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MRI SLICE STACKING USING MANIFOLD ALIGNMENT AND WAVE KERNEL
SIGNATURES

James R. Clough, Daniel R. Balfour, Paul K. Marsden, Claudia Prieto, Andrew J. Reader, Andrew P. King

School of Biomedical Engineering & Imaging Sciences
King’s College London

ABSTRACT

MRI slice stacking involves retrospective combination of 2D MRI
images to form pseudo 3D volumes. It is useful because physi-
cal constraints limit the temporal/spatial resolutions with which dy-
namic 3D MRI volumes can be acquired and so stacking fast high-
resolution 2D images can yield pseudo 3D volumes with high in-
plane spatial and temporal resolution. However, it is important that
the stacked 2D images were acquired at consistent motion states.
Assessing motion state consistency between slices representing dif-
ferent anatomy is challenging as the image contents are not easily
comparable. Manifold alignment (MA) is a technique which pro-
vides a solution to this problem by embedding the 2D images for
all slices into one globally consistent low-dimensional space. One
successful approach to MA involves forming graphs from each slice
dataset and using graph descriptors to find correspondences between
datasets. Here we propose a new graph descriptor for the slice stack-
ing problem, inspired by work in the computer vision literature, and
evaluate it with two experiments. First, using a highly realistic syn-
thetic MRI dataset in which reconstructed volumes can be compared
to a ground truth, we find our method significantly outperforms the
state of the art. Second, we use in vivo MRI data and show that
the volumes reconstructed by our method have a higher degree of
self-consistency.

Index Terms— Magnetic resonance imaging, Manifold align-
ment, Respiratory motion, Graphs

1. INTRODUCTION

High in-plane temporal and spatial resolution volumes can be ret-
rospectively formed from dynamic 2D magnetic resonance imaging
(MRI) data using slice stacking techniques. These volumes can be
used for motion correction of PET [1] and the study of respiratory
motion [2]. The slice stacking aims to group into volumes slices that
were acquired at similar motion states. Techniques have been pro-
posed that perform the grouping using an extra gating signal, such as
a 1-D [3] or 2-D [2] MRI navigator. However, these approaches re-
quire extra scanning time. Alternatively, the grouping can be based
on the acquired MRI slices themselves [4]. Our focus here is on the
latter case. The underlying challenge of this self-gating approach is
to find motion state correspondences between images which repre-
sent different anatomy.

The task of relating images from different datasets is common
in medical imaging. Examples include images from different views
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[5, 6] and different acquisition protocols [7]. Manifold alignment
(MA) approaches have been proposed to address this problem [1].

MA is an extension of manifold learning (ML) in which multiple
high-dimensional datasets are embedded into the same low dimen-
sional space. Some MA techniques compute this embedding based
on direct inter-dataset comparisons [1, 8]. However, sometimes the
disparate nature of the different datasets makes this difficult. Alter-
native approaches have been proposed based on graph theory. Since
images from the same dataset can be directly compared, a graph in
which images are represented by nodes is formed for each dataset
based on such intra-dataset comparisons. Inter-dataset comparisons
are then made by comparing graph-based descriptors rather than the
images themselves [6].

Our contribution in this paper is to apply and develop recently
proposed graph based descriptors to MA to achieve state-of-the-art
performance in MRI slice stacking. In particular, we use an adapted
version of the Wave Kernel Signature (WKS) [9] which has previ-
ously been applied only to problems in computer vision. Further-
more, whereas slice-stacking methods have previously only used im-
age intensities as the high-dimensional data, we also investigate the
use of registration-derived motion field data. We find that in some
cases, especially when the size of the high-dimensional dataset is
limited, the use of motion fields can successfully reconstruct consis-
tent 4D volumes where the image intensity approach cannot.

This paper is structured as follows. We firstly describe our
method which is based on MA and graph theory. We then de-
scribe the synthetic and in vivo datasets we use, the experiments we
performed, and our results, ending with discussion and conclusions.

