CD71+ cells using Human CD71 MicroBead 

Kit (Miltenyi Biotec - 130-046-201) using MS columns. 

 

2.1.6 DNA & RNA extractions 

DNA & RNA were extracted simultaneously from isolated erythroid progenitor cells either after 

storage in TRIzol® Reagent (Thermo Fisher Scientific - 15596018) at -80°C, or immediately 

after isolation using a Qiagen AllPrep DNA/RNA/Protein Mini Kit (Qiagen - 80004), in 

conjunction with a QIAshredder (Qiagen - 79654) for homogenisation. Where DNA & RNA were 

extracted from cells separately, DNA was extracted using a Qiagen DNeasy Blood & Tissue Kit 

(Qiagen - 69504), Qiagen Puregene Blood Core Kit A (Qiagen - 158445), or a Qiagen QiaAMP 

DNA Micro Kit (Qiagen - 56304), and RNA was extracted using a Qiagen RNeasy Mini Kit 

(Qiagen - 74104). Concentrations were analysed by NanoDrop Spectrophotometer (NanoDrop 

2000 or NanoDrop One) or by Qubit using Qubit® dsDNA HS Assay Kit (Thermo Fisher 

Scientific - Q32854) and Qubit® RNA HS Assay Kit (Thermo Fisher Scientific - Q32852) for 

DNA and RNA respectively. 
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2.2 Whole Exome Sequencing 

2.2.1 SCA Patient WES Data 

2.2.1.1 SCA Patients from King’s College Hospital 

Samples were selected from a collection of >700 SCA patients managed by Professor Swee 

Lay Thein and her team at King’s College Hospital. These patients had been recruited for 

participation in genetic research, under projects LREC 01-083, 07/H0606/165 or 12/LO/1610. 

Patients were classified as either mild or severe in consultation with Professor Thein & Dr 

Catherine Gardner. 

Genomic DNA (gDNA) samples of >1.5µg were submitted to the NIHR Biomedical Research 

Centre Genomics Core Facility at Guy’s and St Thomas’ NHS Foundation Trust, for Whole 

Exome Sequencing (WES) library preparation and sequencing. Exome capture was carried out 

using Agilent SureSelectXT Human All Exon v5 kit (Agilent – 5190-6210), and samples were 

sequenced on an Illumina HiSeq2000. Sequence reads were mapped to the reference genome 

(GRCh37/hg19), assessed for read quality and variant calls were annotated, this was carried 

out using an in-house analytical pipeline developed by Professor Michael Simpson. 

 

2.2.1.2 SCA Data from dbGaP Dataset 

Exome sequencing data from clinical trials investigating response to HU therapy in SCA 

patients were obtained through dbGaP (Study Accession ID: phs000691.v2.p1)375. Analyses of 

the data generated in this study were initially published by Sheehan et al. in 2014376.  

These samples were sequenced in the Human Genome Sequencing Center at Baylor College 

of Medicine, exome capture was carried out using Roche SeqCap EZ HGSC VCRome 2.1 kit 

(Roche NimbleGen - 06465587001), and samples were sequenced on an Illumina HiSeq2000. 

651 patients were included in the study data, of which 143 were recruited as part of the Long 

Term Effects of Hydroxyurea Therapy in Children With Sickle Cell Disease clinical trial 

(HUSTLE - NCT00305175), 132 of the Stroke With Transfusions Changing to Hydroxyurea 

clinical trial (SWiTCH - NCT00122980) and 139 of the Transcranial Doppler (TCD) With 

Transfusions Changing to Hydroxyurea clinical trial (TWiTCH - NCT01425307), the remaining 

237 had no annotated source. 

Short read archive files were downloaded from dbGaP (phs000691.v2.p1), converted into 

FASTQ format, and then processed through the same alignment, quality control and variant 
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calling pipeline as the in-house exomes, in order to minimise variation between the two data 

sources. 

 

2.2.2 Filtering of ANNOVAR Annotated Variants & Statistical Testing 

Bioinformatic tools were used to identify relevant candidate variants, and to perform statistical 

tests for significance between the mild and severe SCA patient groups. 

 

2.2.2.1 Computational Tools for Filtering 

Details of the individual variant filtering criteria used for each specific analysis performed is 

described in full in 4.3.1. Variant filtering steps were performed on the British Research 

Council’s Athena-Apollo High Performance Computing Cluster at KCL, using Python v2.7.12. 

 

2.2.2.2 Fisher’s Exact Test 

Fisher’s exact test was performed using the SciPy Python for Scientific Computing Toolkit377. 

 

2.2.2.3 CADD Phred-Like Variant Scoring 

Combined Annotation Dependant Depletion (CADD) Phred-like scores were obtained for coding 

variants and loss of function mutations from http://cadd.gs.washington.edu378. 

 

2.2.3 Manual Assessment of Variants 

Top candidate variants were assessed individually based on the proximity of the variant to any 

annotated structures within the gene, and their inclusion in any alternative splicing isoforms. 

 

2.2.3.1 Identification of Gene Features 

Information regarding annotated protein domains and conserved regions as well as structural 

information was accessed from the neXtProt knowledgebase on human proteins379. 

 

2.2.3.2 Identification of Alternative Isoforms 

Alternative splicing isoforms were investigated using the University of California Santa Cruz 

(UCSC) Human Genome Browser380. 
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2.3 CRSIPR-Cas9 Plasmid 

CRISPR-Cas9 plasmids were provided by Horizon Discovery Group, as part of a programme to 

test their gUIDEbook™ gRNA design platform set up through a partnership with Desktop 

Genetics Ltd.  The plasmids provided were derived from pD1301, and key features include a 

kanamycin resistance gene, a chimeric gRNA scaffold and a Cas9 tagged with a self-cleavable 

linker to DasherGFP. 

The gRNA consists of a 20bp target sequence, identical to the region of interest in the host 

genome, coupled to a 76bp gRNA scaffold that forms a secondary structure to interact with 

Cas9. Expression of the gRNA is controlled by the P_hU6.1-human RNA expression promoter 

containing a TATA box.  

The Cas9 is derived from that found in Streptococcus pyogenes, and has nuclease activity 

capable of introducing double strand breaks in mammalian DNA, directed by interactions with 

the gRNA. Expression of Cas9 is controlled by E_CMV, a cytomegalovirus enhancer element, 

and P_CMV, a constitutive mammalian promoter with strong expression. Cas9 is tagged at both 

the 5’ and 3’ ends with nuclear localisation signals (NLS), which direct proteins for nuclear 

import, ends. Downstream of the 3’NLS is a CHYSEL_TAV linker connecting to DasherGFP. 

CHYSEL (cis-acting hydrolase element) will self-cleave in the cytoplasm after translation, 

leaving cytosolic GFP as a marker for expression, while Cas9 is targeted to the nucleus. 

Downstream of DasherGFP is pA_GH-bovine(min), a polyadenylation signal. 

The kanamycin resistance gene encodes Neomycin phosphotransferase II and allows survival 

in medium containing kanamycin. Expression is controlled by bacterial promoter P_Amp. 

Ori_pUC is an origin of replication sequence derived from E. coli, allowing the plasmid to 

replicate when transformed into competent bacteria. 

Bacterial transcriptional termination cites Term_rpoC & Term_bla are included upstream of the 

human expression promoter, to prevent read through and unregulated expression of gRNA & 

Cas9 in bacterial cells. 

The full plasmid map is shown in Figure 2.1 and the full sequence is provided in Appendix 2, 

with the 20bp variable gRNA target sequence highlighted. 
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Figure 2.1: Plasmid map of the 9kb pD1301 Cas9 plasmid provided by Horizon Discovery Group. Key 
features are highlighted: Cas9 is shown in red, self-cleaving GFP tag in green, kanamycin resistance gene 
in yellow, and gRNA target sequence and scaffold shown in blue. 
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2.4 CRIPSR-Cas9 Genomic Editing 

2.4.1 gRNA Design 

gRNA to target the SNP sites in the ASH1L and KLF1 genes were designed using the online 

tool DESKGEN381. Five candidate gRNA were initially selected for each SNP based on proximity 

of the cleavage site to the SNP, and the ‘on-target score’, a scoring mechanism designed to 

estimate the likelihood of Cas9 cleavage382,383.  

 

         

     PAM Site Disrupted PAM 
Site 

 gRNA Off 
Target 

On 
Target Distance Protein DNA Protein DNA 

K1 GATCTCAGCT
TAGTCTGGCA 89 62 22bp n/a GGG n/a GCG 

K2 AGGTACGCTC
AGTCCAGGAG 87 61 3bp n/a AGG n/a AGC 

K3 AGTCTGGCAG
GGGGTGAGGA 50 51 34bp n/a GGG n/a GCG 

K4 TAAGCTGAGA
TCTCCTCTCC 79 51 1bp n/a TGG n/a TGC 

K5 AAGAGACTTA
ACCAGGACTG 73 68 23bp n/a AGG n/a ACG 

         
A1 TCTTCCGGCC

ACTGGAGTTA 85 45 17bp NP AAC
CCT NP AAT

CCT 
A2 CAAACCCTAA

CTCCAGTGGC 88 57 24bp R CGG R CGA 

A3 GTTTCAAACC
CTAACTCCAG 61 70 20bp G GGC Not 

Possible - 

A4 AACCTTTTCAC
AAGTGCAAT 77 50 14bp G GGC Not 

Possible - 

A5 GTATGTTCATC
ACTGCTGGC 83 46 49bp P CCA Not 

Possible - 
 
Table 2.1: Five candidate gRNAs for both the KLF1 (K1-5) and ASH1L (A1-5) SNPs. The on-target and 
off-target scores are shown, along with the gRNA sequence and distance between the target SNP and the 
cleavage site. The codons in which the endogenous PAM sites are situated are shown, with the GG 
dinucleotide in bold. Red indicates proposed changes to disrupt the PAM site. K1 & K2 were selected for 
KLF1, due to high off-target scores, which were considered more important. A1 & A2 were selected for 
ASH1L, since they were the only gRNAs with PAM sites that could be silently disrupted, they also have 
high off-target scores. 
 

The five gRNAs are shown in Table 2.1, of these five, two gRNA were selected for use for each 

SNP, these were chosen based on the ‘off-target score’, an inverse scoring mechanism to 

predict the likelihood of Cas9 cleaving non-targeted regions of the host genome with a similar 

sequence to the gRNA368. The ability to introduce a silent mutation to disrupt the PAM site was 

also investigated at this stage. Due to the fact that the KLF1 SNP is intronic, and thought to 

disrupt transcription factor binding, any disruption of the PAM site may also influence 
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transcription factor binding, making it difficult to distinguish which of the two mutations is the 

cause of any effect observed. Therefore for the KLF1 SNP, a negative control was carried out, 

introducing only the PAM mutation. 

 

2.4.2 Plasmid Design & Cloning 

A DNA sequence containing the target SNP and the PAM site disruption was cloned into each 

plasmid. This sequence acts as a template, and is incorporated into the host by Homology 

Directed Repair (HDR) after cleavage of the genomic DNA target sequence by Cas9. Including 

the PAM site disruption in the template sequence not only prevents Cas9 from repeatedly 

cutting the genomic DNA once the sequence has been incorporated, but also prevents cleavage 

of the template DNA in the plasmid. 

Initially, unmodified template DNA (containing the wild type sequence) was cloned into each 

plasmid. A 20bp gRNA target sequence was then substituted in by Site Directed Mutagenesis 

(SDM). A PAM site disruption mutation was then introduced to the template DNA in each of 

these plasmids, specific to the gRNA target sequence. This was also achieved by SDM. 

Aliquots of plasmids at this stage were kept for use as PAM site only controls. The SNPs of 

interest were then introduced to the template DNA, also by SDM. This process is outlined in 

Figure 2.2. 

 

Figure 2.2: Diagram showing the cloning workflow to generate plasmids for introduction of specific genetic 
variants using the CRISPR-Cas9 system. Template sequence is indicated in purple, gRNA in blue, PAM 
site disruption in red, and SNP in yellow.  
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2.4.2.1 Unmodified Template DNA Insertion 

Template DNA was inserted into the CRISPR-Cas9 plasmids at a BssHII restriction site, 

situated between the kanamycin resistance gene and the origin of replication sequence. 

Unmodified template DNA was amplified from K562 genomic DNA by PCR, using primers 

tagged with a 6bp spacer and a 6bp BssHII restriction site at the 5’ end. PCR products were 

Sanger sequenced to confirm that the K562 sequence matched that of the reference genome, 

since cancer cell lines typically carry high levels of genetic variation. Sequences of the primers 

used for amplification are shown in Table 2.2 and the KLF1 & ASH1L regions amplified are 

shown in Figure 2.3. Full gene maps are provided in Appendix 1. 

The whole 20µl PCR reaction was run on an agarose gel, and bands were excised and DNA 

extracted as described in 2.5.4.2. Plasmids and PCR products were digested with BssHII (NEB 

– R0199S). 1µg plasmid, or up to 1µg of PCR product were added to 5µl 10X NEB CutSmart® 

Buffer and 1µl BssHII, and made up to a total reaction volume of 50µl with nuclease free H2O. 

Digests were run at 50°C for 1 hour, and then 65°C for 20 minutes to heat inactivate the 

enzyme. 

Products of the 50µl digest were run on an agarose gel, excised and extracted. Ligation was 

then performed using T4 DNA Ligase (NEB – M202S). 50ng of digested and purified plasmid 

was added to 2µl 10X T4 DNA Ligase Buffer and 1µl T4 DNA Ligase, the remainder of the 20µl 

reaction volume was then made up with the digested and purified PCR product. The reaction 

was incubated at 4°C overnight. 

10µl of the ligation reaction was transformed into competent cells and plated on agar with 

kanamycin (as described in 2.5.8). Colonies were screened for successful template insertion by 

colony PCR and Sanger sequencing. 

Primer Sequence 
KLF1_Temp1_F TAAGCAGCGCGCCCGCTGATATCTGGAAGATTGT 
KLF1_Temp2_R TAAGCAGCGCGCCTTGCCTTGCTTTGCCTTATC 

ASH1L_Temp2_F TAAGCAGCGCGCCCTGCATACTACTAACAGACCTATG 
ASH1L_Temp1_R TAAGCAGCGCGCTGCTGTTGGAGAGCGATATAAG 

 
Table 2.2: Table showing primer sequences used for amplification of KLF1 & ASH1L template DNA. 
GCGCGC BssHII restriction site is shown in red and bold, 6bp spacer at 5’ of restriction site is shown in 
blue. 
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Figure 2.3: Diagrams of PCR amplicons used to clone K562 genomic DNA into CRISPR-Cas9 plasmids to 
act as a template for Homology Directed Repair (HDR). Images are adapted from UCSC Genome Browser 
(http://genome.ucsc.edu - Assembly GRCh37/hg19380). A – 718bp amplicon from KLF1. B – 759bp 
amplicon from ASH1L. PCR amplicons are shown below the genomic sequence, with BssHII restriction 
site tags at 5’ of primer in purple. In the genomic DNA sequence the targeted SNPs are indicated by red 
lines, with methionine residues and start codons indicated in green. gRNA target sequences are 
highlighted in blue. Also shown are single stranded oligodeoxynucleotides (ssODN), which were designed 
as an alternative technique to introduce the template sequence. In the ssODNs the SNP is shown in red, 
and the PAM site disruption in green. Full gene maps are shown in Appendix 1. 
  

2.4.2.2 gRNA Sequence Substitution 

gRNA sequences were introduced to plasmids with successful template insertion. This was 

done using Site Directed Mutagenesis (SDM), performing a substitution of the initial 20bp gRNA 

sequence for one of those designed in 2.4.1. Primer sequences used for SDM are shown in 

Appendix 3, the 10bp at the 5’ of both forward and reverse primers contain the variable gRNA 

sequence, and the 3’ ends anneal to the sequences flanking the insertion site. Therefore all 

forward primers follow the pattern NNNNNNNNNN-GTTTTAGAGCTAGAAATAGCAAG, where 

N10 represents the last 10bp of the target sequence, and all reverse primers follow the pattern 

NNNNNNNNNN-CGGTGTTTCGTCCTTTCC, where N10 represents the reverse complement of 

the first 10bp of the target sequence. 

After the SDM reaction and plating of transformed DH5α on kanamycin plates (as described in 

2.5.6), colonies were screened by Sanger sequencing for incorporation of the new sequence. 

Primers spanning the gRNA site are shown in Appendix 3. 
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2.4.2.3 PAM Site Disruption & SNP Introduction in Template Sequence 

Plasmids containing the template insertion and the gRNA substitution underwent sequential 

rounds of SDM, transformation and cloning to introduce firstly a PAM site disruption mutation, 

as designed for each gRNA and shown in Table 2.1, and secondly the SNP of interest. The 

sequences for the SDM primers are shown in Table 2.3. 

Primer Sequence 
PAM Site Disruption  

A1_PAMF TGGAGTTAGGATTTGAAACTCTG 
A1_PAMR GTGGCCGGAAGAAATTAAC 
A2_PAMF CCAGTGGCCGTAAGAAATTAAC 
A2_PAMR AGTTAGGGTTTGAAACTCTG 
K1_PAMF AGTCTGGCAGCGGGTGAGGAG 
K1_PAMR AAGCTGAGATCTCCTCTCC 
K2_PAMF TCCAGGAGAGCAGATCTCAGC 
K2_PAMR CTGAGCGTACCTCAGTCC 

  
SNP Introduction  

A1_SNPF TTTGAAACTCCGCAGCTGCCTATTG 
A1_SNPR TCCTAACTCCAGTGGCCG 
A2_SNPF TTTGAAACTCCGCAGCTGCCTATTG 
A2_SNPR CCCTAACTCCAGTGGCCG 
K1_SNPF GAGATCTCCTGTCCTGGACTGAG 
K1_SNPR AGCTTAGTCTGGCAGCGG 
K2_SNPF GAGATCTGCTGTCCTGGACTGAG 
K2_SNPR AGCTTAGTCTGGCAGGGG 

Table 2.3: SDM primer sequences for PAM site disruption and SNP introduction to the template sequence 
in the CRISPR-Cas9 plasmid. PAM site disruption SNPs are highlighted in green, with targeted SNPs in 
red. In cases where the gRNA target sequence is close to the SNP, the PAM site is also close, in these 
cases both the PAM site disruption and the SNP must be included in the second SDM reaction, to prevent 
the SNP introduction SDM reversing the PAM site disruption. The possibility of using a single SDM 
reaction to introduce both variants was considered for these cases, this was rejected since it would not 
enable production of PAM only controls.  
 

 

2.4.3 siRNA Knock Down of Non-Homologous End Joining Pathway 

The first and last components of the NHEJ pathway, XRCC6 and LIG4, were targeted for knock 

down using siRNA. 

siRNA were ordered for both XRCC6 (OriGene - SR301689) and LIG4 (OriGene - SR302689), 

with three separate siRNAs provided for each target gene, as well as one vial of Universal 

Scrambled siRNA as a negative control (OriGene – SR30004). siRNAs were 27 ribonucleotides 

long, and were provided as 2nmol of lyophilised powder, which were resuspended in 100µl of 

RNAse free siRNA duplex resuspension buffer (OriGene – SR30005) to a final concentration of 
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20µM, and incubated at 94°C for 2 minutes before first use. Sequences of the siRNA, as well as 

the primers used for rtPCR analysis of knockdowns are shown in Appendix 4. 

siRNA were transfected alongside CRISPR plasmids by nucleofection, with 1.5µl (30pmol) of 

each of the three siRNA for either target gene, or 4.5µl (90pmol) scrambled siRNA, and up to 

5µg of CRISPR-Cas9 plasmid. 

 

2.4.4 Single Stranded Oligodeoxynucleotide (ssODN) Templates  

As an alternative to the template sequence incorporated into the plasmid, 110bp ssODNs with 

55bp sequence homology either side of the SNP were designed, and ordered from Eurofins 

Genomics. The ssODN templates also contained the PAM site disruption. This was done for 

gRNA A2 for ASH1L, and gRNA K3 with the corresponding PAM only template, for KLF1. 

Templates were designed antisense to transcription, since this has been shown to increase 

incorporation into the genome384. The ssODN sequences are shown in Table 2.4. ssODN 

alignments for gRNAs A2 and K3 against the ASH1L gene and KLF1 gene respectively are 

shown in Figure 2.3. ssODNs were transfected alongside the plasmids containing the relevant 

gRNA by nucleofection, with 30µg ssODN and up to 5µg plasmid. 

 

ssODN Target 
Gene & SNPs ssODN Sequence 

ASH1L - A2 
AGTCCAGGGCTGTCAGTTAATTTCTTCCGGCCACTGGAGTTAGGATT
TGAAACTCGGCAGCTGCCTATTGCACTTGTGAAAAGGTTTGTATGTTC

ATCACTGCTGGCTGG 

KLF1 - K3 
CTCAAACCCCTAGACCACCCTCCTCACCCCCTGCCAGACTAAGCTGA
GATCTGCTGTCCTGGACTGAGCGTACCTCAGTCCTGGTTAAGTCTCT

TGATTTCAGGTCAAGA 

KLF1 - K3 PAM 
Only 

CTCAAACCCCTAGACCACCCTCCTCACCCCCTGCCAGACTAAGCTGA
GATCTGCTCTCCTGGACTGAGCGTACCTCAGTCCTGGTTAAGTCTCT

TGATTTCAGGTCAAGA 
Table 2.4: Sequences for 110bp ssODN templates used. PAM only control was used in parallel for KLF1 
but not ASH1L, due to the fact that the PAM disruption is translationally silent. PAM disruptions are 
highlighted in green, with the targeted SNPs in red. 
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2.5 Molecular Biology & Cloning Tools 

2.5.1 Oligonucleotide Primers 

Oligonucleotide primers for PCR, Sanger sequencing and rtPCR were designed using 

Primer3Plus Version 2.4.0385. Primers for Site Directed Mutagenesis were designed using the 

online tool NEBaseChanger™386. All primers were ordered from Eurofins Genomics. 

 

2.5.2 Polymerase Chain Reaction (PCR) 

Unless otherwise specified, PCR was performed using ThermoPrime 2X ReddyMix PCR Master 

Mix (Thermo Scientific - AB0575DCLDB), and run on an MJ Research PTC-200 thermal cycler. 

The standard reaction mix for a 20µl reaction, and the standard PCR programme are shown 

below in Table 2.5. 

PCR Reaction Mix   PCR Thermal Cycling Programme 
Reagent Volume   Step Temp Time Cycle 

2X ReddyMix 10µl   Initial Denaturation 96°C 2 min - 
Forward Primer 20µM 0.5µl   Denaturation 96°C 30 sec 

Repeat 29x Reverse Primer 20µM 0.5µl   Annealing 58°C* 30 sec 
Nuclease Free H2O 8µl   Extension 67°C 1 min 

Template DNA 1µl   Final Extension 67°C 5 min - 
Total 20µl   Rest 4°C ∞ - 

 
Table 2.5: Tables Showing PCR reaction mix and Thermal Cycling programme for a standard PCR 
reaction. *Annealing temperature varies depending on the primers used, and was adjusted to 0.5-1.0°C 
below the lowest primer melting temperature. 
 

2.5.3 Agarose Gel Electrophoresis 

To check the size of dsDNA fragments generated e.g. by PCR or Restriction Endonuclease 

Digest, samples were run on an agarose gel. 

Gels aimed to target fragments >1kb or <1kb were made with either 1% or 1.5% respectively of 

UltraPure™ Agarose (Invitrogen – 16500-500) in TAE Buffer (40mM Tris acetate, 1mM EDTA 

pH 8.0). The solution was heated for roughly 2 minutes in a microwave and allowed to cool 

before adding 0.2µg/ml Ethidium Bromide (Sigma – E1510) and pouring into a gel cast. 

Gels were placed in a gel tank with TAE Buffer, and samples were diluted 5:6 with Purple Gel 

Loading Dye (NEB – B7025) before loading. Samples prepared using ReddyMix PCR Master 

Mix (as described in 2.5.2), already contained loading dye, and so no more was added. A DNA 

ladder of either 100bp (NEB – N3231) or 1kb (NEB – N3232) was also loaded as a marker of 
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fragment size. Gels were run at 100mV for 1 hour, or until sufficient size separation was 

observed. Gels were visualised using a UVP BioDoc-It™ Imaging System. 

  

2.5.4 PCR Clean-Up 

Prior to downstream processing of PCR products, it is frequently required to perform a ‘clean-

up’, removing any remaining primers and dNTPs. For Sanger sequencing reactions, residual 

primers can cause bidirectional sequencing, resulting in overlapping sequence traces that are 

unreadable. The Sanger sequencing reaction mixture contains a specific ratio of dNTPs to 

ddNTPs, which would be altered by residual dNTPs from the PCR reaction. 

In the case of TA cloning systems, primer dimer products can insert themselves into the 

plasmid, reducing cloning efficiency. 

 

2.5.4.1 ExoSAP-IT 

For Sanger sequencing of PCR products, 2.5µl of PCR product was added to 1µl ExoSAP-IT® 

PCR Product Cleanup (Affymetrix – 782011) and 11.5µl nuclease free H2O to a final reaction 

volume of 15µl. The reaction mixture was run on an MJ Research PTC-200 thermal cycler at 

37°C for 15 minutes, and then 94°C for 15 minutes to denature the enzymes. 

 

2.5.4.2 Gel Extraction 

For cloning of PCR products, gel extraction was used to clean up the PCR reaction. This allows 

size selection of the PCR product based on the section of the gel that is excised. Cloning 

efficiency improves as insert size decreases, and so smaller PCR products that may be present 

in quantities too low to observe on a gel, could still influence overall cloning efficiency, 

particularly when trying to insert large fragments. 

For gel extraction, gels were made with Low Melting Point (LMP) Agarose (Promega – V3841), 

which is more efficient for DNA extraction, and the gel tanks were run on ice to prevent the gels 

from melting in the heat generated by the current. 

Bands were excised from the gels using a scalpel, and DNA was extracted using a QIAquick 

PCR Purification Kit (Qiagen - 28706), following the recommended protocol. 
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2.5.5 Sanger Sequencing 

Sanger sequencing was performed on PCR products after clean up, or on plasmid DNA after 

extraction. Due to the high copy numbers of plasmids after extraction, amplification by PCR is 

not required prior to sequencing. The sequencing reaction was performed using BigDye 

Terminator v2.1/v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific - 4337455). The reaction 

mix and the standard PCR programme are shown below in  

Table 2.6. Each sample requires two reactions, one containing the forward primer, and one 

containing the reverse. 

Sequencing Reaction Mix   PCR Thermal Cycling Programme 
Reagent Volume   Step Temp Time Cycle 

5X Sequencing Buffer 2µl   Initial Denaturation 96°C 1 min  
Sequencing Primer 20µM 0.4µl   Denaturation 96°C 30 sec 

Repeat 29x BigDye Reaction Mix 0.5µl   Annealing 58°C* 15 sec 
Nuclease Free H2O 4.6µl   Extension 62°C 1 min 

Template DNA 2.5µl   Rest 4°C ∞  
Total 10µl   

   
 

 
Table 2.6: Tables Showing Sanger sequencing reaction mix and Thermal Cycling programme for a 
standard sequencing reaction. *Annealing temperature varies depending on the primer used, and was 
adjusted to 0.5-1.0°C below the primer melting temperature. 
 

After the sequencing reaction, DNA was purified by ethanol precipitation. 30µl of 100% ethanol 

and 100mM Sodium Acetate was added to each reaction, samples were then incubated at 4°C 

for 20 minutes before being centrifuged at 3060xg at 4°C for 20 minutes. The supernatant was 

tipped off, and 30µl 70% Ethanol was added. Samples were then incubated at 4°C for 5 

minutes, before being centrifuged at 3060xg at 4°C for 10 minutes. The supernatant was tipped 

off again, and samples were left to air-dry at room temperature for 20 minutes. 

Samples were then resuspended in 10µl Hi-Di™ Formamide (Thermo Fisher Scientific - 

4404307) and incubated at 94°C for 2 minutes, before being analysed on a 3730xl DNA 

Analyzer. 

Sequencing traces were analysed manually using SnapGene Viewer387, and multiple sequence 

alignment analysis was performed using the online tool MUltiple Sequence Comparison by Log-

Expectation  (MUSCLE)388,389. 
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2.5.6 Site Directed Mutagenesis (SDM) 

SDM is an efficient technique for introducing small changes into plasmid DNA, and is 

particularly useful for regions with no restriction enzyme cleavage sites, or where there is no 

available template DNA for the desired sequence. It also allows greater flexibility when inserting 

new genetic features, and can even be used to insert new cleavage sites to ensure that 

subsequent cloning steps are kept in frame with the rest of the gene. 

SDM was performed using the Q5® Site-Directed Mutagenesis Kit (NEB – E0554S). The 

reaction mix and the standard PCR programme are shown below in Table 2.7. 

SDM PCR Reaction Mix  SDM PCR Thermal Cycling Programme 
Reagent Volume  Step Temp Time Cycle 

2X Q5 Hot Start 
Master Mix 12.5µl  Initial Denaturation 98°C 30 sec  

Forward Primer 10µM 1.25µl  Denaturation 98°C 10 sec 
Repeat 

24x 
Reverse Primer 10µM 1.25µl  Annealing 60°C* 30 sec 

Template Plasmid 10-20ng  Extension 72°C 30 sec/kb 

Nuclease Free H2O Up to 10µl  Final Extension 72°C 2 min  
Total 25µl  Rest 4°C ∞  

 
Table 2.7: Tables Showing SDM PCR reaction mix and Thermal Cycling programme. *Annealing 
temperature varies depending on the primer used, and was adjusted to that recommended by 
NEBaseChanger386 when the primers were designed. The extension time was calculated based on the 
size of the plasmid, with 30 seconds per 1000bp. 
 

After amplification of the new plasmid sequence by PCR, a KLD reaction is used to circularise 

the product. 1µl of PCR product was added to 5µl of 2x KLD Buffer, with 3µl of nuclease free 

H2O and 1µl of 10X KLD Enzyme Mix. The KLD reaction is incubated for 5 minutes at room 

temperature, before being transformed into competent cells for screening (as described in 

2.5.8). 

 

2.5.7 TA Cloning 

Many of the polymerases used for PCR add leave a single 3’-A overhang, allowing easy ligation 

into plasmids with a 5’-T overhang. This is known as TA cloning, and is a useful tool to allow 

sequencing of individual DNA molecules from a pool of amplified fragments, this is useful for 

sequencing of genomic DNA where frameshift insertions or deletions make it difficult to 

determine the exact sequence, or for haplotyping of multiple SNPs observed within the same 

amplicon. It is also useful for locus specific bisulphite sequencing, where due to inaccuracies in 

the bisulphite conversion process, a percentage of methylation at each CpG is estimated based 

on the sequences of multiple bisulphite converted DNA molecules from the same sample. 
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TA cloning was performed using the pGEM®-T Easy Vector System I (Promega – A1360). 

pGEM®-T Easy Vector comes as a linearised plasmid with 5’-T overhangs, the plasmid 

contains an ampicillin resistance gene allowing for positive selection by ampicillin. The insertion 

site is within a lacZ operon that is disrupted if a fragment is successfully inserted, allowing for 

blue/white colony selection on agar plates containing IPTG & X-gal. 

PCR products for ligation were purified by gel extraction (as described in 2.5.4.2), and then 3µl 

were added to 5µl of 2X Rapid Ligation Buffer, 1µl pGEM®-T Easy Vector and 1µl T4 DNA 

Ligase for a final ligation reaction volume of 10µl. The ligation reaction was incubated at 4°C 

overnight, and transformed into competent cells for screening (as described in 2.5.8). 

 

2.5.8 Bacterial Transformation for Plasmid Expansion, Colony Separation & Glycerol 

Stocks 

Plasmids were transformed into E. coli DH5α competent cells from stocks maintained by our 

laboratory group. 5 – 10µl of plasmid solution were added to 50µl DH5α, and incubated on ice 

for 30 minutes, before heat shock at 42°C for 45 seconds, and were then immediately returned 

to ice for 5 minutes. 100µl S.O.C media (Invitrogen 15544034) was added, and cells were 

shaken at 37°C for 1 hour. 

For plasmid extraction by maxiprep, cultures were then added to 50ml of LB broth containing 

either 50µg/ml Kanamycin or 20µg/ml Ampicillin, depending on the antibiotic resistance gene 

contained within the plasmid. Cultures were then shaken at 37°C overnight.  

To generate glycerol stocks for long term storage, the S.O.C cultures were added to 5ml LB 

broth containing either 50µg/ml Kanamycin or 20µg/ml Ampicillin, and shaken at 37°C overnight. 

For each stock, 500µl was mixed with 500µl of 50% glycerol (autoclaved), to a final 

concentration of 25% glycerol, and stored at -80°C. 

For individual colony separation, S.O.C cultures were plated on LB agar plates, containing 

either 20µg/ml Ampicillin, 84µM IPTG & 40µg/ml X-Gal, or 50µg/ml Kanamycin. Plates were 

then incubated at 37°C overnight. 

 

2.5.9 Colony PCR 

Successful colonies were identified on agar plates after overnight culture, screened by 

resistance against the antibiotic. For the pGEM-T Easy plasmids, white/blue colony selection 

was used to screen for successful disruption of the lacZ gene (as described in 0).  
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Picked colonies were added to 50µl LB broth containing either 50µg/ml Kanamycin or 20µg/ml 

Ampicillin and incubated at 37°C for 3 hours. 1µl of the culture was then used as the DNA input 

for PCR (as described in 2.5.2), with an initial step of 96°C for 6 minutes. 

The remaining culture was stored at 4°C until after screening by Sanger sequencing. 

 

2.5.10 Plasmid Extraction from Bacterial Cultures 

For plasmids to be used for transfections, large quantities of DNA are required. These plasmids 

were extracted from 50ml overnight cultures (as described in 2.5.8) using a QIAGEN Plasmid 

Maxi Kit (Qiagen - 12163), following the standard protocol. 

For plasmids undergoing multiple cloning steps during plasmid construction, only a small 

amount of DNA is required from successful colonies to progress to the next stage. For these 

colonies screened by colony PCR, the 50µl stock at 4°C (as described in 2.5.9) was added to 

10ml LB broth containing either 50µg/ml Kanamycin or 20µg/ml Ampicillin and shaken overnight 

at 37°C. Plasmids were then extracted using Wizard® Plus SV Minipreps DNA Purification 

System (Promega – A1330), using the centrifugation protocol. 

Concentrations were analysed by NanoDrop Spectrophotometer (NanoDrop 2000 or NanoDrop 

One). 

 

2.5.11 cDNA Conversion & Analysis 

1µg of RNA was converted to cDNA using either SuperScript™ II Reverse Transcriptase 

(Thermo Fisher Scientific - 18064014) or ProtoScript® First Strand cDNA Synthesis Kit (NEB – 

E6300S), following the recommended protocols for using poly(T) primers. Each sample was 

also run with a negative control tube lacking the Reverse Transcriptase enzyme (RT negative). 

For real-time PCR (rt-PCR) analysis, Power SYBR Green PCR Master Mix (Thermo Fisher 

Scientific - 4368702) was used, with a 50µl reaction mix containing 1µl sample cDNA, 0.5µl of 

each 20µM primer, 23µl nuclease free H2O and 25µl SYBR Green Master Mix. Reactions were 

run with β-actin as an endogenous control, and both H2O and RT negative samples as negative 

controls. Where possible, triplicate biological replicates were used, and each individual cDNA 

sample was run in duplicate as a technical replicate. 

Reactions were set up on MicroAmp® Fast Optical 96-Well Reaction Plates (Thermo Fisher 

Scientific - 4346906), and were run on an ABI 7900HT Real Time PCR System. The primers 

used for rtPCR analysis are shown in Appendix 4.  
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2.6 Cell Culture Conditions 

2.6.1 K562 Growth Conditions 

K562 is a human erythroleukaemic cell line, derived from a female chronic myelogenous 

leukaemia patient in 1970390. K562 cells were generously provided by Professor Thein’s 

laboratory. 

K562 cells were grown at a concentration of between 2x105 – 1x106 cells per ml or medium, 

roughly doubling each day, and splitting every 2-3 days. Cells were grown in RPMI 1640 

Medium (Thermo Fisher Scientific - 21875091) with 10% FBS (Thermo Fisher Scientific - 

10270106) and 1% Penicillin/Streptomycin (Thermo Fisher Scientific - 15140122), at 37°C with 

5% CO2. 

 

2.6.2 Freezing & Thawing 

Aliquots of 1x106 cells were frozen for storage in 1ml of freezing solution. Freezing solution 

consisted of 90% FBS (Thermo Fisher Scientific - 10270106) & 10% DMSO (Santa Cruz 

Biotechnology – sc-202581). Vials were then transferred to a Mr. Frosty™ Freezing Container 

(Thermo Fisher Scientific – 5100-0001) filled with Isopropanol, and incubated at -80°C for 1 – 3 

days, before being transferred to liquid nitrogen for long term storage. 

Frozen aliquots were thawed by warming rapidly in a 37°C water bath, and immediately diluting 

with 10ml pre-warmed growth media in a drop-wise manner. Cells were then centrifuged at 

1800rpm for 5 minutes, and the medium fully replace before plating. 

 

2.6.3 DNA & RNA Extractions 

DNA was extracted from K562 cell culture using a Qiagen DNeasy Blood & Tissue Kit (Qiagen - 

69504), ideally using >2x106 cells. In the case of cells that had been sorted by FACS, the 

number of cells was typically lower than this, and a Qiagen QiaAMP DNA Micro Kit (Qiagen - 

56304) was used. 

RNA was extracted using a Qiagen RNeasy Mini Kit (Qiagen - 74104), performing the optional 

DNase treatment step using RNase-Free DNase Set (Qiagen - 79254). Both DNA & RNA 

concentrations were assessed by either NanoDrop Spectrophotometer (NanoDrop 2000 or 

NanoDrop One) or by Qubit using Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific - 
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Q32854) and Qubit® RNA HS Assay Kit (Thermo Fisher Scientific - Q32852) for DNA and RNA 

respectively. 

 

2.6.4 Transfections 

Three different transfection techniques were tested, with varying success in terms of 

transfection efficiency. 

 

2.6.4.1 Lipofectamine 2000 

2x106 cells were seeded in a 6-well plate in 2ml growth medium (without antibiotics) and 

incubated overnight. Between 2-10µg plasmid DNA was mixed with 250µg RPMI 1640 (without 

antibiotics or FBS), in a separate tube 10µl Lipofectamine 2000 (Thermo Fisher Scientific - 

11668027) was mixed with 250µl RPMI 1640 (also without antibiotics or FBS). Mixtures were 

incubated at room temperature for 5 minutes, and then combined to make a transfection 

solution of 500µl, which was incubated at room temperature for 20 minutes. 

The transfection was then added to the cells in the 6-well plate, and then returned to the 

incubator. After 5 hours, cells were washed and replated in fresh growth medium, complete with 

both antibiotics and FBS. 

 

2.6.4.2 Calcium Phosphate  

Transfections were performed using the Calcium Phosphate Transfection Kit (Sigma-Aldrich - 

CAPHOS). 4x105 cells were seeded in a 6-well plate in 2ml of complete growth medium and 

incubated overnight. A full media change was then performed two hours before transfection. 

12µg plasmid DNA was added to 15µl 2.5M Calcium Chloride, and made up to 150µl with 

nuclease free water and mixed thoroughly by pipetting. 

