Abstract
Non-invasive identification of transplanted neural stem cells in vivo by pre-labelling with contrast agents may play an important role in the translation of cell therapy to the clinic. Understanding the impact of these labels on the cells' ability to repair is therefore vital. In rats with middle cerebral artery occlusion (MCAo), a model of stroke, the transhemispheric migration of MHP36 cells labelled with the bimodal contrast agent GRID was detected on magnetic resonance images (MRI) up to 4 weeks following transplantation. However, compared to MHP36 cells labelled with the red fluorescent dye PKH26, GRID-labelled transplants did not significantly improve behaviour, and performance was akin to non-treated animals. Likewise, the evolution of anatomical damage as assessed by serial, T-2-weighted MRI over 1 year indicated that GRID-labelled transplants resulted in a slight increase in lesion size compared to MCAo-only animals, whereas the same, PKH26-labelled cells significantly decreased lesion size by 35%. Although GRID labelling allows the in vivo identification of transplanted cells up to 1 month after transplantation, it is likely that some is gradually degraded inside cells. The translation of cellular imaging therefore does not only require the in vitro assessment of contrast agents on cellular functions, but also requires the chronic, in vivo assessment of the label on the stem cells' ability to repair in preclinical models of neurological disease.
Original language | English |
---|---|
Article number | N/A |
Pages (from-to) | T133-T142 |
Number of pages | 10 |
Journal | NeuroImage |
Volume | 47 |
Issue number | S2 |
DOIs | |
Publication status | Published - Aug 2009 |