TY - JOUR
T1 - Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay
AU - Stewart, James
AU - Shawon, Jakaria
AU - Ali, Md Ackas
AU - Williams, Blaise
AU - Shahinuzzaman, A. D.A.
AU - Rupa, Sharmin Akther
AU - Al-Adhami, Taha
AU - Jia, Ruoqing
AU - Bourque, Cole
AU - Faddis, Ryan
AU - Stone, Kaylee
AU - Sufian, Md Abu
AU - Islam, Rajib
AU - McShan, Andrew C.
AU - Rahman, Khondaker Miraz
AU - Halim, Mohammad A.
N1 - Publisher Copyright:
© 2023 European Peptide Society and John Wiley & Sons, Ltd.
PY - 2024/4
Y1 - 2024/4
N2 - The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys–His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein–peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 μM, respectively. A liquid chromatography–MS (LC–MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 μM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.
AB - The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys–His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein–peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 μM, respectively. A liquid chromatography–MS (LC–MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 μM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.
KW - antiviral peptides
KW - COVID-19
KW - main protease
KW - molecular dynamics simulation
KW - peptide inhibitor
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85178213307&partnerID=8YFLogxK
U2 - 10.1002/psc.3553
DO - 10.1002/psc.3553
M3 - Article
C2 - 38031661
AN - SCOPUS:85178213307
SN - 1075-2617
VL - 30
JO - JOURNAL OF PEPTIDE SCIENCE
JF - JOURNAL OF PEPTIDE SCIENCE
IS - 4
M1 - e3553
ER -