150µl 2X HEPES buffered saline pH 7.05 was added to a separate tube, and the 150µl Calcium 

Chloride:DNA solution was added in a drop-wise manner, whilst the HEPES solution was gently 

agitated by passing air through it with a 1ml pipette. This transfection solution was then 

incubated at room temperature for 20 minutes, before being added to the cells in the 6-well 

plate and gently mixed. Plates were then returned to the incubator for 16 hours, after which cells 

were washed and replated in fresh growth medium. 

 



102 
 

2.6.4.3 Nucleofection 

Nucleofection was performed using Amaxa® Cell Line Nucleofector® Kit V (Lonza – VCA-

1003), and was run on a Nucleofector™ 2b Device (Lonza – AAB-1001). 

Cells were split 24 hours in advance of nucleofection, to ensure that they were in growth phase. 

1x106 cells were resuspended in 100µl Nucleofector® Solution, and 1-5µg plasmid DNA, 30µg 

ssODN or 30pmol siRNA were added either individually or in combination, in a maximum 

volume of 10µl (10% of Nucleofector® Solution). This reaction mix was immediately transferred 

to a cuvette, ensuring that the solution completely covered the gap between the metal plates, 

before placing in the nucleofector and running on programme T-016. 

Upon completion of the programme, 500µl of complete growth medium was added to the 

cuvette, and the cell suspension was immediately transferred to a 6-well plate, containing 

another 2ml of medium. 

 

2.6.5 Positive Selection for Plasmid Uptake & Clonal Expansion 

48 hours after transfection, cultures were sorted based on GFP expression by FACS. FACS 

was carried out on BD FACSAria™ cell sorters, as a service provided by the BRC Flow 

Cytometry Core Facility at Guy’s Hospital. Cells were sorted onto 96-well culture plates, with 

one cell per well in 200µl of complete culture medium, to allow clonal expansion of gene edited 

cell lines. 

From the seventh day after FACS, cultures were checked every two days, looking for signs of 

colony growth. Identified cultures were transferred to 6-well culture plates and grown until they 

reached a concentration of approximately 1x106 cells per ml, after which they were cultured 

under the standard K562 culture conditions described in 2.6.1, with DNA and RNA extracted as 

described in 2.6.3. 

Cells were screened for the SNPs of interest by Sanger sequencing following PCR amplification 

using the primers shown in Appendix 5. 
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 Results: Erythroid Progenitor Isolation 

3.1 In vitro Culturing of Erythroid Progenitors 

The rationale for this part of the thesis work was to use an in vitro culture system to develop 

erythroid progenitor cells from the peripheral blood of SCA patients, to allow us to isolate a late 

stage progenitor population prior to enucleation. This would allow investigation into DNA 

methylation and other epigenetic marks with important roles in gene regulation in these cells, 

conducting longitudinal studies to investigate how these marks are affected by different 

treatments, such as HU therapy.  

As discussed in 1.4.3, there are a variety of different in vitro culture techniques currently used 

for expansion and differentiation of erythroid cells from PBMCs in vitro. The technique outlined 

in 2.1.2 is based on a culture system that has been demonstrated to maximise the number of 

cells, and does not rely on the expensive pre-selection of CD34+ cells159. This technique was 

routinely used by Professor Thein’s laboratory group, and they had extensive experience using 

this culture system to grow cells from healthy donors. 

 

3.1.1 Healthy Donor Blood Culturing 

Initially, PBMCs were cultured from healthy blood donors. This approach was chosen because 

the erythroid precursors in the culture are particularly sensitive, and it was important to 

demonstrate that the culturing process was robust and reproducible before attempting to culture 

SCA blood samples collected from consenting patients in clinic.  

This was especially important since much smaller volumes of blood were available from the 

SCA patients than the 50ml that was routinely used for this culturing process. Since SCA is a 

haemolytic disorder, the volume of blood collected from patients in the clinic has to be 

minimised, and only between 9 – 27 ml was available for culturing, as dictated by the study 

protocol. It was anticipated that a reduced starting cell number would compromise the viability of 

the culture. 

During Phase 1 of the culture, the number of cells decreased rapidly as expected, with the 

majority of the cell populations that make up the PBMC layer undergoing cell death while the 

erythroid precursor population expanded. By P1D6, this resulted in a relatively pure cell culture 

with some monocyte contamination, 20% – 50% of the size of the initial PBMC sample (Figure 

3.1). 
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After the switch to Phase 2 at P1D6, the majority of cultures did not recover, and the cell count 

remained in decline, although some signs of differentiation were visible. Figure 3.1 shows 

growth curves of four of these cultures, only one of which was successfully expanded after 

entering Phase 2, yielding more cells than were plated at P1D0. As expected, successful 

cultures differentiated while expanding, resulting in a population that was relatively homogenous 

in terms of both cell lineage and developmental stage (Figure 3.2 & Figure 3.3). Isolation of this 

population would allow for much more sensitive analyses than is possible when working on the 

mixture of PBMCs that were initially isolated from the blood sample.  

 

Figure 3.1: Growth curves showing the progress of erythroid cultures from healthy blood PBMCs. A – 
Growth as total number of cells. B – Growth as a percentage of the starting cell number at P1D0. The 
black line at Day 6 indicates the transition from Phase 1 to Phase 2, and can be considered as both P1D6 
& P2D0. Of the four cultures, only Culture 4 successfully recovered and expanded after switching to phase 
2. Cultures 1-3 continued to experience large amounts of cell death, until being terminated early with only 
1-2 million cells remaining, less than 10% of the starting culture. 
 

Contrary to our expectations, the four cultures shown in Figure 3.1 are representative of the 

poor success rate that was experienced when culturing these cells, which appeared to vary both 

between individuals, as well as over time. Interestingly, the rate of reduction in cell number as 

erythroid precursors expand and other blood populations are lost during phase 1, seems to bear 

no indication as to the likelihood of success of the culture. In Figure 3.1, the successful culture 
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actually experienced the greatest reduction, down to roughly 20% of the initial starting 

population. 

It is worth noting that the cultures appeared to be sensitive to the age of the reagents used, and 

to SCF in particular. While this data was not recorded, cultures performed with freshly ordered 

SCF appeared to be healthier than those using aliquots a couple of months after delivery. This 

is despite the fact that these had been divided into small aliquots and stored at -20°C upon 

arrival, to minimise the number of freezing and thawing cycles that each aliquot experienced. It 

is not clear why this occurred, but it is thought that it may be the result of a faulty freezer, and 

that perhaps storage temperature was not as consistent as was expected. Upon noticing this 

effect, SCF aliquots were replaced more often, although the frequency at which new vials were 

ordered was limited by the fact that SCF is by far the most expensive reagent of the culture.  

The progress of each culture was assayed by cytospin daily throughout Phase 2, as shown in 

Figure 3.3. When cells reached the polychromatic erythroblast stage of development (typically 

around P2D7 - P2D10), CD71+GPA+ cells were isolated by FACS (Figure 3.2) in order to 

guarantee the purity of the population in terms of developmental stage. FACS also ensured 

removal of any monocyte populations that frequently persisted to this stage, and were the main 

source of contamination by non-target cells. 

Figure 3.2 shows flow cytometry data of a successful culture at P2D9 compared to freshly 

isolated PBMCs. Although some variation in cellular composition would be expected, since the 

samples are from two different individuals, it is clear that the cultured cells have been greatly 

enriched for CD71+ erythroid progenitors, and that the CD45+ leukocyte populations have been 

reduced. CD71 & GPA expression from these data can be used to assess the developmental 

stage, and while the majority of cells are still CD71+GPA-, some GPA expression is observed, 

and it would be expected that shortly after this the majority of cells would have entered the 

CD71+GPA+ stage, before starting to lose CD71 expression during the terminal stages of 

differentiation. 
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Figure 3.2: Flow Cytometry data from healthy PBMCs directly after isolation, compared to at P2D9 of a 
successful culture. Samples are from two separate healthy donors. A – Percentage of cells positive for 
each of the four cell surface markers: CD71, GPA, CD45 & cKit. CD71 & cKit are greatly enriched in the 
P2D9 cells compared to the PBMCs, increasing to 99.2% & 89.4% respectively. CD45+ cells are reduced 
to 26.6% in the cultured sample, making up 98.3% of the PBMCs.  B – CD71 & CD45 plots. CD45 & CD71 
are co-expressed be some cell populations in both samples, although the majority of cells express either 
CD71 or CD45. C – GPA & CD45 plots. There is no overlap in expression of GPA & CD45 in either 
sample, as is expected given the specificity of GPA as a late stage erythroid marker. D – CD71 & GPA 
plots. Two distinct but faint GPA+ populations are present in the PBMC sample; CD71+ and CD71-. Loss of 
CD71 expression marks the transition to a later stage of erythroid progenitor development. In the cultured 
sample, only the CD71+ population is observed. E – Effect of FACS filtering gates on CD71 & GPA plot of 
P2D9 cultured cells. Red, blue & magenta represent CD45+, c-Kit+ and CD45-c-Kit- cells respectively. The 
position of the CD45-c-Kit- population shows that the culture is differentiating, as the CD71+ cells start to 
express GPA. 
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Interestingly, c-Kit also seems to be enriched in the cultured cells. c-Kit is typically a marker of 

early stage erythroid development, with a key role HSC self-renewal and quiescence, and 

expression is lost during erythroid maturation160,391–393. It is likely that this is an artefact of the 

culture system, since persistent expression of c-Kit has previously been associated with stress 

erythropoiesis, and has been observed both in vivo and in vitro159,394. If the biological activity of 

the SCF in the culture was in fact impaired, as was mentioned previously, this could also 

partially explain the increase of c-Kit in the cell surface, since SCF is the ligand for the c-Kit 

receptor. 

The negative filtering of CD45 & c-Kit expressing cells is shown in Figure 3.2, demonstrating 

that the selection of CD45-c-Kit-CD71+GPA+ cells by FACS allows isolation of a homogenous 

population, and provides data for accurate developmental staging of the progenitors isolated. 

Figure 3.3 shows the successful culture of erythroid progenitor cells. Two waves of 

differentiation are observed, the first occurring shortly after transition into phase 2, where a 

population of basophilic erythroblasts appears and is subsequently lost. The second wave of 

differentiation comes from a population of pro-erythroblasts that is maintained during the 

development of the first wave. This second wave of differentiation progresses further through 

the developmental pathway, and is responsible for the increase in cell numbers observed during 

the latter stages of the culture. It is thought that the early wave of differentiation is triggered by 

the increased concentration of pro-erythroblasts accumulated towards the end of Phase 1, in 

the absence of later stage erythroblasts. Mechanisms to address any imbalance between early 

and late stage erythroblasts would be expected as a normal part of erythropoietic homeostasis 

in vivo. 

While it was shown that nucleated erythroid progenitors could be isolated from successful in 

vitro culture of healthy blood, the success rate of these cultures survival after transition to phase 

2 was very low. 
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Figure 3.3: Photographs of cytospins showing in vitro culture of a healthy donor PBMC sample. Slides 
were stained with eosin & methylene blue. All photographs were taken at 40x magnification. The scale bar 
shown in P1D3 represents 50μm, and is the same for all photographs. A – Pro-erythroblasts, tightly 
packaged cells with no visible cytoplasm. B – Early basophilic erythroblasts, larger than pro-erythroblasts, 
cytoplasm can be seen to be expanding away from the nucleus. C – Late basophilic erythroblasts, much 
more of the cytoplasm is visible compared to early basophilic cells. D – White blood cell populations, 
distinguishable from erythroid progenitors by lack of staining around the cell membrane. E – Macrophage 
cell. F – Polychromatic erythroblasts, nucleus stains lighter, and cytoplasm appears larger, with more white 
space. G – Orthochromatic erythroblasts, nucleus is more condensed, and cytoplasm is smaller, as cells 
prepare for enucleation. An early wave of basophilic erythroblasts can be seen to appear at P2D2, and is 
lost by P2D4. Subsequently the proerythroblast population that persists at this stage starts differentiating 
and progresses through the erythroid developmental stages until the orthochromatic stage at P2D10.   
 

3.1.2 SCA Patient Blood Culturing 

The survival rate of erythroid progenitor cultures from healthy blood donors was unreliable, and 

sensitive to a variety of external factors. SCA patients experience increased stress 

erythropoiesis, with more early stage erythroid progenitor cells released into the peripheral 

blood. Therefore, it was thought that cells isolated from SCA blood samples might be more 

stable under culture conditions than blood from healthy donors. To test this, the technique was 

carried out on SCA (HbSS) patient peripheral blood. 
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Figure 3.4: Growth curves showing the progress of erythroid cultures from SCA HbSS blood PBMCs. A – 
Growth as total number of cells. B – Growth as a percentage of the starting cell number at P1D0. The 
black line at Day 6 indicates the transition from Phase 1 to Phase 2, and can be considered as both P1D6 
& P2D0. Only Patient Culture 3 successfully recovered after entering Phase 2, and this recovery was 
delayed, with growth not occurring until P2D4. Patient Culture 2 expanded early during Phase 1, dropping 
to 77% of the starting culture at P1D1, before steadily recovering to 91% at P1D3, and then dropping to 
39% by P1D4. Note that Patient Culture 1 was divided and cultured as three separate sub-cultures, under 
the same conditions. 
 

Survival rates of cells isolated from SCA (HbSS) patient blood were found to be just as 

unpredictable as healthy blood. Figure 3.4 shows growth curves for three patient blood sample 

cultures, and like the healthy blood samples shown in Figure 3.1, two out of the three cultures 

did not recover after entering Phase 2. 
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Figure 3.5: Growth curves showing the variability of erythroid cultures from SCA HbSS blood PBMCs. 
Patient Culture 1 from Figure 3.4 was divided into three sub-cultures at P1D0, and cultured concurrently in 
triplicate. A – Growth as a percentage of the starting cell number at P1D0. B – Mean of the growth curves 
shown in A, with error bars representing standard error. C – Mean of the growth curves shown in Figure 
3.4.  The black line at Day 6 indicates the transition from Phase 1 to Phase 2, and can be considered as 
both P1D6 & P2D0. The variation observed in the growth of the sub-cultures is very low, and much greater 
variation is observed between the cultures from different patients, cultured at different times. 

A 

 
B 

 
C 
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In order to investigate the issue of reproducibility, the sample from Patient 1 in Figure 3.4, was 

divided into three sub-cultures at P1D0, and these were grown separately throughout the time 

course of the culture, the results of this are shown in Figure 3.5. The variation between the 

three cultures isolated from the same individual and grown concurrently show much less 

variation than is observed between the three separate HbSS patients cultured at different times. 

This difference in variation was to be expected during Phase 2, given that one of the samples 

eventually recovered, whilst the other two failed. More surprising was the difference in variation 

observed during Phase 1, with the triplicate cultures reducing in number at almost exactly the 

same rate. This suggests that rather than the non-erythroid lineages undergoing random cell 

death, the specific cellular composition of the PBMC sample and the cytokines produced by 

these cells determines a highly reproducible rate of decline. 

 

Figure 3.6: Photographs taken of PBMC layers, visible after density separation with Histopaque® - 1077. A 
– Comparison of HbSS & Healthy blood samples, arrows indicate PBMC layer. In HbSS patient blood 
samples, this layer appears red. B – Three additional HbSS samples. Variation in the thickness and the 
intensity of this red layer varies between patients. 
 

Interestingly, the patient samples did behave differently under culture conditions compared to 

healthy donor blood. There is an additional population of cells that appears to be present in the 

HbSS blood samples, but not in healthy blood. These are believed to be a late stage erythroid 

population, present in the peripheral blood as the product of stress erythropoiesis. This 

population was quite unpredictable, and was maintained throughout phase 1, alongside the 
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erythroid precursors, while the other blood cells were lost. In Culture 2 of Figure 3.4 this 

nucleated red cell population appeared to expand rapidly during phase 1, and may be the cause 

of the growth in cell number observed at a stage when the culture was expected to reduce.  

The presence of these cells was clearly visible after the separation of the Buffy Coat (Figure 

3.6), with the PBMC layer appearing bright red, or with red layers rather than the white colour 

that is usually observed when processing healthy blood samples. The size and intensity of this 

red layer appears to vary between patients, and if these cells are a product of stress 

erythropoiesis occurring in the peripheral blood, then it would be expected that the presence of 

this population would be influenced by the severity of the SCA phenotype in each individual. 

This variation is observed in Figure 3.7, where blood from the milder HBSC genotype appears 

indistinguishable from a healthy blood sample. 

Figure 3.7 shows the comparison between two patient samples, an HbSS genotype patient and 

a patient with the HbSC genotype, resulting in a milder form of the disease (discussed in 

1.2.3.2). The flow cytometry analysis of the PBMC layer in the HbSS patient shows the 

presence of a large cell population that is available directly from peripheral blood and does not 

require in vitro culturing. Since this population is only present in the HbSS patient sample, it is 

thought to be the cell population that is visible as the red layer in HbSS PBMCs. 

 

 

Figure 3.7: Comparison of PBMCs from an HbSC patient and an HbSS patient. A – Photograph of PBMC 
layers after density separation. The PBMC layer from the less severe HbSC patient does not have the red 
layer that is observed in HbSS patients, and is indistinguishable from a healthy PBMC layer (Figure 3.6).  
B – Flow Cytometry plots showing CD71 & GPA expression of the PBMC samples shown in A. The 
CD71+GPA+ cell population is present in both samples, but is more abundant in the HbSS PBMCs, making 
up 25.0% of cells, as opposed to 1.2% in HbSC. Both samples also have a high proportion of later stage 
CD71-GPA+ cells, 24.1% and 20.0% for HbSS & HbSC respectively. 
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3.2 FACS Isolation of Progenitors Directly from PBMCs 

Due to the unreliability of the in vitro culture method for erythroid progenitor expansion, and the 

discovery of an erythroid progenitor population present in HbSS peripheral blood, sorting 

directly from PBMCs by FACS was tested. 

 

3.2.1 FACS of Patient Blood Samples 

Due to the logistics of collecting the sample from the clinic, and the FACS service only being 

available during working hours, PBMCs were not sorted directly after isolation from peripheral 

blood, but were kept in culture overnight, and sorted the following day at P1D1. It was thought 

that with such a short exposure to culture conditions, any influence on DNA methylation or 

transcription would be minimal, and any cell death induced in the immune cells would be 

beneficial, increasing the efficiency of the FACS process.  

 

 

Figure 3.8: Flow cytometry analysis of three HbSS PBMC samples after <24 hours in culture. A – Numbers 
of CD71+GPA+ & CD71-GPA+ cells as a percentage of total PBMC layer, compared to a healthy PBMC 
sample. Levels of both populations vary between SCA patients, but are much higher than in the healthy 
blood sample. B – Flow cytometry plots of CD71 and GPA, after removal of CD45 and c-Kit, demonstrating 
the FACS gating used to collect each cell population. Magenta, maroon and blue represent CD45-CD14-, 
CD71+GPA+ & CD71-GPA+ cells respectively. 
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Figure 3.8 shows the flow cytometry analysis of cells collected from three HbSS patients. While 

the proportion of CD71+GPA+ & CD71-GPA+ cells varies between the HbSS samples, it is again 

clear that the CD71+GPA+ populations are specific to HbSS samples. Sufficient numbers of cells 

were acquired from the FACS process, with the CD71+GPA+ output reliably reaching more than 

1x106 cells. Given that only 500ng of DNA is required for the Infinium® HumanMethylation450 

BeadChip to assay for genome-wide DNA methylation395, and between 0.1-4.0μg of RNA is 

recommended for TruSeq Stranded mRNA Library Prep Kit for RNA-seq396, these cell numbers 

were much higher than required. 

 

3.2.2 DNA & RNA Extractions 

Initially, it was intended that CD71+GPA+ cells would be stored in TRIzol Reagent at -80°C after 

isolation by FACS, with the aim of performing all DNA and RNA extractions in parallel after all 

the samples had been collected, so as to minimise variation. DNA & RNA extraction was tested 

for Sample 1 in Table 3.1, after storage in TRIzol for two months, and negligible amounts of 

both were obtained. Given that 6.5x106 cells were originally collected, this was unexpected. For 

samples 2 & 3, cells were instead extracted immediately after sorting, using the Qiagen AllPrep 

Kit. Samples isolated immediately after extraction yielded measurable amounts of DNA & RNA, 

despite having less than half the input of Sample 1. 

 Sample 1 Sample 2 Sample 3 
Cell number 6.5 x 106 3.1 x 106 2.8 x 106 

Extraction Method TRIzol Q-All Q-All 
RNA Concentration (ng/µl) <5.0 11.2 13.0 
DNA Concentration (ng/µl) <0.2 4.5 <0.2 

RNA Total Yield (µg) <0.15 0.34 0.39 
DNA Total Yield (µg) <0.02 0.45 <0.02 

 
Table 3.1: Three HbSS PBMC samples sorted on P1D1 by FACS. Q-All – Qiagen AllPrep 
DNA/RNA/Protein Mini Kit. Table shows the number of sorted cells, the method used to extract DNA & 
RNA, and the concentrations as assayed by Qubit. Sample 1 stored in TRIzol yielded negligible amounts 
of DNA & RNA, despite having the highest input cell number. DNA was also very low in samples 2 & 3. 
 

While the extracted RNA is within the recommended range for RNAseq, the DNA fell below the 

0.5μg recommended for the DNA Methylation array. While Sample 2 was close to this 

boundary, and may have still been successfully assayed, Sample 3 had negligible amounts of 

DNA. Most concerning was the fact that both the DNA & RNA were far below the yields 

expected. 1 x 106 cells from cell lines typically yield >5μg and >10μg for DNA & RNA 

respectively397, and although cell lines have different properties, and extractions typically have 
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higher yields than from primary tissue samples, this does not account for roughly 30 fold and 80 

fold disparities for DNA & RNA concentrations respectively. 

During the sample processing, after centrifugation of the samples post-FACS, it was observed 

that the cell pellets appeared smaller than expected for the given cell number. This, in 

combination with the low DNA & RNA yields, led to the conclusion that the majority of cells were 

not surviving the cell sorting process. FACS requires forcing cells through capillaries at high 

pressure, and dropping them into a collection tube one cell at a time. Both of these stages can 

lead to rupturing of the cell, and it is possible that the erythroid progenitors are too sensitive for 

this process to be used efficiently, even when run at the lowest pressure available on the FACS 

machine398. 

While it has been demonstrated in the literature that FACS can be used to isolate erythroid 

progenitors, for the most part this has been demonstrated in bone marrow or cord blood 

samples, which have a higher concentration of these progenitor cells125,131. A study that 

successfully isolated erythroid progenitors by FACS targeted cells at earlier stages (BFU & 

CFU, which are both CD45+) and enriched the samples for CD45+ cells using magnetic beads 

prior to sorting. They also observed that the cells isolated from peripheral blood had reduced 

ability to form colonies compared to those from cord blood174. 
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3.3 Miltenyi BeadKit Isolation of CD71+GPA+ Progenitors from 

PBMCs 

Due to the harsh conditions and high rate of cell death associated with FACS, isolation by 

Miltenyi BeadKit was tested. This technique relies on antibody-magnetic bead conjugates, and 

while it does not have the same specificity as FACS, where the sorting process occurs after 

analysis of each cell and so 100% purity is expected, it is a more gentle isolation process. 

Isolation of erythroid progenitors using the magnetic bead separation technique had previously 

been demonstrated by Walker et al.245. 

 

3.3.1 Enrichment for CD71+ Cells 

 

Figure 3.9: Flow Cytometry data from CD71 BeadKit enrichment of three HbSS patient PBMCs. Both the 
CD71+ fraction (orange) and the CD71- fraction (grey) were analysed. A – CD71 staining. CD71 is 
successfully enriched in the CD71+ fraction with a purity of 88.0 – 99.3%. B – CD45 staining. The CD45+ 
cells that make up the majority of PBMCs are successfully reduced in the CD71+ fraction, to <4% in HbSS 
1 & 2, but only to 34.3% in HbSS 3. C – GPA staining.  Similarly to CD71, GPA is successfully enriched in 
the CD71+ fraction, to >96% in HbSS 1 & 2, but only 65.3% in HbSS 3. 
 
Figure 3.9 shows successful enrichment for CD71+ cells by Miltenyi BeadKit for three HbSS 

patient samples. The purity of the CD71+ fraction was high for all samples, varying between 88 

- 99%. The GPA+ & CD45+ cells were enriched and depleted respectively, and interestingly 

these cell populations appear to be complementary to each other in the CD71+ fraction. This 

suggests that two distinct erythroid progenitor populations are being isolated, the CD71+GPA+, 

as well as the CD45+CD71+. The CD45+CD71+ population represents an earlier stage of 

erythroid development, since CD45 is expressed on HSCs and is lost shortly after erythroid 

lineage determination399, which was confirmed by the absence of co-expression with GPA, since 

CD45 is lost from the cell surface significantly in advance of GPA expression, although co-

expression has been observed under some in vitro culture conditions169. 

While this CD45+CD71+ population appears to be low in HbSS 1 & 2 (<4%) it was much higher 

in HbSS 3 (34.3%), significantly reducing the homogeneity of the sample. These early stage 

progenitors had been observed previously, both in the cultured cells and PBMCs (Figure 3.2). In 
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these cases, the presence of the CD45+CD71+ cells was not a concern, since the FACS 

selection process included negative selection for CD45. It was therefore decided to use a CD45 

Miltenyi BeadKit as a depletion step prior to enrichment for CD71. 

 

3.3.2 CD45 Depletion Prior to Enrichment for CD71+ Cells  

Figure 3.10 shows successful depletion of CD45+ cells from the CD71+ fraction, and suggests 

that a reasonably reliable process for isolating the CD71+GPA+ cell fraction has been achieved. 

These results also stress the importance of testing purity of the isolated cell population from 

each sample by flow cytometry, since the failed enrichment of sample HbSS 7 would otherwise 

have gone unnoticed. Errors in the isolation process result in a completely different cellular 

composition of the enriched sample, and if these samples are not identified and removed from 

the study, they would identify cell-type specific differences in DNA methylation and transcription, 

as opposed to differences caused by drug treatment. 

CD71+ cells were more abundant in the CD45+ fraction than the CD71- fraction, this is likely 

due to the CD45+CD71+ cells that were observed in the CD71+ fractions in Figure 3.9, that are 

now being successfully removed by the CD45 depletion step. 

Sample HbSS 9 in Figure 3.10 was from a SCA patient being treated with HU. There were 

concerns that if these erythroid progenitors were present in the peripheral blood as a result of 

the clinical severity of SCA, then it might be expected that this population would disappear in 

patients undergoing treatment. There is no apparent variation in cell surface markers, and 3.7 

million CD71+GPA+ cells were collected (Table 3.2), more than in most of the untreated 

samples. Although this is only one sample, an increase rather than a decrease in CD71+GPA+ 

cells may be expected in patients undergoing HU therapy, since HU has been linked to 

increased stress erythropoiesis44,400. 
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Figure 3.10: Flow cytometry data from CD71 enrichment of nine HbSS patient PBMCs, following CD45 
depletion. A – Flow diagram illustrating the process of isolating the different cell fractions. The CD71+ 
fraction (orange), the CD71- fraction (grey) and the CD45+ fraction (blue) were analysed. Sample HbSS 9 
was from a patient undergoing HU therapy. Percentage of cells stained in each fraction is shown for B – 
CD45, C – CD71 and D – GPA. Processing of sample HbSS 7 appears to have failed, with the CD71+ 
fraction containing only 31.6% CD71+, 74.0% CD45+ & 13.8% GPA+ cells. Apart from HbSS 7, significant 
CD71 enrichment is observed in the CD71+ fraction for all samples, to between 80 – 99% purity. CD45 
staining shows very low levels of CD45+ cells in the CD71+ fraction, of between 0.1 – 9.4% (excluding 
HbSS 7). GPA staining confirms that the cells isolated in the CD71+ and CD71- fractions are the 
CD71+GPA+ and CD71-GPA+ cell populations respectively. E – Total cell counts of the CD71+ fraction 
from each sample, as estimated by haemocytometer counting. The total number of CD71+GPA+ cells 
isolated varied significantly between samples. 
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3.3.3 DNA & RNA Extractions 

 HbSS 1 HbSS 2 HbSS 3 HbSS 4 HbSS 5 HbSS 6 HbSS 7 HbSS 8 HbSS 9 

Cell number 1.0 x 106 1.4 x 106 0.3 x 106 0.5 x 106 1.7 x 106 1.2 x 106 0.5 x 106 10.0 x 
106 

3.7 x 
106 

Extraction Q-All Q-All Q-All Q-All Q-All Q-All Q-All Q-All Q-Pure 

RNA (ng/µl) <5.0 166.0 11.1 45.6 92.4 17.4 <5.0 >2000.0 DNA 
Only 

DNA (ng/µl) <0.2 0.2 <0.2 <0.2 <0.2 0.9 2.3 0.8 <0.2 
RNA Yield 

(µg) <0.15 4.98 0.33 1.37 2.77 0.52 <0.15 >60.0 DNA 
Only 

DNA Yield 
(µg) <0.02 0.02 <0.02 <0.02 <0.02 0.09 0.23 0.08 <0.02 

 
Table 3.2: Summary DNA & RNA extractions of the nine HbSS PBMC samples from Figure 3.10. Q-All – 
Qiagen AllPrep DNA/RNA/Protein Mini Kit. Q-Pure – Qiagen Puregene Blood Core Kit A. Table shows the 
number of sorted cells, the method used to extract DNA & RNA, and the concentrations as assayed by 
Qubit. <5.0 & <0.2 represent the lower limits of Qubit detection for RNA & DNA respectively, while >2000.0 
represents the upper limit of RNA detection. RNA extraction was generally successful, and for sample 
HbSS 8, yielded more than was measureable by Qubit. Both DNA & RNA extraction failed for sample 1, 
and RNA extraction failed for HbSS 7. DNA extraction was unsuccessful, even in sample HbSS 8, with an 
input of 10.0 x 106 cells, which yielded >60.0µg of RNA. For HbSS 9, an alternative DNA extraction 
technique was tested with the entire sample of isolated cells, and was also unsuccessful. 
 

Table 3.2 shows the total DNA and RNA isolated from the samples shown in Figure 3.10. RNA 

yields from the samples isolated by Miltenyi BeadKit was improved compared to the samples 

isolated using FACS, and larger cell pellets were observed after isolation, despite having a 

lower cell number. This suggests that less cell death is occurring during the isolation process, 

as is expected when avoiding the harsh conditions of FACS398. 

However, the DNA yield was very low, even in the sample that yielded >60µg RNA. The highest 

DNA output from the nine samples was only 230ng, roughly half of the recommended input for 

the DNA methylation analysis395. This came from sample HbSS 7, which had a high 

contamination of CD45+ cells (Figure 3.10). 

For HbSS 9, an alternative DNA extraction kit was tested (Qiagen Puregene Blood Core Kit A), 

this was used in Walker et al. for erythroid progenitor isolation, where they obtained sufficient 

DNA for locus specific bisulphite-sequencing to assess DNA methylation state. This was also 

unsuccessful, despite using the entire isolated sample as input for the DNA extraction, with no 

RNA extraction being performed. 

 

3.3.4 Cytology: CD71+GPA+ Cells in HbSS Patients Are Enucleated 

Due to the extremely low DNA yield from these cells, cytospins were prepared of the three 

fractions of an HbSS sample isolated by Miltenyi BeadKit, to allow visual identification of the 

stage of erythroid development, and to confirm that the cells were nucleated. These cytospins 

are shown in Figure 3.11, and demonstrate that the CD71+ cells being isolated are at a later 
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stage of development than anticipated, and mostly consist of enucleated reticulocytes. This 

explains the imbalance in yield between the RNA & DNA extractions performed on these 

fractions. 
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Figure 3.11: Photographs of cytospins taken from the three fractions of an HbSS patient blood sample 
isolated by Miltenyi BeadKit (CD45+, CD71- & CD71+). Slides were stained with eosin & methylene blue. 
Photographs were taken at 40x magnification, and scale bars represent 50μm. A – Red blood cell 
contamination in the CD45+ fraction. B – Nucleated CD45+ cells, nucleus stains as dark purple. C & D – 
Light purple staining indicates cytoplasm, but these cells are lacking a nucleus. E – Enucleated red cells. F 
– Sickling red cells. The CD45+ fraction mostly consists of nucleated PBMCs, with some red cell 
contamination. The CD71- fraction is densely packed with erythrocytes. The CD71+ fraction consists 
mostly of enucleated reticulocytes, staining slightly darker than in the other fractions. CD71+ & CD71- also 
contain larger enucleated cells, possibly post enucleation but prior to the reduction in volume that 
accompanies reticulocyte maturation401.  
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3.4 Miltenyi BeadKit Isolation of Early Stage Progenitors from 

PBMCs 

It is clear that the CD71+GPA+ cells isolated from peripheral blood have advanced to a later 

developmental stage than was anticipated, and in order to investigate epigenetic markers in the 

erythroid lineage, cells must be isolated at an earlier stage. It was therefore decided to attempt 

to isolate CD34+ cells from peripheral blood, as has been successfully shown in the literature, 

and is routinely used to provide a pure erythroid precursor population for some of the in vitro 

culturing techniques150,157,158,175. CD34+ progenitors are at an earlier stage of haematopoietic 

development, and would almost certainly be nucleated399. 

 

3.4.1 Enrichment for CD34+ Cells 

CD34+ cells were isolated from peripheral blood by Miltenyi BeadKit, the same technique used 

to isolate CD45-CD71+ cells. Figure 3.12 shows CD34+ cells from an HbSS patient that were 

successfully enriched to 97% in the CD34+ fraction. Similar to the CD71+ fractions isolated 

previously (3.3.1), there appear to be two distinct CD34+ populations present, expressing either 

CD45 or GPA. As was observed previously, there was very little co-expression of GPA and 

CD45, which is expected given that CD45 expression is lost after the HSC stage in the erythroid 

lineage, and that GPA is a late stage erythroid developmental marker399,402. Interestingly, Figure 

3.12C shows that CD34+ isolation appears to enrich for the CD34+CD45+ subpopulation rather 

than CD34+GPA+, possibly due to higher cell surface expression of CD34 on these cells, 

inferred by the difference in CD34 staining intensity. 

 

 



123 
 

 

Figure 3.12: Flow Cytometry data from both fractions of an HbSS patient blood sample as isolated by 
BeadKit (CD34- & CD34+). A – Percentage of cells positive for each of the three cell surface markers: 
CD34, CD45 & GPA, as well as co-expression of each pair. CD34+ enrichment was successful with 97.8% 
purity in the CD34+ fraction, compared to 27.4% in the CD34- fraction. B – Composition of CD34+ 
population from both fractions. C – Graphs showing co-expression of the cell surface markers. Pink 
indicates CD34+CD45+ cells, as defined by gate Q2. Results indicate two distinct cell populations within 
the CD34+ cells, with roughly 99% expressing either GPA or CD45, but <1% expressing both.  
 

  

3.4.2 Cytology 

Figure 3.13 shows cytospins of the CD34+ and CD34- fractions of an HbSS sample. Successful 

isolation of nucleated CD34+ cells can be seen, and it is anticipated that these are the 

CD34+CD45+ cells and that the CD34+GPA+ cells are enucleated. 
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Figure 3.13: Photographs of cytospins taken from both fractions of an HbSS patient blood sample as 
isolated by BeadKit (CD34- & CD34+). Slides were stained with eosin & methylene blue. Photographs 
were taken at 40x magnification, and scale bars represent 50μm. A – Red blood cell contamination in the 
CD34- fraction. B – Nucleated CD34+ cells. As expected the CD34- fraction contains the majority of the 
PBMC sample. The CD34+ fraction is less densely packed, and contains some debris and dead cells, as 
well as some cells lacking a nucleus. Nucleated CD34+ cells are also visible. 
 

3.4.3 DNA & RNA Extractions 

Very low cell numbers were isolated in the CD34+ fraction of these samples, fewer than could 

be counted accurately by haemocytometer. Even when resuspended in 500µl of PBS, only one 

or two cells were visible in the counting chamber, suggesting that the cell number was in the 

order of 1x104. 

In order to obtain the results shown in Figure 3.12 and Figure 3.13, an entire sample was used 

for either flow cytometry or cytospin respectively. Even when a whole sample was used for DNA 

or RNA extraction, these extractions failed, falling below the threshold able to be detected by 

Qubit. 
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3.5 Miltenyi BeadKit Isolation of GPA-CD71+ Erythroid Progenitors 

Since the number of CD34+ cells in circulation was found to be prohibitively low, another early 

stage population was investigated. Since the GPA+CD71+ cells were found to be enucleated, it 

was decided to deplete GPA+ cells, prior to a CD71+ selection, with the aim of isolating GPA-

CD71+ erythroid progenitors, which while less abundant would be expected to be nucleated. 

The flow cytometry analyses of the populations isolated by GPA depletion and CD71 

enrichment are shown in Figure 3.14. 

GPA+ cells were successfully removed from the sample, making up 89.0% of the GPA+ fraction, 

but only 0.4% and 1.7% of the GPA-CD71- and GPA-CD71+ fractions respectively. As had 

been observed previously, CD71+ cells also expressed either CD45 or GPA, but minimal co-

expression of CD45 & GPA was observed. As a result of this, almost all of the CD71+ cells in 

the GPA- fractions also expressed CD45, making the target cell population CD45+CD71+GPA- 

erythroid progenitors, which made up between 79.7-88.7% of the GPA-CD71+ fraction. 

While CD71 enrichment was successful, increasing the CD71+ population in the GPA-CD71+ 

fraction to 84.9%, it appears as though a large number of CD45+CD71+ cells did not bind the 

column, and made up an average of 57.9% of cells in the GPA-CD71- fraction, rising to as high 

as 79.8% for Sample 3. It is unclear what caused this, since given the low cell numbers involved 

it is unlikely that the column was saturated.  

It is possible that CD71 is expressed at low levels on the cells in the GPA-CD71- fraction, which 

could be due to their being at an earlier stage of development. CD71LOW cells may not have 

reached the magnetic bead binding threshold for effective enrichment, but might still have been 

detectable by flow cytometry. 

While there is some observable variation in the intensity of the CD71 staining between the two 

GPA- fractions, it is not clear whether this would be sufficient to account for different binding 

affinities to the column (Figure 3.15). Interestingly, two distinct CD45+ populations with different 

CD45 staining intensities are observed in both the GPA-CD71- and GPA-CD71+ fractions. 

CD71 expression does not appear to be specifically associated with either CD45HIGH or 

CD45LOW in either fraction, but higher intensity of CD71 expression does appear to be more 

prevalent on cells with higher levels of CD45. Neither cell population stained positive for GPA. 
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It has also been suggested that the retention of a significant population of CD71 expressing 

cells in the CD71- fractions may be due to the fact that a different antibody was used for the 

flow cytometric analysis than that used for the purification. The two different antibody clones 

recognise different epitopes, and since CD71 is glycosylated, it is possible that the specificity for 

CD71 glycosylation variants is not the same for the two antibodies403. This could lead to specific 

isoforms of CD71 identified in the flow cytometric analysis not being bound to the column during 

the purification step, which would explain the observed results. This could be tested by using 

alternative antibodies for the flow cytometric analyses, however it is not advisable to use the 

same antibody for the two different experiments, since if binding sites are saturated during the 

purification process, then the fluorescent antibody could be blocked from binding, and cells will 

appear to be CD71 negative. 
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Figure 3.14: Flow cytometry analyses of the three fractions (GPA+, GPA-CD71- & GPA-CD71+) isolated 
from three HBSS patient samples by GPA depletion and subsequent CD71 enrichment. Sample 2 was 
receiving HU treatment. A – Mean percentage of cells positive for GPA, CD45 & CD71. Error bars 
represent standard error. GPA+ cells were successfully depleted, making up 89.0% of the GPA+ fraction 
and 0.4% and 1.7% of the GPA- fractions. CD71+ cells were high in both the CD71- and CD71+ fractions, 
although higher in the enriched fraction, at 84.9%. B, C & D show individual expression as well as co-
expression of markers for cells in each of the three fractions: B – GPA+. C – GPA-CD71-. D – GPA-
CD71+. CD45+ cells made almost all of the GPA- fractions, and as was observed previously, very little co-
expression of GPA and CD45 was observed. CD71+ cells made up 84.9% of the GPA-CD71+ fraction, with 
83.5% co-expressing CD45. 
 

