Altered glutamatergic response and functional connectivity in treatment resistant schizophrenia: the effect of riluzole and therapeutic implications

Toby Pillinger, Maria Rogdaki, Robert A. McCutcheon, Pamela Hathway, Alice Egerton, Oliver D. Howes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)
215 Downloads (Pure)

Abstract

Rationale: Anterior cingulate cortex (ACC) glutamatergic abnormalities are reported in treatment-resistant schizophrenia (TRS) and implicated in functional dysconnectivity and psychopathology. Preclinical evidence indicates riluzole reduces synaptic glutamate. However, it is unknown whether riluzole can modulate glutamate metabolite levels and associated functional connectivity in TRS. Objectives: To examine the relationship between glutamatergic function and cortical connectivity and determine if riluzole can modulate glutamate metabolite levels and cortical functional connectivity in TRS. Methods: Nineteen TRS patients and 18 healthy volunteers (HV) underwent magnetic resonance imaging consisting of MR spectroscopy measuring ACC glutamate plus glutamine (Glx), fMRI measuring resting ACC-functional connectivity, and arterial spin labelling measuring regional cerebral blood flow (rCBF), and clinical measures. They then received 50 mg riluzole twice daily for 2 days when imaging was repeated. Results: Baseline (pre-riluzole) Glx levels were correlated directly with negative symptom severity (r = 0.49; p = 0.03) and inversely with verbal learning in TRS (r = − 0.63; p = 0.002), but not HV (r = − 0.24; p = 0.41). Connectivity between the ACC and anterior prefrontal cortex (aPFC) was correlated with verbal learning in TRS (r = 0.49; p = 0.04), but not HV (r = 0.28; p = 0.33). There was a significant group × time interaction effect on Glx levels (p < 0.05) and on ACC connectivity to the aPFC (p < 0.05, FWE-corrected). Riluzole decreased Glx and increased ACC-aPFC connectivity in TRS relative to HV. Change in Glx correlated inversely with change in ACC-aPFC connectivity in TRS (r = − 0.52; p = 0.02) but not HV (r = 0.01; p = 0.98). Riluzole did not alter rCBF (p > 0.05), indicating absence of a non-specific blood flow effect. Conclusion: Results indicate glutamatergic function and cortical connectivity are linked to symptoms and cognitive measures and that it is possible to pharmacologically modulate them in TRS.

Original languageEnglish
Pages (from-to)1985-1997
Number of pages13
JournalPsychopharmacology
Volume236
Issue number7
Early online date28 Feb 2019
DOIs
Publication statusPublished - 1 Jul 2019

Keywords

  • Cognitive
  • Glutamate
  • MRS
  • Negative
  • Psychosis
  • Riluzole
  • Schizophrenia
  • Spectroscopy
  • Treatment resistant

Fingerprint

Dive into the research topics of 'Altered glutamatergic response and functional connectivity in treatment resistant schizophrenia: the effect of riluzole and therapeutic implications'. Together they form a unique fingerprint.

Cite this