Contrastive Learning based Semantic Communication for Wireless Image Transmission

Shunpu Tang*, Qianqian Yang, Lisheng Fan, Xianfu Lei, Yansha Deng, Arumugam Nallanathan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

3 Citations (Scopus)

Abstract

Recently, semantic communication has been widely applied in wireless image transmission systems as it can prioritize the preservation of meaningful semantic information in images over the accuracy of transmitted symbols, leading to improved communication efficiency. However, existing semantic communication approaches still face limitations in achieving considerable inference performance in downstream AI tasks like image recognition, or balancing the inference performance with the quality of the reconstructed image at the receiver. Therefore, this paper proposes a contrastive learning (CL)-based semantic communication approach to overcome these limitations. Specifically, we regard the image corruption during transmission as a form of data augmentation in CL and leverage CL to reduce the semantic distance between the original and the corrupted reconstruction while maintaining the semantic distance among irrelevant images for better discrimination in downstream tasks. Moreover, we design a two-stage training procedure and the corresponding loss functions for jointly optimizing the semantic encoder and decoder to achieve a good trade-off between the performance of image recognition in the downstream task and reconstructed quality. Simulations are finally conducted to demonstrate the superiority of the proposed method over the competitive approaches. In particular, the proposed method can achieve up to 56% accuracy gain on the CIFAR10 dataset when the bandwidth compression ratio is 1/48.

Original languageEnglish
Title of host publication2023 IEEE 98th Vehicular Technology Conference, VTC 2023-Fall - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350329285
DOIs
Publication statusPublished - 2023
Event98th IEEE Vehicular Technology Conference, VTC 2023-Fall - Hong Kong, China
Duration: 10 Oct 202313 Oct 2023

Publication series

NameIEEE Vehicular Technology Conference
ISSN (Print)1550-2252

Conference

Conference98th IEEE Vehicular Technology Conference, VTC 2023-Fall
Country/TerritoryChina
CityHong Kong
Period10/10/202313/10/2023

Keywords

  • contrastive learning
  • image transmission
  • joint source-channel coding
  • Semantic communication

Fingerprint

Dive into the research topics of 'Contrastive Learning based Semantic Communication for Wireless Image Transmission'. Together they form a unique fingerprint.

Cite this