Approximately 400ng of DNA was extracted from the GPA-CD71+ fractions of each of the three 

samples tested (Figure 3.15). While this is still below the 500ng recommended for genome-wide 
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DNA methylation analysis using the Infinium Infinium® HumanMethylation450 BeadChip, it is a 

much higher yield than was obtained using any of the other techniques, and would hopefully be 

sufficient to generate informative data on patterns of DNA methylation in these cells395. 

 

Figure 3.15: Analysis of samples after depletion of GPA+ cells and enrichment for CD71+ cells. A – Flow 
cytometry plots for CD71 and CD45, comparing the GPA-CD71- and GPA-CD71+ fractions for all three 
samples tested. Intensity of CD71 is higher for some cells in the fraction enriched for CD71. Two distinct 
CD45+CD71+ populations are visible, distinguishable by high or low CD45 expression. B – Table 
summarising the DNA extracted from the GPA-CD71+ fractions of the three samples. Q-Micro – Qiagen 
QiaAMP DNA Micro Kit. Very low cell numbers were isolated, but total DNA yield is in the region of 400ng 
for all three samples, just below the 500ng recommended for DNA methylation analysis395. 
 

  

A 

 
B 

 Sample 1 Sample 2 Sample 3 
Cell number 150,000 200,000 60,000 

Extraction Method Q-Micro Q-Micro Q-Micro 
DNA Concentration (ng/µl) 8.28 8.50 8.56 

DNA Total Yield (μg) 0.41 0.43 0.43 
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3.6 Summary of Erythroid Progenitor Isolation Results 

The identification of a non-invasive technique that allows reliable and reproducible study of 

erythroblasts from the peripheral blood of SCA patients will be highly valuable, and will allow 

longitudinal studies of patients undergoing treatment. This will be especially useful for 

investigation into the mechanism of action of HU, and how response varies between patients. 

As was described in 1.5.4, the mechanism by which HU results in the upregulation of HbF in 

SCA patients is not fully understood, but appears to involve targeted regulatory changes in key 

erythroid transcription factors, such as MYB, BCL11A, KLF1 and TAL1, rather than merely as a 

result of increased stress erythropoiesis in response to the cytotoxic effect of the 

drug81,239,240,246,247.  

Since this change in HbF levels has also been observed in response to treatment with 5-

azacytidine, a potent inhibitor of DNA methylation which also has cytotoxic effects, we 

hypothesised that there could be a role for epigenetic regulation, and specifically DNA 

methylation in the mechanism of action of HU254,256.  

The importance of DNA methylation at the γ-globin promoter in the silencing of γ-globin is well 

established, and therefore presents itself as an obvious target for DNA demethylation70,101,102,104. 

This has previously been investigated by Walker et al. who found that HbF induction in 

response to HU was not accompanied by hypomethylation at the γ-globin promoter245. However, 

the absence of changes in DNA methylation at one promoter is not sufficient to rule out the 

possibility of it playing an important role in another part of the complex regulatory pathway. We 

hypothesise that performing genome-wide methylation analysis as part of a longitudinal study in 

SCA patients undergoing HU therapy will provide important insight into the global epigenetic 

changes that occur, and when coupled with RNA-seq will inform on specific regulatory changes 

that may be causing the observed increase in HbF expression. 

However, the results presented in this chapter demonstrate that using the in vitro culturing 

technique as we initially proposed, we were unable to reliably obtain an erythroid progenitor 

population for analysis in longitudinal studies. As a result of this, we were unable to investigate 

the effect that HU treatment has on the epigenome of SCA patients. The combined unreliability 

of the culture technique along with the difficulty in obtaining longitudinal blood samples from 

patients on HU meant that this approach would not have provided sufficient data points for a 
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statistically reliable study. Therefore we took the decision to change tack at this point in the 

research plan. 

We demonstrated that a CD71+GPA+ cell population exclusive to the peripheral blood of SCA 

patients, that we had thought represented late stage nucleated progenitors, actually 

represented enucleated reticulocytes, presumably as a result of increased stress erythropoiesis 

in these patients. Through further investigation of erythroid progenitors at an earlier 

developmental stage, we identified a CD45+CD71+GPA- nucleated cell population that we were 

able to successfully isolate. 

As such, we propose a method of GPA depletion, followed by CD71 enrichment to obtain an 

early stage erythroid progenitor population from small volumes of peripheral blood from SCA 

patients. DNA extracted from this population should be sufficient to perform genome-wide DNA 

methylation analyses, and this technique will be used to conduct future longitudinal studies on 

the effect of drug treatment on the methylome of SCA patients, should they become accessible 

in sufficient numbers. 
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 Results: Whole Exome Sequencing Analysis of 

Sickle Cell Anaemia Patients 

4.1 WES Study Rationale 

This work was undertaken to identify novel genetic modifiers of SCA phenotype severity. We 

hypothesised that a large number of these modifiers remain undetected, and could cause the 

large amount of variation in disease severity that is currently unaccounted for.  

As described previously, there is a huge variation in the severity of phenotype of SCA patients, 

despite the fact that the disease is considered to be a monogenic disorder, manifesting in a 

simple Mendelian recessive manner. While in simplistic terms this is the case, there have also 

been shown to be a variety of contributing factors that influence how the disease is presented. 

Heterozygous carriers of the HbS allele are not always asymptomatic, and some homozygous 

patients have a phenotype mild enough to be considered healthy. 

A range of genetic modifiers have been identified, and these are discussed in 1.6. However, 

most of the variation observed remains unaccounted for, and we hypothesised that additional 

genetic factors modifying the phenotype remain to be discovered.  

WES is a powerful and cost-effective tool for identifying genetic variants in case-control studies, 

and although not able to detect variants in the non-coding regions e.g. mutations that disrupt 

long range promoter-enhancer interactions, it has been estimated that 85% of the known 

disease casing mutations fall into the 1% of the genome that is covered by exome capture 

kits404,405. 

In this study, WES is used to interrogate groups of phenotypically mild and severe SCA 

patients, with the aim of identifying novel genetic modifiers of the disease. We sequenced 21 

mild and 5 severe SCA exomes from a collection at King’s College Hospital (KCH), and 

downloaded 651 publicly available exomes from dbGaP (phs000691.v2.p1). This included 132, 

139 and 140 exomes from patients recruited to the SWiTCH, TWiTCH and HUSTLE clinical 

trials, respectively. Three different strategies were used to analyse these datasets to achieve 

our aims:  

 

1. Analysis 1: We aimed to identify individual variants that are protective of the severe 

SCA phenotype. This was achieved by identifying SNPs with high frequency in the mild 

patient group that were absent from the severe group, and applying a series of filtering 
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criteria to remove variants that are less likely to affect the pathophysiology of the 

disease. Each of these filtering steps introduces an inherent bias into the candidate 

variant list generated, and are discussed in detail in 4.3.1. 

 

2. Analysis 1: Using the candidate variant lists generated, a gene burden test was 

performed. This aimed to identify genes that contained candidate variants in as many of 

the mild patients as possible. 

 

3. Analyses 2 & 3: A series of purely statistical analyses were performed. Using Fisher’s 

Exact Tests to identify variant enrichment between either the mild and severe SCA 

patient groups, or between the SWiTCH and HUSTLE groups. Unlike in the previous 

tests, the only bias introduced is the selection for variants that occur in the coding 

region. 

 

The implementation of these aims is summarised in Figure 4.1, which demonstrates how the 

exome data generated from the KCH mild and severe cohorts, as well as the US SCA datasets 

SWiTCH, TWiTCH and HUSTLE were used to identify candidate modifier variants for the SCA 

disease phenotype. 
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Figure 4.1: Flow diagram outlining the three different analyses performed in this chapter in order to identify 
candidate genetic modifiers of SCA. Analysis 1 is presented in 4.3 and 4.4, with a detailed description of 
the various filtering steps provided in 4.3.1. Analysis 2 is presented in 4.5.2, and Analysis 3 in 4.5.3. 
 

4.1.1 Stratification by Clinical Phenotypes 

When WES is combined with detailed clinical information, it allows for powerful in depth analysis 

of genotype:phenotype relationships within patient cohorts. In studies with sufficient numbers of 

patients, the patient population can be broken down into sub-populations, defined by highly 

specific clinical characteristics. In the case of severe SCA patients, this could include frequency 

of sickle cell pain crises, sickle-related organ damage, and different types of stroke. 

In the case of stroke, the inclusion criteria used in this study simply required overt clinical stroke, 

as opposed to silent infarctions, which do not present with strong clinical symptoms, and are 

diagnosed retrospectively, such as by MRI scans406. With a large enough sample size, overt 

clinical stroke could be stratified into sub-groups of ischaemic or haemorrhagic stroke, which 

have different patterns of occurrence between different SCA patient age groups407,408. 

Ischaemic strokes occur as a result of vaso-occlusion or narrowing of blood vessels in the brain, 

and a study has shown that SCA patients are at the highest risk below the age of 19, and above 

the age of 30407. Conversely, haemorrhagic strokes are caused by rupturing of blood vessels in 
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the brain, and SCA patients were shown to be most at risk between the ages of 20-30407,409. 

Due to the difference between these types of strokes, and the difference in the age at which 

they occur, it is likely that different pathophysiological pathways could be involved, with different 

underlying genetic modifiers. Stratifying these two groups would therefore allow more sensitive 

analyses. Of the four SCA patients recruited from King’s College Hospital that had experienced 

a stroke before the age of 18 (Table 4.1), each of these included at least one ischaemic stroke, 

and two had subsequently had haemorrhagic strokes. 

In this project, due to the limited size of both the mild and severe SCA groups, and the fact that 

no individual phenotype information was available for the US SCA exome dataset, stratification 

of the populations on specific symptoms was not performed. In the future, if the sample size of 

the study is substantially expanded, this could provide valuable insight into the underlying 

mechanisms that result in the wide range of symptoms presented by SCA patients. While it 

would be more complicated to incorporate into the variant filtering pipeline performed for 

Analysis 1, it would be relatively straightforward to perform this sort of stratification for Analyses 

2 & 3, which would allow identification of variants not just associated with mild or severe forms 

of the disease, but also of variants that associate with specific symptoms. 
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4.2 SCA Patient Data Summary 

4.2.1 SCA Patients from King’s College Hospital 

DNA samples from 26 SCA patients stored at King’s College Hospital were Whole Exome 

Sequenced for this study. Patients with the HbSS genotype were selected to avoid any 

phenotypic variation associated with other forms of SCD. Patients were selected from the 

extreme ends of the phenotypic range, with the aim of comparing severe and mild patients to 

identify novel genetic variants influencing the severity of the SCA phenotype. Of the 26 patients, 

five were categorised as severe, and 21 as mild. Fewer severe patients were selected than 

mild, since there are data from a US WES study that is publicly available through dbGaP 

(phs000691.v2.p1), which included severe SCA patients376. 

 

4.2.1.1 Severe Patients 

Severe patients were selected based on the severity of clinical symptoms presented at a young 

age, these are summarised in Table 4.1. One major indicator used was having an ischaemic 

stroke in childhood, which was experienced by four out of the five patients selected, and in one 

extreme case three strokes had occurred by age 6. One patient had not experienced stroke, but 

presented a wide range of other symptoms, and while these symptoms are not rare 

complications of SCA (many can be observed in the mild patients in Table 4.2), they are often 

associated with older patients, and it is rare to experience all of them at a young age. This 

patient is also undergoing HU therapy, which may have prevented stroke from occurring. 

Patient 
ID Age Sex Treatment Genotype Alpha 

Mean 
HbF% 
(Age) 

Ischaemic 
Stroke 
(Age) 

Other Symptoms 

GMKH 
001 30 F Blood 

Transfusion HbSS αα/α- Not 
Known 13, 23* 

Retinopathy, Pulmonary 
Hypertension, Gallstones, Fe 

Overload 

GMKH 
042 29 M Blood 

Transfusion HbSS αα/αα Not 
Known 3, 4, 6, 20 

Abnormal Proteinuria, Acute 
Chest Syndrome, Parvovirus 

Infection, Fe Overload 

GMKH 
063 25 F Blood 

Transfusion HbSS αα/αα 6.9 (11) 18 
Gall Bladder Removed, Acute 

Chest Syndrome, 
Osteoarthritis, Hypertension 

GMKH 
234 31 F Blood 

Transfusion HbSS αα/α- Not 
Known 8, 23* 

Abnormal Proteinuria, Gall 
Bladder Removed, Fe 

Overload 

GMKH 
249 24 M Hydroxyurea HbSS αα/αα 3.1 (22) None 

Abnormal Proteinuria, 
Pulmonary Hypertension, 

Acute Chest Syndrome, Leg 
Ulcers, Hyperhaemolysis, 
Deep Vein Thrombosis, 

Osteomyelitis 
 
Table 4.1: Patient data for the 5 severe phenotype SCA patients that were sequenced. Samples GMKH 
001, 042, 063 & 234 all had a stroke at ≤18 years old. Patient GMKH 249 did not have a history of stroke, 
but was classified as severe due to the severity of other symptoms experienced at a young age. Stroke 
refers to ischaemic stroke, * indicates haemorrhagic. 
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Two of the severe patients have the silent carrier genotype of α-thalassaemia, this is interesting 

since it has been shown that the carrier state can contribute to a reduction of severity of some 

SCA complications294–296,298. HbF% is not reported for all patients on blood transfusions, since 

contamination with the donor blood prevents accurate detection while undergoing regular 

treatment. 

 

4.2.1.2 Mild Patients 

Mild patients were selected on the basis of not having experienced a stroke or any other severe 

complication of SCA by the age of 30, the clinical information regarding these patients is 

summarised in Table 4.2. 

It was discovered that two of these patients had previously been found to have concurrent α-

thalassaemia. Although these were only αα/α- & α-/α- genotypes, representing silent carrier and 

α-thalassaemia trait respectively, they would still be expected to modify the SCA phenotype. 

Due to having an already identified causative variant, these patients were excluded from the 

study. 

One patient was heterozygous for the sickle cell mutation and a β0-thalassaemia allele, and was 

included due to this genotype’s similarity to HbSS in terms of both disease pathology and 

clinical severity. Despite being heterozygous, HbS is the only form of haemoglobin expressed in 

HbS/β0 patients (as described in 1.2.3.3). 

While mild patients with concurrent α-thalassaemia were excluded, patients with abnormally 

high percentage HbF were not. This is because the diagnosis of α-thalassaemia is confirmed by 

genetic testing to identify the genotype, and therefore has a known cause. In the case of HPFH 

disorders however, HbF is measured by High Performance Liquid Chromatography (HPLC) as a 

percentage of total haemoglobin, and so is measured as a phenotype, the cause of which is not 

necessarily explained. As described in 1.6.1 there are a variety of genetic factors known to 

influence HbF levels, and the SCA patient collection at King’s College Hospital has previously 

been screened for these common variants. Only the patients with no known cause for HPFH 

were included in this study. 
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Patient 
ID Age Sex Treatment Genotype Alpha 

Mean 
HbF% 
(Age) 

Stroke 
(Age) Other Symptoms 

GMKH 
169 33 F None HbSS αα/αα 20.0 (20) None Abnormal Proteinuria 

GMKH 
171 38 F None HbSS αα/αα 8.4 (25) None Gall Bladder Removed, Spleen 

Removed 

GMKH 
095 52 F 

Intermittent 
Blood 

Transfusions 
HbSS αα/αα 6.4 (41) None 

Retinopathy, Abnormal 
Proteinuria, Gall Bladder 

Removed, Asymptomatic Acute 
Chest Syndrome 

SCD 178 45 F None HbSS αα/αα 17.7 (32) None Asymptomatic Acute Chest 
Syndrome 

GMKH 
138 55 F None HbSS αα/αα 19.3 (51) None 

Abnormal Proteinuria, Gall 
Bladder Removed, Avascular 

Necrosis, Carcinoid, Deep Vein 
Thrombosis 

SCD 213 74 F None HbSS αα/αα 29.5 (62) None Abnormal Proteinuria, 
Osteoarthritis 

SCD 215 55 F None HbS/ β° αα/αα 9.2 (49) None Retinopathy, Abnormal 
Proteinuria 

GMKH 
016 43 F None HbSS αα/αα 8.3 (28) None 

High Proteinuria, Asymptomatic 
Acute Chest Syndrome, Hepatitis 

B 
HFKH 
063 45 F None HbSS αα/αα 10.5 (33) None High Proteinuria, Small Distal ICA 

Aneurisms 

GMKH 
056 62 F None HbSS αα/αα 1.3 (50) None 

NK, Gallbladder Removed, 
Avascular Necrosis, 

Asymptomatic Acute Chest 
Syndrome, Thromboembolism 

SCD 278 54 M None HbSS αα/αα 13.4 (45) None 
Retinopathy, Abnormal 

Proteinuria, Avascular Necrosis, 
Priapism 

SCD 146 54 F None HbSS αα/αα 16.3 (53) None 
Gall Bladder Removed, Avascular 

Necrosis, Asymptomatic Acute 
Chest Syndrome 

GMKH 
317 59 M None HbSS αα/αα 1.8 (57) None 

Retinopathy, Abnormal 
Proteinuria, Gall Bladder 

Removed, Mild Acute Chest 
Syndrome, Leg Ulcers 

GMKH 
052 49 F Hydroxyurea HbSS αα/αα 15.2 (42) None NK, Gallstones 

GMKH 
084 38 F None HbSS αα/α- 9.5 (32) None Pes Planus 

GMKH 
143 62 F Hydroxyurea HbSS αα/αα 22.3 (56) None 

Abnormal Proteinuria, Mild 
Pulmonary Hypertension, Acute 

Chest Syndrome, Pulmonary 
Embolism, Abdominal Hernia, 

Hypertension, Pes Planus 

GMKH 
175 69 F None HbSS α-/α- 7.9 (64) None 

Abnormal Proteinuria, Borderline 
Pulmonary Hypertension, Gall 

Bladder Removed, Hypertension, 
Cataracts, Hepatitis B 

GMKH 
290 64 F None HbSS αα/αα 11.4 (59) None 

Borderline Pulmonary 
Hypertension, Gall Bladder 

Removed 

GMKH 
036 63 M None HbSS αα/αα 7.1 (58) None 

Abnormal Proteinuria, Borderline 
Pulmonary Hypertension, Gall 
Bladder Removed, Avascular 

Necrosis 
GMKH 

179 69 M None HbSS αα/αα 20.3 (63) None Prostate Cancer, Osteomyelitis, 
Inguinal Hernia 

SCD 131 52 F None HbSS αα/αα 16.1 (45) None Bilateral Carpel Tunnel Syndrome 
 
Table 4.2: Patient information for the 21 mild phenotype SCA patients that were sequenced. None of the 
samples had had a stroke by age 33, and the majority are not on any form of treatment. Patients GMKH 
084 & GMKH 175 both have concurrent α-thalassaemia and were excluded. Patient SCD 215 was 
heterozygous for Sickle Cell Trait and β0-thalassaemia, which is phenotypically similar to HbSS. 
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4.2.2 SCA Exome Data from dbGaP 

651 SCA patient WES datasets were acquired from dbGaP (phs000691.v2.p1). Data for two of 

these patients were unable to be correctly downloaded, despite multiple attempts and so are not 

included. A summary of the source of the remaining 649 samples is shown in Figure 4.2. 

411 of these patients were recruited from one of three clinical studies investigating the outcome 

of HU treatment in SCA patients in the USA. Other than sex, age at start of HU treatment, and 

HbF percentage before and after treatment, no individual clinical information is available for 

these patients.  

For the patients that can be identified as being recruited through one of the clinical trials 

(HUSTLE, SWiTCH251 & TWiTCH252), it is possible to categorise them based on the specific 

inclusion criteria for each trial. These inclusion criteria are summarised in Table 4.3. 

 

 

Figure 4.2: Summary of 649 SCA exomes downloaded from dbGaP (phs000691.v2.p1). Samples were 
checked for the SCA mutation (rs334), 10 were found to be heterozygous, and 1 found to be homozygous 
for the wild type, these samples were excluded from further analyses. The majority of patients (411) were 
recruited from one of the three clinical trials – HUSTLE, SWiTCH or TWiTCH. 
 

 

 

 

 

 

 

 

SWiTCH: 132

TWiTCH: 139

HUSTLE: 140

Unknown: 227

Non HBSS: 11

dbGaP Exome Dataset: 649 patients
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 HUSTLE SWiTCH TWiTCH 
Age 

(years) <30 5 - 18 4 – 15 

Sex M + F M + F M + F 

Clinical 
Criteria 

Patients currently 
receiving or about to 
receive Hydroxyurea 

therapy*. 

Overt clinical stroke >1 year 
old, documented by CT or 

MRI. >18 months of chronic 
erythrocyte transfusions 

since primary stroke. 
Transfusional iron overload. 

Adequate monthly 
erythrocyte transfusions with 
average HbS <45% in the 6 
months prior to study entry. 

Documented index (pre-
treatment) abnormally high 

TCD Velocity by Transcranial 
Doppler ultrasonography. >12 
months of chronic erythrocyte 
transfusions since abnormal 

TCD. Adequate monthly 
erythrocyte transfusions with 
average HbS <45% in the 6 
months prior to study entry. 

Exclusion 
Criteria n/a 

Inability to receive RBC 
transfusion therapy. Inability 

to take daily oral 
hydroxyurea. Clinical and 

laboratory evidence of 
hypersplenism. A sibling 

enrolled in SWiTCH. 

Overt clinical stroke or TIA. 
Known severe vasculopathy or 
moyamoya disease on brain 

MRA. Inability to receive 
chronic RBC transfusion 

therapy. Inability to take daily 
oral hydroxyurea. Clinical and 

laboratory evidence of 
hypersplenism. A sibling 

enrolled in TWiTCH. 
Non-SCA 
Controls? No No No 

Patients 
Recruited 260 134 159 

 
Table 4.3: Table summarising recruitment criteria for the three clinical studies – HUSTLE, SWiTCH & 
TWiTCH. Information is obtained from clinicaltrials.gov website, and is correct as of November 2016. * - 
Inclusion criteria for HUSTLE only require patients to be taking HU, additional information on the criteria for 
prescribing treatment at St. Jude’s Children’s Hospital, the trial centre, is described by Nottage et al. 
2014205. 
 

4.2.2.1 Stroke with Transfusions Changing to Hydroxyurea (SWiTCH) 

SWiTCH was a study of SCA patients that had suffered a stroke at a young age and were 

receiving regular blood transfusions. The trial investigated the benefits of switching these 

patients to HU treatment in an attempt to avoid the side effects of long-term blood transfusion 

therapy. The trial was ultimately stopped when liver iron levels, one of the primary outcomes, 

was found not to be improved in the HU treatment arm, and an increase in the frequency of 

adverse effects was observed222,250,251.   

Based on the study inclusion criteria shown in Table 4.3, it is clear that all patients recruited 

through SWiTCH must have had at least one stroke before the age of 17.5 (to allow at least 18 

months of blood transfusions before the age of 19), this is in line with the criteria used for 

definition of severe patients that were sequenced from King’s College Hospital. As such the 132 

exomes from the SWiTCH study are included as part of the severe dataset for our analyses.  
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4.2.2.2 Transcranial Doppler (TCD) With Transfusions Changing to Hydroxyurea 

(TWiTCH) 

TWiTCH was a study of SCA patients that had not suffered a stroke, but were identified as 

having abnormally high Transcranial Doppler velocities (TCDv), one of the key indicators for risk 

of stroke, and had been receiving regular transfusions as a preventative treatment215,216. The 

trial investigated the benefits of switching these patients to HU therapy, to avoid the side effects 

of long-term blood transfusion therapy, similar to the SWiTCH trial. TWiTCH demonstrated that 

the HU treatment arm was non-inferior to blood transfusions in terms of reducing TCDv, and 

showed a significant decrease in liver iron levels compared to those in the transfusion treatment 

arm, which increased252. 

Although abnormal TCDv is an indicator for risk of stroke, and regular blood transfusions would 

be expected to prevent stroke occurring, it is not possible to categorise all of these patients as 

severe by the same criteria used for the patients recruited from King’s College Hospital. 

Additionally, of the 159 patients recruited, only 121 passed the initial screening stages, meaning 

that up to 38 of the 139 downloaded TWiTCH exomes didn’t fully meet the inclusion criteria252. 

Although, 29 out of the 38 were either excluded for severe vasculopathy, or chose to withdraw, 

and would still have the same clinical definition as the included patients252.  

Due to concerns about the clinical definition of this ‘high risk’ group, the 139 exomes from the 

TWiTCH study are only used in combination with the severe dataset in some parallel analyses, 

with a lower threshold for definition of severe patients. 

 

4.2.2.3 Long Term Effects of Hydroxyurea Therapy in Children with Sickle Cell Disease 

(HUSTLE) 

HUSTLE is an on-going observational study, aiming to investigate the long-term effects of HU 

therapy in SCD. It is not possible to categorise the severity of these patients based on the 

inclusion criteria alone (Table 4.3), since any patient under the age of 30 being treated with HU 

could be included. More information is available regarding the clinical criteria for starting 

patients on HU at St. Jude’s Children’s Research Hospital, where patients were recruited205. 

These criteria are as follows: ‘frequent vaso-occlusive pain, acute chest syndrome, chronic 

hypoxemia, haemoglobin level less than 7.0 g/dL, HbF less than 8% after 24 months of age, 

WBC count greater than 20 x 109/L, and LDH more than twice the upper limit of normal’205,410. 
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Even with this additional information, the clinical severity of the HUSTLE participants is difficult 

to define without individual information for each patient. As such, the HUSTLE participant data 

is not included in the comparison of mild and severe SCA patients. However, these data are 

used as a control group when investigating variant enrichment in the severe SWiTCH group. 

This analysis is based on the assumption that HUSTLE is representative of the SCA population 

as a whole, and is not strongly biased towards severity of phenotype. 
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4.3 Analysis 1: Identification of Coding SNPs Protective of the 

Severe SCA Phenotype 

In order to identify genetic variants that are protective of the severe phenotype of SCA, coding 

variants that are present in the mild group, but completely absent from the severe group were 

investigated.  In this model, any variants identified are assumed to be completely protective, 

and both recessive and dominant models are taken into account. 

 

4.3.1 Variant Filtering 

This section describes the various filtering criteria used to generate a list of candidate variants 

and the assumptions that accompany these criteria. An overview of the filtering process is 

demonstrated in Figure 4.4. Figure 4.3 shows the total number of variants in the mild group, and 

the proportions of these based on type. 48% of all variants are intergenic, and 45% intronic, with 

only 4% representing coding mutations.  

 

Figure 4.3: Summary of all 2,798,560 variants present in the mild group of patients, grouped by type of 
variant. Intergenic variants include those annotated as upstream or downstream. Coding variants also 
include those annotated as splicing variants. UTR – Untranslated Region. 93% of all annotated variants 
are either intergenic or intronic. 
 

Coding: 115,188: 4.1%

ncRNA: 20,940: 0.7%

UTR: 55,626: 
2.0%

Intronic: 
1,260,467: 45.0%

Intergenic: 
1,344,642: 48.0%

Unknown: 1,697: 0.1%
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Figure 4.4: Candidate variant filtering pipeline, describing the process of filtering the 2,798,560 variants 
observed in the mild SCA patient group down to 11,419 for the gene burden analysis, and 3,159 for the 
individual variant analysis. The full list of 11,419 variants is provided in Appendix 12. 
 

4.3.1.1 Intergenic Variants 

When annotating variants with ANNOVAR, intergenic refers to variants found more than 1kb 

upstream or downstream of gene. While these variants can influence transcriptional regulation 

through long-range enhancer-promoter interaction, they are situated at the edge of the targeted 

capture area, and coverage of these regions is inconsistent. Intergenic variants are therefore 

excluded from the analysis. As well as the intergenic variants, this includes variants <1kb 

 All Variants in Mild SCA Group: 2,798,560 
Intergenic, Intronic, Upstream, 
Downstream & UTR Variants  

Variants Found in Severe 
SCA Groups (KCH & 

SWiTCH) 

ncRNA Specific to SureSelect 
or NimbleGen Exome Capture 

Splicing Variants Outside of 
the Canonical Splice Site 

Synonymous Variants  

Commonly Mutated Genes 

Not Expressed in 
Haematopoietic Tissues 

Unknown (Incorrectly 
Annotated) Variants 

Genes with Only One Variant 
in One Patient 

Variants Present in One 
Patient 

137,825 

26,810 

26,515 

2,660,735 

24,896 

19,168 

17,286 

15,199 

14,996 

11,419 

3,159 

111,015 

5,728 

295 

1,619 

1,882 

2,087 

8,260 

203 

3,577 
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upstream or downstream of genes, which are annotated by ANNOVAR as ‘upstream’ or 

‘downstream’.  

 

4.3.1.2 Non-Coding Variants 

The design of this analysis is targeted towards detecting coding variants, since these are the 

most likely to have a phenotypic effect. Non-coding variants also play an important role in 

regulation of gene expression, and there are many documented examples of mutations in non-

coding regions influencing disease phenotype, including one of the SNPs investigated in 

Chapter 5. However, since non-coding regions are generally much more tolerant of genetic 

disruption, it is more difficult to identify variants that are eliciting a true effect. This, combined 

with the relatively small sample sizes used in this study, means that the analysis will exclude the 

non-coding variants. As well as the intergenic variants, this includes variants in the untranslated 

regions (UTRs) of transcripts, and intronic variants. 

There are some exceptions to this, and intronic variants near the intron/exon boundary are 

annotated as splicing variants and retained, similarly UTR variants that span translational 

initiation or termination codons are also retained. Also variants in ncRNA exons are not 

excluded. 

 

Figure 4.5: Summary of the 137,825 variants present in the mild group after filtering of intergenic and non-
coding variants (other than splicing and ncRNA). 
 

Figure 4.5 shows a summary of the candidate variants in the mild group after filtering of non-

coding variants. The majority of these are made of both synonymous substitutions (36.2%) and 

ncRNA: 20,940: 
15.2%

Unknown: 1,697: 
1.2%

Splicing: 12,519: 
9.1%

Nonsynonymous 
& Nonframeshift: 
51,540: 37.4%

Frameshift, 
Stopgain & 

Stoploss: 1,283: 
0.9%

Synonymous SNP: 
49,846: 36.2%
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nonsynonymous substitutions and nonframeshift insertions or deletions (37.4%). These are 

variants that either have no impact on the amino acid sequence (in the case of synonymous 

SNPs), or only affect the residue in which the mutation is located, without disrupting the overall 

sequence or structure of the gene, as is the case in splicing variants, frameshift insertions or 

deletions and stopgain or stoploss mutations. 

  

4.3.1.3 Removal of Severe Variants 

Variants that are present in one of the severe groups were filtered out, with recessive and 

dominant models taken into account. For the dominant model, any variant that was only 

heterozygous in the mild group must be completely absent from the severe group. For the 

recessive model, if a variant was homozygous in the mild group, it was filtered out if 

homozygous in the severe group as well, however heterozygous variants in the severe group 

were tolerated. 

Two separate filtering criteria were used in parallel, one with variants from the severe patients 

from King’s College Hospital and from the SWiTCH trial, and the second additionally excluding 

variants from the TWiTCH trial, with a less strict definition of severe. The variants after filtering 

for both of these are summarised in Figure 4.6. 

Filtering of variants found in the severe patient group greatly reduced the number of candidate 

variants, from 137,825 before filtering to 26,810 and 21,189 for the severe and SWiTCH and the 

severe, SWiTCH and TWiTCH filtered groups respectively. Interestingly the proportion of 

synonymous SNP variants is reduced from 36.2% of all variants to 21.4% and 18.6%, 

suggesting that more of these variants are shared between the groups than of the other coding 

variant types. Presumably this is due to the increased tolerance for variants that don’t affect the 

protein sequence. At the same time the proportion of ncRNA variants increased from 15.2% to 

37.9% and 42.9%, suggesting that fewer of these variants are shared, possibly due to the 

different exome capture kits used, Figure 4.6C summarises the changes in proportion of the 

different variant types. 
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Figure 4.6: Summary of the candidate variants in the mild group after filtering for variants observed in the 
severe groups. A – Summary of the 26,810 variants after filtering by severe patients from KCH and 
SWiTCH clinical trial (KS). B – Summary of the 21,189 variants after filtering by severe patients from KCH, 
SWiTCH and TWiTCH clinical trials (KST). C – Change in proportion of variants for each variant type in A 
and B compared to before filtering for variants in the severe group (shown in Figure 4.5). 
 

4.3.1.4 Restriction of ncRNA to those targeted by both SureSelect and NimbleGen 

Due to the difference in exome capture target areas between the Agilent SureSelect and Roche 

NimbleGen kits, a list of ncRNA was generated that is present in both the SureSelect and the 
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NimbleGen exome data. This list was generated using the assumption that each ncRNA will 

contain at least one variant in one individual for each of the capture kits used. This list is the 

same as the one used for the analysis in 4.5.2.3 and the complete list is available in Appendix 

7. Figure 4.7 summarises the ncRNA filtering step, 4988 ncRNA had variants observed in both 

the SureSelect and NimbleGen groups, with 336 and 790 respectively expressed exclusively in 

either group. 

 

Figure 4.7: Summary of the trimming of the ncRNA dataset to include only variants in ncRNA covered by 
both the Agilent SureSelect and Roche NimbleGen exome capture kits. A – Summary of the number of 
ncRNA with annotated variants in each of the exome capture groups. Variants in the 336 ncRNA only 
present in the SureSelect group were excluded, and only variants in the 4988 that are shared were 
included in downstream analyses. B – Number of ncRNA variants before and after filtering for each of the 
candidate variant groups. 
 

4.3.1.5 Splicing Variants 

Intronic variants within 10bp of the intron/exon boundary are annotated by ANNOVAR as 

splicing variants. A degree of variation is permitted within splice site sequences without severely 

impacting on splicing, there are multiple scoring tools available, but there is still a degree of 

uncertainty regarding how accurate these tools are411. 
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Dinucleotide pairs both upstream and downstream of each exon are strongly conserved in 

mammalian splice sites, with over 98% featuring a GT downstream and AG upstream412. 

Disruptions of these dinucleotide sites have been shown to have serious effects on splicing 

efficiency, and when disrupted can lead to exon skipping, alternative exon usage, alternative 

polyadenylation site usage or intron retention, any of which can significantly impair gene 

function413–417. Due to the strength of the conservation of these canonical dinucleotide splice 

sites, and the uncertainty of splice site scoring for variants further away, splicing variants were 

filtered out if situated >2bp up or downstream of the exon. Figure 4.8 shows the number of 

splicing variants before and after filtering. Filtering based on the variant position within the splice 

site greatly reduces the number of variants, and confirms that fewer variants are tolerated in the 

2bp adjacent to an exon than in the rest of the 10bp sequence. If variants were randomly 

distributed throughout the 10bp, an 80% reduction would be expected, whereas in Figure 4.8 

94.8% and 94.4% reductions are observed respectively for the KCH and SWiTCH and the KCH, 

SWiTCH and TWiTCH candidate variants. 

 

Figure 4.8: Filtering of splicing variants outside of the canonical 2bp splice site, for both the KCH and 
SWiTCH, and KCH, SWiTCH and TWiTCH filtered candidate variants. Approximately 95% of splicing 
variants were removed by selecting for 20% of the splice site sequence. 
 

4.3.1.6 Synonymous Variants 

Due to redundancies in codon usage, it is possible for nucleotide substitutions to have no effect 

on the subsequent amino acid sequence. These substitutions are referred to as synonymous, 

and are effectively silent. Since these variants should have no effect on gene function, they 
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were filtered out of the candidate variant lists. All 5,728 and 3,941 synonymous SNPs were 

removed from the KCH and SWiTCH, and the KCH, SWiTCH and TWiTCH filtered candidate 

variant lists respectively. 

 

4.3.1.7 Commonly Mutated Genes 

Some genes are more commonly mutated than others, and frequently harbour many variants 

without affecting gene function. This can be due to gene size, if the rate of mutations across 

coding regions is uniform and considered in the format of SNPs/kb, then it would be expected 

that for larger genes, more SNPs would be indentified418. Additionally, some genes have a 

higher tolerance for genetic aberration, these typically tend to be genes with a degree of 

redundancy, or that perform functions that are not particularly dependant on the specific amino 

acid sequence as much as the overall structure, these include structural proteins and large 

secreted proteins such as those encoded by the MUC family of mucin genes419. These genes 

are commonly identified in next generation sequencing studies as false positive results.  

To remove variants found in commonly mutated genes, a list was compiled of genes identified 

by two published studies420,421.  The first list is of 2,157 genes and loci from Fuentes et al. 

(2012) that includes 1,580 pseudogenes, 435 genes commonly identified in exome sequencing 

studies, as well as 142 genes with more than 10 rare nonsynonymous coding variants in more 

than 3 families from a cohort of 29420. The second list is the top 100 genes identified by Shyr et 

al. (2014), in a study investigating FrequentLy mutAted GeneS (FLAGS), being the genes most 

commonly found to contain rare coding variants (minor allele frequency <1%) in published 

exome sequencing studies421. The complete list of 2,256 commonly mutated genes is provided 

in Appendix 10. 

A summary of the candidate variants after removal of commonly mutated genes is shown in 

Figure 4.9. 1,882 and 1,418 variants were removed from the KCH and SWiTCH filtered, and the 

KCH SWiTCH and TWiTCH filtered groups respectively. The proportion of the variants that 

occur in ncRNA is increasing, and at this stage make up more than half of the remaining 

candidate variants. At this filtering step, ncRNA variants made up only 46.3% and 51.4% of 

those removed. 
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Figure 4.9: Summary of the candidate variants after filtering for variants observed in the commonly 
mutated genes list. A – Summary of the 17,286 variants in the KCH and SWiTCH filtered group. B – 
Summary of the 14,346 variants in the KCH, SWiTCH and TWiTCH group. C – Number of each variant 
type removed by filtering out Commonly Mutated Genes for both the KCH & SWiTCH (KS), and the KCH, 
SWiTCH & TWiTCH (KST) filtered groups. 
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4.3.1.8 Haematopoiesis Associated Genes 

This study aimed to identify variants that influence the severity of symptoms in SCA, as such, it 

was decided to narrow down the list of genes to those involved in erythroid development and 

function, as well as the immune response, which is known to play an important role in SCA 

disease pathology. 

To achieve this, a list of 7,420 ‘haematopoietically silent’ genes was compiled, based on data 

from the FANTOM5 Consortium422. The FANTOM5 Consortium have a large collection of 

RNAseq data, from many tissues and cell lines in both mice and humans. The human tissues 

that were used to compile the haematopoietically silent gene list are shown in Appendix 6, and 

the full list of 7,420 genes and transcripts is provided in Appendix 11. Genes were defined as 

transcriptionally silent if they had an RNA expression level of <1tpm (transcripts per million) in 

all 11 of the tissues analysed.  

