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Abstract—This work investigates super-resolution reconstruction and 

deconvolution of perfusion arterial spin labelling (ASL) images using a high-

resolution T1-weighted MRI with the aim of reducing the partial volume effect on the 

estimated cerebral blood flow (CBF). The MR acquisition matrix was factorized to 
model the down-sampling and blurring of the underlying ASL images, as well as MR 

coil sensitivity, Fourier encoding and k-space undersampling. The proposed methods 
were evaluated using simulation and real data in comparison with the standard 

reconstruction method, and an anatomical non-local means filtering combined with 

deconvolution. In simulations, both MR-guided deconvolution and reconstruction 
methods achieved the lowest normalised root mean square (NRMS) errors of 20% 

and 18.5% respectively, compared to the standard method with NRMS error of 

29.5%. For real data, the guided deconvolution gave rise to the best results in terms 
of contrast and detail recovery. Evaluation of the guided reconstruction of the real 

data is in progress. In conclusion, the proposed methods provide a promising solution 

for improving the quality and quantitative accuracy of estimated CBF maps. 
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I.  INTRODUCTION 

Arterial spin labelling (ASL) is a perfusion-weighted magnetic resonance imaging 

(MRI) technique for absolute quantification of cerebral blood flow (CBF). In this 

technique, the blood water flowing into the brain is magnetically labelled and a 
perfusion signal is obtained from the subtraction of the acquired label image from a 

control image with no labelling [1]. Since ASL imaging exploits magnetically 

labelled blood water as an endogenous tracer, it is totally non-invasive and it can be 
utilized in repetitive follow-ups; it can therefore substitute other perfusion imaging 

techniques that rely on an exogenous tracer such as dynamic susceptibility contrast 

(DSC) MRI or emission tomography with their associated risks. ASL can be acquired 
with spin echo sequences which are robust to susceptibility signal loss compared to 

gradient echo based DSC MRI. In addition, ASL has better temporal and spatial 

resolution than emission tomography modalities such as PET and SPECT.  

Nonetheless, all these advantages are challenged by the intrinsically low signal 

to noise ratio (SNR) of the ASL signal, since the volume of the labelled blood is only 

about 1% of the total cerebral blood volume. In order to improve SNR and acquire a 
perfusion image in a clinically acceptable time frame, typically 10–50 control-label 

image pairs with low resolutions (in-plane: 3–4 mm, through-plane: 4–8 mm) are 

acquired [2]. This coarse spatial resolution results in partial volume effect (PVE) in 
the CBF maps leading to significant underestimation of CBF in the grey matter [3]. 

Furthermore, similar to emission tomography, the point spread function (PSF) of the 

MR scan can contribute to PVE. For instance, in 3D GRASE, which is a widely used 
ASL readout sequence, the T2 decay of the echo train signal results in blurring in the 

partition (through-plane) direction of the imaging volume. In a single-shot GRASE, 

the through-plane PSF has been reported in the range of 1.5 to 1.9 voxels full width 
at half maximum (FWHM) [4]. For partial volume correction (PVC), existing 

methods mainly aim to correct for the tissue fraction effect (caused by low-resolution 
acquisitions) using partial volume (PV) estimates that are obtained from anatomical 

MR images mapped into the ASL image resolution. These methods are linear 

regression [5], modified least trimmed squares [3] or Bayesian inference [6] among 
others. PV estimation requires accurate segmentation and down-sampling of the 

anatomical MR images, which are prone to bias errors [7]. These PVC methods can 

be preceded by a deconvolution pre-processing step to remove the PSF blurring [8] 
however, the employed deconvolution steps are known to amplify noise and to induce 

Gibbs ringing artefacts. Another, more direct, way to avoid PVEs is to increase the 

resolution in the ASL images using smaller voxel sizes, and increase the number of 
averages to compensate for reduced SNR. However, this would lead to impractically 

long scan times and increased sensitivity to motion artefacts. 

In this work, we propose to perform i) super-resolution reconstruction of control-
label image pairs from k-space data and ii) super-resolution deconvolution of the 

standard CBF maps (obtained from the subtraction of low-resolution control and 

labelled images), both using high-resolution anatomical MR images. These 
techniques should allow enhancement of the spatial resolution of the ASL images and 

hence reduce PVE in the estimated CBF maps. 

II. MATERIAL AND METHODS 
A. High-resolution reconstruction of ASL data 

In the Bayesian framework, the reconstruction of low-resolution ASL data at the high 

resolution of anatomical MR images can be achieved by the following minimization: 

𝒙̂(𝑖) = argmin
𝒙(𝑖)∈ℂ𝑁
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where 𝑖 ∈ {𝑐, 𝑙} indicates control and label datasets, 𝒙 is the underlying high-

resolution image, 𝑩 is the MR scan blurring matrix, 𝑯 is the down-sampling matrix 

from the anatomical image space to ASL space, 𝑪 is the MR coil sensitivity matrix, 

𝑭 is the Fourier encoding matrix, 𝜱 is the k-space undersampling matrix, 𝒔 is the MR 

measured data, 𝑾 is the inverse of the noise-correlation matrix, 𝑫 is a derivative 

matrix for calculation of local differences between image voxels, 𝝎 is a diagonal 

matrix used to weight the local differences of image 𝒙 based on their proximity and 

similarity in a prior anatomical MR image and 𝛽 controls the strength of the 

regularization term. Therefore, the minimization in (1) seeks to reconstruct a high 
resolution image from low-resolution k-space data with the guidance of a prior high-

resolution MR image.  

