Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay

James Stewart, Jakaria Shawon, Md Ackas Ali, Blaise Williams, A. D.A. Shahinuzzaman, Sharmin Akther Rupa, Taha Al-Adhami, Ruoqing Jia, Cole Bourque, Ryan Faddis, Kaylee Stone, Md Abu Sufian, Rajib Islam, Andrew C. McShan, Khondaker Miraz Rahman, Mohammad A. Halim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys–His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein–peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 μM, respectively. A liquid chromatography–MS (LC–MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 μM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.

Original languageEnglish
Article numbere3553
JournalJOURNAL OF PEPTIDE SCIENCE
Volume30
Issue number4
DOIs
Publication statusPublished - Apr 2024

Keywords

  • antiviral peptides
  • COVID-19
  • main protease
  • molecular dynamics simulation
  • peptide inhibitor
  • SARS-CoV-2

Fingerprint

Dive into the research topics of 'Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay'. Together they form a unique fingerprint.

Cite this