The remaining candidate variants after removal of the haematopoietically silent genes are 

summarised in Figure 4.10. 2,087 and 1,666 variants were removed from the KCH and SWiTCH 

filtered, and the KCH SWiTCH and TWiTCH filtered groups, respectively. As was observed after 

removal of commonly mutated genes, the proportion of ncRNA variants was also increased 

after removal of haematopoietically silent genes, making up 33.8% and 30.4% of variants 

removed, representing 52.0% and 56.3% of variants before the filtering step. 
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Figure 4.10: Summary of the candidate variants after filtering for variants observed in the 
haematopoietically silent genes list. A – Summary of the 15,199 variants in the KCH and SWiTCH filtered 
group. B – Summary of the 12,680 variants in the KCH, SWiTCH and TWiTCH group. C – Number of each 
variant type removed by filtering out haematopoietically silent genes for both the KCH & SWiTCH (KS), 
and the KCH, SWiTCH & TWiTCH (KST) filtered groups. 
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4.3.1.9 Unknown Variants 

Variants designated as ‘UNKNOWN’ by ANNOVAR are caused by errors in the transcript 

annotation and alignment process, and the 203 & 150 variants from the KCH and SWiTCH, and 

the KCH, SWiTCH and TWiTCH candidates respectively were excluded.  

 

4.3.1.10 Allele Frequency – Rare Variants 

In WES studies, it is common to filter for variants based on allele frequency in the general 

population, e.g. using data from the 1000 genomes project423, with variants with a MAF >1% 

excluded. For studies aiming to identify variants causative of a disease phenotype, this is 

appropriate, since it is safe to assume that a mutation causing a disease will not be present in 

more than 1% of the population, unless 1% of the population are affected. This can be altered to 

10% for recessive disorders, providing a homozygous genotype frequency of 1%, e.g. the βS-

globin SNP has a frequency of 3% in the 1000 genomes project data (10% in African 

populations), and so would be excluded by analyses looking for variants with a MAF <1%423. 

Since this study is aiming to identify modifiers of SCA, not the disease itself, it was decided that 

filtering based on allele frequency would not be appropriate, and any SNPs influencing disease 

severity may be relatively common in the rest of the population, with no observable phenotype. 

This is similar to what is observed in HPFH disorders, which are frequently asymptomatic and 

often only diagnosed in conjunction with a β-globinopathy. 

 

4.3.1.11 CADD Phred-like Scores 

CADD (Combined Annotation-Dependent Depletion) scoring is a predictive measure of the 

likelihood of a variant to be deleterious to the function of the host gene, as modelled based on 

data from many different sources, including data regarding sequence conservation, GC content, 

CpG sites, transcription factor binding and other epigenetic data from the ENCODE project, 

transcript annotation and pre-existing amino acid change scoring tools378. The scores generated 

by CADD are converted to a Phred-like score, a scaled logarithmic ranking metric, where scores 

higher than 10 represent the top 10% most deleterious mutations, and higher than 20 

represents the top 1%, 30 the top 0.1% etc. CADD Phred-like scoring was not used to filter 

variants in the initial analysis, but were used in conjunction with information about gene function 

to consider the plausibility for each of the top candidate variants in affecting SCA pathology. 
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4.3.1.12 Removal of Single Occurrence Genes 

Any variants that occurred in only one patient were removed if the gene in which it was 

observed contained no other variants in the rest of the mild patients. This was because if a 

variant is not shared, nor the gene mutated in another mild patient, then an association cannot 

be shown. A summary of the two candidate groups is shown in Figure 4.11. 11,419 and 9,271 

variants remain in the candidate gene list for the KCH and SWiTCH, and the KCH, SWiTCH and 

TWiTCH filtered groups, respectively, and are again enriched for ncRNA variants, which now 

represent more than two thirds of all remaining variants. 

The candidate variant lists at this stage were used as the input for the gene burden test 

conducted in 4.4. 
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Figure 4.11: Summary of the candidate variants after exclusion of variants that occur only once, and in a 
gene that is not mutated in any other mild patient. A – Summary of the 11,419 variants in the KCH and 
SWiTCH (KS) filtered group. B – Summary of the 9,271 variants in the KCH, SWiTCH and TWiTCH group 
(KST). C – Comparison of each variant type for the KS and KST filtered groups. 
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4.3.2 Exome variants exclusive to mild patients 

To identify individual variants with a high frequency in the mild patient group, variants that only 

occurred once in the mild patient group were excluded. Variants that were heterozygous in one 

of the severe groups could only be relevant under a recessive model, and so were excluded if 

not homozygous in at least two of the mild SCA patient group, even if heterozygous in multiple 

patients. The full list of 11,419 filtered variants is provided in Appendix 12. 

The results of this final filtering step are shown in Figure 4.12, and demonstrate a significant 

reduction in the size of the candidate variant lists, suggesting that most of these variants were 

specific to one patient. The ncRNA still harbour the majority of variants, now representing 

81.1% and 84.6% of all remaining variants. 

 

Figure 4.12: Summary of the 3,159 and 2,597 candidate variants in the final lists for the KCH & SWiTCH 
(KS) and KCH, SWiTCH & TWiTCH (KST) filtered groups respectively. Loss of function variants (Splicing, 
Frameshift, Stopgain or Stoploss) were narrowed down to 24 and 18 variants in the KS and KST lists.  
 

CADD Phred-like scores were obtained for candidate loss of function and coding mutations, and 

are displayed alongside the candidate variants in 4.3.2.1 & 4.3.2.2. 
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in Table 4.4, ranked by frequency within the mild group. The variants that were present in the 

TWiTCH severe group but absent from SWiTCH and KCH severe groups are also shown. 
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       Mild Group Severe 

Chr Pos Var Gene Type Details 
CADD 
Phred 
score 

Hom Het Het 

KCH, SWiTCH & TWiTCH Filtered Candidate Loss of Function Variants 
11 124972553 C:T TMEM218 Stopgain W3X 5.18 0 9 0 
4 53611484 C:T ERVMER34-1 Stopgain W68X 35.00 0 5 0 
7 99269397 T:C CYP3A5 Stoploss X141W 2.43 0 5 0 

4 2721759 T:C FAM193A Stoploss X1212
R 5.47 0 4 0 

15 101550877 A:- LRRK1 Splicing ex9 -2 26.30 2 1 0 

7 44112998 C:- POLM Frameshift 
Del R397fs 3.04 2 1 47 

2 234474229 -:A USP40 Frameshift 
Ins L3fs 19.40 1 2 0 

17 80755631 A:- TBCD Splicing ex8 -2 26.00 1 2 0 

11 704605 A:- TMEM80 Frameshift 
Del T271fs 0.41 0 3 0 

12 133698497 A:- ZNF891 Frameshift 
Del V3fs 14.57 0 3 0 

2 165657066 T:C COBLL1 Splicing ex4 -2 10.05 0 3 0 
8 74169207 C:A C8orf89 Splicing ex3 +1 11.68 0 3 0 

13 114059901 T:- LOC101928841 Frameshift 
Del T868fs 1.31 0 2 0 

10 6010779 -:G IL15RA Frameshift 
Ins C102fs 0.26 0 2 0 

1 168105586 -:G GPR161 Frameshift 
Ins P17fs 10.29 0 2 0 

19 17397478 -:TT ANKLE1 Frameshift 
Ins V637fs 9.29 0 2 0 

3 46305948 T:G CCR3 Splicing ex2 +2 6.22 0 2 0 
12 92382871 A:G C12orf79 Splicing ex4 +2 1.80 0 2 0 

          
KCH & SWiTCH Filtered Candidate Loss of Function Variants – Not present in KST 

8 21966711 G:- NUDT18 Frameshift 
Del P35fs 13.01 5 0 0 

19 39739155 T:- IFNL4 Splicing ex2 -2 15.66 2 2 0 

17 74073456 
CCGT
CCTG
GC:- 

GALR2 Frameshift 
Del P370fs 26.50 0 3 0 

16 4414415 C:G CORO7 Splicing ex13 -1 25.30 0 2 0 
16 4519398 G:A NMRAL1 Stopgain R37X 35.00 0 2 0 
7 99758145 C:T GAL3ST4 Stopgain W289X 38.00 0 2 0 
Table 4.4: 24 variants resulting in splice site disruption, frameshift, stoploss or stopgain in the mild SCA 
patient group after filtering. 6 of these were absent from the SWiTCH group but observed in the TWiTCH 
group. fs indicates frameshift, and splice variants are annotated as exN +/- 1/2, where the variant is either 
one or two nucleotides upstream (-) or downstream (+) of exon N.   
 

One of the stopgain mutations shown in Table 4.4 occurs in NMRAL1, and is heterozygous in 

two mild patients. NMRAL1 detects changes in the NADPH/NADP+ ratio, and regulates 

downstream signalling pathways, including NO synthesis, with signalling modulated through 

interaction with argininosuccinate synthetase, and also regulates apoptosis through the NF-κB 

pathway424,425. The variant in NMRAL1 substitutes arginine at position 37 for a stop codon, in an 
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exon included in all three annotated transcripts. This results in a truncated version of the 299 

residue peptide, and the variant has a high CADD Phred-like score of 35.00.  

The 24 loss of function variants occur in genes involved in a broad range of biological pathways 

and processes, some of which present a plausible biological mechanism to affect the 

pathophysiology of SCA. The most interesting candidate from this point of view is NMRAL1, 

which regulates synthesis of NO, a signalling molecule that has already been associated with 

the disease. This variant was predicted to effect gene function, as indicated by a high CADD 

Phred-like score, and is expected to completely remove functionality from all transcripts on the 

affected allele. 

Loss of function variants affect the amount of gene product produced in the cell, and an 

important factor to consider when investigating these variants is whether or not the cell can 

rescue these levels by compensating with increased expression of other isoforms, or from other 

alleles. Many of the variants identified in this analysis occurred in a limited proportion of splicing 

variants, and depending on the individual roles of each these isoforms, and any redundancy in 

function shared between them, any effect on gene function in the cell may be mediated. 

Similarly, most of the variants shown in Table 4.4 are heterozygous, including the stopgain 

mutation in the candidate gene NMRAL1. 

 

4.3.2.2 Missense: Nonsynonymous Substitutions and Nonframeshift Insertions/Deletions 

After the removal of variants that occurred only once in the dataset, there were 509 

nonsynonymous substitutions remaining, as well as 27 nonframeshift deletions and 35 

nonframeshift insertions. Nonframeshift insertions or deletions are characterised by addition or 

removal of a sequence fragment consisting only of complete codons (i.e. with sequence length 

being a multiple of three), with the result that in the protein sequence individual amino acids are 

added or lost, but the downstream sequence does not change. These sequence changes are 

generally considered to be less deleterious to gene function than frameshift mutations, which 

change the reading frame of the downstream sequence, essentially resulting in a nonsense 

protein sequence that can result in the use of a premature translational termination site, or is 

disposed of at the mRNA level by nonsense mediated decay426. 

The 20 of the 572 nonsynonymous and nonframeshift candidate variants with the highest 

frequency in the mild SCA patient group are shown in Table 4.5.  
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       Mild Group Severe 

Chr Pos Var Gene Type Details 
CADD 
Phred 
Score 

Hom Het Het 

KCH, SWiTCH & TWiTCH Filtered Candidate Nonsynonymous & Non-Frameshift Variants 

19 7293898 G:C INSR Nonsyn. 
SNP A2G 0.50 16 0 0 

9 139222174 T:C GPSM1 Nonsyn. 
SNP V8A 0.25 15 0 0 

12 132313109 
-

:TGCCG
CTGC 

MMP17 Non-FS 
Ins P24LPLP 3.28 13 2 0 

6 1313952 A:G FOXQ1 Nonsyn. 
SNP E338G 0.01 9 6 0 

1 2126139 C:G C1orf86 Nonsyn. 
SNP R17P 13.23 13 1 0 

13 28674628 T:C FLT3 Nonsyn. 
SNP D7G 16.24 7 7 0 

20 60640315 AGGGC
C:- TAF4 Non-FS 

Del 183:184del 9.84 10 2 0 

19 50155387 CGCTCC
:- SCAF1 Non-FS 

Del 581:582del 5.98 11 0 0 

14 70039824 GGCGG
C:- CCDC177 Non-FS 

Del 171:172del 7.26 10 1 0 

2 231902471 C:G C2orf72 Nonsyn. 
SNP A64G 0.01 4 7 0 

21 40178042 A:G ETS2 Nonsyn. 
SNP R140G 11.38 4 7 0 

21 40178043 G:C ETS2 Nonsyn. 
SNP R140T 8.96 4 7 0 

6 24797815 A:T C6orf229 Nonsyn. 
SNP F172L 23.90 3 8 0 

22 19137658 G:A GSC2 Nonsyn. 
SNP R47C 15.68 3 8 0 

9 139972219 G:T UAP1L1 Nonsyn. 
SNP V79L 0.00 2 9 0 

17 73512653 G:T TSEN54 Nonsyn. 
SNP E4D 0.06 5 5 0 

4 107279482 T:A GIMD1 Nonsyn. 
SNP K171I 3.72 0 10 0 

19 55525508 G:A GP6 Nonsyn. 
SNP T602M 21.50 0 10 0 

          
KCH & SWiTCH Filtered Candidate Nonsynonymous & Non-Frameshift – Not present in KST 

2 217498310 
-

:CGCTG
CTGC 

IGFBP2 Non-FS 
Ins L22PLLL 12.54 14 0 0 

1 33430102 T:G RNF19B Nonsyn. 
SNP Q62P 6.34 13 1 0 

Table 4.5: Summary of the top 20 candidate variants from the Nonsynonymous and non-frameshift 
substitutions after filtering. Ranked by frequency in the mild SCA patient group. Table shows 18 variants 
after filtering by the KCH, SWiTCH and TWiTCH groups, and 2 that  were present in TWiTCH but absent 
from the KCH and SWiTCH severe exome datasets. 
 

A non-frameshift insertion of three amino acid residues was observed in IGFBP2. This variant in 

was homozygous in 14 of the mild patients and results in insertion of proline-leucine-leucine 

before a leucine residue at position 22, and has a higher CADD Phred-like score of 12.54. This 

variant occurs in the signalling peptide sequence and is likely lost during post-translational 

processing of the protein. IGFBP2 encodes insulin-like growth factor binding protein 2, a 
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signalling molecule that promotes cell proliferation and differentiation, and has been associated 

with cancer progression427,428. IGFBP2 promotes HSC survival and expansion in bone marrow, 

as well as in cell culture conditions, and one of its targets (insulin-like growth factor 1) is used 

for the in vitro expansion of erythroid progenitors described in Chapter 30172,429,430. 

Substitutions were also observed in FOXQ1 (homozygous in 9, heterozygous in 6) and FLT3 

(homozygous in 7, heterozygous in 7). FOXQ1 is a transcription factor activated by TGF-β/Wnt 

signalling, and is associated with colorectal cancer progression and metastasis431–433. 

Expression of FOXQ1 has been shown to be lost during the γ-globin to β-globin switch, and it is 

thought to transcriptionally repress BCL11A, one of the master regulators of this switch434,435. 

This variant causes the substitution of glutamic acid at position 338 for glycine, and has a very 

low CADD Phred-like score of 0.01. FLT3 is a receptor tyrosine kinase that stimulates the 

expansion of HSCs and erythroid progenitors in the bone marrow, and is commonly associated 

with blood cancers436–438. The variant in FLT3 results in an aspartic acid to glycine substitution 

at position 7, situated in the signal peptide. The substitutions in FLT3 has a CADD Phred-like 

score of 16.24, and is included in both isoforms of the protein. 

A non-frameshift deletion of two amino acids was observed in TAF4, and which occurred in 12 

mild SCA patients (10 homozygous and 2 heterozygous). TAF4 is a component of the 

transcription initiation complex, and interacts with the transcription factor CREB, which is 

thought to be capable of γ-globin re-activation439,440. The deletion in TAF4 results in the loss of a 

glycine-proline repeat at positions 183-184, with a CADD Phred-like score of 9.84. 

Two variants were present adjacent to each other in ETS2, causing substitution of arginine at 

position 140 for either glycine or threonine. ETS2 is a transcription factor required for the 

formation of cardiac progenitor cells from fibroblasts during development, and is involved in the 

triggering of angiogenesis in endothelial cells441,442. Overexpression of ETS2 in K562 cells has 

also been shown to affect several important erythroid genes, reducing expression levels of 

KLF1, β-globin and α-globin443. Upon further investigation it was discovered that the two 

variants co-localised, and were observed in the same patients (four homozygous and seven 

heterozygous each). The fact that these were identified as two separate variants is due to mis-

annotation, and rather than being two separate SNPs resulting in substitution of arginine to 

either glycine or threonine, this is a dinucleotide variant causing an arginine to alanine 

substitution. The CADD Phred-like scores for glycine and threonine substitutions were 11.38 

and 8.96 respectively, and for the real substitution of alanine, was 10.57. 
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       Mild Group Severe 

Chr Pos Var Gene Type Details 
CADD 
Phred 
Score 

Hom Het Het 

KCH, SWiTCH & TWiTCH CADD Filtered Candidate Nonsynonymous & Non-Frameshift Variants 

1 2126139 C:G C1orf86 Nonsyn. 
SNP R17P 13.23 13 1 0 

13 28674628 T:C FLT3 Nonsyn. 
SNP D7G 16.24 7 7 0 

21 40178042 A:G ETS2 Nonsyn. 
SNP R140G 11.38 4 7 0 

6 24797815 A:T C6orf229 Nonsyn. 
SNP F172L 23.90 3 8 0 

22 19137658 G:A GSC2 Nonsyn. 
SNP R47C 15.68 3 8 0 

19 55525508 G:A GP6 Nonsyn. 
SNP T602M 21.50 0 10 0 

11 94261280 G:A C11orf97 Nonsyn. 
SNP R94K 16.30 2 7 0 

9 131580998 C:T ENDOG Nonsyn. 
SNP S12L 16.34 0 9 0 

10 102770278 T:C PDZD7 Nonsyn. 
SNP K790E 12.36 1 6 0 

X 100749038 C:T ARMCX4 Nonsyn. 
SNP A1821V 22.70 2 4 0 

12 29936626 C:A TMTC1 Nonsyn. 
SNP R20L 12.65 1 5 0 

11 22881002 C:T CCDC179 Nonsyn. 
SNP R29Q 10.45 5 6 4 

3 113052314 G:C CFAP44 Nonsyn. 
SNP P1185R 26.90 1 4 0 

12 55968284 T:C OR2AP1 Nonsyn. 
SNP L29P 24.60 1 4 0 

4 107279518 T:C GIMD1 Nonsyn. 
SNP E159G 11.45 0 5 0 

          
KCH & SWiTCH CADD Filtered Candidate Nonsynonymous & Non-Frameshift – Not present in KST 

2 217498310 
-

:CGCTG
CTGC 

IGFBP2 Non-FS 
Ins L22PLLL 12.54 14 0 0 

16 2077090 G:C SLC9A3R2 Nonsyn. 
SNP E28D 24.90 0 7 0 

11 46369267 G:A DGKZ Nonsyn. 
SNP A20T 23.40 0 6 0 

19 1000785 C:T GRIN3B Nonsyn. 
SNP H117Y 19.19 1 4 0 

X 153707209 C:T LAGE3 Nonsyn. 
SNP D16N 10.78 1 4 0 

Table 4.6: Summary of the top 20 candidate variants from the Nonsynonymous and non-frameshift 
substitutions after filtering, as in Table 4.5, with additional filtering of variants with CADD Phred-like scores 
<10. Variants are ranked by frequency in the mild SCA patient group. Table shows 15 variants after 
filtering by the KCH, SWiTCH & TWiTCH groups, and 5 that  were present in TWiTCH but absent from the 
KCH and SWiTCH severe exome datasets. Seven candidate variants from Table 4.5 passed the CADD 
Phred-like score filtering. 
 
Some of these candidate variants occur in genes with biologically plausible mechanisms to 

affect the SCA pathophysiology, but have very low CADD Phred-like scores, and are unlikely to 

affect gene function e.g. the variant in FOXQ1, which has been associated with repression of 

BCL11A, but has CADD Phred-like score of 0.01. To avoid this, it was decided to apply a CADD 

Phred-like score cut-off of 10.00 to the list of top candidate variants, to ensure that only those 
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predicted to affect gene function would be considered, the results of this are shown in Table 4.6. 

CADD Phred-like scores of >10.00 represent the top 10% of CADD scored variants, and are the 

most likely to be deleterious to gene function.  

After the exclusion of candidate variants with CADD Phred-like scores of <10 from Table 4.5, 

only the variants in C1orf86, FLT3, ETS2, C6orf229, GSC2, GP6 and IGFBP2 were retained. 

Table 4.6 shows the updated candidate variant table after filtering by CADD Phred-like score, 

containing the new list of top candidates. 

Of the variants identified by the analyses performed in this section, five candidates with 

biologically plausible mechanisms were observed. These are the variants in IGFBP2, FOXQ1, 

FLT3, TAF4 and ETS2. However, the variants in FOXQ1 and TAF4 had CADD Phred-like 

scores below the threshold of 10.00, and so were not predicted to be deleterious to gene 

function. 

 

4.3.2.3 Non Protein Coding: ncRNA Candidate Variants 

After the removal of variants that occurred only once in the dataset, there were 2,563 ncRNA 

variants remaining. The 20 ncRNA candidate variants with the highest frequency in the mild 

SCA patient group after filtering are shown in Table 4.7. It is worth noting that while CADD 

scoring is available for ncRNA variants, these scores are not included in Table 4.7, and were 

not used for assessment of ncRNA variants. Due to a the relative lack of annotated ncRNA data 

and functional understanding, the accuracy of CADD scoring is currently limited for ncRNA 

variants378.  
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     Mild Severe 

Chr POS Var Gene Type Hom Het Het 

KCH, SWiTCH & TWiTCH Filtered ncRNA Variants 
8 29779220 T:C FAM183CP ncRNA exonic 15 0 0 

20 61667631 T:C LINC00029 ncRNA exonic 10 4 0 
20 25658484 A:G ZNF337-AS1 ncRNA exonic 12 1 0 
17 68063631 G:A LINC01028 ncRNA exonic 11 2 0 
8 11618998 G:C C8orf49 ncRNA exonic 12 2 1 
8 73663426 T:A LOC101926908 ncRNA exonic 5 7 0 

19 38042410 C:G ZNF571-AS1 ncRNA exonic 2 10 0 
1 149576483 G:A LINC00623,LINC00869,LOC103091866 ncRNA exonic 2 10 0 
3 156392191 T:C TIPARP-AS1 ncRNA exonic 11 0 0 

10 17428971 T:A ST8SIA6-AS1 ncRNA exonic 10 1 0 
14 95999998 G:C SNHG10 ncRNA exonic 4 7 0 
12 104260287 T:C GNN ncRNA exonic 3 8 0 
10 91597426 T:C LINC00865 ncRNA exonic 3 8 0 
20 25834293 C:T LOC101926935 ncRNA exonic 1 10 0 
11 65272383 C:T MALAT1 ncRNA exonic 1 10 0 
13 22849324 C:T LINC00540 ncRNA exonic 10 0 0 
2 67313607 T:C LOC102800447 ncRNA exonic 8 2 0 
7 1201192 A:T LOC101927021 ncRNA exonic 5 5 0 

        
KCH & SWiTCH Filtered ncRNA Variants – Not present in KST 
13 114452024 A:G LINC00552 ncRNA exonic 9 3 0 
19 51398377 G:A KLKP1 ncRNA exonic 7 5 0 
 
Table 4.7: Summary of the top 20 candidate variants from the ncRNA candidate variants after filtering. 
Variants are ranked by frequency in the mild SCA patient group. Table shows 18 variants after filtering by 
the KCH, SWiTCH & TWiTCH groups, and two that were present in TWiTCH but absent from the KCH & 
SWiTCH severe exome datasets. 
 
Of the 20 ncRNA variants shown in Table 4.7, 19 have no characterised function, this 

demonstrates the vast gap in our current knowledge about the individual function of these non-

coding transcripts. 

MALAT1 is the only ncRNA in Table 4.7 with a characterised function, and presents a plausible 

biological mechanism to influence the severity of SCA. MALAT1 is a long ncRNA that regulates 

serine/arginine splicing factors and is associated with cancer progression, negatively regulating 

the tumour suppressor gene p53, as well as B-MYB444,445. B-MYB is a key regulator of HSC 

proliferation, and when depleted results in a reduction of haematopoietic potential. Through this 

interaction, MALAT1 regulates early haematopoietic development446,447. 

All of these variants are exonic SNPs, which are unlikely to affect transcriptional interference, 

and without more information regarding the function and mechanism of action of these ncRNA, 

it is difficult to predict how their function would be affected. SNPs could affect the formation of 

secondary structures required for the ncRNA function, and any ncRNA that work by sequence 
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specific binding could be affected, but may also have a degree of tolerance for short 

mismatches448. 

 

4.3.3 Variants in Known Modifier Genes 

Genes that had previously been associated with the SCA phenotype were screened for variants 

in the mild SCA patient population. This was performed using the list of 14,996 KCH and 

SWiTCH filtered candidate variants generated after removal of ‘unknown’ variants in 4.3.1. 

These include genes from both the α-globin-like and β-globin-like gene loci, as well as some 

known regulators of globin locus expression (MYB, BCL11A, KLF1, ASH1L, GATA1, LMO2, and 

LDB1). The results of this search are shown in Table 4.8. 

The only variant observed in one of the β-globin-like genes occurred in β-globin (HBB), and was 

confirmed to correspond to the β0 thalassaemia mutation in patient SCD 215. It is reassuring 

that this variant made it through the filtering process, and also that it has a very high CADD 

Phred-like score of 33.00, since it is known to have a severe effect on gene function. 

 

       Mild Group 

Chr Pos Var Gene Type Details 
CADD 
Phred 
score 

Hom Het 

1 155327167 A:T ASH1L Nonsyn. SNP I2332N 12.82 0 1 
1 155491102 T:C ASH1L Nonsyn. SNP Q70R 24.60 0 1 
1 155449342 T:C ASH1L Nonsyn. SNP I1107V 0.63 0 1 
1 155531805 T:A ASH1L-AS1 ncRNA n/a 13.62 0 1 
1 155533060 G:T ASH1L-AS1 ncRNA n/a 3.86 0 1 
1 155532525 C:G ASH1L-AS1 ncRNA n/a 7.98 0 1 
1 155532696 -:C ASH1L-AS1 ncRNA n/a 5.19 0 3 

11 5247979 -:T HBB Frameshift Ins D48fs 33.00 0 1 
16 230574 T:C HBQ1 Nonsyn. SNP L30P 24.70 0 1 
19 12995802 T:C KLF1 Nonsyn. SNP H329R 27.50 0 1 

Table 4.8: Results of a search for variants in the candidate gene list that occur in known modifier genes for 
SCA phenotype severity. 10 variants were identified, all of which were heterozygous. One variant occurs in 
the β-globin gene (HBB) in patient SCD 215, who was heterozygous for both HbS and β0 thalassaemia, as 
described in Table 4.2. This frameshift variant is the β0 mutation, since it prevents any functional β-globin 
expression from this allele. 
 

There was also only one variant observed in the α-globin–like genes, which occurred in θ-globin 

(HBQ1). This variant resulted in a single amino acid substitution of leucine to proline at position 

30, and also had a high CADD Phred-like score of 24.70. θ-globin is an α-globin homologue that 

is highly conserved, but is only transcribed at very low levels449,450. Given the protective effect of 
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persistent ζ-globin expression in SCA, it is feasible that any SNP that increases expression of θ-

globin could also ameliorate the severity of the SCA phenotype. 

A SNP was observed in KLF1, substituting histidine for arginine at position 329 in the second of 

three zinc finger domains, with a very high CADD Phred-like score of 27.50. As described in 

1.6.1, variants affecting the function of KLF1 could impair the γ-globin to β-globin switch during 

erythroid development. This variant was observed in patient SCD 213, which had the highest 

HbF level observed in the mild patient group, of 29.5%. 

Three SNPs were also identified in the histone methyltransferase ASH1L, with CADD Phred-like 

scores of 24.60, 12.82 and 0.63, and a further four variants were observed in ASH1L-AS1, an 

ncRNA running antisense to the ASH1L gene. 
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4.4 Analysis 1: Gene Burden Analysis 

It is possible that individual variants protective for the SCA severe phenotype are not shared 

between the patients in the SCA mild group, but occur in the same genes. To investigate this 

model, a simple gene burden test was performed. 

This was carried out using the list of 11,419 candidate variants generated after filtering of genes 

with one variant in one patient as described in 4.3.1.12, rather than the list of 3,159 generated 

after removal of single occurrence variants generated in 4.3.2, since many variants that occur 

only once in the Mild SCA patient group would still be relevant if additional variants are 

observed in that gene in other patients. 

For each candidate variant, a list of the mild SCA patients in which that SNP is observed was 

generated, these were then collated for each gene, giving information on how many of the 19 

patients contained a candidate variant in each gene, and how many different variants were 

observed in that gene. Results were ranked firstly by the number of the mild SCA patients 

affected, and secondly by the fewest number of variants. Genes with fewer variants were 

prioritised since it was expected that the most variable genes have a higher tolerance for 

sequence polymorphisms, as is the case for the ‘Commonly Mutated Gene’ list described in 

4.3.1.7. 

The top 20 candidate genes from this analysis are shown in Table 4.9, firstly showing the list 

inclusive of ncRNA, which are shown to be highly variable, with many mutated in most of the 

patients, and with many variants. An additional candidate gene list was generated with the 

ncRNAs removed. Candidate genes that contained only one variant were also excluded, since 

individual variants with a high frequency in the mild SCA patient group had already been 

investigated by the analyses in 4.3.2.  

The majority of genes identified by the gene burden test were observed in ncRNA, this is 

probably at least partially due to the fact that ncRNA made up the majority of the candidate 

variant list, accounting for 66.8% of the 11,419 variants analysed from the KCH and SWiTCH 

filtered group in Figure 4.11. The results in Table 4.9 also show that the ncRNA generally 

harbour far more variants than the coding genes, and the average number of variants per 

ncRNA is 19.2, compared to 6.7 in the coding genes. This is to be expected given that ncRNA 

function is generally more tolerant of individual sequence variation448. However there are some 

exceptions to this, for example, the ncRNA LOC100287944 has only two variants that affect 18 
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of the 19 patients, whereas the MUC22 coding gene has 31 variants. MUC22 is a member of 

the mucin gene family, the majority of which were filtered out by the ‘Commonly Mutated Gene’ 

list described in 4.3.1.7. 

 

ncRNA Included  ncRNA Removed 

Gene Name 
Number 

of 
Patients 

Number 
of 

Variants 

Type of 
Gene  Gene Name 

Number 
of 

Patients 

 Number 
of 

Variants 
MRGPRG-AS1 19 6 ncRNA  MUC22 19 31 

SLC6A10P 19 6 ncRNA  MST1L 18 2 
FAM215A 19 7 ncRNA  LOC100129697 18 14 

LINC00955 19 19 ncRNA  TUBGCP3 17 3 
GUCY2EP 19 24 ncRNA  MMP17 16 2 

MUC22 19 31 Coding  C11orf97 16 2 
LOC101926935 19 47 ncRNA  IGFBP2 16 3 

LOC401357 19 51 ncRNA  C1orf86 16 3 
MST1L 18 2 Coding  DSPP 16 11 

LOC100287944 18 2 ncRNA  LOC100129520 16 12 
LOC100133077 18 7 ncRNA  SUCLG2 15 3 

ESPNP 18 8 ncRNA  FOXQ1 15 4 
LINC00469 18 9 ncRNA  BEAN1 14 2 
LINC00940 18 12 ncRNA  RNF225 14 2 
LINC01262 18 13 ncRNA  OR1D5 14 3 
LINC00552 18 13 ncRNA  GIMD1 14 4 

LOC100129697 18 14 Coding  ARMCX4 14 7 
LINC00937 18 14 ncRNA  RALGDS 14 7 
KCNQ1OT1 18 43 ncRNA  GOLGA8H 14 9 

PRKXP1 18 45 ncRNA  STARD9 14 10 
 
Table 4.9: Top 20 candidate genes identified by the gene burden test, ranked by the number of mild 
patients containing a variant in each gene, and by the total number of variants observed in the gene. Table 
on the left shows the list including ncRNA, and on the right shows only protein coding genes. 
 

Of the 17 ncRNA shown in Table 4.9, only one has any characterised function. KCNQ1OT1 is a 

chromatin interacting ncRNA, it binds to the KCNQ1 locus and recruits chromatin modifying 

complexes, promoting formation of heterochromatin and transcriptionally silencing the 

surrounding genes451,452. Dysregulation of at the KCNQ1 locus has previously been associated 

with Beckwith-Wiedemann syndrome and Silver Russell Syndrome453,454. 

Of the 20 protein coding genes, seven have no known function (MST1L, LOC100129697, 

C11orf97, LOC100129520, RNF225, ARMCX4 and GOLGA8H). Variants in MMP17, IGFBP2 

and C1orf86 were previously identified in the analysis shown in 4.3.2.2, with individual variants 

accounting for 15, 14 and 14 of the mild patients respectively. A variant in FOXQ1 was 
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previously identified in 4.3.2.2, with this variant found in 15 patients, three of these patients also 

harbour an extra variant in the FOXQ1 gene.  

Of the top candidate genes identified by the gene burden test, the only gene that presents a 

biologically plausible mechanism to affect the SCA disease pathophysiology is the BCL11A 

repressor FOXQ1. However, the most frequent variant in this gene (E338G) was investigated in 

4.3.2.2, and was not predicted to affect gene function, with a very low CADD Phred-like score of 

0.01. Excluding this SNP, the remaining three FOXQ1 variants are each heterozygous in one 

patient. 
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4.5 Fisher’s Exact Tests 

Statistical analyses were used to test for associations of individual variants with the SCA patient 

groups outlined in 4.2. These were performed independently of the variant filtering pipeline, so 

as to not introduce inherent biases based on the filtering criteria. 

After the removal of low quality variant calls, as defined by the ANNOVAR variant calling 

pipeline, the number of occurrences of each variant within each patient group was counted. 

These counts were used to test the statistical significance of the frequency of each variant in 

these groups, using three separate Fisher’s exact tests:  

1. Firstly, a simple patient count test was performed, testing for the number of patients 

carrying each variant within the group, disregarding whether they are homozygous or 

heterozygous. 

2. The second test was for allele frequency, considering each patient as two alleles with 0, 

1 or 2 copies of the variant. This investigates whether there is an imbalance in the 

distribution of these alleles between the investigated groups.   

3. The third test was for homozygous counts. This was to account for a model where the 

effect of the variant is recessive, and only the homozygous patients would be affected. 

In this case the heterozygous cases in either group were ignored. 

 

4.5.1 P-Values & Multiple Testing Correction 

For most scientific experiments, a p-value cut off of <0.05 is used to test for statistical 

significance. This threshold signifies a 5% probability of the observed difference occurring 

purely by chance, resulting in a false positive rejection of the null hypothesis. Therefore, if 

performing a test on twenty different variables, it would be expected that at least one of them 

would incorrectly reject the null hypothesis, regardless of whether there is a true effect or not. 

For studies where multiple variables are investigated, it is common practice to adjust the p-

value cut-off to account for this multiple testing. The Bonferroni correction is a simple 

conversion of this value, where the desired p-value threshold is divided by the number of tests, 

e.g. if testing 20 variables with a p-value cut off of 0.05, the Bonferroni correction would be 

0.05/20, giving a p-value threshold of <0.0025 455. For studies investigating genome-wide 

datasets, every base pair sequenced could potentially be considered an additional variable, 

although this is generally considered to be prohibitively conservative, and it is common practice 
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for genome-wide studies to Bonferroni correct using the number of common SNPs covered by 

the sequencing area (with common SNPs defined as having a MAF of >5%). An estimate of this 

for whole genome sequencing is 4,152,114, and for exome sequencing using the Agilent 

SureSelect capture kit is 58,091, resulting in adjusted p-value thresholds of p<1.2x108 and 

p<8.6x107 respectively456. For the Roche NimbleGen capture kit, this estimation is 50,000 

common variants, resulting in a cut-off of p<1.0x106 456. 

Table 4.10 shows the number of common variants identified in our own datasets, for both the 

Agilent SureSelect and Roche NimbleGen kits respectively, compared to those estimated by 

Lacey et al.456. 

Group Total 
Variants 

Common 
Variants P-Value Capture Kit 

Estimated 
Common 
Variants 

Estimated 
P-Value 

Mild 2,798,560 2,180,113 2.29x108 Agilent SureSelect 58,091 8.61x107 
Severe 566,010 449,433 1.11x107 Agilent SureSelect 58,091 8.61x107 

SWiTCH 1,712,023 1,089,120 4.59x108 Roche NimbleGen 50,000 1.00x106 
TWiTCH 2,036,852 1,378,096 3.63x108 Roche NimbleGen 50,000 1.00x106 
HUSTLE 1,966,311 1,310,841 3.81x108 Roche NimbleGen 50,000 1.00x106 
Unknown 3,808,700 2,829,713 1.77x108 Roche NimbleGen 50,000 1.00x106 
 
Table 4.10: Table summarising the number of common variants (minor allele frequency >5% in the 1000 
Genomes Project data191) for each of the SCA patient groups, and comparing to those estimated for the 
same exome capture kits by Lacey et al. 456. The numbers of common variants are much higher than 
expected, resulting in much stricter Bonferroni corrected p-value thresholds. 
 

The total number of common variants annotated from both the Roche and Agilent exome 

capture kits is drastically higher than suggested by Lacey et al. and subsequently the 

corresponding p-value thresholds are lower456,457. Due to this discrepancy, rather than using 

these estimates for the Bonferroni correction for each exome capture kit, a new correction factor 

will be calculated for each analysis performed, corresponding to the number of variants being 

tested. 

 

4.5.2 Analysis 2: Statistical Comparison of Mild & Severe SCA Patient Groups 

To identify variants associated with either the mild or severe SCA patient phenotype, variants 

from the group of 19 mild SCA patients were compared to those in the severe group, firstly 

including just the five KCH severe patients, and secondly including the data from the 132 

SWiTCH patients as well. 
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4.5.2.1 Mild and severe SCA patients from King’s College Hospital 

The initial analyses performed considered only the patients from King’s College Hospital, the 

ten most significant results from the 2,922,494 variants tested are shown for each of the three 

Fisher’s Exact Tests in Table 4.11, Table 4.12 & Table 4.13. The difference in p-values between 

the different tests demonstrate that the most significant results were identified by the allele 

frequency test, although this is likely due to the fact that each patient is considered as two 

separate alleles, effectively doubling the sample number. 

