3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles

Jiaqi Zhu, Ethan M. Rowland, Sevan Harput, Kai Riemer, Chee Hau Leow, Brett Clark, Karina Cox, Adrian Lim, Kirsten Christensen-Jeffries, Ge Zhang, Jemma Brown, Christopher Dunsby, Robert J. Eckersley, Peter D. Weinberg, Meng Xing Tang

Research output: Contribution to journalArticlepeer-review

86 Citations (Scopus)

Abstract

Background Variations in lymph node (LN) microcirculation can be indicative of metastasis. The identification and quantification of metastatic LNs remains essential for prognosis and treatment planning, but a reliable noninvasive imaging technique is lacking. Three-dimensional super-resolution (SR) US has shown potential to noninvasively visualize microvascular networks in vivo. Purpose To study the feasibility of three-dimensional SR US imaging of rabbit LN microvascular structure and blood flow by using microbubbles. Materials and Methods In vivo studies were carried out to image popliteal LNs of two healthy male New Zealand white rabbits aged 6-8 weeks. Three-dimensional, high-frame-rate, contrast material-enhanced US was achieved by mechanically scanning with a linear imaging probe. Individual microbubbles were identified, localized, and tracked to form three-dimensional SR images and super-resolved velocity maps. Acoustic subaperture processing was used to improve image contrast and to generate enhanced power Doppler and color Doppler images. Vessel size and blood flow velocity distributions were evaluated and assessed by using Student paired t test. Results SR images revealed microvessels in the rabbit LN, with branches clearly resolved when separated by 30 µm, which is less than half of the acoustic wavelength and not resolvable by using power or color Doppler. The apparent size distribution of most vessels in the SR images was below 80 µm and agrees with micro-CT data, whereas most of those detected with Doppler techniques were larger than 80 µm in the images. The blood flow velocity distribution indicated that most of the blood flow in rabbit popliteal LN was at velocities lower than 5 mm/sec. Conclusion Three-dimensional super-resolution US imaging using microbubbles allows noninvasive nonionizing visualization and quantification of lymph node microvascular structures and blood flow dynamics with resolution below the wave diffraction limit. This technology has potential for studying the physiologic functions of the lymph system and for clinical detection of lymph node metastasis. Published under a CC BY 4.0 license. Online supplemental material is available for this article.

Original languageEnglish
Pages (from-to)642-650
Number of pages9
JournalRadiology
Volume291
Issue number3
DOIs
Publication statusPublished - 1 Jun 2019

Fingerprint

Dive into the research topics of '3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles'. Together they form a unique fingerprint.

Cite this