2. METHODS

We describe our methodology in two stages. First, we outline how
MA can be used to perform the global alignment of the data, and
second we describe how graph theory can be used to define the inter-
dataset comparison term used in MA.

2.1. Manifold Alignment

ML is a tool for non-linear dimensionality reduction which aims to
extract low dimensional manifolds from high-dimensional datasets.
We denote the high-dimensional data by X = [x1,x2, ...,xT ],
which consists of T points in RD . In previously published MRI
slice stacking techniques the data X have consisted of image inten-
sities [4, 1, 6], but in this paper we investigate a novel approach of
using image-derived motion fields as discussed in section 4. As-
suming that X lie on or close to a manifoldM of dimension d, ML
constructs a map from RT×D to RT×d where d� D. The resulting
points form a new low-dimensional dataset, Y = [y1,y2, ...,yT ]
which describe each point’s position on M. Many methods have



been proposed to achieve this embedding, such as Isomap [10],
Locally Linear Embedding [11], and Laplacian Eigenmaps [12].

In some cases, two or more different datasets may be described
by similar manifolds, even if the high-dimensional data do not ap-
pear to be similar or easily comparable. MA is an extension of
ML, in which multiple high-dimensional datasets are mapped to
one common low-dimensional space, whilst preserving relations
between points in the same dataset, and also some specified inter-
dataset relations.

ML techniques which work by optimising a cost function can
be extended to perform MA by adding terms to the cost function
which represent inter-dataset alignment [8]. Here we use Laplacian
Eigenmaps (LE) [12], so we briefly review how LE can be extended
to perform MA.

LE involves firstly forming a graph G based on kG nearest-
neighbour relations, with the edge between i and j weighted by

Wij = exp

[
−||xi − xj ||2

2σ2
G

]
, (1)

where σG determines the strength of neighbourhood relations. The
graph Laplacian, L is given by

L = D−W (2)

where D is the diagonal degree matrix Dii =
∑

j Wij . The eigen-
vectors of L corresponding to the d smallest non-zero eigenvalues
provide the low-dimensional coordinates Y. These are the coordi-
nates minimising the cost term Φ(Y),

Φ(Y) =
∑
i,j

Wij ||yi − yj ||2 (3)

subject to the constraint that YTDY = I. MA is achieved by ex-
tending this formulation to the case of N high-dimensional datasets.
The joint cost term becomes

Φtotal =
∑
`

Φ(`) +
µ

2

∑
n 6=m

∑
i,j

U
(n,m)
ij ||y(n)

i − y
(m)
j ||2 (4)

where Φ(`) is the cost term for each individual dataset, U(n,m) is
some similarity kernel between datasets X(n) and X(m), and µ is the
parameter that weights the intra-dataset matching versus the inter-
dataset matching.

The aligned coordinates Y(`) minimising this cost are given by
the smallest non-zero eigenvectors of the block matrix M where

M =


L(1) + µI −µU(1,2) . . . −µU(1,N)

−µU(2,1) L(2) + µI . . . −µU(2,N)

...
...

. . .
...

−µU(N,1) −µU(N,2) . . . L(N) + µI

 . (5)

2.2. Graph-Based Descriptors

The key to implementing Eq (5) is the definition of the inter-dataset
similarity kernel, U(n,m). Since direct comparison of data from
different high-dimensional datasets is often not possible, we must
transform the original data in some way that facilitates comparison.
One approach is to form graphs representing each high-dimensional
dataset and compute descriptors based on the graph structures. This
was the approach taken in [6], in which a descriptor based on the
steady-state distribution of a lazy random walker on the graph was
proposed. In the next section we outline a new descriptor that is
based on work from the computer vision literature.