      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

3 153725251 T:C C3orf79, 
ARHGEF26-AS1 Intergenic 2.35E-05 16 3 0 0 

16 13359272 C:T SHISA9, ERCC4 Intergenic 2.35E-05 14 5 0 0 

9 66489205 A:G 
LINC01410, 
PTGER4P2-
CDK2AP2P2 

Intergenic 2.35E-05 4 15 0 0 

21 10935167 TG:
- TPTE Intronic 2.35E-05 0 19 0 0 

4 190544967 A:G LINC01060, 
LINC01262 Intergenic 0.000141 1 0 5 0 

15 90172474 A:G KIF7 Intronic 0.000141 1 0 5 0 
10 42400172 A:T LOC441666 Intergenic 0.000141 0 1 0 5 
10 70139112 T:G RUFY2 Intronic 0.000141 0 1 0 5 
8 43094814 C:G HGSNAT, POTEA Intergenic 0.000141 0 1 0 5 
8 43094823 C:T HGSNAT, POTEA Intergenic 0.000141 0 1 0 5 

Table 4.11: Patient count test. The ten variants with the lowest p-values as tested by Fisher’s Exact Test 
for patient counts between the mild and severe SCA groups. Analysis includes all variants annotated in 
patients from King’s College London only. The lowest p-value is 2.35x10-5, and does not reach the 
threshold of 1.71x10-8 required for statistical significance after Bonferroni Correction. Hom and Het refer to 
the number of patients found to be homozygous or heterozygous respectively, within the mild or severe 
patient groups. 
 
None of the variants in the mild or severe patient groups reached statistical significance when 

tested for significance by the patient count test in Table 4.11, or the homozygous count test in 

Table 4.13.  

However, statistical significance was reached using the allele frequency test in Table 4.12, 

finding variants significantly enriched in both the severe group compared to the mild, and vice 

versa. The ten most significant variants from the allele frequency test are shown in Table 4.12, 

and seven of these pass the Bonferroni corrected p-value threshold of <1.71x10-8.  
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      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

4 190544967 A:G LINC01060, LINC01262 Intergenic 1.01E-08 1 0 5 0 
15 90172474 A:G KIF7 Intronic 1.01E-08 1 0 5 0 
1 246677104 A:C SMYD3, LOC255654 Intergenic 1.01E-08 18 0 0 0 
2 54885314 A:T SPTBN1 Intronic 1.01E-08 18 0 0 0 
2 64881017 C:G SERTAD2 UTR5 1.01E-08 18 0 0 0 
2 64881018 G:C SERTAD2 UTR5 1.01E-08 18 0 0 0 
2 71148045 C:T VAX2 Intronic 1.01E-08 18 0 0 0 

12 63073959 G:T PPM1H Intronic 4.37E-08 17 1 0 0 
2 74856123 C:T M1AP Intronic 4.37E-08 17 1 0 0 
7 81358712 G:A HGF Intronic 4.37E-08 17 1 0 0 

Table 4.12: Allele frequency test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for allele frequency between the mild and severe SCA groups. Analysis includes all variants 
annotated in patients from King’s College London only. Only p-values for the first seven variants fall below 
the Bonferroni corrected threshold of 1.71x10-8 for statistical significance. Hom and Het refer to the number 
of patients found to be homozygous or heterozygous respectively, within the mild or severe patient groups. 
 

Comparing the most significant results of the allele frequency test to those of the homozygous 

count test (Table 4.12 & Table 4.13 respectively), it is clear that there is a lot of overlap. This is 

expected given that the variants with the highest allele frequency will often be those that are 

homozygous in the most patients. Interestingly those variants that reach statistical significance 

in the allele frequency test are far above the threshold in the homozygous count test, 

presumably due to the doubling of the sample number in the former. This demonstrates how the 

technique used in the analyses can artificially alter the significance of the findings. 

 

      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

4 190544967 A:G LINC01060, 
LINC01262 Intergenic 0.000141 1 0 5 0 

15 90172474 A:G KIF7 Intronic 0.000141 1 0 5 0 

1 246677104 A:C SMYD3, 
LOC255654 Intergenic 0.000141 18 0 0 0 

2 54885314 A:T SPTBN1 Intronic 0.000141 18 0 0 0 
2 64881017 C:G SERTAD2 UTR5 0.000141 18 0 0 0 
2 64881018 G:C SERTAD2 UTR5 0.000141 18 0 0 0 
2 71148045 C:T VAX2 Intronic 0.000141 18 0 0 0 
2 92315552 T:A ACTR3BP2 Intergenic 0.000471 0 0 4 0 
10 125622253 A:- CPXM2 Intronic 0.000471 19 0 1 3 

12 126517773 G:A LINC00939, 
LOC101927464 Intergenic 0.000471 0 11 4 1 

Table 4.13: Homozygous count test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for homozygous patient count between the mild and severe SCA groups. Analysis includes all 
variants annotated in patients from King’s College London only. The lowest p-value is 0.000141, and does 
not reach the threshold of 1.71x10-8 required for statistical significance after Bonferroni Correction. Hom 
and Het refer to the number of patients found to be homozygous or heterozygous respectively, within the 
mild or severe patient groups. 
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4.5.2.2 Mild and Severe including SWiTCH Trial Exomes 

Patient count, allele frequency and homozygous count tests for variants enriched in either the 

mild or severe SCA patient groups were repeated, with the SWiTCH trial patients included in the 

severe group. The top ten most significant of the 3,860,685 variants tested are shown for each 

these tests in Table 4.14, Table 4.15 and Table 4.16.  

Seven of the ten most significant variants from the patient count test in Table 4.14 are 

intergenic.  

      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

16 13359272 C:T SHISA9, 
ERCC4 Intergenic 8.16E-25 14 5 0 0 

12 48418556 G:T COL2A1, 
SENP1 Intergenic 1.63E-23 15 4 1 0 

5 137024472 C:T KLHL3 Intronic 1.63E-23 15 4 1 0 
2 91694185 T:C LOC654342 Intergenic 1.63E-23 1 18 1 0 

3 153725251 T:C 
C3orf79, 

ARHGEF26-
AS1 

Intergenic 1.63E-23 16 3 1 0 

6 31336926 -:TT HLA-B, MICA Intergenic 1.63E-23 15 4 0 1 

4 45615916 T:G GNPDA2, 
GABRG1 Intergenic 1.63E-23 17 2 1 0 

11 71140156 C:T FLJ42102, 
DHCR7 Intergenic 1.63E-23 9 10 1 0 

14 57116979 A:G TMEM260 Downstream 1.63E-23 18 1 1 0 
3 96712868 A:T EPHA6 Intronic 1.63E-23 6 13 0 1 

Table 4.14: Patient count test. 10 most significant variants from Fisher’s Exact Test for patient count 
between Mild and Severe groups, including 132 severe patients from SWiTCH. The lowest p value is 
8.16x10-25, and all ten of these variants reach the significance threshold of 1.30x10-8. Hom and Het refer to 
the number of patients found to be homozygous or heterozygous respectively, within the mild or severe 
patient groups. 
 
 

      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

18 8336695 -:GAAGGG PTPRM Intronic 7.13E-47 19 0 1 0 
13 42017682 T:G OR7E37P ncRNA 1.02E-44 19 0 2 0 
19 48564545 A:G PLA2G4C Intronic 1.02E-44 19 0 2 0 
4 8790898 G:A CPZ, HMX1 Intergenic 1.02E-44 19 0 2 0 
14 57116979 A:G TMEM260 Downstream 1.85E-44 18 1 1 0 
12 63073959 G:T PPM1H Intronic 3.2E-43 17 1 0 0 

12 125670964 A:C AACS, 
TMEM132B Intergenic 6.45E-43 19 0 3 0 

12 125670970 A:C AACS, 
TMEM132B Intergenic 6.45E-43 19 0 3 0 

15 91590948 A:T LOC101926
911, SV2B Intergenic 6.45E-43 19 0 3 0 

15 95111778 A:G MCTP2, 
LOC440311 Intergenic 6.45E-43 19 0 3 0 

Table 4.15: Allele Frequency Test. 10 most significant variants from Fisher’s Exact Test for allele 
frequency between Mild and Severe groups, including 132 severe patients from SWiTCH. The lowest p 
value is 7.13x10-47, and all ten of these variants reach the significance threshold of 1.30x10-8. Hom and 
Het refer to the number of patients found to be homozygous or heterozygous respectively, within the mild 
or severe patient groups. 
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Table 4.15 shows the most significant variants from the allele frequency test, one SNP, the 

downstream mutation in TMEM260 was also present in the patient count and homozygous 

count tests in Table 4.14 and Table 4.16. 

      Mild Severe 

Chr Position Var Gene Type P Value Hom Het Hom Het 

18 8336695 -:GAAGGG PTPRM Intronic 1.63E-23 19 0 1 0 
13 42017682 T:G OR7E37P ncRNA 1.71E-22 19 0 2 0 
19 48564545 A:G PLA2G4C Intronic 1.71E-22 19 0 2 0 
4 8790898 G:A CPZ, HMX1 Intergenic 1.71E-22 19 0 2 0 

12 125670964 A:C AACS, 
TMEM132B Intergenic 1.26E-21 19 0 3 0 

12 125670970 A:C AACS, 
TMEM132B Intergenic 1.26E-21 19 0 3 0 

12 2039690 A:G LINC00940 ncRNA 1.26E-21 19 0 3 2 

15 91590948 A:T LOC101926911, 
SV2B Intergenic 1.26E-21 19 0 3 0 

15 95111778 A:G MCTP2, 
LOC440311 Intergenic 1.26E-21 19 0 3 0 

17 33307703 C:- LIG3 Intronic 1.26E-21 19 0 3 1 
Table 4.16: Homozygous count test. 10 most significant variants from Fisher’s Exact Test for homozygous 
patient count between Mild and Severe groups, including 132 severe patients from SWiTCH. The lowest p 
value is 1.63x10-23, and all ten of these variants reach the significance threshold of 1.30x10-8. Hom and 
Het refer to the number of patients found to be homozygous or heterozygous respectively, within the mild 
or severe patient groups. 
 
The ten most significant results from the homozygous count test are shown in Table 4.16. As 

was observed previously in 4.5.2.1, there was a large overlap between the most significant 

variants from the allele frequency test and the homozygous count test. Only two of the variants 

in Table 4.16 were absent from Table 4.15. 

These results present interesting, statistically significant candidate variants located at gene loci 

that could have a biologically plausible effect on the SCA phenotype, e.g. SMYD3, SENP1, 

KLHL3 and TMEM123B. However, in these cases it seems very unlikely that any of the variants 

are able to influence the gene function, being mostly intergenic or intronic, and not disrupting 

annotated transcription factor binding sites. In contrast, some variants have a plausible 

mechanism for disruption of gene regulation, e.g. being situated in a densely populated 

transcription factor binding site, or deletion of CG dinucleotides from a CpG island, but affect 

genes with functions that seem very unlikely to influence the SCA phenotype. 

The ten most significant variants for each of the three analyses all reach the Bonferroni 

corrected p-value threshold required for statistical significance. This shows that including the 

exome data for the US SCA patients from the SWiTCH clinical trial greatly increases the power 

to identify statistically significant differences between the two groups. However, due to the size 
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of the SWiTCH dataset, and the fact that it is made up of SCA patients recruited from the US, 

the two groups being compared are no longer separated solely by SCA phenotype severity, but 

also by geographic location and ethnic ancestry. 

Of the variants presented in these results, none occur in the coding region. Intergenic, intronic 

and other non-coding regions have a much higher tolerance for genetic variation, since they are 

less likely to have a serious impact on gene function, and therefore are not strongly selected for 

or against. This genetic variation therefore accumulates in the non-coding areas of the genome 

over time, and can produce a lot of ‘noise’ when performing genome-wide analyses. It is worth 

noting that this is not always the case, and that there are some important non-coding regulatory 

elements associated with SCA and the Beta globin locus e.g. the ‘Corfu’ deletion in an 

intergenic region at the β-globin locus, that results in dysregulation and increased HBF 

expression (described in more detail in 1.3)458. 

 

4.5.2.3 Mild and Severe including SWiTCH, with non-coding variants removed  

In order to avoid the noise generated by the large number of non-coding variants, the analyses 

performed in 4.5.2.2 were repeated, but this time with the intergenic, intronic, upstream and 

downstream mutations removed.  

As described in 2.2.1.1 and 2.2.1.2, two different exome capture kits were used for library 

preparation. Agilent SureSelect was used for all 19 mild patients, as well as the 5 severe 

patients from King’s College Hospital, while Roche NimbleGen was used for the US dataset that 

makes up the rest of the severe patient group. The coverage of the genome varies between 

different capture kits, especially in the non-coding regions, and could therefore identify false-

positive associations purely due to the sampling technique used for each group.  

To account for any discrepancies in the ncRNA targeted, lists of ncRNA were generated for 

both the SureSelect and NimbleGen groups, and each ncRNA was only included in the study if 

at least one variant in one sample was observed in both the SureSelect and the NimbleGen 

groups. 4988 ncRNA were found to be shared between the groups, out of a total of 5324 and 

5778 for SureSelect and NimbleGen datasets respectively, the full list is shown in Appendix 7, 

and is summarised in 4.3.1.4. 

The results of the analyses are shown in Table 4.17, Table 4.18 and Table 4.19, for the patient 

count test, allele frequency test, and homozygous count test respectively. A full list of the 2,442 

significant variants is included in Appendix 8. 
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       Mild Severe 

Chr Position Var Gene Type 
CADD 
Phred 
score 

P Value Hom Het Hom Het 

7 77326410 T:C APTR ncRNA 6.86 1.71E-22 15 4 2 0 
13 42017682 T:G OR7E37P ncRNA 0.06 1.71E-22 19 0 2 0 

X 6975782 C:G HDHD1 Exonic 
SNP 1.77 1.26E-21 10 9 1 2 

18 77440128 T:G CTDP1 Exonic 
SNP 0.00 2.13E-21 12 6 1 0 

5 150311858 T:- ZNF300P1 ncRNA 
splicing 8.19 7.23E-21 10 9 4 0 

1 31973125 GAGTCT
GTCTG:- LINC01225 ncRNA 9.51 7.23E-21 7 12 1 3 

1 31973409 G:A LINC01225 ncRNA 7.15 7.23E-21 7 12 1 3 
21 15646397 A:G ABCC13 ncRNA 2.64 7.23E-21 12 7 4 0 
5 150311622 A:G ZNF300P1 ncRNA 1.68 7.23E-21 12 7 4 0 
5 150311678 A:G ZNF300P1 ncRNA 0.11 7.23E-21 12 7 4 0 

Table 4.17: Filtered patient count test. 10 most significant variants from Fisher’s Exact Test for patient 
count between Mild and Severe groups, including 132 severe patients from SWiTCH. The lowest p value is 
1.71x10-22, and all ten of these variants reach the significance threshold of 2.29x10-8. Hom and Het refer to 
the number of patients found to be homozygous or heterozygous respectively, within the mild or severe 
patient groups. Intergenic, intronic, downstream and upstream variants have been removed, along with 
ncRNA exclusive to one exome capture kit. 
 

After the removal of the non-coding variants, variants that affect amino acid sequence are 

observed among the most significant results, such as the SNP in HDHD1, a pseudouridine-5’-

phosphatase that is active in erythrocytes, and is involved in the processing of by-products of 

RNA degradation459. 

       Mild Severe 

Chr Position Var Gene Type 
CADD 
Phred 
Score 

P Value Hom Het Hom Het 

13 42017682 T:G OR7E37P ncRNA 0.06 1.02E-44 19 0 2 0 
12 2039690 A:G LINC00940 ncRNA 0.57 2.38E-41 19 0 3 2 
2 186655726 G:A FSIP2 Exonic SNP 6.58 2.38E-41 19 0 3 2 
7 128294446 A:G LINC01000 ncRNA 2.16 2.38E-41 19 0 4 0 

17 41961451 T:C MPP2 Splicing 0.70 1.25E-40 19 0 4 1 
4 156706482 G:A GUCY1B3 Splicing 2.79 1.25E-40 19 0 4 1 
X 65382685 T:C HEPH Exonic SNP 0.00 1.25E-40 19 0 4 1 
3 149376058 T:G WWTR1-AS1 ncRNA 5.76 3.08E-40 18 0 2 0 
3 51990119 A:C GPR62 Exonic SNP 5.20 3.08E-40 18 0 2 0 
1 221507141 C:T C1orf140 ncRNA 5.12 5.98E-40 19 0 5 0 

Table 4.18: Filtered allele frequency test. 10 most significant variants from Fisher’s Exact Test for allele 
frequency between Mild and Severe groups, including 132 severe patients from SWiTCH. The lowest p 
value is 1.02x10-44, and all ten of these variants reach the significance threshold of 2.29x10-8. Hom and 
Het refer to the number of patients found to be homozygous or heterozygous respectively, within the mild 
or severe patient groups. Intergenic, intronic, downstream and upstream variants have been removed, 
along with ncRNA exclusive to one exome capture kit. 
 

The most significant results from the filtered allele frequency and homozygous count tests are 

shown in Table 4.18 and Table 4.19. The ten variants identified are the same for the two tests, 

differing only in the order in which the significance is ranked e.g. MPP2 has a lower ranking in 
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the allele frequency test than the homozygous count test, since it is observed in a heterozygous 

severe patient as well as the four homozygous severe patients, whereas this is ignored in the 

homozygous count test. 

       Mild Severe 

Chr Position Var Gene Type 
CADD 
Phred 
score 

P Value Hom Het Hom Het 

13 42017682 T:G OR7E37P ncRNA 0.06 1.71E-22 19 0 2 0 
12 2039690 A:G LINC00940 ncRNA 0.57 1.26E-21 19 0 3 2 
2 186655726 G:A FSIP2 Exonic SNP 6.58 1.26E-21 19 0 3 2 
17 41961451 T:C MPP2 Splicing 0.70 7.23E-21 19 0 4 1 
4 156706482 G:A GUCY1B3 Splicing 2.79 7.23E-21 19 0 4 1 
7 128294446 A:G LINC01000 ncRNA 2.16 7.23E-21 19 0 4 0 
X 65382685 T:C HEPH Exonic SNP 0.00 7.23E-21 19 0 4 1 
3 149376058 T:G WWTR1-AS1 ncRNA 5.76 2.11E-20 18 0 2 0 
3 51990119 A:C GPR62 Exonic SNP 5.20 2.11E-20 18 0 2 0 
1 221507141 C:T C1orf140 ncRNA 5.12 3.47E-20 19 0 5 0 

Table 4.19: Filtered homozygous count test. 10 most significant variants from Fisher’s Exact Test for 
homozygous patient count between Mild and Severe groups, including 132 severe patients from SWiTCH. 
The lowest p value is 1.71x10-22, and all ten of these variants reach the significance threshold of 2.29x10-8. 
Hom and Het refer to the number of patients found to be homozygous or heterozygous respectively, within 
the mild or severe patient groups. Intergenic, intronic, downstream and upstream variants have been 
removed, along with ncRNA exclusive to one exome capture kit. 
 

A coding variant was observed in HEPH. HEPH encodes Hephaestin, a ferroxidase involved in 

the processing of iron in intestinal cells, and delivery into the blood460. This provides an obvious 

biological mechanism by which sickle cell severity could be affected, lower blood iron levels 

would limit haemoglobin production, perhaps to below the threshold required to aggregate and 

distort the erythrocyte membrane. This would alleviate the symptoms caused by vaso-occlusive 

events, but severe anaemia would still be observed. 

Two splicing variants were identified in MPP2 and GUCY1B3, both of which are homozygous in 

all 19 mild patients and four severe patients, as well as being heterozygous in one severe 

patient. GUCY1B3 is a subunit of guanylate cyclase, which acts as the receptor for the NO 

signalling pathway, it directly recognises NO and is then activated to convert GTP to cGMP, 

triggering the downstream signalling cascade461. Mutations at this locus have previously been 

associated with hypertension and cardiovascular disease462. Impaired guanylate cyclase could 

either reduce response to NO signalling, or even leave it constitutively active. NO is a 

vasodilator that has previously been linked to the pathophysiology of SCA and pulmonary 

hypertension, and is thought to contribute to the mechanism of action of HU24,241,244,463. 

Some of these variants occur in genes that have a plausible biological mechanism for 

influencing SCA phenotype, including HDHD1, HEPH and GUCY1B3. However, many others 
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can be excluded based on their expression patterns, these include FSIP2, which is expressed 

exclusively in spermatocytes, and is therefore unlikely to affect SCA disease pathophysiology. 

Table 4.17, Table 4.18 and Table 4.19 also include the CADD Phred-like score for each of the 

variants identified. None of the variants have a CADD Phred-like score higher than 10.00, and 

so do not fall within the top 10% of variants predicted to affect gene function. The variants in 

HDHD1, HEPH and GUCY1B3 have particularly low CADD Phred-like scores of 1.77, 0.001 and 

2.79 respectively, and are not predicted to affect gene function. 

 

4.5.2.4 Most of the significant variants associate with ancestry, not disease severity 

Many of the variants highlighted as being statistically significant between the groups are likely to 

be due to the difference in ancestry of the UK SCA patients compared to the USA SCA patients. 

In this study, all 19 mild patients were recruited from SCA patients living in London, whereas the 

severe group consists of 132 patients recruited from the USA, plus an additional 5 from London. 

Of the variants shown in Table 4.17, Table 4.18 and Table 4.19, the SNPs are present in either 

18 or 19 of the 19 mild patients, and no more than 5 of the severe patients. This sort of 

imbalance is to be expected given that the tests are looking to identify imbalances between the 

two groups. However, upon further investigation it was discovered that apart from the variant in 

CTDP1, the candidate variants present in the severe group were only observed in the five 

patients that were recruited from the UK. In the case of CTDP1, the homozygous severe case 

was from the US dataset. 

For example, the ncRNA SNP in C1orf140 was statistically significant due to the fact that it is 

homozygous in all 19 patients from the mild group, and is homozygous in only 5 out of the 137 

severe patients. However this can also be viewed as being homozygous in all 24 of the UK SCA 

patients, and completely absent from the 132 US patients. It is unlikely that this is due to the 

difference in the capture kits used between the two datasets, since the ncRNA filtering step that 

was applied ensures that only ncRNA with variants present in the data from both capture kits 

are included. 

 

4.5.3 Analysis 3: Statistical Comparison of SWiTCH and HUSTLE SCA Patient Groups 

The analyses described previously focus on the identification of variants either protective or 

causative of the severe SCA phenotype, by identifying imbalances in frequency in our mild SCA 

patient group from KCH compared to a severe group made up of mostly US patients. 
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Taking a different approach, it was decided to investigate variants enriched in either the 

SWiTCH or HUSTLE patient groups within the US dataset. As described in 4.2.2, the SWiTCH 

group contains severe SCA patients, having had a stroke before the age of 17.5, whereas the 

HUSTLE group shows no particular bias for severity, and any SCA patient receiving HU therapy 

at St Jude’s Children’s Research Hospital could be included. Based on these assumptions, a 

comparison of these groups could inform on any variants enriched (or depleted) in the stroke 

group compared to the general SCA population. 

 

4.5.3.1 SWiTCH and HUSTLE Fisher’s Exact Tests 

Three Fisher’s Exact Tests were performed on the variants identified in SWiTCH and HUSTLE 

exome groups, testing for patient count, allele frequency and homozygous count, as was 

performed for the mild and severe groups described in 4.5.2. The results of these analyses are 

shown in Table 4.20, Table 4.21 and Table 4.22 respectively, and it can be seen that the 

majority of the most significant variants are non-coding, similar to the observations in the mild vs 

severe patient tests in 4.5.2.1 and 4.5.2.2. A total of 2,673,201 variants were tested, giving a 

Bonferroni corrected p-value threshold for statistical significance of 1.87x10-8. 

      
SWiTCH HUSTLE 

Chr Position Var Gene Type P Value Hom Het Hom Het 

16 12009279 A:G GSPT1 Exonic SNP 8.26E-17 91 4 30 1 
4 151177432 A:C DCLK2 UTR3 4.35E-16 60 21 17 3 
2 166810373 A:G TTC21B Upstream 4.35E-16 81 0 20 0 

11 209002 A:G RIC8A Intronic 4.99E-16 75 15 25 3 
5 101596078 TATAT:- SLCO4C1 Intronic 6.59E-16 51 24 12 4 

14 88852283 G:- SPATA7 Intronic 7.95E-16 96 0 34 0 
9 33264540 C:G BAG1 Exonic SNP 8.08E-16 69 10 17 2 

21 38081577 C:G SIM2 Intronic 8.08E-16 61 18 12 7 
19 56041255 C:G SBK2 Exonic SNP 8.08E-16 78 1 19 0 
1 2518186 A:G FAM213B Upstream 8.77E-16 86 0 25 0 

Table 4.20: Patient count test. The ten variants with the lowest p-values as tested by Fisher’s Exact Test 
for patient counts between the SWiTCH and HUSTLE SCA groups. The lowest p-value is 8.26x10-17, and 
all ten variants reach the threshold of 1.87x10-8 required for statistical significance after Bonferroni 
Correction. Hom and Het refer to the number of patients found to be homozygous or heterozygous 
respectively, within the SWiTCH or HUSTLE patient groups. 
 

Three protein coding variants were identified in Table 4.20, including a SNP in BAG1. BAG1 is a 

cell cycle regulator that upregulates anti-apoptotic factors, including BCL2, and has been shown 

to be essential for healthy development of both haematopoietic and neuronal cells in mice464,465.  

 

      
SWiTCH HUSTLE 
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Chr Position Var Gene Type P Value Hom Het Hom Het 

16 12009279 A:G GSPT1 Exonic SNP 4.37E-31 91 4 30 1 
2 166810373 A:G TTC21B Upstream 4.66E-31 81 0 20 0 

14 88852283 G:- SPATA7 Intronic 1.65E-30 96 0 34 0 
1 2518186 A:G FAM213B Upstream 3.39E-30 86 0 25 0 

19 56041255 C:G SBK2 Exonic SNP 4.43E-30 78 1 19 0 
1 1229680 G:T ACAP3 Intronic 5.61E-30 101 0 40 0 
1 115631924 C:T TSPAN2 Intronic 1.51E-29 74 5 16 4 

22 31687142 G:C PIK3IP1 Intronic 2.16E-29 79 0 20 0 
1 246670281 G:C SMYD3 Intronic 6.96E-29 81 0 22 0 
5 149737221 T:G TCOF1 UTR5 7.55E-29 77 0 19 0 

Table 4.21: Allele frequency test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for allele frequency between the SWiTCH and HUSTLE SCA groups. The lowest p-value is 4.37x10-

31, and all ten variants reach the threshold of 1.87x10-8 required for statistical significance after Bonferroni 
Correction. Hom and Het refer to the number of patients found to be homozygous or heterozygous 
respectively, within the SWiTCH or HUSTLE patient groups. 

 
      SWITCH HUSTLE 

Chr Position Var Gene Type P Value Hom Het Hom Het 

2 166810373 A:G TTC21B Upstream 4.35E-16 81 0 20 0 
14 88852283 G:- SPATA7 Intronic 7.95E-16 96 0 34 0 
1 2518186 A:G FAM213B Upstream 8.77E-16 86 0 25 0 
1 1229680 G:T ACAP3 Intronic 1.11E-15 101 0 40 0 
1 115631924 C:T TSPAN2 Intronic 1.69E-15 74 5 16 4 

16 12009279 A:G GSPT1 Exonic SNP 1.69E-15 91 4 30 1 
19 56041255 C:G SBK2 Exonic SNP 2.08E-15 78 1 19 0 
22 31687142 G:C PIK3IP1 Intronic 2.91E-15 79 0 20 0 
5 149737221 T:G TCOF1 UTR5 5.30E-15 77 0 19 0 
1 246670281 G:C SMYD3 Intronic 5.36E-15 81 0 22 0 

Table 4.22: Homozygous count test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for homozygous patients between the SWiTCH and HUSTLE SCA groups. The lowest p-value is 
4.35x10-16, and all ten variants reach the threshold of 1.87x10-8 required for statistical significance after 
Bonferroni Correction. Hom and Het refer to the number of patients found to be homozygous or 
heterozygous respectively, within the SWiTCH or HUSTLE patient groups. 
 

As was observed in the mild vs severe Fisher’s Exact Tests performed in 4.5.2.1 and 4.5.2.2, 

the majority of the most significant variants occur in the non-coding region. In these previous 

tests no coding variants were identified, however in the SWiTCH vs HUSTLE tests, three exonic 

SNPs were observed, in GSPT1, SBK2, and BAG1, which has been linked to healthy regulation 

of haematopoietic cells465. 

 

4.5.3.2 SWiTCH and HUSTLE Fisher’s Exact Test with Non-Coding Variants Removed 

Table 4.23, Table 4.24 and Table 4.25 show the most significant results from the three Fisher’s 

Exact Tests shown in 4.5.3.1, with the non-coding variants removed. CADD Phred-like scores 

are also included in these tables. A full list of the 236 significant variants is included in Appendix 

9. Three of these coding variants (in GSPT1, BAG1 and SBK2) were described in the previous 

section. The variants observed in GSPT1 and SBK2 had very low CADD Phred-like scores of 
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0.001 and 0.02 respectively, and are not predicted to affect gene function. The variant in BAG1 

however had a high CADD Phred-like score of 16.29. 

        SWiTCH HUSTLE 

Chr Position Var Gene Type Details 
CADD 
Phred 
score 

P Value Hom Het Hom Het 

16 12009279 A:G GSPT1 Nonsyn. SNP V100A 0.00 8.26E-17 91 4 30 1 
9 33264540 C:G BAG1 Nonsyn. SNP G45R 16.29 8.08E-16 69 10 17 2 

19 56041255 C:G SBK2 Nonsyn. SNP A298P 0.02 8.08E-16 78 1 19 0 
19 10676681 T:C KRI1 Nonsyn. SNP T5A 0.00 3.99E-15 54 26 15 6 
7 6193521 G:C USP42 Nonsyn. SNP R779P 11.14 5.30E-15 56 21 12 7 
5 140537363 C:T PCDHB17P ncRNA n/a 19.17 1.01E-14 76 3 20 1 

19 51015404 T:C ASPDH Nonsyn. SNP Q266R 9.60 2.19E-14 75 10 24 3 
1 1361641 C:T TMEM88B Nonsyn. SNP P45L 5.81 2.66E-14 62 36 32 8 

19 4670313 C:G MYDGF Nonsyn. SNP G12R 22.90 2.74E-14 31 37 4 10 
5 54830295 T:G RNF138P1 ncRNA n/a 0.53 3.29E-14 51 24 16 3 

Table 4.23: Patient count test. The ten variants with the lowest p-values as tested by Fisher’s Exact Test 
for patient counts between the SWiTCH and HUSTLE SCA groups, with non-coding variants removed. The 
lowest p-value is 8.26x10-17, and all ten variants reach the threshold of 1.87x10-8 required for statistical 
significance after Bonferroni Correction. Hom and Het refer to the number of patients found to be 
homozygous or heterozygous respectively, within the SWiTCH or HUSTLE patient groups. 
 

A variant with a high CADD Phred-like score of 22.90 was observed in MYDGF, resulting in the 

substitution of glycine to arginine at position 12 in the signal peptide. MYDGF is a myeloid 

derived growth factor, produced by monocytes and macrophages in response to ischaemic 

tissue damage in the heart, preventing apoptosis by activating the PI3K signalling pathway, as 

well as stimulating endothelial cell growth and angiogenesis in the damaged tissue466. MYDGF 

has been proposed as a therapeutic treatment to repair cardiac tissues after ischaemic injuries, 

and if its ability to minimise tissue damage and reperfusion injury are observed in other tissues 

as well, MYDGF could have an important role in modulating the severity of SCA symptoms 

triggered by vaso-occlusive events466.  
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        SWiTCH HUSTLE 

Chr Position Var Gene Type Details 
CADD 
Phred 
score 

P Value Hom Het Hom Het 

16 12009279 A:G GSPT1 Nonsyn. SNP V100A 0.00 4.37E-31 91 4 30 1 
19 56041255 C:G SBK2 Nonsyn. SNP A298P 0.02 4.43E-30 78 1 19 0 
5 140537363 C:T PCDHB17P ncRNA n/a 19.17 1.21E-27 76 3 20 1 
9 33264540 C:G BAG1 Nonsyn. SNP G45R 16.29 2.75E-27 69 10 17 2 
5 132149684 G:C SOWAHA Nonsyn. SNP R124P 9.51 2.42E-26 76 1 21 0 
8 120220779 G:- MAL2 Frameshift Del V23fs 24.90 3.56E-26 91 0 34 0 
7 140396475 -:G NDUFB2-AS1 ncRNA n/a 8.17 4.20E-26 94 0 37 0 

16 25704145 A:G HS3ST4 Nonsyn. SNP Q136R 7.82 6.80E-26 65 7 14 3 
1 151881885 A:C THEM4 Nonsyn. SNP L17R 0.09 9.36E-26 62 5 12 2 
8 145106943 CC:- OPLAH Frameshift Del R1166fs 23.90 1.07E-25 73 0 19 0 

Table 4.24: Allele frequency test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for allele frequency between the SWiTCH and HUSTLE SCA groups, with non-coding variants 
removed. The lowest p-value is 4.31x10-31, and all ten variants reach the threshold of 1.87x10-8 required 
for statistical significance after Bonferroni Correction. Hom and Het refer to the number of patients found to 
be homozygous or heterozygous respectively, within the SWiTCH or HUSTLE patient groups. 
 

        SWiTCH HUSTLE 

Chr Position Var Gene Type Details 
CADD 
Phred 
score 

P Value Hom Het Hom Het 

16 12009279 A:G GSPT1 Nonsyn. SNP V100A 0.00 1.70E-15 91 4 30 1 
19 56041255 C:G SBK2 Nonsyn. SNP A298P 0.02 2.08E-15 78 1 19 0 
5 140537363 C:T PCDHB17P ncRNA n/a 19.17 4.56E-14 76 3 20 1 
8 120220779 G:- MAL2 Frameshift Del V23fs 24.90 1.12E-13 91 0 34 0 
7 140396475 -:G NDUFB2-AS1 ncRNA n/a 8.17 1.27E-13 94 0 37 0 
5 132149684 G:C SOWAHA Nonsyn. SNP R124P 9.51 1.5E-13 76 1 21 0 
8 145106943 CC:- OPLAH Frameshift Del R1166fs 23.9 1.94E-13 73 0 19 0 
4 48492434 G:C ZAR1 Nonsyn. SNP Q42H 0.01 2.3E-13 70 3 17 2 

16 25704145 A:G HS3ST4 Nonsyn. SNP Q136R 7.82 3.82E-13 65 7 14 3 
9 33264540 C:G BAG1 Nonsyn. SNP G45R 16.29 5.45E-13 69 10 17 2 

Table 4.25: Homozygous count test. The ten variants with the lowest p-values as tested by Fisher’s Exact 
Test for homozygous patient counts between the SWiTCH and HUSTLE SCA groups, with non-coding 
variants removed. The lowest p-value is 1.70x10-15, and all ten variants reach the threshold of 1.87x10-8 
required for statistical significance after Bonferroni Correction. Hom and Het refer to the number of patients 
found to be homozygous or heterozygous respectively, within the SWiTCH or HUSTLE patient groups. 
 

Table 4.25 shows the most significant variants identified by the homozygous count test. Nine of 

the variants shown were also identified in the allele frequency test in Table 4.24, likely due to 

the fact that the allele frequency test favours homozygous variants. 

Of the variants identified by these analyses, two SNPs in BAG1 and MYDGF present plausible 

biological mechanisms for influencing the severity of the SCA phenotype. Both of these variants 

have CADD Phred-like scores >10.00 (16.29 and 22.90 respectively), and are significantly 

enriched in the SWiTCH severe patient group compared to the HUSTLE group. The G45R 

variant in BAG1 was among the most significant variants for all three tests, being present in 79 
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of 132 SWiTCH patients (69 homozygous and ten heterozygous), and 19 of 140 HUSTLE 

patients (17 homozygous and two heterozygous). The G12R variant in MYDGF was observed in 

68 of the 132 SWiTCH patients (31 homozygous and 37 heterozygous), and 14 of the 140 

HUSTLE patients (four homozygous and ten heterozygous), and was only included among the 

most significant variants for the patient count test, not the allele frequency of homozygous count 

tests, since the majority of the patients were heterozygous. This MYDGF variant had a p-value 

of 1.80x10-19 for the allele frequency test, reaching the threshold of p<1.87x10-8 required for 

significance. However for the homozygous count test the p-value was 2.5x10-7, and was not 

significant, suggesting that if this SNP is affecting the SCA phenotype, it is acting under a 

dominant model, and that homozygosity is not required. 
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4.6 Summary of the SCA WES Results 

Using WES data generated by this study and in combination with publicly available datasets, we 

were able to identify nine potential modifiers of the SCA disease phenotype (Table 4.26). These 

nine candidates occur in genes with biologically plausible mechanisms to influence the 

pathophysiology of the disease, and warrant further testing in vitro through the use of CRISPR 

genomic editing. 

       Mild Severe  

Chr Pos Var Gene Type Details 
CADD 
Phred 
score 

Hom Het Het  

Analysis 1: Variants in known modifier genes  
16 230574 T:C HBQ1 Nonsyn. 

SNP L30P 24.7 0 1 0  

19 12995802 T:C KLF1 Nonsyn. 
SNP H329R 27.5 0 1 0  

Analysis 1: Loss of function variants  
16 4519398 G:A NMRAL1 Stopgain R37X 35.00 0 2 0  

Analysis 1: Missense variants  

2 217498310 
-

:CGCT
GCTGC 

IGFBP2 Non-FS 
Ins L22PLLL 12.54 14 0 0  

13 28674628 T:C FLT3 Nonsyn. 
SNP D7G 16.24 7 7 0  

2 40178042 AG:GC ETS2 Nonsyn. 
SNP R140A 10.57 4 7 0  

Analysis 1: ncRNA variants  
11 65272383 C:T MALAT1 ncRNA 

exonic n/a n/a 1 10 0  

 

       SWiTCH HUSTLE 

Chr Pos Var Gene Type Details 
CADD 
Phred 
score 

Hom Het Hom Het 

Analysis 3: Variants enriched in SWiTCH or HUSTLE patients 

9 33264540 C:G BAG1 Nonsyn. 
SNP G45R 16.29 69 10 17 2 

19 4670313 C:G MYDGF Nonsyn. 
SNP G12R 22.9 31 37 4 10 

 
Table 4.26: Table summarising the nine candidate modifier variants identified by the different exome 
sequencing analysis strategies used. 7 of these variants were identified in the mild SCA patient group from 
KCH using the variant filtering pipeline developed in Analysis 1. Two variants in BAG1 and MYDGF were 
identified by Fisher’s Exact Tests for enrichment in either the SWiTCH or HUSTLE SCA exome groups. 
 

Seven of these modifier variants were identified in the Mild SCA patient group and are predicted 

to protect patients from the severe SCA phenotype, whilst two were identified as being enriched 

in the SWiTCH cohort relative to the HUSTLE cohort, and are predicted to increase phenotypic 

severity. 
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The two variants in KLF1 & HBQ1 were identified by searching for variants in known modifier 

genes that had made it through the variant filtering pathway, and both would be expected to 

elicit their effect on the SCA phenotype by de-repressing early stage globin genes (g-globin and 

q-globin respectively). 

Five other candidate variants were identified by Analysis 1, and are present in more than one of 

the mild SCA patients at KCH, and absent from the severe SCA groups from KCH and 

SWiTCH, having made it through the variant filtering pipeline. These five variants include a loss 

of function mutation in NMRAL1, three missense mutations in IGFBP2, FLT3 and ETS2, and 

one variant in the ncRNA MALAT1. The variant in NMRAL1 would be expected to affect nitric 

oxide signalling, while IGFBP2, FLT3, ETS2 and MALAT1 have all previously been associated 

with haematopoietic regulation. 

