Comparison of machine learning methods for prediction of osteoradionecrosis incidence in patients with head and neck cancer

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

OBJECTIVES: Mandible osteoradionecrosis (ORN) is one of the most severe toxicities in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). The existing literature focuses on the correlation of mandible ORN and clinical and dosimetric factors. This study proposes the use of machine learning (ML) methods as prediction models for mandible ORN incidence. METHODS: A total of 96 patients (ORN incidence ratio of 1:1) treated between 2011 and 2015 were selected from the local HNC toxicity database. Demographic, clinical and dosimetric data (based on the mandible dose-volume histogram) were considered as model variables. Prediction accuracy (measured using a stratified fivefold nested cross-validation), sensitivity, specificity, precision and negative predictive value were used to evaluate the prediction performance of a multivariate logistic regression (LR) model, a support vector machine (SVM) model, a random forest (RF) model, an adaptive boosting (AdaBoost) model and an artificial neural network (ANN) model. The different models were compared based on their prediction accuracy and using the McNemar's hypothesis test. RESULTS: The ANN model (77% accuracy), closely followed by the SVM (76%), AdaBoost (75%) and LR (75%) models, showed the highest overall prediction accuracy. The RF model (71%) showed the lowest prediction accuracy. However, based on the McNemar's test applied to all model pair combinations, no statistically significant difference between the models was found. CONCLUSION: Based on our results, we encourage the use of ML-based prediction models for ORN incidence as has already been done for other HNC toxicity end points. ADVANCES IN KNOWLEDGE: This research opens a new path towards personalised RT for HNC using ML to predict mandible ORN incidence.

Original languageEnglish
Pages (from-to)20200026
Number of pages1
JournalThe British journal of radiology
Volume94
Issue number1120
DOIs
Publication statusPublished - 1 Apr 2021

Fingerprint

Dive into the research topics of 'Comparison of machine learning methods for prediction of osteoradionecrosis incidence in patients with head and neck cancer'. Together they form a unique fingerprint.

Cite this