TY - JOUR
T1 - Acoustic super-resolution with ultrasound and microbubbles
AU - Viessmann, O. M.
AU - Eckersley, R. J.
AU - Christensen-Jeffries, Kirsten
AU - Tang, M. X.
AU - Dunsby, C.
PY - 2013/9/2
Y1 - 2013/9/2
N2 - Ultrasound (US) is a widely used clinical imaging modality that offers penetration depths in tissue of >10 cm. However, the spatial resolution in US imaging is fundamentally limited by diffraction to approximately half the wavelength of the sound wave employed. The spatial resolution of optical microscopy is limited by the same fundamental physics, but in recent years super-resolution imaging techniques have been developed that overcome the diffraction limit through the localization of many spatially separated photo-switchable or photo-activatable fluorophores. In this paper, we apply a related approach to demonstrate super-resolution imaging with US. We imaged dilute suspensions of microbubble contrast agents flowing through narrow tube-based phantoms. By spatially localizing multiple spatially isolated microbubbles, we constructed super-resolved microbubble location density maps that clearly resolve features 5.1–2.2 times smaller than the US system point spread function full width half maximum in the lateral and axial directions respectively. Our initial characterization experiment using a fixed 100 µm diameter brass wire and a US frequency of 2 MHz suggests that for an ideal stationary point scatterer the ultimate resolution of the unmodified clinical US system used could be in the range of 2–4 µm.
AB - Ultrasound (US) is a widely used clinical imaging modality that offers penetration depths in tissue of >10 cm. However, the spatial resolution in US imaging is fundamentally limited by diffraction to approximately half the wavelength of the sound wave employed. The spatial resolution of optical microscopy is limited by the same fundamental physics, but in recent years super-resolution imaging techniques have been developed that overcome the diffraction limit through the localization of many spatially separated photo-switchable or photo-activatable fluorophores. In this paper, we apply a related approach to demonstrate super-resolution imaging with US. We imaged dilute suspensions of microbubble contrast agents flowing through narrow tube-based phantoms. By spatially localizing multiple spatially isolated microbubbles, we constructed super-resolved microbubble location density maps that clearly resolve features 5.1–2.2 times smaller than the US system point spread function full width half maximum in the lateral and axial directions respectively. Our initial characterization experiment using a fixed 100 µm diameter brass wire and a US frequency of 2 MHz suggests that for an ideal stationary point scatterer the ultimate resolution of the unmodified clinical US system used could be in the range of 2–4 µm.
UR - http://www.scopus.com/inward/record.url?scp=84884167280&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/58/18/6447
DO - 10.1088/0031-9155/58/18/6447
M3 - Article
C2 - 23999099
AN - SCOPUS:84884167280
SN - 0031-9155
VL - 58
SP - 6447
EP - 6458
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 18
ER -