TY - JOUR
T1 - Clinical predictors of antipsychotic treatment resistance
T2 - Development and internal validation of a prognostic prediction model by the STRATA-G consortium
AU - Smart, Sophie E.
AU - Agbedjro, Deborah
AU - Pardiñas, Antonio F.
AU - Ajnakina, Olesya
AU - Alameda, Luis
AU - Andreassen, Ole A.
AU - Barnes, Thomas R.E.
AU - Berardi, Domenico
AU - Camporesi, Sara
AU - Cleusix, Martine
AU - Conus, Philippe
AU - Crespo-Facorro, Benedicto
AU - D'Andrea, Giuseppe
AU - Demjaha, Arsime
AU - Di Forti, Marta
AU - Do, Kim
AU - Doody, Gillian
AU - Eap, Chin B.
AU - Ferchiou, Aziz
AU - Guidi, Lorenzo
AU - Homman, Lina
AU - Jenni, Raoul
AU - Joyce, Eileen
AU - Kassoumeri, Laura
AU - Lastrina, Ornella
AU - Melle, Ingrid
AU - Morgan, Craig
AU - O'Neill, Francis A.
AU - Pignon, Baptiste
AU - Restellini, Romeo
AU - Richard, Jean Romain
AU - Simonsen, Carmen
AU - Španiel, Filip
AU - Szöke, Andrei
AU - Tarricone, Ilaria
AU - Tortelli, Andrea
AU - Üçok, Alp
AU - Vázquez-Bourgon, Javier
AU - Murray, Robin M.
AU - Walters, James T.R.
AU - Stahl, Daniel
AU - MacCabe, James H.
N1 - Funding Information:
This work was supported by a Stratified Medicine Programme grant to JHM from the Medical Research Council (grant number MR/L011794/1 which funded the research and supported S.E.S., D.A., A.F.P, L.K., R.M.M., D.S., J.T.R.W, & J.H.M.); funding from the National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust and King's College London to D.A. and D.S; and funding from the Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London at King's College Hospital National Health Service Foundation Trust to S.E.S.
Funding Information:
The AESOP (London, UK) cohort was funded by the UK Medical Research Council (Ref: G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community's Seventh Framework Program under grant agreement (agreement No. HEALTH-F2-2010–241909, Project EU-GEI). The GAP (London, UK) cohort was funded by the UK National Institute of Health Research (NIHR) Specialist Biomedical Research Centre for Mental Health, South London and Maudsley NHS Mental Health Foundation Trust (SLaM) and the Institute of Psychiatry, Psychology, and Neuroscience at King's College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2009-241909, Project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (no. 320030_135736/1 to P.C. and K.Q.D., no 320030-120686, 324730-144064 and 320030-173211 to C.B.E and P.C., and no 171804 to LA); National Center of Competence in Research (NCCR) “SYNAPSY - The Synaptic Bases of Mental Diseases” from the Swiss National Science Foundation (no 51AU40_125759 to PC and KQD); and Fondation Alamaya (to KQD). The Oslo (Norway) cohort was funded by the Research Council of Norway (#223273/F50, under the Centers of Excellence funding scheme, #300309, #283798) and the South-Eastern Norway Regional Health Authority (#2006233, #2006258, #2011085, #2014102, #2015088 to IM, #2017-112). The Paris (France) cohort was funded by European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2010–241909, Project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (Grant Number: NU20-04-00393). The Santander (Spain) cohort was funded by the following grants (to B.C.F): Instituto de Salud Carlos III, FIS 00/3095, PI020499, PI050427, PI060507, Plan Nacional de Drogas Research Grant 2005-Orden sco/3246/2004, and SENY Fundatio Research Grant CI 2005-0308007, Fundacion Marques de Valdecilla A/02/07 and API07/011. SAF2016-76046-R and SAF2013-46292-R (MINECO and FEDER). The West London (UK) cohort was funded The Wellcome Trust (Grant Number: 042025; 052247; 064607).
Funding Information:
The Authors declare no Competing Non-Financial Interests but the following Competing Financial Interests: J.T.R.W. is an investigator on a grant from Takeda Pharmaceuticals Ltd. to Cardiff University, for a project unrelated to the work presented here. S.E.S. is employed on this grant. M.D.F. has received a fee for educational seminars from Lundbeck and Janssen. O.A.A. is a consultant to HealthLytix and has received speakers honorarium from Lundbeck and Sunovion. T.R.E.B. has been a member of an advisory board for Gedeon Richter. C.B.E. received honoraria for conferences from Forum pour la formation médicale, Janssen-Cilag, Lundbeck, Otsuka, Sandoz, Servier, Sunovion, Sysmex Suisse AG, Takeda, Vifor-Pharma, and Zeller in the past 3 years. B.C.F. has received honoraria for participation as a consultant and/or as a speaker at educational events from ADAMED, Mylan, Angelini, Janssen Johnson & Johnson, Lundbeck, and Otsuka Pharmaceuticals. R.M.M. has received payments for non-promotional lectures from Janssen, Otsuka, Sunovian, and Lundbeck. J.H.M. has received research funding from H Lundbeck.
Publisher Copyright:
© 2022 The Authors
PY - 2022/12
Y1 - 2022/12
N2 - Introduction: Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. Methods: We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Results: Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Implications: Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
AB - Introduction: Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. Methods: We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Results: Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Implications: Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
KW - First episode psychosis
KW - Machine learning
KW - Prediction modelling
KW - Prospective longitudinal cohort
KW - Stratification
KW - Treatment resistant schizophrenia
UR - http://www.scopus.com/inward/record.url?scp=85139986927&partnerID=8YFLogxK
U2 - 10.1016/j.schres.2022.09.009
DO - 10.1016/j.schres.2022.09.009
M3 - Article
C2 - 36242784
AN - SCOPUS:85139986927
SN - 0920-9964
VL - 250
SP - 1
EP - 9
JO - Schizophrenia Research
JF - Schizophrenia Research
ER -