Two candidate variants in BAG1 and MYDGF were identified by Analysis 3, being significantly 

enriched in the severe SWiTCH cohort compared to the HUSTLE cohort, which is 

representative of the general SCA population. Therefore, these variants are predicted to 

increase rather than ameliorate the severity of the SCA phenotype. The variant in BAG1 is 

expected to affect haematopoietic regulation, while MYDGF has previously been associated 

with recovery from ischaemic injury. 

The potential mechanisms by which these mutations may affect the SCA phenotype, and how 

they could be functionally analysed in future work, are discussed in more detail in 6.2.4. 

If the predicted impact of these candidates on gene function is confirmed in vitro, this will 

demonstrate the power of WES and our variant filtering pipeline as a tool for identification of 

phenotype altering variants, especially given the small sample size of the mild SCA patient 

group. This would also support our hypothesis that many candidate genetic modifiers of SCA 

remain to be identified, and would demonstrate the importance of carrying out genome-wide 

sequencing studies on a larger scale to identify additional genetic factors influencing phenotype 

severity in global SCA populations. 
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 Results: CRISPR Genomic Editing - Functional 

Analysis of SNPs in vitro 

WES provides a powerful tool for identification of variants associated with disease phenotypes. 

However, after in silico identification, functional analyses must be conducted to determine 

whether candidate variants are actually causative of the phenotype, or whether the observed 

association is coincidental. The advent of CRISPR genomic editing has greatly improved our 

ability to introduce specific mutations into the genome, and is a powerful tool for analysing the 

effect that specific variants have on gene function in vitro. 

We plan to use CRISPR genomic editing to functionally assess the candidate variants that were 

identified by the WES study performed in Chapter 4. Prior to identification of these variants, we 

set out to familiarise ourselves with the CRISPR-Cas9 system, and to set up a pipeline in our 

laboratory to allow efficient introduction of candidate variants into cell lines in vitro. 

This part of the thesis work aimed to test and optimise the CRISPR pipeline by investigating two 

previously identified variants that are thought to affect regulation of the β-globin locus. These 

two variants affect ASH1L and KLF1, and their discovery and proposed mechanisms of action 

are described below. We aimed to introduce these variants into a K562 cell line, and to perform 

preliminary functional analyses to determine what effect the mutations have on globin gene 

expression. K562 is an erythroleukaemic cell line, and is commonly used as a model for the 

erythroid lineages. The reasons for selecting K562 cells is described in more detail below, in 

5.2.3. 

Cas9 plasmids containing gRNAs designed to target the regions of interest were constructed as 

described in 2.4.2, initially using DNA repair templates incorporated into the Cas9 plasmids. As 

is described below in 5.1, this technique was chosen for simplicity, to allow transfection of a 

single plasmid that contained all three of the components for our CRISPR-Cas9 system. 

 

5.1 CRISPR-Cas9 Strategy and Design 

As described in 1.7.3, there are now a wide variety of CRISPR-based techniques and 

methodologies routinely used in laboratories around the world, that can be tailored and 

implemented according to the specific requirements of the intended experiments. While this 

makes CRISPR-Cas9 a powerful and versatile tool for laboratory research, the wealth of 
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information available also makes it very complex when initially establishing a CRISPR based 

protocol in a laboratory, due to the numerous options available.  

 

5.1.1 gRNA & Template Sequence Design 

When targeting the introduction of specific mutations, the options for gRNA design are quite 

limited, since the distance between the DSB and the target is a key factor for determining  

successful incorporation rates of the mutation467. gRNA design therefore involved a compromise 

between distance from the SNP site, computationally predicted cleavage efficiency, and number 

of predicted off-target binding sites (described in detail in 2.4.1). 

Design of the template sequence is obviously restricted regarding the target SNP, but is less 

specific regarding disruption of the PAM site. Disruption of the PAM site prevents repeated 

cleavage of the target sequence once the template is correctly incorporated, and so increases 

efficiency. However, introducing additional sequence changes may also affect gene function 

independently of the SNP of interest. Since the KLF1 SNP is intronic, and hypothesised to affect 

transcription factor binding, it is therefore possible that the PAM disruption mutation could also 

affect the transcription factor binding at that site. In the case of the ASH1L SNP, the sequence 

allows the disruption of the PAM site without altering the amino acid sequence of the protein, 

but could potentially have an impact on protein levels as a result of altered codon usage. For 

the chosen PAM disruptions, asparagine AAC to AAT have usage frequencies of 0.54 and 0.46 

respectively, while arginine CGG to CGA have 0.21 and 0.11468. 

It was decided that the benefits of increased efficiency outweighed these risks, and PAM 

disruption mutations were included in the template sequence. Additional PAM disruption only 

controls were also designed, in order to assay the effects that the PAM disruption mutations 

themselves have on gene function. 

 

5.1.2 Delivery Methods for gRNA, Cas9 & Template Sequence 

A straightforward approach was initially chosen for this project, where all three components of 

the system (Cas9, gRNA and template DNA) were included in a single plasmid (Figure 2.1). 

Plasmid transfection of K562 cells is well established, and this allowed the use of a single GFP 

reporter to confirm that all the necessary components had been successfully introduced into the 

cell. The use of a plasmid for the source of each of the components also makes the technique 

more cost-effective, since once constructed, the plasmid can be cloned and modified with 
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minimal additional cost in the laboratory, rather than purchasing each of the individual 

components for each experiment. 

The main disadvantage of this technique was that it required a relatively large plasmid 

(approximately 10kb), which had adverse effects on transfection efficiency, (as described in 

5.3.1). While it can be seen that this did not have a significant impact on cleavage efficiency in 

cells that had been successfully transfected, it was believed that the low copy number of the 

template DNA had an adverse effect on HDR rates. In response to this, the protocol was 

subsequently modified, and co-transfection with siRNA to knock down key components of the 

NHEJ pathway (Ku70 and Ligase IV), as well as separate introduction of the template sequence 

in the form of ssODNs were tested. Each of these techniques had previously been 

demonstrated to increase template uptake353,469. 

Template sequences for insertion into the plasmid were designed with approximately 350bp 

homology arms either side of the target mutation. This may also have affected the efficiency of 

template incorporation, since it is recommended that longer flanking sequences of 500-800bp 

are used for optimal HDR340,350,351. The shorter arms were chosen in this case in order to try to 

reduce the size of the plasmid, and also to facilitate the cloning process, with PCR fragments of 

750bp much easier to clone into the plasmids than fragments of 1,600bp. 

For the design of the ssODN template sequences, the homology arms were reduced to 50bp 

flanking the target sequence, which had previously been demonstrated to enable efficient 

HDR469. Other factors associated with ssODN design, such as using as asymmetric homology 

arms, could also be used to increase HDR efficiency in the future470. These, as well as other 

possible techniques to improve HDR efficiency are described in more detail in 6.3.3.  

 

5.2 Candidate SNPs Modifying Expression from the β-globin Locus 

Two candidate SNPs in KLF1 and ASH1L had previously been identified by Professor Thein’s 

laboratory group. These were identified by independent genetic analyses looking for SNPs 

causative of an altered pattern of expression from the β-globin locus. This project aimed to 

establish a CRISPR-Cas9 system for genomic editing in the laboratory, and to use this system 

to replicate the KLF1 & ASH1L SNPs in the erythroleukaemic K562 cell line. This will allow 

future functional analysis of each variant in vitro, providing insight to any effect that these 

mutations may be having on globin gene expression in these patients. 
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5.2.1 KLF1 SNP 

This SNP was identified in a currently unpublished genetic study performed by Professor 

Thein’s laboratory. The study performed Sanger sequencing across the full length of the KLF1 

gene, including introns, in selected patients from their collection of >800 SCA DNA samples. 50 

patients were selected, 25 for having abnormally high HbF, and 25 for having abnormally low 

HbF, with no known cause. The study hypothesised that as a key regulator of the γ-globin to β-

globin switch, novel KLF1 mutations could be causing this strong phenotypic effect. The SNP 

(rs10407416) was overrepresented in the high HbF group (9/25) compared to the low HbF 

group (1/25), and is hypothesised to result in the downregulation of KLF1. 

This candidate SNP (rs10407416) is an intronic C to G substitution, situated 135bp downstream 

of exon 1, in an intron of approximately 900bp. This first intron of KLF1 has previously been 

suggested as a potential downstream regulatory element, and contains highly conserved GATA 

and SMAD5 binding sites, although these are situated approximately 500bp downstream of the 

candidate SNP471. Reporter assays have also demonstrated that inclusion of intron 1 is required 

for optimal expression from the KLF1 promoter471. The site of the KLF1 candidate SNP  

The SNP falls within possible DNA binding sites for transcription factors ZBTB7A and KDM5B 

(as annotated by data from the ENCODE Consortium472,473, Figure 5.1), and it is hypothesised 

that the SNP may disrupt KLF1 expression by interfering with transcription factor binding, 

resulting in de-repression of γ-globin expression. However, upon further inspection of the ChIP-

Seq tracks (Figure 5.1), the signal strength underlying the predicted ZBTB7A binding is 

relatively weak in K562 cells. KDM5B appears to be strongly associated with the full length of 

the KLF1 gene in K562 cells, which suggests a strong involvement with the repression of KLF1 

in these cells. It is not clear whether binding at the specific site of the SNP would be required to 

maintain this pattern. 

Despite the lack of reliable evidence form the ChIP-Seq data that a specific transcription factor 

binding at this intronic site significantly affects KLF1 expression, it was decided that the location 

of a known regulatory element 500bp downstream, as the well as the well-established role that 

KLF1 plays in globin gene expression, was sufficient to warrant further investigation. 

Loss of function of KLF1 has previously been linked to increased HbF levels, and its role in 

regulation of erythropoiesis and the switch from γ-globin to β-globin expression is well 

established, and is described more fully in 1.6.1 and 1.3. As such, we hypothesised that this 
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intronic SNP would reduce KLF1 expression levels, and as a result prevent the efficient switch 

to β-globin expression, accounting for the increased HbF levels observed in this patient. 

 

 

Figure 5.1: Figure showing the full length of the KLF1 gene as viewed in the UCSC Genome Browser 
(http://genome.ucsc.edu - Assembly GRCh37/hg19380). Transcription occurs on the negative strand, and 
the red line indicates the position of the KLF1 SNP (rs10407416) in intron 1. The tracks below show ChIP-
Seq signals for KDM5B, as well as two ZBTB7A replicates in K562 cells. It can be seen that there is a 
strong signal for KDM5B along the length of the gene, but that the signal for ZBTB7A is weak. This data 
was produced as part of the ENCODE Project474, and the tracks for KDM5B, and ZBTB7A have UCSC 
accession numbers wgEncodeEH002085 & wgEncodeEH001620, respectively.  
 

 

5.2.2 ASH1L SNP 

This SNP was identified by a study investigating a large family with heterozygous cases of β-

thalassaemia affecting three generations, that did not associate with genetic haplotype at either 

β-globin or α-globin loci475,476. The study had used Whole Genome Sequencing to analyses two 

affected and two unaffected family members, and identified 15 variants that were then 

sequenced in the remaining 25 family members476. Of these 15 variants, four were present in all 

seven of the affected family members. Two of these genes were found to be expressed in 

human erythroid progenitor cells. LRIG2 was expressed at low levels throughout differentiation, 

whereas increased ASH1L expression occurred shortly before the increase in globin gene 

expression476. The SNP in ASH1L was therefore identified as the most likely candidate to cause 

the b-thalassaemia phenotype. 

 

ASH1L is a histone methyltransferase that tri-methylates H3K4 at actively transcribed genes, 

some evidence also suggests that it mono-methylates and di-methylates H3K36477,478. 

Methylated H3K4 and H3K36 act as positive markers for active transcription, and prevent the 

addition of repressive histone markers such as tri-methylation at H3K27479. ASH1L has 
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previously been shown to occupy promoters at both the α-globin and β-globin like loci, and 

ASH1L shRNA knock down results in loss of H3K4 tri-methylation and transcription at these 

promoters in human erythroid progenitors in an in vitro culture476,480. This suggests a 

mechanism by which ASH1L is recruited to the promoter and gene body of the b-globin gene, 

and tri-methylates H3K4, to respectively initiate and protect active transcription478. It is therefore 

plausible that any mutation impairing either the recruitment or catalytic activity of ASH1L would 

adversely affect b-globin expression, and could cause the observed phenotype. 

ASH1L consists of a SET domain, which performs the methyltransferase function, as well as 

four AT hook motifs, a Bromo-domain and a PHD motif478,481. AT hook motifs bind to DNA, while 

Bromo-domains and PHD motifs are thought to be involved in recognising specific histone 

modifications (acetylated lysine and methylated lysine respectively), suggesting that ASH1L 

activity may also be regulated by the chromatin state482–484. The candidate SNP identified in 

ASH1L (rs151028549) is a T to C substitution, that results in Arginine at position 1615 being 

replaced by Glycine, in a serine rich region. While the SNP is not in close proximity to any of the 

domains previously associated with recruitment or catalytic function, it was selected for further 

investigation due to the strength of the evidence for its involvement in b-thalassaemia, as 

identified by the study.  

Since the ASH1L SNP appears to be the strongest candidate for causing b-thalassaemia in this 

family, we hypothesised that when introduced into K562 cells, this SNP would present a similar 

effect, and would significantly reduce β-globin expression. 

 

5.2.3 K562 Cells as a model for the KLF1 & ASH1L SNPs 

There are several cell systems available for the study of erythropoiesis and globin expression, 

ranging from primary human erythroid cells extracted from peripheral blood or bone marrow, to 

established cell lines such as K562. For this project, K562 cells were chosen for the initial 

functional analyses, since they are well established as a laboratory model, and were thought to 

be less sensitive to the stressful conditions associated with the CRISPR-Cas9 system. This was 

a particularly important consideration, since the main aim of this project was to optimise a 

CRISPR pipeline in the laboratory. 

As was described in detail in 1.4.3 and 3.1, it is possible to culture primary erythroid cells from 

tissue including peripheral blood and bone marrow, and to induce them to differentiate in vitro. 
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While the use of CRISPR-Cas9 to introduce loss of function mutations to these cells has 

subsequently been demonstrated, this results in a genetically heterogeneous population of cells 

with a limited lifespan485. This would not have been appropriate for this project, and it was 

anticipated that the length of time required to introduce specific mutations, rather than targeted 

deletions, would have presented a particular challenge for a short-lived culture. Additionally, 

given our experience of the sensitivity of these cultures (3.1), it was thought that expansion of 

clonal cultures from single cells would have been unlikely to be successful. 

Induced Pluripotent Stem Cells (iPSCs) expressing the globin genes can be derived from 

erythroblasts, and would provide a more stable alternative to working with primary cell 

cultures486,487. This would be especially valuable if we were able to generate iPSCs from the 

erythroblasts of the individual patients themselves, as has recently been demonstrated for a b-

thalassaemia patient, where the causative mutation was subsequently corrected in vitro using 

CRSIPR-Cas9488. This technique would likely be the most informative on the impact of the 

SNPs of interest on globin gene expression, and would be worth pursuing in the future. 

However, due to the technical difficulties associated with generating iPSCs, as well as the high 

stress associated with the CRISPR-Cas9 system, it was decided that the technique should be 

optimised in a less sensitive model initially. 

Another alternative would be the use of already established immortalised erythroblast lines such 

as HUDEP-2, and more recently BEL-A, which retain an erythroblast phenotype, and can be 

induced to differentiate all the way through to terminal erythrocytes489,490. Over the last few 

years, HUDEP-2 has become widely used as an in vitro model of globin regulation and 

erythropoiesis82,85,491. HUDEP-2 cells were investigated as a potential model for use in this 

project, however at the time, our collaborators in Professor Thein’s laboratory were 

experiencing difficulty in reliably culturing these cells, particularly in low cell numbers. It was 

therefore decided, as with iPSCs, that while this would be very informative, and worth pursuing 

in the future, the fact that the CRISPR-Cas9 pipeline had not been used in our laboratory before 

meant that a simpler model should be used first, to optimise the process. 

K562 erythroleukaemic cells were chosen as a robust and easy to culture cell line, with active 

expression form the globin gene loci. K562 is a less accurate model than those discussed 

above, for example due to the fact that KLF1 expression is very low, and expression of g-globin 

is much higher than b-globin, which is more similar to the foetal pattern of globin expression, 
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that our SNPs of interest are hypothesised to replicate67,492,493. Haemoglobin production also low 

in these cells, however can be increased by induction of differentiation, where the cells acquire 

a red/pink colour494. As a cancer cell line that was generated over 40 years ago, K562 also has 

an abnormal karyotype, being triploid for most chromosomes (although this karyotyping may not 

be accurate for our cells, and should be updated), and the relevance of it as a model for 

erythroid tissues is questionable390,495. 

While KLF1 expression is very low in these cells, it was hypothesised that KLF1 expression may 

still change in response to disruption of the putative regulatory region. For investigation of the 

ASH1L SNP, K562 is more appropriate. It had been previously shown that ASH1L binds to the 

both the a-globin and b-globin promoters in K562 cells, and that this correlates with H3K4me3 

at these regions. It was therefore hypothesised that introduction of the ASH1L SNP would 

disrupt either the recruitment or catalytic activity of ASH1L. 

 

5.3 Transfections & Single Cell Sorting 

5.3.1 Nucleofection is the most efficient transfection technique for K562 cells 

Three different transfection techniques were tested for efficiency; Lipofectamine, Calcium 

Phosphate and Nucleofection (2.6.4). K562 cells were sorted into single cell cultures 48 hours 

after transfection, using GFP as the positive marker for successful transfection. A comparison of 

the three transfection techniques is shown in Figure 5.2. Efficiency for the Lipofectamine and 

Calcium Phosphate transfections was very low, ranging from 0.2% to 2.1%. Transfection by 

Nucleofection was also low, but was comparatively higher with a mean efficiency of 15.2% 

despite using half the amount of plasmid of the Lipofectamine transfections, and a quarter of 

that used for the Calcium Phosphate transfections. Different amounts of plasmid were used as a 

result of the different restrictions on reaction volume for each technique. 

All subsequent transfections were therefore performed using the Nucleofection method. 

Because successfully transfected cells were sorted into single cell cultures for clonal expansion, 

the low transfection efficiency did not affect the experimental outcome, since a maximum of 288 

cultures were grown from each transfection reaction (3 x 96 well plates), and even 0.2% of the 

initial 1x106 cells provides 2,000 successfully transfected cells. 
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Figure 5.2: Cas9 plasmid transfections in K562 cells. A – Percentage of cells GFP+ 48 hours after 
Lipofectamine transfection with different amounts of plasmid. Transfection rate increased with increasing 
concentrations of plasmid, but was very inefficient, reaching only 2% of live cells. B – Percentage of cells 
GFP+ 48 hours after transfection using the three different techniques. Due to differing restrictions on 
transfection reaction volume for each technique, different plasmid amounts were used: Lipofectamine - 
6μg, Calcium Phosphate - 12μg and Nucleofection - 3μg. Nucleofection was by far the most successful, 
despite using the least amount of plasmid. Error bars indicate standard error, for each of the Lipofectamine 
transfections and the Nucleofection n = 3, for Calcium Phosphate n = 4.  
 

5.3.2 Low K562 viability from single cell cultures 

After the sorting of GFP+ cells into separate wells by FACS, less than 10% of the clonal cultures 

survived. This is shown in Figure 5.3, which summarise survival rates from eight different 

nucleofection experiments, which resulted in the plating of 1,920 single cell sorted cultures, of 

which only 170 survived and were expanded into clonal cell cultures. 
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Figure 5.3: Summary of clonal expansions from 12 nucleofection reactions. 4 where only the Cas9-gRNA-
Template plasmids were transfected, 6 with the plasmids and siRNA for knockdown of the NHEJ pathway, 
and 2 with the plasmids and additional ssODN templates. A – Summary of the 1,920 single cell cultures 
plated, of which only 190 survived. B – Percentage survival for each of the three nucleofection conditions. 
Survival was low for all experiments, but interestingly was lowest when transfected with the plasmid only. 
Error bars indicate Standard Error. 
  
This loss in viability could be due to the hydrodynamic stress associated with the FACS 

process, or as a result of the isolated culture itself, growing in the absence of the growth factors 

usually secreted into the culture medium when cultured in larger numbers398,496,497. The latter 

could be accounted for by culturing in ‘conditioned’ medium, whereby the medium from an 

untransfected K562 culture is removed after 24 hours, filtered to prevent contamination, and 

then used to grow the single cell cultures. 
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5.4 Template Incorporation into Genome 

5.4.1 CRISPR-Cas9 Cleavage Activity is High, but Template Uptake is Low in K562 Cells 

CRISPR-Cas9 experiments were designed to provide the optimal environment for the intended 

outcome, using PAM site disruptions to prevent repeated cutting once the correct variant has 

been introduced, and ensuring that the artificial template was more abundant in the cell than the 

endogenous template, of which there should only be two copies. Despite this, the editing 

process relies on the stochastic action of Cas9 and the endogenous repair machinery within 

each cell, and with one million cells per transfection reaction, a variety of genotypes are 

produced. The broad range of observed genotypes confirms the need to isolate individual cells 

and culture clonal cell lines that can be analysed individually, rather than producing a 

heterogeneous mixture of cells with different genotypes.  

It is difficult to determine the exact mechanism by which any given genotype has been 

introduced into a cell using CRISPR. For example, a cell line homozygous for the desired 

variant may have undergone successful cleavage and template introduction independently on 

both alleles, or only on one allele which then acted as a template for the second. Similarly, for 

cell lines homozygous for the wild type allele, it is possible that no cleavage took place at all, or 

that one allele was cleaved, but that the other allele was used as the HDR template. 

In order to assess the efficiency of the CRISPR-Cas9 experiments based on the genotypes 

produced, some assumptions were made. Firstly, that any cell line with the wild type genotype 

experienced no Cas9 cleavage. Secondly, any cell lines homozygous for a variant underwent 

HDR. And thirdly, any allele other than the wild type or the template was produced as a result of 

NHEJ.  

The results of the genetic screening for successful CRISPR cell lines after transfection with the 

CRISPR-Cas9 plasmids and expansion from single cell cultures are shown in Figure 5.4. These 

results illustrate that Cas9 is being directed to the correct genomic loci and cleaving efficiently, 

with genetic variants introduced in 79.5% of the cell lines screened. However, introduction of the 

SNPs of interest was much less successful, with only 25.8% of these variants including an allele 

matching the desired mutation, and none of these were homozygous.  
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Figure 5.4: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 Template 
containing plasmids only, after subsequent FACS and clonal expansion. A – Summarises the results for all 
plasmids. B – Shows the results for each plasmid individually. Plasmids used were for KLF1 gRNA 2, SNP 
and PAM only control (KS2 & KP2 respectively), and ASH1L gRNA 1, SNP and PAM only control (AS1 & 
AP1 respectively). Total refers to the number of cell lines that survived the single cell sorting stage. Cut 
refers to cell lines where any genetic changes have occurred, SNP refers to cell lines where the template 
mutations have been introduced on any allele, Hom Cut or SNP refers to cell lines defined as Cut or SNP 
that are homozygous. The results show that the gRNA-Cas9 plasmids cut with high efficiency, but 
introduction of the template is much less successful. Only one cell line was homozygous for a genetic 
variant, and none were homozygous for the SNPs of interest. 
 

Only one cell line was homozygous for a genetic modification introduced by CRISPR, equating 

to 2.6% of all the cell lines screened. This variant was a 10bp deletion at the gRNA cleavage 

site, and the majority of variants observed in all cell lines were also short insertions or deletions. 

These variants are presumably the result of the NHEJ pathway, and are likely so prevalent due 

to the fact that the products are very stable. Using the same rationale as for the PAM site 

disruption mutations, these insertions or deletions either disrupt the PAM site or remove it 

completely. Some deletions also result in the removal of the gRNA target sequence, and are 

very efficient at preventing repeated cleavage by Cas9. 



198 
 

The results suggest that NHEJ is occurring much more frequently than HDR in K562 cells, this 

is demonstrated not only by the frequency of insertions and deletions, but by how few of the cell 

lines had homozygous mutations, suggesting that it is rare for the already modified allele to be 

used as a template. 

This highlights one of the main limitations of using the CRISPR machinery for targeted genetic 

editing. While the introduction of DSB by Cas9 is efficient, the endogenous repair machinery is 

relied on to introduce the target mutations, and the efficiency of this varies between cell types 

depending on the activity of the NHEJ and HDR pathways. 

 

5.4.2 siRNA Mediated Knockdown of NHEJ pathway 

Template sequence uptake in K562 cell lines after cleavage by Cas9 was very low. This was 

thought to be due to high activity of the NHEJ pathway, with fewer double strand breaks being 

repaired by the HDR pathway that is required to incorporate the repair template into the 

genome. It was hypothesised that by inhibiting the NHEJ pathway, increased repair through the 

HDR pathway would be observed. This was tested by siRNA mediated knockdown of 

components of the NHEJ machinery, with siRNA transfected simultaneously with the CRISPR-

Cas9 and template containing plasmid. 

 

 

Figure 5.5: rtPCR analysis of NHEJ knockdown by siRNA in K562 cells, normalised firstly to β-actin 
expression, and then to the untransfected control. rtPCR analysis was performed on RNA extracted 48 
hours after transfection with either scrambled siRNA or targeted siRNA. A – Knockdown using siRNA for 
XRCC6. B – Knockdown using siRNA for Ligase IV. Results show reduced expression for both XRCC6 
and Ligase IV, 11.6% and 60.2% of untransfected K562 expression respectively. Expression appears to 
have increased in the scrambled controls, although large variation was observed. Two sets of PCR primer 
pairs were used for each gene targeted, XRCC6-1 & 2 and Lig4-1 & 2, and results are consistent between 
each pair. Error bars indicate 95% confidence intervals, calculated from three biological replicates, each 
with two technical replicates. Knockdown of XRCC6 was statistically significant compared to scrambled, 
whereas Ligase IV was not, likely due to the variation observed between the samples transfected with 
scrambled siRNA. 
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In order to inhibit the NHEJ pathway, either the first or the last component of the pathway were 

knocked down, (XRCC6 or Ligase IV respectively). XRCC6 (X-Ray Repair Cross 

Complementing 6, aka Ku70) forms a dimer with Ku80, and this complex recognises and binds 

the dsDNA ends and acts as a scaffold to recruit the other factors of the NHEJ pathway498–502. 

Ligase IV is recruited to the NHEJ complex at the double strand break through interaction with 

XRCC4, and performs the ligation step, re-joining the two ends of the double strand break502,503. 

The results in Figure 5.5 show that knockdown of XRCC6 & Ligase IV by siRNA was successful 

in K562 cells. Cells transfected with siRNA targeting XRCC6 demonstrated a roughly 90% 

reduction in XRCC6 expression, while cells transfected with siRNA targeting Ligase IV had a 

less efficient knockdown of roughly 40%, and did not reach statistical significance. The 

scrambled siRNA controls showed were highly variable for both genes assayed. 

Having tested and confirmed the successful knockdown of XRCC6 and Ligase IV by siRNA, the 

CRISPR-Cas9 plasmids containing the SNP templates were co-transfected with XRCC6, Ligase 

IV or scrambled siRNA. The results of the genetic screening of clonal cell lines arising from 

these transfections are summarised in Figure 5.6. 

It is not clear why the error associated with the scrambled siRNA transfected controls in Figure 

5.5 is so high. Given the small degree of variation observed in the targeted siRNA cultures, and 

the fact that two pairs of target primers were used, it seems unlikely that this is an artefact of the 

rt-PCR itself. It has been shown that non-targeting siRNA can trigger a stress response within 

the cell, which may account for some of the variation that is observed504. If these siRNA 

experiments are used to reduces NHEJ activity in the future, western blotting analysis should be 

run in parallel with the rt-PCR to investigate this variation and confirm that the changes in 

expression are observed at the protein level. 

The results in Figure 5.6 show that Cas9 cleavage activity is not reduced in cell lines co-

transfected with siRNA targeting either Ligase IV or XRCC6, with 75.0% containing a genetic 

variant when transfected with scrambled siRNA, 80.1% for Ligase IV and 88% for XRCC6, with 

an average efficiency of 81.3%. Compared to the 79.5% observed for the data shown in Figure 

5.4 for cells transfected with the CRISPR-Cas9 plasmid only, this demonstrates that siRNA 

transfection does not alter Cas9 activity, despite the fact that limitations to the transfection 

volume mean that half as much plasmid is used during the co-transfection experiments. This 

shows that while the amount of plasmid used for transfection is important for transfection 

efficiency, it has a limited effect on Cas9 activity within the cell. 
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This is important to take into consideration when designing experiments to generate clonal cell 

lines, where only a few hundred individual cells are positively selected for downstream culturing, 

making transfection efficiency largely irrelevant. 

 

Figure 5.6: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 Template 
containing plasmids and siRNA, after subsequent FACS and clonal expansion. Total refers to the number 
of cell lines that survived the single cell sorting stage. Cut refers to cell lines where any genetic changes 
have occurred, SNP refers to cell lines where the template mutations have been introduced on any allele, 
Hom Cut or SNP refers to cell lines defined as Cut or SNP that are homozygous. A – Summary of the cell 
lines transfected with each siRNA set: Scrambled, Ligase IV or XRCC6, as well as the cumulative counts 
for all three. B & C – Summary of the cell lines transfected with either KS2 or AS1 plasmids, B shows total 
counts, C shows percentage of total. Results show that co-transfection with siRNA for one of the target 
genes does not appear to affect Cas9 cutting activity, which is consistent between the three groups. No 
homozygous variants were observed after transfection with scrambled siRNA, whereas three were 
observed with siRNA targeting Ligase IV, and one for XRCC6. Overall survival of cell lines past the single 
cell FACS stage is much higher for the KS2 plasmid than for AS1. One of the AS1 cell lines (KAX9) was 
found to be homozygous for the desired SNP. 
 
Interestingly, it appears that cells transfected with the AS1 plasmid have a much lower survival 

rate than for the KS2 plasmid, with 6.3% and 19.8% of single cell sorted cultures surviving 
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respectively. This was also observed in the plasmid only transfections shown in Figure 5.4, 

where the two K2 gRNA containing plasmids, KS2 & KP2 had survival rates of 7.3% and 5.7% 

respectively, compared to the A2 gRNA containing plasmids, which both had 3.6% survival. 

Similarly, a higher percentage of KS2 cell lines showed Cas9 activity (89.5% vs 55.6% for AS2), 

however this was not observed in the plasmid only transfections. 

 
 

While it was shown that siRNA did not impair Cas9 activity, it remains unclear as to whether or 

not knocking down the Ligase IV or XRCC6 influenced the number of homozygous variants that 

were produced, since the success rate was still extremely low. No homozygous variants were 

generated using the scrambled siRNA, compared to 3 for the Ligase IV siRNA and 1 for the 

XRCC6 siRNA, making the HDR rates for each 0.0%, 11.5% and 4.0% respectively, compared 

to 2.6% for the plasmid only transfections from Figure 5.4. A Poisson Test was performed on 

these success rates, using 0.026 (from the plasmid only transfections) as the expected mean. 

The results of this test are shown in Table 5.1, and indicate that siRNA mediated knockdown of 

Ligase IV resulted in a significant increase in the success rate of generating homozygous 

genetic variants in K562 cells. However, due to the extremely low numbers involved in 

calculation of the mean success rates, these tests may not be reliable 

 

Null Hypothesis: λ = 0.026 Scrambled Ligase IV XRCC6 
Number of Cell Lines (n) 24 26 25 

Expected Successes (X = n x λ) 0.624 0.676 0.65 
Observed Successes (O) 0 3 1 

P(O = X) 0.5358 0.0262 0.3393 
 
Table 5.1: Poisson test for significance for the increase in success rate when generating homozygous 
genetic variants using siRNA for Ligase IV or XRCC6. Probability was calculated using the Poisson 
Distribution Calculator made available online at ncalculators.com505. K562 cells transfected with siRNA 
targeting Ligase IV were the only group able to reject the null hypothesis at the significance threshold of 
p<0.05. 
 

Knocking down Ligase IV yielded three homozygous variants for the KS2 plasmid, however 

these were all deletions, and did not contain the SNP of interest. Knocking down XRCC6 

yielded one homozygous variant for the AS1 plasmid, which was found to be homozygous for 

the variant of interest, and therefore can be confirmed to be a successful introduction of the 

ASH1L SNP into K562 cells using the CRISPR-Cas9 system. 
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5.4.3 ssODN to Increase Template Copy Number in the Cell 

While the results of knocking down Ligase IV may have shown a significant increase in the 

number of homologous genetic variants generated, the success rate was still very low, and the 

rate of successful template incorporation into the genome was even lower. It was thought that 

this was possibly due to the low copy number of the template in the cell, as a result of the low 

transfection efficiency.  

Reducing the amount of plasmid used for transfection was shown to not affect Cas9 activity, but 

reducing the amount of template may affect HDR efficiency. Having the template incorporated 

into the CRISPR-Cas9 plasmid allows selection for successful transfection using GFP 

expression, however it limits the intracellular levels of template to a ratio of 1:1 with the larger 

plasmid. 

 

Figure 5.7: Summary of genetic analyses of K562 cell lines after transfection with CRISPR-Cas9 Template 
containing plasmids and ssODN templates for KS2 or KP2 (ssKS2 or ssKP2), after subsequent FACS and 
clonal expansion. Total refers to the number of cell lines that survived the single cell sorting stage. Cut 
refers to cell lines where any sequence changes have occurred, SNP refers to cell lines where the 
template mutations have been introduced on any allele, Hom Cut or Hom SNP refers to cell lines defined 
as Cut or SNP that are homozygous. A – Total cell line counts. B – Percentage of total. Cleavage was 
observed in all cell lines, and SNP uptake was high. Number of homozygous cell lines remained low, 
however two ssKS2 cell lines were homozygous for the SNP of interest (ssKS2-10 & ssKS2-29). 
 

It was hypothesised that introducing more copies of the template may increase HDR efficiency. 

Short 110bp ssODN templates were used to test this, and were transfected alongside the 

CRISPR-Cas9 plasmids which also contained the template sequences. These short ssODNs 
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have previously been used as a template for HDR alongside Zinc Finger Nuclease (ZFN) 

genomic editing techniques339,347, as well as with the CRISPR-Cas9 system384. 

Since a successful K562 cell line containing the ASH1L SNP had already been generated by 

this stage, only transfections targeting the generation of the KLF1 SNP were carried out. A 

summary of the cell lines generated by these transfections is shown in Figure 5.7, and shows 

that very low viability was observed for the ssODN + KP2 plasmid (ssKP2) transfections 

compared to ssODN + KS2 plasmid (ssKS2), with only 4 of 288 single cell cultures surviving 

compared to 41 of 288 for ssKS2. Interestingly, there was a 100% cleavage rate for the cell 

lines co-transfected with ssODN, and template uptake was observed in 36.6% and 50.0% of 

clones for ssKS2 and ssKP2 respectively.  

Homozygous variant introduction was still low, with only two homozygous clones. However 

these two clones were homozygous for the SNP of interest, and confirmed successful 

introduction of the KLF1 SNP into K562 cells using the CRISPR-Cas9 system. 
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5.5 ASH1L mutant K562 cell line KAX9 

5.5.1 Genotype of the K562 ASH1L mutant KAX9 

The cell lines that survived the single cell sorting process were screened by Sanger sequencing 

over the ASH1L SNP site. One successful homozygous cell line was generated for the ASH1L 

SNP (KAX9, Figure 5.8), which was produced by co-transfection of the AS1 plasmid with the 

siRNA for XRCC6. 

 

Figure 5.8: Sequence of the ASH1L SNP site of the K562 cell line that was homozygous for PAM 
disruption mutation and the SNP. K562 shows the wild type untransfected sequence. The green box/arrow 
shows the site of the C to T PAM disruption mutation. The red box/arrow shows the site of the A to G SNP 
of interest. A – MUSCLE alignment of the two sequences, with coding sequence displayed (antisense). 
The two SNPs can clearly be seen in the KAX9 sequence, and it can be seen that the SNP results in an 
arginine to Glycine substitution, while the PAM disruption does not affect the coding sequence. One other 
polymorphism was identified, but by investigating the sequence traces was confirmed to be an artefact of 
the base calling algorithm. B & C – Forward and Reverse sequence traces respectively. Due to the 
presence of large Sanger sequencing artefacts, that persisted despite repeated sequencing, both forward 
and reverse sequence traces are shown, to confirm that the both the PAM disruption and SNP are present. 
 

Sequencing artefacts like those in Figure 5.8 are often seen near the start of sequence traces, 

where large amounts of unbound fluorescent ddNTPs can cause large distortions, however this 

is not believed to be the case here. The site shown is approximately 80bp downstream from 

each sequencing primer, and the sequences both upstream and downstream of this region are 

free from these artefacts for both forward and reverse traces. The fact that these artefacts were 

observed when sequencing was repeated suggests that this is specific to the sequence and 

region, and the fact that it was observed in all cell lines assayed, including the K562 wild type 

controls, confirms that it is not a result of genomic disruption caused by Cas9 cleavage. While it 

is possible that it could be possible to generate cleaner chromatograms by testing different 

primer pairs, it is not necessary, and the clear presence of both the SNP and PAM disruption 
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mutation when sequenced in both directions (Figure 5.8) is sufficient to confirm correct 

incorporation of the template sequence. 

  

5.5.2 rtPCR Analysis of the K562 ASH1L mutant KAX9 

Expression of α-globin, β-globin and γ-globin were found to be significantly increased in the 

KAX9 cell line containing the ASH1L SNP compared to the wild type K562 cells (Figure 5.9). 

This was unexpected, given that the SNP was believed to be causative of β-thalassaemia, and 

it was predicted that K562 cells harbouring the mutation would show reduced expression of β-

globin. KLF1 expression remained unchanged in KAX9 compared to K562, suggesting that this 

global upregulation of globin gene expression was independent of the KLF1 regulatory pathway. 

A previous study investigating shRNA mediated knockdown of ASH1L in human erythroid 

progenitors demonstrated a decrease in globin gene expression, having the opposite effect of 

what was observed in the K562 experiments476. This decrease in globin expression correlated 

with reduced occupancy of ASH1L at the β-globin and α-globin promoters, and a reduction in 

H3K4 tri-methylation at these regions476. 

It is possible that the change in globin expression occurred as the result of the stressful 

CRISPR-Cas9 modification process, which involves high pressure FACS, single cell culturing 

and the introduction of double strand breaks into the genome. The stress involved in these 

processes is demonstrated by the low survival rates observed in 5.3.2, and it has been shown 

that K562 cells can be induced to differentiate under conditions of stress506,507. During stress 

induced differentiation, upregulation of all the globin genes is known to occur. However, this 

increase in globin expression is also accompanied by an increase in KLF1, which was not 

observed in the KAX9 cells (Figure 5.9)506. Similarly, there was no observed change in the 

colour of the KAX9 cell pellet, which for K562 cells turns a pink/red colour when differentiation is 

induced, as a result of increased haemoglobin production494. Due to the absence of these 

established markers of K562 differentiation, it is possible that the observed changes in globin 

gene expression are occurring directly as a result of the ASH1L SNP, since in K562 cells 

ASH1L is known to bind and tri-methylate H3K4 at promoters at both the α-globin and β-globin 

loci476. 
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Figure 5.9: rtPCR analyses of wt K562 and KAX9 cell lines. Graphs show relative expression of genes 
normalised to actin β, for A – β-globin (HBB), B – γ-globin (HBG), C – α-globin (HBA) and D – KLF1. Error 
bars indicate 95% confidence intervals, calculated from three technical replicates for each of the two cell 
lines. Expression of the globin genes is significantly increased in KAX9 compared to K562, and KLF1 
expression is unchanged. 
 