B. High-resolution deconvolution of CBF maps 
Under certain conditions, it can be shown that the k-space reconstruction in (1) 

degenerates to image-space deblurring of the inverse Fourier transform of k-space 

data. This motivates investigation of super-resolution deblurring as a post-processing 

step to estimate high-resolution perfusion or CBF maps, 𝒙(ℎ), from a low-resolution 

PVE affected one, 𝒙(𝑙), using the following minimization: 

𝒙̂(ℎ) = argmin
𝒙(ℎ)∈ℂ𝑁
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In this study, we used Gaussian similarity kernels, with an additional parameter, 𝜎, to 

calculate the weighting coefficients 𝝎 in Eqs. (1-2), similar to [9]. The minimizations 

in Eqs. (1-2) were solved iteratively using the conjugate gradient (CG) algorithm [10]. 

C. Simulations and real data 

For realistic simulations, the structural T1-weighted image of a volunteer (with 

resolution of 1.05×1.05×1.1 mm3) was segmented into grey matter (GM) and white 
matter (WM), and an equilibrium magnetisation (M0) and a ground truth CBF map 

were simulated. Based on reported healthy human CBF values [11], the values of 65 

and 20 mL/100g/min were assigned to GM and WM voxels, respectively. Regions of 
cortical hyper-perfusion and hypo-perfusion (on average 78 and 10 mL/100g/min, 

respectively) were also artificially created. The control image was assumed to be the 

M0 image and the label image was calculated in each voxel by using a single-
compartment perfusion model [12]. The control-label image pairs were smoothed 

using an anisotropic Gaussian kernel (4,4,8) mm FWHM and down-sampled to the 

resolution of 3.52×3.53×5.06 mm3. Noisy multi-channel k-space data (5 channels) 

were generated from the resulting low-resolution control-label image pairs. For 

performance comparisons, a k-space undersampling factor of 4 was considered. An 

ASL dataset was acquired for a healthy volunteer with the following parameters: 
pseudo-continuous ASL (PCASL) labelling (labelling duration 1.5s, post-labelling 

delay 1.8s) and 3D GRASE readout [13], EPI factor of 31, 26 slices with 
oversampling of 10%, slice thickness 4 mm, in-plane resolution of 4×4 mm2, 21 

control-label measurements together with one proton density weighted (M0) images 

were acquired within a total scan time of 6 minutes. Additionally, a T1 weighted 
image was acquired using a 3D magnetization prepared rapid gradient echo 

(MPRAGE) sequence. 

D. Evaluation metrics 
The performance of the proposed MR-guided super-resolution reconstruction and 

deconvolution methods were compared with the standard perfusion image (obtained 

from the subtraction of the control and label pairs), the perfusion image filtered with 
different methods such as PSF deconvolution, anatomical non-local means (A-NLM) 

filtering [14] and combined A-NLM and deconvolution. For the simulations, the GM 

and WM quantification errors were evaluated with respect to the ground truth 

perfusion maps as follows: 

𝐸𝑖  = 100 ×
𝑥𝑖 − 𝑥𝑖

𝑇𝑟𝑢𝑡ℎ

𝑥𝑖
𝑇𝑟𝑢𝑡ℎ  (3) 

In addition, the normalized root mean square error (NRMSE) in the whole brain was 
calculated as: 

𝑁𝑅𝑀𝑆𝐸 = 100 × √
∑ |𝑥𝑖 − 𝑥𝑖

𝑇𝑟𝑢𝑡ℎ|
2

𝑖

∑ |𝑥𝑖
𝑇𝑟𝑢𝑡ℎ|𝑖

2  (4) 

The real data results were evaluated in terms of mean GM CBF in different tissue 

fraction ranges.  

III. RESULTS 
A. Simulations 

Fig. 1 shows the simulation results for different methods including i) the low-

resolution standard method, ii) the deconvolution of the standard image, up-sampled 
into the resolution of the T1-MPRAGE image, using a PSF kernel of (4,4,7) mm in 

FWHM, iii) A-NLM filtering of the up-sampled standard image, iv) deconvolution 

of the A-NLM image, v-vi) T1-guided deconvolution and reconstruction methods. 

