Abstract
Materials for pulp protection should have therapeutic properties in order to stimulate remineralization and pulp reparative processes. The aim of this study was to evaluate the mechanical properties, biocompatibility, cell differentiation and bioactivity of experimental light-curable resin-based materials containing bioactive micro-fillers.
MethodsFour calcium-phosphosilicate micro-fillers were prepared and incorporated into a resin blend: 1) Bioglass 45S5 (BAG); 2) zinc-doped bioglass (BAG-Zn); 3) βTCP-modified calcium silicate (β-CS); 4) zinc-doped β-CS (β-CS-Zn). These experimental resins were tested for flexural strength (FS) and fracture toughness (FT) after 24 h and 30-day storage in simulated body fluid (SBF). Cytotoxicity was evaluated using MTT assay, while bioactivity was evaluated using mineralization and gene expression assays (Runx-2 & ALP).
ResultsThe lowest FS and FT at 24 h was attained with β-CS resin, while all the other tested materials exhibited a decrease in FS after prolonged storage in SBF. β-CS-Zn maintained a stable FT after 30-day SBF aging. Incorporation of bioactive micro-fillers had no negative effect on the biocompatibility of the experimental materials tested in this study. The inclusion of zinc-doped fillers significantly increased the cellular remineralization potential and expression of the osteogenic genes Runx2 and ALP (p < 0.05).
SignificanceThe innovative materials tested in this study, in particular those containing β-CS-Zn and BAG-Zn may promote cell differentiation and mineralization. Thus, these materials might represent suitable therapeutic pulp protection materials for minimally invasive and atraumatic restorative treatments.
Original language | English |
---|---|
Number of pages | 11 |
Journal | Dental Materials |
Early online date | 16 Mar 2018 |
DOIs | |
Publication status | E-pub ahead of print - 16 Mar 2018 |