Abstract
Research into clinical applications of speech-based emotion recognition (SER)
technologies has been steadily increasing over the past few years. One such potential application is the automatic recognition of expressed emotion (EE) components within family environments. The identification of EE is highly important as they have been linked with a range of adverse life events. Manual coding of these events requires time-consuming specialist training, amplifying the need for automated approaches. Herein we describe an automated machine learning approach for determining the degree of warmth, a key component of EE, from acoustic and text natural language features. Our dataset of 52 recorded interviews is taken from recordings, collected over 20 years ago, from a nationally representative birth cohort of British twin children, and was manually coded for EE by two researchers (inter-rater reliability 0.84–0.90). We demonstrate that the degree of warmth can be predicted with an F1-score of 64.7% despite working with audio recordings of highly variable quality. Our highly promising results suggest that machine learning may be able to assist in the coding of EE in the near future.
technologies has been steadily increasing over the past few years. One such potential application is the automatic recognition of expressed emotion (EE) components within family environments. The identification of EE is highly important as they have been linked with a range of adverse life events. Manual coding of these events requires time-consuming specialist training, amplifying the need for automated approaches. Herein we describe an automated machine learning approach for determining the degree of warmth, a key component of EE, from acoustic and text natural language features. Our dataset of 52 recorded interviews is taken from recordings, collected over 20 years ago, from a nationally representative birth cohort of British twin children, and was manually coded for EE by two researchers (inter-rater reliability 0.84–0.90). We demonstrate that the degree of warmth can be predicted with an F1-score of 64.7% despite working with audio recordings of highly variable quality. Our highly promising results suggest that machine learning may be able to assist in the coding of EE in the near future.
Original language | English |
---|---|
Article number | e0300518 |
Journal | PLoS One |
Volume | 19 |
Issue number | 3 March |
Early online date | 21 Mar 2024 |
DOIs | |
Publication status | Published - Mar 2024 |