The quantitative performance of the methods is also shown using voxel-wise error 

maps. As shown the standard reconstruction methods suffers from noise and loss of 

structural information due to PVEs. The deconvolution, performed using 30 iterations 
of the CG algorithm, enhances the overall contrast, particularly in striatum, however 

at the expense of amplifying noise. The A-NLM filtering in which the Gaussian 
similarity coefficients were derived from the high-resolution T1 image reduces noise 



but suffers from PVE and low-contrast resolution. Deconvolution of the A-NLM 

image (30 iterations of the CG algorithm) results in notable improvements in terms 
of contrast, quantification errors (see Fig. 2A-B) at the cost of increased Gibbs 

artefacts at the borders. As shown, both high-resolution guided deconvolution and 

reconstruction methods give rise to noise reduction, higher contrast-resolution and 

recovery of tissue-type boundaries. For these simulated data reconstructions, the 

regularization used 𝜎 = 0.2 and 𝛽 was chosen based on minimal NRMSE in the 
whole brain. Fig. 2A-B shows the mean and standard deviation of the quantification 

errors in GM and WM as well as the NRMSE in the whole brain. The results show 
that the guided reconstruction method achieves the best performance. In GM, it 

reduces the errors of the standard method from –14±71% to –4±63%, while in WM, 

the errors are reduced from +21±38% to +12±25%. The whole brain NRMSE is 
reduced from 29.5% to 20% and 18.5%, respectively for the proposed guided 

deconvolution and reconstruction. Fig. 2 C-D shows profiles through the simulated 

hyper-perfused region, which is subject to substantial PVEs as seen in the standard 
reconstruction method. The profiles demonstrate that the proposed methods, 

particularly the guided reconstruction method, result in improved recovery of the true 

intensity profiles.  
 

 
 

Fig. 1. Reconstruction results of simulated ASL data with k-space undersampling factor of 4. Left to right: high-

resolution T1-MPRAGE and ground truth perfusion images (1.05×1.05×1.1 mm3), low-resolution standard 

reconstruction (3.52×3.53×5.06 mm3), PSF deconvolution of standard reconstruction up-sampled to T1 image 

resolution, anatomical non-local means (A-NLM) filtering of the up-sampled standard image, deconvolution of 

the A-NLM image, the proposed high-resolution guided deconvolution and reconstructions. The voxel-wise error 

maps have also been shown.  

 
 

 

 

 

 

Fig. 2. A) Mean (horizontal red mark) and standard deviation (vertical bar) of the errors in grey (grey) and white 

matter (white) for the different methods. B) NRMSE over the whole brain for the different methods. C-D) Intensity 

profiles through the dashed lines indicated in the inset (showing ground truth for hyper-perfused regions) in 

transverse and sagittal views. 

B. Real data 

For real data, in this preliminary work, we evaluated the different post-reconstruction 

methods on the control-label image pairs as reconstructed by the scanner. Indeed 

clinical scanners typically produce only magnitude images. The guided 
reconstruction of complex k-space data will be addressed in the near future. The 

image pairs were averaged over the 21 measurements and converted into CBF maps 

using the FSL software (FMRIB, Oxford, UK). The low-resolution standard CBF 
maps were then processed using different methods as shown in Fig. 4. Similar to the 

simulations, the deconvolution method was performed on the up-sampled CBF image  

 
Fig. 3. Comparison of different post-processing methods operating on the low-resolution standard CBF map. 

 

 
Fig. 4. Grey matter cerebral blood flow for different partial volume fraction ranges obtained from the segmented 

image of the T1-weighted MR image of the healthy volunteer. 

 

using the CG algorithm for only 5 iterations (further iterations resulted in extensive 

Gibbs artefacts) and PSF widths of (4,4,8) mm FWHM. The A-NLM method shows 
some edge enhancement but lacks contrast. The deconvolution of the A-NLM image 

leads to contrast recovery however at expense of increased Gibbs artefacts. As can be 

seen, the guided deconvolution method gives rise to improved noise reduction, 
contrast recovery and enhanced tissue boundaries. The regularization parameter was 

selected experimentally to give best grey-white matter contrast with reduced artefacts. 

The PVC performance of the methods was evaluated based on the mean CBF in 
different PV (or tissue) fractions of grey matter. A PV (grey matter probability) map 

was obtained from the segmentation of the T1-weighted MR image using the SPM 

software (Wellcome Trust Centre for Neuroimaging, UCL). The results show that for 
PV fraction [0-0.2] the guided deconvolution results in the lowest CBF value, which 

is due to reduced spill-out of GM in WM by these methods. For higher ranges of PV 

fraction, the proposed method results in increased GM CBF. The conventional 
deconvolution methods also result in higher CBF values, however, this can be 

attributed to the increased Gibbs artefacts at the edges.   

IV. CONCLUSION  

In this work, advanced MR-guided super-resolution methods were proposed to reduce 

PVEs in ASL images and hence to improve the quantitative accuracy of the estimated 

CBF maps. The results show that the super resolution modelling and reconstruction 
or processing of the ASL images in the high-resolution space of the anatomical T1-

weighted images can improve the quality and quantitative accuracy of the CBF maps. 

Future work will include guided reconstruction of the complex real data and 
comparison of the proposed methods with the standard PVC techniques currently in 

use. 
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