TY - JOUR
T1 - Allogeneic Anti-BCMA CAR T Cells Are Superior to Multiple Myeloma-derived CAR T Cells in Preclinical Studies and May Be Combined with Gamma Secretase Inhibitors
AU - Metelo, Ana M.
AU - Jozwik, Agnieszka
AU - Luong, Le Anh
AU - Dominey-Foy, Delaney
AU - Graham, Charlotte
AU - Attwood, Charlotte
AU - Inam, Shafqat
AU - Dunlop, Alan
AU - Sanchez, Katy
AU - Cuthill, Kirsty
AU - Rice, Carmel
AU - Streetly, Matthew
AU - Bentley, Trevor
AU - Boldajipour, Bijan
AU - Sommer, Cesar
AU - Sasu, Barbra
AU - Benjamin, Reuben
N1 - Publisher Copyright:
© 2022 The Authors; Published by the American Association for Cancer Research.
PY - 2022/3
Y1 - 2022/3
N2 - Multiple myeloma remains an incurable plasma cell malignancy despite the rapidly evolving treatment landscape. Chimeric antigen receptor T cells targeted against BCMA have recently shown great promise in relapsed refractory multiple myeloma; however, all patients ultimately still progress from their disease. Lack of CAR T-cell persistence, impaired T-cell fitness in autologous CAR T-cell products and the presence of an immunosuppressive bone marrow (BM) microenvironment are contributory factors to treatment failure. We generated anti-BCMA CAR T cells from healthy donors (HD) and patients with multiple myeloma at different stages of disease to compare their T-cell profile, fitness, and cytotoxic activity in preclinical studies. We also used an ex vivo assay with multiple myeloma BM biopsies from distinct genomic subgroups to test the efficacy of HD-derived CAR T cells in a clinically relevant model. HD volunteers showed increased T-cell counts, higher CD4/CD8 ratio, and expanded naïve T-cell population compared with patients with multiple myeloma. After anti-BCMA CAR T-cell production, patients with relapsed multiple myeloma had lower frequencies of CAR+ T cells, decreased central memory phenotype, and increased checkpoint inhibitory markers compared with HD-derived products, which compromised their expansion and cytotoxicity against multiple myeloma cells in vitro. Importantly, HD-derived CAR T cells efficiently killed primary multiple myeloma cells within the BM microenvironment of different multiple myeloma genomic subgroups and their cytotoxic activity could be boosted with gamma secretase inhibitors. In conclusion, allogeneic anti-BCMA CAR T cells are a potential therapeutic strategy for patients with relapsed multiple myeloma and should be further developed in the clinic. Significance: Multiple myeloma is an incurable cancer of the plasma cells. A new therapy with anti-BCMA CAR T cells — the patient’s own T cells genetically engineered to find and kill myeloma cancer cells — has shown encouraging results. Unfortunately, patients still relapse. In this study, we propose to use T cells from HD volunteers, which have a stronger T-cell fitness, higher cancer killing capacity, and are ready to be administered when needed.
AB - Multiple myeloma remains an incurable plasma cell malignancy despite the rapidly evolving treatment landscape. Chimeric antigen receptor T cells targeted against BCMA have recently shown great promise in relapsed refractory multiple myeloma; however, all patients ultimately still progress from their disease. Lack of CAR T-cell persistence, impaired T-cell fitness in autologous CAR T-cell products and the presence of an immunosuppressive bone marrow (BM) microenvironment are contributory factors to treatment failure. We generated anti-BCMA CAR T cells from healthy donors (HD) and patients with multiple myeloma at different stages of disease to compare their T-cell profile, fitness, and cytotoxic activity in preclinical studies. We also used an ex vivo assay with multiple myeloma BM biopsies from distinct genomic subgroups to test the efficacy of HD-derived CAR T cells in a clinically relevant model. HD volunteers showed increased T-cell counts, higher CD4/CD8 ratio, and expanded naïve T-cell population compared with patients with multiple myeloma. After anti-BCMA CAR T-cell production, patients with relapsed multiple myeloma had lower frequencies of CAR+ T cells, decreased central memory phenotype, and increased checkpoint inhibitory markers compared with HD-derived products, which compromised their expansion and cytotoxicity against multiple myeloma cells in vitro. Importantly, HD-derived CAR T cells efficiently killed primary multiple myeloma cells within the BM microenvironment of different multiple myeloma genomic subgroups and their cytotoxic activity could be boosted with gamma secretase inhibitors. In conclusion, allogeneic anti-BCMA CAR T cells are a potential therapeutic strategy for patients with relapsed multiple myeloma and should be further developed in the clinic. Significance: Multiple myeloma is an incurable cancer of the plasma cells. A new therapy with anti-BCMA CAR T cells — the patient’s own T cells genetically engineered to find and kill myeloma cancer cells — has shown encouraging results. Unfortunately, patients still relapse. In this study, we propose to use T cells from HD volunteers, which have a stronger T-cell fitness, higher cancer killing capacity, and are ready to be administered when needed.
UR - http://www.scopus.com/inward/record.url?scp=85141744639&partnerID=8YFLogxK
U2 - 10.1158/2767-9764.CRC-21-0157
DO - 10.1158/2767-9764.CRC-21-0157
M3 - Article
AN - SCOPUS:85141744639
SN - 2767-9764
VL - 2
SP - 158
EP - 171
JO - Cancer research communications
JF - Cancer research communications
IS - 3
ER -