Assessing radiotracer kinetics in the Langendorff perfused heart

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
251 Downloads (Pure)

Abstract

Background
The Langendorff perfused heart is a physiologically relevant and controllable model with potential for assessing the pharmacokinetics of new radiotracers under a range of pathophysiological conditions.. We assess the feasibility of extending the methods validated for in vivo PET data analysis to the characterisation of PET tracer kinetics applied to Langendorff perfused hearts.

Methods
Monte Carlo simulations were used to study the accuracy and reproducibility of linear and non-linear spectral analysis (SA/NLSA), the Patlak graphical method and normalised tissue activity (NA). The methods were used to analyse time-activity curves of two widely used PET tracers, [18 F]-FDG and [18 F]-FMISO, acquired ex vivo from Langendorff perfused rat hearts under normoxic and hypoxic conditions.

Results
Monte Carlo simulations showed NLSA to be superior to SA in identifying and quantifying the presence of irreversible trapping component (αo), for low values of αo. The performance of NLSA and SA for high values of trapping was comparable. NLSA was also more precise than SA in determining the absence of trapping over the range of simulated kinetics and SNR. Simulations also suggest that the semi-quantitative method NA is adequate for the evaluation of trapping, and it was found to be more accurate than Patlak. The values of α0 estimated with NLSA from the time series of both [18 F]-FDG and [18 F]-FMISO increased significantly from normoxia to hypoxia in agreement with previous studies. The values of trapping derived using SA increased but not significantly, reflecting the larger error associate with this method. Patlak estimated from the experimental datasets increased from normoxia to hypoxia but was not significant. NA estimated from the [18 F]-FDG data increased from normoxia to hypoxia, but was not significant, whilst NA calculated for [18 F]-FMISO time-activity curves increased significantly.

Conclusions
Monte Carlo simulations suggested that spectral-based quantitative analysis methods are adequate for the kinetic characterisation of time-activity curves acquired ex vivo from perfused hearts. The uptake rate Patlak and the index NA also represent a good alternative to the SA and NLSA algorithms when the aim of the kinetic analysis is to measure changes in the amount of tracer trapped in the irreversible compartment in response to external stimuli. For low levels of trapping, NLSA and NA were subject to lower errors than SA and Patlak, respectively.
Original languageEnglish
Article number74
Pages (from-to)N/A
Number of pages14
JournalEJNMMI Research
Volume3
Issue numberN/A
DOIs
Publication statusE-pub ahead of print - 14 Nov 2013

Keywords

  • PET
  • Spectral Analysis
  • Kinetic modelling
  • [18F]-FDG
  • [18F]-FMISO
  • Perfused heart

Fingerprint

Dive into the research topics of 'Assessing radiotracer kinetics in the Langendorff perfused heart'. Together they form a unique fingerprint.

Cite this