If the cells are being induced to undergo differentiation, either as a direct result of the SNP, or 

due to stress associated with the genomic editing process (discussed in 5.3), then this could 

account for some of the observed changes, since b-actin levels have been shown to decrease 

during erythroblast development508. A relative increase in globin gene expression would be 

observed if the levels of b-actin RNA were reduced in the KAX9 sample, this could either be a 

direct effect of the ASH1L SNP, a decrease triggered by differentiation in response to stress, as 

discussed above, or even due to degradation of the RNA sample. RNA degradation impairs 

PCR efficiency, and can drastically affect PCR based quantification assays509. Quality of RNA 

samples should be assessed in future to rule this out as a potential cause of the observed 
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affects, this could be assayed using a variety of techniques, including agarose gel 

electrophoresis, NanoDrop, or more sophisticated analysis by Agilent’s Bioanalyzer509. 

With general upregulation of the globin genes, it is difficult to directly detect any changes in the 

levels of β-globin and γ-globin that may be occurring as a result of the ASH1L SNP. To account 

for this, relative expression levels were normalised to α-globin instead of actin (Figure 5.10). 

While α-globin expression was observed to change between the K562 wild type and KAX9 cells 

(Figure 5.9), and it is generally not appropriate to normalise to a gene with variable expression, 

we believe that it is informative in this case. Since expression was increased in each of the 

globin genes, analysis of the changes in expression relative to each other provides insight into 

changes in patterns of expression from the loci separately from the general increase in 

expression that was observed.  

It is worth noting that the other genes at the α-globin and β-globin loci were not assayed in 

these experiments, and may provide useful insight into the pattern of expression changes 

occurring as a result of the ASH1L SNP. If general disruption of transcriptional regulation is 

occurring at these loci, as described above, then it would be expected that the transcriptionally 

repressed z-globin at the α-globin locus, as well as e-globin and perhaps even d-globin at the β-

globin locus would also have increased expression relative to β-globin. 

When normalised to α-globin levels, it appears that relative expression of β-globin was 

increased in KAX9 compared to K562, whilst γ-globin levels were decreased. This is further 

demonstrated by the ratio of γ-globin:β-globin, which is reduced by approximately 50% in KAX9, 

indicating a shift towards β-globin expression from γ-globin in these cells. 
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Figure 5.10: rtPCR analyses of wt K562 and KAX9 cell lines, normalised to either α-globin or β-globin 
expression. A – β-globin normalised to α-globin, B – γ-globin normalised to α-globin, C – γ-globin 
normalised to β-globin. Error bars indicate 95% confidence intervals, calculated from three technical 
replicates for each of the two cell lines. Results indicate that relative to α-globin, β-globin increased and γ-
globin decreased in KAX9 compared to wt K562. The ratio of γ-globin to β-globin transcripts also 
decreased in KAX9 cells. 
 

 

One explanation for the increased expression of β-globin in proportion to γ-globin, rather than 

the reverse, which is hypothesised to occur in vivo, is that the wild type K562 cell line strongly 

expresses γ-globin expression, while adult human erythroid cells strongly express β-globin. 

Under these different regulatory states, transcription at the β-globin locus could be affected 

differently by the ASH1L SNP. This would suggest that rather than causing a specific reduction 

in β-globin expression, a more general disruption of transcriptional regulation is observed. This 

is described in more detail in the discussion in 6.3.4. 
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5.6 KLF1 mutant K562 cell lines 

5.6.1 KLF1 CRISPR modified genotypes 

5.6.1.1 KLF1 SNP introduction 

The cell lines that survived the single cell sorting process were screened by Sanger sequencing 

over the KLF1 SNP site. Two cell lines were found to be homozygous for the KLF1 SNP 

(ssKS2-10 & ssKS2-29, Figure 5.11). 

Because of the nature of the SNP, and the fact that it is thought to interfere with transcriptional 

regulation through disruption of a DNA binding site, other cell lines with potentially disruptive 

genotypes were also selected to test this hypothesis. These include ssKS2-47, which was 

heterozygous for the SNP and the wild type allele, which is also shown in Figure 5.11. If 

transcriptional regulation is impaired on one allele, it would be expected that ssKS2-47 would 

present a phenotype similar to that observed in the homozygotes, but with a weaker effect size. 

 

Figure 5.11: Sanger sequencing trances of the KLF1 SNP site of K562 cell lines that incorporated the 
template sequence on at least one allele, and had no indel mutations on either allele. K562 shows the wild 
type untransfected sequence. ssKS2-10 and ssKS2-29 were homozygous for both the C to G PAM 
disruption (green box) and the C to G SNP of interest (red box). ssKS2-47 was heterozygous for both the 
PAM disruption and the KLF1 SNP. 
 

Three other heterozygous cell lines were also investigated: ssKS2-3, ssKS2-4 & ssKS2-45, all 

of which contained indel mutations (Figure 5.12). ssKS2-3 was heterozygous for the PAM 

disruption and SNP of interest, and the other allele contained a CT dinucleotide insertion 2bp 

downstream from the SNP site. This dinucleotide insertion is situated within the gRNA target 
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sequence, and likely disrupted gRNA binding, preventing repeat cleavage and incorporation of 

the target sequence. ssKS2-4 had the same dinucleotide insertion as was observed in ssKS2-3, 

but the other allele was wild type. ssKS2-4 was chosen due to the similarity in genotype with 

ssKS2-3, with the only difference being heterozygosity for the SNP of interest. It was thought 

that ssKS2-4 could be an informative control. 

 

Figure 5.12: Sanger sequencing trances of the KLF1 SNP site of three K562 cell lines that contained 
heterozygous indel mutations. K562 shows the wild type untransfected sequence. The green box shows 
the site of the C to G PAM disruption mutation. The red box shows the site of the C to G SNP of interest. 
Indel mutations prevent clear reading of the sequence from Sanger sequencing traces, since the two 
alleles are out of frame of each other. Therefore to fully characterise the genotypes of these cell lines, 
PCR amplicons were cloned and sequenced individually. (1) and (2) refer to two separate alleles for each 
cell line. ssKS2-3 and ssKS2-4 are both heterozygous for a dinucleotide insertion, and ssKS2-3 has the 
PAM disruption and SNP of interest on the other allele. ssKS2-45 is heterozygous for a 1bp deletion, and 
has the PAM disruption and SNP of interest on the other allele. 
 

ssKS2-45 was heterozygous for the PAM disruption and the SNP of interest, and the other 

allele contained a 1bp deletion of a cytosine 2bp downstream from the SNP site, and likely 
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disrupted gRNA binding similar to the mechanism suggested for the dinucleotide insertion in 

ssKS2-3. 

The three homozygous cell lines that were generated by co-transfection of the KS2 plasmid and 

Ligase IV siRNA were also investigated (KKL8, KKL11 & KKL17, Figure 5.13). Although none of 

these incorporated the template DNA, they each introduced indel mutations around the SNP 

site. KKL8 was homozygous for a 5bp deletion that covered the SNP site, starting immediately 

downstream of the site of the PAM disruption mutation. KKL11 was homozygous for the same 

CT dinucleotide insertion that was heterozygous in ssKS2-3 and ssKS2-4. KKL17 was 

homozygous for a 41bp deletion that extended 18bp upstream of the site of the PAM disruption 

mutation, and 19bp downstream of the SNP site. If the region is required for transcriptional 

regulation, the mutation in KKL17 would be expected to disrupt it.  

 

Figure 5.13: Sequences of the KLF1 SNP site of three K562 cell lines that contained homozygous indel 
mutations. K562 shows the wild type untransfected sequence. The green box/arrow shows the site of the 
C to G PAM disruption mutation. The red box/arrow shows the site of the C to G SNP of interest. A – 
MUSCLE alignment of the 4 sequences. B – Sanger sequencing traces. KKL8 was homozygous for a 5bp 
deletion removing the SNP site. KKL11 was homozygous for a 2bp insertion 2bp downstream of the SNP 
site. KKL17 was homozygous for a 41bp deletion covering the PAM site and the SNP.   
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5.6.1.2 KLF1 PAM Disruption Only 

While successful K562 cell lines were generated containing the KLF1 SNP and the 

corresponding PAM site disruption, none of the KP2 plasmid transfections produced cell lines 

homozygous for the PAM disruption only. Two heterozygous cell lines were generated (ssKP2-3 

& ssKP2-4, Figure 5.14), both of which had indel mutations on the other allele. The ssKP2-3 

wild type allele also contained a cytosine insertion 1bp downstream from the SNP site, and 

ssKP2-4 was heterozygous for a 12bp deletion that covered the SNP site and the PAM site. 

These indel mutations both disrupt the gRNA binding sequence. While these may not be as 

relevant as homozygous controls, they could be informative when compared to the cell lines 

heterozygous for the KLF1 SNP. 

 

 

 

Figure 5.14: Sanger sequencing trances of the KLF1 SNP site of two candidate PAM disruption only 
controls. K562 shows the wild type untransfected sequence. The green box shows the site of the C to G 
PAM disruption mutation. Indel mutations prevent clear reading of the sequence from Sanger sequencing 
traces, since the two alleles are out of frame of each other. Therefore to fully characterise the genotypes of 
these cell lines, PCR amplicons were cloned and sequenced individually. (1) and (2) refer to two separate 
alleles for each cell line. ssKP2-3 is heterozygous for the PAM disruption and a 1bp insertion. ssKP2-4 is 
heterozygous for the PAM disruption and a 12bp deletion. 
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5.6.2 rtPCR Analysis of KLF1 mutant K562 cell lines 

5.6.2.1 KLF1 Expression in K562 KLF1 mutants 

The KLF1 intronic SNP does not appear to directly disrupt KLF1 expression in K562 cells 

(Figure 5.15). ssKS2-10 and ssKS2-29 were the two K562 cell lines homozygous for the SNP, 

while ssKS2-47 was heterozygous for the SNP and the wild type allele. Figure 5.15A shows 

rtPCR analysis of KLF1 in these three cell lines, none of which differ significantly from the wild 

type K562. Although not statistically significant, KLF1 expression actually appears to have 

increased in these cells. The changes in KLF1 expression observed in the other cell lines are 

more interesting, especially since these were included as controls to assess the effect size of 

the SNP.  

Of the three heterozygous cell lines shown in Figure 5.15B, ssKS2-3 and ssKS2-45 were almost 

completely depleted of KLF1 mRNA. As was described in 5.6.1.1, both of these cell lines were 

heterozygous for the KLF1 SNP and indel mutations, a 2bp insertion and a 1bp deletion 

respectively. ssKS2-4 was heterozygous for the same indel mutation as ssKS2-3, and was wild 

type on the other allele, meaning that the only difference between these cell lines was the 

presence of the KLF1 SNP on one allele. Given the clear difference in KLF1 expression levels 

between ssKS2-3 and ssKS2-4, this suggests that the SNP does have an effect, although why 

this is not observed in the absence of an indel mutation on the other allele is unclear. The same 

effect is observed in the ssKS2-45 cell line, where the KLF1 SNP appears to deplete KLF1 

expression when an indel occurs on the other allele. 

Figure 5.15C shows the KLF1 expression of the three cell lines that contained homozygous 

indel mutations. KKL8 had a 5bp deletion, KKL17 a 41bp deletion, and KKL11 had the same 

2bp insertion that was observed in ssKS2-3 and ssKS2-4. All three of the cell lines homozygous 

for indel mutations around the SNP site show significantly decreased expression of KLF1, 

further demonstrating that sequence disruption at this locus impaired KLF1 expression. 

KLF1 expression in the two PAM site disruption cell lines ssKP2-3 and ssKP2-4 are shown in 

Figure 5.15D. Both of these cell lines are heterozygous for the PAM disruption, and an indel 

mutation, a 1bp insertion in ssKP2-3 and a 12bp deletion in ssKP2-4. Reduction in KLF1 

expression was observed in both of these cell lines, but it was only statistically significant in 

ssKP2-3. Given the strength of the reduction in the other cell lines heterozygous for the KLF1 

SNP and indel mutations, this could suggest that the effect of the PAM disruption is lesser than 

that caused by the SNP. However this is not particularly clear, and while the difference in KLF1 
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expression between ssKP2-3 and ssKP2-4 is not statistically significant, the effect appears to 

be much stronger in ssKP2-3. 

 

 

 

Figure 5.15: KLF1 rtPCR analysis of wt K562 and cell lines containing different KLF1 mutant genotypes. 
Graphs show relative expression normalised to actin β, for A – Cell lines containing the KLF1 SNP with no 
indel mutations. ssKS2-10 & ssKS2-29 were homozygous, ssKS2-47 was heterozygous. B – Cell lines 
heterozygous for indel mutations. ssKS2-3 & ssKS2-45 were also heterozygous for the KLF1 SNP. C – 
Cell lines containing homozygous indel mutations. D – Cell lines heterozygous for the PAM site disruption 
and indel mutations. Error bars indicate 95% confidence intervals, calculated from three technical 
replicates for each of the cell lines. KLF1 expression is not reduced in cell lines containing only the KLF1 
SNPs, but is significantly reduced in cell lines containing homozygous indel mutations or heterozygous for 
indel mutations and the KLF1 SNP. ssKS2-3 and ssKS2-45 had extremely low KLF1 amplification, with 
levels the same as in the reverse transcriptase negative controls (not shown). 
 

A     B 

  
C     D 

  

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

K56
2

ss
KS2-1

0

ss
KS2-2

9

ss
KS2-4

7

R
el

at
iv

e 
KL

F1
 E

xp
re

ss
io

n 
N

or
m

al
is

ed
 to

 A
ct

in

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

K56
2

ss
KS2-3

ss
KS2-4

ss
KS2-4

5

R
el

at
iv

e 
KL

F1
 E

xp
re

ss
io

n 
N

or
m

al
is

ed
 to

 A
ct

in

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

K56
2

KKL8

KKL1
1

KKL1
7

R
el

at
iv

e 
KL

F1
 E

xp
re

ss
io

n 
N

or
m

al
is

ed
 to

 A
ct

in

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

K56
2

ss
KP2-3

ss
KP2-4

R
el

at
iv

e 
KL

F1
 E

xp
re

ss
io

n 
N

or
m

al
is

ed
 to

 A
ct

in



215 
 

5.6.2.2 Globin gene expression in K562 KLF1 mutants 

Expression of α-globin, β-globin and γ-globin was assayed for each of the KLF1 mutant cell 

lines, the results of which are shown in Figure 5.16. 

For the cell lines containing the KLF1 SNP with no indel mutations, α-globin, β-globin and γ-

globin expression was significantly increased in all three cell lines, but the effect size for β-

globin and γ-globin expression was lesser in the heterozygous cell line ssKS2-47.  

Again, a strong effect was observed in the cell lines heterozygous for the KLF1 SNP and indel 

mutations. ssKS2-3 and ssKS2-45, which were shown to have greatly reduced expression of 

KLF1, were also found to have almost completely silenced expression of α-globin and γ-globin, 

but strongly increased expression of β-globin. While the loss of γ-globin in these cell lines can 

be explained by the fact that KLF1 is required to maintain the chromatin architecture at the β-

globin locus, and therefore expression is lost in its absence, the severity of the change in α-

globin expression is unexpected. KLF1 is a positive regulator of α-globin gene expression, 

binding at the promoter, but does not have the same effect on chromatin structure as is 

observed at the β-globin locus, e.g. Klf1 knockout mice don’t survive past early foetal stages 

due to severe β-thalassaemia, while α-globin expression still persists66,68,510–512. It has been 

suggested that this could be caused by the K562 cells in these clones losing their erythroid 

phenotype, causing the severe reduction in globin expression, contrary to what has been 

observed in the other K562 clones. Further investigation using KLF1 siRNA knockdowns, or 

using the CRISPR-Cas9 system to completely knock out KLF1 in these cells should inform as to 

whether the same effect is observed in response to loss of KLF1, or whether the effect 

observed in these cells is due to more widespread changes. Similarly, other erythroid marker 

genes should be tested in these cell lines, to investigate whether this effect is limited to the 

globin gene expression. The GATA family of transcription factors would be good candidates for 

this analysis, since they are key regulators of haematopoiesis, and since GATA1 is an upstream 

regulator of KLF152.  

The ssKS2-4 cell line, that previously showed no change in KLF1 expression, showed 

increased expression of β-globin and γ-globin, but β-globin  expression was approximately a 

quarter of that observed in ssKS2-3. Similarly, the three cell lines containing homozygous indel 

mutations showed increased expression of all three genes, with a very small effect size for β-

globin expression. 
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For the PAM site disruption cell lines, ssKP2-3 which had greatly reduced KLF1 expression, 

also showed strongly reduced α-globin and γ-globin expression, with an increase in β-globin 

levels, following the same pattern as ssKS2-3 and ssKS2-45. ssKP2-4, which showed no 

change in KLF1 levels, also showed no change in γ-globin expression, and had slight but 

significant reductions in levels of α-globin and β-globin. 

It is clear from these results that overall globin expression was increased in the majority of cell 

lines, compared to the wild type K562. Our initial hypothesis was that introduction of the KLF1 

SNP, as well as other sequence disruptions around the SNP site, would reduce KLF1 

expression, and in turn switch expression from β-globin to γ-globin. Since the levels of all three 

of the globin genes assayed were altered in most cell lines, it was decided to compare the ratio 

of γ-globin to β-globin, to estimate the change in proportion of globin transcripts as a result of 

the various genotypes being assayed (Figure 5.17). 
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Figure 5.16: Globin rtPCR analyses of wt K562 and cell lines containing different KLF1 mutant genotypes. 
Graphs show relative expression of genes normalised to actin β, for A – α-globin (HBA), B – β-globin 
(HBB) and C – γ-globin (HBG). Error bars indicate 95% confidence intervals, calculated from three 
technical replicates for each of the cell lines. Total globin gene expression appears to have increased in all 
cell lines, apart from ssKS2-3, ssKS2-45 and ssKP2-3, where HBA and HBG decreased, and HBB 
increased. These three cell lines showed strong reduction in KLF1 expression in Figure 5.15. 
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Comparing the ratios of γ-globin to β-globin expression, it is clear that the two cell lines 

homozygous for the KLF1 SNP result in an increase in the proportion of β-globin transcription 

form the locus. Interestingly this appears to occur independently of any effect on KLF1 

expression. The heterozygous cell line ssKS2-47 was not significantly changed from wild type 

K562 cells. Similarly, the three cell lines containing homozygous indel mutations (KKL8, KKL11 

and KKL17) did not change significantly, despite the marked decrease in KLF1 expression 

observed in these cell lines. 

As was expected, given the clear loss and gain of γ-globin and β-globin expression respectively, 

the γ-globin:β-globin ratio was greatly reduced in ssKS2-3, ssKS2-45 and ssKP2-3 cells. 

Interestingly, ssKP2-4 was the only cell line to show an increase in the proportion of γ-globin 

transcripts. While KLF1 expression did appear to be reduced in ssKP2-4, it was not statistically 

significant. 

 

Figure 5.17: Globin rtPCR analyses of wt K562 and KLF1 mutant cell lines, showing γ-globin normalised to 
β-globin expression. Error bars indicate 95% confidence intervals, calculated from three technical 
replicates for each cell line. 
 

Similarly to the results from the cell line containing the ASH1L SNP (KAX9), the observed effect 

was the opposite of what was predicted. KLF1 is known to be a positive regulator of β-globin, 

and loss of expression was expected to result in down regulation of β-globin and increased 

expression of γ-globin. However, it is possible that the observed results are an artefact of the 

K562 pattern of globin expression, since γ-globin is already highly expressed in these cells. 

From the results generated by this study, it is therefore not possible to conclude whether the 
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altered γ-globin:β-globin expression, but did not show any significant change in KLF1 

expression, whereas compound heterozygotes with indel mutations on the alternative allele 

experienced a strong effect. 
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5.7 Summary of the CRISPR Genomic Editing Results 

While the preliminary functional analyses performed on the cell lines generated by this work 

were inconclusive, the variants do appear to be having an effect on globin gene expression, and 

future work investigating these cell lines will provide more information. 

More importantly, the results from this chapter demonstrate that we have improved the 

efficiency of our CRISPR genomic editing pipeline, and that we are able to successfully 

introduce specific candidate variants into cell lines in vitro. This pipeline will therefore be used to 

perform functional analyses on the nine candidate genetic modifiers identified by the SCA 

exome sequencing study performed in Chapter 4.  
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 Discussion 

6.1 Isolation of Nucleated Erythroid Progenitors 

6.1.1 In vitro expansion of erythroblasts is not appropriate for use in longitudinal studies 

Initial attempts to isolate nucleated erythroid progenitors from small volumes of peripheral blood 

relied on a two phase in vitro culture to expand the proerythroblast population and then induce 

them to differentiate, with the aim of collecting cells at the late basophilic to polychromatic 

erythroblast stage, when cells are expressing both GPA and CD71.  

In vitro cultures are commonly used in laboratories for testing the effects of drug treatments on 

erythroblastic populations. However, in these studies the treatment is also performed in vitro, 

whereas we intend to perform longitudinal drug treatment studies in vivo, and to collect blood 

samples at set time points throughout treatment, which would then be expanded in vitro for 

analysis. 

The in vitro culturing of erythroid progenitors from peripheral blood was found to be extremely 

unreliable for blood from both healthy donors and SCA patients, with many cultures not 

surviving past the transition into the second phase. The low success rate of these cultures is not 

necessarily problematic for certain types of studies, particularly those where experiments do not 

rely on patient samples and are able to be repeated with minimal inconvenience. However, for 

the purpose of processing small volumes of blood collected from severely anaemic patients at 

specific time points, as was intended for this study, where the effects of HU treatment on the 

methylome were to be investigated, the success rate of this technique was thought to be 

prohibitively low. 

In addition to the low culture success rates, there were also concerns regarding the influence 

the culture system itself could have on the methylome and transcriptome of the erythroblasts. 

Treating cells in vitro with SCF and erythropoietin has been shown to promote γ-globin 

expression over β-globin513,514, mimicking the effects observed under stress erythropoiesis. The 

glucocorticoid receptor, which is the target for dexamethasone, is also involved in induction of 

stress erythropoiesis in mice164. This could potentially complicate elucidating the mechanism of 

action of drugs such as HU in a treatment study, and it may be difficult to draw conclusions from 

data obtained using this method. 
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6.1.2 CD71+GPA+ cells absent from healthy donors can be isolated from the peripheral 

blood of SCA patients, but lack a nucleus 

A large erythropoietic population was identified in the peripheral blood of SCA (HbSS) patients 

that was absent in the blood samples from healthy donors, as well as less severe SCD 

genotypes (HbSC). These cells were initially observed as a red coloured layer present during 

the isolation of PBMCs, and were identified by flow cytometry to represent a CD71+GPA+ 

population. 

Initial attempts to isolate this cell population using FACS were unsuccessful, with high rates of 

cell death, and a very low yield of DNA and RNA. This was improved through the use of a less 

stressful magnetic bead-based separation technique, depleting PBMC samples of CD45+ cells 

before enriching for CD71+ erythroblasts. The purity of the isolated population was not as high 

when using the magnet bead technique, since the specificity of the FACS process means that 

each cell is sorted on its individual fluorescence pattern, but the RNA yield was significantly 

increased. 

Since CD71 expression in vitro is lost by the end of the polychromatic erythroblast stage, and 

GPA expression starts at the basophilic erythroblast stage (Figure 1.6), this CD71+GPA+ 

population was thought to represent cells between these two stages. Upon further investigation 

it was discovered that these cells were at a much later stage than anticipated, and actually 

represented enucleated reticulocytes. While this explained why the DNA yield from these cells 

was consistently low despite testing several different DNA extraction techniques, it was 

unexpected. 

GPA and CD71 expression is observed on nucleated erythroblasts grown in vitro, and RNA-seq 

of erythroblasts at different stages of differentiation in vitro has demonstrated high CD71 and 

GPA expression at the late basophilic and polychromatic stages, with a marked reduction by the 

orthochromatic stage131,402. However, a cursory literature search into reticulocyte surface 

markers shows that CD71 is commonly used as a marker for immature reticulocytes, and that 

these cells are increased in SCA patients, likely as a result of stress erythropoiesis515–518.  

This suggests that there is discrepancy in surface expression patterns of GPA and CD71 on 

maturing erythroid progenitors grown in vitro and in vivo, and highlights the concerns mentioned 

in 6.1.1 about how the culture may alter erythroblastic development. This is supported by the 

fact that reticulocytes plated in an in vitro culture rapidly lose expression of CD71519.  
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Even with the CD71+GPA+ cells in vivo being more mature than anticipated, it is surprising that 

no DNA was extracted from this population, given that Walker et al. used the same isolation 

technique to investigate SCA patients before and after treatment with HU, and were able to 

extract DNA from these reticulocyte populations245. Due to the high numbers of cells isolated in 

that study, and the small amount of DNA required for the locus specific bisulphite sequencing 

that was performed, it is perhaps possible that enough DNA was extracted from a very small 

proportion of nucleated erythrocytes. Alternatively, with a purity of >90% after CD71 enrichment, 

this DNA could be provided by contamination of other haematopoietic lineages in the sample245. 

Overall, these results demonstrated that while the cell surface expression markers chosen to 

select for erythroid progenitors at a specific stage were correct for use for the in vitro cultured 

cells, they are not appropriate for the isolation of human erythroid progenitors differentiating in 

vivo. 

 

6.1.3 Isolation of early stage progenitors from the peripheral blood of SCA patients 

Due to the unexpected discovery that the CD71+GPA+ cells had already undergone enucleation, 

it was decided to instead attempt to isolate erythroid progenitors at a much earlier stage of 

development. CD34 is an early stage marker of haematopoietic cells that is lost before reaching 

the proerythroblast stage174. CD34+ cells were successfully isolated, but the total cell numbers 

obtained from 9ml of blood were too low for efficient extraction of DNA and RNA. 

Interestingly, two populations of CD34+ cells were identified, co-expressing either the early 

stage marker CD45 or the late stage marker GPA. This was unexpected given that GPA is 

normally expressed much further down the developmental pathway, after CD34 expression is 

lost. These CD34+GPA+ cells have been documented previously, and are believed to occur as a 

result of stress erythropoiesis, representing a population of progenitors undergoing accelerated 

differentiation, where CD34 downregulation does not occur520. 

Rather than enriching for markers of early stage differentiation, depletion of markers of late 

stage differentiation was found to be more effective. GPA-CD71+ cells were successfully 

isolated, almost all of which were co-expressed with either high or low levels of CD45 

expression, presumably representing the stages of erythroid development prior to the loss of 

CD45. The purity of the GPA-CD45+CD71+ population was lower than that of the CD34+ 

enriched samples, with approximately 83% purity compared to 97%, however the total number 

of cells was much greater, and DNA was successfully extracted from these cells.  
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Using the GPA depletion followed by CD71 enrichment, we were able to obtain suitable 

quantities of DNA from nucleated erythroid progenitor cells directly extracted from the peripheral 

blood of SCA patients, including one patient undergoing HU therapy. Although the reduction in 

purity may affect the sensitivity of downstream analyses, making it more difficult to detect 

smaller changes, we believe that this technique could be used in longitudinal studies and 

provide valuable insight into the mechanism of action of treatments such as HU in erythroid 

progenitor cells in vivo. 
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6.2 Identification of Candidate Genetic Modifiers of SCA by Whole 

Exome Sequencing 

In addition to epigenetic factors, genetic polymorphisms are known to influence the severity of 

the SCA phenotype, and we also set out to identify novel genetic modifiers by conducting a 

WES study. 

WES is a powerful tool for the identification of novel genetic variants either modifying or 

causative of disease phenotypes. A large number of variations from the reference genome are 

annotated within each individual, the majority of which occur in non-coding regions, since these 

are more tolerant of variation without influencing gene function. This is the case despite the fact 

that the commercially available exome capture kits specifically target protein-coding genes and 

ncRNA, and of the 2,798,560 variants that were annotated from 19 mild SCA exomes in this 

study, 2,662,432 occurred outside of ncRNA and non-protein coding sequences.  

 

6.2.1 Exome Variant Filtering Pipeline 

The remaining 136,128 candidate variants were pared down to 3,159 by the application of a 

series of filtering criteria, designed to remove variants that are unlikely to modify the SCA 

phenotype. These steps included the removal of genes commonly mutated in exome 

sequencing studies, as well as genes that were identified as not being expressed in 

haematopoietic tissues, as identified in publicly available gene expression data. The use of this 

pipeline greatly improved our ability to identify potential candidate variants, and removed many 

of the variants identified by the other analyses conducted in this study, that were thought to be 

false positive results, such as the variant in FSIP2 which was significantly associated with the 

mild SCA patient group, but is only expressed in spermatocytes. 

An imbalance in the representation of ncRNA in the final candidate variant list compared to the 

initial coding variant list was observed, making up 2,563 of the 3,159 variants. The fact that so 

many variants in ncRNAs remain post filtering, despite making up <1% of initial variants suggest 

that the ncRNA are not efficiently targeted by the filtering criteria. The proportion of ncRNA first 

noticeably increases after the filtering out of variants from the severe SCA exomes, rising from 

15.2% to 37.9% and 42.9%. This may be because ncRNA are more tolerant of genetic variation. 

If higher levels of ncRNA variation are observed between the US and the UK SCA populations, 

then that might explain why filtering using the severe US datasets is less effective than it is for 
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variants in the protein coding regions. Similarly, due to the small size of the UK severe SCA 

patient group, fewer of the specific ncRNA variants may be present in this control population. 

During the variant filtering process, two parallel candidate variant lists were generated, with the 

US severe SCA exome group consisting of either the SWiTCH exomes only, or both the 

SWiTCH and TWiTCH exomes. This was undertaken due to concerns about the definition of the 

‘severe’ phenotype group, with SWiTCH participants having already suffered a stroke, whereas 

TWiTCH participants were identified as being at risk for stroke. As such, the SWiTCH 

participants more closely matched the phenotype of the severe patient group recruited in the 

UK. The benefit of including the TWiTCH exomes was that it doubled the size of the severe 

cohort from 137 to 276 exomes, and reduced the final number of candidate variants from 3,159 

to 2,597. 

We believe that the additional filtering power provided by including the TWiTCH exome data 

was not worth sacrificing the strict clinical definition of the severe cohort, and two of the most 

interesting candidate variants identified were excluded when combined with the TWiTCH data. 

Even though one of the SCA patients from the UK severe group had not experienced a stroke, 

they were included based on the severity of the other symptoms at a young age, and based on 

the opinions of our clinical collaborators, whereas no clinical information was available for the 

individual TWiTCH participants. 

We demonstrated that using the variant filtering pipeline developed during this project we were 

able to detect seven putative genetic modifiers of the SCA phenotype, with biologically plausible 

mechanisms to influence the pathology of the disease. The major limitation of this analysis was 

highlighted by the fact that we were unable to directly detect the β0-thalassaemia mutation and 

the novel KLF1 variant due to the fact that they were only present in one patient, and we filtered 

out single occurrence variants. The small sample size of the mild SCA group is therefore the 

limiting factor for detecting rare variants. Both of these variants were identified by specifically 

investigating variants in known modifier genes before the filtering of single occurrences. 

The variant filtering pipeline was also used to generate a list of variants to identify commonly 

mutated genes in the mild SCA patient group. The utility of this analysis was limited, and 

highlighted the ability of ncRNA and some coding genes (such as MUC22) to tolerate large 

genetic variation. Of the protein coding genes containing a small number of variants that 

affected a large proportion of samples, none presented with a biologically plausible mechanism 

by which to affect SCA pathology. Since we were investigating modifier variants, and not 
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variants causative of a disease phenotype, we decided not to select for rare variants during the 

filtering process. The inclusion of common variants generates a high proportion of false positive 

‘hits’ in the analysed genes, and is likely to be one of the reasons why no plausible candidates 

were identified by this analysis. 

 

6.2.2 Differing genetic ancestry between the UK and the US SCA groups 

In the exome sequencing study, all of the mild patient group were recruited and sequenced from 

the cohort at King’s College Hospital in the UK, whereas the severe patient group consisted of 

132 patients recruited as part of the SWiTCH trial from centres across the USA, as well as five 

additional patients from King’s College Hospital. This means that as well as the two test groups 

being defined by severity of disease, they are also separated geographically. There is large 

genetic heterogeneity between different African populations521,522, which can be observed in the 

distribution of the different sickle haplotypes (Figure 1.8). Increased heterogeneity would be 

expected between populations of African ancestry living in the USA and those in the UK, with 

variation arising as the result of the different migration events of different African sub-

populations, as well as due to admixing with other populations in either the USA or the UK. 

The problem of genetic heterogeneity between populations within genetic association studies is 

common, and can be overcome by allelic clustering, stratifying test groups into smaller groups 

based on haplotype522. However, due to the small sample size of the mild group, stratification by 

haplotype was not performed, since any reduction in false positive association would be offset 

further by a reduction in sensitivity to detect associations if the mild group were segregated into 

even smaller subgroups. 

The way to overcome this problem is to vastly increase the number of patients in the exome 

cohort. Future work would benefit from expansion of the sample size for both the severe and 

mild patients within the UK, and also the inclusion of mild SCA patients from the USA. Aside 

from simply increasing the sample number, this would allow a balanced stratification of genetic 

association based on haplotype. 

With the observed association of variants based on genetic ancestry rather than by phenotypic 

severity, it was decided not to perform statistical testing on the candidate variants identified by 

the variant filtering pipeline. In this analysis, the severe exomes were used to generate a 

negative filtering list, where it was assumed that presence of a variant in the severe group 

meant that it was not protective of the severe SCA phenotype, but absence of a variant from the 
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severe group was not assumed to represent positive association with the mild group. Due to the 

design of this analysis, no false positive candidates were introduced as a result of the 

differences in genetic ancestry. While it would be possible to test the allelic imbalance of the 

candidate variants between the two groups using a Fisher’s Exact Test, the results of this test 

would be misleading, since as well as having artificially enriched for variants absent from the 

severe group, the statistical test would be biased by differences in genetic ancestry between the 

two groups. 

 

6.2.3 Statistical testing of association of variants with SCA phenotype groups 

Fisher’s Exact Tests for association of variants with either the 19 mild patients or the 5 severe 

patients recruited from King’s College Hospital only reached statistical significance for seven 

variants, all of which occurred in non-coding regions. This was likely due to the small sample 

size of each group. By including the exomes from the SWiTCH clinical trial in the severe group, 

2,442 variants reached statistical significance (Appendix 8). However, due to the clear bias 

generated by differences in genetic ancestry between the two groups, no candidate variants 

identified by this analysis were considered robust enough to warrant further investigation.   

For the statistical analyses investigating association of variants with either the SWiTCH exomes 

or the HUSTLE exomes, all patients were recruited from SCA populations within the USA, and 

so the bias introduced by differences in genetic ancestry is minimised. This analysis still 

considered the SWiTCH group to represent the severe SCA phenotype, but instead of being 

compared to a small mild group of 19 patients, the HUSTLE group was considered to be 

representative of the general SCA population, and had a much larger sample size of 140 

patients. Using this analysis 236 coding variants reached statistical significance (Appendix 9), 

and we were able to identify candidate variants in genes with biologically plausible mechanisms 

through which to influence the phenotypic severity of SCA.   

 

6.2.4 Candidate Modifier Genes and Variants 

Of the candidate variants identified by the variant filtering pipeline and the comparison of 

SWITCH and HUSTLE exomes, it was decided that seven warrant further investigation. The 

single occurrence variants in KLF1 and HBQ1 were also included, due to the established roles 

that KLF1 and the globin genes have in affecting the SCA phenotype. These nine variants fall 

into four distinct mechanistic groups: Nitric Oxide Signalling, Haematopoietic Regulation, 



229 
 

Altered Globin Gene Expression and Recovery from Ischaemic Injury. Future work in the 

laboratory will use CRISPR genomic editing to investigate the effects of these SNPs on gene 

function in vitro. 

 

6.2.4.1 Nitric Oxide Signalling: NMRAL1 

The heterozygous stopgain variant in NMRAL1 was observed in two mild SCA patients. 

NMRAL1 operates in a negative feedback loop with argininosuccinate synthetase, which is rate 

limiting for NO production. Increased expression of argininosuccinate synthetase upregulates 

expression of NMRAL1, which in turn inhibits argininosuccinate synthetase activity425. This 

presents a mechanism by which haploinsufficiency for NMRAL1 could increase 

argininosuccinate activity, in turn increasing NO production and resulting in a vasodilatory 

effect, which could reduce the frequency and severity of vaso-occlusive events. By this 

mechanism the heterozygous stopgain in NMRAL1 could achieve the same outcome targeted 

by arginine therapy262. 

RNAi mediated knockdown of NMRAL1 in HEK293T cells has previously demonstrated an 

increase in NO production425,523. CRISPR genomic editing could be used introduce this stopgain 

into a cell line expressing NMRAL1, allowing confirmation that the variant reduces NMRAL1 

production, and that this results in an increase in NO levels. Since the NMRAL1 variant was 

heterozygous in the mild SCA patients, ideally this mutation would also be introduced into the 

cell line in a heterozygous manner, to confirm that there is no compensation by the other allele. 

The role of NO in the pathophysiology of SCA is currently disputed, so while reconstituting the 

NMRAL1 mutation in a cell line may demonstrate its effect on NO levels, it would not validate its 

effect as a modifier of SCA23. To further investigate this, a SCA mouse model may be used, 

such as the one available from the Jackson Laboratory (www.jax.org -  strain: 003342)524. 

 

6.2.4.2 Haematopoietic Regulation: IGFBP2, FLT3, ETS2, MALAT1 & BAG1 

Variants were identified in five genes that influence the survival and proliferation potential of 

haematopoietic populations. The variants in IGFBP2, FLT3, ETS2 and MALAT1 were identified 

by the analysis using the variant filtering, and would be expected to ameliorate the phenotype 

severity of SCA. The variant in BAG1 was identified by the statistical analysis of variants in the 

SWiTCH and HUSTLE exome groups, and was significantly increased in the SWiTCH group, 
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representing patients that had experienced a stroke at a young age, and so is predicted to 

exacerbate the severity of symptoms. 

There are two main mechanisms by which altered regulation of erythropoiesis could affect 

symptomatic severity of SCA. The first is by altering normal steady state erythropoiesis, where 

increased erythropoietic potential would result in an increased number of sickling erythrocytes 

as well as increasing the concentration of cells in the blood, both of which could lead to an 

increase in vaso-occlusive events. Therefore variants that promote steady state erythropoiesis 

would be expected to increase severity, whereas those that reduce steady state erythropoiesis 

would be expected to ameliorate severity. 

The second mechanism is by altering stress erythropoiesis, where higher production of F-cells 

reduces the amount of sickling observed, and results in a reduction in vaso-occlusive events143. 

Therefore variants that promote stress erythropoiesis would be expected to ameliorate disease 

severity, whereas those that repress stress erythropoiesis would be expected to exacerbate 

phenotype severity. 

These two processes do not exist independently, and it is likely that variants affecting one will 

have an impact on the other. For example, a variant reducing steady state erythropoiesis will 

likely trigger an increase in stress erythropoiesis in response to hypoxia. 

