TY - JOUR
T1 - Comparison of machine learning methods for prediction of osteoradionecrosis incidence in patients with head and neck cancer
AU - Humbert-Vidan, Laia
AU - Patel, Vinod
AU - Oksuz, Ilkay
AU - King, Andrew Peter
AU - Guerrero Urbano, Teresa
N1 - Funding Information:
This research was funded by the Cancer Fund within King’s College London.
Publisher Copyright:
© 2021 The Authors. Published by the British Institute of Radiology under the terms of the Creative Commons Attribution 4.0 Unported License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - OBJECTIVES: Mandible osteoradionecrosis (ORN) is one of the most severe toxicities in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). The existing literature focuses on the correlation of mandible ORN and clinical and dosimetric factors. This study proposes the use of machine learning (ML) methods as prediction models for mandible ORN incidence. METHODS: A total of 96 patients (ORN incidence ratio of 1:1) treated between 2011 and 2015 were selected from the local HNC toxicity database. Demographic, clinical and dosimetric data (based on the mandible dose-volume histogram) were considered as model variables. Prediction accuracy (measured using a stratified fivefold nested cross-validation), sensitivity, specificity, precision and negative predictive value were used to evaluate the prediction performance of a multivariate logistic regression (LR) model, a support vector machine (SVM) model, a random forest (RF) model, an adaptive boosting (AdaBoost) model and an artificial neural network (ANN) model. The different models were compared based on their prediction accuracy and using the McNemar's hypothesis test. RESULTS: The ANN model (77% accuracy), closely followed by the SVM (76%), AdaBoost (75%) and LR (75%) models, showed the highest overall prediction accuracy. The RF model (71%) showed the lowest prediction accuracy. However, based on the McNemar's test applied to all model pair combinations, no statistically significant difference between the models was found. CONCLUSION: Based on our results, we encourage the use of ML-based prediction models for ORN incidence as has already been done for other HNC toxicity end points. ADVANCES IN KNOWLEDGE: This research opens a new path towards personalised RT for HNC using ML to predict mandible ORN incidence.
AB - OBJECTIVES: Mandible osteoradionecrosis (ORN) is one of the most severe toxicities in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). The existing literature focuses on the correlation of mandible ORN and clinical and dosimetric factors. This study proposes the use of machine learning (ML) methods as prediction models for mandible ORN incidence. METHODS: A total of 96 patients (ORN incidence ratio of 1:1) treated between 2011 and 2015 were selected from the local HNC toxicity database. Demographic, clinical and dosimetric data (based on the mandible dose-volume histogram) were considered as model variables. Prediction accuracy (measured using a stratified fivefold nested cross-validation), sensitivity, specificity, precision and negative predictive value were used to evaluate the prediction performance of a multivariate logistic regression (LR) model, a support vector machine (SVM) model, a random forest (RF) model, an adaptive boosting (AdaBoost) model and an artificial neural network (ANN) model. The different models were compared based on their prediction accuracy and using the McNemar's hypothesis test. RESULTS: The ANN model (77% accuracy), closely followed by the SVM (76%), AdaBoost (75%) and LR (75%) models, showed the highest overall prediction accuracy. The RF model (71%) showed the lowest prediction accuracy. However, based on the McNemar's test applied to all model pair combinations, no statistically significant difference between the models was found. CONCLUSION: Based on our results, we encourage the use of ML-based prediction models for ORN incidence as has already been done for other HNC toxicity end points. ADVANCES IN KNOWLEDGE: This research opens a new path towards personalised RT for HNC using ML to predict mandible ORN incidence.
UR - http://www.scopus.com/inward/record.url?scp=85103305850&partnerID=8YFLogxK
U2 - 10.1259/bjr.20200026
DO - 10.1259/bjr.20200026
M3 - Article
C2 - 33684314
AN - SCOPUS:85103305850
SN - 1748-880X
VL - 94
SP - 20200026
JO - The British journal of radiology
JF - The British journal of radiology
IS - 1120
ER -