Automated CNN-based reconstruction of short-axis cardiac MR sequence from real-time image data

Eric Kerfoot*, Esther Puyol Anton, Bram Ruijsink, James Clough, Andrew P. King, Julia A. Schnabel

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

5 Citations (Scopus)

Abstract

We present a methodology for reconstructing full-cycle respiratory and cardiac gated short-axis cine MR sequences from real-time MR data. For patients who are too ill or otherwise incapable of consistent breath holds, real-time MR sequences are the preferred means of acquiring cardiac images, but suffer from inferior image quality compared to standard short-axis sequences and lack cardiac ECG gating. To construct a sequence from real-time images which, as close as possible, replicates the characteristics of short-axis series, the phase of the cardiac cycle must be estimated for each image and the left ventricle identified, to be used as a landmark for slice re-alignment. Our method employs CNN-based deep learning to segment the left ventricle in the real-time sequence, which is then used to estimate the pool volume and thus the position of each image in the cardiac cycle. We then use manifold learning to account for the respiratory cycle so as to select images of the best quality at expiration. From these images a selection is made to automatically reconstruct a single cardiac cycle, and the images and segmentations are then aligned. The aligned pool segmentations can then be used to calculate volume over time and thus volume-based biomarkers.

Original languageEnglish
Title of host publicationImage Analysis for Moving Organ, Breast, and Thoracic Images - Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Proceedings
PublisherSpringer Verlag
Pages32-41
Number of pages10
ISBN (Print)9783030009458
DOIs
Publication statusE-pub ahead of print - 12 Sept 2018
Event3rd International Workshop on Reconstruction and Analysis of Moving Body Organs, RAMBO 2018, 4th International Workshop on Breast Image Analysis, BIA 2018, and 1st International Workshop on Thoracic Image Analysis, TIA 2018, held in conjunction with 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sept 201820 Sept 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11040 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Workshop on Reconstruction and Analysis of Moving Body Organs, RAMBO 2018, 4th International Workshop on Breast Image Analysis, BIA 2018, and 1st International Workshop on Thoracic Image Analysis, TIA 2018, held in conjunction with 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/201820/09/2018

Keywords

  • Automatic segmentation
  • Image-based motion correction
  • Real time cardiac imaging

Fingerprint

Dive into the research topics of 'Automated CNN-based reconstruction of short-axis cardiac MR sequence from real-time image data'. Together they form a unique fingerprint.

Cite this