A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

7 Citations (Scopus)

Abstract

Wireless-connected Virtual Reality (VR) provides immersive experience for VR users from anywhere at anytime. However, providing wireless VR users with seamless connectivity and real-time VR video with high quality is challenging due to its requirements in high Quality of Experience (QoE) and low VR interaction latency under limited computation capability of VR device. To address these issues, we propose a Mobile Edge Computing (MEC)-enabled wireless VR network, where the field of view (FoV) of each VR user can be real-time predicted using Recurrent Neural Network (RNN), and the rendering of VR content is moved from VR device to MEC server with rendering model migration capability. Taking into account the geographical and FoV request correlation, we propose Deep Reinforcement Learning (DRL) strategies to maximize the long-term QoE of VR users under VR interaction latency constraint. Simulation results show that our proposed MEC rendering schemes and DRL algorithms substantially improve the long-term QoE of VR users and reduce the VR interaction latency compared to MEC rendering with nearest association scheme.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728194417
DOIs
Publication statusPublished - Jun 2021
Event2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Virtual, Online
Duration: 14 Jun 202123 Jun 2021

Publication series

Name2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Proceedings

Conference

Conference2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021
CityVirtual, Online
Period14/06/202123/06/2021

Keywords

  • deep reinforcement learning (DRL)
  • downlink transmission
  • Field of view (FoV) prediction
  • mobile edge computing (MEC)
  • rendering
  • virtual reality (VR)

Fingerprint

Dive into the research topics of 'A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network'. Together they form a unique fingerprint.

Cite this