2.2.1. Wave Kernel Signature

The wave kernel signature (WKS) [9] is part of a family of graph
matching methods which use the eigenvectors of the graph’s Lapla-
cian to compare vertices. The graph Laplacian, L, can be interpreted
as a discrete version of the Laplace-Beltrami operator and so can be
used to describe diffusive processes on the graph [12]. We denote the
Laplacian’s eigenvalues as Ek and eigenvectors as φk. The WKS is
a function ωi(z) for each node i in the graph, defined as

ωi(z) = C(z)
∑
k

φ2
k,i exp

[
−(z − log(Ek))2

2σ2
ω

]
(6)

where C(z) is a normalisation term given by

C(z) =

(∑
k

exp

[
−(z − log(Ek))

2σ2
ω

])−1

. (7)

This function is a stable and highly informative descriptor [13]
which corresponds to the diffusion of a quantum mechanical particle
of energy z on the graph [9]. The parameter σω is a measure of
the ‘smoothness’ of this descriptor which is normally constant and
manually chosen for the task at hand.

The similarity between two nodes, i and j in the two graphs n
and m can be assessed by measuring a distance, ∆

(n,m)
ij , between

their wave kernel signatures, where

∆
(n,m)
ij =

∫ zmax

zmin

ω
(n)
i (z)− ω(m)

j (z)

ω
(n)
i (z) + ω

(m)
j (z)

dz . (8)

The similarity kernels are then given by

U
(n,m)
ij = exp

[
−(∆

(n,m)
ij )2

2σ2
WKS

]
(9)

which ensures that vertices with similar wave kernels have a high
similarity in U . We set σWKS = 1.

As noted above, the value of σω is normally manually chosen
based on how similar the graphs are. Very similar graphs can be
better matched with a low σω and vice versa. In MRI slice stacking
the task is to align the manifolds of multiple 2D slice datasets, some
of which may be similar (e.g. adjacent slices) and some of which
may be dissimilar (e.g. far apart slices). Therefore, in this paper
we propose a novel extension of the WKS in which different values
of σω are used for each pair of datasets and these are automatically
computed based on the similarities of the graph’s eigenvalues:

σ(ij)
ω = a+ b

∑
k

| log(E
(i)
k )− log(E

(j)
k )| (10)

where a and b are constants found by grid search. We refer to this
method as adaptive WKS, or adWKS.

In Section 4, we also evaluate the widely used heat kernel sig-
nature (HKS) [14], which differs in that the exponential term in (6)
and (7) is replaced with exp [−Ekz].

As in [6], once a feature descriptor has been used to generate a
similarity kernel U(n,m), the kernel is then sparsified by using the
Hungarian algorithm to establish one-to-one correspondences with
the maximal similarity. These sparsified kernels are used for MA.



3. MATERIALS

We evaluate our MRI slice stacking method on synthetic and real
MRI datasets. The first dataset consists of a sequence of synthetic
but highly realistic dynamic 3D MRI volumes of the thorax as de-
scribed in [15]. Briefly, this synthetic dataset was generated using
image registration of a respiratory-gated high spatial resolution 3D
MRI volume to a series of dynamic 3D low spatial resolution MRI
volumes. The high resolution volume was warped using the regis-
tration results to create a series of realistic high spatial resolution
volumes at different respiratory motion states. We use 250 volumes
sampled with an interval of 0.64s each containing 40 sagittal slices.
We direct the reader to [15] for further details on the generation
of this dataset. To use this dataset for evaluating the slice stack-
ing methods, at each time point, a single slice was extracted from
the current volume (and the rest left out); the datasets used for slice
stacking comprised this extracted slice and all slices from the other
time points. This process was repeated for all time points to simu-
late a real slice-by-slice acquisition. We repeat this process for each
slice, giving 40 reconstructed volumes for each time point and report
the median result across these 40 volumes.

The real MRI slice datasets we use are those presented in [16].
The data was acquired from four healthy subjects and had a field of
view covering the entire thorax, including the lungs and liver. The
data consists of N sagittal slices of thickness 8mm, where N is typ-
ically around 30. The 2D images were acquired by taking one image
from each slice position, iterating through the slices one by one, and
then repeating this process until 40 images were obtained for each
slice position. In this acquisition, one image was acquired per heart-
beat (at systole) so as to isolate respiratory motion. The acquisitions
were carried out on a Philips Achieva 3T MR scanner using a T1-
weighted gradient echo sequence with an acquired in-plane image
resolution of 1.4 × 1.4 mm2, a slice thickness of 8 mm, repetition
and echo times (TR and TE) of 3.1 and 1.9 ms, a flip angle of 30
degrees, and a SENSE-factor of 2. The field of view covering the
entire thorax was 400 × 370 mm2 , and each slice took around 180
ms to acquire.

