TY - JOUR
T1 - Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury
AU - Rousset, Catherine I
AU - Kassem, Jinane
AU - Olivier, Paul
AU - Chalon, Sylvie
AU - Gressens, Pierre
AU - Saliba, Elie
PY - 2008/10
Y1 - 2008/10
N2 - Intracerebral injection of ibotenate in newborn rodents produces brain damage that mimics that of infants with cerebral palsy. Because maternal infection may contribute to brain injury in preterm infants, we investigated brain damage after maternal inflammation and postnatal ibotenate treatment in a rat model of cerebral palsy. Pregnant rats were injected intraperitoneally with lipopolysaccharide at Days 19 and 20 of gestation. Neonates were given intracerebral injections of ibotenate at postnatal Day 4 and were then killed at Day 9. Lesion sizes were measured by cresyl violet staining, and microglial activation, astrogliosis, and myelination were evaluated by immunohistochemistry. The lipopolysaccharide groups had larger cortical and white matter lesions than the control group; they also had significantly greater microglial activation and astrogliosis and less white matter myelination in the lesioned hemispheres compared with the controls. Thus, maternal endotoxin exposure may affect prenatal development of the offspring and modulate the subsequent development of excitotoxic brain lesions. These results demonstrate the critical influence of prenatal immune events on neonatal central nervous system vulnerability and provide a model for studying the pathophysiology of cerebral damage in preterm infants and, specifically, the interplay between brain inflammation and excitotoxicity.
AB - Intracerebral injection of ibotenate in newborn rodents produces brain damage that mimics that of infants with cerebral palsy. Because maternal infection may contribute to brain injury in preterm infants, we investigated brain damage after maternal inflammation and postnatal ibotenate treatment in a rat model of cerebral palsy. Pregnant rats were injected intraperitoneally with lipopolysaccharide at Days 19 and 20 of gestation. Neonates were given intracerebral injections of ibotenate at postnatal Day 4 and were then killed at Day 9. Lesion sizes were measured by cresyl violet staining, and microglial activation, astrogliosis, and myelination were evaluated by immunohistochemistry. The lipopolysaccharide groups had larger cortical and white matter lesions than the control group; they also had significantly greater microglial activation and astrogliosis and less white matter myelination in the lesioned hemispheres compared with the controls. Thus, maternal endotoxin exposure may affect prenatal development of the offspring and modulate the subsequent development of excitotoxic brain lesions. These results demonstrate the critical influence of prenatal immune events on neonatal central nervous system vulnerability and provide a model for studying the pathophysiology of cerebral damage in preterm infants and, specifically, the interplay between brain inflammation and excitotoxicity.
U2 - 10.1097/NEN.0b013e31818894a1
DO - 10.1097/NEN.0b013e31818894a1
M3 - Article
C2 - 18800008
SN - 0022-3069
VL - 67
SP - 994
EP - 1000
JO - Journal of Neuropathology and Experimental Neurology
JF - Journal of Neuropathology and Experimental Neurology
IS - 10
ER -