TY - JOUR
T1 - A computational model to simulate self-heating ignition across scales, configurations, and coal origins
AU - Yuan, Han
AU - Restuccia, Francesco
AU - Richter, Franz
AU - Rein, Guillermo
PY - 2019/1/15
Y1 - 2019/1/15
N2 - Self-heating of fuel layers can trigger ignition when the temperature of the surroundings is sufficiently high. Self-heating ignition has been a hazard and safety concern in raw materials production, transportation, and storage facilities for centuries. Hot plate and oven-basket experiments are the two most used lab-scale experiments to assess the hazard of self-heating ignition. While extensive experiments have been done to study this phenomenon, modelling of the experiments is substantially lagging behind. A computational model that can accurately simulate self-heating ignition under the two experimental configurations has not been developed yet. In this study, we build such a model by coupling heat transfer, mass transfer, and chemistry using the open-source code Gpyro. Due to the accessibility of large amount of experimental data, coal is chosen as the material for model validation. A literature review of the kinetic parameters for coal samples from different origins reveals that there is a compensation effect between the activation energy and exponential factor. Combining the compensation effect with our model, we simulate 6 different experimental studies covering the two experimental configurations, a wide range of sample sizes (heights ranging from 5 mm to 126 mm), and various coal origins (6 countries). The model accurately predicts critical ignition temperature (Tig) for all 24 experiments with an error below 7 °C. This computational model unifies for the first time the two most used self-heating ignition experiments and provides theoretical insights to understand self-ignition for different fuels under different conditions.
AB - Self-heating of fuel layers can trigger ignition when the temperature of the surroundings is sufficiently high. Self-heating ignition has been a hazard and safety concern in raw materials production, transportation, and storage facilities for centuries. Hot plate and oven-basket experiments are the two most used lab-scale experiments to assess the hazard of self-heating ignition. While extensive experiments have been done to study this phenomenon, modelling of the experiments is substantially lagging behind. A computational model that can accurately simulate self-heating ignition under the two experimental configurations has not been developed yet. In this study, we build such a model by coupling heat transfer, mass transfer, and chemistry using the open-source code Gpyro. Due to the accessibility of large amount of experimental data, coal is chosen as the material for model validation. A literature review of the kinetic parameters for coal samples from different origins reveals that there is a compensation effect between the activation energy and exponential factor. Combining the compensation effect with our model, we simulate 6 different experimental studies covering the two experimental configurations, a wide range of sample sizes (heights ranging from 5 mm to 126 mm), and various coal origins (6 countries). The model accurately predicts critical ignition temperature (Tig) for all 24 experiments with an error below 7 °C. This computational model unifies for the first time the two most used self-heating ignition experiments and provides theoretical insights to understand self-ignition for different fuels under different conditions.
KW - Coal
KW - Hot plate
KW - Ignition
KW - Oven-basket
KW - Self-heating
UR - http://www.scopus.com/inward/record.url?scp=85053814568&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2018.09.065
DO - 10.1016/j.fuel.2018.09.065
M3 - Article
AN - SCOPUS:85053814568
SN - 0016-2361
VL - 236
SP - 1100
EP - 1109
JO - FUEL
JF - FUEL
ER -