For both experiments we assess the use of image intensities and
registration derived motion fields as the high-dimensional data used
to build the manifold. As in [16], NiftyReg [17] was used to estimate
the 2D motion fields. In the synthetic dataset, images are registered
to an end-exhale respiratory position, and in the real dataset to end-
exhale breath-hold images.

4. EXPERIMENTS AND RESULTS

We quantitatively evaluate the use of MA for MRI slice stacking
based on our proposed adWKS descriptor and compare it to the use
of three alternatives: the standard WKS descriptor (i.e. without our
novel adaptive selection of σω), the random walk based descriptor
as described in [6], and the heat kernel signature [14] (see Section
2.2.1). For each descriptor, and at each time point i, to reconstruct a
volume around a slice acquired at position n, we stack together im-
ages from other slice positions m 6= n such that the whole volume,
Vi has a consistent respiratory position. Specifically, if our current
image is x

(n)
i , we find the j 6= i for each slice m 6= n to min-

imise ||y(n)
i − y

(m)
j ||2 (i.e. the distance between the images in the

low-dimensional manifold), and then use the image x
(m)
j for slice

position m in the volume Vi. Stacking all of these slices together
produces a respiratory-resolved 3D volume corresponding to the 2D
image x

(n)
i . Repeating this process for each time point results in a

sequence of dynamic 3D volumes created from the dynamic 2D data.
Figure 1 shows a sample embedding Y of the synthetic data,

produced using the adWKS descriptor. Note that each point in this
plot represents a 2D slice (all slice positions are included), and the
colour indicates the respiratory position of the ground truth volume
from which it was extracted (estimated using a virtual navigator).
The smooth variation in colour demonstrates that the manifold has
accurately captured the variation in respiratory state across all slices.

4.1. 4D MRI Reconstruction of Synthetic Volumes

Fig. 1. Example of points in aligned manifold for all sagittal slices
in synthetic MRI dataset. Each point here represents a 2D sagittal
MRI image. The colours represent respiratory position.

For the first experiment we have ground truth volumes to com-
pare the stacked slices to. To quantify the accuracy of the reconstruc-
tions we calculate the L2 distance between these reconstructed vol-
umes and the corresponding ground truth volumes. Because the error
distribution was skewed, we use the median error across all slices for
each time point as a summary statistic, resulting in a median recon-
struction error for each time point for each evaluated method. Figure
2 summarises these errors. It can be seen that the WKS significantly
outperforms the random walk descriptor and the heat kernel signa-
ture, and that the adaptive choice of σω produces a further small but
statistically significant reduction in error.

Statistical significance was determined with p < 0.01 according
to a two-tailed Wilcoxon signed-rank test. In this experiment fully
connected graphs were used with σG = 1.5 for the image-intensity
data, and σG = 80 for the motion-field data. Method specific pa-
rameters were chosen by grid search and the values used here were
σRW = 0.01, σω = 0.8, a = 0.5, b = 0.5, and µ = 0.05. It
should be noted though that the superior performance of the WKS
and adWKS methods held for a wide range of parameters.

