Abstract
Photochemotherapy, in which ultraviolet radiation (UVR: 280-400 nm) or visible light is combined with a photosensitizing drug to produce a therapeutic effect that neither drug or radiation can achieve alone, is a proven therapeutic strategy for a number of non-malignant hyperproliferative skin conditions and various cancers. Examples are psoralen plus UVA (320-400 nm) radiation (PUVA) and photodynamic therapy (PDT). All existing photochemotherapies have drawbacks - for example the association of PUVA with the development of skin cancer, and pain that is often associated with PDT treatment of skin lesions. There is a clear need to develop alternative approaches that involve lower radiation doses and/or improved selectivity for target cells. In this review, we explore the possibility to address this need by exploiting thionucleoside-mediated DNA photosensitisation to low, non toxic doses of UVA radiation.
Original language | English |
---|---|
Pages (from-to) | 148 - 154 |
Number of pages | 7 |
Journal | Photochemical and Photobiological Sciences |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2012 |