A biomathematical modeling approach to central nervous system radioligand discovery and development

Qi Guo, Michael Brady, Roger N Gunn

    Research output: Contribution to journalArticlepeer-review

    65 Citations (Scopus)

    Abstract

    The development of a successful PET or SPECT molecular imaging probe is a complex, time-consuming, and expensive process that suffers from high attrition. To address this problem, we have developed a biomathematical modeling approach that aims to predict the in vivo performance of radioligands directly from in silico/in vitro data. Methods: The method estimates the in vivo nondisplaceable and total uptake of a ligand in a target tissue using a standard input function and a 1-tissue-compartment model with a parsimonious parameter set (influx rate constant K1, efflux rate constant k2, and binding potential BPND) whose values are predicted from in silico/in vitro data including lipophilicity, molecular volume, free fraction in plasma and tissue, target density, affinity, perfusion, capillary surface area, and apparent aqueous volume in plasma and tissue. The coefficient of variation of the BPND (%COV[BPND]) metric, derived from Monte Carlo simulations, is used to estimate the in vivo performance of candidate compounds. A total of 28 compounds for 10 targets was evaluated using our method to predict their in vivo performance and validated against measured in vivo PET data in the Yorkshire/Danish Landrace pig. Results: The predicted K1, k2, and BPND values were generally consistent with the values estimated from in vivo PET data. The model resulted in small %COV[BPND] values for widely accepted good ligands such as 11C-flumazenil (2.02%) and 11C-raclopride (2.55%), whereas higher values resulted from poor ligands such as 11C-(R)-PK11195 (13.34%). Of 4 candidates for the GlyT1 transporter, the model selected 11C-GSK931145 (2.11%) as the most promising ligand, which was consistent with historical decisions made on the in vivo PET data. Conclusion: A biomathematical modeling approach has the potential to predict the in vivo performance of ligands from in silico/in vitro data and aid in the development of molecular imaging probes.
    Original languageEnglish
    Article numberN/A
    Pages (from-to)1715-1723
    Number of pages9
    JournalJournal of Nuclear Medicine
    Volume50
    Issue number10
    DOIs
    Publication statusPublished - Oct 2009

    Fingerprint

    Dive into the research topics of 'A biomathematical modeling approach to central nervous system radioligand discovery and development'. Together they form a unique fingerprint.

    Cite this