While IGFBP2 also has an intracellular function, both IGFBP2 and FLT3 are targeted for 

secretion, and function as extra-cellular signalling molecules525. IGFBP2 promotes survival and 

expansion of haematopoietic stem cells in the bone marrow, and FLT3 is membrane bound 

tyrosine receptor kinase that stimulates expansion and migration from bone marrow into the 

peripheral blood117,429,437. The variants in IGFBP2 and FLT3 both occur in the N-terminal 

signalling peptide, required for secretion. Since the signal peptides are cleaved, these variants 

are unlikely to have an effect on function, but could interfere with secretion. Introducing these 

variants into cell lines will allow investigation into how localisation of the proteins is affected, and 

could be assayed using fluorescently tagged antibodies, either using fluorescent microscopy or 

in the case of the membrane protein FLT3, flow cytometry. 

ETS2 is a transcription factor important for lineage determination in a number of tissues at 

different stages throughout development, and in Megakaryocyte-Erythroid Progenitors its 

expression is thought to promote the megakaryocyte pathway over erythrocyte development526. 

When overexpressed in K562 cells, ETS2 increases expression of TAL1, but reduces 

expression of the erythroid specific transcription factor KLF1, and subsequently β-globin443. To 
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investigate the effect of the ETS2 variant in vitro, plasmids constitutively expressing either ETS2 

or the ETS2 mutant could be transfected into K562 cells, and expression of both KLF1 and the 

globin genes assayed by rtPCR. Given that loss of function of ETS2 would likely result in an 

increase in erythrocyte production, this variant would be expected to result in a gain of function 

in order to ameliorate the disease phenotype, perhaps enhancing the signal for cells to 

differentiate into megakaryocytes rather than erythrocytes. Alternatively, if a loss of function is 

observed, then it would be assumed that loss of ETS2 function allows greater erythrocyte 

expansion under conditions of stress erythropoiesis. 

MALAT1 is a ncRNA, and is thought to influence haematopoietic development through 

repression of B-MYB, a positive regulator of haematopoietic potential444,446,447. The effect of the 

MALAT1 variant after introduction into a cell line in vitro could be assayed by detecting B-MYB 

expression levels, including rt-PCR of differently spliced isoforms, since MALAT1 is known to 

affect serine/arginine splicing factors445. 

The BAG1 variant occurs in an arginine rich domain, which is only present in BAG1L and 

BAG1S, two of the four alternative splicing isoforms. BAG1L is the only isoform that is recruited 

to the nucleus, and it has been shown that BAG1L mutants lacking residues 17-50 show 

reduced nuclear localisation527. The variant in BAG1 changes glycine at position 45 to arginine, 

and since densely packed positively charged arginine and lysine residues are important for 

nuclear import, it’s possible that this variant could increase efficiency of nuclear localisation528. 

BAG1 markedly increases the anti-apoptotic activity of BCL2, and if nuclear localisation is 

increased as a result of this variant, then it is reasonable to expect that this anti-apoptotic effect 

would be increased as well529,530. Apoptosis plays an important role in regulating the rate of 

haematopoiesis, and limits the number of progenitor cells that reach full maturity, BCL2 plays an 

important role in this process, and overexpression in mice more than doubles the number of 

HSC in the bone marrow531. Interestingly the balance of BCL2 to BCL-X appears to influence 

lineage commitment, with higher BCL2 promoting the granulocyte lineages, and BLC-X 

promoting the erythroid lineage. This affect is thought to be mediated by RAF-1 expression 

levels532.    

Introduction of this variant into a cell line by CRISPR genomic editing will allow investigation into 

the effect that the variant has on intracellular localisation of BAG1. It would also be interesting to 

investigate whether the variant has an effect on survival, particularly when cultured in the 
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presence of pro-apoptotic factors. Quantification of RAF-1 expression in these cell lines could 

determine whether or not the BAG1 variant influences BCL2 directed lineage commitment. 

 

6.2.4.3 Altered Globin Gene Expression: KLF1 & HBQ1 

Variants were identified in two genes affecting globin gene expression and function. Variants in 

KLF1 and HBQ1 were exclusive to the mild SCA patient group, but each only occurred in a 

single patient, and so the presence of these variants in other mild SCA patients should be 

confirmed before laboratory investigation. 

The effect that altered expression from the globin gene loci can have on the phenotype severity 

of SCA is well established, and is described in 1.6. The main principle behind this mechanism is 

that polymerisation of haemoglobin only seems to occur in the HbS (α2βS2) tetramer, and 

increasing the abundance of other globins introduces competition for tetramer formation 

between the different subunits, diluting the intracellular concentration of HbS and in turn 

reducing rates of erythrocyte sickling. 

The KLF1 variant is a novel SNP identified in one of the mild SCA patients, and was not 

observed in any of the other SCA exomes or in dbSNP533. The SNP results in an arginine 

replacing the histidine at position 329, which is involved in coordination of the Zn2+ ion in one of 

the three zinc finger domains534. The variant was heterozygous, and so could exhibit an effect 

similar to haploinsufficiency for KLF1, which is known to increase γ-globin and ameliorate the 

SCA phenotype535. The patient in which this was observed also had the highest HbF% of all the 

patients investigated. This variant could be investigated by introducing the SNP into a cell line 

using CRISPR genomic editing, and assaying for changes in the γ-globin:β-globin expression 

ratio. 

HBQ1 encodes θ-globin, and due to the fact that expression from the gene is minimal, it seems 

unlikely that any variant affecting gene function would have an impact on SCA phenotype. 

However, the variant occurs approximately 90bp downstream from the transcription start site, 

and falls within binding sites for multiple transcription factors, including CTCF and 7BTB7A (as 

annotated by data from the ENCODE Consortium472,473), and could potentially disrupt regulation. 

Introducing this variant into a cell line using CRISPR will allow detection of any upregulation of 

HBQ1 expression, if this is not observed then it can be assumed that the SNP does not 

influence disease phenotype. An alternative strategy would be to directly assay the blood of this 
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patient, and to determine if abnormal levels of θ-globin are observed at the protein level in 

erythrocytes. 

 

6.2.4.4 Recovery from Ischaemic Injury: MYDGF 

Vaso-occlusive events are responsible for the most severe symptoms associated with SCA. 

While factors affecting the ischaemic response would not be expected to prevent these vaso-

occlusive events from occurring, the long term effects of these events could be ameliorated by 

an efficient response, reducing levels of cell death and tissue damage experienced by 

minimising the amount of time that affected areas remain starved of oxygen. Many SCA patients 

experience silent vaso-occlusive events in the brain, that occur in minor blood vessels and 

present with minimal phenotype, and are typically not diagnosed in the clinic 536–538. It is perhaps 

possible that impaired ischaemic repair pathways could increase the severity of these events, 

increasing cell death and the resultant inflammatory response to the extent where they become 

observable and present as an overt clinical stroke. 

The variant observed in MYDGF was significantly increased in the SWiTCH study group 

compared to the HUSTLE group, and so would be expected to increase severity of the SCA 

phenotype. MYDGF (Myeloid Derived Growth Factor) is a growth factor initially identified by its 

function in myocardial cell growth and survival following myocardial infarction, which stimulates 

its secretion by monocytes and macrophages466. Mice deficient for MYDGF have no discernible 

phenotype until myocardial infarction is induced, and then demonstrate increased scarring and 

reduced angiogenesis at the infarction site, as well as reduced systolic and diastolic function466. 

MYDGF mediated protection against cell death in mice was found to be dependent on the PI3K 

signalling pathway, and so the effect of the variant on MYDGF function could be investigated by 

introducing this SNP to a cell line in vitro using CRISPR, and assaying for PI3K activation by 

western blot for phosphorylation of PI3K as well as downstream targets BAD and BAX, 

comparing the results to those observed in wild type cells, and cells treated with PI3K 

inhibitors466. 
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6.3 Generation of Mutant K562 Cell Lines and Preliminary Testing of 

Variants in KLF1 and ASH1L using CRIPSR-Cas9 Genomic Editing 

We successfully introduced both the ASH1L and KLF1 SNPs into K562 cell lines in vitro, using 

CRISPR-Cas9 genomic editing.  

gRNA directed introduction of DSBs at the target sites by Cas9 was reliable, but survival rates 

of single cell K562 cultures were low, and template incorporation by the endogenous DNA 

repair pathways was inefficient. As a result this process took significantly longer than was 

anticipated, relying heavily on the stochastic chance of correct template incorporation on both 

alleles. This highlights some of the current limitations of CRISPR for genomic editing, firstly in 

that the endogenous repair machinery strongly favours the NHEJ pathway, and secondly that 

until correct template incorporation is much more efficient, cell populations must be expanded 

from a single cell in order to generate a genetically homogenous population.  

However, through optimisation of the CRISPR-Cas9 protocol, we increased efficiency of 

template uptake, and demonstrated that we are able to generate the desired mutations in cell 

lines in vitro. This CRISPR genomic editing pipeline will therefore be used in future to validate 

the candidate genetic modifiers identified by the exome sequencing study. 

While the work in this thesis was focussed on introducing variants into K562 cells, this 

technique could also be used in other cell lines. It would be particularly interesting to introduce 

variants of interest into HUDEP-2 cells, a recently established human erythroid progenitor cell 

line that can be induced to develop into terminally differentiated erythrocytes489. 

 

6.3.1 Low transfection efficiency and low survival rates of single cell K562 cultures 

Transfection efficiency was very low, and even nucleofection, which proved to be the most 

effective technique only resulted in 15% of cells taking up the 9.8kb Cas9 plasmid. It is not clear 

why this was the case, but ultimately it did not affect the results since a maximum of 288 cells 

from each transfection experiment were isolated by FACS. 

In order to improve the transfection efficiency in future experiments, more modern nucleofection 

protocols should be investigated. The Nucleofector™ 2b, which was used in this project, was 

first introduced in 2001, and uses a cuvette based system, with the current applied to a 500µl 

cell suspension. More modern nucleofection machines, such as the Neon® Transfection 

System (first introduced in 2006), and the 4D-Nucleofector™ (first introduced in 2010), work 
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with much smaller volumes of cell suspension, and increase both cell viability and transfection 

efficiency539. Comparing the Nucleofector™ protocols for K562 cell nucleofection, available on 

the Lonza Cell and Transfection Database, it appears that using the 4D-Nucleofector™ rather 

than the older Nucleofector™ 2b, increases efficiency from approximately 77% to >90%, and 

they report >95% cell viability540. It is worth noting that the plasmids used to test these protocols 

were approximately 2.5kb, and are much smaller than the plasmids used in our CRISPR-Cas9 

system. While the low transfection efficiency was not a major issue for the aims of this study, as 

mentioned above, it is possible that the additional stress associated with this nucleofection 

technique had an adverse effect on cell survival in the downstream stages of the process. 

After the transfection and FACS process, very few cell lines (170/1920) survived the single cell 

culture stage. It is believed that this was due to the stress involved in these processes, which 

could perhaps be avoided in future through the use of conditioned medium during the single cell 

culture phase, and by replacing the FACS process with serial dilutions to obtain single cell 

cultures instead398. However, while reducing the mechanical stress associated with FACS, the 

serial dilutions would not allow for selection based on expression of the GFP reporter, and also 

would not guarantee a single cell culture. Since the process assumes that the cells are evenly 

distributed throughout the medium, whereas in practice some aliquots would contain more than 

one cell, and others would contain none. Given the low transfection efficiency, this would mean 

that approximately only 15% of the cultures expanded would have taken up the plasmid, and 

any cells demonstrating two different genotypes could not be assumed to be heterozygous, but 

could represent two distinct cell populations within the same culture. 

If the transfection efficiency can be increased through the use of more modern nucleofection 

techniques, then serial dilution should be considered to increase cell viability. Even with the low 

number of clones that survived in this study, the genotype screening process was the rate 

limiting step, with PCR amplification and Sanger sequencing being carried out for each clone. 

With increased viability of single cell cultures, in the future it would be more efficient to introduce 

a pre-screening step to assess the genotypes of the transfected population prior to separation 

into single cell cultures, using a technique such as TIDE541. This would provide an accurate 

estimate as to whether or not the genome-editing process has generated the genotypes of 

interest for each transfection, and therefore whether the experiment is likely to yield the desired 

cell lines. Recognising extremely low success rates at this stage would avoid spending weeks 

expanding and sequencing unsuccessful single cell cultures, when the time could be better 
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spent optimising the CRISPR/Cas9 process. Additionally, the process of screening the 

individual clones could be streamlined, by initially performing restriction enzyme based analyses 

such as RFLP of RGEN on all clones, which would be faster than Sanger sequencing542. 

Individual clones that indicate a disruption of the recognition site could then be validated by 

sequencing. 

The survival rates of the cell lines varied depending on whether they were transfected with the 

plasmid only, or co-transfected with either siRNA or ssODN. Counter-intuitively, the cells 

transfected with only the plasmid had the lowest survival rates, whereas cells co-transfected 

with siRNA targeting Ligase IV or Ku70 had the highest rates of survival, despite the fact that 

both of these genes have been shown to have anti-apoptotic effects543,544. Due to the limitations 

on transfection volume, half as much plasmid was used when co-transfected with either siRNA 

or ssODN which may explain the observed effect, since K562 have previously been reported to 

demonstrate reduced viability after transfection with increasing plasmid concentrations545. 

Therefore lowering the plasmid concentration, while having an adverse effect on transfection 

efficiency, could increase survival in these cells. 

 

6.3.2 siRNA Knockdown of the NHEJ Pathway 

siRNA knockdown was performed on components of the NHEJ pathway in order to promote the 

HDR pathway for repair of the DSBs introduced by Cas9. Rates of HDR were still very low in 

these experiments, but was significantly increased in the knockdowns of Ligase IV, which 

generated three homozygous cell lines. However, none of these cell lines had incorporated the 

template sequence, and this was only achieved in the homozygous cell line generated by the 

Ku70 knockdown experiments. Despite the statistically significant increase in HDR, the rate at 

which it occurred was still very low, and due to the small sample size the test is quite unreliable, 

since introducing just one homozygous variant into the plasmid only group would be enough to 

completely remove any significance. 

The fact that HDR was found to be significantly increased in the Ligase IV knockdown but not 

the Ku70 knockdown could be due to an alternative NHEJ pathway that has recently been 

suggested. Fattah et al. found that NHEJ activity was lost in the absence of Ligase IV, but not 

Ku70, and that loss of Ku70 was sufficient to rescue NHEJ activity in the absence of Ligase 

IV501. They suggested that an alternative pathway compensates for the loss of the canonical 
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NHEJ pathway, but that it is unable to function in the presence of Ku70, which binds to the DSB, 

and could be out-competing this alternative pathway501. 

It is also possible that the small increase in HDR that was observed is the result of the 

inefficiencies of siRNA knock down, which only degraded approximately 50% of the Ligase IV 

transcripts. Knocking out as well as knocking down individual components of the NHEJ pathway 

has been investigated in silkworms, and demonstrated that full gene knockouts had a stronger 

effect on HDR frequency than siRNA knockdowns354. However, the advantage of using the 

siRNA knockdown technique is that its effect is transient, allowing the cells to recover after a 

short period of time. This allows us to reduce activity of the NHEJ pathway during the post 

transfection window, but does not lead to the long term genomic instability observed in stable 

knockouts, which would reduce the viability and reliability of our cell lines in the long term. 

 

6.3.3 Increasing Template Uptake 

ssODN templates were co-transfected alongside the plasmids in order to increase the 

intracellular copy number of the template sequence, as it was thought that this could be a 

limiting factor for template uptake. In the case of the plasmid only transfections, the template 

was present at a 1:1 ratio with the plasmid, and was therefore limited by the low transfection 

efficiencies observed. 

Co-transfecting with ssODN templates did not affect the rate of HDR, which remained at similar 

levels to those observed previously. However, the rate of template uptake was greatly 

increased, with 37.8% of cells either the heterozygous or homozygous for the SNP of interest, 

compared to 14.7% of the cells co-transfected with siRNA. Co-transfection with the ssODN 

templates generated two cell lines that were homozygous for the SNP of interest. 

Alternative techniques are available to increase template uptake, but were not tested in this 

project. These include the use of paired gRNA, which can be used to excise a large genomic 

fragment, forcing the cell to use the artificial template for repair. This is recommended for 

genomic editing of larger regions546. Using ssODNs with phosphorothioate modified ends can 

also greatly increase template incorporation, likely due to increased stability and protection from 

degradation547. Since the ssODNs used in this project were not protected from degradation by 

phosphorothioate modification, it is likely that the amount of intracellular ssODN template is 

reduced rapidly following nucleofection. Coupled with the fact that the gRNA and Cas9 were 

provided by a plasmid, and therefore must be generated within the cell after nucleofection, it is 
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possible that by the time Cas9 induced DSBs are introduced, the levels of template are already 

very low. This could be overcome by the direct nucleofection of Cas9/gRNA ribonucleoprotein 

complexes (RNPs) alongside the phosphorothioate modified ssODNs548,549. This might also 

address the low transfection efficiency observed with the large plasmids in this study.    

Interestingly, It has recently been observed that gRNA targeting the strand antisense to 

transcription result in increased rates of HDR compared to those targeting the transcribed 

strand340. Similarly, it has been shown that Cas9 releases the strand non-complementary to the 

gRNA earlier, and therefore ssODN templates complimentary to this strand (i.e. complementary 

to the gRNA), can bind at an earlier stage and increase rates of HDR470. In the same study, it 

was also demonstrated that asymmetric ssODN design can increase HDR efficiency, with 

homology arms of 36bp and 91bp on the PAM distal and proximal sides of the DSB 

respectively550.   

 

6.3.4 Is the ASH1L SNP likely to cause β-Thalassaemia in patients? 

It was hypothesised that introduction of the ASH1L SNP would reduce expression of β-globin in 

K562 cells, since the SNP was initially identified as a candidate causative mutation for β-

thalassaemia. However, the results presented here suggest that the SNP had the opposite 

effect, increasing expression of both α-globin and β-globin, whilst reducing expression of γ-

globin in the KAX9 cell line. If this SNP has the same effect in vivo, then it is unlikely to be 

causative of β-thalassaemia. 

However, it is possible that effect of the ASH1L SNP in vivo is less specific to the reduction of β-

globin expression, but instead has a more general effect disrupting regulation at the β-globin 

locus. Globin expression in K562 cells is more similar to that found at earlier stages of 

development, before the foetal globin to adult globin switch, with high levels of γ-globin 

expression, and low levels of β-globin. A possible model to explain the results observed could 

be that loss of targeted H3K4 tri-methylation at the γ-globin promoters disrupted the strength of 

the regulatory control, allowing increased transcription from the other promoters in the locus. 

This would account for the difference in our results compared to the effects previously observed 

in ASH1L shRNA knock downs carried out in human erythroid progenitor cells in vitro476. 

This model is further supported by the fact that ASH1L occupies the LCR in mice478, and is likely 

recruited to the promoter of the active globin gene by chromatin looping, meaning that 
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disruption of function would affect transcription of the globin gene that is being upregulated at 

each developmental stage, and would not necessarily be specific to either β-globin or γ-globin. 

It has also been found in K562 cells that H3K4 tri-methylation is associated with the active γ-

globin promoters, while H3K4 at the β-globin promoter is predominately mono-methylated, 

which also supports this explanation of the results551. 

To further understand the effects the ASH1L SNP has on β-globin expression in K562 cells, 

additional analyses will be carried out on the KAX9 cell line by the laboratory in the future, 

specifically using Chromatin Immunoprecipitation (ChIP) to assess any changes in ASH1L 

occupancy at the locus, as well as changes in H3K4 methylation patterns. Since little is known 

about the function of the serine rich domain in which the SNP is situated, it is not known 

whether to expect to observe a loss of recruitment of ASH1L to the locus, or whether occupancy 

will remain unchanged, but with catalytic activity impaired. 

 

6.3.5 Is the KLF1 SNP likely to affect HbF levels in patients? 

The analysis of the KLF1 mutant cell lines that were generated did not provide a clear answer to 

whether or not the KLF1 SNP affects KLF1 expression. Cell lines either homozygous or 

heterozygous for the SNP showed no significant change in KLF1 expression, which suggests 

that the mutation is unlikely to be influencing phenotype. However, when an insertion or deletion 

occurred on the other allele, a strong reduction in KLF1 expression was observed, but only in 

the presence of the SNP. Given both of these results, it seems that the KLF1 SNP is not 

sufficient to affect KLF1 expression on its own, but only when the alternative allele is impaired. 

KLF1 expression was also reduced in the case of homozygous insertions or deletions, 

suggesting that these were sufficient to reduce KLF1 expression. However, in the cell line with 

the wild type allele and the same insertion on the other allele, no change in KLF1 expression 

was observed, which could be explained by a compensatory mechanism, active on the wild type 

alleles but ineffective on alleles with the KLF1 SNP. A possible candidate for a feedback 

mechanism could be ZBTB7A, the binding site of which encompasses the site of the KLF1 SNP, 

and is itself positively regulated by KLF182,473,552. While a model such as this would explain the 

results in this study, no such mechanism has been documented elsewhere. Patients with KLF1 

haploinsufficiency caused by large scale deletion encompassing the entire KLF1 gene present 
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with high HbF expression, demonstrating that reduced KLF1 expression is not compensated for 

in these patients535. 

While the cell lines that were homozygous for insertions or deletions at the SNP site showed 

demonstrated a reduction in KLF1 expression, this did not correlate with changes in γ-

globin:β:globin ratio. Interestingly, KLF1 expression was reduced to approximately the same 

extent in the cell line with heterozygous insertion and PAM disruption (ssKP2-3), and in this cell 

line a strong reduction in γ-globin:β-globin was observed, similar to that observed in the cell 

lines where KLF1 was almost completely silenced. It is not clear why cells with similar KLF1 

expression levels would be discordant with regard to globin expression. 

Reduction of KLF1 is expected to reverse the γ-globin to β-globin switch, and so in the cell lines 

where KLF1 was almost completely depleted, it was initially surprising to observe such a strong 

effect in the opposite direction. However, this can be explained by the fact that low levels of 

KLF1 are known to be required for maintenance of the chromatin architecture at the globin loci, 

with the activation of β-globin occurring at higher KLF1 concentrations57,68. Therefore the 

complete loss of KLF1 explains the severe reduction of highly expressed α-globin and γ-globin. 

This has been observed previously in K562 cells following KLF1 knockdown57. Unfortunately 

this does not account for the increased expression of β-globin, which may be occurring as a 

result of destabilisation of the chromatin architecture at the locus, similar to what is 

hypothesised in the case of the KAX9 cell line containing the ASH1L SNP. 

The fact that KLF1 expression in K562 cells is minimal accounts at least in part for the 

phenotype of high γ-globin expression observed in these cell lines, especially since it has been 

shown that exogenous expression of KLF1 & BCL11A can rescue β-globin expression in K562 

cells492,493,553.  

This explains the high variability observed in the rtPCR experiments targeting KLF1 in Figure 

5.15, since at these low levels, even very minor fluctuations in transcript levels can result in 

large relative changes. The absence of KLF1 expression also provides an explanation for why a 

reduction in β-globin expression was not observed in the majority of cell lines containing the 

SNP. Since very low level KLF1 expression is required for maintenance of the chromatin 

architecture at the β-globin locus (1.3.1), this would also support the hypothesis that basal 

expression of KLF1 in K562 cells is maintaining expression of γ-globin, and that this is lost in 

the cell lines where KLF1 was completely ablated.  
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As well as being controlled at the transcriptional level, KLF1 is also subject to post-translational 

regulation, including SUMOylation, phosphorylation and ubiquitination554,555. This suggests that 

even the low levels of expression observed here may not accurately inform on the levels and 

functional activity of KLF1 protein in the cell. To accurately assess this, western blotting 

experiments should be conducted to inform on the affect that the KLF1 SNP has on protein 

levels, as well as ChIP experiments to inform on how this affects KLF1 binding activity at the 

globin loci. 

It could also be interesting to induce differentiation of these modified K562 cell lines by 

treatment with hemin. Induction of differentiation in K562 cells is accompanied by increase in 

expression of the globin genes, as well as KLF1, and it would be interesting to see if KLF1 

expression occurs to the same extent in cell lines with the SNP of interest506. 

As has been discussed, K562 cells are probably not the most useful cell system to model these 

SNPs in vitro, especially for KLF1. Now that we have successfully introduced the SNPs into 

K562 cells, and have improved the efficiency of the CRISPR-Cas9 pipeline in our laboratory, 

future work should focus on implementing this in more sensitive cell types. While this will likely 

require further optimisation of the technique, several potential ways to do this have been 

discussed in this chapter. This should probably focus on BEL-A initially, which is preferable to 

HUDEP-2 since it expresses b-globin without requiring differentiation, and is therefore a better 

model to study the impact of these SNPs on the regulation of adult haemoglobin490. The 

possibility of generating iPSCs from the patients in which the SNPs were initially identified 

should also be investigated, since it would be very informative to see if correcting the SNPs in 

these patients is sufficient to rescue b-globin expression. 
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6.4 Concluding Remarks 

Although we were unable to conduct our investigation into the effect that HU treatment has on 

the epigenome of SCA patients, we propose a technique by which CD45+CD71+GPA- erythroid 

progenitors can be isolated directly from the peripheral blood. This technique yields sufficient 

DNA to perform epigenomic analyses from small quantities of blood, and will allow future 

longitudinal studies investigating the mechanism of action of drugs such as HU in SCA patients 

in vivo. 

Through WES analyses, using the variant filtering pipeline that we developed as well as the 

statistical comparison of the SWiTCH and HUSTLE exome groups, we identified nine potential 

modifiers of SCA that warrant further investigation.  

Functional validation of genomic variants in vitro has been facilitated by recent advances in 

genomic editing technologies, and provides a powerful tool to test more specifically whether a 

given variant is likely to affect gene function. We demonstrated that we are able to use a 

CRISPR-Cas9 system to successfully introduce specific mutations into cell lines, and will use 

this for validation of the nine candidate variants identified by the WES analyses.  

The identification and validation of novel candidate variants affecting the phenotype severity, as 

well as mechanisms underlying the response to treatment, is crucial for advancing our 

understanding the complex pathophysiology of SCA, and may provide useful diagnostic 

indicators of risk for severe symptoms such as stroke. Particularly as Next Generation 

Sequencing techniques become cheaper and more easily available for use in the clinic, custom 

DNA capture arrays could be designed to sequence all known modifier genes in patients shortly 

after birth, allowing clinicians to develop customised care plans for individuals based on their 

genotypes. 
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Full gene maps of the ASH1L and KLF1 genes (A & B respectively), adapted from the UCSC Genome Browser (http://genome.ucsc.edu - Assembly GRCh37/hg19380). PCR amplicons 
for template regions amplified for cloning into CRISPR-Cas9 plasmids are annotated. ASH1L gene spans a much larger area, and contains many exons. Structure of the KLF1 gene is 
much simpler, with only three exons, the location of the intronic SNP is also highlighted in red. 
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CRISPR-Cas9 Plasmid Sequence. 20bp variable gRNA target sequence is highlighted in blue, with the 
conserved regions of the gRNA SDM primers highlighted in yellow. The BssHII restriction enzyme site 
used for template DNA insertion is shown in magenta. Cas9 sequence is shown in red in bold, and the 
GFP sequence is highlighted in green. 

 CCGNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC
GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGAAGACACACCGCTCTCAATATTGGCC
ATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCATTGCATACGTTGTAT
CTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCATGTTGGCATTGATTATTGA
CTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACAT
AACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACG
TATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTA
AATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACG
TATTAGTCATCGCTATTACCATGCTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTT
GACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCA
ACGGGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGG
TGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGCGGTAGT
TTATCACAGTTAAATTGCTAACGCAGTCAGGCCAACAGAGACCACACCCAAGCTGGCCGCCACCATGG
CCCCAAAGAAGAAGCGGAAGGTCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAGCATCG
GCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCA
AGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTG
CTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACAC
CAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACG
ACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACC
CCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAG
AAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACAT
GATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAA
GCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGC
GTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCC
CAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGGCCTGACC
CCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTAC
GACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCC
AAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAAGGCC
CCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTC
TCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACG
CCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAA
AGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCG
GACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCG
GCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCG
CATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAG
CGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTT
CATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCT
GCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAG
AAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCG
GAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGG
AAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATTAT
CAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCT
GACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGA
CAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTG
ATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTC
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GCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAA
GCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCC
ATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCA
CAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAG
AACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGA
AAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATG
GGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATA
TCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGA
ACCGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCG
GCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAG
GCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATC
ACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCT
GATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCA
GTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTCGTG
GGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTG
TACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTT
CTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAG
CGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGC
CACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGCAGACAG
GCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATCGCCAGAAAGAAG
GACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTG
GCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCA
TCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAA
GTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAG
AGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTG
AACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAA
CAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCC
AAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGAT
AAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTG
CCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGG
ACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGG
AGGCGACAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGGCACATCTG
AGGGCAGGGGAAGTCTGCTAACATGCGGGGACGTGGAGGAAAATCCCGGCCCCATGACTGCCCTGA
CCGAAGGTGCTAAGCTGTTTGAGAAGGAGATTCCGTACATCACCGAGCTGGAAGGGGACGTCGAAG
GAATGAAGTTCATCATCAAGGGAGAAGGAACCGGGGACGCTACGACTGGAACCATTAAGGCCAAGT
ATATCTGTACCACTGGAGATCTGCCAGTGCCTTGGGCCACCCTTGTGTCAACCCTCTCGTATGGAGTGC
AGTGTTTTGCTAAGTACCCTAGCCACATTAAGGACTTCTTCAAATCCGCCATGCCGGAAGGTTATACCC
AAGAGCGCACCATTTCTTTTGAGGGAGATGGAGTGTACAAGACCCGCGCGATGGTCACCTATGAGAG
GGGATCTATCTACAACCGGGTGACTCTGACTGGAGAAAACTTTAAGAAGGACGGGCATATTCTTCGG
AAGAATGTCGCCTTCCAGTGCCCTCCCAGCATCCTTTACATTCTCCCCGACACTGTGAACAACGGAATC
CGCGTGGAGTTCAATCAAGCCTACGACATCGAGGGGGTGACGGAGAAGCTGGTGACCAAGTGTAGC
CAGATGAATCGGCCACTGGCCGGTTCAGCGGCTGTCCACATTCCGCGCTACCATCATATCACTTATCAC
ACTAAGCTCTCCAAAGACCGCGATGAGAGGAGAGATCACATGTGCCTGGTGGAAGTGGTCAAGGCC
GTCGATCTCGATACCTATCAGTAAGGTCTCACTCGAGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGC
CATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTA
ATAAAATGAGGAAATTGCATCCCCACTTCAGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCACTAT
AGAGTCGAATAAGGGCGACACCCCCTAATTAGCCCGGGCGAAAGGCCCAGTCTTTCGACTGAGCCTT
TCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCATGGGGAGTCCCCACACTACCATCGGCGCTAC
GGCGTTTCACTTCTGAGTTCGGCATGGGGTCAGGTGGGACCACCGCGCTACTGCCGCCAGGCAAACA
AGGGGTGTTATGAGCCATATTCAGGTATAAATGGGCTCGCGATAATGTTCAGAATTGGTTAATTGGTT
GTAACACTGACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC
CCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAATATGAGCCATATTCAACGGGAAACGTCGAG
GCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGC
AATCAGGTGCGACAATCTATCGCTTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGC
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AAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGC
CACTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCG
GAAAAACAGCGTTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCA
GTGTTCCTGCGCCGGTTGCACTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGCC
TCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAAT
GGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGT
CACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGT
TGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTT
CTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGT
TTCATTTGATGCTCGATGAGTTTTTCTAAAAGCAGAGCATTACGCTGACTTGACGGGACGGCGCAAGC
TCATGACCAAAATCCCTTAACGTGAGTTACGCGCGCGTCGTTCCACTGAGCGTCAGACCCCGTAGAAA
AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCAC
CGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTC
AGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGCCCACCACTTCAAGAACTC
TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG
GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG
CTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTC
GGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGG
TTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAA
CGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCG
TTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGA
ACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGGCGAGAGTAGGGAACTGCCAGGCAT
CAAACTAAGCAGAAGGCCCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTCTGTGTTGTAAAA
CGACGGCCAGTCTTAAGCTCGGGCCCCCTGGGCGGTTCTGATAACGAGTAATCGTTAATCCGCAAATA
ACGTAAAAACCCGCTTCGGCGGGTTTTTTTATGGGGGGAGTTTAGGGAAAGAGCATTTGTCAGAATA
TTTAAGGGCGCCTGTCACTTTGCTTGATATATGAGAATTATTTAACCTTATAAATGAGAAAAAAGCAAC
GCACTTTAAATAAGATACGTTGCTTTTTCGATTGATGAACACCTATAATTAAACTATTCATCTATTATTT
ATGATTTTTTGTATATACAATATTTCTAGTTTGTTAAAGAGAATTAAGAAAATAAATCTCGAAAATAAT
AAAGGGAAAATCAGTTTTTGATATCAAAATTATACATGTCAACGATAATACAAAATATAATACAAACT
ATAAGATGTTATCAGTATTTATTATGCATTTAGAATAAATTTTGTGTCGCCCTTATTCGACTCACTATAG
AAGTTCCTATTCTCTAGAAAGTATAGGAACTTCACTTCATTTTCCGTCTTCGAGGGCCTATTTCCCATGA
TTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACA
CAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAA
TTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATA
TCTTGTGGAAAGGACGAAACA 
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List of SDM primers used to substitute gRNA sequences into CRISPR-Cas9 plasmids. 10bp variable 
sequence at 5’ of each plasmid is shown in bold in red. 

Primer Sequence 
ASH1L_gRNA_1F_b ACTGGAGTTAGTTTTAGAGCTAGAAATAGCAAG 

ASH1L_gRNA1_SDMR GGCCGGAAGACGGTGTTTCGTCCTTTCC 
ASH1L_gRNA_2F_b CTCCAGTGGCGTTTTAGAGCTAGAAATAGCAAG 

ASH1L_gRNA2_SDMR TTAGGGTTTGCGGTGTTTCGTCCTTTCC 
KLF1_gRNA_1F_b TAGTCTGGCAGTTTTAGAGCTAGAAATAGCAAG 

KLF1_gRNA1_SDMR AGCTGAGATCCGGTGTTTCGTCCTTTCC 
KLF1_gRNA_2F_b AGTCCAGGAGGTTTTAGAGCTAGAAATAGCAAG 

KLF1_gRNA2_SDMR GAGCGTACCTCGGTGTTTCGTCCTTTCC 
HBG_gRNA1_SDM_F ACAAGCCTGTGTTTTAGAGCTAGAAATAGCAAG 
HBG_gRNA1_SDM_R GATAGTAGCCCGGTGTTTCGTCCTTTCC 
HBG_gRNA2_SDM_F CTTCCTTTTAGTTTTAGAGCTAGAAATAGCAAG 
HBG_gRNA2_SDM_R CACCCTTCAGCGGTGTTTCGTCCTTTCC 
HBG_gRNA3_SDM_F CTAAGACTATGTTTTAGAGCTAGAAATAGCAAG 
HBG_gRNA3_SDM_R AGTATCCAGTCGGTGTTTCGTCCTTTCC 
HBG_gRNA4_SDM_F GCCAACCCATGTTTTAGAGCTAGAAATAGCAAG 
HBG_gRNA4_SDM_R CAGCCTTGCCCGGTGTTTCGTCCTTTCC 
HBG_gRNA5_SDM_F AGATAGTGTGGTTTTAGAGCTAGAAATAGCAAG 
HBG_gRNA5_SDM_R CAATGCAAATCGGTGTTTCGTCCTTTCC 
Primers for sequencing over gRNA site 

CRISPR_SEQ1_F GAGGGCCTATTTCCCATG 
CRISPR_SEQ2_R GTCGTTGGGCGGTCAG 
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XRCC6 & LIG4 siRNA and rtPCR Primer Sequences. siRNA were purchased from Origene. rtPCR primers 
for Ligase IV, XRCC6 and KLF1 were designed using Primer3Plus385, and rtPCR primers for Actin β, α-
globin, β-globin and γ-globin are the same as those used by Mabaera et al. (2007)550. 
 

siRNA Sequence Ref Number 
Ligase 4   
siLIG4-A AGCUCAUACUAAGAAUGAAGUAATT SR302689A 
siLIG4-B UCAAUAGACAAGUGUGAAUUACAAG SR302689B 
siLIG4-C AGAAUGGCCUAUGGAAUUAAAGAAA SR302689C 

   
XRCC6   

siXRCC6-A GCGCCAAAGUGAGCAGUAGCCAACA SR301689A 
siXRCC6-B GUUCUAUGGUACCGAGAAAGACAAA SR301689B 
siXRCC6-C CGAGGGCGAUGAAGAAGCAGAGGAA SR301689C 

    
    

Target rtPCR Primers Sequence 

Ligase 
IV 

Lig4_cDNA_F CGAGCTTACCAGATGCCTTC 
Lig4_cDNA_R TGTGGAACAGAGAAGCCAGA 
Lig4_cDNA_2F CATGCAGGCTTGACAACATC 
Lig4_cDNA_2R AGCCTGACCTGGAGAACAGA 

XRCC6 

XRCC6_cDNA_F GGGACAAAAACGTTTCCAAG 
XRCC6_cDNA_R CCAGGTTTCTTCAGGTGCAT 
XRCC6_cDNA_2F CGGGAAACAAATGAACCAGT 
XRCC6_cDNA_2R TGAAACCCATGAGCATCAAA 

Actin β 
b_actin_cDNA_nF GTGGGGCGCCCCAGGCACCA 
b_actin_cDNA_nR CTCCTTAATGTCACGCACGATTTC 

α-globin 
HBA_cDNA_nF TGGGGTAAGGTCGGCGCGCA 
HBA_cDNA_nR TGCACCGCAGGGGTGAACTC 

β-globin 
HBB_cDNA_nF GGTGGTCTACCCTTGGACCC 
HBB_cDNA_nR GATACTTGTGGGCCAGGGCA 

γ-globin 
HBG_cDNA_nF GGGAGATGCCATAAAGC 
HBG_cDNA_nR ATTGCCAAAACGGTCAC 

KLF1 
KLF1_cDNA_EX1_F CTTCCCGGACACACAGGATG 
KLF1_cDNA_EX2_R GGTCCTCAGACTTCACGTGG 
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Primers used for Sanger sequencing over the site of the SNPs of interest in KLF1 and ASH1L. 
 

Target Primer Sequence 

KLF1 
KLF1_SNP_seqF GTTGCCCAGGCTACCTTC 
KLF1_SNP_seqR GTGGGCTGGCTGGAATC 

ASH1L 
ASH1L_SNP_seqF TCCTTTCTGTGAAGCCGATTTA 
ASH1L_SNP_seqR AGTTCTCCAAGCTTATCCCTTG 
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List of the 11 Fantom5 expression datasets used to generate the list of ‘haematopoietically silent’ genes. 
Fantom5 data - Tissue Sources 

Bone Marrow, Adult 
CD34 cells differentiated to erythrocyte lineage, Biological Replicate 1 
CD34 cells differentiated to erythrocyte lineage, Biological Replicate 2 

CD34+ stem cells - adult bone marrow derived 
Fetal Liver, Pool 1 

Peripheral Blood Mononuclear Cells, Donor 1 
Peripheral Blood Mononuclear Cells, Donor 2 
Peripheral Blood Mononuclear Cells, Donor 3 

Whole Blood (ribopure), donor 090309 
Whole Blood (ribopure), donor 090325 
Whole Blood (ribopure), donor 090612 

 