4.2. 4D MRI Reconstruction of Real Data

Our second experiment used real data acquired from four health sub-
jects. In this experiment there is no ground truth volume to compare
the stacked slices to. Therefore we quantify the quality of the re-
constructed volumes by computing the consistency of the positions
of the left and right hemidiaphragms. We automatically estimate the
diaphragm position in a coronal slice through the reconstructed vol-
umes by finding the pixels with the largest difference to their neigh-



Fig. 2. Sum of square differences between reconstructed volumes
and ground truth volumes for different graph descriptors. Each box
plot represents 250 values, one for each time point of the synthetic
4D dataset. The wave kernel methods outperform the HKS and RW
approaches, regardless of the type of high-dimensional data used.
The minimal error is for the adWKS method using image-intensity
data which has a small but statistically significant advantage over the
other wave kernel methods.

bours in the head-foot direction as shown in the example in Figure 3.
We then measure the Pearson’s correlation coefficient between the
head-foot positions of the points in the left lung with those in the
right lung over all time points. If this correlation is high then we
judge the reconstructed volumes to be consistent. We use the correla-
tion rather than a distance measure between the two hemidiaphragms
because one may be higher than the other even if they are moving to-
gether and our aim is to observe consistent motion which is captured
by measuring the correlation. Results of this experiment are shown
in table 1.

Graph descriptor
Volunteer Data adWKS WKS HKS RW

A Registration 0.958 0.957 0.803 0.954
Image 0.539 0.336 0.401 0.918

B Registration 0.914 0.904 0.674 0.870
Image 0.518 0.524 0.814 0.480

C Registration 0.903 0.864 0.533 0.339
Image 0.746 0.754 0.569 0.890

D Registration 0.810 0.801 0.685 0.722
Image 0.617 0.458 0.629 0.624

Table 1. Pearson’s correlation coefficient between left and right
hemidiaphragm positions of reconstructed volumes. A volume can
be reconstructed from each sagittal slice, each giving its own corre-
lation coefficient; here we report the median across these slices. The
best result for each volunteer is shown in bold.

Fig. 3. Top: examples from volunteers A (left) and D (right) of a
coronal slice through the original unaligned volumes. The sagittal
slices are not in consistent motion states resulting in discontinuities
in hemidiaphragm positions. Bottom: examples from a volume re-
constructed by stacking sagittal slices aligned by motion state. Es-
timated diaphragm positions for left and right lungs are shown in
red.

5. DISCUSSION AND CONCLUSIONS

MA often requires a way of comparing data between disparate
datasets, and graph-based descriptors have been proposed for this
purpose. In this paper we have proposed a novel descriptor, which
is an extension of one previously proposed in the computer vision
literature. Our results showed that the WKS-based descriptors out-
performed the state-of-the-art descriptors. Furthermore, the adWKS
descriptor allows for graph-based information to be exchanged
between different MRI slice positions whilst accounting for how
similar or different their graphs are. Intuitively, those slices which
represent very different anatomy will have different graphs, and so
they should have their images matched whilst taking this differ-
ence into account, whereas those which are more similar, such as
neighbouring slices, can be matched more precisely. Our results
demonstrated that this flexibility resulted in an improvement in
image reconstruction over the use of a constant σω value.

We also found that in the second experiment, in which the
amount of data was more limited, the use of motion fields to gen-
erate the low-dimensional manifold was crucial to reconstructing
consistent volumes. Although the use of motion fields requires more
computation than using raw images, it may allow for successful
slice-stacking even when the underlying manifold of motion states
is more sparsely sampled.

Future work will consider whether alternative approaches in the
MA step, tailored towards situations where data is limited, can also
improve image reconstruction accuracy. We will also investigate the
application of these techniques to other problems in medical imag-
ing, such as 4D ultrasound compounding of images acquired from
different acoustic windows [6].



6. REFERENCES

[1] C.F. Baumgartner, C. Kolbitsch, D.R. Balfour, P.K. Marsden,
J.R. McClelland, D. Rueckert, and A.P. King, “High-resolution
dynamic MR imaging of the thorax for respiratory motion cor-
rection of PET using groupwise manifold alignment,” Med.
Image Anal., vol. 18, no. 7, pp. 939–952, 2014.

[2] M. von Siebenthal, G. Szekely, U. Gamper, P. Boesiger, A. Lo-
max, and P. Cattin, “4D MR imaging of respiratory organ mo-
tion and its variability,” Phys. Med. Biol., vol. 52, no. 6, pp.
1547, 2007.
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